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základńıch teoretických poznatk̊u a uvád́ıme již známé výsledky o algebrách
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Introduction

Clone theory is a branch of algebra that studies clones, that is, sets of operations
closed under composition. Important and typical examples are clones of algebras:
a clone of an algebra A is the set of all term operations of A. Historically, this
field started to develop in 1941 when Post[28] described all clones on two element-
set. Clones are studied extensively because properties of an algebra, for example
the structure of subuniverses, congruences and automorphisms, depend only on
its term operations, that is, on its clone.

From the Galois correspondence between sets of operations and sets of rela-
tions we know that every clone is determined by a set of relations. An algebra
is called finitely related if its clone is determined by a finite set of relations.
Finitely related algebras are particularly important for computational problems
parametrized by a finite set of relations, e.g., the constraint satisfaction problem
(CSP).

It is because of to CSP that finitely related algebras receive an attention in
recent years. Probably the most important result is a characterization of finite
finitely related algebras in congruence modular varieties: a finite algebra A in
a congruence modular variety is finitely related if and only if A has few subpowers.
We say that an algebra A has few subpowers if the number of subalgebras of An

is less than 2p(n) for some polynomial p. Roughly, an algebra has few subpowers
if there is not too many relations compatible with the clone of the algebra. The
aforementioned result was proved by a combination of results of Aichinger, Mayr
and McKenzie [2] and Barto [5]. This results show that many well-known classes
of algebras are finitely related, groups, rings and lattices belong among the most
important examples.

Several articles about various classes of semigroups were published recently.
For example Davey, Jackson, Pitkethly and Szabó [12] showed that commutative
or nilpotent semigroups are finitely related. Dolinka [17] proved that idempotent
semigroups enjoy that property as well.

However, there are uncountably many non-finitely related algebras and no
general characterization is available. Therefore there is an endeavor to character-
ize all finitely related algebras.

We study graph algebras in this thesis, that is, groupoids whose binary oper-
ation is defined by a graph. Those were introduced in 1979 by Shallon and were
studied quite heavily since that time. Although there are results concerning many
properties of graph algebras, for example in [30], it is not known which of them
are finitely related. We aim to find out which graphs algebras are finitely related.
Although partial results were announced in personal communication by Kazda
and Buĺın, the proof techniques and methods were brought up independently.

In the first chapter we recall some definitions and basic universal algebraic
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theory, which will be needed later. We also present an overview of known results
with emphasis on a connection between finitely related algebras and Mal’cev con-
ditions, which characterize many algebraic properties of varieties. In the second
chapter we introduce the concept of graph algebras and we present several basic
observations. The core of the thesis is in chapters 3 and 4. In Chapter 3 we
present two classes of graph algebras which are non-finitely related, whereas in
Chapter 4 are introduced classes of algebras which are finitely related. In the
conclusion we discuss few examples of graph algebras which we can not decide to
have or not to have the property and we present several ideas on possible future
research of those algebras.
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1 Preliminaries

In this chapter we recall basic universal algebraic definitions and results that we
will need later. Most of the topics are covered in [7]. Furthermore, we present
a comprehensive overview of known results about finitely related algebras. We
also discuss the connection between finitely related algebras and Mal’cev con-
ditions. Several theorems and observations about proof techniques used in the
thesis are presented as well.

1.1 Introductory theory

Let A be a set, an n-ary operation on A is a mapping f ∶ An → A. An algebra
A is a pair (A,F), such that A is a set, called the universe, and F is a possibly
infinite set of operations on A, called the basic operations. In this thesis we will
consider only finite algebras, that is, algebras which universe is a finite set. Let(A,F) be an algebra with an independent set of operations F = (fi∣i ∈ I), the
function τ ∶ I → N ∪ {0} which assigns to every i ∈ I the arity of the operation
fi is called the similarity type of A. We say that two algebras are similar if the
have the same similarity type.

A variety is a class of similar algebras closed under forming homomorphic
images, subalgebras and products. Let A = (A,F) and B = (B,F ′). We say that
B is a reduct of A if A = B and F ′ ⊂ F , that is, we get B by omitting operations
from A. Similarly we call B an expansion of A if A = B and F ⊂ F ′, i.e., we add
new operations to A.

By πn
k

we denote the k-th n-ary projection, that is, the operation defined by
πn
k
(x1, . . . , xn) = xk. A set of operations on A is a clone if it contains all the

projections and it is closed under composition. The smallest clone containing all
the basic operations of algebra A is denoted by Clo(A) and it is equal to the set
of all term operations of A, that is, operations obtained by composition of the
basic operations and the projections.

We provide an example of a clone to illustrate the definition. We call an
operation f on a set A idempotent if f(a, . . . , a) = a for every a ∈ A. Since all the
projections have the property and a composition of idempotent operations is an
idempotent operation, all idempotent operations forms a clone.

In 1941 Post [28] completely described the lattice of clones on two-element
set, in particular, he showed that the clone lattice is countable. However, in 1959
Janov and Mučnik [20] proved that for any A such that ∣A∣ ≥ 3, the lattice of
clones is uncountable. The full description of the clone lattices seems hopeless.

Clones play an important role in universal algebra because many structural
properties of A depends only on Clo(A). In particular, a subset B of A is
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a subuniverse of A (a universe of a subalgebra) if and only if it is closed under
all term operations.

By a k-ary relation on a set A we mean any subset of Ak. We say that an
n-ary operation f preserves a k-ary relation R if

(x11, x12, . . . , x1k), (x21, . . . , x2k), . . . , (xn1, xn2, . . . , xnk) ∈ R
⇒ (f(x11, x21, . . . , xn1), . . . , f(x1k, x2k, . . . , xnk)) ∈ R.

In other words, f preserves k-ary relation R if and only if R is a subuniverse of(A,f)k. We also say that R is invariant under f or f is compatible with R. In
this situation we write f ▷R. Let us illustrate the notion of being preserved by
few examples. An equivalence R on A is a congruence if and only if Clo(A)▷R.
As we mentioned before B ≤ A if and only if Clo(A) ▷B, where B is regarded
as a unary relation on A.

A relational structure A is a pair (A,R), where A is a set and R is a set of
relations. By Rel(A) we denote the set of all relations on A. The notion of being
preserved can be extended to sets of operations and sets of relations. We say that
F ⊆ Op(A) preserves R ⊆ Rel(A) if f▷θ for all f ∈ F and all θ ∈ R. An operation
which preserves all relations of a relational structure A is called a polymorphism of
A. We denote the set of all polymorphism of a relational structure A by Pol(A).
The set of all relations preserved by a set of operations F is denoted by Inv(F ).
Theorem 1. [9, 18] For any relational structure A, Pol(A) is a clone on A. If
A is finite, then every clone on A is of the form Pol(A) for some A.

Since all clones on A are determined by a certain set of relations, we can ask
whether the set is finite or not.

Definition 1. We say algebra A is finitely related if and only if there exists
a relational structure A with finitely many relations such that Clo(A)=Pol(A).

Informally, finitely related algebras can be described by finitely many re-
lations. Finitely related algebras have been also called predicately describable,
finitely definable, finite relational degree or of finite degree.

The set of all clones on a finite set A ordered by inclusion is a lattice. The
minimal element is the clone containing only the projections, we denote it by
Proj(A), the maximal element is the clone of all operations on A, we denote it
by Op(A). The operators Inv and Pol forms a Galois connection between sets of
operations and sets of relations on A. From the theory of Galois connections we
obtain a closure operator on sets of operations and Theorem 1 implies that the
closed subsets of Op(A) are exactly the clones. In particular, the clone lattice
is complete. Moreover, the lattice of clones is algebraic [7], where the compact
elements are finitely generated clones.

A relation R is primitively positively definable or pp-definable from A if it
can be defined by a first order formula using only conjunction, existential quan-
tification and the equality relation. A set closed under pp-definitions is called
a relational clone. Relational clones are counterparts of clones in Rel(A), there
is an anti-isomorphism between the lattice of clones on A and the lattice of rela-
tional clones on A [7]. As a consequence of the mentioned facts the clone lattice
is dually algebraic, where the co-compact elements are finitely related clones.
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In the thesis we use basic graph theory. All the notions we use are covered by
[16]. By graph we mean a pair (G,E), where G is a set of vertices and E ⊆ G2 is
a symmetric relation, called the set of edges. In other words, we consider undi-
rected graphs which may have loops, that is, edges that connect a vertex to itself.
All graphs will be denoted by blackboard bold letters. To avoid a confusion we will
denote the set of a edges of a graph G by E(G). By L(G) we will denote the set
of all vertices of G with a loop. By a complete graph we mean a graph such that
any two distinct vertices are adjacent (regardless of loops). The degree deg(v) of
a vertex v is the number of edges at v, that is, deg(v) = ∣{(v, x)∣(v, x) ∈ E}∣.

1.2 Examples

1.2.1 Finitely related algebras

We aim to summarize all the known results on finitely related algebras, therefore
even partial or later generalized results are listed. Let us start with the oldest
examples of finitely related algebras. We say that an algebra A has a near-
unanimity operation, if there is a term operation f ∶ An → A of arity at least 3
such that f(x, . . . , x, y, x, . . . , x) = x for all possible pairs x, y and all positions of
y. In 1975 Baker and Pixley [3] showed that each algebra with near-unanimity
term is finitely related. An example of a class of algebras with such terms are
lattices and all their expansions. Indeed, every lattice has the term operation
m(x, y, z) = (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x), which satisfies m(y, x, x) = m(x, y, x) =
m(x, x, y) = x, and therefore has a near-unanimity operation. Obviously each
expansion of a lattice has the same term operation.

Pöschel and Kalužnin [29] proved in 1979 that all unary algebras are finitely
related. An algebra is called a unary algebra if its basic operations are only
unary operations. The most natural examples of unary algebras arise from sets
of automorphism.

Finitely related algebras have recently received an attention due to their link
to computational complexity of the constraint satisfaction problem (CSP). An
overview of the CSP can be found for example in [6].

Many new results come from the theory of Mal’cev conditions. Although we
discuss the link between finitely related algebras and Mal’cev conditions in the
following subsection, for the sake of completeness we list the most important
examples: Boolean algebras, Heyting algebras, groups, quasigroups, rings and
Lie algebras.

There are several other modern results, most of them concern semigroups.
Some of those results come out of the theory of natural dualities, for example
all finite rectangular bands, those are semigroups which satisfy xyx = x for every
x, y, are finitely related [14]. It is shown in [11] that for every set F of compatible
operations with ∧ on a finite semilattice (A,∧) the enriched semilattice A =(A,{∧ ∪ F}) is finitely related. We say that an n-ary operation f is compatible
with ∧, for some semilattice (A,∧), if it is a homomorphism from (A,∧)n → (A,∧).
Another such example are quasi-primal algebras. An algebra A is called quasi-
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primal if the ternary discriminator t ∶ A3 → A given by

t(a, b, c) = ⎧⎪⎪⎨⎪⎪⎩
a if a ≠ b

c if a = b,

is in Clo(A). A proof of an even slightly stronger result by Davey, Pitkethly and
Willard is in [13].

There is an interesting chain of results concerning various classes of semi-
groups. In 2008 Mašulović and Pöschel [26] showed that every finite commutative
monoid is finitely related. This result was generalized in 2011 by Davey, Jackson,
Pitkethly and Szabó [12]. They proved that every finite commutative semigroups
has the property. In the same article they also showed that every semigroup with
a bounded pn-sequence is finitely related. The pn-sequence of a finite algebra A is
the sequence p1(A), p2(A), p3(A), . . ., where pn(A) denotes the number of n-ary
term operations of A that depends on all n coordinates. Probably the most im-
portant example of semigroups with bounded pn-sequence are semigroups which
satisfy, for some l ∈N, the equation x1 . . . xl ≈ y1 . . . yl, so called l-nilpotent semi-
groups. In that case each term function depends on at most l−1 coordinates and
therefore has bounded pn-sequence.

Several open problems formulated in [12] were answered by Mayr in 2012 [25].
He proved that the following classes of semigroups are finitely related: Clifford
semigroups, 3-nilpotent monoids, regular bands and semigroups with a single
idempotent. The definitions are as follows, a semigroup is completely regular if
every one of its elements lies in a subgroup. A completely regular semigroup in
which all idempotents are central is called a Clifford semigroup. Natural examples
of Clifford semigroups are groups and commutative inverse semigroups. We say
a semigroup is inverse if for each element x there exists y such that x = xyx and
y = yxy. A semigroups is a regular band if it is idempotent, that is for each x is
xx = x satisfied, and zxzyz = zxyz for all x, y, z.

In the article [25] the author asks whether all idempotent semigroups (bands)
are finitely related. This question was answered affirmatively in 2015 by Dolinka
[17] As we will see in the next section there exists a semigroup which is not finitely
related. However a complete characterization is not available.

1.2.2 Finitely related algebras and Mal’cev conditions

A Mal’cev condition is, roughly, a characterization of properties in varieties by the
existence of certain terms involved in certain identities. The research of Mal’cev
conditions was started in 1954 when Mal’cev showed a connection between per-
mutability of congruences of algebras in a variety V and existence of a certain
ternary term. Since then numerous interesting characterizations of various vari-
etal properties appeared.

We say that a variety of algebras V satisfies an identity p(x1, . . . , xn) ≈
q(x1, . . . , xn), written V ⊧ p ≈ q, if every algebra A in V does, that is for ev-
ery choice of a ∈ An we have pA(a1, . . . , an) = qA(a1, . . . , an).

We will list the most relevant properties and the respective Mal’cev condi-
tions in this subsection. Let us start with the aforementioned condition describ-
ing congruence permutable algebras. A variety V is congruence permutable if
congruence of each algebra in V permute with respect to the relational product.
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In [23] Mal’cev showed that a variety V is congruence permutable if and only if
there is a term p(x, y, z) in such that V ⊧ p(y, y, x) ≈ x and V ⊧ p(x, y, y) ≈ x.
This result concerns a wide class of well known algebras, for example the term
t(x, y, z) = x ⋅ y−1z is a Mal’cev term for groups and its expansions. Therefore
varieties of groups, rings and Lie groups are congruence permutable. Also observe
that t(x, y, z) = (x/(y/y))(y/z)) is a Mal’cev term in any quasigroup.

Another class defined by a term satisfying certain identities are algebras with
a near-unanimity term. Although near-unanimity terms do not describe any
varietal property of congruences, they play a key role in research of finitely related
algebras. As we mentioned before, every lattice has a near-unanimity term.

An algebra is called arithmetical if it is congruence permutable and if it ad-
mits a near-unanimity term at once. A variety is arithmetical if its every member
is arithmetical. In 1963 Pixley [27] showed that arithmetical varieties are charac-
terized by so called Pixley terms : a variety V is arithmetical if and only if there
is a term such that V ⊧ p(x, y, x) ≈ p(x, y, y) ≈ p(y, y, x) ≈ x. The most notable
examples of arithmetical varieties are Heyting algebras and Boolean algebras.

Another example of a property characterized by a Mal’cev condition is varietal
congruence distributivity. A variety is congruence distributive if the congruence
lattice of every algebra in V is distributive. In 1967 Jónsson [21] showed that
a variety V is congruence distributive if and only if there is a positive integer n

and ternary terms p0, p1, . . . , pn (those terms are called, not surprisingly, Jónsson
terms) such that V satisfies the identities

(i) pi(x, y, x) ≈ x, for 0 ≤ i ≤ n,

(ii) p0(x, y, z) ≈ x,

(iii) pn(x, y, z) ≈ z,

(iv) pi(x, x, y) ≈ pi+1(x, x, y), for i even,

(v) pi(x, y, y) ≈ pi+1(x, y, y), for i odd.

The last classical variety property we mention here is congruence modularity.
We say that a variety V is congruence modular if congruence lattice of every
algebra in V is modular. This property was characterized by Day [15] in 1969,
just two years after the result of Jónsson. A variety V is congruence modular if
and only if there exists a positive integer n and quaternary terms p0, p1, . . . , pn
such that V satisfies the identities

(i) pi(x, y, y, x) ≈ x, for 0 ≤ i ≤ n,

(ii) p0(x, y, z, u) ≈ x,

(iii) pn(x, y, z, u) ≈ u,

(iv) pi(x, x, y, y) ≈ pi+1(x, x, y, y), for i even,

(v) pi(x, y, y, z) ≈ pi+1(x, y, y, z), for i odd.
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The most important class of algebras in our context is the class of algebras
with few subpowers. We say that an algebra A has few subpowers if, for some
polynomial p, the number of subalgebras of An is less than 2p(n). The condition
having of few subpowers could be informally interpreted as not having too many
compatible relations. The concept of few subpowers was introduced in [8].

A useful combinatorial characterization of algebras with few subpowers was
given in [8]. An algebra has few subpowers if and only if it has a k-edge term
which happens if and only if it has a cube term. An operation f ∶ Ak+1 → A is
a k - edge operation if for all x, y ∈ A we have f(y, y, x, . . . , x) = f(y, x, y, x, . . . , x) =
x and for all i ∈ {4, . . . , k+1} and for all x, y ∈ A, we have f(x, . . . , x, y, x, . . . , x) =
x, with y in position i. An n-cube term is (2n − 1)-ary term t satisfying the
identities

t

⎛⎜⎜⎜⎜⎜⎜⎝

y x y . . . y

x y y . . . y

x x x . . . y⋮ ⋱ y

x x x . . . y

⎞⎟⎟⎟⎟⎟⎟⎠
≈

⎛⎜⎜⎜⎜⎜⎜⎝

x

x

x⋮
x

⎞⎟⎟⎟⎟⎟⎟⎠
,

where the columns of the matrix on the left are all the elements of {x, y}n−{x}n.
Note that a cube term trivially implies an edge term.

We would like to point out various relations between aforementioned classes
of algebras. Note that a Pixley term is a special case of both Mal’cev and near-
unanimity terms. Indeed, it follows from the definition that a Pixley term is
a special case of a Mal’cev term and the term m(x, y, z) = p(x, p(x, y, z), z) sat-
isfies m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ x and thus m(x, y, z) is a ternary
near-unanimity term.

Also observe that if an algebra has a near-unanimity term, then it has a cube-
term. Note that near-unanimity term satisfies similar set of equations as a cube
term. Indeed, if we omit columns of matrix X which contain more than one
y, we get exactly a set of equations defining a near-unanimity term. Another
interesting observation is that cube term generalizes Mal’cev term. Indeed, for
k = 2 we get

t(y y x

x y y
) ≈ (x

x
)

and so t(x, y, z) is both a Mal’cev term and a ternary cube term. Therefore
the class of finite algebras with few subpowers contains both Mal’cev algebras
and algebras with near-unanimity term operations.

There are several other interesting results describing the relations between
classes of algebras. It is trivial to observe that the class of congruence distributive
varieties is included in the class of congruence modular varieties. A proof that
near-unanimity term implies Jónsson terms is in [22]. The last piece of our jigsaw
was proved by Aichinger, Mar and McKenzie [2]. They showed in their influential
paper that every algebra with few subpowers is congruence modular. All the
mentioned classes and its characterization via Mal’cev conditions are depicted in
Figure 1.1

Let us now investigate the link between Mal’cev conditions and the property
of being finitely related. In 2011 Aichinger, Mayr and McKenzie [2] proved that
all algebras with few subpowers are finitely related. Together with the already
mentioned characterization of algebras with few subpowers, we get that every
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algebra with a cube term is finitely related. This result was preceded by Aichinger
[1]. He showed that a clone containing a Mal’cev term is finitely related if it
contains all constants.

In 2011 Barto proved so-called Zádori conjecture. He showed that every finite,
finitely related algebra in a congruence distributive variety has near-unanimity
term [4]. However Barto generalized his result in 2015 [5] by proving much
stronger Valeriote conjecture, that is, any finite, finitely related algebra in con-
gruence modular variety has few subpowers.

A combination of already mentioned results gives us an important theorem:

Theorem 2. [2, 5] The following are equivalent for a finite algebra A

(1) A is finitely related and is in a congruence modular variety

(2) A has few subpowers

Maróti, Markovič and McKenzie [24] showed a very useful characterization of
idempotent algebras with a cube term using cube-term blockers: A finite idempo-
tent algebra has a cube term if and only if has no cube term-blockers. A cube-term
blocker in A is any pair (D,S) of subuniverses of A such that ∅ < D < S ≤ A
and such that for every term operation t(x1, . . . , xn) of A there is i, 1 ≤ i ≤ n, so
that whenever s ∈ Sn and si ∈D then t(s) ∈D.

As a corollary of [2] Maróti, Markovič and McKenzie [24] showed the following
result.

Theorem 3. [2, 24] Let A be a nonempty finite set, then maximal non-finitely re-
lated idempotent clones are precisely of form Pol(A;{{a},∀a ∈ A,Sm/(S/D)m,m ∈
N}), where (D,S) is a cube-term blocker.

Another contribution of cube-term blockers is that it is algorithmically easy
to decide whether an idempotent algebras has few subpowers or not.

For sake of readability we illustrate some of the mentioned results in the
following figure.

CM ≈ Day

FS ≈ cube

CP ≈ Mal’cev

A ≈ Pixley

NU

CD ≈ Jónsson

Finitely related

Figure 1.1: Comparison of some classes of algebras. Arrows depict inclusions.
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The letter ”A” stays for algebras which are in an arithmetical varieties, ”CP”
stays for algebras in congruence permutable varieties, ”CM” denotes all algebras
in congruence modular varieties. Analogously we define ”CD”. ”FS” stays for
the class of all algebras that have few subpowers and finally ”NU” denotes the
class of algebras which have a near-unanimity term.

1.2.3 Non-finitely related algebras

Although there are uncountably many non-finitely related algebras, concrete ex-
amples are quite rare. We start with a general result, then we proceed to exam-
ples. As we can see in the previous subsection, Barto [4] showed that a finite,
finitely related, congruence distributive algebra has a near-unanimity term. This
means that a an algebra in congruence distributive variety which does not have
a near-unanimity term is not finitely related.

Probably the most well known non-finitely related algebra is the two-element
implication algebra I = ({0,1},→), defined in the following figure. An elementary
proof that I is not finitely related can be found for example in [12].

→ 0 1

0 1 1
1 0 1

Figure 1.2: The implication algebra I

There are other clones on the two-element set which are not finitely related.
For example it is the ternary algebra J = ({0,1}, x∧ (y ∨ z)). This and few other
examples can be found in [10]

An example of an unary semigroup which is not finitely related is Rees matrix
semigroup A2 enriched with the natural involution. This is a result by Davey,
Jackson, Pitkethly and Szabó in [12]. The universe of A′

2
is {0} ∪ {1,2}2, the

multiplication is defined so that 0 is a zero element and

(i, j)(k, l) = ⎧⎪⎪⎨⎪⎪⎩
0 if j = k = 1

(i, l) otherwise,

for all i, j, k, l ∈ {1,2} and the involution is given by 0′ = 0 and (i, j)′ = (j, i) for
all i, j ∈ {1,2}.

Another example is so called Murskĭı’s groupoid M = ({0,1,2},∗). The
groupoid is defined in the following figure. Actually, it is an example of a graph
algebra (see Chapter 2 for definition). A proof that M is non-finitely related is
for example in [12]. Also it is proved by Theorem 7.

∗ 0 1 2

0 0 0 0
1 0 0 2
2 0 1 2

Figure 1.3: Murskĭı’s groupoid M
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Davey, Jackson, Pitkethly and Szabó posed in [12] open problem whether all
semigroups are finitely related. The question was answered negatively by Mayr
in [25], by showing that 6-element Brandt monoid B1

2
= (B1

2
, ⋅, i) is not finitely

related. We define B1

2
as follows:

B1

2 = {(0 0
0 0
) ,(1 0

0 0
) ,(0 1

0 0
) ,(0 0

1 0
) ,(0 0

0 1
) ,(1 0

0 1
)} ,

multiplication ⋅ is defined as the usual matrix multiplication and the unit element
is the identity matrix. The proof that B1

2
, and even some of its expansions, is

not finitely related can be found in [25].

1.3 Proof techniques

In general it is very difficult, for an arbitrary algebra A, to find a relational
structure A such that Clo(A)=Pol(A). There are several techniques to show that
an algebra is finitely related.

Let n be in N, we will denote the set {1,2, . . . , n} by n. For every equivalence
on n we define a map α̂ ∶ n → n so α̂(i) is the maximal element in the α-block
of i. By Eqk(n) we mean the set of all congruences on n with k blocks. Every
equivalence on n produces a new term from any term t by identifying certain
coordinates.

Definition 2. Let f(x1, . . . , xn) be an n-ary operation on a set A and let α be
an equivalence on n. We define an operation fα(x1, . . . , xn) on A as follows:

fα(a1, . . . , an) = f(aα̂(1), . . . , aα̂(n))
for all a ∈ An. We say that fα(x1, . . . , xn) is a polymer of f .

Note that if f is an n-ary operation on A, for n ≥ ∣A∣ + 1, then it is uniquely
determined by its polymers.

For an equivalence with only one block {i, j} such that 1 ≤ i < j ≤ n we put
fij = fα. Observe that we can obtain fij from f by identifying the variable xi

with the variable xj.
We say that an operation f(x1, . . . , xn) has term polymers if for all pairs (i, j)

such that 1 ≤ i < j ≤ n is fij(x1, . . . , xn) a term operation.
An operation f depends on its i-th coordinate if there exist a,b such that

aj = bj for all j ∈ n ∖ i and f(a) ≠ f(b). Note the i-th projection fails to depend
on any of its coordinates but the i-th one. Let α ∈ Eqk(n), observe that fα depends
on at most k coordinates, as the congruence α has k blocks. For example fij does
not depend on xi.

There is a very useful characterization of finite relatedness using polymers of
f . It is due to Jablonskĭı[19] and Rosenberg and Szendrei[31].

Theorem 4. For a finite algebra A are the following conditions equivalent

(1) A is finitely related

(2) there exists k such that for all n > k, an operation f ∶ An → A is a term
operation of A provided that fα ∶ An → A is a term operation of A, for all
α ∈ Eqk(n)
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(3) there exists k such that for all n > k, an operation f ∶ An → A is a term
operation of A provided that fij ∶ An → A is a term operation of A, for all
1 ≤ i < j ≤ n

We use extensively this theorem, our main technique to prove that algebra A

is finitely related is to show that condition (3) is satisfied.
One can also characterize finitely related clones with descending chains of

clones as showed Pöschel and Kalužnin in [29].

Theorem 5. Let C be a clone on a finite set A. Then C is not finitely related
if and only if there is a descending chain of clones C1 ⊂C2 ⊂C3 . . ., such that
C = ⋂i∈NCi

There are several interesting preservation and non-preservation results. For
example, Marković, Maróti and McKenzie [24] proved the following theorem.

Theorem 6. Let R and C be finite algebras such that R ≤ Cn and for some i

the i-the projection of R equals C. Then C is finitely related if and only if R is
finitely related.

From that theorem follows a corollary that the property being finitely related
is a varietal property. The same was independently showed by Davey, Jackson,
Pitkethly and Szabó in [12].

Corollary 1. If A and B are similar finite algebras such that V (A) = V (B),
then A is finitely related if and only if B is finitely related.

However, in general the property of being finitely related is not preserved by
many algebraic constructions. For example, neither of the following preserves the
property being finitely related: taking subalgebras, homomorphic images, direct
products or subdirect factors.

We provide examples that any mentioned algebraic construction does not
preserve the property. Let A be an algebra defined by the table in the following
figure.

⋅ 0 1 2

0 1 1 2
1 0 1 2
2 0 1 2

Figure 1.4: Groupoid A

Although the algebra A is finitely related the two-element implication algebra
I is its subalgebra. Also the two-element implication algebra is a homomorphic
image of A.

Let I be the two-element implication algebra defined above and define Iab =({0,1},→, a, b), where a, b are nullary operations. Then both I0,1 and I1,0 are
finitely related but the product I0,1 × I1,0 is not. Detailed proofs of all the afore-
mentioned examples can be found in [12].

Note that there are positive preservation result for special cases. For example
it is shown in [24] that if A and B are two finite idempotent algebras of the same
signature and both of them have a cube term, then A ×B has a cube term as
well.
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2 Graph algebras

In this chapter we introduce graph algebras and prove few basic results about
them. Most importantly we show that each term of a graph algebra can be rep-
resented as graph with a significant vertex. We also show that graph algebras do
not satisfy any aforementioned criteria for deciding finite relatedness and neither
they belong to any class of algebras where is finite relatedness already decided.

The concept of graph algebras was introduced in a dissertation of Shallon in
1979. Most of the results in this chapter were brought up before, for example
see an article by Pöschel[30]. However, all the presented results were proved
independently.

Definition 3. The graph algebra of a graph G = (G,E) with 0 /∈ G is an algebra
A = (A,∗), where A = G ∪ {0} and, for all x, y ∈ A,

x ∗ y = ⎧⎪⎪⎨⎪⎪⎩
x if (x, y) ∈ E
0 otherwise.

In the whole chapter we will keep the notation from the definition. We show
that every term of A can be represented by a certain graph. This reduces eval-
uation of terms to checking whether a mapping is a graph homomorphism or
not.

Since A has one basic binary operation, each term can be expressed as
a binary tree with variables in leaves. We denote by l(t) the leftmost vertex
in the tree representing t.

Definition 4. An n-ary T-graph is a pair (H, xi), where H is a connected graph
with vertex set H ⊆ {x1, . . . , xn} and xi ∈H is called the significant vertex.

We say that an n-ary operation f on A is represented by an n-ary T-graph(H, xi) if for any a ∈ An,

f(a1, . . . , an) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ai if aj ∈ G for every j s.t. xj ∈H and the mapping xj ↦ aj,
xj ∈H is a homomorphism from H to G,

0 otherwise.

We say that a term t of A is represented by a T-graph if tA is.

Lemma 1. Each term t can be represented by a T-graph (H, xi), where xi = l(t).
Proof. Let t(x1, . . . , xn) be an arbitrary term over X = {x1, . . . , xn}. First we
recursively define a relation R(t) as follows:
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• R(t) = ∅ if t = xi

• R(t) = (l(s1), l(s2)) ∪R(s1) ∪R(s2) if t = s1 ∗ s2.
Then we define the vertex set H = {xi} if R(t) = ∅ and H = {xi∣∃y ∶ (xi, y) ∈ R(t)}
otherwise. That is, each vertex corresponds to a variable which appears in the
term. We will show that the graph H = (H,R(t)) together with the vertex l(t)
is a T-graph that represents the term t.

We prove the claim by induction on the depth of t. If t = xi, then R(t) is
empty and therefore H is a single vertex with no edge. Let a ∈ An be such that
ai ∈ G, then xi ↦ ai is a homomorphism from H to G, and t(a) = ai. Otherwise
t(a) = 0. Obviously xi = l(t).

Assume now that t = s1 ⋆ s2 and that (H1, l(s1)) = ((H1,R(s1)), l(s1)) and(H2, l(s2)) = ((H2,R(s2)), l(s2)) are T-graphs representing s1 and s2, respec-
tively. First we observe that (H, l(t)) is a T-graph. Since obviously l(t) ∈X, it is
enough to show that H is connected. Since H1 and H2 are connected, l(s1) ∈H1,
l(s2) ∈ H2 and (l(s1), l(s2)) ∈ R(t), then H is connected as well and therefore(H, l(t)) is a T-graph.

It remains to show that (H, l(t)) represents t. Let a be an arbitrary n-tuple
such that aj ∈ G for every j such that xj ∈ H. Assume that ϕ ∶ H → V such
that xj ↦ aj is a graph homomorphism from H to G. Since H1, H2 are sub-
graphs of G, then ϕ is a graph homomorphism from H1 to G and from H2 to
G. Hence s(ϕ(x1), . . . , ϕ(xn)) = ϕ(l(s1)) and s(ϕ(x1), . . . , ϕ(xn)) = ϕ(l(s2)).
Since ϕ is a homomorphism, (ϕ(l(s1)), ϕ(l(s2)) is an edge in G. Therefore,
t(ϕ(x1), . . . , ϕ(xn)) = s1(ϕ(x1), . . . , ϕ(xn)) ∗ s2(ϕ(x1), . . . , ϕ(xn)) = ϕ(l(s1)) ∗
ϕ(l(s2)) = ϕ(l(s1)) = l(t). Apparently l(t) = l(s1) = xi.

Now suppose that ϕ is not a graph homomorphism from H to G. Then at
least one of the following possibilities occur: ϕ is not a homomorphism from H1

to G or ϕ is not a homomorphism from H2 to G or ϕ does not map (l(s1), l(s2))
to an edge in G. Therefore s(ϕ(x1), . . . , ϕ(xn)) = 0 or s(ϕ(x1), . . . , ϕ(xn)) = 0 or
ϕ(l(s1)) ∗ϕ(l(s2)) = 0 and thus t(ϕ(x1), . . . , ϕ(xn)) = 0.

Let a be an n-tuple such that aj = 0 for some j such that xj ∈H. Then xj ∈H1

or xj ∈H2 and thus t(a) = 0.

The construction of a T-graph (H, x2) representing term t(x1, x2, x3, x4) =(x2 ∗ x4) ∗ (x2 ∗ (x1 ∗ x4)) is illustrated in the figure below.

x2 x4 x2

x1 x4 x4

x1

x2

Figure 2.1: Construction of a T-graph
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Lemma 2. Each T-graph (H, xi) represents a term t with l(t) = xi.

Proof. We will use the induction on the number of edges. Let (H, xi) be a T-
graph with vertex set H ⊆ {x1, . . . , xn}. If H has no edges, then (H, xi) represents
the term t(x1, . . . , xn) = xi. If H has only one edge, then it represents the term
t(x1, . . . , xn) = xi ∗ xj, where xj is the vertex adjacent to xi (possibly xi = xj).

Assume that the statement is satisfied for all graphs with m edges, where
m ≥ 2. Let (H, xi) be an arbitrary T-graph such that H has m + 1 edges. Note
that we can always find an edge e = (xj, xk) in H such that H∖e has one nontrivial
component and the significant vertex is contained in it. Indeed, if H contains
a cycle, then we can pick any edge from that cycle. In that case we define H1 =H
Otherwise, H is a tree and we can pick an edge containing a leaf xj which is not the
significant vertex. In that case we define H1 =H ∖xj. We denote (H1,E(H) ∖ e)
by H1. The graph H1 has m edges and therefore the T-graph (H1, xi) represents
a term s(x1, . . . , xn) with l(s) = xi. Let us substitute an occurrence of xi in s by
xi ∗ xj and denote this new term by t. Clearly, l(t) = l(s) = xi.

Let a be an n-tuple such that aj ∈ G for every j such that xj ∈ H. Assume
that ϕ ∶ H → G, such that xj ↦ aj, is a graph homomorphism from H to G.
Thus ϕ ∶ H1 → G is a homomorphism as well and we have s(a1, . . . , an) = xi.
Because ϕ maps (xj, xk) to an edge in G, we have aj ∗ ak = aj. Therefore,
t(a1, . . . , an) = s(a1, . . . , an) = ai.

Let us assume that ϕ ∶ H → V is not a graph homomorphism from H to
G. Then either ϕ is not a homomorphism from H1 to G, or ϕ does not map(xi, xj) to an edge in G. Since we substituted an appearance of xi in s by xi ∗xj,
the former case implies that t(a1, . . . , an) = s(a1, . . . , an) = 0. The latter case
implies that (aj, ak) is not an edge in G and therefore aj ∗ ak = 0. Thus we have
t(a1, . . . , an) = 0.

Let a be an n-tuple such that aj = 0 for some j such that xj ∈ H. If xj ∈ H1

then we have s(a1, . . . , an) = 0 and thus t(a1, . . . , an) = 0. Otherwise xj ∈ H ∖H1

and therefore there exists an edge (xj, xk) such that (xj, xk) ∈ H and (xj, xk) ∉ H1.
Hence aj∗ak = 0 and it follows from the definition of t that t(a1, . . . , an) = 0. Thus(H, xi) represents the term t.

We have proved that an operation f is a term operation if and only if it is
representable by a T-graph. Note, however, that there can be more T-graphs
representing the same term.

Let us examine some properties of the class of graph algebras. The class of
graph algebras does not form a variety, e.g., the product of two graph algebras
is not a graph algebra. In general, let A1 and A2 be two graph algebras defined
by G1 and G2 respectively and let z ∈ G2. Then we have (x, z) ∗A1×A2

(y,0) =(x ∗A1
y,0) for all x, y ∈ G1. It follows from the definition of graph algebra that

a ∗ b = a or a ∗ b = 0. Therefore a necessary condition for A1 ×A2 to be a graph
algebra is such that x∗A1

y = 0A1
, for every x, y ∈ A1, which happens if G1 has no

edges.
In contrast, we show that there is a subdirect product of A1,A2 which is

a graph algebra. Let A1 and A2 be two graph algebras defined by G1 and G2

respectively. The algebra B = ({(x,0A2
)∣x ∈ A1} ∪ {(0A1

, y)∣y ∈ A2,∗), where ∗
is defined componentwise, is a subdirect product of A1,A2. Note that B is the
graph algebra defined by G = G1 ∪G2.
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Let A be a graph algebra defined by a graph G. Observe that B is a subalgebra
of A if and only if it is defined by an induced subgraph of G.

The structure of congruences of a graph algebra defined by a connected graph
is described in the following lemma.

Lemma 3. Let A be a graph algebra defined by a connected graph G and let
a, b ∈ G. If {x∣(a, x) ∈ E(G)} = {x∣(b, x) ∈ E(G)}, that is, a and b have the same
set of adjacent vertices in G, then the congruence generated by the pair (a, b) is
equal to {(x, x)∣∀x ∈ A} ∪ (a, b) ∪ (b, a). Otherwise it is trivial.

Proof. Recall that a relation ∼ is a congruence on A if and only if x ∼ y⇒ x∗z ∼
y ∗ z and z ∗ x ∼ z ∗ y for every y ∈ A.

Let a, b ∈ G have the same set of adjacent vertices and let c be an arbitrary
element of A. If (a, c) ∈ E(G) then we have a∗ c = a ∼ b = b∗ c and c∗a = c = c∗ b.
Otherwise a ∗ c = b ∗ c = c ∗ a = c ∗ b = 0 and therefore a congruence generated by
a pair (a, b) is equal to {(x, x)∣∀x ∈ A} ∪ (a, b) ∪ (b, a).

Conversely, let a, b ∈ G and assume that there is c ∈ G such that a ∗ c = a and
b∗c = 0. Then we have a∗c = a ∼ 0 = b∗c and therefore a is congruent to 0. Thus
all vertices adjacent to a are in congruence with 0 since d ∗ 0 = 0 ∼ d = d ∗ a. It
follows that the congruence generated by the pair (a, b) is equal to A ×A

An observation about congruences of all graph algebras follows from the proof
of the lemma above. Let a, b ∈ G and by Ga, Gb denote the components of G

containing a,b respectively. If a and b are adjacent to the same vertices then the
congruence generated by a and b is equal to {(x, x)∣x ∈ G ∪ {0}} ∪ (a, b) ∪ (b, a)}.
Otherwise the congruence generated by (a, b) is equal to {(x, x)∣x ∈ G} ∪ {(Ga ∪
Gb ∪ {0}) × (Ga ∪Gb ∪ {0})}.

Let α be a nontrivial congruence on A defined by G, then the blocks of α looks
as follows: every block [a]α ≠ [0]α contains a set of vertices of G, possibly a single
vertex, such that all of them have the same set of adjacent vertices and block [0]α
contains 0 and all the components Gi of G such that there exists (a, b) ∈ α such
that a ∈ Gi and a, b have different set of neighbors.

Lemma 4. Every factor of a graph algebra is a graph algebra.

Proof. Let A be an algebra defined by a graph G and let α be a congruence on
A. If α is equal to A ×A, then A/α is defined by the empty graph. If α is equal
to {(a, a)∣a ∈ A} then A/α is defined by G.

Otherwise α is a nontrivial and so its blocks are as described in the observation
above. Let α has k+1 blocks and let us denote the blocks by [0]α, [a1]α, . . . , [ak]α.
Note that we observed before that if there is an edge between two vertices in blocks
[ai]α, [aj]α, possibly [ai]α = [aj]α, then every two vertices a, b such that a ∈ [ai]α
and b ∈ [aj]α are connected by an edge.

We define a graph H and we show that the algebra defined by H is isomorphic
to A/α. We define H = {b1, b2, . . . , bk} and (bi, bj) ∈ E(H) if there is an edge
between [ai]α, [aj]α. The algebra defined by H is denoted by B and we define
a homomorphism ϕ ∶ B→ A/α as follows: 0↦ [0]α and bi ↦ [ai]α for all bi ∈H.

Since ϕ is obviously both injection and surjection, it is enough to show that
for every pair bi, bj is ϕ(bi ∗B bj) = ϕ(bi)∗A ϕ(bj) satisfied. If bi and bj connected
by an edge in H we have ϕ(bi∗B bj) = ϕ(bi) = ai and ϕ(bi)∗Aϕ(bj) = ai∗A aj = ai,
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since there is an edge between any two vertices in [ai]α and [aj]α. If bi and bj
are not connected by an edge, but bi, bj ∈ H, then we have ϕ(bi ∗B bj) = ϕ(0) = 0
and ϕ(bi) ∗A ϕ(bj) = ai ∗A aj = 0 since there are no edges between vertices of
[ai]α and [aj]α. Finally let bi = 0, then we have ϕ(bi ∗B bj) = ϕ(0) = 0 and
ϕ(bi) ∗A ϕ(bj) = 0 ∗A aj = 0.

So we have shown that every quotient of a graph algebra is a graph algebra as
well. Therefore the class of graph algebras is closed under taking homomorphic
images.

Note that the class of graph algebras is not included in any class of algebras
mentioned in the previous chapter. First, observe that a graph algebras does not
have a cube term. Indeed, each term t can be represented as a T-graph (H, xi).
Therefore to satisfy the condition t(X) = x from the definition of a cube term,
there must be a column of all x’s in the matrix X. However this is not possible
and thus no graph algebra has a cube term. Therefore the result of Aichinger,
Mayr and McKenzie [2] can not be used to characterize finitely related graph
algebras.

The following example illustrates that, in general, graph algebras are not
associative, commutative, or idempotent. Let G be a graph such that G = {x, y, z}
and E = {(x, y), (y, z)} and let G define algebra C. Observe that x ∗ (y ∗ z) = x
and (x ∗ y) ∗ z = 0. Thus graph algebras are not associative and therefore are
not semigroups. They are neither commutative, since x = x ∗ y ≠ y ∗ x = y, nor
idempotent, because x∗x = 0. So no result concerning semigroups can be applied.

x

y

z ⋅ 0 x y z

0 0 0 0 0
x 0 0 x 0
y 0 y 0 y

z 0 0 z 0

Figure 2.2: Graph G defining algebra C and its multiplication table
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3 Non-finitely related algebras

In this section we will show two classes of graph algebras which are not finitely re-
lated, those are all graph algebras defined by a graph containing R1 as an induced
subgraph and not containing R2 and all graph algebras defined by
a graph containing R2 such that its every vertex with a loop has an edge to
every vertex. The graphs R1 and R2 are shown in the following figures. Observe
that so called Murskĭı’s groupoid from Figure 1.3 is an example of a graph which
belongs to the first mentioned class.

1 2

Figure 3.1: R1

3 4

Figure 3.2: R2

We start with the class of algebras defined by a graph which has R1 as an
induced subgraph and does not contain R2. We will prove that there exists an
operation f such that condition (3) from Theorem 4 is not satisfied, that is, we
will show that for every big enough n there exists an operation f which has term
polymers, but f ∉ Clo(A).
Theorem 7. All graph algebras defined by a graph containing graph R1 as an in-
duced subgraph and not containing graph R2 as a subgraph are not finitely related.

Proof. Let A be an algebra defined by a graph G = (G,E) satisfying the assump-
tions. Let n ≥ ∣A∣ + 1. We define f as follows:

f(a1, a2, . . . , an) = { ai if ai ∈ L(G) and (aj, ak) ∈ E(G) for every j, k ∈ n
0 otherwise.

Note that, for all a ∈ An, is f(a) well defined. Indeed, if there exist a1, . . . , an
such that ai,aj ∈ L(G) and f(a1, . . . , an) ≠ 0, then (ai, aj) must be an edge in
G. Therefore ai, aj are vertices with a loop connected by an edge in G. Then
necessarily ai = aj, otherwise G contains R2, contrary to our assumptions.

Now we prove that for all i, j fij is a term operation, by showing that each
operation fij is representable by a T-graph. Let X = {x1, . . . , xn}. Let us fix an
arbitrary pair i, j ∈ n. Let a be an arbitrary n-tuple. From the definition of fij
we get:

fij(a1, a2, . . . , an) = { aj if aj ∈ L(G) and (ak, al) ∈ E(G) for any k, l ∈ n ∖ i,
0 otherwise.
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Claim. The operation fij is represented by the T-graph (H, xj), where H is the
complete graph with vertices X ∖{xi} together with a loop at xj (see Figure 3.3).

Proof. Note that the pair (H, xj) is indeed a T-graph. Let a be an n-tuple such
that ak ∈ G for all k such that xk ∈H. Assume that ϕ ∶H → V such that xk ↦ ak is
a graph homomorphism from H to G. Then each edge of H is mapped to an edge
in G. In particular, each loop is mapped to a loop. Therefore, (ak, al) ∈ E(G) for
every k, l such that xk, xl ∈H, and aj ∈ L(G). Thus fij(a1, . . . , an) = aj.

xj

Figure 3.3: A graph representing fij for n = 7

Otherwise there is an edge e = (xk, xl) in H, possibly k = l = j, such that(ak, al) ∉ E. Therefore we have fij(a1, . . . , an) = 0.
Let a be an n-tuple such that aj = 0 for some j such that xj ∈ H. Obviously

f(a1, . . . , an) = 0. ∎
We claim that f is not a term operation of A. Otherwise f is represented by

a T-graph (H, v). Since f(1,2, . . . ,2) = 2 ≠ 0, the mapping x1 ↦ 1, x2, . . . , xn ↦ 2
is a homomorphism from G to R1 and 2 = ϕ(v), so v ≠ x1. Similarly, v cannot be
equal to any other variable x2, . . . , xn since f(2,1,2, . . . ,2) = ⋅ ⋅ ⋅ = f(2, . . . ,2,1) =
2.

We have shown that there is a term operation f for all n ≥ ∣A∣ + 1, which
does not satisfy the condition (3) from Theorem 4 . Therefore A is not finitely
related.

Note that Theorem 7 covers a broad class of graph algebras. In particular, it
can be applied on disconnected graphs, for example graph G = G1∪̇G2 in Figure
3.4 is not finitely related, although we show later that graph G1 defines a finitely
related algebra.

G2

G1

Figure 3.4: A graph defining non-finitely related algebra

Let us now prove that every graph G, which contains R2 and such that every
vertex with a loop is adjacent to every vertex in G, defines a non-finitely related
algebra. Although we use the same proof technique as before, the principle is
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slightly different. Last time, we defined an operation such that its significant
vertex can not be determined uniquely. Now we will define an operation which
can not be represented by any connected graph.

Theorem 8. Let G be a connected graph containing R2 as an induced subgraph
such that deg(v) = ∣G∣ for every v ∈ L(G) and L(G) ≠ G. Then the algebra defined
by G is non-finitely related.

Proof. We will show that condition (3) from Theorem 4 is not satisfied, that
is, that for each big enough n there exists an operation with term polymers
which does not belong to Clo(A). Let H be a disjoint union of two complete
graphs without loops, such that H = {x1, . . . , xn}. For every a ∈ An, we define
f(a1, . . . , an) as follows:

f(a1, . . . , an) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

an if a ∈ An and the mapping xi ↦ ai
is a homomorphism from H to G,

0 otherwise.

First, we will show that the operation f can not be represented by a T-graph.
Although there is a candidate for the significant vertex, the vertex xn, there is
no connected graph H′ such that a T-graph (H′, v) could represent f . Denote
the components of H by X1 and X2 respectively. Assume that there is a T-graph(H′, xn) which has edge (xi, xj) such that xi ∈ X1 and xj ∈ X2. Observe that
any graph G satisfying the assumptions has R3, which is shown in Figure 3.5,
as an induced subgraph. Then the mapping xi ↦ 5, xj ↦ 5, xk ↦ 4 for every
xk ∈ X1 ∖ {xi} and xk ↦ 3 for every xk ∈ X2 ∖ {xj} is a graph homomorphism
from H to G. However, the mapping is not a graph homomorphism from H′

to G, because there are two vertices connected by an edge mapped on a vertex
without a loop, and therefore it follows from the definition of a T-graph that any
connected graph can not represent f .

3

4

5

Figure 3.5: R3

We will show that every polymer of f can be represented by a T-graph. Let
1 ≤ 1 < j ≤ n. We have to distinguish between two cases, whether xi, xj are in the
same component or not.

Claim. Let xi and xj be in different components, then the operation fij is a term
operation.

Proof. For simplicity assume that xi ∈ X1 and xj ∈ X2. We claim that fij can
be represented by a T-graph (H′, v) defined as follows: H ′ = X ∖ xi, E(H′) ={E(H) ∪ {(xk, xj)∣∀xk ∈X1} ∖ {(xk, xi)∣∀xk ∈X1} and v = xn. Note that (H′, xn)
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is a T-graph, because X1 ∖ xi and X2 induce complete subgraphs and the edges(xk, xj), where xk ∈X1, are connecting them.
Let a ∈ An, such that ak ∈ G for every k ∈ n ∖ i and let ϕ′ ∶ H ′ → G, such

that xk ↦ ak for every xk ∈ H ′, be a graph homomorphism from H′ to G. We
define a mapping ϕ ∶ H → G by xi = aj and xk = ak for all the other coordinates.
We show that if ϕ′ is a graph homomorphism from H′ to G, then ϕ is a graph
homomorphism from H to G. Let (xk, xl) ∈ E(H), where xk and xl are both
different from xi. Since ϕ′ maps (xk, xl) on edge in G, ϕ maps (xk, xl) on edge
in G as well. Let (xk, xi) be an edge in E(G). The mapping ϕ′ maps edge(xk, xj) on an edge in G. Since ϕ(xk) = ϕ′(xk) and ϕ(xi) = ϕ(xj) = ϕ′(xj)
we see that ϕ maps the edge (xk, xi) on an edge in G. So ϕ maps every edge
in H on an edge in G and thus it is a homomorphism from H to G. We have
fij(a) = f(a1, . . . , aj, . . . , aj, . . . , an) = an.

If ϕ′ is not a graph homomorphism, there is edge (xk, xl) such that (ak, al) ∉
E(G). If k, l ≠ j then (xk, xl) is in E(H) and the mapping ϕ is not a homomor-
phism from H to G. If k = j then (xi, xl) is in E(H), ϕ maps (xi, xl) on (aj, al)
and therefore ϕ is not a homomorphism from H to G. Similarly for l = j. In
all the cases we have 0 = f(a1, . . . , aj, . . . , aj, . . .) = fij(a). Let a ∈ An such that
ak = 0 for some k ∈ n ∖ i. Then obviously fij(a) = 0.

It follows from the definition of a T-graph, that fij is represented by (H′, xn)
and therefore it is a term operation. ∎

Since every vertex with a loop of G has an edge to every vertex, then every
term can be represented by a T-graph (H′, v), where H′ has the same property.

Claim. Let xi and xj be in the same component, then the operation fij is a term
operation.

Proof. We define a candidate T-graph for representing fij and we show that it
indeed represents fij. For simplicity assume that xi, xj are in X1. Let H ′ =X∖xi,
E(H′) = {E(H′) ∪ {(xk, xj)∣xk ∈ X2} ∪ (xj, xj)} ∖ {(xk, xi)∣xk ∈ X1} and v = xn.
Observe that the pair (H′, xn) is a T-graph since xj has an edge to every vertex
and xn ∈H ′.

Let a ∈ An, such that ak ∈ G for every k ∈ n ∖ i and let ϕ′ ∶ H ′ → G, such
that xk = ak for every xk ∈ H ′, be a graph homomorphism from H′ to G. We
define ϕ ∶ H → G as follows: xi = aj and xk = ak for all the other coordinates.
We show that if ϕ′ is a graph homomorphism from H′ to G, then ϕ is a graph
homomorphism from H to G. Let (xk, xl) be an edge in H, where both xk and xl

are different from xi. Because ϕ′ maps (xk, xl) on an edge in G, ϕ′(xk) = ϕ(xk)
and ϕ′(xl) = ϕ(xl), we see that ϕ((xk, xl)) is an edge in E(G) as well. Let (xk, xi)
be an edge in H. Since ϕ′ is a homomorphism, we have that ϕ′((xk, xj)) is in
E(G). Because ϕ(xk) = ϕ′(xk) and ϕ(xi) = ϕ(xj) = ϕ′(xj) we see that ϕ maps
the edge (xk, xi) to an edge in G. Hence ϕ is a graph homomorphism from H to
G and we have fij(a) = f(a1, . . . , aj, . . . , aj, . . . , an) = an.

If ϕ′ is not a homomorphism from H′ to G, then there is either xj mapped on
a vertex without a loop or an edge (xk, xl) such that (ak, al) ∉ E(G). If ϕ′(xj) is a
vertex without loop, then ϕ maps both xi, xj, connected by and edge, on the same
vertex without a loop and therefore ϕ is not a graph homomorphism from H to
G. Otherwise ϕ′ maps xj on a vertex with a loop and we assumed that all vertices
with a loop in G are adjacent to every vertex, so we have deg(ϕ′(xj)) = ∣G∣ and
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therefore if ϕ′((xk, xl)) ∉ E(G), then both xk and xl are distinct from xj. If(xk, xl) such that xk ≠ xj and xl ≠ xj is an edge in H′, then (xk, xl) is an edge in
H as well. We have ϕ(xk) = ϕ′(xk) and ϕ(xl) = ϕ′(xl) and therefore ϕ((xk, xl))
is not an edge in G. Hence ϕ is not a homomorphism from H to G and so we
have fij(a) = f(a1, . . . , aj, . . . , aj, . . . , an) = 0. Let a ∈ An such that ak = 0 for some
k ∈ n ∖ i. Obviously we have fij(a) = 0.

It follows from the definition of a T-graph that (H′, xn) represents fij and so
it is a term operation. ∎

The proof is now concluded. We showed that for every big enough n there
exists a operation f with term polymers such that f ∉ Clo(A). Therefore con-
dition (3) from Theorem 4 is not satisfied and thus the algebra defined by G is
non-finitely related.
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4 Finitely related algebras

In this chapter we present several new results about finitely related graph alge-
bras. The chapter splits into two main parts: algebras defined by graphs con-
taining R2 as an induced subgraph and algebras defined by bipartite graphs.
Relational structure R2 is shown in Figure 3.2. In the both parts we use the
same technique, the general idea is to show that condition (3) from Theorem 4
is satisfied: We will construct a T-graph (H, v) for an arbitrary operation f and
show that operation f represented by the T-graph coincides with f .

We will use the following notation. By abicj we will denote the n-tuple such
that the i-th coordinate is equal to b, the j-th coordinate is equal to c and the
others are equal to a. By anbmcidj we will denote the (n +m)-tuple such that
the i-th coordinate is equal to c, the j-th coordinate is equal to d, all the other
coordinates from the first to the n-the are equal to a and the others are equal to
b.

Let us start with a lemma which is a reformulation of Corollary 1. We de-
scribed how subalgebras and homomorphic images of a graph algebra look in
Chapter 2, therefore is easy to observe that the following lemma is true.

Lemma 5. Let A be a graph algebra defined by a graph G. Let G1, . . . ,Gn

be such that Gi is an induced subgraph of G or the algebra defined by Gi is
a homomorphic image of A for every i. Then the algebra defined by the dis-
joint union of G,G1, . . . ,Gn is finitely related if and only if A is.

The previous lemma is illustrated by Figure 4.1. Denote by A the algebra
defined by graph G1. By Theorem 9 is A finitely related. Obviously, G2 is
an induced subgraph of G1. Although by Theorem 7 is the algebra defined by
G2 non-finitely related, by the previous lemma is the algebra defined by G1∪̇G2

finitely related. Note that Figure 3.4 provides an opposite example: G1 defines a
non-finitely related algebra, G2 defines a finitely related algebra, but the algebra
defined by G1∪̇G2 is non-finitely related.

G2G1

Figure 4.1: A graph defining a finitely related algebra
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4.1 Algebras defined by a graph containing R2

We start this section with a useful observation about a significant vertex. The
Lemma 6 says that every operation with term polymers of algebra A defined by
a graph containing R2 has a uniquely determined significant vertex.

Lemma 6. Let G be a graph containing R2 as a subgraph and A be the algebra
defined by G. Let n ≥ 4 and let f(x1, . . . , xn) have term polymers. Then there is
exactly one k such that f(43k) = 3.

Proof. Assume there is no k such that f(43k) = 3. Then f12 satisfies f12(43132) =
f12(4) = f12(433) = . . . = f12(43n) = 4. Since f12 is a term operation, it is rep-
resentable by a T-graph (H, u). But u can not be equal to any of the variables
x1, . . . , xn, by the argument in the proof of Theorem 7.

Conversely, assume that there are two different indices k, l such that f(43k) =
f(43l) = 3. For simplicity assume that k = 1 and l = 2. Then f34 satisfies
f34(431) = 3 and f34(432) = 3. However, f34 is a term operation and therefore
it is represented by a T-graph (H, u), The first equality implies u = x1 and the
second implies u = x2, which is a contradiction. Thus there exists a single index
k such that f(43k) = 3.

Note that when checking condition (3) from Theorem 4 we can assume that
f depends on all of its coordinates. Indeed, if f(x1, . . . , xn) does not depend
on the i-th coordinate, then f(x1, . . . , xi−1, xi, . . . , xn) = f(x1, . . . , xi, xi, . . . , xn) =
fi−1,i(x1, . . . , xn) and thus f is term operation as well.

This observation allows us to use the following lemma. It says that opera-
tions with term polymers which depend on all of its coordinates behave as term
operations on n-tuples containing 0. Therefore we will be concerned only about
n tuples such that a ∈ Gn while verifying that f coincides with f .

Lemma 7. Let G be a graph such that at least one vertex has a loop and let
f(x1, . . . , xn) be an operation which depends on all of its coordinates and which
has term polymers. Let n ≥ ∣A∣ + 2. Then f(a) = 0 whenever ak = 0 for some k.

Proof. Let a be an n-tuple such that ak = 0 for some k. For simplicity assume
that k = 1. Since f depends on the first coordinate, there exist two tuples u and
v such that v1 ≠ u1, vi = ui for every i ≥ 2 and f(u) ≠ f(v). Note that we set n

big enough to find a pair (i, j) such that i ≠ j, i, j are distinct from 1 and ui = uj.
So we have fij(u) ≠ fij(v). Hence fij depends on x1. Pick a vertex with a loop in
G and denote it by 1. Then fij(0,1, . . . ,1) = 0. Thus we have f(0,1, . . . ,1) = 0 as
well. Pick a pair (l,m) such that l ≠m, l,m are distinct from 1 and al = am. Then
flm(0,1 . . . ,1) = 0 is satisfied and therefore flm depends on x1. Hence flm(a) = 0.
From that it follows that f(a) = 0. ∎
Proposition 1. Let G = (V,E) be a complete graph with loops at all vertices.
Then the algebra A defined by G is finitely related.

Proof. We will use the notation from Figure 3.2. Let n ≥ ∣A∣+3 and let f(x1, . . . , xn)
have term polymers.
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We will consider the case ∣A∣ = 2 separately. That is, G is a single vertex
with a loop. We claim that f can be represented as the T-graph (H, x1), where
H = (X,X ×X). We need to show that f(a) = f(a).

If ai = 0 for some i, then f(a) = 0 by the definition of H and f(a) = 0 by
Lemma 7. Otherwise, a = (1,1, . . . ,1), f(a) = 1 and f(a) = f12(a) = 1.

Let us now assume that ∣A∣ ≥ 3. By Lemma 6, there exists a unique k such
that f(43k) = 3. We define the candidate T-graph representing f as (H, xk),
where H = (X,X ×X). Let, again, f is the operation represented by (H, xk). We
need to show that f(a) = f(a).

If ai = 0 for some i, then f(a) = f(a) as before. So, assume a ∈ Gn. By
definition of f , f(a) = ak and f(43k) = 3. Since n ≥ ∣A∣ + 2, we can find distinct
i, j, both different from k, such that ai = aj. Then f(a) = fij(a). Since fij is
a term operation, it is represented by a T-graph (H′, u). We have fij(43k) = 3
and therefore xk must be the significant vertex. Also note that any mapping
H ′ → G is a homomorphism from H′ to G as G is complete with a loop at every
vertex. Thus f(a) = fij(a) = ak = f(a) and the proof is concluded.

The following theorem shows that every graph G containing R4 (see Figure
4.2) and such that the subgraph induced by L(G) is complete graph defines a
finitely related algebra. We can construct a candidate T-graph using relational
structure R4. To learn whether there is an edge (xi, xj) in H is enough to check
f(43i5j), since it happens to be zero if (xi, xj) is an edge. Because the graph
induced by L(G) is a complete subgraph with loops at all vertices, we can assume
that the graph induced by L(H) is such.

3

4

5

Figure 4.2: R4

1 2

Figure 4.3: R1

Theorem 9. Let G be a graph containing R4 and let the subgraph induced by
L(G) be a complete graph with a loop at all vertices. Then A defined by G is
finitely related.

Proof. Let n ≥ ∣A∣+3. Note that ∣A∣ is at least 4, therefore n ≥ 7. Let f(x1, . . . , xn)
be an arbitrary n-ary operation on A. Let f have term polymers and let f depend
on all of its coordinates. Note that we set n big enough so that any n-tuple of
elements of A contains two pairs (i1, j1), (i2, j2) of distinct indices such that
ai1 = aj1 and ai2 = aj2 . Let X = {x1, . . . , xn}.
Claim. Let xi, xj ∈ X such that f(45i) = f(45j) ≠ 0. Then f(43i5j) = 0 ⇔
f(43j5i) = 0.

Proof. Let xi, xj satisfy the assumption. Pick a pair (k, l) such that i, j, k, l

are pairwise distinct. Then we have fkl(45i) = fkl(45j). Let denote a T-graph
representing fkl by (H, v) and so there is no loop at xi and xj in the graph
H. Hence fkl(43i5j) = 0 if and only if there is an edge (xi, xj) ∈ H. Therefore

26



fkl(43i5j) = 0⇔ fkl(43j5i) = 0. From that follows that f(43i5j) = 0⇔ f(43j5i) =
0. ∎

First, we construct a T-graph (H, v) representing f . We define xi ∈ L(H) if
and only if f(45i) = 0. We define E(H) as follows: (xi, xj) ∈ E(H) if and only if
xi, xj ∈ L(H) or xj ∈ X ∖ L(H) and f(43i5j) = 0. Note that it follows from the
previous claim that E(H) is well defined. We define H =X.

Now we set the significant vertex v. All the assumptions of Lemma 6 are
satisfied and therefore there is exactly one index k such that f(43k) = 3. We
define v = xk if vk = 3.

Claim. The pair (H, xk) is a T-graph.

Proof. It is enough to show that H is connected. Observe that a graph on
a vertex set V is connected if and only if there is an edge between every pair of
disjoint subsets V1, V2 such that V1 ∪ V2 = V .

Pick two disjoint subsets V1, V2 ⊂H such that V1∪V2 =H. If two vertices xi,xj

with a loop are in different subsets, then there is edge (xi, xj) between V1 and
V2 and we are done. Otherwise assume that ∣V1∣ ≥ 2. Pick xi, xj ∈ V1. Since fij
is a term operation, it is represented by a T-graph (H1, u). Therefore H1 is
connected and thus there is an edge between V1 and V2 in H1. That is, there
are xk ∈ V1 and xl ∈ V2 such that fij(43k5l) = fij(43l5k) = 0. Assume that
xl ∈ X ∖L(H1). If k ≠ j we have f(43k5l) = 0 and from definition of H it follows
that (xk, xl) ∈ H. Otherwise we have f(43i3j5l) = 0. Pick a pair (p, q) such that
both p, q are different from i, j, l. Then fpq(43i5l) = 0 or fpq(43j5l) = 0 is satisfied.
Therefore the same is satisfied for f and it follows from the definition of H that
there is either (xi, xl) ∈ E(H) or (xj, xl) ∈ E(H). Thus the graph H is connected.∎

We have shown that the pair (H, xk) is a T-graph. Hence it represents a term
operation f . We will prove that these two operations coincide and therefore f is
represented by the T-graph (H, v) as well.

Claim. Let a be an n-tuple such that f(a) = 0. Then f(a) = 0

Proof. Let a be an n-tuple such that f(a) = 0. If there is k such that ak = 0 then
f(a) = 0 because H is connected and H = X. Otherwise, pick a pair (i, j) such
that ai = aj and so fij(a) = 0. Since fij is a term operation, it is represented by
a T-graph (H′, u). Therefore mapping ϕ ∶ H ′ → V such that xk ↦ ak for every k

such that xk ∈H ′ is not a graph homomorphism from H′ to G. This means there
is either a vertex xl ∈ L(H′) mapped on a vertex al without a loop or an edge(xl, xm) ∈ E(H′) such that (al, am) ∉ E(G).

Assume that there is a vertex xl with a loop mapped on a vertex al without
a loop. If l ≠ j, then fij(45l) = f(45l) = 0. From the definition of H it follows that
vertex xl ∈ V (H) has a loop and therefore ϕ is neither a graph homomorphism
from H to G. Hence f(a) = 0. If l = j, then we have f(45i5j) = 0. Let (p, q) be
a pair such that p, q and i, j are distinct. Therefore we have fpq(45i5j) = 0. Since
fpq is a term operation, then there is a loop at xi or a loop at xj or an edge (xi, xj)
in a graph representing fpq. Hence fpq(45i) = 0 or fpq(45j) = 0 or fpq(43i5j) = 0
is satisfied. It follows from the definition of fpq that the same is satisfied for f .
Note that al = aj = ai. It follows from the definition of H that xi ∈ L(H) or
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xj ∈ L(H) or (xi, xj) ∈ E(H) and therefore ϕ ∶ H → G is not a homomorphism.
Thus f(a) = 0.

Assume that (xl, xm) ∈ E(H′) such that alam ∉ E. In the previous para-
graph we treated the case l = m. Because all the vertices with a loop in G form
a complete subgraph of G, both xm and xl can not be in L(H′). Assume without
loss of generality that xl ∈X ∖L(H′) and l <m.

We must distinguish between three cases. Let l,m ≠ j. Because fij is a term
function and (xl, xm) is an edge in H′, we have fij(45l3m) = f(45l3m) = 0. It
follows from the definition of H it that (xl, xm) ∈ E(H). But we assumed (al, am)
is not an edge in G and therefore ϕ is not a graph homomorphism from H to G.
Thus we have f(a) = 0.

If l = j, then fij(45l3m) = f(45i5j3m) = 0 is satisfied. We pick a pair (p, q)
such that p, q and i, j are distinct. Then we have fpq(45i3m) = 0 or fpq(45j3m) = 0
and therefore (xi, xm) ∈ E(H) or (xj, xm) ∈ E(H). Note that ai = aj = al and thus
ϕ is not a graph homomorphism from H to G. Hence f(a) = 0. The proof for
m = j is analogical. ∎
Claim. Let a be an n-tuple such that f(a) = 0. Then f(a) = 0.

Proof. Let a be an n-tuple such that f(a) = 0. At first assume there exists k

such that ak = 0. By Lemma 7 f(a) = 0.
Assume all the elements of a are nonzero. Then f(a) = 0 if ϕ ∶ H → V , such

that xk ↦ ak, is not a graph homomorphism from H to G. That is a vertex
xl ∈ L(H) is mapped on a vertex al without a loop or an edge (xl, xm) is mapped
on (al, am) ∉ E(G).

Let xl is a vertex with a loop such that its image is a vertex without loop.
Since f is a term operation, we have f(45l) = 0 and therefore f(45l) = 0. Pick
a pair (i, j) such that i ≠ j, i, j are different from l and ai = aj. Since fij is
a term operation, it is represented by a T-graph (H′, u). Then fij(45l) = 0 and
thus xl ∈ E(H′) has loop as well. Therefore fij(a) = f(a) = 0.

Let edge (xl, xm) ∈ E(H) be such that ϕ(xl, xm) ∉ E(G). As before we can
assume that at least one vertex does not have a loop. Without loss of generality
xl ∈ X ∖ L(H). Therefore we have f(45l3m) = f(45l3m) = 0. We can pick a pair(i, j) such that i ≠ j,ai = aj and i, j are different from k, l. Then fij(45l3m) = 0,
and since fij ∈ Clo(A) we have fij(a) = f(a) = 0. ∎

Both claims above combined give an equivalence f(a) = 0⇔ f(a) = 0.

Claim. Let a be an n-tuple such that f(a) = ak. Then f(a) = ak.
Proof. Let a ∈ An be an n-tuple such that f(a) = ak. Because f is represented by
the T-graph (H, xk), f(43k) = 3 is satisfied. As before we can find a pair (i, j)
such that ai = aj, i ≠ j and both i, j are distinct from k. Since fij is a term
operation, it is represented by a T-graph. We have fij(43k) = 3 and therefore xk

must be the significant vertex. We have proved before that f(a) = 0 if and only
if f(a) = 0 and therefore f(a) ∈ G. From that it follows that fij(a) = ak and
consequently f(a) = ak. ∎

The proof is now concluded. At first we constructed a pair (H, xk). We showed
that the pair is indeed a T-graph. Thus the operation f represented by (H, xk) is
a term operation. Then we proved that for all a ∈ An f(a) = f(a) and therefore
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f is a term operation as well. Since we assumed that f has term polymers, we
showed that condition (3) from Theorem 4 is satisfied.

Note that there are disconnected graphs which are satisfying the assumptions
of the previous theorem, An example of a such graph is in the following figure.
Note that those graphs have vertices with loops in one component.

Figure 4.4: A graph defining a finitely related algebra

The next theorem shows that all graphs containing R5 as an induced subgraph
define a finitely related algebra. We do not assume anything about L(G) or about
connectedness of G, in other words, having R5 as an induced subgraph is enough
to be finitely related. It is easy to construct a candidate T-graph (H, xk). We use
graph R1 to recognize which vertices in H have a loop. Intuitively xi ∈ L(H) if
and only if f(21i) = 0. Similarly, we use graph R4 to determine whether (xi, xj)
is an edge in H or not. We put (xi, xj) in E(H) if and only if f(43i5j) = 0.

3

4

5

Figure 4.5: R5

1 2

Figure 4.6: R1

Theorem 10. Let G be a graph containing R5 as as an induced subgraph. Then
algebra A defined by graph G is finitely related.

Proof. As before we will prove that condition (3) from Theorem 4 is satisfied.
Let n ≥ ∣A∣ + 3 and let f(x1, . . . , xn) be an arbitrary n-ary operation on A, which
has term polymers and which depends on all of its coordinates. Note that we
set n big enough so that any n-tuple of elements of A contains two pairs (i1, j1),(i2, j2) of distinct indices such that ai1 = aj1 and ai2 = aj2 . Let X = {x1, . . . , xn}.

We will define a T-graph (H, v). Then we prove that function represented by
the T-graph, we denote it by f , coincides with f and hence f is a term operation.

Claim. We have f(43i5j) = 0 if and only of f(43j5i) = 0.

Proof. Pick a pair (k, l) such that k, l are different from i, j and k ≠ l. Then
fkl(43i5j) = 0 if and only if there is an edge (xi, xj) in H′, where (H′, u) represents
fkl. Therefore fkl(43i5j) = 0⇔ fkl(43j5i) = 0 and thus the same holds for f . ∎

First, we define H =X. Let us define L(H). If there is a loop at every vertex
of G, then we define L(H) =X, otherwise G contains R1 as an induced subgraph
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and xi ∈ L(H) if and only if f(21i) = 0. We define (xi, xj) ∈ E(H) if and only if
i = j and xi ∈ L(H) or f(43i5j) = 0. Note that by the claim above the set E(H) is
well defined. Because all the assumptions of Lemma 6 are satisfied, there is only
one index k such that f(43k) = 3. We say that the significant vertex v is equal
to xk if vk = 3.

Claim. The pair (H, xk) is a T-graph

Proof. It is enough to show that H is connected. Observe that a graph on
a vertex set V is connected if and only if there is an edge between every pair of
disjoint subsets V1, V2 such that V1 ∪ V2 = V .

Let V1, V2 be such that V1 ∩ V2 = ∅ and V1 ∪ V2 =H. Assume that ∣V1∣ ≥ 2 and
pick two vertices xi, xj in V1. Since fij is a term operation, it is represented by
a T-graph (H′, u). Since H′ is connected, there is an edge (xk, xl) in H′ between
V1 ∖ {xi} and V2. So f(43k5l) = 0 is satisfied. If k, l ≠ j then we have f(43k5l)
and therefore (xk, xl) ∈ E(H). If k = j then (p, q) such that p ≠ q and k, l, i are
distinct from p, q. Then we have fij(43k5l) = f(43i3k5l) = fpq(43i3k5l) = 0. Since
fpq is a term operation we have fpq(43i5l) = 0 or fpq(43k5l) = 0. Hence the same
is satisfied for f and from the definition of H it follows that (xi, xl) or (xj, xl) is
an edge in E(H). If l = j we proceed similarly. ∎

We have shown that (H, xk) is indeed a T-graph. Therefore f is a term
operation. Now we prove that f and f coincide. That is, for every n-tuple a is
f(a) = f(a) satisfied.

Claim. Let a be an n-tuple such that f(a) = 0. Then f(a) = 0.

Proof. Let a be an n-tuple such that f(a) = 0. If there exists k such that ak then
f(a) = 0, since H is connected. Otherwise pick a pair (i, j) such that ai = aj.
Hence fij(a) = 0 as well. Since fij is a term operation, it is represented by
a T-graph (H1, u1). So the mapping xk ↦ ak, for every k such that xk ∈ H1, we
denote it by ϕ, is not a graph homomorphism from H1 to G. That is, there is
either a vertex xk with a loop mapped on a vertex without a loop or an edge(xk, xl) in H1, such that (ak, al) ∉ E(G).

At first assume that there is a vertex xk ∈ L(H1) such that ak ∉ L(G). Note
that this case does not occur if L(G) = G. So we have fij(21k) = 0. If k ≠ j then
f(21k) = 0 is satisfied and it follows from the definition of H that there is a loop
at vertex xk in H as well. Hence f(a) = 0.

If k = j then f(21i1j) = 0 holds. Pick a pair (p,q) such that p, q are distinct
from i, j. Since fpq is a term operation, it is represented by a T-graph (H2, u2)
and there is a loop at xi or a loop at xj or an edge (xi, xj) in H2. Then fpq(21i) =
0 or fpq(21j) = 0 or fpq(43i5j) = 0 is satisfied. Therefore f(21i) = 0 or f(21k) =
0 or f(43i5j) = 0 is satisfied and it follows from the definition of H that xi or xk

in H has a loop or there is edge (xi, xk) in E(H). Since xi, xj are mapped on
vertex ak, which does not have a loop, ϕ is neither a homomorphism from H to
G and thus f(a) = 0.

Assume that there is an edge (xk, xl) ∈ E(H1) such that (ak, al) ∉ E(G). Since
fij is a term operation, we have fij(43k5l) = 0. If k, l ≠ j then f(43k5l) = 0 is
satisfied and thus (xk, xl) ∈ E(H). Therefore ϕ is not a homomorphism from H

to G and hence f(a) = 0.
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If k = j then we have f(43i3j5l) = 0. Pick a pair (p, q) such that p, q are
distinct from i, j, l. Since fpq is a term operation fpq(43i5l) = 0 or fpq(43j5l) = 0 is
satisfied. Because p, q are distinct from i, j, l we have f(43i5l) = 0 or f(43j5l) = 0
and from the definition of H follows that either (xk, xl) ∈ E(H) or (xi, xl) ∈ E(H).
Note that ai = aj = ak and therefore ϕ is not a homomorphism from H to G. Hence
f(a) = 0. Similarly we can show that f(a) = 0 if l = j. The proof is analogous. ∎
Claim. Let a be an n-tuple such that f(a) = 0. Then f(a) = 0.

Proof. Let a be an n-tuple such that f(a) = 0. Assume that ai = 0 for some i.
Then by Lemma 7 we have f(a) = 0. Assume that ai ≠ 0 for every i ∈ n. Since
f is represented by H, the mapping xi ↦ ai for every i such that xi ∈ H is not
a graph homomorphism from H to G. We will denote the mapping by ϕ. There-
fore ϕ maps a vertex xk with a loop on a vertex without a loop or an edge (xk, xl)
on (ak, al) ∉ E(G).

Assume that ϕ maps xk ∈ L(H) on ak ∉ L(G). Note that this case does
not occur if L(G) = G. Therefore f(21k) = f(21k) = 0. Pick a pair (i, j) such
that i, j ≠ k and ai = aj. Then we have fij(21k) = 0 as well. Since fij is a term
operation, it is represented by a T-graph (H′, u). Therefore there is loop at vertex
xk in H′. From that follows that ϕ ↾ H′ is neither a homomorphism from H′ to G

and thus fij(a) = 0. From the definition of fij follows that f(a) = 0.
Assume that ϕ maps an edge (xk, xl) in E(H) on (ak, al) ∉ E(G). Therefore

we have f(43k5l) = f(43k5l) = 0. Pick a pair (i, j) such that i, j are distinct from
k, l and ai = aj. Therefore fij((43k5l)) is satisfied. Since fij is a term operation,
it is represented by a T-graph (H′, u). Therefore (xk, xl) ∉ E(H′). Thus ϕ ↾ H′ is
not a homomorphism from H′ to G and hence fij(a) = 0. Then f(a) = 0 as well.∎
Claim. Let a be an n-tuple such that f(a) = b, where b ≠ 0. Then f(a) = b.
Proof. Let a be an n-tuple such that f(a) = ak. Because f is represented by the
T-graph (H, xk), f(43k) = 3 is satisfied. As before we can find a pair (i, j) such
that ai = aj, i ≠ j and both i, j are distinct from k. Since fij is a term operation,
it is represented by a T-graph. We have fij(43k) = 3 and therefore xk must be
the significant vertex. We have proved before that f(a) = 0 if and only if f(a) = 0
and therefore f(a) ∈ G. From that it follows that fij(a) = ak and consequently
f(a) = ak. ∎

The proof is now complete. At first we defined a pair (H, xk). Then we proved
that it is a T-graph. Finally we showed that f(a) = f(a) for all n-tuples a in
An. So these two operations coincide and thus f is represented by the T-graph
as well. Hence f is a term operation and the condition (3) from Theorem 4 is
satisfied.

We showed few results concerning graphs with R2 as an induced subgraph in
this section. As we could see in the previous chapter, there are algebras defined
by graphs containing R2 which are non-finitely related. However, there are graphs
containing R2 such that no theorem from this section or the previous chapter can
be applied. We believe that all the others algebras defined by a graph containing
R2 are finitely related, although we do not have any proof. For a discussion see
the last section.
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4.2 Algebras defined by bipartite graphs

In this section we will show that all algebras defined by connected bipartite graphs
are finitely related, we will prove, as usual, that condition (3) from Theorem 4
holds.

First observe that every term operation of an algebra defined by a bipartite
graph is either a constant zero operation or can be represented by a bipartite
graph without loops. Indeed, let f be an n-ary term operation, a ∈ An an n-tuple
such that f(a) ≠ 0 and let (H, v) be a T-graph representing f . A mapping such
that xi ↦ ai for every xi ∈ H is a graph homomorphism from H to G, therefore
H does not contain a cycle of odd length, possibly a loop. In other words, H is
a bipartite graph without loops.

Lemma 8. Let A be an algebra defined by a bipartite graph. Let n ≥ ∣A∣2 + 2 and
assume that f(x1, . . . , xn) is an n-ary operation on A which has term polymers
and which depends on all of its coordinates. Let a ∈ An be such that ai = 0 for
some i ∈ n. Then f(a) = 0.

Proof. For simplicity assume that a1 = 0. Since f depends on all of its coordinates,
we have two tuples u,v, such that u1 ≠ v1, ui = vi for every i ≥ 2 and f(u) ≠ f(v).
Observe that we set n big enough to find a pair of indices (i, j) such that i < j,
both of i, j are distinct from 1, ai = aj and ui = uj. So we have fij(u) ≠ fij(v).
Operation fij is not a constant zero operation, at least fij(u) or fij(v) is different
from zero, and therefore it can be represented by a T-graph (H, v). Since we have
fij(u) ≠ fij(v), we see that x1 is in H and thus fij(a) = f(a) = 0. Similarly we
can show that f(a) = if ai = 0 for any i ∈ n.

Lemma 9. Let A be an algebra defined by a connected bipartite graph G. Let f
be an operation with term polymers and which depends on all of its coordinates
and fij be its polymer such that fij is not a constant zero operation. Then any
T-graph (H, v) representing fij satisfies H =X ∖ {xi}.
Proof. Assume that there is xk, for some k, and a T-graph (H, v), such that xk ∉
H. For simplicity assume that i ≠ 1 and x1 ∉ H. Since fij is not a constant zero
operation, there exists an n-tuple a such that ai = aj and fij(a) ≠ 0. Because x1 ∉
H, the mapping such that xk ↦ ak, for all xk ∈H, is a graph homomorphism from
H to G and thus fij(0, a2, . . .) ≠ 0. Since ai = aj we have f(0, a2, . . .) ≠ 0. Observe,
that all the assumptions of Lemma 8 are satisfied and therefore f(0, a2, . . .) = 0
which is an contradiction. Hence x1 ∈H for any T-graph representing fij.

Lemma 10. Let A be an algebra defined by a connected bipartite graph G, n >∣A∣ + 1 and let f be an n-ary operation, which is not a constant zero operation.
Assume that f has term polymers and f depends on all of its coordinates. Then
there are two disjoint and nonempty sets of coordinates, X1 and X2, such that
X1 ∪X2 = X and f(a) ≠ 0, where a ∈ An is an n-tuple such that ai = j if xi ∈ Xj,
for j ∈ {1,2}.
Proof. Since f is not a constant zero operation, there exists an n-tuple u such
that f(u) ≠ 0. We set n big enough to find a pair of indices (i, j) such that i < j
and ui = uj, so we have fij(u) ≠ 0. Operation fij is a term operation and by
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Lemma 9 can be represented by a T-graph (H, v), where H is a bipartite graph
and H =X ∖ {xi}. Assume that xj ∈H1. We define an n-tuple a as follows ai = 1
and ak = l if xk ∈Hl. Obviously there is at least one index k such that ak = 1 and
one index k such that ak = 2. The mapping defined by xk ↦ ak, for every xk ∈ H
is a graph homomorphism from H to G and so we have f(a) ≠ 0. Since ai = aj, it
follows from the definition of a polymer that fij(a) = f(a) ≠ 0.

Lemma 11. Let X1 and X2 be the sets from Lemma 10 and let xi, xj ∈ Xk, for
some k ∈ {1,2}. Let (H, v) be a T-graph representing fij, then parts of H are
X1 ∖ {xi} and X2 ∖ {xi}.
Proof. From the Lemma 10 we know that there is an n-tuple a such that ai = k
if xi ∈ Xk and f(a) ≠ 0. Since xi, xj ∈ Xk we have fij(a) ≠ 0 and therefore fij is
represented by a T-graph (H, v), where H is a bipartite graph. By Lemma 9 is
H =X ∖{xi}. Because fij(a) ≠ 0, the mapping such that xk = ak for every xk ∈H
is a graph homomorphism and thus parts of H are X1 ∖ {xi} and X2 ∖ {xi}.

Observe that every connected bipartite graph on three or more vertices con-
tains graph R6 as an induced subgraph. The graph R6 is shown in Figure 4.7.
We will use that substructure to recognize a significant vertex of an operation.

1

2

3

Figure 4.7: R6

Lemma 12. Let G be a bipartite graph such that ∣G∣ ≥ 3 and A be the algebra
defined by G. Let n ≥ ∣A∣2 + 2 and let f(x1, . . . , xn) be an operation with term
polymers which depends on all of its coordinates. Assume that there is at least
one a ∈ An such that f(a) ≠ 0. Let S be the of n-tuples such that one coordinate
is equal to 3 and the others are equal to 1 or 2. Then there is only one tuple v ∈ S
such that f(v) = 3.

Proof. Pick a pair (i, j) such that i ≠ j and fij is a nonzero operation. Since
fij is a term operation, it is representable by a T-graph (H, xk), where H is
bipartite graph, and it follows from Lemma 11 that its parts are H1 = X1 ∖ {xi}
and H2 =X2∖{xi}. For simplicity assume that xk ∈H1. The mapping ϕ ∶H → G,
such that xk ↦ 3,xl ↦ 2 if xl ∈H2 and xl ↦ 1 otherwise, is a graph homomorphism
from H to G. So we have fij(ϕ(x1), . . . , ϕ(xn)) = 3. Let ϕ(xi) = ϕ(xj), then
f(ϕ(x1), . . . , ϕ(xn)) = 3.

Assume that there are two n-tuples u,v ∈ S such that f(u) = f(v) = 3. Since
we set n big enough, there is a pair (i, j) such that i ≠ j, ui = uj and vi = vj.
Therefore fij(u) = fij(v) = 3. Since fij is a term operation, there exists k such
that vk = uk = 3. It follows from Lemma 11 that a T-graph (H, xk) representing
fij has parts H1 =X1∖{xi} and H2 =X2∖{xi}. Again, for simplicity assume that
xk ∈H1. Then there is only mapping from H → G which is a graph homomorphism
from H to G and the mapping is defined by xk ↦ 3, xl ↦ 1 if xl ∈ X1 and xl ↦ 2
otherwise. Therefore we have u = v.
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Theorem 11. Let A be an algebra defined by a complete bipartite graph G. Then
A is finitely related.

Proof. We will show that condition (3) from Theorem 4 is satisfied. Let n ≥ ∣A∣2+2
and let f be an arbitrary n-ary operation which depends on all of its coordinates
and which has term polymers.

We start with a definition of a T-graph (H, v) representing f . Let X1 and X2

be the sets from Lemma 10. For simplicity assume that x1 ∈X1 and xn ∈X2. We
define H = (X,X1 ×X2).

Let ∣G∣ = 2, that is, G contains two vertices connected by an edge. Let v be
the n-tuple such that vi = j if xi ∈Xj. We define v = x1 if f(v) = 1 and we define
xk = xn if f(v) = 2.

Otherwise f satisfies all the assumptions of Lemma 12 and therefore there is
exactly one n-tuple v such that one coordinate is equal to 3, the others are equal
to 1 or 2 and f(v) = 3. We define v = xi if xi = 3.

The operation represented by the T-graph (H, xk) will be denoted by f . We
need to show that f(a) = f(a) for all a ∈ An. Let a be an n-tuple such that ai = 0
for some i. Then f(a) = 0 by Lemma 8 and f(a) = 0 since H =X.

Let ai ≠ 0 for every i ∈ n and let f(a) = 0. Then there is a pair (i, j) such
that i < j and ai = aj. Then we have fij(a) = 0. Let us denote a T-graph
representing fij by (H′, v). The mapping ϕ′ ∶ H ′ → G defined by xk ↦ ak for
every xk ∈ H ′ is not a graph homomorphism from H′ to G and it follows from
Lemma 11 that mapping ϕ ∶ X → G defined by xk ↦ ak for every xk ∈ X is not
a graph homomorphism from H to G and we have f(a) = 0.

Let ai ≠ 0 for all i ∈ n and let f(a) = 0. Therefore mapping defined by
xi ↦ ai, for every xi ∈ X, is not a graph homomorphism from H to G. Let us
pick a pair of indices (i, j) such that i < j and ai = aj. We denote a T-graph
representing fij by (H′, v). It follows from Lemma 11 that mapping defined by
xi ↦ ai, for every xi ∈ H ′ is not a graph homomorphism from H′ to G and so we
have fij(a) = f(a) = 0.

We have proved the equivalence f(a) = 0 ⇔ f(a). Let a be a tuple such
that f(a) = ak, then we have f(a) ≠ 0. If ∣G∣ = 2, then there are exactly two
n-tuples u,v such that f(u) ≠ 0, f(v) ≠ 0. Those are ui = j if xi ∈ Xj and ui = j
if xi ∉ Xj. We have f(u) = f(u) from the definition of the significant vertex.
Assume that f(u) = 1. Pick a pair (i, j) such that 1, i, j, n are pairwise distinct,
i < j and ai = aj. Then x1 is the significant vertex and fij(u) = 1 as well. Hence
fij(v) = f(v) = f(v) = 2. Similarly for the case f(u) = 2.

If ∣G∣ ≥ 3, then there is exactly one tuple v such that vk = 3, the other
coordinates are equal to 1 or 2 and f(v) = 3. Pick a pair i, j such that i < j, both
i, j are distinct from k and ai = aj. Because f(v) ≠ 0 we have vi = vj and thus
fij(v) = 3. Since fij is a term operation, xk is the significant vertex and therefore
fij(a) = f(a) = ak.

The proof is now complete. We have shown for every operation f of arity
higher than ∣A∣2 + 2 which has term polymers that f is a term operation as well
and therefore condition (3) from Theorem 4 is satisfied.

We continue with a similar theorem for general connected bipartite graphs.
Observe, that every connected bipartite graph which is not complete contains
subgraph R7 as an induced subgraph. The graph R7 is shown in Figure 4.8.
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Figure 4.8: Relational structure R7

Theorem 12. Let G be a connected bipartite graph without loops and let A be
the algebra defined by G. Then A is finitely related.

Proof. If G is a complete bipartite graph, then all the assumption of the last
proposition are satisfied.

As before we will show that condition (3) from Theorem 4 is satisfied. Let
n ≥ ∣A∣2+2, we will construct a pair (H, xk) for an arbitrary n-ary operation f and
we will show that the pair is a T-graph. Then we will prove that the operation
defined by the T-graph coincides with f and therefore f itself is a term operation.

Let u ∈ An, in the whole proof ϕu will denote a mapping from X to A such
that xi ↦ ai for every xi ∈X.

Claim. Let v = (6m7n−m8i5j) and let u = (7m6n−m5i8j). Then f(u) ≠ 0 if and
only if f(v) ≠ 0.

Proof. Let f(u) ≠ 0. Since we set n big enough, there is a pair (k, l) such that
k ≠ l and uk = ul = vk = vl. Thus fkl(u) ≠ 0 as well. Since fkl is a nonzero term
operation, it can be represented by a T-graph (H′, u), where H′ is a bipartite
graph. Without loss of generality assume that xi ∈ H ′1 and xj ∈ H ′2. Therefore
ϕ ∶ H ′ → G, defined by ϕ(xm) = um for every xm ∈ H ′ is a graph homomorphism
from H′ to G, that is, each edge in H′ is mapped on an edge in G. In particular
ϕ(H ′

1
) = {6,8}, ϕu(H ′2) = {5,7} and (xi, xj) ∉ E(H′). Since H′ is bipartite,

we can observe that ϕ′ ∶ H ′ → G, defined by ϕ′(xi) = vi for every xi ∈ H ′, is
a homomorphism as well. Thus fij(v) = f(v) ≠ 0. ∎

Let us start with a definition of (H, xk). If there is no n-tuple a such that
f(a) ≠ 0, then f is represented by any n-ary T-graph with a loop. Otherwise we
define H = X. Let X1 and X2 be the sets from Lemma 10 and define H1 = X1

and H2 = X2. Moreover, we can rearrange the set X such that there is an index
m such that H1 = {x1, . . . , xm} and H2 = {xm+1, . . . , xn}. For each pair (i, j) such
that xi ∈ Hl and xj ∈ H ∖Hl consider n-tuple a such that ai = 8, aj = 5, ak = 6 if
xk ∈ Hl ∖ xi and ak = 7 otherwise. Then we define (xi, xj) ∈ E(H) if and only if
f(a) = 0. The claim above shows that E(H) is well defined.

It follows from Lemma 12 that there is exactly one n-tuple v such that one
coordinate is equal to 3, the rest of the coordinates is equal to 1 or 2 and f(v) = 3.
We define k = i if and only if vi = 3.

Claim. Pair (H, xk) is a T-graph.

Proof. Since obviously xk ∈H it is enough to show that H is connected. Observe
that graph (V,E) is connected if and only if for each pair of disjoint nonempty
sets V1, V2 such that V1 ∪ V2 = V there is an edge between V1 and V2.
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Let V1, V2 ⊆H be nonempty disjoint sets such that V1∪V2 =X. For simplicity
assume that ∣V1∣ ≥ 3. Since we set n big enough, there are xi, xj ∈ V1 such that
xi, xj are in the same part. For simplicity assume that those are x1 and x2.Since
f12 is a term operation, it is represented by a T-graph (H′, u) and there is edge(xi, xj) between V1 ∖ x1 and V2 in H′.

Let xi ∈ X1 and let a be the n-tuple such that ai = 5, aj = 8, ak = 7 if
xk ∈ X1 ∖ xi and ak = 6 otherwise. Then f12(a) = 0. If j ≠ 2 we have f(a) = 0
and therefore (xi, xj) ∈ E(H). Assume that j = 2. Let b be such n-tuple that
b1 = 8 and bk = ak for every k ≥ 2. Then we have fij(b) = f(b) = 0. Pick a pair(p, q) such that p ≠ q and both p, q are different from 1,2, i. Since fpq is a term
operation fpq(6m7m−n815i) = 0 or fpq(6m7n−m825i) = 0 is satisfied. Therefore we
have f(6m7m−n815i) = 0 or f(6m7n−m825i) = 0 and thus there is an edge between
V1 and V2 in H. Similarly we can show that there is an edge between V1 and V2

if i = 2. The proof is analogous. ∎
Claim. f(a) = 0 if and only if f(a) = 0

Proof. Let a be an n-tuple such that ai = 0 for some i ∈ n. Then f(a) by definition
and by Lemma 8 we have that f(a) = 0.

Assume that a ∈ Gn and f(a) = 0. Pick a pair (i, j) such that i ≠ j, ai = aj
and xi, xj are in Xk, for some k ∈ {1,2}. So we have fij(a) = 0. Let us pick
a T-graph representing fij and denote it by (H′, u). Hence a mapping from H ′

to G such that xk ↦ ak, for every xk ∈H ′ is not a graph homomorphism from H′

to G. That is, there is edge (xk, xl) such that (ak, al) is not in E(G).
Let both ak and al be in the same part of G. Then mapping ϕ′, defined by

xm ↦ 1 if am ∈ G1 and xm ↦ 2 otherwise, is neither a graph homomorphism
from H′ to G. It follows from Lemma 11 that ϕ, defined by ϕ(xi) = ϕ′(xj)
and ϕ(xm) = ϕ′(xm) for all the other coordinates, is not a graph homomorphism
from H to G and so f(a) = 0. Otherwise assume that xk ∈ X1 and xl ∈ X2.
Therefore fij(7m6n−m5k8l) = 0. If j ≠ k, l then we have f(7m6n−m5k8l) = 0 and
it follows from the definition of H that (xk, xl) ∈ E(H). Since (ak, al) ∉ E(G),
we have f(a) = 0. If j = k then we have f(7m6n−m5i5k8l) = 0. Pick a pair (p, q)
such that p ≠ q and p, q, i, j, k are pairwise distinct. Then fpq(7m6n−m5k8l) =
f(7m6n−m5k8l) = 0 or fpq(7m6n−m5i8l) = (7m6n−m5i8l) = 0 is satisfied. Therefore(xk, xl) or (xi, xl) is an edge in E(G) and thus f(a) = 0. The proof is analogous
if j = l.

Let a ∈ Gn be such that f(a) = 0. That is, ϕa ∶ H → G is not a graph
homomorphism from H to G. Thus there is edge (xk, xl) such that (ak, al) ∉ E(G).
If ak, al are in the same part, we define an n-tuple b, such that bi = 1 if ai ∈ G1

and bi = 2 otherwise. Then the mapping ϕb is not a graph homomorphism from
H to G. Pick any pair (i, j) such that bi = bj and xi, xj are in the same part
of H and denote a T-graph which represents fij by (H′, v). Then ϕb ↾ H′ is not
a homomorphism from H′ to G and we have fij(a) = f(a) = 0.

Otherwise assume that ak ∈ X1 and al ∈ X2. It follows from the definition
that f(7m6n−m5k8l) = 0. Pick a pair (i, j) such that i ≠ j, i, j is different from
k, l and xi, xj are in the same part of H. Denote a T-graph representing fij by(H′, u). We have fij(7m6n−m5k8l) = 0 and therefore edge (xk, xl) is in H′. Hence
ϕa ↾ H′ ∶ H′ → G is not a homomorphism and thus fij(a) = f(a) = 0. ∎
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Claim. f(a) = ak then f(a) = ak.
Proof. Let a be an n-tuple such that f(a) = ak for some k ∈ n. For simplicity
assume that xk ∈ X1. It follows from the definition of the significant vertex that
f(1m2n−m3k) = 3. Pick a pair (i, j) such that i ≠ j, i, j are different from k and
ai = aj. We have proved in the claim above that f(a) ≠ 0 if and only if f(a) ≠ 0
and thus fij(a) ≠ 0. Therefore xi and xj are in the same part and hence we have
fij(1m2n−m3k) = 3. Since fij is a term operation xk must be a significant vertex.
Thus fij(a) = f(a) = ak. ∎

The proof is now complete. At first we used a subgraph of G to construct
a candidate pair (H, xk) for a T-graph representing operation f . We showed that
the pair is indeed a T-graph and that the operation defined by that T-graph
coincides with f . Since the choice of operation f was arbitrary, we proved that
the condition (3) from Theorem 4 is satisfied and therefore all algebras defined
by a connected bipartite graph are finitely related.
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Conclusion

The aim of this thesis was to determine which graph algebras are finitely related
and possibly to provide a complete characterization of finitely related graph alge-
bras. Although we did not achieve the latter goal, we proved that two classes of
algebras have the property and four classes of algebras do not have the property.

All proof techniques that we used were derived from the characterization of
finitely related algebras using polymers of operations in Theorem 4. The tech-
nique to show that an algebra is non-finitely related is to find a counterexample
to condition (3) from Theorem 4 , that is, to find, for every big enough n, an
operation f such that it has term polymers but it is not a term operation itself.
We did not find any systematic method for constructing such operations, in both
cases we found a counterexample by studying properties of concrete classes of
algebras.

We showed that every algebra defined by a graph containing R1 as an induced
subgraph and not containing R2 as a subgraph is not finitely related. Roughly,
algebras which belong to this class have sparse loops. Those algebras are, in
a certain way, generalizations of so called Murskĭı’s groupoid and therefore it was
no surprise that every algebra in the class is not finitely related. We constructed
a counterexample to condition (3) from Theorem 4 such that for any T-graph
representing f can not be uniquely determined a significant vertex.

On the other hand, the proof that every graph G, which contains R2 and such
that every vertex of G with a loop is adjacent to every vertex, defines a non-finitely
related algebra, was rather surprising, because we had a conjecture that every
graph containing R2 as a subgraph determines a finitely related algebra. However
we constructed an operation f , for every big enough n, which is a counterexample
to condition (3) from Theorem 4 such that every pair (H, xk) representing f is
such that H is a disconnected graph.

The technique to show that an algebra A defined by graph G is finitely related
was based on using certain subgraphs of G to construct a suitable candidate
T-graph for representing any operation satisfying all the assumptions.

We used graphs R6 and R7 to show that all algebras defined by a connected
bipartite graph are finitely related. Every graph G containing R2 and satisfying
one of the following conditions defines a finitely related algebra:

• G is a complete graph with a loop at every vertex,

• G contains R4 as an induced subgraph and the subgraph induced by L(G)
is a complete graph,

• G contains R5 as an induced subgraph.
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We believe that the proof technique can not be applied to other classes of
graph algebras. The subgraph used to construct a suitable T-graph (H, v) must
be such that we can recognize at which vertices of H is a loop and which vertices
are connected by an edge. Moreover, there are three types of edges: between
vertices without loops, between vertices with loops and between a vertex with
a loop and vertex without a loop.

There are algebras which might be finitely related, but we can not tell from
any induced subgraph which vertices are adjacent. For example it is an algebra
defined by a graph G containing R2 such that all the vertices in L(G) have the
same set of neighbors or an algebra defined by a graph G such that the subgraph
induced by L(G) is a disjoint union of complete graphs. For illustration see
Figure 4.9. In both cases there is a subgraph such that we can recognize all the
aforementioned properties but one. In the former case there is a subgraph such
that we can not recognize an edges between vertices with a loop and vertices
without a loops. In the latter case we can not recognize edges between vertices
with a loop. It would be enough to distinguish components of the subgraph
induced by L(H).

Figure 4.9: Examples of graphs defining algebras about which we can not decide
whether are finitely related

There are two other classes of graph algebras for which we can not determine
whether they are finitely related or not. The first class are algebras defined by
disconnected bipartite graphs. We believe that those are finitely related and
that there is a proof very similar to the proof for connected bipartite graphs in
Chapter 4. Probably the most challenging class of algebras are algebras defined
by loopless graphs containing a cycle of odd length. We do not have have strong
evidence supporting either option, we only believe that this problem is very likely
tightly connected to coloring of graphs.

We presented several new interesting results, which may help with the com-
plete characterization of finitely related graph. However the complete charac-
terization still remains an open problem. This thesis concerns only undirected
graphs, perhaps some insights can be obtained by studying the property being
finitely related for directed graphs.
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