
MASTER THESIS

Bc. Michal Raška

Framework for Customizable Autopilot
Solutions

Department of Software Engineering

Supervisor of the master thesis: RNDr. Filip Zavoral, Ph.D.

Study programme: Informatics

Study branch: Software Systems

Prague 2017

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

Title: Framework for Customizable Autopilot Solutions

Author: Bc. Michal Raška

Department: Department of Software Engineering

Supervisor: RNDr. Filip Zavoral, Ph.D., Department of Software Engineering

Abstract: The thesis analyses, designs and implements the framework for creation
of customizable autopilot solutions for radio controlled airplanes. As a proof of
concept of this framework a set of applications, which use this framework, is
created.

The result of this thesis is the extensible modular system, capable of airplane’s
attitude control, telemetry transmission and wireless communication with the
ground station. There is great diversity in the components used by the system,
which must be hidden by the framework. The differences must be encased in order
to deliver required user experience for the programmers using the framework and
the end users of the resulting applications as well. The tests, which validate the
goals of the thesis indicate, that the resulting system is capable of all required
tasks and ready to implement additional features which the end users might
require in the future.

Keywords: autopilot framework radio controlled airplanes

ii

I want to thank my supervisor, doctor Filip Zavoral, for his invaluable advices,
his time and willingness.

I also want to thank my father, Ivo Raška, for helping with the building of
the test aircraft and tests in real environment.

My special thanks go to my girlfriend Barbara, my parents and my sister for
supporting me throughout the whole time.

Finally, I want to thank Captain James T. Kirk and Captain Jean-Luc Picard
and their crew members for providing the very vital distraction.

iii

Contents

1 Introduction 4
1.1 Problem . 4
1.2 Aims and Objectives . 4
1.3 Thesis Outline . 4

2 Analysis 5
2.1 Pilots Requirements . 5

2.1.1 Hardware Requirements 5
2.1.2 Features Requirements . 5

2.2 Existing Solutions . 6
2.3 System Requirements . 7

2.3.1 Communication Between Airplane and the User 8
2.3.2 Airplane Control . 8
2.3.3 Sensor Readings . 9

2.4 Proposed Components of the Framework 11
2.4.1 RC Radio Receiver . 11
2.4.2 Servos and Electronic Speed Controlers 12
2.4.3 Microcontroller . 12
2.4.4 The Core . 13
2.4.5 Sensors . 13
2.4.6 Communication via TCP/IP 14
2.4.7 Operation Modes . 15

2.5 Non-functional Requirements . 16

3 Design 18
3.1 Overall System Architecture . 18

3.1.1 Raspberry Pi . 19
3.1.2 Arduino . 19
3.1.3 Android device . 20
3.1.4 Ground Station . 23
3.1.5 RC Receiver and Servos 23

3.2 Framework Architecture . 24
3.2.1 High-level View . 25
3.2.2 Modules . 26
3.2.3 Flight Controller . 28
3.2.4 Up Framework Architecture Summary 29
3.2.5 Panic Mode . 29

3.3 Raspberry Pi Application Architecture 29
3.3.1 Core . 30
3.3.2 Flight Controller . 30
3.3.3 Custom Providers . 33
3.3.4 Custom Recorders . 35
3.3.5 Commands . 35
3.3.6 Automated Load of the Modules 35

3.4 Server Application Architecture 36

1

3.5 Android Application Architecture 37
3.5.1 Basic Components of the Android Framework 38
3.5.2 Up Library for Android 39

3.6 Arduino Application Architecture 40

4 Implementation 42
4.1 Up Framework . 42

4.1.1 Technical Details . 42
4.1.2 Design Modifications . 43
4.1.3 Startup and Initialization 43
4.1.4 Intra-framework Communication 44
4.1.5 Telemetry . 47

4.2 Raspberry Pi Application . 48
4.2.1 Technical Details . 48
4.2.2 Design Modifications . 48
4.2.3 Modules . 48
4.2.4 Commands and Command Handlers 52

4.3 Plug-in Modules . 52
4.3.1 Distribution and Installation of Cogs 53
4.3.2 Cogs Integration . 53
4.3.3 Cogs Dependencies . 56
4.3.4 Existing Cogs . 56
4.3.5 Summary . 56

4.4 Arduino Application . 57
4.4.1 Technical Details . 57
4.4.2 Arduino Model . 59
4.4.3 Commands, Command Receiver and Command Executor . 59
4.4.4 PWM Reader . 62
4.4.5 Determining Orientation 64
4.4.6 Flight Controller . 65
4.4.7 Servo Control . 67

4.5 Android Application . 68
4.5.1 Technical Details . 68
4.5.2 Up Library for Android 68
4.5.3 Raspilot for Android . 70

4.6 Server Application . 71
4.6.1 Conditional Module Load 72
4.6.2 Up Runner . 72
4.6.3 Ground Station Proxy . 73

4.7 Hardware . 73
4.7.1 Printed Circuit Board for Arduino 73
4.7.2 Powering the Devices . 74
4.7.3 Physical Protection . 74

5 Experiment and Discussion 75
5.1 Validating the Communication Channel 75
5.2 The Test Aircraft . 75
5.3 Validating the Autopilot . 75
5.4 Running Raspilot on Raspberry 76

2

5.5 Results of Communication Channel Validation 76
5.6 Results of Autopilot Tests . 77
5.7 Results of Raspilot Run on Raspberry 77
5.8 Summary . 78

6 Conclusion 79

Conclusion 79
6.1 The Problem . 79
The Problem . 79
6.2 The Solution . 79
The Solution . 79
6.3 Current Limitations . 80
Current Limitations . 80
6.4 Future Development . 81
Future Development . 81

6.4.1 Summary . 82

Bibliography 83

List of Figures 86

List of Tables 87

Attachments 88

Attachment 1 - Installation Guides 89

Attachment 2 - Photos of the Test Aircraft 92

Attachment 3 - Printed Circuit Board 94

3

1. Introduction

The increasing affordability of the radio controlled (RC) airplane models and the
outbreak of the credit-card sized computers creates a vast range of new ideas and
possibilities in fields such as the autopilot systems, telemetry, controlling model
from the first person view (FPV) etc. The purpose of this work is to construct a
modular framework which creates the environment for creating autopilot systems
which address these new concerns of users.

1.1 Problem

There are existing solutions which address the particular problems such as au-
topilot system, FPV systems, flight stabilization1 etc. Some of these systems
can be integrated together, creating a more complex solution. However none of
the existing solutions are easily modifiable. For example we wanted to feed my
autopilot system with the GPS data from the Android phone, because the GPS
module for the autopilot was quite expensive. It turns out that none of the current
autopilot solutions can be modified easily to reflect our requirement, including
the open source ones. We want to create a modular system, which can adapt the
user needs and can be easily adjusted to meet the changing requirements. In the
context of the example, the system should accept the GPS data from the mobile
phone. Then, if we replace the GPS source some day, it should be possible to
easily modify the system to integrate this new GPS source.

1.2 Aims and Objectives

The work has two main objectives:

1. design a framework for creating customizable autopilot solutions

2. create an pilot application based on the framework as a proof of concept

The framework is named Up and the implementation is named Raspilot. This
work is highly motivated by the Do It Yourself principle (DIY). Therefore the
result should be easily modified, understandable and easily usable by other users,
which are familiar with the field of RC airplane models.

1.3 Thesis Outline

The thesis is divided into 5 chapters. In Chapter 2 the requirements, existing
solutions and possible approaches are discussed more in detail. Chapter 3 explains
design of the framework and the application more in detail. In Chapter 4 are
stated the implementation details of the Up framework and the Raspilot. The
last chapter evaluates the results of the work.

1Flight stabilization is a feature which balances the attitude of the airplane, for example in
windy conditions.

4

2. Analysis

In this Chapter we state the pilot’s requirements (requirements of the RC airplane
pilot, who is the end-user of the Raspilot), the existing solutions, the functional
and nonfunctional system requirements (these arises mainly from the pilots re-
quirements) and the possible resources which can be used to meet these require-
ments.

2.1 Pilots Requirements

We can divide the pilot’s requirements into two groups:

1. hardware - requirements which are related to the hardware which must be
added to the airplane such as new sensors, microcontrollers, etc.

2. features - requirements which are related to the capabilities of the system
such as stabilization, waypoint navigation, etc.

2.1.1 Hardware Requirements

The two most important hardware requirements are:

• hardware added to the airplane must be as lightweight as possible

• hardware added to the airplane must be as small as possible

The autopilot solution which requires heavy components on-board would be use-
less. The fuselage of the airplane is often overstuffed (with servos controlling
the control surfaces, batteries, etc.) even without the autopilot system, so it is
necessary to occupy minimal additional area.

Besides these there are some other requirements, which are not as crucial as
the previously mentioned:

• power consumption1 - should be as small as possible

• impact protection - can be solved by some additional casing of the on-
board hardware (which adds weight on the other hand)

2.1.2 Features Requirements

The framework must be ready to implement all of the features usually found in
existing solutions (for more information about existing solutions see Section 2.2).
The most anticipated are the following:

• flight stabilization - balances the airplane’s attitude, handy in windy
conditions

1The power consumption inflicts also the weight. With great power consumption the system
will need bigger and heavier power source.

5

• return home - the airplane returns to the takeoff location, safety feature
used in case of RC signal loss

• position, altitude, heading hold - the system holds the specified position
(usually the airplane pivot around the position) or the specified altitude etc.

• telemetry - various telemetry data can be transfered from the airplane
such as airspeed, altitude, power source voltage etc.

It may appear that the features list is quite short, but all of the items stated are
quite complex tasks.

2.2 Existing Solutions

There are currently many autopilot systems available. Some of them are expensive
and full-featured, some of them are low-priced and lack some functionalities. The
list of the most used follows:

1. RVOSD

2. Naza-M

3. Naze32

4. Multiwii

5. Ardupilot

Apart from these there are many others, but these are ones most frequently used
and we have the experience with most of them.

RVOSD

The RVOSD [1] is the full-featured autopilot system for airplanes with integrated
on-screen display (OSD). The OSD is perfectly implemented, the autopilot lacks
some of the features (such as waypoint navigation) but overall it is surely a good
choice when looking for hobby-level flight controller. Functions such as Return
Home, Fly By Wire (another term for flight stabilization) are a matter of course.
But the fact that the system is a closed-source makes any further custom-made
extensions impossible.

Naza-M

The Naza-M [2] is a superb autopilot system solution for multirotors manufac-
tured by the DJI. We do not have the personal experience with this system, but
the Internet is full of very positive feedback. Naza-M also packs the OSD like
RVOSD but also plenty of other features such as gimbal support (pivoted support
used to stabilize the camera recording video), integration with iDevices (ground
station app for iPads can be downloaded from the App Store). It is a total solu-
tion which can be used by professionals. The system is modular, so there is more
freedom when configuring the system but only DJI certified products can be used.
There is a possibility that components originating from other manufacturers will
work with DJI modules, but there is no support for this from the side of DJI.

6

MultiWii and Naze32

Naze32 [3] is a modification (more precisely a GitHub fork) of the MultiWii [4]
system. Both of these are missing many of the RVOSD and Naza-M features,
but their application is quite different. While RVOSD and Naza are high end
systems, these two are rather mid-range (with corresponding price tag). Naze32
is used in the racing multirotor, where the crash is very probable and the autopilot
features are not required. Naze32 can be used without GPS module and in this
configuration can only stabilize the multirotor which is quite sufficient for the
racing purposes. Also OSD can be added, but is not present on the board by
default. These two are open source projects, but their architecture and design
are not formed to accommodate changes.

Ardupilot

As the name suggests Ardupilot [5] is the autopilot system solution based on
the Arduino [6, 7]. Ardupilot has a big community, is open-source and actively
developed. Also it can be used in multirotors, planes or rovers (possibly others,
but these are the most common options). The Ardupilot is also very feature-rich.
Autopilot functions, gimbal integration, telemetry feed which can be read by
ground station computer, flight planning and many others. Also unlike Multiwii
and Naze32 the firmware is quite well documented. The Ardupilot firmware
is massive, therefore the potential changes must be integrated very carefully.
When considering this project as the base for this thesis, we ran into several
major problems such as quite specific hardware requirements etc. Therefore,
we have decided to design and implement the framework from scratch. Also
the history suggests that with the newly created framework the overall quality
should be higher than patching the existing solutions and trying to force them
into something they are not meant to be. One of the possibilities for the future
development of the framework is to integrate the Ardupilot firmware as a flight
controller module for example.

Summary

All of these autopilot solution have something in common. While excelling as an
autopilot systems all of them lack the ability to be extended. RVOSD na Naza-
M systems are closed-source products. We can, therefore, change only what
the authors allow us using their configuration software. Naze32, Multiwii and
Ardupilot on the other hand are open-source, but their design and architecture
is not very friendly to changes. Also, the last three are licensed under the GNU
GPL license, which can sometimes be limiting. Therefore, one of the goals of this
thesis is to implement a change-friendly framework which can be easily modified
or extended.

2.3 System Requirements

In this Section we will present the requirements for the framework and the imple-
mentation. Unlike the Section 2.1 which states the end-user requirements, this

7

Section states the technical requirements which must be taken into account
when designing and implementing the system. The framework is named Up and
the implementation is named Raspilot1.

The Up and Raspilot must be able to execute these tasks:

• create bi-directional communication line between airplane and the user -
downstream is mainly used for telemetry, upstream for sending messages to
the airplane (such as enabling return home feature)

• control the airplane

• read various sensor

These requirements are discussed more in detail in following sections.

2.3.1 Communication Between Airplane and the User

The communication line between airplane and the user must be bi-directional.
The downstream is used mainly for the telemetry and the upstream is used to send
messages to the airplane. The communication line must be wireless of course.

When talking about wireless communication usually the WiFi or Bluetooth
comes to mind. But these technologies are not suitable because of their range
limitations. In case of Bluetooth the range is up to 100m (but usually it some-
where around 20m). In case of WiFi the range is somewhere around 100-150m.
The range of Bluetooth nor WiFi is sufficient as the airplane might be 700m far
or even more.

Other possibility is to integrate our communication to the existing RC radio
communication. This should be possible, however not all RC radios are capable of
bi-directional communication. Also it would require some complex modifications
of the communication protocol. Therefore, the Raspilot can be run only with
RC systems, which have their protocol modified, which will narrow the range of
usable RC radios. The other disadvantage of this approach is that in the case
when we loose the RC signal, we loose also the communication with Raspilot.

Therefore we have decided to use the cellular network. Today the users
usually have a data plan which can be used. The speed of the 3G or even the
2G network is sufficient for the expected data flow. The cellular data network
uses the TCP/IP architecture which is well-known in IT world. Also when we use
this approach, the system obtains another communication channel based on other
technology 2. Therefore the possibility of loosing both communication channels
at the same time is lower.

2.3.2 Airplane Control

One of the core functionalities of the autopilot system is the ability to control
the plane. To achieve this, the autopilot must know at least the attitude of
the airplane. The attitude can be read from the gyroscopes and accelerometers.
Gyroscope is used to determine the orientation of the airplane (based on the

1The name means: A Raspberry Pi based autopilot - the Raspilot.
2One channel is RC radio, the second channel is the cellular network

8

gravitation). Accelerometer measures non-gravitational acceleration and can
be used to read the rate of attitude change. Usually gyroscopes and accelerome-
ters are used together.

Besides gyroscopes and accelerometers the autopilot can also take the location
into account. This enables features such as return home or waypoint navigation.

The gyroscopes and accelerometers allows the control of the planes attitude,
the GPS allows calculation of the required heading (to get to the required loca-
tion). In addition to these also other information can be used to deliver even
more reliable aircraft control such as airspeed, altitude (can be read from GPS
or from barometric sensor), current sensors (the plane might return in case when
batteries are being depleted), etc.

However, the sensors gives us the raw data. For more information about
origins of the data and how they are read refer to Section 2.3.3. These data
needs to be processed. Almost all existing solutions uses the PID Controller
[8], and therefore we have decided to use it also. The PID Controller is used to
continuously calculate the output based on the input and previous decisions. The
PID Controller is presented more in detail in Section 2.3.3.

2.3.3 Sensor Readings

The sensor data are required not only for airplane control, but also for telemetry.
There are various types of sensor which have various communication interfaces.
The Up must be ready to integrate these sensors and support as much com-
munication interfaces as possible. The most common communication interfaces
are:

• UART - Universal Asynchronous Receiver/Transmitter [9]

• I2C - Inter-Integrated Circuit [10]

• PWM - Pulse Width Modulation [11]

For more information about the communication interfaces refer to following Sec-
tions.

The required sensors for the autopilot are the following:

• IMU - an inertial measurement unit (IMU) is an electronic device that mea-
sures and reports a body’s specific force, angular rate, and sometimes the
magnetic field surrounding the body, using a combination of accelerometers
and gyroscopes, sometimes also magnetometers.

• input from RC radio receiver1

and the optional sensors which add additional features are:

• GPS

• barometer

• airspeed sensor

1In order to implement the stablization mode, the autopilot needs to take the user input
into account in order to achieve the desired attitude.

9

• current sensor and voltmeter

• and many others

Some of these sensors has more than one communication interface, but that de-
pends on the particular sensor. For example the RC radio receiver have usually
only the PWM output, but the newer receivers support also Serial communica-
tion.

UART

The acronym stands for the Universal Asynchronous Receiver/Transmit-
ter [9]. It is a device that translates the data between characters in computer
(usually bytes) and an asynchronous serial communication format. The asyn-
chronous serial communication format encapsulates the data between start and
stop bits. UART is for example used for communication between computer and
low-level peripherals or microcontrollers. The UART device is usually present
on the microcontrollers and can be added as a USB device to those computers,
which lack this device.

I2C

I2C or the Inter-Integrated Circuit [10], is used to attach lower-speed peripher-
als to processors and microcontrollers. I2C is used for short-distance intra-board
communication. For example the IMU sensor usually has the I2C interface. I2C
devices are connected to a special port of the microcontroller or computer.

PWM

The PWM stands for Pulse Width Modulation [11]. The PWM is a technique
of encoding message into pulsing signal. The principle is changing the widths of
otherwise regular rectangular signal. In RC models the PWM is used to control
the positions of servos and the speed of the motors. The servos and the motors
are connected to the radio receiver. The radio receiver generates the PWM pulse
based on the received signal. For more information about PWM in context of
RC radios refer to Section 2.4.1.

PID Controller

The three letters in PID stands for:

• P - proportional

• I - integral

• D - derivative

The PID Controller consists of these three terms.
The PID Controller [8] continuously calculates an error between the desired

value and the measured variable. Desired value is often called the setpoint
and the measured variable is called process variable. The controller tries to
minimize the error by adjusting the control variable, which in our case is the

10

position of a servo. The output is determined by the following formula [8, p.
293]:

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

de(t)
dt

where Kp, Ki and Kd are non-negative coefficients for the proportional, integral
and derivative terms.

One of the biggest issues with the PID Controller is the need to tune the Kp,
Ki and Kd parameters. If the parameters are not set correctly, then the autopilot
tends to be very unstable and sometimes absolutely fails to control the aircraft.
The values of the parameters depend on many factors such as used sensors, overall
stability of the aircraft, servos speed etc. Therefore, they must be tuned in every
aircraft.

The effects of the three coefficients are the following:

• Kp - the proportional term gives us the present error, which can be mod-
ified by this coefficient. When this coefficient is a large number then the
error will also be large and the control variable will be adjusted heavily.
When this coefficient is a small number then the error will also be small
and the control variable will be adjusted lightly.

• Ki - the integral term accounts for the past values of the error. If the
current output is not strong enough, error will accumulate over time and
the controller will respond with stronger action.

• Kd - the derivative term accounts for possible future values based on the
current rate of change.

2.4 Proposed Components of the Framework

Based on the previous Sections, this Section discusses the hardware and software
requirements which must be fulfilled in order to meet the previously stated de-
mands. At first we will state the needs which arises from the requirements and
then the possible solutions will be presented. Let us start from the things we
cannot change and that is the RC radio receiver.

2.4.1 RC Radio Receiver

The RC Radio Receiver is a hardware peripheral which usually controls servos and
motors. RC radio receiver provides the stabilized 5V power source and controls
the positions of the servos. Receivers vary in many parameters such as frequency,
number of channels, output interface (PWM, Serial, etc.), input voltage tolerance
etc. These specific attributes must be encapsulated and the illusion of the single
type of the receiver must be provided to the system.

PWM Pulse

The information, in this case the desired position of the servo, is encoded into the
width of the pulse which is otherwise regular and rectangular. The standard is
that the minimal angle is represented as a 1000µs wide pulse, the center position

11

as a 1500µs wide pulse and the maximum is represented as a 2000µs wide pulse.
However, the marginal values differ between different manufacturers. The figure
2.1 shows the illustration of the pulse width and the servo position relationship.

Figure 2.1: PWM Pulse and Corresponding Servo Position

2.4.2 Servos and Electronic Speed Controlers

Both servos and electronic speed controllers (abbreviated as ESC) are hard-
ware peripherals. The servos allow precise control of angular position and are
used to move the control surfaces1 of the aircraft. Usually servos control ailerons
(adjusts roll), elevator (adjusts pitch) and rudder (adjusts yaw). Other surfaces
such as flaps (if present on the aircraft) might be also controlled with servos as
well as other functionalities such as gear. Besides servos we need to control the
thrust. Speed of the motor (or possibly multiple motors) is controlled with ESC.
ESC is an electronic circuit which varies the speed of the motor. There are multi-
ple types of ESC but the principles of ESCs are not subject of this thesis. Servos
and ESCs have something in common and that is the input. Both read the PWM
signal and react to the received pulse. In case of servos the angle is altered, in
case of ESC the speed is altered (1000 µs wide pulse means motors off and the
2000µs wide pulse means full throttle).

2.4.3 Microcontroller

The Raspilot needs a platform which will host the autopilot and integrate all
the other components such as sensors, radio receiver and can control the servos.
As stated in Section 2.4.1 we need to reliably read and generate PWM pulse.
Section 2.3.3 states various communication interfaces which we must be able to
integrate. Based on these requirements we decided to use a microcontroller to
carry out these low-level tasks. There are many microcontrollers available, but
we have selected the Arduino because of its community and support.

Arduino

The Arduino [7] is an open source prototyping platform based on the ATMega [12]
microcontroller. The microcontroller allows execution of time precise operations

1Control surface is movable part of the aircraft which allows to control the airplane’s attitude

12

such as PWM reading. Therefore, the Arduino is suitable for PWM readings and
PWM generation (required for servo and motor control and the airplane control).
Besides this Arduino can handle I2C, UART and many other communication
interfaces.

2.4.4 The Core

The Arduino handles the low-level tasks, but the higher-level tasks such as com-
munication between the airplane is hard to implement on the Arduino. Therefore,
we need a component which will carry out these tasks:

• provide a communication channel between user and the airplane

• transmits data through the channel, such as telemetry, messages, etc.

• executes user required actions

We wanted to provide as much comfort for the programmers which will use the
system as possible. With the explosion of card-sized computers this is quite easy
to achieve as many of them runs Linux which is a well-known environment. There
are also many card-sized computers available but we have selected the Raspberry
Pi because of the same reasons why we have chosen Arduino and that is the
community and support. Also the characteristics of the card-sized computers,
such as dimensions, computational power are quite similar.

Raspberry Pi

The core of the Raspilot will be run on the Raspberry Pi [13]. Its dimensions,
weight, power requirements and computational capability [13, 14] are perfect
match for the anticipated situations. With its size it should be fitted into any rea-
sonably big aircraft without complications. Also the relatively low weight (45g)
won’t change the flight characteristics. The Raspberry is powered by 5V and
draws 0.5A [14]. Both of these power requirements are easily met by the todays
batteries which are commonly used in the RC aircraft models. The Raspberry
itself comes in many models which vary in the computational power:

• model B+ - 512MB RAM, 700MHz Broadcom BCM2835 CPU

• model 2 - 1GB RAM, 900MHz quad-core ARM Cortex-A7 CPU

• model 3 - 1GB RAM, 1.2GHz 64-bit quad-core ARMv8 CPU

. It must be possible to run the system on the most used models (in time of
writing this thesis it was the model B+, model 2 and model 3). Therefore, the
core of the system should be as platform independent as possible.

2.4.5 Sensors

In the previous Sections we have discussed the RC radio, servos, and computation
hardware which will execute the autopilot. But we still do not have analyze the
sensor data which the autopilot needs.

13

There is a vast range of sensors types and a vast range of manufacturers
which creates these sensors. However, we can use something which many of us
has in their pockets and that is the mobile phone. Almost all of todays mobile
phones are equipped with a GPS sensor and some of them also have gyroscope,
accelerometer, humidity sensor, barometer, etc. All of these sensors can be read
and used by autopilot if they are integrated into the Raspilot. When it comes to
the smartphones we generally have three possible choices:

1. iPhone - not very suitable, because of the price tag

2. Windows Phone - we don’t have much experience with this platform

3. Android - reasonable price tag, well documented, quite popular

We have chosen the Android because of the price tag and our personal experience
with these devices.

Android Device

Nowadays, the Android devices have many sensors (such as IMU, GPS, baromet-
ric sensor...). The Raspilot relies on the data from these sensors. Android device
is connected to Raspberry Pi via TCP/IP1. We need to create a connection be-
tween the on-board Android and the Raspberry Pi. The connection can be wired
or wireless. The wireless connections are not very suitable because they might
interfere with the RC radio. Therefore we have decided to use the wired con-
nection. The Android device can create a TCP/IP network and we have decided
to use this feature of the Android platform. Besides sensor data Android device
will also provide the necessary Internet connection for the Raspilot which will be
used for the communication between airplane and the user.

2.4.6 Communication via TCP/IP

In the Section 2.3.1 we have stated the reasons why we have decided to use the
cellular network for the communication channel between user and the airplane.
The choice of the cellular network implies that the communication will be based
on the TCP/IP network. The TCP/IP networks offers two main protocols, the
TCP and the UDP. Let us discuss why we have chosen to make possible to use
both these protocols in the Raspilot.

The TCP protocol is connection-oriented and reliable but is much more re-
source demanding. The UDP on the other hand is connection-less and unreliable,
but much more simple.

Besides the communication between user and the airplane, there is also a
communication line between on-board Raspberry Pi and the on-board Android
device, which serves as a sensors source. This communication is also based on a
TCP/IP network. We want these communication line to be as fast as possible
because we want tominimize the delay between sensors readings and processing of
the sensor data. The reading is executed on the Android device, then the data are
transferred to Raspberry Pi where they are being processed. The communication

1The Android devices are capable of creating TCP/IP network and because this network
architecture suits the needs of the Raspilot, we have decided to use this feature of the Android.

14

line between on-board devices is quite reliable so we find the reliability of the
TCP protocol quite redundant here. But the Blackbox Mode (see Section 2.4.7
for more information) makes this situation a bit more difficult. The Blackbox
Mode uses only the on-board Android device for telemetry readings. The control
capabilities are unavailable. We need however, to connect somehow the on-board
Android device with the user. This can be done only via the TCP protocol for
the same reasons as stated in the next paragraph, which are mainly the limits of
the telecommunication operators. Therefore, we have decided to make possible to
use both UDP and TCP protocol for communication between on-board devices.
The choice will be based on the particular situation.

The communication channel between the user and the airplane is a different
case. The data transfer channel over the cellular network is quite unreliable. The
possibility of signal loss is quite high due to the signal coverage, interference, etc.
This indicates that between the user and the airplane the TCP should be used.
This decision is supported also by another fact. The smartphones usually do
not have public IP addresses because of the telecommunication operators. It is
possible to have a public static IP but usually it is charged with some monthly fee
and therefore, we cannot expect the mobile phone will have a public IP address.
Please note that the user will be connected to the Internet probably via the mobile
phone as well (although some other connection types might be used, which might
have a public IP). Nevertheless the on-board device is surely connected via cellular
network (special cases when the user uses WiFi or other short-range connection
are not taken into account). Because of the limitations stated at the beginning
of this paragraph, we cannot send the UDP packets between the user and the
airplane because the on-board device might not have a public IP and might be
not on the same network. Therefore, the TCP must be used for communication
between the user and the airplane. In fact some kind of proxy server is also
required, because there is no possibility to establish incoming connection to the
mobile phone. This proxy server will have two channels and upon receiving the
message in one channel, it sends the message to the other channel. The two
channels corresponds to the airplane and the user. This enables the bi-directional
(full-duplex) communication between the user and the airplane.

2.4.7 Operation Modes

In many cases the autopilot feature is not absolutely necessary and the user wants
only to read the telemetry. Therefore the system can be run in two modes:

1. Flight Controller Mode

2. Blackbox Mode

The differences and use cases for these modes are presented in the following
Sections.

Flight Controller Mode

The Flight Controller Mode is the full-featured mode, but it requires all of the
components to be available. Therefore it takes more space, weights more, con-
sumes more power, etc. The required components are the following:

15

• Arduino - for reading and generating PWM, reading sensors, and other
low-level, time critical tasks

• Raspberry Pi - runs the core of the Raspilot

• Android, or other sensor source - to provide the required data for the
Raspilot

• power source - for the Raspberry Pi and Arduino, Android is usually
powered from its own battery

Please note that we do not list components such as radio receiver, servos, bat-
teries, etc. because these must be present in the airplane even if we do not have
Raspilot installed.

This mode is used when the user wants the autopilot features and the added
weight is not an issue.

Blackbox Mode

The Blackbox Mode lacks the control functionalities, but the benefit of this mode
is lower weight and fewer on-board devices. In fact only the Android is present on-
board in this mode, which decreases the weight and also the space requirements
quite significantly.

This mode is used when the control capabilities are not required and the
telemetry is sufficient.

2.5 Non-functional Requirements

To this point the requirements to the functionalities of the autopilot system are
analyzed. But other than the autopilot implementation the thesis should also
design a framework for creating such systems. Apart from the functional require-
ments the non-functional requirements are also very important especially when
designing a framework. Following non-functional requirements were identified as
critical:

• Modularity

• Interoperability

• Extensibility

• Documentation

• Robustness

• Fault tolerance

• Portability

• Testability

16

All of these must be taken into account during design and development.
Modularity, interoperability and extensibility are connected together.

If the system should be extensible we think it must be as modular as possible. Also
when we want to add the ability to cooperate with other systems in the future,
it should be achieved by adding new module to the system not by changing the
whole system.

The first three must be supported by very good documentation. It will be
meaningless to have perfectly modular and extensible system when no one will
understand it.

The robustness and fault tolerance are required because of the nature
of the system. It will be unpleasant if the aircraft will crash only because the
corrupted data were received. It’s crucial that the system will be fault tolerant
and will behave as normal as possible even if some of the components will fail. In
case of fatal failures the system must execute such actions to minimize the loss.

The provided implementation uses the Raspberry Pi, but some other plat-
forms might be used to run the system in the future so the system must be as
portable as possible. This will impact the whole system design. Well designed,
loosely coupled system is surely ported to other platforms more easily than a
tight coupled one.

The testability requirement is necessary, because no one would fly an not
tested flight controller. Because of the modularity and documentation require-
ments, the system should be tested easily. The modules must be loosely coupled
with well documented interfaces.

17

3. Design

In this Chapter we present the design decisions as well as reasons why we have
decided to solve the problems in such fashion.

3.1 Overall System Architecture

Let us begin with a diagram (see Figure 3.1) which shows the high level view of
the system architecture. The solid lines represent the local connections and the
dashed lines the remote connections. Duplex connections have arrows on both
sides, while simplex connections only on one side, on the side of the receiver.

Figure 3.1: High Level View of the System Architecture

The system architecture is implementation dependent. Other implementa-
tions might not need a particular component or might add some others. For
example the Raspilot architecture in the Black Box mode follows the diagram
shown on Figure 3.2 (grayed-out components are missing).

18

Figure 3.2: High Level View of the System Architecture when running in Black
Box mode

3.1.1 Raspberry Pi

The Raspberry Pi hosts and runs the core of the whole system and it is an on-
board device. Reasons why we have decided to use Raspberry Pi are explained
in Section 2.4.4. For comprehension the list of functionalities which Raspberry
deals with follows:

• runs the autopilot system (which uses the Up framework)

• reads sensor data of the Android device

• reads data from the Arduino and sends data from which then the Arduino
generates the PWM pulse for the servos and ESCs

• communicates with the ground station

The exchanged data and connection architecture are described in following Sec-
tions.

3.1.2 Arduino

The drawback of the typical Linux environment is the inability to execute real
time operations. Measuring the time intervals in orders of µs is undoubtedly
time critical. We decided to use Arduino because of the existing community,
documentation and overall support for this platform.

19

The Arduino exchanges data with Raspberry via the Serial connection. This
connection type is easiest to implement. The Serial communication works out of
the box on the Arduino platform, while the other types of the communication
requires modifications and possibly some additional hardware. Therefore, we have
decided to use this communication channel between Arduino and Raspberry Pi.

The Arduino is responsible for:

• reading the PWM output of the RX

• communication with the Raspberry

• generation of the PWM pulses (to control the servos and ESCs)

Communication Protocol Between Arduino and Raspberry

The Serial connection is byte oriented and the communication protocol is message
based. Messages passed in the Up and Raspilot are called Commands. The
message outline is following:

command type|payload

Figure 3.3: Outline of the Message Exchanged Between Arduino and Raspberry

Please note, that the | character is not present in the message.
command type is a single character1. This character specifies the Command

type. Based on the Command type the payload length varies. Some of the
Command types might not have payload at all.

payload is the data packet associated with the Command. For example the
Command which holds the servo angles which should be set, has 4 numbers in
range <1000, 2000>representing the four PWM values of the servos and ESC.

The serial communication protocol is not reliable but we consider the commu-
nication line between Raspberry and Arduino reliable enough that no confirma-
tion mechanisms are used. The only fault tolerance method used is the timeout of
the Command. If whole payload of the Command is not received in the specified
time limit, the whole message is discarded and the system returns to the state
when it awaits a new Command.

Some of the Commands (such as PWM readings) must be sent as often as
possible, but we might overload the Raspberry processing capability. This is
handled by the Panic Mode which is described more in Section 3.2.5.

3.1.3 Android device

Today’s Android phones are equipped with plenty of sensors. For example the
Nexus 5 which is used as a testing device has the following:

• accelerometer and gyroscope

1The consequence of command type being only a single character is that there are only 256
possible Command types (if we include all possible values of a byte type). However, this should
be sufficient. If not, it should be easy to extend the command type to two or more bytes.

20

• GPS

• barometer sensor

• compass

• many other which are not used actively now such as temperature sensor,
proximity sensor, etc.

Some of them (accelerometer, gyroscope, GPS) are necessary and some of them
are great if more precise data (barometric altitude is usually more precise than
GPS altitude) are required.

All of the required sensor data are being forwarded to the Raspberry. Android
device is a source of sensor data which are later processed by the Raspberry.

The sensor data varies in means of update frequency, precision, importance
in the whole process of aircraft stabilization and piloting. For example the GPS
data are updated much less often than the data from accelerometer and gyroscope.
Also it is more acceptable if GPS data are delayed than if the orientation data
would be delayed. Therefore two protocols were designed:

• Orientation Forward Protocol

• General Message Transfer Protocol

We think that it is more robust and easier to use if the two protocols are sep-
arated. The orientation data must be delivered as fast as possible but is strictly
specified how these data are formatted and what they contain. On the other hand
some other data such as the GPS location does not need to be delivered as fast
(but some time limits still apply). Also the Commands might have varying types
of payload, might require confirmation etc. Therefore, we have split the com-
munication between Android and Raspberry between two independent protocols.
Both of these protocols can use the TCP or UDP connection.

Orientation Forward Protocol

The Orientation Forward Protocol handles only one type of Commands - the data
from accelerometer and gyroscope. The Android framework has built-in support
for reading the current orientation of the device as well as reading the rotation
rate around the three axes. The protocol sends six numbers in this order:

1. roll - rotation around the front-to-back axis

2. pitch - rotation around the side-to-side axis

3. yaw - rotation around the vertical axis

4. roll rate - rotation speed around the front-to-back axis

5. pitch rate - rotation speed around the side-to-side axis

6. yaw rate - rotation speed around the vertical axis

21

The Figure 3.4 depicts the roll, pitch and yaw axes of the airplane

Figure 3.4: Illustration of the roll, pitch and yaw

Raspberry receives the orientation data which are then used in the stabiliza-
tion and flight controlling process. The orientation data should be sent as fast
as possible, but we must ensure that the data flow from the Android device will
be not excessive and will not overwhelm the Raspberry. This is handled by the
Panic Mode which is described more in detail in Section 3.2.5.

General Message Transfer Protocol

Besides the orientation data other types of Commands must be also exchanged
such as GPS location updates, the previously mentioned Panic Command, etc.
All of these are sent via the General Message Transfer Protocol.

The speed is not so crucial as in the Orientation Forward Protocol. Therefore
we want the data to be as human readable as possible. In such cases the XML or
the JSON is usually used. XML is more easily read by the humans, but also less
efficient than JSON. Therefore, we have decided to use the JSON format, because
it is more efficient yet still readable. All messages must follow this outline:

{
” id ” : ”unique i d e n t i f i e r o f t h i s Command in s t ance ” ,
”name” : ”unique name determin ig the type o f Command” ,
”data ” : {

\\ can conta in any va l i d JSON ob j e c t
}

}

Figure 3.5: General Message Outline

The field id is used for purposes of the confirmation or replying to Commands.
Might be not set when this is not required.

The name field determines the type of the Command. Based on the value of
this field the data field is parsed and processed. This field must be always set.

22

The data field holds any data which are relevant to this Command type. For
example the GPS location update Command holds the latitude, longitude and
altitude in its data field. Content of this field is very variable and might be not
set at all.

If a malformed message is received it is discarded.

3.1.4 Ground Station

The Ground Station serves as the mission control center. It receives telemetry
and sends various Commands to the aircraft. These Commands might alter the
flight mode (stabilize, return home, etc.), the required altitude, heading etc. In
the Raspilot an Android device is used as a Ground Station, but it might be some
other platform1.

One of the main purposes of the Ground Station is message exchanging. Usu-
ally the telemetry data are received and various Commands are transmitted.
However, the potential delays in message deliveries are not as unacceptable as
in case of orientation data. The communication is transmitted over the cellular
network, therefore it is likely that the data will be delayed for a very long period
of time (in order of hundreds of milliseconds). The connection is obviously un-
available if the mobile phone signal (Ground Station as well as the aircraft uses
the mobile data plan) is lost. Therefore, the system must be able to overcome
these delays and connectivity issues.

The portability requirement must be also taken into account. Therefore a
platform independent communication technique must be used.

Let us summarize the requirements for the communication channel between
Ground Station and the aircraft:

• various Command types

• various payload types depending on the Command type

• delays are acceptable

All of these are implemented in the General Message Transfer Protocol (see Sec-
tion 3.1.3). That is why we have decided to use this protocol also for the com-
munication channel between Ground Station and Raspberry Pi.

3.1.5 RC Receiver and Servos

The RC radio receiver (RX) and the servos are not implemented nor designed
by us. In the Raspilot the RC receiver outputs PWM pulse for each controlled
channel2.

The servos which are usually connected to the receiver, receives the PWM gen-
erated by RX and sets the required angle. However, because of the stabilization
requirements, the servos are connected to the Arduino.

When the stabilization functions are disabled the Arduino only forwards the
read PWM to the servos. If the stabilization functions are enabled, the PWM is

1Another Raspberry Pi is being considered as possible Ground Station platform
2The channel corresponds to one ability of the aircraft. For example the ailerons are one

channel, the elevator is second, gear is third, etc.

23

read and forwarded to Raspberry. The Raspberry calculates the new PWM values
based on the orientation data, received PWM (and possibly other variables) and
sends them to the Arduino. Arduino generates the PWM based on the received
data.

Figure 3.6 shows the flow when the stabilization functions are enabled. In
case when stabilization functions are disabled after step 1 the system continues
with step 6.

Figure 3.6: Flow of the PWM Signal When Stabilization Is Enabled

3.2 Framework Architecture

One of the main goals of this thesis is to design a framework for creating au-
topilot systems. So far we have discussed the overall architecture. But this
architecture, as has been stated, is very implementation dependent. For example
some implementations might use other sensor sources than Android device. The
Up framework must encapsulate these implementation details. In this Section we
will thoroughly discuss the Up framework design and why we have decided to use
the selected approach.

24

3.2.1 High-level View

The Figure 3.7 shows the diagram of the framework’s architecture. View of this
diagram is high-level, more detailed diagrams are shown in the following Sections.

Figure 3.7: High Level View of the Framework Architecture

Modules

The core of the whole Up framework are Modules. Each Module has its own
single function.

For example the RX Provider is a Module. The responsibility of this Module is
to read the RX PWM data and make them available to the rest of the framework.

During the system start-up the Modules are registered within the framework.
The communication between Modules and other components is possible.

There are some special types of Modules which are discussed more in detail
in Section 3.2.2.

Commands

The Commands component consists of three subcomponents which are related
very closely.

The Commands Definition component holds the actions of all available
Commands, which the system can respond to. Upon receiving the Command,
the action defined in this module is executed. Example of such Command might
be the Arm Command. When this Command is received, the engines should be
armed 1.

1When the engines are disarmed, the RX output of the throttle channel is being ignored
and the PWM with frequency of 1000 µs is generated regardless of the RX output value. This

25

The receiving of the Commands is handled by the Commands Receiver com-
ponent. The purpose of this component is to receive the Command, ensure its
validity and forward it to the Command Executor component. Invalid Commands
are discarded.

The Commands Executor receives Commands from the Commands Receiver.
Then it looks for the definition of the Command (in the Commands Definition
component). If the Command is defined, it executes the appropriate action. The
undefined Commands are ignored.

Flight Controller

The Flight Controller is the most complex component responsible for the the
flight control process (such as stabilization, navigation, etc.). In order to do so
it uses many other Modules. The Flight Controller is explained more in Section
3.2.3.

3.2.2 Modules

In this Section we present the Modules component more in detail, especially the
different types of Modules and their purpose in the whole system.

Basic Module Types

The Base Module as the name suggests, is the base of all other Modules. It
does not have a special purpose besides some implementation related matters.
However, it is very important because all other types are derivations of the Base
Module.

The Started Module is an extension of the Base Module. The added func-
tionality is that this Module can be started and stopped.

The initial versions uses the threading model where there was one thread
per Module which turns out to be very inefficient as the number of Modules
rose. Therefore, the concept of Thread Modules were introduced. The Thread
Module is an extension of the Started Module which spawns a thread during its
start. The Thread Modules are used for recurring and blocking tasks in general.

With the presence of Thread Modules the whole system can be single threaded
and only those Modules which needs to perform blocking tasks (such as net-
working) spawns additional threads. The number of Thread Modules should be
limited.

Provider

The Provider Module is responsible for supplying some functionality to other
Modules. The following providers are available:

• RX Provider - provides the RX related data to the rest of the system

• Orientation Provider - provides the orientation data to the rest of the
system

is a safety feature.

26

• Mission Control Provider - provides the connection with the Ground
Station to the rest of the system

• Location Provider - provides the GPS location data to the rest of the
system

• Altitude Provider - provides the altitude of the aircraft to the rest of the
system

• Heading Provider - provider the heading of the aircraft to the rest of the
system

All Providers are extensions of the Started Module.

Controller

The Controller is a special type of Module, which controls some of the other
Modules. They are usually used to execute recurring tasks such as telemetry
transmission. The Controllers manage the Recorder Module generally (presented
in next Section), but control of other Module types is also possible.

The Controllers are extensions of the Thread Module. The Up framework
spawns one Controller per Recorder Module. The number of Recorders should
be limited.

Recorder

Recorders are Modules designed exclusively to capture state of the relevant sys-
tem component. For example the Load Guard Recorder will capture the CPU
utilization. Recorders are used by the Controllers, but also other Modules might
incorporate Recorder in their functionality.

Custom Modules

The preceding Sections present the built-in Modules. However, it is absolutely
necessary to make possible the integration of custom build Modules. Custom
Modules must extend any of the previously mentioned Module type and are reg-
istered during the system start up. Based on the type of the custom Module,
appropriate actions are executed (such as starting the Started Modules etc.).
The custom Modules used in the Raspilot are discussed in Section 3.3.

Summary

Figure 3.8 depicts the relations between the Module types.

27

Figure 3.8: Relations Between Module Types

3.2.3 Flight Controller

As the name suggests the Flight Controller is responsible for the control of the
flight. This includes the data readings, combining, processing and executing
required actions. To do so the Flight Controller uses other components which
has been previously discussed.

The data are read from various Providers. If the stabilization mode should
be available at least Orientation Provider and RX Provider must be available. In
case of the other flight modes such as return home, also Location Provider with
GPS data must be available. Only then the navigation is possible.

Except for these, some other Providers might be required in custom imple-
mentations. The Figure 3.9 depicts the flow of the flight control process (the
dashed Modules are required for some flight modes only).

Figure 3.9: Flow of the Flight Control Process

As can been seen in the Figure, at first the data are integrated in the Flight

28

Controller which processes them and calculates the output which is sent to the
servos.

3.2.4 Up Framework Architecture Summary

This Section states the reason, why this architecture reflects all of the require-
ments which were analyzed in Chapter 2.

The requirements for modularity and extensibility are satisfied with the built-
in Modules and the possibility to implement custom Modules. Also the interop-
erability is satisfied with the ability to create custom Modules. The other non-
functional requirements are more implementation related but the design supports
them.

Each of the functional requirements are covered within the proposed design.
Sensor and RX readings are implemented via the Providers, communication re-
quirements are handled in the Mission Control Provider and Commands Module
and the aircraft control ability is present in the Flight Controller. The Up frame-
work design is clear enough to be expanded easily so other functionalities might
be added in the future.

3.2.5 Panic Mode

Situations when the Raspberry is overloaded might have disastrous outcome. It
is absolutely necessary to minimize possibility of occurrence of such situations.

Tests have shown that the main source of load is the communication. Data
processing and calculations are far less resource demanding. This is the reason
why we introduce the Panic Mode.

When the CPU utilization rises over the specified limit the Panic Mode is
entered. The Command is automatically sent from Raspberry to Android and
Arduino. After receiving this Command both devices must increase the delay
between messages transmissions. The Command also states how long the delay
should be. This ensures the decrease in the network traffic and the lowering of
the CPU utilization. After the utilization drops below a specified limit, the Panic
Mode is disabled, also by sending the Command. After disabling the Panic Mode
the system is in a normal state with normal delays between messages transfers.
Note that the peripheral devices (Android and Arduino) must accept and follow
the specified delay. Only then the Raspberry can ensure the messages are received
as fast as possible and they do not flood the system.

3.3 Raspberry Pi Application Architecture

The Raspilot on the Raspberry Pi adds some custom functionalities to the Up
framework. The Figure 3.10 shows the components which are available in the
Raspberry application.

29

Figure 3.10: Raspberry Pi Application Architecture Overview

The architecture of the Raspberry Pi application is related to the High Level
Architecture (see Figure 3.7) in the following way:

• Custom Recorder, Custom Providers - extends the Modules module

• Commands - extends the Commands module

• Flight Controller - the implementation of the abstract Flight Controller
from the module Flight Controller

• Core - implements the abstract components of the Up framework

3.3.1 Core

Most of the components are implemented as an abstract class with abstract meth-
ods which must be overridden in the specific implementation. With this in mind
we can say the core module contains all the descendants of the required abstract
base classes.

3.3.2 Flight Controller

The Flight Controller is an abstract base class, as has been stated in the previous
Section. The implementation of the flight control uses the PID Controller. We
have decided to use this control algorithm because of its simplicity and wide usage
amongst other autopilot systems. For more details about PID Controller see the
Section 2.3.3. The Figure 3.11 shows the basic process of aircraft attitude control.

30

Figure 3.11: Aircrafts Attitude Control Process

The orientation data and RX PWM values serves as input values for the
PID Controller. PID Controller calculates the output values which are then
transmitted to Arduino which generates the corresponding PWM pulse for the
servos.

The design of the Flight Controller was heavily influenced by the work of Dr.
Gareth Owenson from the University of Portsmouth. His superb explanation on
his web pages provides an excellent starting point [16].

His Flight Controller is based on the Flight Controller from the Ardupilot
(see Section 2.2). His tutorial is for the multirotors and we will adapt it for the
airplanes.

For each controlled channel the Flight Controller uses two PID Controllers.
The first PID Controller is called the Rate PID and the second is called the
Stabilize PID. We will start with explanation of the PID Controller in general,
then we will explain the Rate PID and the Stabilize PID and as the last there is
explanation of the third Navigation PID. The Navigation PID is added as a third
controller to the basic Flight Controller from the tutorial.

PID Controller

Results of the PID Controller analysis have been stated in Section 2.3.3. For
comprehension we state the basic principle of the PID Controller.

The PID (Proportional-Integral-Derivative) controller calculates the output
value based on the current value (called process variable), desired value (called
setpoint) and previous errors. It can be tuned with three parameters: Kp for
the proportional part, Kd for the derivative part and Ki for the integral part.

The PID Controller is implemented as a library for all major languages (such
as Java, Pyton, C/C++) and platforms (including Android, Arduino and Rasp-
berry) therefore, we have decided to use those libraries. In case the Raspilot will
be implemented in a language which does not have a PID Controller library, it
must be adapted from other languages or designed and implemented from scratch.

31

Rate PID

Purpose of the Rate PID is to rotate the aircraft at particular rate based on the
user input.

For example if we move the ailerons transmitter stick, the airplane starts to
rotate. When we move the ailerons stick back to neutral position, the airplane
stops the rotation but will remain in position where we have left it, it will not
level with the horizon. This mode of control is also called Acrobatic Mode. In
this mode the airplane is controlled only by the pilot.

To achieve such behavior the Flight Controller uses the gyroscopes and the
input from the pilot. The Figure 3.12 depicts Rate PID inputs and output.

Figure 3.12: Rate PID

For example, if we want the aircraft to rotate at 15 deg/s and the aircraft is
not rotating, we can model the situation as following:

error = desired− actual

error = 15− 0

error = 15

The error is what the Rate PID calculates as a difference between setpoint (de-
sired) and process variable (actual). Based on this and the previous errors the
Rate PID then gives us output which is used to alter the position of the ser-
vos. If we want the Stabilize mode (sometimes called Fly By Wire) we need to
integrate the Stabilize PID.

Stabilize PID

In the Acrobatic mode the position of the transmitter sticks controls the rotation
rate of the aircraft. In the Stabilize mode the position of the transmitter sticks
sets the desired angle of the airplane.

For example if we move the ailerons stick, the airplane adjusts its roll, but do
not start rotating (it stops the rotation after the desired roll angle is achieved).
When we move the ailerons stick back to neutral position, the aircraft will level. In
this mode the airplane is controlled by the pilot and the Flight Controller
as well.

To achieve the behavior of the Stabilize Mode, the Flight Controller uses the
accelerometers, input from the pilot and the Rate PID. The Figure 3.13 depicts
inputs and output of the Stabilize PID and the Rate PID.

32

Figure 3.13: Stabilize PID

The output of the Stabilize PID gives us the desired rotation rate. This
enters the Rate PID as a setpoint. With the actual rotation rate the Rate PID
gives us output which is used to alter the position of the servos.

With this setup the Raspilot is able to level the aircraft and implement the
Stabilize Mode.

Navigation PID

With previous two PID Controllers the Raspilot is able to level the aircraft. If
we want the Raspilot to be able to navigate the aircraft, we have to add another
PID Controller. This PID Controller takes as setpoint the desired heading.
Current heading is the process variable. The output of the PID Controller is
used to determine the required change of the aircraft’s heading in order to reach
the desired location.

The desired heading is calculated based on the current GPS location and the
destination GPS location. Current heading is read from the magnetometer of
the Android device. With these inputs the Navigation PID outputs the required
change of the yaw angle. This enters the Stabilize PID. In this mode, which
is called the Navigation Mode, the aircraft is controlled only by the Flight
Controller.

The Figure 3.14 depicts the inputs and the output of the Navigation PID,
Stabilize PID and the Rate PID.

Figure 3.14: Navigation PID

3.3.3 Custom Providers

Besides the standard providers defined in the Up framework (see the Section
3.2.2 for more information) the implementation requires some custom Providers
as well. The following Sections present them more in depth.

33

Discovery Provider

Raspberry Pi and Android are connected together via a TCP/IP network. The
IP address of the Raspberry Pi is dynamic. Therefore a discovery mechanism
must be available.

Android device broadcasts the UDP packet. The application on Raspberry
will receive this packet and responds with message containing its address. This
message is send via UDP unicast to the Android. The Android device now knows
the IP address of the Raspberry and can connect via TCP.

The receive and reply part of this protocol are handled by the Discovery
Provider on the side of the Raspberry. Note that the Discovery Provider is
meaningless when the system is run in the Black Box mode because the address of
the server is always known. Furthermore the UDP packets will not be functional
because of the cellular network restrictions.

Android Provider

The Android Provider manages the communication channel with the Android
device. This provider implements General Transfer Message Protocol and Orien-
tation Forward Protocol as well. This is achieved by managing two sockets. The
sockets might be TCP or UDP (Black Box mode requires TCP, Flight Controller
mode might prefer UDP).

Let the socket implementing the Orientation Forward Protocol be named Ori-
entation Socket. The other socket will be named General Socket.

Data received through Orientation Socket are forwarded to the Orientation
Provider which processes them. In the Raspilot the communication between
Orientation Provider and Android Provider is quite busy. Also the Orientation
Provider depends on the Android Provider which serves as a data source in this
case.

Messages received through the General Socket are forwarded to the Commands
Receiver which processes them. For example the Location Provider registers a
custom Command. The action of this Command invokes method of Location
Provider which sets the received latitude, longitude and other data and makes
them available to the rest of the system.

Android Battery Level Provider

Simple provider which serves the purpose to obtain the battery level of the An-
droid device. This battery level is then present in the telemetry updates.

Arduino Provider

The Arduino Provider maintains the Serial communication channel with the Ar-
duino. The communication protocol is discussed more in detail in Section 3.1.2.

RX Provider

As in case of the Location Provider the RX Provider is designed in a very sim-
ilar fashion. Arduino Provider receives RX data and forwards them to the RX
provider.

34

3.3.4 Custom Recorders

The Recorders in Up are also implemented as an abstract classes which must be
sub-classed. The Raspilot incorporates three types of Recorders.

The Black Box Recorder and Telemetry Recorder are used to period-
ically record the state of the whole system. Data from the Black Box Recorder
are being saved locally on the Raspberry while the data from Telemetry Recorder
are transmitted via Mission Control Provider. These two are separated despite
their very similar functionality. The telemetry may lack some information which
is not so important (to save the network traffic) but on the other hand, the local
storing of this information might be helpful for additional reviews.

Load Guard Recorder periodically checks the CPU utilization. If the CPU
utilization is higher than the specified limit, the Panic Mode is enabled (for more
information see Section 3.2.5).

3.3.5 Commands

Besides Commands defined by the Up framework the Raspilot adds some custom
Commands.

Android Battery Command is sent from the on-board Android and con-
tains information about current battery level of the device. This is necessary
because if the Android battery will discharge, orientation data, GPS, network
connection will be lost which is a fatal issue for the system. Action of this Com-
mand sets the value of the Android Battery Provider.

Location Update Command contains the data from GPS such as latitude,
longitude and altitude.

System State Command holds the data about the system state such as the
utilization, available providers, whether is Arduino connected etc.

The Telemetry Update Command which holds all of the telemetry data
sent to the Ground Station. Update contains the following:

• orientation data

• location data

• current system status (utilization, battery level, whether Panic Mode is
enabled etc.)

This Command is transmitted every 100ms, but the delay might be altered after
testing. 100ms delay will be probably too long and will be lowered.

The PID Tunings Command which holds all of the PID tunings parameters
is sent from the Ground Station. Command contains the following:

• Kp, Ki and Kd for Rate, Stabilize and Navigation PID for all controlled
channels

3.3.6 Automated Load of the Modules

One of the features of the Up framework is the automated loading of Modules,
Recorders and Flight Controller. During the startup of the Raspilot all Modules,

35

Recorders and Flight Controller are automatically loaded integrated and regis-
tered within the system. To do so the directory structure must be defined. The
following Figure illustrates the directory structure which must be followed:

<ROOTFOLDER>
f l i g h t c o n t r o l l e r / # conta in s the F l i gh t Con t r o l l e r
modules/ # conta in s custom Modules
r e c o rd e r s / # conta in s custom Recorders
commands/ # conta in s custom Commands and

Command Handlers

. . . o ther custom f i l e s and f o l d e r s . . .

Figure 3.15: Folder Structure

Names of the folders wrapped in <> are not defined and can be set by user.
However, the folders modules, recorders and flight controller must have
exactly these names as they are further processed by the Automated Load feature.

The Module is handled depending on the superclass which it extends (for
example if the Module extends the Mission Control Provider it will be registered
as Mission Control Provider).

The Automated Load feature simplifies the startup, Modules instantiation
and registration process. This feature also makes the following possible: if a new
Module is implemented there is no need to alter the rest of the system, the author
just puts the Module in the modules folder and the Module is automatically
integrated into the system.

This however implies some limitations. For example, all Modules must have
unified constructors. But these are rather implementation problems. It is cer-
tainly possible to implement such feature because there are systems which use a
kind of autoload1. On the other hand it brings some sort of organization to the
system structure which increases the overall simplicity.

3.4 Server Application Architecture

One of the requirements was for the ability to run in the Black Box mode. The
Black Box mode was presented more in detail in Section 2.4.7. The main idea of
the Black Box mode is to reduce the number of on board components in exchange
for the cost of reduced functionality. This is achieved by removing the Raspberry
Pi and Arduino from the aircraft. Only the Android device is present on board
in this mode.

The main purpose of the Up framework is to create autopilot solutions not
telemetry systems. So this might look like a different problem which should not
be considered when designing this framework. However, we consider the required

1For example the framework for creating the web applications - Ruby on Rails. This frame-
work has very strictly defined folder structure and the models, controllers, view etc. are being
searched for in the specified folder. If the user misplaced the source of some component, the
system will not find it.

36

changes small and easy to implement. In fact the framework is not changed at
all. The general idea is following: run the same application which is run on the
Raspberry but in some special mode.

The Figure 3.16 depicts a high level view of the server application architecture.

Figure 3.16: Overview of the Server Application Architecture

The Raspberry Application module contains the Raspberry Application - the
Raspilot.

The Up framework itself was not designed to run for a very long periods of
time 1. For example the application produces large amount of logs (which are
necessary because of testing, debugging etc.) which might be large enough to
cause some sort of problems on the server. The design of the Up framework
should not be changed, therefore the Runner component was created.

The function of the Runner is to spawn the application instances when re-
quested. The process of application spawn is following:

1. the spawn request is received

2. if the application is already spawned, do nothing, just respond

3. if the application is not spawned, spawn the application and respond with
the result of the spawn process

4. monitor the status of the application

Note that the Runner must be always listening for the spawn requests.
When the application should be started in Black Box mode, the airborne

Android will at first send a spawn request and upon receiving the successful
response, connects to the application. Besides the spawn process, everything
works as in the Flight Controller mode. The only exception is that some of the
Modules such as Arduino Provider (see 3.3.3) are not being instantiated.

3.5 Android Application Architecture

The Android Application is much more constrained than the Raspberry Pi Ap-
plication, because it must comply with the architecture of the Android frame-
work. On the other hand it should be as modifiable as possible. The following
Sections will discuss the basic building blocks of the Android framework. Then
the architecture of the application run on Android devices is presented.

1Orders of hours are not considered long periods of time, but weeks surely are.

37

3.5.1 Basic Components of the Android Framework

In this section we will discuss the basic components of the Android framework.
The extensive analysis of the Android framework is not interesting in context of
this thesis and will not be discussed here.

Activity

The Activity [17] is a single, focused thing that user can do. For example in our
context, the screen with telemetry will be an Activity.

The Activity does not only render the user interface (UI) and interacts with
the user, but can also start background services (see following Sections), manage
connections to the database, etc. Everything what is done in the Activity is exe-
cuted on the UI thread. This should be considered in case of blocking operations
such as network communication.

Fragment

The Fragment [18] represents a certain functionality of the Activity. The Activity
can contain more fragments. We can think of the Fragment as a Subactivity. In
our context the Telemetry Activity might contain two Fragments: one which will
display the position of the aircraft on a map, and second which will display a list
with telemetry data.

The Fragment can also start background services, access database, etc. The
advantage of the Fragments is the ability to reuse them.

For example a small mobile phone screen cannot display large map and the
telemetry data at the same time. However, on the larger screen of a tablet this
might be possible. Without fragments, we have to implement multiple activities,
some for the smaller screens and some for the larger screens. If we use the
Fragments, the change is done much more easily. The Activity on the smaller
screen displays only one fragment at the time, while on the larger screen it displays
them both.

As with the Activities, the Fragments also executes their methods on the UI
thread.

Service

The Android framework offers multiple tools to implement the background tasks.
Depending on what we need, we can use the Service [19] or Intent Service [20].

The Service does not have a Graphical User Interface and usually does not
interact with the user. The Service is useful for example to obtain the GPS
coordinates of the device, to read the sensors, communicate with remote server,
etc. The Service also executes all its methods on the UI thread, however we can
start a new thread1 which can handle the blocking tasks.

The Service can be bound or started. The bound Service lives till at least
one component (usually a Fragment or Activity, but also other Service) is bound.
When the number of bound components reaches 0, the Service is destroyed. We

1The Activity can also start thread, it is more of a design choice to start them in dedicated
Service than to start them in Activity.

38

can use this for example to receive the telemetry on the ground device. The
Fragment which displays the telemetry bounds the telemetry Service when it is
started, and unbounds when it is destroyed. It makes no sense to receive telemetry
if there is nothing which will present it.

The started Service must be explicitly started and stopped. If we start the
Service, it will live till it is explicitly stopped. This can be used for example
for Service, which reads the sensors. We want to send the sensor data even if
the application is in background, or the device is locked. The component which
starts the Service (usually a Fragment or Activity) can differ from the component
which stops the Service (the Service can also stops itself). The started Service
can be also bound. In case of the started service even if the number of bound
components reaches 0, the Service is not destroyed.

The Intent Service is a special case of a Service. We can think of it as a
work queue processor. It receives the requests from other components (usually a
Fragment or Activity) and processes them. All requests are handled in a single
worker thread, which differs from the UI thread. The difference between Service
and Intent Service is that the Intent Service executes its task, and dies. The
Service lives till it is stopped or no one is bound. Therefore, the Intent Service
is suitable for tasks such as downloading files, or for example spawning the Up
Application on the remote server.

3.5.2 Up Library for Android

The Up Library for Android adapts several patters from the Up framework. The
Commands and Commands Executor are present also in the Up Library. The
pattern of Commands is used for communication between airborne devices and
between the ground device and Raspberry as well.

Beside the Commands, we need to read the sensors, pass the sensor read-
ings to Raspberry Application and execute Commands incoming from Raspberry
Application.

To make the exchange of Commands between airborne devices possible we
need the following:

• an Android Service which connects to the Raspberry Application

• the Android Provider (see Section 3.3.3) running on the Raspberry

With this setup we are able to exchange the Commands between the airborne
Android device and Raspberry Pi. This is contained in the Communication
Module, which administer this task. This module has also one another purpose.
It handles the communication between the ground device and the Raspberry as
well.

Sensor Readings

Let us consider a situation when we want to calculate the altitude from the
barometric pressure sensor of the Android device. We need to read the data,
possibly process them, and transmit them to the Raspberry Pi. This can be
encapsulated into a single module, let us call it the Altitude Provider.

39

The flow is identical for all sensor types. What differs is the reading process,
type of read data and how the raw data are being processed. Let us call the
module which reads some sensor and transmits processed data the Provider.

We need to create a flexible way of registering and managing the Providers.
This is contained in the Providers Controller Module.

The following figure depicts the overview of the architecture of the Up Library
for Android:

Figure 3.17: Overview of the Up Library for Android

3.6 Arduino Application Architecture

The Arduino Application should be also designed in such manner it can be modi-
fied easily. Many of the concepts are inspired by the design of the Up framework.
The Figure 3.18 shows the overview of the Arduino application architecture.

Figure 3.18: Overview of the Arduino Application Architecture

Commands

All of the three subcomponents have the same function as the same components
in the Up framework. See Section 3.2 for more information.

Commands Definition component contains the definitions of recognized Com-
mands, their payload size and action which should be executed after receiving of
such Commands.

40

Commands Receiver is responsible for receiving, validation and correct iden-
tification of the transmitted Commands.

Available Commands

For clear idea we list some of the available Commands in the table 3.1.

Name Payload Data Effect Target
Start – enables the application1 Arduino
Arm – enables the motors Arduino

Disarm – disables the motors Arduino

Panic new delay
sets the delay between

Arduino
message transmissions

Output positions for 4 channels sets the required positions Arduino
Forward PWM of all channels transfers the data to RPi Raspberry

Table 3.1: Commands Exchanged Between Arduino and Raspberry

Command Executer receives valid Commands from the Commands Receiver
and executes them.

RX Forwarder

This component is responsible for reading the PWM (possibly otherwise encoded)
information from the RX. This is the main reason why Arduino must be present in
the system as the Raspberry cannot handle this responsibly. For more information
about PWM pulses refer to Section 2.4.1. After reading all channels the data are
transfered to the Raspberry via a Command.

Servo Controller

The responsibility of this module is to control the servos’ positions and motors’
speed as required. The input originates from the Flight Controller Module on
Raspberry. After receiving the specific Command the corresponding PWM pulses
are generated.

41

4. Implementation

This Chapter discusses the implementation of the all required software and is
divided into six Sections which covers the following topics:

1. the Up framework implementation

2. the Raspilot application implementation

3. the Arduino application implementation

4. the Android application implementation

5. the Server application implementation

6. the hardware components

The Installation Guides for all components are available in the Attachment 1.

4.1 Up Framework

The Section Up framework discusses the implementation of the framework. It
covers the following topics:

• the necessary technical details

• the differences between design and implementation

• the details of the process of system startup

• the details of communication between components are discussed

• the abstract Flight Controller

4.1.1 Technical Details

The Up framework is the core of the whole autopilot system. In the Section
2.4.4 we have discussed why the Up framework will be hosted on the Raspberry
Pi. This has affected the choice of the programming language and other related
technologies as well.

One of the purposes of this system is to be extensible and modifiable. There-
fore the programming language should be well known. On the other hand the
Raspberry Pi is powered by the processor with the ARM architecture [15].
Therefore, the language must have support for the ARM processors. The follow-
ing choices are the most relevant:

• Java - very resource hungry, managed

• C/C++ - consumes less resources than Java, not managed

• Python - managed, adequately resource demanding

The Raspberry Pi itself is short on memory and we cannot afford to waste any.
Therefore we have decided not to use Java. The following two choices are more
of a personal choice. Because the time critical operations will be run on the
Arduino, we have decided to select the Python.

42

4.1.2 Design Modifications

There are few design modifications which needs to be made.
The Recorders and Controllers have been dropped. The tests have shown

they are in fact a sort of Thread Module. The design specifies, that the Controller
will periodically invokes the Recorder. However, this is in fact exactly how Thread
Modules operates. They spawns a thread in which a blocking or recurring tasks
are being executed. Therefore the Recorders and Controllers have been removed
in favor of the Thread Modules.

As a consequence of Recorders removal, the telemetry system has been also
changed. The Up now contains a built-in Thread Module, which periodically
asks all other Modules for their telemetry data. Then the telemetry data of all
Modules is merged in transmitted to the Ground Station.

Each Module should return a dictionary with following format:

{
” arduino ” : {

” connected ” : True ,
. . . o ther data . . .

}
}

Figure 4.1: Module Telemetry Data Example

In this example the root object contains one key - arduino. Let us call this
key the module key. This key will be merged into the resulting telemetry message.
It is possible for more Modules to write their data under the same module key.
For example if another Module responds with telemetry data with module key
arduino and this key will hold a key delay with value 150, the resulting telemetry
message will look as following:

{
” arduino ” : {

” connected ” : True ,
” de lay ” : 150 ,
. . . o ther data . . .

}
}

Figure 4.2: Resulting Telemetry with More Modules Under Same Module Key

The telemetry data from Modules are being deeply merged into the resulting
telemetry message. In case of an conflict (there are two different values under
same key, and this key is not a dictionary) an Exception is risen.

4.1.3 Startup and Initialization

The startup is quite complex process. The following must be executed:

43

• discover and instantiate all Modules

• initialize the Modules

• startup the Modules

Modules Discovery and Automated Load

The task to discover and load Modules is handled by the UpLoader class. Its
responsibility is to discover relevant Modules, instantiate them and give them
to the Up framework which will integrate them into the whole autopilot solu-
tion. This implies some requirements on the directory structure which has been
discussed in Section 3.3.6. The UpLoader does the following:

• scans the files in the relevant directories

• loads the Modules from these files

• creates instance of the Up which can use the discovered Modules

Initialization and Startup

Once the Up Loader loads the Modules, the whole system enters the initializa-
tion phase. During this phase the Modules should execute required initialization
tasks such as checking the environment (for example whether the Internet con-
nection is available, obtaining reference to other Modules) etc. They should not
carry out tasks such as opening the sockets. The initialization phase can be
considered as a primary configuration phase.

Once the initialization phase is completed, the system enters the startup
phase. During this phase the Modules are ordered to execute all necessary
startup tasks such as opening the sockets, establishing connections etc. Each
Module must report whether its startup has been successful or not and if not,
whether the system should continue in the startup process. For example if the
Arduino Provider which creates a bridge between the Raspberry Pi and Arduino,
fails to start up, the system might continue, although in a Black Box mode. In
Black Box mode the flight controlling abilities are not available and the system
only serves for telemetry transmission purposes. If the Android Provider (sim-
ilarly as Arduino Provider, it creates a bridge between the Raspberry Pi and
Android) also fails to start, the system should not continue. It is already in the
Black Box mode (due to the failed startup of the Arduino Provider) and without
Android Provider there is no telemetry data source.

After the startup phase is completed the system enters the regular run mode.
What tasks Modules perform during the phases is dependent on their purpose
and implementation. Refer to the Section 4.2.3 for more information.

4.1.4 Intra-framework Communication

The intra-framework communication is very closely related to the Commands
component from the design. See the Section 3.2.1 for more information.

We can describe the overall pattern of the intra-framework communication as
following:

44

• read the data sources

• publish read data - send them as a Command

• deliver the Commands to the parts of the system which are interested in
them

• let these parts carry out their tasks - execute the Command

After the previous statements it is of no surprise we have chosen the publish-
subscribe model as the core model for the communication inside the framework.

For better understanding, an example of such communication pattern in con-
text of Up follows:

• the Flight Controller registers for the GPS updates

• the Location Provider receives the new GPS location (from the Android
device)

• after receiving the new GPS location the Location Provider publishes the
location

• after publishing the GPS location the Flight Controller receives the up-
date and carry out the requested operations (for example change the
heading of the airplane)

Figure 4.3 depicts the previous example in form of a diagram.

45

Figure 4.3: Intra-framework Communication Example

The previous example illustrates problems which must be solved:

• how to subscribe for particular updates

• how are the types of updates distinguished

• how to execute actions upon receiving of an update

The following Sections discuss these questions.

The Publish-Subscribe Bus

The idea of the publish subscribe bus is following: The senders of messages (pub-
lishers) sends the identifiable1 messages to the bus. The receivers (subscribers)
subscribe for particular message types and the bus is responsible for deliver-
ing all of the requested messages. The abstract idea of the publish-subscribe

1It must be possible to distinguish between different message types.

46

bus must be transformed into concrete implementation. This is handled by the
CommandReceiver and CommandExecutor classes. Both of these are started dur-
ing the start of the framework. Please not that the messages are called Commands
in the Up.

Classes which have direct control over communication channels forward the
messages to the Command Receiver. The Command Receiver can transform
the data if necessary and invokes the Command Executor which executes the
appropriate action. The idea of Command Receiver is to serve as a mediator.
Currently this isnot used but might be in the future versions.

Subscribing and Publishing

All classes can subscribe and publish to the bus1. Usually the classes should
subscribe during their initialization, but this is not mandatory. Classes subscribe
for messages by specifying the Command and the the action.

Upon subscribing the unique Handler identifier is returned2 and must be
stored. Purpose of this identifier is explained in the following paragraphs.

The Commands are distinguished by unique Command idetifiers3. Speci-
fying and setting the action is explained in the following paragraphs. Once the
Command is received, the Command Receiver invokes the Command Executor
which executes the particular action.

Setting the action is achieved by providing an instance of a Command Han-
dler class which is derived from the BaseCommandHandler class (to ensure it has
the required method). The Command Executor invokes the run action method
of this class. This method contains the parameter which holds the received Com-
mand. The method should execute all the actions required to execute the required
Command.

It must be possible to register and unregister more subscribers for the given
Command. Thus the unique Handler identifier is returned after the subscrip-
tion to ensure the correctness of the unregister process. When unregistering, the
class must provide the unique identifier issued during the subscription.

4.1.5 Telemetry

In order to transmit a telemetry update following tasks must be executed:

1. obtain the telemetry data of the aircraft (discussed in Section 4.1.2)

2. create a special Telemetry Update Command (see Table 4.1 for more infor-
mation)

3. deliver this Command to the Ground Station

The Telemetry Controller Module which is responsible for obtaining the telemetry
data invokes the transmit telemetry method of the Base Mission Control

1In future versions a permissions system required.
2Up uses the UUID - Universally Unique Identifier as a unique Handler identifier. UUID

generator is part of the Python.
3For example the identifier of the location update Command has identifier

up.location.update.

47

Module. This Module manages the communication channel between the airborne
and ground devices.

However, the Up does not specify how the data should be transferred, therefore
it is up to the custom application to define how the data are delivered.

4.2 Raspberry Pi Application

In this Section we will discuss the details of the Raspberry Pi portion of the
Raspilot and we will focus mainly on the details of implementation of the abstract
parts of the Up framework as well as custom Modules, and Flight Controller.

4.2.1 Technical Details

Because the Raspberry Pi application is build on top of the Up framework it uses
the same language as the framework which is the Python.

4.2.2 Design Modifications

As well as the Up, the Raspilot has also undergone some design changes.
The most significant one is related to the Flight Controller and the orientation

source. The first versions uses the Android device as a source of the orientation
data, which turns out to be not powerful enough. The later versions uses the dedi-
cated hardware component (see the Section 4.4.5 for more information) connected
to Arduino for this purpose.

Similarly the Flight Controller was initially present on the Raspberry Pi, but
the latency between reading the orientation data, processing them and executing
required actions was very long. Therefore, in the latest version, (in the time of
writing this thesis) the Flight Controller is hosted on the Arduino. The reaction
times to alter the attitude of the airplane are significantly lower.

On the other hand, the GPS must travel from the source (Android) via the
Raspberry Pi to the Arduino in this setup. The frequency of the GPS updates
is much slower than the frequency of orientation updates, therefore this flow is
acceptable.

We consider the ability to move the functionality (such as the mentioned Flight
Controller) freely as a proof of concept of the Up framework (more precisely of
the ability of the framework to be extended and changed).

Another significant change are the plug-in modules which are discussed more
in detail in the Section 4.3.

4.2.3 Modules

In this Sections the implementation of the custom Modules is discussed more in
detail. Refer to the Section 3.3.3 and later for more information about design of
these Modules.

48

Arduino Provider

The Arduino Provider is a custom Thread Module. This Module creates a
bridge between the Arduino and Raspberry. One of the important respon-
sibilities of this Module is handling the Serial line between Arduino and the
Raspberry. All communication between these platforms must be transmitted via
this provider (to avoid conflicts).

The Arduino Provider uses the Command Receiver and the Command Ex-
ecutor quite extensively. For example the Arduino Provider cooperates with the
Orientation Provider in the following way:

• Arduino reads the orientation and sends it via the Serial line

• the Arduino Provider reads the received data

• based on the Command type (see 3.1.2 for more information) the Arduino
Provider distinguish between types of received data and creates a
Command from these data

• Arduino Provider forwards the received Command to the Command
Receiver

• Command Receiver invokes the Command Executor and because the Ori-
entation Provider has registered for this type of Commands, it receives
the Command and can update the orientation

In the other direction, the other Modules uses the methods of the Arduino
Provider to send the data to the Arduino. The Figure 4.4 depicts the flow of
the orientation data from the Arduino the Orientation Provider.

Figure 4.4: Flow of the Orientation Data From Arduino To Orientation Provider

49

For more information about processing the received data from the Raspberry
Pi on the Arduino refer to the Section 4.4.3.

Android Provider

The Android Provider is quite similar to the Arduino Provider. Its purpose is
to create a bridge, but in this case between the Android and Raspberry. As
well as in case of the Arduino Provider it handles the connection channel and all
communication between these platforms should go through this provider.

The Android and Raspberry are connected via the USB Tethering function
of the Android devices. This function creates an TCP/IP network between the
platforms. Therefore the network sockets are used for communication. This
provider uses the General Message Protocol which has been presented in the
Section 3.1.3 and the Orientation Forward Protocol as well (details about
this protocol can be found in the Section 3.1.3).

The Android Provider tries to restore the connection if the connection has
been lost. Connection drops are not anticipated when the Android and Raspberry
are both on board, but in case of the Black Box mode the connection drops can
be quite frequent. Especially in places with bad signal coverage.

Orientation and RX Providers

The Orientation Provider (see Section 3.2.2 for more information) makes the
attitude of the airplane available to the rest of the framework. This provider went
through many implementation changes. The Section 4.2.2 presents more details
about the differences in this provider amongst the versions the Raspilot. The
latest version (in the time of writing this thesis) uses the Android and Arduino
Provider as a source of data.

If the Raspilot is in the Black Box mode then the orientation is read from the
Android device via the Android Provider. The flow in this situation is following
and uses the Orientation Forward Protocol:

1. Android reads the sensors

2. read data are sent to the Raspilot (run on a remote server) via the Internet

3. the Android Provider receives the data

4. special Orientation Command is created from the received data

5. the Command is sent via the Command Receiver and processed in Com-
mand Executor

6. Orientation Provider receives the new orientation (it is subscribed for
the Orientation Update Command)

7. based on the received Command, the orientation in the Orientation Provider
is set

This example shows an important pattern in the Raspilot: one Provider can be
source of the data for the another Provider. In fact the Providers can be organized
into a hierarchical structure.

50

If the Raspilot is in the Flight Controller Mode then the orientation is
provided by the Arduino. The Android device does not produce orientation data
in this mode. The flow is very similar to the previous one:

1. Arduino reads the orientation

2. orientation data are sent over the Serial line

3. Arduino Provider receives and processes the data

4. new Orientation Command is created and broadcasted

Here we can observe another possibility of the framework. Without changing
anything in the Orientation Provider, the orientation data can originate from
multiple sources. In fact it is possible to use the Android device in this mode as a
redundancy component. However, the Raspilot currently does not utilize this.

The RX Provider is another example of the Provider which data source
is another Provider. The RX Provider makes the RC receiver output available
to the rest of the system. To do so the Arduino must read the PWM pulses,
send them via the Serial line, the Arduino Provider reads and processes the data,
creates a special Command and publishes this Command. RX Provider receives
the Command and updates its data. For more information about how the PWM
signal is read by the Arduino refer to the Section 4.4.4.

Mission Control Provider

The purpose of the Mission Control Provider is to create and manage commu-
nication channel between ground device and the Raspberry. Mission Control
Provider connects to the proxy server via the Internet. This Provider utilizes the
General Message Transfer Protocol. The Mission Control Provider is also
responsible for transmitting of the telemetry updates and receiving Commands
from the ground device. The Up framework contains abstract base class, the
BaseMissionControlProvider, which should be extended when creating custom
Mission Control Provider.

Other Custom Modules

In this Section the custom Modules are presented more in detail.
The Android Battery Provider serves as a source of information about

the battery level in the Android device. This information is crucial because
without the Android device, the Raspilot will loose the Internet connectivity
or the telemetry data source (if the Raspilot is being run in Blackbox mode).
Information about the battery level is also contained in the telemetry updates.
Data are passed via the Android Provider similarly as in the case of the orientation
data.

The Discovery Service is in fact also a Provider. Its purpose is to reply to
discovery requests made by the Android device when connecting to the Raspilot
in the Flight Controller Mode. Communication between this Provider and the
Android devices is based on broadcasting of the UDP packets. Refer to the Section
3.3.3 for more information about design of this Module.

51

4.2.4 Commands and Command Handlers

The Commands and their Handlers are very important part of the Raspilot. As
has been shown in the Section 4.2.3 the Commands does not serve only as a
controlling mechanism but also as a mechanism of communication.

For each Command there must be a Command Handler. The Command
Handler executes the action after the Command is received. For more information
about the Commands, their Handlers and intra-framework communication refer
to the Section 4.1.4.

The Table 4.1 lists the Commands which are recognized by the Raspilot:

Name Source Action
Android Battery Android1 sets the current battery

level for the Android Bat-
tery Provider

Location Update Android1 sets the current GPS lo-
cation for the Location
Provider

Orientation Arduino1 sets the current orienta-
tion for the Orientation
Provider

Panic Load Guard enables or disables the
Panic Mode

RX Update Arduino1 sets the current PWM
readings for the RX
Provider

Telemetry Update System State Recorder used to transmit the
telemetry

Telemetry Frequency Mission Control used to alter frequency of
telemetry updates

PID Gains Mission Control used to alter the gains of
PID Controllers (see Sec-
tion 4.4.6 for more infor-
mation)

Table 4.1: The Raspilot Commands

4.3 Plug-in Modules

During the development a simple problem has been encountered several times:
What should be a part of the framework and what should be left upon the custom
applications?

If we place everything in the Up, then the Raspilot will be very lightweight.
On the other hand, the Up will become harder to maintain and will contain large

1If the source is noted as Arduino or Android in fact it means the Command originates
form the Android or Arduino Provider which creates the Command based on the received data.

52

amount of code, which will be very specific and the majority of users will not
use it. Such large framework will also require more hardware resources (such as
CPU, RAM, disk space, etc.).

Therefore we have selected the following approach:

• the Up framework will be as lightweight as possible and will contain only
functions which are anticipated to be used in majority of use cases

• the functions which are somehow specific (for example the communication
over the Serial) but are anticipated to be used by many users, will be packed
into the plug-in modules, which can be integrated into the Up framework

• specific functions which are not present in the plug-in modules will be im-
plemented by the custom applications

In the Up framework the plug-in modules are being called the Cogs. This ap-
proach rises several questions which must be answered:

1. How to distribute and install the Cogs?

2. How to integrate the Cog into the Up framework?

3. How does the custom application specify which Cogs are required?

4. How to handle dependencies of Cogs?

The answers for these questions are presented in the next Sections.

4.3.1 Distribution and Installation of Cogs

The Up framework is written in Python. Python language itself has many li-
braries. These libraries can be installed in several ways. Most used ways are:

• installation from source using the Setuptools [21]

• installation from the the Python Package Index [22]

If properly designed, the Cog can be handled as an ordinary Python library.
We could use the Python utilities and mechanisms of library handling, which
includes package managers, dependencies handling, etc. The ways how Python
processes the libraries are not important in context of this thesis and will not be
discussed here.

4.3.2 Cogs Integration

Custom Modules uses the Automated Load feature to be discovered and loaded
during the startup phase. However, the Automated Load requires a defined di-
rectory structure. Because Cogs are installed as libraries, the required directory
structure cannot be ensured, and therefore the Automated Load cannot be used
to discover the Modules defined in the Cog. Some other mechanism must be
implemented.

The general idea of Cog integration is following:

53

• user downloads and installs the required Cog

• within the context of the custom application user registers the Cog

• from now on, the Cog is properly integrated into the Up, which means,
all Modules will be discovered and loaded during startup, all classes can be
instantiated, etc.

To meet these requirements, each Cog must fulfill the following:

• it must contain the registered modules.yml file (discussed in the next
paragraph), it specifies which Modules should be loaded by the Automated
Load

• it must contain the Registrant class (discussed later)

• it may define custom Modules, Commands, Handlers, etc.

The Cog must contain an enumeration of Modules which should be loaded
with the Automated Load. To create this we can use the Automated Load.

The Automated Load must at first discover all the Modules which are then
processed. The output of the Modules discovery can be used to create the required
enumeration. This enumeration is then written into the registered
modules.yml file and packed into the Cog’s distribution. This file is then later
used by the Registrant class during Cog integration.

Now we will discuss how to integrate the Cog into any custom application
which uses the Up. This uses the previously mentioned Registrant class and
the registered modules.yml file. The Registrant is responsible for:

• integrating all required Modules within the context of the custom applica-
tion (so they will be discovered and loaded during startup)

• creating all required configuration and data files which the Cog requires

When the user wishes to integrate a Cog into custom application, the following
flow is applicable:

• user specifies the name of the Cog and runs the Cog Integration Utili-
ties1

• the Cog Integration Utilities instantiate and invoke the Registrant class
of the Cog

• the Registrant class writes the Modules which should be loaded by the
Automated Load into the proper configuration file of the custom application
- external modules.yml

• the Registrant class creates all the configuration files, data files, etc.
required by the Cog

1Cog Integration Utilities are a set of utilities which eases the process of Cog integration,
installation, etc.

54

After these steps, the Cog is properly integrated and the custom application
can use it.

To make possible for the Cog Integration Utilities to instantiate the Registrant
it must be present in the root Python module of the Cog. For example if we
have a Cog with name Foo, then it must have the following structure:

f oo cog /
i n i t . py

r e g i s t r a r . py
r eg i s t e r ed modu l e s . yml
modules/
commands/
. . .

The registrar.py file contains a definition of a valid Python class Registrant.
This class extends the UpRegistrant base class which defines the required meth-
ods. These requirements make it possible to load the Registrant class from any
custom created Cog.

Functions of the Registrant Classes

The Registrant reads the packed required modules.yml file (containing enumer-
ation of Modules which should be automatically loaded) and writes its content
(in proper format) into the external modules.yml file (present in the root of
the custom application) and creates the required configuration scripts, data files,
etc1.

The external modules.yml file specifies all Modules from all Cogs required
by the application which should be loaded by the Automated Load. This file
should not be edited by users. The answer for question How to specify required
Cogs? is presented in the next paragraphs.

The Automated Load reads the external modules.yml file and loads all of
the Modules specified in it. This enables the Up to integrate and load the Modules
of any custom build Cog.

Specifying Required Cogs

The last question which must be answered is how to specify Cogs which the cus-
tom application depends on. The external modules.yml file contains Modules
which should be loaded by the Automated Load. However, the Up anticipates
that all of this Modules can be imported. If the Module cannot be imported (for
example the Cogs which contains the Module is not installed), it results in an
exception. For that reason we have decided to install the Cogfile.yml file.

The Cogfile.yml file specifies which Cogs are required by the application.
User can run the Cog Integration Utilities which will process this file and install
all of the missing Cogs.

With this approach we can solve situations like:

• install custom application with all required Cogs

1One can think of the Registrant as a post-installation script.

55

• the application adds/removes some Cog dependencies (newer version of
the application updates the Cogfile, user runs the Cog Integration Utili-
ties which will install and integrate the missing cogs)

One can think of the Cogfile as a dependency specification of the application.
The Raspilot also uses this approach.

4.3.3 Cogs Dependencies

The Cogs themselves can have dependencies. The dependency resolution is quite
complex task. Luckily the Python contains utilities which can solve this. It will
be redundant to create another package manager, if Python already contains one.

The Cogs can specify the dependencies as any other Python library would.
Python will gather and install all the required dependencies during installation
process, as it would do with any other library. This means that the Cogs can
depend on some other Cogs, other Python libraries, etc.

4.3.4 Existing Cogs

The Table 4.2 contains Cogs which are created by extraction from the original
Up and Raspilot projects.

Name Purpose
Android Cog encapsulates the communication between Raspberry

and airborne Android, contains Modules for GPS lo-
cation and battery level forwarding

Arduino Cog contains Modules required for communication with
Arduino and forwarding of orientation, RX PWM val-
ues, heading, etc.; depends on the Serial Cog

Discovery Cog implements the Discovery Provider
Load Guard Cog implements the Load Guard, which checks the uti-

lization of Raspberry and handles the Panic Mode
Mission Control Cog implements the communication with the ground sta-

tion
Serial Cog implements and manages the Serial communication

protocol, used by the Arduino Cog for example

Table 4.2: Cogs Extracted from Original Up and Raspilot

4.3.5 Summary

The addition of the Cogs was quite significant change. However, it was fairly
easily integrated into architecture and implemented. We find this to be another
evidence of the extensibility and modifiability of the Up framework.

For comprehension we state a simple overview of the most important classes
and files related to Cogs in Tables 4.3 and 4.4:

56

Name Placement Content
registered modules.yml Cog specifies Modules which

should be integrated from
this Cog

external modules.yml Custom Appli-
cation

specifies Modules which
should be loaded from all
Cogs

Cogfile.yml Custom Appli-
cation

specifies Cogs which the ap-
plication depends on

Table 4.3: Most Important Cog and Cogs-related Files

Name Purpose
Registrant writes the required Modules to

external modules.yml, creates config-
uration, data files, etc.

UpRegistrant the base class for all Registrants, contains
methods for creating configuration files, writ-
ing to external modules.yml, etc.

Cog Integration Utilities the set of classes which ease the process
of generating the registered modules.yml,
integration and installation of Cogs

Table 4.4: Most Important Cog and Cogs-related Classes

4.4 Arduino Application

This Sections explains the implementation of the Arduino application, how are
the Commands between Raspberry and Arduino being handled, how is the PWM
input read, how are the servos controlled and how is the Flight Controller imple-
mented.

4.4.1 Technical Details

Most of the Arduino Boards are build on top of the ATMega microcontroller [12],
[23]. More information about Arduino are stated in the Section 2.4.3. There is and
IDE available for developing Arduino applications[24]. This IDE eases the whole
process of the development including compiling, building and uploading of the
application. We have therefore decided to use this IDE which implies the usage
of the C/C++ language. Most of the operations executed by the Arduino are
time critical which must have been taken into account when selecting appropriate
algorithms to implement the particular requirement.

The Arduino application consists of three main parts:

1. Setup Routine

57

2. Loop Routine

3. Interrupt Service Routine (abbreviated as ISR), sometimes called In-
terrupt Handler

Setup Routine

The Setup Routine is used to initialize the whole application. Tasks such as
initializing the Serial communication, I2C communication, attaching interrupts1

are executed here. This routine is called only once during the startup.

Loop Routine

Unlike the Setup Routine, the Loop Routine is called over and over. Usually most
of the application logic is implemented in this routine. The Raspilot executes
the following in the Loop Routine:

• reads the RC receiver outputs (refer to Section 4.4.4)

• reads the orientation data from the IMU (refer to Section 4.4.5)

• reads and handle the incoming data from the Serial (refer to Section 4.4.3)

• invokes the Flight Controller (refer to Section 4.4.6)

• sends required data to the Raspberry

Interrupt Service Routine

The Arduino enables us to attach interrupt to various pins. We specify the
pin, the Interrupt Service Routine (ISR) and when the ISR should be invoked
(possibilities are when the voltage of the pin is falling, raising or changing).
The system then invokes the specified routine when the specified change on the
specified pin is detected. Raspilot utilizes this mechanism for measuring the
PWM output of the RC receiver.

There are several limitations imposed on the ISR [25, 28]:

• they cannot have parameters and should not return anything

• they should be as fast as possible

• if an ISR should be invoked while other ISR is being executed, the second
will be executed after the current one finishes

Because the ISR should not return anything, we have to use shared variables.

1Attaching an interrupt is a process, when in case of the change of the voltage of particular
pin, the system executes specified method. This is used for example to measure the width of
the PWM pulse.

58

Shared Variables

When the main program wants to read the global variable (variable used by the
main program and ISR as well) the ISR might be invoked during the read. This
can lead to malformed data.

For example we want to assign the value of shared global variable (for example
a float, which is 32bit in size) to a local variable. But after assigning the first 16
bits, the ISR is fired and the shared global variable is changed. Then the main
program resumes and copies the remaining 16 bits. The first 16 bits are from
the previous value and the second 16 bits are from the current value
which is certainly not desired. Therefore, when we want to access the shared
variable we have to turn off the interrupts, copy the variables and turn them back
on. We can think of this as of a critical section.

However, when the interrupts are turned off, the ISRs are not being invoked
even if the pin state changes, which leads to missing some changes. There is
no other way how to implement this behavior and the possibly missed pin state
changes must be taken into account. This is a significant problem when read-
ing the PWM pulse. The Section 4.4.4 explains how the Raspilot solves these
difficulties.

4.4.2 Arduino Model

Arduino comes in many variations[23]. The following is required to run the Raspi-
lot:

• at least 6 pins where the pin change interrupt can be attached (for
reading the PWM output of the receiver)

• at least 4 pins which can generate the PWM output (to control the
servos and ESCs)

• at least 1 pin where the external interrupt can be attached (required by
the IMU unit)

• its size and power consumption should be as low as possible

All of these requirements are satisfied by the Arduino Nano [26] and the Arduino
Uno [27]. Both these boards are very similar in terms of hardware and capabilities.

Arduino Uno is very widely used board, which determines that there are many
libraries for this board. Arduino Nano shares the same microcontroller, therefore
the libraries created for Arduino Uno can be used on Nano as well. The advantage
of the Nano over the Uno is its much smaller size. We have therefore decided to
use Arduino Nano.

4.4.3 Commands, Command Receiver and Command Ex-
ecutor

Arduino needs to communicate with its surroundings, more precisely with the
Raspberry Pi. The Section 3.1.2 specifies the communication protocol used be-
tween the Arduino and Raspberry Pi.

59

Similarly to Up framework, the Raspilot application for Arduino also contains
Commands and Command Handlers.

Commands are being distinguished by the Command type, and after the Com-
mand Receiver receives the particular Command, it notifies Command Executor
which invokes the specified Command Handler.

The Command Receiver has two states:

1. awaiting Command

2. receiving Command payload

The Command Receiver starts in the first state. During each run of the
Loop Routine, the Command Receiver checks (if it is in the awaiting Command
state), if there are any data available. If yes, then it reads the first byte, which
determines the type of the Command and checks if the Command type is valid
(whether there is a Handler specified for this type). If the Command type is not
recognized, the Receiver discards the byte and continues to the next available
byte.

If the Command type has a Handler, the Receiver enters the receiving
Command payload state and invokes the Executor. The Command Executor
invokes the required Command Handler. The Command Handler at first checks
if there are all required data available. If some data are missing (they might
be not transferred via Serial yet) the Command Handler notifies the Command
Executor that the action has not been carried out yet.

On the next invocation of the Loop Routine, the Command Receiver is in
the receiving Command payload state and directly invokes the Command Ex-
ecutor which will again invoke the Command Handler. Now there are all data
available, the action is carried out, the Command Handler notifies the Com-
mand Executor that the action has been carried out, the Command Executor
notifies the Command Receiver which enters the awaiting Command state.
This pattern is analogous to all subsequent invocations of the Loop Routine.

The Figure 4.5 depicts the handling of Commands. The Figure contains also
the timeout mechanism, which is explained in the next Section.

60

Figure 4.5: Arduino Command Handling

Handling defective payload

Because of the unreliable nature of the Serial communication there are couple
of problems to solve:

1. the Raspberry Pi application might crash while sending data to Arduino

2. the data from the Raspberry Pi might be lost (particular bytes or whole
group of bytes which compose the Command or its payload)

With the proposed patter of handling communication both of these situations
will result in infinite receiving of the payload. In the first case it might be
not crucial (because the Raspberry is crashed and will not send any other data).

61

But in the second case the Arduino will stop responding to all of the following
Commands sent by the Raspberry. This is the reason why the Command Executor
includes a timeout mechanism.

If the Command Handler does not carry out the task in specified time interval,
the Command Executor supposes data loss and notifies the Command Receiver
which enters the awaiting Command state.

However, there might be some data in the buffers which are part of the
malformed payload. We can add specialmarker bytes to identify the start and
end of the message. This will imply the need of escaping the bytes in the message
(to avoid having the marker byte in the payload) and there is still possibility that
the marker bytes will be lost. This approach solves the problem only partially,
more precisely the probability of misinterpreting the data is reduced. On the
other hand the communication will require more computational power.

The experiments has shown that when sending data between Arduino and
Raspberry if something is lost, it is the whole message, not particular bytes
from the message. Both of Arduino and Raspberry sends at first the Command
type byte and then the payload, which might have more bytes. The payload is
send via one method call. If the transmission fails, it will most likely will fail
when transmitting the first byte. That might be caused by disconnection of the
receiver, internal error in the transmitter, etc. We have executed many tests
to analyze this situations and based on these tests we have concluded that the
following pattern how to handle missing payload is applicable.

Upon timeout detection by the Command Executor, the Command Receiver
enters the awaiting Command state and treats the first byte of the buffered
data (if any) as a new Command type byte. There is still a possibility that this
byte is from malformed payload of the previous Command. However, experiments
have shown that the possibility of such situation is acceptably small. If this
situation becomes a relevant issue of the communication other methods must be
analyzed and implemented (such as acknowledgments).

4.4.4 PWM Reader

The PWM reader is responsible for reading the PWM output of the RC receiver.
More details about the PWM pulse are stated in the Section 2.4.1.

During the development the PWM readings cause many difficulties, mainly
because of the need of very precise time measurment. The Arduino (in the basic
setup) can measure time with the precision of 4 µs. Therefore, if the RC receiver
outputs a stable PWM pulse with the width of 1500 µs the Arduino reads a value
between 1496 µs and 1504µs. Because of the problems with the ISR stated in the
Section 4.4.1 sometimes the readings are off by more than just 4 µs.

We have anticipated that the servos have precision of 10 µs (only changes
greater or equal to 10µs causes the movement of the servo). This is an example
of the faulty anticipation. We have used the cheaper servos in the initial phases
of the project and we did not await that such characteristic as PWM frequency
precision differs between particular types of servos. Also some other solutions
of the PWM generation for the servos have a step of 10 µs which only confirms
our expectations related to required precision. However, the more capable servos
have much higher precision.

62

The inaccuracy of the Arduino with the combination of the capable servos
leads to unacceptable servo jitter. The jitter causes unwanted power con-
sumption but also impairs the hardware of the servos. There are two options
how to solve this problem:

• increase the accuracy of the Arduino

• filter the readings

The first solution requires either a dedicated hardware timer or modifications
of the Arduino and then there are still the problematic readings of the shared
variables.

The second solution on the other hand adds only the filtering of the read
data. We have decided to select the second solution which should be sufficient
for our case.

The Raspilot can read 6 channels. 4 are used to control the airplane and
the remaining 2 are used to control the Raspilot itself (for example change of
the flight mode). For each channel we have the ISR, one variable A (used only
by the ISR) and one shared variable B. Besides these there is a shared flag used
to determine whether there are new readings available. All of the ISRs do the
following:

• if the pin state is high (there is at least 3.3V) the Raspilot remembers
current time to the global variable A

• otherwise (there is 0V on the pin) the Raspilot subtracts the global vari-
able A from the current time, stores the result to the shared variable
B and sets the flag

This gives us the time for which the pin state had been high, which is what
we wanted to measure. However, it is not practical to access the global variables,
therefore the Raspilot has to do the following in each execution of the Loop
Routine:

• if the flag is not set, do nothing

• otherwise:

– disable the interrupts

– copy the shared variables to not shared variables

– enable the interrupts

After this operation we have the read PWM frequencies available in variable
which cannot be changed by the ISR and therefore can be securely read.

Low-pass Filter

The filter must be easy to calculate because it will be calculated after each PWM
reading and we want to minimize the latency between reading PWM and execut-
ing action (setting position of servos).

We can conclude that the noise is high frequency noise. To remove the high
frequencies from the signal we can use the Low Pass Filter [29]. This type of

63

filter has many applications and one of them is smoothing the input data which
is exactly what we need.

The simplest formula which implements the idea of the Low Pass Filter is
following:

y[i] = y[i− 1] + α · (x[i− 1]− y[i− 1]) [29]

Where y[i] is filtered output of the i-th sample and x[i] is the i-th sample. The α
constant is used to tune the filter and will be explained in the next paragraphs.

We can see that this formula requires only addition and multiplication which
are quite fast operations. We can transform the input of this formula so we can
use integers instead of floats, but this should not be necessary.

With the α constant we can tune the filter. If we want the filter to make the
data smoother, we set low α, but with low α the output will react slower. That
means if the user changes the PWM very fast, the output will change much
slower. This in fact creates latency between user input and positioning servo,
which can have fatal consequences1. Therefore the α must be tuned precisely.

But the tuning of the filter proves itself not powerful enough. On one hand
we have stable PWM input and on the other hand there are fast responses.
We did not manage to tune the parameter to meet our requirements therefore,
the following mechanism has been introduced: if the PWM changes rapidly
(more than a specified constant) we disable the Low Pass Filter and use the
raw value. This means if the user suddenly pulls the elevator, the PWM of the
elevator channel changes dramatically. The inaccuracy of the Arduino is however
relatively small (compared to the change) so it can be ignored in this case.

4.4.5 Determining Orientation

Unlike the initial versions of the Raspilot the current version (in time of writing
this thesis) uses the dedicated hardware to determine the orientation. Because
we do not have any special requirements on the hardware, we decided to use the
mostly used one by the rest of the Arduino community, which is the MPU6050
Inertial Measurement Unit [30, 31] (abbreviated as IMU).

The IMU gives us access to all required data such as rotation and rotation
rate around three axes. As has been stated in the Section 4.2.2 this change
influenced the decision to implement the Flight Controller on Arduino instead of
the Raspberry. There are more details about the Flight Controller in the Section
4.4.6.

With this change the Arduino is required to forward the orientation to the
Raspberry because these data are required for the telemetry.

MPU6050

The MPU6050 has tri-axis gyroscope and accelerometer. The data from this IMU
can be read via the I2C (refer to the Section 2.3.3). The orientation can be read
in form of the rotation matrix, quaternion or Euler Angles [32]. The Raspilot
uses the Euler Angles format because this representation is more human readable
than the others, therefore it is more easy do debug.

1If the airplane is heading towards ground, and you pull the elevator the airplane must
react as fast as possible. The delay can determine if the airplane will hit the ground or not.

64

4.4.6 Flight Controller

When enabled, the Flight Controller is responsible for keeping the aircraft in the
air and also for the navigation. To do so it utilizes the readings of the PWM
output from the receiver and orientation from the IMU. The GPS location is
used to execute the navigation tasks such as navigating to a waypoint.

The Table 4.5 describes available modes in which the Flight Controller can
operate as well as required data for the controller to be operable in these modes.

Mode Functionality
Required
Data

Acrobatic Mode
(ACRO)

Pilot directly controls the aircraft. PWM

Stabilize Mode,
Fly By Wire
(FBW)

Stabilizes the attitude of the aircraft,
pilot can control the airplane.

PWM, orienta-
tion

Table 4.5: Available Flight Controller Modes

Absence of the Return Home

These two modes are proof of concept, that the Up framework and Raspilot is in
fact able to control the attitude of the airplane. The Return Home flight mode1

is missing in the Raspilot because of the following reasons:

• the Return Home is an extension of the Stabilize Mode

• reliable Return Home is a question of good configuration if the Stabilize
Mode is implemented correctly, it is not much interesting in terms of design
and implementation

• the Return Home is much less computationally complex than the Stabilize
Mode

To support the previous statements let us consider a following situation. In
the Stabilize Mode, if the user have all transmitter sticks in neutral positions, the
aircraft should be leveled. Therefore, the rate of change around all three axes
should be 0. Also the yaw, pitch and roll angles should equal 0.

The idea of Return Home is following. Based on the current GPS location
and the GPS location of the take off point the required bearing is calculated. The
actual bearing and the required bearing are then used with conjunction of the
Navigation PID to calculate the required rate of change in the yaw angle. This
enters the Stabilize PID.

Now let us comprehend the previous paragraphs. In the Stabilize Mode, the
required rate of change is calculated based on the user input. In the Return
Home this is calculated from the actual and required bearing of the aircraft. The
process of attitude control is otherwise identical. The Return Home feature must

1In the Return Home Mode, the aircraft returns to the take off location and pivots around
this location in specified altitude.

65

calculate the required bearing after each update of the GPS position. These
updates are however much less frequent than the updates of the orientation - it is
much less computationally complex. To achieve a reliable Return Home we must
have a reliable Stabilize Mode and a well tuned Navigation PID - the Return
Home is a matter of configuration.

The GPS updates frequency might be a problem if it is too low. However,
the result of such issue will be following. The airplane follows the previously
calculated course till new course is available. This could lead to jagged flight
path. However, this is an extreme case. All todays Android devices should be
possible to navigate the aircraft. As a proof of this we can consider the existence
of the car navigation systems which are present on these devices.

We have decided not to implement the Return Home feature also because of
the already large scope of the thesis.

Implementation of the Flight Controller

Based on the design (see Section 3.2.3) there are 3 PID Controllers per controlled
channel. Those 3 PID Controllers are Rate, Stabilize and Navigation PID. The
Raspilot is capable of controlling 3 channels. Because the Raspilot does not
support the Navigation PID it contains 6 PID Controllers altogether. The Table
4.6 presents which PID Controllers are enabled in particular mode and which are
disabled.

Mode Rate Stabilize
ACRO × ×
FBW ✓ ✓

Table 4.6: Enabled PID Controllers Based on the Flight Mode

The Rate Mode might use the Rate PID in the future. We have decided to
implement the Rate Mode as a forwarding of read PWM values without changes.
This should ease the testing. If something goes wrong, the autopilot can be
completely disengaged which should reduce the possibility of crashes.

Tuning of the PID Controllers

The parameters of PID Controller (also called gains) must be tuned. PID Con-
troller has three parameters: Kp for the proportional part, Kd for the derivative
part and Ki for the integral part. See section 2.3.3 for more details about the
gains. There are many techniques how to tune the PID Controller [8, p. 302-306].
There are also automated techniques of the PID Controller tuning (for example
the Naze32 board presented in the Section 2.2 has such feature), however our
experience with those are not positive. With some time investment and basic
knowledge of the PID Controller the user can tune the PID Controller much
better than the automated mechanisms.

Choice of the tuning method is in this case a matter of personal preference.
We have decided to use the method which is widely used amongst other RC
hobbists and that is the Trial and Error method.

66

The Trial and Error method is based on setting a particular value and observ-
ing the changes which this value causes in the system. The process of the tuning
starts with the following values:

Kp = 1

Kd = 0

Ki = 0

Kd and Ki are initially set to 0. The initial value of the Kp is not important and
will be adjusted in the following steps.

At first the Kp will be tuned. The value of the Kp is being increased until the
whole aircraft becomes unstable and starts oscillating. Once this behavior is
reached the Ki gain is tuned, to stop the oscillations.

Increasing theKi decreases the oscillations but increases the overshot. The
overshot can be explained on the following example.

The aircraft is heading towards earth - its pitch angle is less than 0. We want
to level the aircraft, therefore we pull the elevator stick of the transmitter. But
we have pulled the elevator stick too much and the airplane is heading towards
sky - its pitch angle is greater than 0. We have overshot the desired pitch angle
of the airplane.

Consider this example in terms of the PID Controller. The setpoint is the
desired pitch angle, which is 0. Initially the pitch angle was less than 0, which
determines the error. Based on the error we have pulled the elevator stick, but we
have pulled too much and the process variable is now greater than the setpoint.
Later we have pushed the stick and so on, until the aircraft becomes leveled and
the difference between actual pitch and desired pitch is acceptable. Overshot
is situation when the process variable becomes greater than setpoint, if it has
been initially smaller, or smaller than setpoint, if it has been initially greater. The
Ki must be tuned to minimize the overshoot while suppressing the oscillations.
Certain amount of overshot is required, otherwise the PID Controller will adapt
to changes of the setpoint very slowly.

At last the Kd gain is tuned. Increasing the Kd gain decreases the over-
shoot but the system is much more sensitive to noise (in our case vibrations from
the engines). Usually the Kd and Ki are significantly smaller than Kp.

The theory of PID Controller is quite simple, however implementing this the-
ory is quite time consuming task. The Raspilot therefore have a special Command
to alter the gains of the PID Controller from the ground (see Table 4.1).

4.4.7 Servo Control

To control the servos the Arduino must generate the appropriate PWM pulse.
More details about PWM pulses are present in the Section 2.3.3. We are using
the default Servo library which is available for Arduino [33]. With this library
we can set either the required angle of the servo (from interval from 0◦ to 180◦)
or we can set the required PWM frequency. We have decided to set the PWM
frequency as we find this approach slightly more user friendly (the majority of
other autopilot systems presents the PWM frequency instead of servo angle).
Also it can be easier to imagine the meaning of a PWM frequency in case of the
ESC.

67

The servos however require certain amount of electrical current (in order of
amperes) which cannot be provided by the Arduino [34]. Therefore, they must
be powered by the external power source. Refer to the Section 4.7 for more
information about interfacing and powering the servos and Arduino.

4.5 Android Application

In this Section we discuss the implementation details of both Up Library for
Android and the Raspilot for Android. At first we will present the technical
details and then the Up Library and the Raspilot for Android.

4.5.1 Technical Details

The Android framework uses the Java language, therefore also the Up Library
and Raspilot for Android are written in Java. Both Up Library and the Raspilot
can be divided into three main parts:

1. sensor reading

2. communication

3. graphical user interface - GUI

The sensor readings are implemented mainly in the Up Library, while the GUI is
implemented mainly by the Raspilot (or any other custom application which uses
the Up Library). The larger portion of the communication part is implemented
in the Up Library, but some implementation is also required by the Raspilot. The
following Sections discusses these parts more in detail.

4.5.2 Up Library for Android

The Up Library encapsulates the common functionality which is required in all
applications using the Up Library. High level requirements are:

• Commands, Command Handlers, Commands Receiver and Executor

• Providers of the sensor data and Controller of Providers (discussed later)

• communication with the Raspberry (in case of airborne device) and the
aircraft (in case of ground device)

All of these three requirements are discussed more in detail in following Sections.

Up Singleton Class

Core of the Up Library for Android is present in the Up class which is a Single-
ton1. This class contains references to Command Executor and Receiver.

1Singleton is a design pattern. A Singleton class can be instantiated only once. In our
context to obtain a reference to such class we could call something like Up.getInstance()

68

Commands

The Commands are handled similarly as in the Up framework. We can create
Command Handler for particular Command which defines an action. This ac-
tion is executed each time the Command is received. Command Handlers are
registered in the Command Executor (present in the Up singleton).

Providers

For comprehension we state the main purpose of the Provider, which is reading,
processing and transmitting sensor data to the airborne Raspberry Pi.

The Android framework works with the sensors in following manner:

1. obtain reference to sensor (might fail if the device does not contain required
sensor)

2. register for updates (usually contains some configuration parameters and
the listener for the updates)

3. unregister the updates

This flow is reflected in the UpProvider base class, which all Providers extend.
Providers are registered in the ProvidersController. The Providers Con-

troller implements the registration, unregistration process and it starts and stops
the Providers.

During the start the Provider should subscribe to receive updates of the
sensor. During the stop it should unsubscribe the updates. Once the Provider
is started, it registers for sensor updates and each time the sensor updates its
value, the provider processes the new value and sends it via the Base Up Service
to the Raspberry. The Base Up Service is discussed later. One of its purposes
is to manage communication between the airborne Android and Raspberry (or
remote server).

The Up Library for Android contains the following basic Providers:

• Altitude Provider - reads the altitude from the barometric sensor

• Battery Level Provider - reads the battery level

• Location Provider - reads the GPS location

• Orientation Provider - reads the accelerometers and gyroscopes to obtain
the orientation of the device and rotation rates

Communication

The communication functionality can be split into two parts:

1. communication between the airborne Raspberry (or remote server) and
airborne Android device

2. communication between the ground Android device and the airborne
Raspberry (or remote server)

69

At first we will discuss the communication channel between airborne devices.
This is implemented in the BaseUpService. This started Service manages socket
to the Android Provider, which is part of the Raspberry application. The socket is
implemented in the UpSocket class, which is presented in the next paragraph. Via
this socket the JSON encoded Commands (using the General Message Transfer
Protocol) or raw binary data in case of orientation forwarding (using the Orien-
tation Forward Protocol) are being transported.

The sockets are administered in the UpSocket class. This class takes care of:

• creating, connecting, reconnecting (in case of connection loss) and closing
the socket

• deserialization of the received data and forwarding the received Commands
to the Command Executor

• serialization of Commands being sent

Apart from the Commands handling the Base Up Service also has the refer-
ence to the ProvidersController class. The purpose of the Base Up Service is
to encapsulate the process of reading, processing and transmitting the
sensor data to the Raspberry.

The channel between ground Android device and Raspberry Pi is handled sim-
ilarly. The TelemetryService class is implementing this feature. The Telemetry
Service utilizes the previously mentioned UpSocket to connect to the proxy server
between airborne and ground devices. Via this Service we can send Commands
to the aircraft and receive telemetry. The Telemetry Service is a bound service.

4.5.3 Raspilot for Android

The Raspilot for Android is an Android application which uses the Up Library
for Android. With the help of the library we are able to create application with
features required from the airborne and ground device as well. Next Sections will
discuss implementation details of these application more in detail.

One Application

We need two set of features in the Android application. One set for the airborne
devices (sensor readings, etc.) and one set for the ground devices (telemetry
reading, Commands transmission, etc.). We have decided to create only one
application which contains both of these sets.

The motivation is quite simple. We do not want the user to install two different
applications, rather we want the user to install one full featured application.
On the other hand this implies more complexity in the resulting application.
However, if the source code is well-structured, this is not an issue.

Graphical User Interface

The main portion of the implementation of the Raspilot for Android is the Graph-
ical User Interface - GUI. The GUI implementation follows the guidelines of the
Android framework. We found it unnecessary to discuss the GUI guidelines of

70

the Android framework in this thesis as they are not interesting in terms of the
thesis goals. The readers can refer to the Android framework documentation [35]
for more information.

Airborne Component

The portion of implementation required for the airborne devices uses the
Providers available in the Up Library. The Providers which are part of the Up
Library covers all the basic sensors which are required. These Providers are
registered within the Providers Controller. The transmission to Raspberry is
done with the help of the Base Up Service. Of course other Providers might be
implemented and added to the Providers Controller in the future.

In addition to the usage of components from Up Library, the Raspilot add a
simple GUI, which displays the current status of the aircraft.

Ground Component

The main purpose of the ground device is to read and display telemetry. This
is handled with the help of the Telemetry Service. It receives the Telemetry
Commands produced by the Raspberry.

We need a Handler for these Commands. The Up Library contains an ab-
stract Handler - the BaseTelemetryHandler. This class is a generic class and
we can use the type parameter to specify what telemetry data we are interested
in. Besides this we need to specify the action and the Handler is all set and can
be registered.

Apart from telemetry display, the ground device has the ability to send Com-
mands to the airplane. For each Command which we wish to send, we have to
create appropriate GUI. It usually contains some kind of input where the user
enters desired value. The value is then wrapped into the particular Command
data and transmitted via the Telemetry Service.

For example if we wish to set the frequency of the telemetry updates, the
Raspilot for Android follows this scenario:

• user opens the Fragment which contains list of all Commands which can be
sent

• user enters the desired frequency

• after selection the Fragment creates the TelemetryFrequencyCommand, con-
taining the desired frequency

• created Command is sent via the Telemetry Service to the proxy server,
which forwards it to the airborne Raspberry

• the Command Executor on the Raspberry executes the appropriate action

4.6 Server Application

This Section describes the difference between the Up and Raspilot run on the
Raspberry and on the remote server.

71

The Raspilot run on the remote server is used in the Black Box Mode. It
makes no sense to try to connect to Arduino because there is no Arduino to
connect to. But many of other Modules can work in the same way as if they are
being run on the airborne Raspberry. Therefore, the mechanism of conditional
Module load is introduced to the Up.

4.6.1 Conditional Module Load

Each Module is asked during startup (via a method) whether it should be loaded
or not. It is then a matter of configuration if the Raspilot is run in Black Box
or Flight Controller Mode. This configuration can be saved for example in a
configuration file or can be specified via the environment variables. There are
of course more techniques how to represent configuration. The Up utilizes the
configuration file1. It is also possible to alter the loaded Modules by editing the
Cogfile.yml.

This mechanism can be used not only to control the availability of the Mod-
ules, but can be used to alter the behavior of the Modules. The functionality
which should differ in the Black Box Mode and the Flight Controller Mode can
be extracted into separated Modules. We can then specify, using the conditional
Module load, which Module should be loaded in which mode. Another usage of
the conditional load is for example in case of an airplane with special capabilities
such as landing gear.

4.6.2 Up Runner

The Up Runner (see Section 3.4 for more information) is the special application
run the remote server when Up is in the Black Box mode. Its purpose is to spawn
the Up application upon request and manage the spawned instance.

The Runner should run indefinitely. Because the remote instance of the Raspi-
lot is run on the Linux servers provided by the university, we have decided to im-
plement the Runner as an application which is managed by the Upstart manager
[36]. However, this decision is absolutely implementation dependent and neither
the Raspilot or Runner, nor Up framework is affected by this choice.

Upon receiving a spawn request, the Runner checks if the Raspilot is already
running. If so, it does nothing and notifies the requester that the process is already
running. Otherwise it spawns the Raspilot and notifies the requester about the
result of the Raspilot startup. The requester can connect to the Raspilot once
the response from the Runner is obtained.

Currently only one instance of the Raspilot can be run at the time. In the
future versions this might be changed so more instances of the Raspilot can
be run concurrently. Changes of the Runner will be necessary. Presently the
response contains only some basic information such as flag whether the spawn
was successful and PID of the spawned process. The Raspilot itself needs some
ports for communication with the airborne Android device. Also the Ground
Proxy consumes some ports. If multiple concurrent instances should be possible,

1The Modules can read the configuration file during startup and respond based on the
content of this file.

72

these ports cannot be specified in the code, but must be dynamically assigned
and advertised to the spawn requester.

Some other possibilities of the Runner changes are being analyzed such as
specifying the configuration in the spawn request. The Runner will then
spawn the Raspilot with the provided configuration. This can be useful also in
the Flight Controller mode (which implies the presence of the Runner also in the
airborne Raspberry), when the user can specify the type of the aircraft before
the startup of the Raspilot and there will be no need to alter the configuration
file manually. With this option enables us to use one set of the hardware1

components between different airplanes, which reduces the costs.

4.6.3 Ground Station Proxy

The Ground Station Proxy is application run on the remote server and it serves as
proxy between the Ground Station and the airborne Raspberry. Its implementa-
tion is quite simple. The Ground Station Proxy manages two communication
channels bound to two different ports. Data received from the first port are
forwarded to the second and data received from the second port are forwarded
to the first port. With this setup the Ground Station connects to one port, the
Raspilot to the second port and with the help of the Ground Proxy they can
communicate.

4.7 Hardware

In this Section we explain the necessary hardware components such as the Printed
Circuit Board (PCB) onto which the Arduino is connected and other hardware
related details such as how are the devices powered and protected while airborne.

4.7.1 Printed Circuit Board for Arduino

The Printed Circuit Board (abbreviated as PCB) makes it easier to avoid wire
junctions and short circuits. Also the PCB is much more space efficient than
point-to-point wire connection. Only the Arduino requires at least 10 connections
for the PWM readings (6 channels input, 4 channels output). But then there is
the IMU, we need to power up the devices, all of these requires more and more
wire connections and we will be soon overwhelmed with the wires. The PCB
brings organization and makes the whole process of interconnecting components
much easier.

The PCB used for the Raspilot have more assignments:

• power up the servos, Raspberry, Arduino and MPU6050

• interconnect the servos and Arduino

• interconnect the MPU6050 and Arduino

1One Raspberry, one Arduino, one IMU and one Android device can be shared between
different aircrafts. This however implies some sort of simple interconnection of the Raspilot
hardware and the aircraft hardware (servos, motors). Otherwise such sharing will not be prac-
tical.

73

For more details about the designed PCB (including diagram) refer to At-
tachment 3 - Printed Circuit Board.

4.7.2 Powering the Devices

The system must be somehow powered while airborne. We can use the present
on board batteries, however this might require some sort of filtration due to the
noise from the engines which are also powered by the battery. Other option is to
add another battery which does not power the engines (therefore filtration is
not required). However, this adds another weight which the airplane must carry.
Yet on the other hand this might serve as a redundant power source (if properly
connected) which can be used in case of failures of the main battery. Therefore
we have decided to use additional battery. The weight of the battery should be
reduced as much as possible. With the current setup (Raspberry Pi, Arduino,
Android, 4 servos to control the airplane) we are using the 1300 mAh 2S Li-Poly
battery. This battery powers the PCB which powers the Raspberry Pi, Arduino,
IMU, Android, the RC receiver and the servos. The main battery powers only the
engines. With this setup if we run out of the power in main battery, the airplane
is still maneuverable although without the option to throttle up the engines.

4.7.3 Physical Protection

In case of a catastrophic crash we cannot provide reasonably light and inex-
pensive casing for the hardware components. However, it makes sense to try
to protect the hardware in less serious cases such as rough landing or light
crashes. Materials such as plywood should be considered when creating such
encasement.

74

5. Experiment and Discussion

This Section presents the experiment which should validate the results of this
thesis, how this experiment has been conducted and a short discussion of the
results. At first the tests scenarios are presented, and then the results of these
tests are reviewed.

5.1 Validating the Communication Channel

The first test is designed to validate the communication channel between the
ground device and the airborne devices. It focuses on user experience, mostly in
terms of latency.

The latency of this channel has been tested during the development, including
various connection types (all components on the same Wi-Fi network; airborne
devices connected to Wi-Fi network, ground device to cellular network; every-
thing connected to cellular network), however, this needs to be tested in the real
environment. In this test, the test aircraft (presented in Section 5.2) carries the
Android device, operating in Black Box mode.

5.2 The Test Aircraft

In order to test the Up and Raspilot in real situations an aircraft is required. Be-
cause of the higher risk of crash during the test flights, the aircraft with following
characteristics has been chosen:

• the aircraft is a glider1

• it is reasonably inexpensive

• it is big enough to carry all the required hardware

For this purpose the EasyGlider by Multiplex has been chosen. The fact that
this airplane is a glider reduces the risk of injury with propellers (which might
be unintentionally spun up or spun up because of a bug). The particular aircraft
chosen for this experiment has been crashed and repaired several times before
the testing of the Up, which decreases its economical value (however its personal
value is quite high).

For illustrative photos of the test aircraft refer to Attachment 2 - Photos of
the Test Aircraft.

5.3 Validating the Autopilot

Purpose of this test is to validate the ability of the autopilot to control the aircraft.

1The glider does not have an engine. Therefore, another airplane is required to tow the
glider to some altitude.

75

Because of the airplane’s size, only the Arduino and MPU unit are on board
during this test. However, this does not influence the validity of the experiment,
because of the following.

When the Arduino is not connected to Raspberry, the only difference is the
lack of communication between these devices. The communication might make
the cycle time1 longer. Longer cycle time could affect the attitude control ability
of the autopilot.

However, the tests have shown no significant increase in cycle time when the
devices are connected and when they are not. Also there has been tests on ground
and there has been no observable change when all devices has been connected or
only Arduino and MPU has been connected.

This test as a side effect created a new possible mode of use, when only
Arduino and MPU unit are on board. This mode has not been considered before,
but the architecture of the Up and Raspilot makes it possible.

5.4 Running Raspilot on Raspberry

So far the proposed tests does not include testing the performance of the Raspilot
on Raspberry Pi. The computational power of Raspberry might affect the overall
performance of the framework.

It is not considered necessary to run the Raspilot on Raspberry in a flying
aircraft because it will bring nothing relevant in context of whether the Raspilot
will run on Raspberry or not. Therefore this test is conducted on the ground.

The Raspilot is run on Raspberry with all other on board devices (Arduino
and Android) connected. The Raspberry and the ground station devices are
connected via the cellular network.

5.5 Results of Communication Channel Valida-

tion

In this Section the results of the communication channel tests are reviewed. These
tests have shown that the latency is more than acceptable (below 250ms) in
areas with good signal coverage. The delay between the orientation change of the
aircraft and the change of relevant user interface component is surprisingly low.
In fact it should be possible to pilot the aircraft using the data from Raspilot’s
telemetry.

The only problem is the occasional lags which are caused by the cellular
network (sometimes the are several messages delivered at once). However, in
critical situations, for example when the aircraft flies behind a building or into
the sun, it is possible (although not ideal) to pilot it using only the data from
the telemetry.

Also the reconnection mechanism proves itself. In areas with poor signal
coverage the telemetry feed has been reestablished after a connection loss. In
these areas the lags were more often.

1Cycle time is duration of execution of the loop method.

76

5.6 Results of Autopilot Tests

The autopilot tests were more complex. At first the airplane had to be properly
trimmed1 because of the newly added weight. Also the center of gravity must be
set accordingly.

Once these tasks had been completed, the airplane was taken into tow. The
first flights were a bit bumpy, because the PID controller had not been tuned
properly. More specifically, the Kp tuning parameter had been set too high.
After lowering this parameter the aircraft had become more stable. Currently it
is set to Kp = 6 for the stabilize PID controllers and Kp = 0.7 for the rate PID
controllers. Please note that this is relevant only for the test aircraft, in other
aircrafts the values might differ.

During one of the test flights the autopilot saved the aircraft. The pilot had
lost orientation because the airplane had flown into the sun. When the sun
stopped blinding the pilot, the aircraft was headed towards the ground. The
autopilot had been activated, and the aircraft was leveled. If the autopilot had
not leveled the aircraft, it would have crashed without any doubts.

The controlling of attitude is the most critical task the autopilot must handle.
Because it succeeded in this task, we conclude it can also achieve other tasks, such
as the Return Home function, which is not implemented in the Raspilot because
of the reasons stated in the Section - Current Limitations. The Return Home
function relies on GPS data in addition to the orientation data.

In order to support the statement that the Return Home function is possible
within the Raspilot, let us at first review how the Return Home function works.
Based on the current GPS location and the GPS location of take off point the re-
quired heading is calculated. Required heading with the actual heading enters the
Navigation PID controller. The Navigation PID controller outputs the required
heading which then enters the Stabilize and Rate PID controllers pipeline. The
situation in current version is following: the required change of heading is always
set to 0. One can think of this as if the aircraft is required to hold its current
heading. Therefore the only change which the Return Home feature brings to
the existing situation, is the calculation of the required heading and based on the
required heading, the calculation of the required rate of change. If it is currently
possible to hold the rate of change in heading at 0, it is possible to hold it at
some other value as well.

5.7 Results of Raspilot Run on Raspberry

During the evaluation of this test, there were some difficulties with installing
libraries, etc. All of them are discussed in the Troubleshooting Sections of the
Up’s Documentation.

Once these has been solved, the delays between forwards of orientation and
receiver data from Arduino must be increased, as they overloads the Raspberry.
Besides these the Raspilot had been run on Raspberry without any complications.

Current values of delays between forwarding are following:

1Trimming is a process when the pilot alters the neutral position of a control surface. The
goal is that when all controller sticks are in neutral, the airplane should fly leveled (if there are
no external effects such as wind).

77

• 50ms delay between RX data forwarding

• 50ms delay between orientation data forwarding

The utilization of the B+ model during the tests1 has been following:

• CPU ca. 40%

• free RAM ca. 80%

5.8 Summary

The tests have shown that the Raspilot is able to execute all required tasks
when deployed to real environment. Some of the default values needs to be
adjusted, but there is no need to make extensive changes to make the whole
system functional and operable as requested.

Because of the capability to implement the required design changes (discussed
through the whole Chapter 4) and the results of the tests we conclude, that all
of the requirements (both functional and non-functional) have been met and
satisfied.

1Both Android and Arduino were connected.

78

6. Conclusion

In this Chapter we present the overall results of the thesis. The Chapter is divided
into four sections which discusses the following topics:

1. the problem which this thesis addresses

2. the solution of the problem

3. current limitations of the Up framework and the Raspilot

4. future research

6.1 The Problem

The main problem which this thesis is addressing is the lack of modular autopilot
system for the RC airplane models. Many superb autopilots already exists, but
none of them can be modified or extended easily. This need is satisfied by the
Up framework which is used in the Raspilot application.

6.2 The Solution

The Up framework has been designed with these key requirements:

• modularity

• extensibility

Meeting both of these requirements has been validated during the development
of the Raspilot. Many versions of the Up framework and the Raspilot has been
created till the final version for this thesis has been reached. Both the framework
and the Raspilot has undergone many changes between the versions (refer to the
Section 4.2.2).

The concepts of the Command Receiver and Command Executor as well as
the concept of Modules has proven themselves as a good set of instruments for
creating an autopilot. These concepts has also proven themselves as an apparatus
which support the later changes and modifications. Therefore we consider the
Up framework useful when solving the stated problem.

In the beginning, the Raspilot was intended to be a single application run-
ning on the Raspberry Pi with an Android counter part (which however is quite
separated and does not utilize the Up framework). But based on the analysis,
development and tests this initial concept has been changed quite dramatically.
The Raspilot is currently a system consisting of the following applications:

• the Raspberry Pi application (which uses the Up framework)

• the Arduino application

• the Android application

79

• the proxy application on the remote server1

All of these applications needs to cooperate, exchange messages to make the
following possible:

1. send message from ground Android device

2. the message is transmitted via the proxy application to the airborne Rasp-
berry

3. the Raspilot running on the remote Raspberry receives the message

4. with usage of the instruments of the Up the appropriate action is executed

• an action is executed directly in the Raspberry application (such as
change of the telemetry updates frequency)

• an action is executed on the Arduino device

• an action is executed on the airborne Android device

These steps work of course also in reverse order, when the message is originating
from the airborne device. With this stack we have the instrument to exchange
data between ground Android device and airborne devices.

As has been stated in the Section 4.2.2 the Raspilot has undergone many
changes. We consider the ability of the Raspilot to accommodate these changes
without huge ripple effect as a proof of its modularity and extensibility.

6.3 Current Limitations

Despite meeting the key requirements there are currently a certain number of
drawbacks in the Raspilot.

One of the main drawbacks is the space and weight requirements of the air-
borne devices. However, we consider the currently used hardware a prototype and
the possibility of optimizing these requirements are being examined. Refer to the
next Section for more information.

Probably the weakest element of the Raspilot is the Flight Controller. The
current flight controller serves as a proof that the Raspilot has the ability to
control the airplane reliably. But it lacks some functions which has become
common amongst other autopilots such as gimbal support, automatic return home
in case of low battery, etc. However, we consider the implementation of the superb
Flight Controller not absolutely crucial for the purpose of this thesis. During the
analysis and development many autopilots have been examined. The scope of
creating the autopilot is quite large and we consider creating new autopilot useless
when there is a number of already developed autopilots. Therefore, we have
decided to choose another approach, which is integrating the existing autopilots
so they will cooperate with the Raspilot. This is a very hot topic in terms of
future development.

1The proxy application on the remote serves as a mediator between the Raspberry Pi and
the ground Android application.

80

6.4 Future Development

The space and weight requirements stated in the previous Section are not crucial
as the Raspilot can be used in reasonably large aircraft (for example aircrafts
with wingspan larger than 1.8m can accommodate the required hardware without
much struggle). However, this limits the usage to bigger aircrafts only.

There are many possibilities how to lower these requirements. For example the
special Raspberry Pi Zero[37] might be used instead of the regular Raspberry
Pi. Other opportunity to reduce the weight is to remove the additional battery
powering the Raspilot devices. This however implies research whether the air-
plane batteries can be used without any filtrations, if the filtration is required,
which to use, etc.

The Android device initially serves as a source of the sensor data. However,
during the development it has become a provider of the Internet connectivity
more than a source of sensor data. Currently only the GPS data are being read
from the Android. In terms of space and weight it is not very efficient. The
dedicated GPS sensor will be much better. The removal of the Android device
will imply two facts:

1. loss of the Internet connectivity

2. loss of the Black Box mode

The loss of the Internet connectivity means the Commands must be transfered
via another communication channel. Either a new channel will be created or we
have only the RC radio left. However, if we do not want to loose the Internet
connectivity it must be provided by some other device. For this purpose the USB
modem might be used. This modem will contain the SIM card with active data
plan. The space requirements and weight are much better than in the case of the
Android device. Of course these devices must be examined in order to select the
best for our case.

If the loss of the Internet connectivity is acceptable, then we have to use the
RC radio to transmit our data. Currently there are not many RC radios capable
of this. An example of such RC radio are the radios running the OpenTX [38]
software. For more information about the OpenTX refer to following Section.

The Black Box mode has shown itself as not very useful. If we have aircraft
big enough to carry the Android phone, it is probably big enough to carry the rest
of the devices as well. Also the Android device is the biggest and the heaviest of
all airborne devices. Therefore, the future versions of the Raspilot will probably
abandon the Black Box mode completely.

OpenTX

The OpenTX [38] is the open source firmware for RC radios. One of its features
is the ability to transmit telemetry from the aircraft. We can use this and feed
the telemetry with our data.

But this can be brought further. The principle of the OpenTX telemetry is
a bus of sensors. Each sensor has its ID. The radio receiver in the aircraft
requests the update of the sensor with specified ID and transmits the sensor data

81

to the transmitter 1. There is a component which can be added to the sensors bus
and which serves as a bridge between the OpenTX and UART protocol. With
this sensor it might be possible to establish the Serial communication channel
between the airborne RC receiver and RC transmitter. The OpenTX powered
transmitters have the ability to output the received telemetry via their Serial
port. This Serial port can be read by the Ground Station device. If our previous
assumptions about the OpenTX and the OpenTX and UART protocol bridge are
correct than the following should be possible:

• the Raspilot application will create a Command

• the Command will be transmitted via the OpenTX and UART protocol
bridge

• the OpenTX telemetry will transmit the data to the RC transmitter

• received data will be outputted to the Serial port of the RC transmitter

• an application will read these data and execute relevant action (for example
update the dashboard, etc.)

This is currently more of a concept than a reality. However, if we manage to
achieve this usage, it might bring a whole new set of possibilities to the Up and
the Raspilot.

Flight Controller

As has been stated in the Section Current Limitations the Flight Controller is
somehow limited. Because there are many superb autopilots already we find it
useless to create a new one. Therefore, the future versions of the Raspilot and
the Up will probably more focus on integrating existing autopilots rather than
creating a new one.

For example the DJI has created and released a SDK while this thesis has been
developed. A possible integration of DJI’s solutions and Up should be analyzed.

6.4.1 Summary

After all we consider the thesis to successfully achieve the goals. The Up frame-
work has been designed an implemented in such manner, that all functional and
non-functional requirements are satisfied. The Raspilot proves the concept that
the Up is usable as intended. These statements are supported by the results of
the tests, which has been stated in the Section 5. These tests also supports the
fact, that the Raspilot is usable in real RC models.

1It is a bit confusing that the radio receiver transmits data to the radio transmitter. How-
ever, the radio transmitter is usually called the device with which the user controls the airplane.
The receiver is the device present in the aircraft.

82

Bibliography

[1] On Screen Display Autopilot for Model Airplanes User Manual. RangeVideo
https://www.rangevideo.com/index.php?

controller=attachment&id attachment=23. Accessed: 2016-10-19.

[2] Naza-M V2 Mutlirotor Autopilot System. DJI
http://www.dji.com/naza-m-v2/feature. Accessed: 2016-10-19.

[3] Naze32 User Manual, AfroFlight
www.abusemark.com/downloads/naze32 rev3.pdf. Accessed: 2016-10-19.

[4] MultiWii Wiki, MultiWii
http://www.multiwii.com/wiki. Accessed: 2016-10-19.

[5] ArduPilot Home Page, ArduPilot
http://ardupilot.org/. Accessed: 2016-10-19.

[6] What Is Arduino, Arduino
http://www.arduino.org/learning/getting-started/what-is-arduino.
Accessed: 2015-04-10.

[7] Arduino Home Page, Arduino
http://www.arduino.org. Accessed: 2015-04-10.

[8] Aström, Karl Johan, and Richard M. Murray. Feedback systems: an introduc-
tion for scientists and engineers. Princeton university press, 2010: 293-314.

[9] Kaur, Amanpreet, and Amandeep Kaur. ”An approach for designing a univer-
sal asynchronous receiver transmitter (UART).” simulation 2.3 (2012): 2015-
2016.

[10] Official I2C specification, NXP
http://www.nxp.com/documents/user manual/UM10204.pdf. Accessed:
2015-04-11.

[11] Barr, Michael. ”Pulse width modulation.” Embedded Systems Programming
14.10 (2001): 103-104.

[12] megaAVR Microcontrollers, Atmel
http://www.atmel.com/products/microcontrollers/avr/megaavr.aspx.
Accessed: 2015-04-10.

[13] Raspberry Pi - Teach, Learn, and Make with Raspberry Pi, Raspberry Pi
Foundation
https://www.raspberrypi.org/. Accessed: 2015-03-23.

[14] Raspberry Pi - FAQs, Raspberry Pi Foundation.
https://www.raspberrypi.org/help/faqs/. Accessed: 2015-03-23.

[15] Raspberry Pi Model 3, Raspberry Pi Foundation
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/.
Accessed: 2015-03-23.

83

[16] Build your own Quadcopter Flight Controller, Dr. Gareth Owenson
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/.
Accessed: 2016-04-15.

[17] Activity — Android Developers, Google Inc.
https://developer.android.com/reference/android/app/

Activity.html. Accessed 2015-04-16.

[18] Fragments — Android Developers, Google Inc.
https://developer.android.com/guide/components/fragments.html.
Accessed 2015-04-16.

[19] Services — Android Developers, Google Inc.
https://developer.android.com/guide/components/services.html.
Accessed 2015-04-16.

[20] IntentService — Android Developers, Google Inc.
https://developer.android.com/reference/android/app/

IntentService.html. Accessed 2015-04-16.

[21] Welcome to Setuptools’ documentation! - setuptools 34.3.3 documentation,
Python Software Foundation.
https://setuptools.readthedocs.io/en/latest/. Accessed: 2016-11-10.

[22] PyPI - the Python Package Index : Python Package Index, Python Software
Foundation.
https://pypi.python.org/pypi. Accessed 2015-04-28.

[23] Arduino - Compare, Arduino.
https://www.arduino.cc/en/Products/Compare. Accessed: 2015-07-03.

[24] Arduino - Software, Arduino.
https://www.arduino.cc/en/Main/Software. Accessed: 2015-04-10.

[25] Arduino - AttachInterrupt, Arduino.
https://www.arduino.cc/en/Reference/AttachInterrupt. Accessed:
2015-07-03.

[26] Arduino - ArduinoBoardNano, Arduino.
https://www.arduino.cc/en/Main/ArduinoBoardNano. Accessed: 2015-07-
03

[27] Arduino - ArduinoBoardUno, Arduino.
https://www.arduino.cc/en/Main/ArduinoBoardUno. Accessed: 2015-07-
03

[28] Gammon Forum : Electronics : Microprocessors : Interrupts, Nick Gammon
http://gammon.com.au/interrupts. Accessed: 2015-07-03.

[29] Mitra, Sanjit Kumar, and Yonghong Kuo. Digital signal processing: a
computer-based approach. Vol. 2. New York: McGraw-Hill, 2006.

84

[30] MPU-6000/MPU-6050 EV Board User Guide, InvenSense.
https://www.invensense.com/wp-content/uploads/2015/02/

MPU-6000-EV-Board1.pdf. Accessed: 2016-08-02.

[31] Arduino Playground - MPU6050, Arduino.
http://playground.arduino.cc/Main/MPU-6050. Accessed: 2016-07-30.

[32] Diebel, James. ”Representing attitude: Euler angles, unit quaternions, and
rotation vectors.” Matrix 58.15-16 (2006): 1-35.

[33] Arduino - Servo, Arduino.
https://www.arduino.cc/en/Reference/Servo. Accessed: 2015-04-12.

[34] Arduino Playground - Arduino Pin Current Limitation, Arduino
http://playground.arduino.cc/Main/ArduinoPinCurrentLimitations.
Accessed: 2015-04-12.

[35] Android Developers - Google Inc.
https://developer.android.com/index.html. Accessed 2015-04-16.

[36] Upstart - event based init daemon, Canonical Ltd.
http://upstart.ubuntu.com/. Accessed: 2015-11-16.

[37] Raspberry Pi Zero - Raspberry Pi, Raspberry Pi Foundation.
https://www.raspberrypi.org/products/pi-zero/. Accessed: 2016-09-
07.

[38] Welcome to OpenTX - OpenTX.
http://www.open-tx.org/. Accessed: 2016-09-17.

[39] Twisted, Twisted Matrix Labs.
https://twistedmatrix.com/. Accessed: 2016-11-10.

[40] Fritzing Fritzing, Friends-of-Fritzing Foundation.
https://fritzing.org. Accessed: 2017-03-02.

85

List of Figures

2.1 PWM Pulse and Corresponding Servo Position 12

3.1 High Level View of the System Architecture 18
3.2 High Level View of the System Architecture when running in Black

Box mode . 19
3.3 Outline of the Message Exchanged Between Arduino and Raspberry 20
3.4 Illustration of the roll, pitch and yaw 22
3.5 General Message Outline . 22
3.6 Flow of the PWM Signal When Stabilization Is Enabled 24
3.7 High Level View of the Framework Architecture 25
3.8 Relations Between Module Types 28
3.9 Flow of the Flight Control Process 28
3.10 Raspberry Pi Application Architecture Overview 30
3.11 Aircrafts Attitude Control Process 31
3.12 Rate PID . 32
3.13 Stabilize PID . 33
3.14 Navigation PID . 33
3.15 Folder Structure . 36
3.16 Overview of the Server Application Architecture 37
3.17 Overview of the Up Library for Android 40
3.18 Overview of the Arduino Application Architecture 40

4.1 Module Telemetry Data Example 43
4.2 Resulting Telemetry with More Modules Under Same Module Key 43
4.3 Intra-framework Communication Example 46
4.4 Flow of the Orientation Data From Arduino To Orientation Provider 49
4.5 Arduino Command Handling . 61

6.1 Installing Python Module . 89
6.2 Installing All Required Cogs . 90

86

List of Tables

3.1 Commands Exchanged Between Arduino and Raspberry 41

4.1 The Raspilot Commands . 52
4.2 Cogs Extracted from Original Up and Raspilot 56
4.3 Most Important Cog and Cogs-related Files 57
4.4 Most Important Cog and Cogs-related Classes 57
4.5 Available Flight Controller Modes 65
4.6 Enabled PID Controllers Based on the Flight Mode 66

87

Attachments

This thesis contains several addenda. This text contains the following attach-
ments:

Name Content
Attachment 1 Installation Guides installation Guides for all appli-

cations and libraries
Attachment 2 Photos of the Test

Aircraft
ohotos of the test aircraft with the
Arduino and IMU installed

Attachment 3 Printed Circuit Board diagram of the printed circuit
board

Attachments Overview

The burned DVD contains the following appendices:

Content Relative Path
this text in a PDF document text/thesis.pdf

sources of the Up Framework src/up/

sources of the Raspilot Application src/raspilot/

sources of the Android Application src/android/

sources of the Arduino Application src/arduino/

sources of the Arduino Application li-
braries

src/arduino-libs/

sources of the Proxy Application (for re-
mote server)

src/remote/proxy

sources of the Runner Application (for re-
mote server)

src/remote/runner

sources of the Raspilot (for remote server) src/remote/raspilot

APK file of the Android Application build/android/raspilot.apk

Up’s Documentation docs/up-autopilot/

Content of the Attached DVD

88

Attachment 1 - Installation
Guides

This Chapter contains the brief installation guides. More detailed guides are
available in the Up’s Documentation which is burned on the attached DVD
and is also accessible at:

https://up-autopilot.github.io/

Up

This Section contains basic installation guide for the Up framework.

Python 3.5

The Up requires Python 3.5. Many operating systems have a dedicated installer
of this Python version. However, there are some operating systems which do not
contain such installer. In this case Python 3.5 must be installed from sources1.

Installation of Up

The Up contains the Setuptools[21] script which handles all the required depen-
dencies. This script is present in the file setup.py. The Up should be installed
as any other Python library. The following example, which shows how to install a
Python library, is usable also in case of Raspilot and Cogs. The following should
be executed in the root directory containing Up’s (or Raspilot’s or Cog’s) sources:

$ python setup.py develop

Figure 6.1: Installing Python Module

Please refer to Setuptools’ documentation[21] for more details about usage of
Setuptools.

There might be an error while installing the Twisted library2[39] on Rasp-
berry, Macbooks and possibly other platforms. For troubleshooting, refer to the
Up’s Documentation. The solution is to install the Twisted from sources at first
and then install the Up.

Raspilot

This Section contains basic installation guide for the Raspilot application which
is run on the Raspberry. Please note that it is expected that the Up has been
installed successfully.

1The installation guide for installing Python from sources is out of scope of this thesis, but
is available in the Up’s Documentation.

2Twisted Library is used by the Up for managing the network communication.

89

https://up-autopilot.github.io/

Installing Application

The Raspilot as well as the Up contains the Setuptools script which should be
handled the same way as the Up’s installation script.

Installing Cogs

The Cogs which are required by the Raspilot are defined in the Cogfile.yml file.
These Cogs can be installed one by one from sources, or can be installed all at
once. To install them all at once we can use the Cog Integration Utilities. Invoke
the following in the root of the Raspilot:

$ up gather

Figure 6.2: Installing All Required Cogs

Configuring Cogs

Some of the Cogs need to be configured. All of the configuration files are placed
in the config folder. However, the version of Raspilot on the attached DVD
contains all required configuration files. For more information about the Cogs
and their configuration files refer to the Up’s Documentation.

Running the Raspilot

Once Raspilot and all Cogs are properly installed and configured, Raspilot can be
run. The main script is present in the main.py file. This script does not require
any other arguments.

Arduino Application

This Section contains basic installation guide for theArduino application. The
Arduino application should be build and uploaded via the Arduino IDE.

Dependencies

The Arduino IDE does not provide (at the time of creating this thesis) any
utility for specifying dependencies. They must be therefore installed manually.
The Arduino application required two additional libraries:

1. PinChangeInterrupt

• created by NicoHood

• tested with version 1.2.2

2. PID

• created by Brett Beauregard

• tested with version 1.1.1

90

Sources of both libraries are present on the attached DVD. Please refer to the
following web page for detailed guide about installing libraries in Arduino IDE:

https://www.arduino.cc/en/guide/libraries

The required libraries can be installed from provided sources or via the Library
Manager of the Arduino IDE.

Android Application

This Section contains basic installation guide for the Raspilot for Android.
The attached DVD contains the raspilot.apk file, which can be installed on

the Android device. There are few requirements which must the Android device
meet:

1. Android version 4.1 and higher

2. presence of GPS

3. presence of barometric sensor (required for airborne devices)

4. presence of accelerometers and gyroscopes (required for airborne devices)

5. sufficient storage

Server Applications

This Section contains basic installation guide for the Up framework components
run on remote server. It is anticipated that there is properly installed Up on
the remote server.

The configured Raspilot which can be installed on the remote server is present
on the attached DVD. It should be installed using the Setuptools script. Also the
Cogs must be installed. Installation process of Cogs is the same as in case of the
Raspilot run on Raspberry Pi.

Besides the Up and the Raspilot the remote server contains the Runner1 and
Proxy2 applications. Both should be installed via the Setuptools scripts.

Both the Runner and the Proxy should be run on system startup. Please refer
to the system’s documentation about how to run a program on startup.

1The Runner spawns the Raspilot instance upon request.
2The Proxy exchanges data between the Raspberry and ground device.

91

https://www.arduino.cc/en/guide/libraries

Attachment 2 - Photos of the
Test Aircraft

This attachment contains the photos of the test aircraft with the Arduino and
IMU unit equipped.

The succeeding figures contain the following:

• the overall aircraft

• picture of the cockpit part of the aircraft where we can see the PCB con-
taining Arduino

• the IMU unit mounted in such fashion, it is leveled with the ground

The Test Aircraft

92

The Cockpit with the Arduino on Printed Circuit Board

The IMU Unit

93

Attachment 3 - Printed Circuit
Board

The third attachment contains the diagram of the printed circuit board (PCB)
and some brief connection instructions.

The following Figure depicts the diagram of the printed circuit board. This
figure has been created by the Frizting[40] program.

The Diagram of Printed Circuit Board

The yellow lines are PCB connections. The pins touching the Arduino, are
connected with the nearest Arduino pin. In case of a servo connector (a connector
with three wires, (5)-(8) and (18)) the pin nearest to the Arduino is the signal
and the one on the other end is ground.

The designed PCB is capable of following:

• powering up the logic level shifter (discussed later), the servos, ESC, the
Arduino and the IMU

• connecting RX and Arduino

• connecting Arduino and servos

• connecting Arduino and ESC

94

• connecting Arduino and logic level shifter

• connecting Arduino and IMU

Required Connections

The professionally designed and printed PCB should not need any additional
connections. But because this is a home made PCB, there are some connections
which must be added if the PCB should work correctly.

The pin (1) must be connected to the right pin of (9). The pin (2) must
be connected to the left pin of (9). The whole power connectors section (four
connectors from (9) to the bottom) have the IC power supply - VCC pin on
the left and the ground - GND pin on the right.

Connecting the Level Shifter

Logic level shifter is a dedicated hardware component responsible for translating
signal between two voltage logic schemes. The Arduino uses a 5V logic, while
the Raspberry uses the 3.3V logic. If these devices are connected directly, the
Raspberry could be damaged.

However, the Arduino and Raspberry might be connected via the USB cable.
Then the logic level shifter is not required. Logic level shifter is required only if
the Arduino connects directly to the UART pins of the Raspberry.

If there is a level shifter, the VCC pin of (11) should be connected to 20 and
the GND of (11) to (21).

The Raspberry should connect to the pins (22) - (25). Connect pins (22) and
(23) to the proper UART pins of the Raspberry. Connect the (24) to the GND
pin of Raspberry and the (25) to the 3.3V pin of the Raspberry.

If we now power up the Raspberry and then the Arduino, the devices should
communicate. The Raspberry must be powered first, otherwise the Arduino will
not be discovered.

Connecting the IMU

The IMU unit requires several connections. The SDA pin of the IMU should be
connected to the (4), the SCL pin to the (3). The VCC of the IMU should be
connected to the VCC pin of the (10) and the GND pin of the IMU to the GND
pin of the (10). The INT pin of the IMU should be connected to the (19).

If we now power up the Arduino, the IMU should power up as well and these
two devices should communicate.

Connecting the RX, the Servos and the ESC

The generic servo connector has three wires:

1. ground, usually black or brown

2. vcc, usually red

3. signal, usually white or yellow

95

On the designed PCB the signal wire should be always nearest to the Arduino
and the ground wire should be on the opposite site.

(13) - (18) are input connectors, while (5) - (8) are output connectors. A
servo connector from the ailerons RX output should be connected to (18). This
connector will power the section of PCB which powers the servos. The signal
wires from the remaining RX channels should be connected to the pins (13) -
(17). The servos should be connected to pins (5) - (8).

With this connection, if we power up the RX and the Arduino, we should be
able to control the servos and motors.

Powering the Arduino

The Arduino can be powered in two ways:

1. from the RX

2. via the USB cable connection

If we want to power the Arduino from the RX, pin (12) should be connected
to its neighbor. If we now power up the RX, it should power up the Arduino,
logic level shifter, IMU, servos, ESC and the whole PCB. But, if we disconnect
the battery from RX and power up the Arduino via USB connection, then also
all devices will be powered up including servos and ESC.

The pin (12) should not connected to its neighbor if:

• the Arduino is powered via USB connection and RX is powered
by another power source - damage risk to RX

• the Arduino is powered via USB connection and RX is powered
by the PCB and there are servos and ESC connected - damage risk
to Arduino and USB host

Photo

The following figure depicts the real PCB created by the proposed design:

96

The Printed Circuit Board

97

	Introduction
	Problem
	Aims and Objectives
	Thesis Outline

	Analysis
	Pilots Requirements
	Hardware Requirements
	Features Requirements

	Existing Solutions
	System Requirements
	Communication Between Airplane and the User
	Airplane Control
	Sensor Readings

	Proposed Components of the Framework
	RC Radio Receiver
	Servos and Electronic Speed Controlers
	Microcontroller
	The Core
	Sensors
	Communication via TCP/IP
	Operation Modes

	Non-functional Requirements

	Design
	Overall System Architecture
	Raspberry Pi
	Arduino
	Android device
	Ground Station
	RC Receiver and Servos

	Framework Architecture
	High-level View
	Modules
	Flight Controller
	Up Framework Architecture Summary
	Panic Mode

	Raspberry Pi Application Architecture
	Core
	Flight Controller
	Custom Providers
	Custom Recorders
	Commands
	Automated Load of the Modules

	Server Application Architecture
	Android Application Architecture
	Basic Components of the Android Framework
	Up Library for Android

	Arduino Application Architecture

	Implementation
	Up Framework
	Technical Details
	Design Modifications
	Startup and Initialization
	Intra-framework Communication
	Telemetry

	Raspberry Pi Application
	Technical Details
	Design Modifications
	Modules
	Commands and Command Handlers

	Plug-in Modules
	Distribution and Installation of Cogs
	Cogs Integration
	Cogs Dependencies
	Existing Cogs
	Summary

	Arduino Application
	Technical Details
	Arduino Model
	Commands, Command Receiver and Command Executor
	PWM Reader
	Determining Orientation
	Flight Controller
	Servo Control

	Android Application
	Technical Details
	Up Library for Android
	Raspilot for Android

	Server Application
	Conditional Module Load
	Up Runner
	Ground Station Proxy

	Hardware
	Printed Circuit Board for Arduino
	Powering the Devices
	Physical Protection

	Experiment and Discussion
	Validating the Communication Channel
	The Test Aircraft
	Validating the Autopilot
	Running Raspilot on Raspberry
	Results of Communication Channel Validation
	Results of Autopilot Tests
	Results of Raspilot Run on Raspberry
	Summary

	Conclusion
	Conclusion
	The Problem
	The Problem
	The Solution
	The Solution
	Current Limitations
	Current Limitations
	Future Development
	Future Development
	Summary

	Bibliography

	List of Figures
	List of Tables
	Attachments
	Attachment 1 - Installation Guides
	Attachment 2 - Photos of the Test Aircraft
	Attachment 3 - Printed Circuit Board

