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Introduction

The use of the indefinite and definite articles (a, an, the) in English poses a

significant problem for many speakers with a different first language. English

grammars analyze the use of the articles in great detail but they acknowledge the

rules can be sometimes contradictory (e.g. conflict between the first mention (an)

and cataphora (the) in the sentence: I had the / an impression that something was

wrong. [Dušková et al., 2006, p.81]). As is often the case with language, grammars

provide analyses of different tendencies effecting the language phenomenon rather

than a fixed set of rules to follow. The aim of the thesis is to create an automatic

grammar checker targeted specifically at the use of the, a and an.

Previous work and problem formalization

Considering the literature, the interest in article correction seems to date back to

the middle of the nineties. In this section, a brief overview of the previous work

will be provided. Also, some basic decisions that were made in the beginning of

the project as well as their justification will be given.

In order to improve the quality of machine translation generated text, Knight

and Chander [1994] used decision trees to assign noun phrases with the or a/an ar-

ticle with the accuracy of 78%. Minnen et al. [2000] used memory-based learning

to predict definite, indefinite or zero article for noun phrases in Penn Treebank.

Their accuracy is 83.6%. In the same task and with the same data, Lee [2004]

achieves the accuracy of 87.7%. Turner and Charniak [2007] use language model

trained on more data to achieve the accuracy of 86.6% on Penn Treebank corpus.

More recently, grammatical error correction, including articles, was the focus of

the shared task at two successive CoNLL conferences [Ng et al., 2013] and [Ng

et al., 2014]. The systems of the participants were trained and tested on essays

written by Singaporean students. However, article errors were not their only

target. Sun et al. [2015] use convolutional neural networks on the same data.

Most of the reviewed authors [Knight and Chander, 1994], [Minnen et al.,

2000], [Lee, 2004], [Turner and Charniak, 2007] choose first to identify noun

phrases in the text and then consider the use of an article with respect to each

of the noun phrase. Another approach, advocated by Sun et al. [2015], is to

consider each possible position in the text to be a potential candidate for an

article placement. The former approach stems from the fact that articles occur

only with noun phrases and that their position within noun phrases is easy to

predict (i.e. mostly the very beginning of the noun phrase). Moreover, not being
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limited by an n-gram window provides more freedom in feature engineering. On

the other hand, Sun et al. [2015] advocate the use of their approach by potential

“propagation of errors in the existing tools of NLP” such as taggers and parsers

that are necessary for extracting the noun phrases from the raw text. To facilitate

comparison with what seems as larger body of literature on the subject, the former

approach was selected for most of the experiments. However, a language model

is also trained and evaluated for comparison.

As mentioned above, some researchers decided to train their models on texts

written by students of English, others relied on standard corpora, i.e. texts

written by English native speakers. Intuitively, the former approach makes more

sense for practical grammar correction systems. However for this project, the

latter option was chosen for the following reasons:

a) The student corpora are less accessible and contain less data.

b) Texts written by non-native speakers contain other kinds of errors that can in-

fluence performance of some preprocessing steps (tagging, parsing). Avoiding

these types of errors makes it possible to focus solely on the articles.

c) Utilizing the articles already present in the input text seems practical (one

could, for example, make more corrections in certain contexts while staying

conservative in others). However, this means the resulting system would model

not only the nature of the grammatical phenomenon, but also some systematic

linguistic behavior in non-native speakers of English. This is problematic for

two reasons. Firstly, there is not much consensus on the regularity of such

behavior. Gressang [2010] contrasts different studies finding in turn that the

single main source of article errors is omission, predominant use of the or

predominant use of a/an. Rozovskaya and Roth [2010] show large variability

in article error types based on the first language of the speaker. Secondly,

the researchers who make use the original articles in text sometimes find they

need to introduce artificial errors since the true errors are sparse [Rozovskaya

et al., 2013], [Lee, 2004].

English articles come in three forms: the, a and an. In accord with previous

research, in this thesis the two forms of the indefinite article are treated as one

entity. The choice between a and an is a matter of simple phonological rules

rather than a question of noun phrase determination. As such, the proper form

can be chosen in a post-processing step.

Summing up the above, in this project, the article correction is understood as

a classification task. Each noun phrase in the input text is assigned with one of
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the three categories irrespective of the potential original article: definite article

(the), indefinite article(a/an) and zero article (no surface realization).

Thesis structure

Chapter 1 provides linguistic perspective on the use of articles and determiners in

general. In Chapter 2, two machine learning algorithms used for the experiments

in this thesis are described, namely logistic regression and gradient boosted trees.

The motivation for this choice of the methods is also mentioned. Chapter 3

deals with the experimental setup; namely, the processing of the data and the

features used for the experiments. The evaluation of different approaches as well

as comparison to human performance is given in Chapter 4.
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1. English Articles from the

Linguistic Perspective

The following chapter provides an introduction to the use of articles from the

point of view of English grammars. In particular, the information is based on

two established sources: very thorough grammar description by Quirk et al. [1985]

and more theory-based work by Dušková et al. [2006].

Generally, there are four specific forms of articles in English: two forms of

the indefinite article: a [@], an [@n] and two forms of the definite article, whose

distinction is, however, apparent only in the spoken language, – the [D@] and the

[Di:]. For both the definite and indefinite articles, the longer variants, i.e. an and

the [Di:], occur in front of a (pronounced) vowel.1

The articles are one way of expressing the grammatical category of definite-

ness, which is a property of English noun phrases. Similarly to countability,

another such grammatical category, it does not have a counterpart in the system

of the Czech (and generally Slavic) noun. Presumably, this is why the correct use

of English articles poses a large problem for Czech speakers.

From the semantic perspective, definiteness conveys the information about the

nature of the reference of the noun. In other words, it helps distinguish different

types of relationship between a noun phrase and the entity being referred to.

This notion can be illustrated by the etymology of the two basic forms: the

definite article originates from the old English demonstrative ‘θœt’ (that) and

the indefinite article from the Old English numeral ‘ān’ (one). This closeness

can be observed in some contemporary uses such as for the moment (≃ for this

moment), Don’t say a word (≃ not a single word). [Dušková et al., 2006, p. 59]

In greater detail, the relationship between definiteness and the reference of the

noun will be discussed in Section 1.3.

1.1 Determiners and their position within the

noun phrase

Generally, the grammatical category of definiteness is expressed by a closed-class

group of words known as determiners. The articles are particular members of

this group, other examples are demonstratives, possessive pronouns, cardinal and

1 Not surprisingly, there are exceptions to this rule. Notably, the longer forms can be used

for emphatic reasons even when not followed by a vowel sound: He is the [Di:] man!
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ordinal numerals and others.

Typically, all determiners occur at the beginning of the corresponding noun

phrase. However, more than one determiner can be used simultaneously. With

respect to the possible co-occurrence of different sets of determiners, Quirk et al.

[1985, p. 253] describe the following small system of three determiner classes:

predeterminers all, both, half, twice . . .

central determiners a, an, the, demonstratives, . . .

postdeterminers cardinal and ordinal numerals, many, few, . . .

When more determiners are used within a given noun phrase, they cannot be

from the same category and they must follow the provided order of the cate-

gories. Thus, the following example all the five boys is valid because it contains

a premodifier, a central modifier and a postmodifier in the given order; while the

example the five all boys is invalid because the order is broken. [Quirk et al., 1985,

p. 253] In practice, noun phrases often occur with only one (if any) determiner.

Apart from a possible preceding predeterminer (once a week, twice as much,

half the money), Dušková et al. [2006, p. 60] give the following situations when

an article is moved from its typical position at the beginning of the noun phrase:

• modification of a pre-modifier by so, as, too, however

This is [as good a hotel as any other]. It’s [too good a chance] to be missed

• any/no worse, no less

He is no worse a doctor for being . . .

• rather, quite

rather an unexpected result, quite a long time

• exclamative sentences with what

What a silly lie!

1.2 Countability

The usage of the definite and indefinite articles as well as other determiners is

heavily influenced by another grammatical category of the English noun – count-

ability. Semantically, countability reflects the distinction between the referred

entities along the lines of continuous – discrete. In other words, countable nouns

refer to classes whose instances are conceptually distinguishable from one another,

while uncountable nouns (also called mass nouns) refer to homogeneous entities

with no distinct units.
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Understanding what is countable and what is not differs from language to

language in certain situations. The same is true for the extent to which this

distinction is manifested in the grammar of a language. Dušková et al. [2006,

p. 50] contrast English with Czech, where the notion of countability is manifested

only in the presence/absence of plurals, e.g. vzduch — *vzduchy vs. pes —

psi. On the other hand, in English the countability of nouns further influences

the choice of other co-occurring words within the sentence, most notably the

determiners. This is what makes countability a grammatical category.

1.3 Reference

As mentioned earlier, the grammatical category of definiteness (and its realization

in the form of articles and other determiners) carries information about the type

of reference of the noun phrase. This section deals with the relationship between

different reference types and the corresponding types of determination.

The two main reference categories are the generic and specific reference. The

first one is represented by such sentences as: Men are from Mars, women are from

Venus. Here, both men and women refer to all the members of the given class.

In contrast, the stranger in Then a stranger came in refers to a particular man,

a specific instance of the class of all strangers. Therefore it expresses the specific

reference. This type can be further divided into the definite and indefinite sub-

types. The indefinite one is illustrated by the previous example. The stranger as

the member of the class of strangers is not uniquely defined in the situation. The

definite specific reference is illustrated by the sentence I want to see my doctor,

where the doctor “is referring to something which can be identified uniquely in

the contextual or general knowledge shared by speaker and hearer.”[Quirk et al.,

1985, p. 265] Table 1.1 shows the means by which these types of reference are

expressed for both countable and uncountable nouns.

1.3.1 Generic reference

Generic reference is the least constrained type of reference. It can be expressed by

a noun in plural form without any article (a), by a singular with either the definite

(b) or the indefinite (c) article. Uncountable nouns can occur only without any

article (d). All these options are illustrated by the following example taken from

[Quirk et al., 1985, p. 281]:

(a) Bull terriers make excellent watchdogs.

(b) The bull terrier makes an excellent watchdog.
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reference type Countable Uncountable

Generic

the cat music

a cat milk

cats

Specific

Definite
the cat the music

the cats the milk

Indefinite

a cat music, some music

cats milk, some milk

some cats

Table 1.1: Means of expressing different types of reference for countable and

uncountable nouns. The table is adopted from [Dušková et al., 2006, pp. 61–2]

(c) A bull terrier makes an excellent watchdog.

(d) Velvet makes excellent curtain material.

However, not all the variants are equally likely in each context. The most con-

strained variant is the indefinite article. For example, the noun phrase in the

object position of the sentence Nora has been studying a medieval history play

does not have generic interpretation. [Quirk et al., 1985, p. 281] Another factor

limiting the use of the indefinite article for generic reference is the semantic class

of the predicate. Dušková et al. [2006, p. 63] enumerate the following verbs with

which the generic a does not occur: abound, be rare, increase, decrease, . . . .

1.3.2 Specific definite reference

The fact that in the given situation, the referent is interpreted as definite can be

based on many different sources of information. Both grammars, [Quirk et al.,

1985] and [Dušková et al., 2006], illustrate this by listing many subtypes of the

specific definite reference. While sometimes they differ in terminology and/or

systematization of particular examples, the overall picture is largely consistent

and is briefly provided here.

The first factor that can make the referent definite is the situation – situ-

ational reference. This type of reference is determined by the current extra-

linguistic situation, be it an immediate situation such as in Pass me the paper,

please; where the object is directly visible (in such cases, the definite article can

be changed for demonstrative that); or a more general setting, in which the noun

is still uniquely identified: Open the door, please. Did you hear the bell? ; or more

general We used to walk down to the river ; or even more general Look, the Sun

is rising.
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Other factors can be inter-textual. The anaphoric reference refers to situ-

ations where the referent of the noun is defined based on the previous discourse.

This can be based on direct correspondence between two noun phrases: We went

to see a play, . . . , the play was not very good ; or more free correspondence: I

went down to pet her dog, but the beast almost bit me. Sometimes the relationship

between the noun and its antecedent is less straightforward and can be based on

association: I saw there an old guitar. I wanted to play it but found out the strings

were broken. Here the definite reference of the strings arises from its association

to the guitar. (This situation is called associative anaphoric reference in [Dušková

et al., 2006]).

The cataphoric reference is similar, but the noun is specified by what fol-

lows rather than what precedes it in the discourse. Nut surprisingly, the distance

between the noun phrase and the part of the text that makes it definite is much

more limited than in the case of the anaphoric reference. Mostly, it is expressed

by different kinds of post-modification within the same sentence. Based on the

syntactic properties of the post-modification, Dušková et al. [2006, pp. 67–9] list

the following options for the catphoric reference (the examples are taken from

the same source):

a) Postmodification by a restrictive relative clause

This is illustrated by such examples as I appreciate the initiative that you have

all shown; Paul left with the girl who had come with George. However, not all

relative restrictive clauses signal the definite reference as in some cases, there

still might be more than one potential referent left: We took a train that stops

at every station. Further, some clauses may function as only qualifying the

given noun phrase: She carried a bag that was too large for her. Such examples

can sometimes be restated with a premodifier: She carried a large bag.

Similarly, the cataphoric reference can be expressed by restrictive use of the

infinitive The man to deal with this matter is Bill ; participle the examples

given above; or a prepositional phrase I saw it in the shop at the corner of

High street.

b) Postmodification by an of -phrase

Similarly to the previous case, postmodification by an of -phrase expresses the

cataphoric reference if it is specific enough to identify a single member of the

class denoted by the head of the noun phrase: the roof of the house, the bottom

of the sea. This is not necessarily the case for all the of -phrases: a page of the

book.

c) Content relative clause
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The content clause refers to the same referent as its parent noun phrase and

is used to make the referent more specific. Often, this results in the use of

the definite article: The fact that he has won several tournaments won’t help

him to pass his exams. However, sometimes the content clause can be used

for qualifying the noun phrase in which case the is not used: Her father died

at a time when she was too young to fully feel his loss.

d) Apposition

Similarly to content relative clauses, apposition serves as a means of providing

additional information about the referent. Often, this additional information

leads to the fact the referent is uniquely defined: the number seven, the river

Thames, the City of London.

Finally, Quirk et al. [1985] mention two other types of specific definite refer-

ence: sporadic and logical. The first type includes specific nouns that often

occur with the definite article, such as the radio, the Internet, the theater, the

news, the train, the bus, . . . . What holds these examples together is the fact that

in these cases the “reference is made to an institution which may be observed

recurrently at various places and times”[Quirk et al., 1985, p. 269]. The other —

perhaps more straightforward — category consists of examples where the unique-

ness of the referent is inherently encoded in the meaning of a special modifier:

the next/previous/best/worse book, the only question I have, the final stop, . . . .

1.3.3 Specific indefinite reference

The specific indefinite reference is expressed in situations when there is only one

referent but it is not uniquely defined. The most common example of this is the

situation of the first notion, i.e. introducing a concept for the first time in the

discourse: Yesterday, I met a good friend of mine. However, even if the referent

is already implied in the discourse, indefinite article is sometimes used because

of its non-uniqueness: Take a seat.

With this type of reference, the distinction between countable and uncount-

able nouns is expressed the most. Instead of the indefinite article, mass nouns

take either (unstressed) some or they mark the indefinite reference by absence

of a determiner (in contrast to the definite reference, where the is obligatory):

Would you like some chocolate? It takes courage to oppose him.
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1.4 Exceptions and conflicting tendencies in ar-

ticle usage

Unfortunately, it is not possible to give a complete system of the use of En-

glish determiners as there are always many exceptions to the general tendencies

provided above. One such example is the class of proper nouns. Due to their

semantic nature, they express specific definite reference, but unlike the common

nouns, they often occur without a definite article: Agatha Christie, little Emily,

Europe, Norway, Oxford Street, Easter Monday, . . . ; others are used with the:

the Burtons, the United States, the Crimea, the Congo, the Alps, the Shetlands,

the City of New York, the Pacific Ocean, the Thames, the Times, . . . . Further-

more, some proper nouns can become common nouns depending on the context:

A Mr. March to see you; He is not a Mozart; while others can take an article

depending on the type of modification He wrapped the trembling Emily in his

coat; the London I am talking about; the vision of a new Canada. [Dušková et al.,

2006, pp. 75–9]

Sometimes even common nouns do not occur with articles: go to school, in

court, go to bed, travel by train, go by car, from head to foot, hand in hand,

in contrast with, in support of, in fear, in trouble, take office, give way, . . . .

[Dušková et al., 2006, pp. 79–81]

As mentioned in the introduction, there are cases where there are more options

with respect to the choice of articles. This can result from different interpretations

of the situation: I discussed an interesting project with Jim last night. Afterwards

I went to discuss (a/the) project with Fred. [Dušková et al., 2006, p. 66] Similarly,

the use of an article can differ with respect to the countable/uncountable inter-

pretation of the noun: There was a short silence — There was absolute silence.

Yet in other cases, the options reflect virtually no modification in the meaning:

throw (a) new light on, at this time of (the) day, in (the) summer, take (a) pride

in sth., watch (the) TV . . . . [Dušková et al., 2006, pp. 81–2]
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2. Machine Learning Algorithms

In the following chapter, two machine learning algorithms used for the experi-

ments in this thesis are described, namely logistic regression and gradient boosted

trees.

The motivation for this choice is mainly the ability of both algorithms to pro-

cess sparse data: logistic regression (in its form of the maximum entropy model)

is an established approach for many problems in the area of natural language

processing, where sparsity is inherent to most of them (for a review of maximum

entropy model use cases in NLP, see [Ratnaparkhi, 1998]); the other algorithm

— gradient boosted trees — has recently seen a new implementation that can

handle sparse data efficiently [Chen and Guestrin, 2016].

Moreover, logistic regression was used by Lee [2004], whose experiment is

replicated as part of this thesis (for motivation see Chapter 3). Another reason for

selecting gradient boosted trees is the fact that its implementation — XGBoost —

reportedly achieves very good results on many different tasks (as demonstrated by

Kaggle competitions) [Chen and Guestrin, 2016], while general gradient boosted

trees have proven effective in large scale production code [He et al., 2014].

2.1 Logistic regression

2.1.1 Binary logistic regression

In the strict sense, logistic regression learns a hypothesis function in the following

form:

hθ(x) = g(θTx), (2.1)

where x is a vector of features representing the classified example,1 θ is a vector

of weights assigned to the features and g is the logistic function:

g(z) =
1

1 + e−z
. (2.2)

The hypothesis represents the probability that the given example is positive,

which makes it suitable for binary classification only: h(x) = p(y = 1|x).

Training

The problem of estimating the parameters of the model (the θ vector) is — in

the paradigm of supervised learning — formulated in terms of minimizing a cost

1In order to simplify the notation, for m features, x is an (m+1)-dimensional vector with

the additional element x0 = 1, thus θTx = θ0 + θ1x1 + θ2x2 + . . .+ θmxm.

13



function, i.e. a function that measures the error a model is making. In the case

of logistic regression the cost can be expressed as

J(θ) = − 1

m

m∑
i=1

[yi log(hθ(xi)) + (1− yi) log(1− hθ(xi))] +
1

m
λ

n∑
j=1

θ2j . (2.3)

Here, m stands for the number of training examples, n stands for the number

of features, xi and yi represent the feature vector and the true label of the ith

example. The last term 1
m
λ
∑n

j=1 θ
2
j is a regularization term that controls the

complexity of the model. The strength of the regularization can be tuned by the

parameter λ.

By minimizing the cost function of the given form, one maximizes the likeli-

hood L(θ|x), which is defined as the probability of the observed data given the

model:

L(θ|x) = P (x|θ) =
m∏
i=1

pθ(yi|xi) =
m∏
i=1

hθ(x)
yi(1− hθ(x))

1−yi . (2.4)

Now, the cost function given in (2.3) is equal to − 1
m
logL(θ|x) plus the regular-

ization term.

For minimizing the cost function, gradient descent can be used, however in

practice, more efficient algorithms are usually chosen. The implementation of

logistic regression used for this thesis uses the so called LBFGS algorithm [No-

cedal, 1980]. It is based on the Newton’s method, a procedure that iteratively

approaches a local minimum of a function2 by setting

xt := xt−1 − α
f ′(xt−1)

f ′′(xt−1)
, (2.5)

where xt and xt−1 are the values of x at the step t and t − 1, respectively;

and α ∈ (0, 1) is a learning rate, i.e. the parameter determining the speed of

convergence. This update rule comes from approximating the function f by its

second order Taylor expansion at the point xt−1:
3

f(xt) = f(xt−1 +∆x) ≃ f(xt−1) + f(xt−1)
′∆x+

1

2
f(xt−1)

′′∆x2. (2.6)

Setting the first derivative of the approximation of the function with respect to

2Since the cost function in (2.3) is convex, the algorithm finds the global minimum of the

function.
3Taylor series approximates a function f(x) at a point a by

∑∞
n=0

f(n)(a)
n! (x− a(n))n, where

f (n)(a) is the nth derivative of f evaluated at a.
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∆x to be zero and solving for ∆x, the update rule in (2.5) is derived as:

0 =
d

d∆x

[
f(xt−1) + f(xt−1)

′∆x+
1

2
f(xt−1)

′′∆x2

]
= f(xt−1)

′ + f(xt−1)
′′∆x

∆x = − f ′(xt−1)

f ′′(xt−1)
(2.7)

For multiple dimensions, the update rule (2.5) changes into:

xt = xt−1 − α[Hf(xt−1)]
−1∇f(xt−1), (2.8)

where xt and xt−1 are vectors. ∇f(xt−1) and Hf(xt−1) represent the gradient and

the Hessian matrix of the function and, given the function f takes m parameters

x1, x2, . . . xm, are defined as:

∇f =

⎡⎢⎢⎢⎢⎣
∂f
∂x1

∂f
∂x2
...
∂f
∂xm

⎤⎥⎥⎥⎥⎦

H =

⎡⎢⎢⎢⎢⎢⎣
∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xm

∂2f
∂x2x1

∂2f
∂x2

2
. . . ∂2f

∂x2xm

...
...

. . .
...

∂2f
∂xmx1

∂2f
∂xmx2

. . . ∂2f
∂x2

m

⎤⎥⎥⎥⎥⎥⎦ .

Since computing the inverse of the Hessian matrix can be computationally

very expensive, the LBFGS algorithm approximates it by monitoring the history

of the updates. Specifically, it stores the information on the change of x and

the corresponding change of the gradient over a fixed amount of steps. Based

on this information, the update step is approximated by first iteratively esti-

mating the inverse Hessian matrix and the first ‘version’ of the update direction

[Hf(xt−1)]
−1∇f(xt−1), then this update direction is iteratively improved based

on the same information from the history.

2.1.2 Maximum entropy model

Ratnaparkhi [1998] favors the use of the maximum entropy framework over logis-

tic regression for NLP tasks. This algorithm learns the probabilities of an example

belonging to each class from a set of classes and thus can be used directly for
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multinomial classification:

p(y|x) =

k∏
j=1

α
fj(y,x)
j

∑
y′

k∏
j=1

α
fj(y′,x)
j

, (2.9)

y is the target class, x is the example or the ‘context’. Each example is described

by k binary features f(x, y). In the learning phase, each feature is assigned with

its weight α.

The notion of a feature is different from the common understanding of the

term in other machine learning methods. Here, a feature is a function f : A×B →
{0, 1}, where A denotes the set of output classes and B denotes the set of possible

contexts. After introducing the contextual predicate cp : B → {true, false},
which is a function indicating the presence of some information in the given

context b ∈ B; Ratnaparkhi [1998] defines a feature as

fcp,a′(a, b) =

⎧⎨⎩1 if a = a′ and cp(b) = true

0 otherwise.
(2.10)

Thus all the features of the model are binary, and all of them are functions of

both the context and the output variable.

In order to estimate the parameters of the model ({αi}k1), Ratnaparkhi [1998]
uses an iterative algorithm known as general iterative scaling (GIS).

There are two main differences between (binary) logistic regression and the

maximum entropy framework: firstly, the number of classes being predicted and

secondly, the type of features used for describing the examples (because logistic

regression uses real-valued explanatory variables irrespective of the output class).

Ratnaparkhi [1998, pp. 27–28] shows that if one enables real-valued features

and limits the number of predicted classes, the maximum entropy model (2.9)

is equivalent to logistic regression (2.1). Assuming the new type of features is

defined as

f0(a, b) =

⎧⎨⎩1 if a = 1

0 otherwise

fj(a, b) =

⎧⎨⎩xj if a = 1

0 otherwise,
(2.11)

where xj is a value of the jth explanatory variable; the logistic regression model
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(2.1) can be derived as follows:

p(y = 1|x) =

k∏
j=0

α
fj(1,x)
j

k∏
j=0

α
fj(0,x)
j +

k∏
j=0

α
fj(1,x)
j

=

k∏
j=0

α
fj(1,x)
j

1 +
k∏

j=0

α
fj(1,x)
j

=
eθ

Tx

1 + eθTx
=

1

1 + e−θTx
. (2.12)

The third equality results from setting θ := (ln(α0), ln(α1), . . . , ln(αk)) and from

the fact that

k∏
j=0

α
fj(1,x)
j = exp(

k∑
j=0

ln(αj)fj(y, x)) = exp(
k∑

j=0

ln(αj)xj).

2.1.3 Logistic regression and multi-class classification

Ratnaparkhi [1998, p. 28] states that “logistic regression models are designed for

problems with binary-valued outcomes, and are not suited for natural language

tasks [. . . ]”. While this might be true for tasks such as part of speech tagging,

where the target variable has many levels, it is less a problem in the case of

three output classes since there are ways to combine different binary classifiers to

produce multi-class classification. Moreover, there is a generalization of logistic

regression handling the multi-class classification directly.

Multinomial logistic regression

Multinomial logistic regression is an extension of the binary case. The sigmoid

function used in the binary model (2.1) is replaced by its generalization — softmax

function — to handle multiple classes:

hθ(x) = p(y = c|x) = exp(θ(c)⊤x)∑K
j=1 exp(θ

(j)⊤x)
. (2.13)

K denotes the number of classes, c an arbitrary class and θ(c) a set of parameters

associated with the class c. Unlike in the case of binary logistic regression, here
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the set of model parameters forms a matrix:

θ =

⎡⎢⎢⎢⎢⎣
θ
(1)
0 θ

(2)
0 . . . θ

(K)
0

θ
(1)
1 θ

(2)
1 . . . θ

(K)
1

...
...

. . .
...

θ
(1)
n θ

(2)
n . . . θ

(K)
n

⎤⎥⎥⎥⎥⎦ (2.14)

Each row of the matrix corresponds to a single feature and each column corre-

sponds to a specific output class.

In order to adapt the training phase to the new model, the cost function from

the binary model (2.3) is replaced by

J(θ) = − 1

m

m∑
i=1

K∑
k=1

I(yi = k) log
exp(θ(k)⊤x)∑K
j=1 exp(θ

(j)⊤x)
+

1

m
λΩ. (2.15)

I is the indicator function signaling whether its argument is true or not. By using

the indicator function together with the summation over all K classes, the cost

function considers for each example only the probability the model assigns to the

correct class y. The regularization term Ω also needs to be changed to include

all the weights of the model:

Ω =
n∑

i=1

K∑
j=1

θ2ij. (2.16)

Again, the form of the cost function is justified by its relationship to the

likelihood, which for this model is expressed as

L(θ|x) = P (x|θ) =
m∏
i=1

exp(θ(yi)⊤xi)∑K
j=1 exp(θ

(j)⊤xi)
. (2.17)

Now the cost can be expressed as − 1
m
logL(θ|x) + 1

m
λΩ. To estimate the pa-

rameters, the same algorithm (LBFGS) is used as in the case of binary logistic

regression.

When the term “logistic regression” is used more freely to refer also to the

multinomial case described here, both logistic regression and maximum entropy

model are treated as equivalent by some authors [Jurafsky and Martin, 2009].

With respect to the description by Ratnaparkhi [1998], the single difference is the

nature of the features. Under the assumptions in (2.11), the form of multinomial

regression can be derived from the maximum entropy model along the lines shown

by (2.12).

One vs. all approach

The problem of multinomial classification can be approached from another angle.

Instead of changing the form of the model, multiple binary classifiers can be
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trained on different subsets of the general problem and then combined together

to produce the final outcome. This type of approach is not limited to logistic

regression and can be used with any set of binary classifiers. (In fact, it is often

used with support vector machines that are “inherently two-class classifiers.”

[Manning et al., 2008, p. 330])

In the one-vs-rest approach, a single binary classifier is trained for each class to

discriminate between that class on the one side and the other classes on the other

side. At the time of classification, all the models are run on the given example

and the label that achieves the highest score is selected as the final outcome.

Similarly to the multinomial logistic regression, this algorithm learns K sets

of parameters (where K is the number of classes). Here however, the parameters

are estimated separately on modified data, which can lead to different results as

shown in Figure 2.1. A disadvantage of this approach is that by dividing the

training examples into a single class and its complement, one can create highly

imbalanced data.

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4 0 1 2 3 4

Figure 2.1: Comparison of decision boundaries of the one-vs-one, one-vs-rest

and multinomial approaches (from left to right). Black lines mark the bound-

aries of individual classifiers while the colored surfaces represent the prediction

of the overall models. Data was created by taking 50 random samples from

each of the three bivariate Gaussian distributions: N2(

[
1

1

]
,Σ), N2(

[
3

1

]
,Σ), and

N2(

[
2

3

]
,Σ), where Σ =

[
0.3 0

0 0.3

]
. The accuracy scores of the fitted models are

0.907 for one-vs-one, 0.894 for one-vs-rest and 0.927 for multinomial approach.
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One vs. one approach

Another approach of combining binary classifiers to solve multinomial classifica-

tion problem is to train a single classifier for each pair of classes. In total one

needs to fit
(
K
2

)
models, which can be costly if the number of classes is large.

However, in the case of three classes, the number of models is the same as for the

one-vs-rest approach.

The final outcome of the set of binary models can be in this case determined

by simple major vote, i.e. selecting the class that was predicted most often.

The obvious disadvantage of this approach is that sometimes ties may occur.

In the case of three-class problem, this happens when each model predicts a

different class. To mitigate this problem, Hastie and Tibshirani [1998] suggested

an algorithm known as pairwise coupling.

Unlike in the case of the one-vs-rest approach, the problem with a set of

pairwise classifiers is that the output they produce cannot be compared directly

as each output represents P (Ai|AiorAj), where Ai and Aj belong to a set of K

classes A1, A2, . . . AK . Setting K := 3, the individual outputs for one observation

can be represented by a 3 by 3 matrix:⎡⎢⎣ . r1,2 r1,3

r2,1 . r2,3

r3,1 r3,2 .

⎤⎥⎦
where each rij = pi

pi+pj
. In the matrix, each pair (rij, rji) sums to 1. The task

is to estimate the probabilities pi = P (Ai). Setting nij to be the number of

observations based on which the probability rij was estimated, i. e. the number

of examples in the training data where the target class is either Ai or Aj, Hastie

and Tibshirani [1998] propose estimating the probabilities by finding parameters

of the binomial model

nijrij ∼ Binomial(nijµij)

µij =
pi

pi + pj
. (2.18)

To find the probabilities pi, they suggest an iterative algorithm that makes the

initial guess of p̂i and µij at each step closer to rij. This is done by minimizing

the Kullback-Leibler distance between the theoretical and empirical distribution:

ℓ(p) =
∑
i ̸=j

nijrijlog
rij
µij

=
∑
i<j

nij

[
rijlog

rij
µij

+ (1− rij)log
1− rij
1− µij

]
(2.19)
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By setting its derivative

∂ℓ(p)

∂pi
=

∑
j ̸=i

(
−rij

pi
+

1

pi + pj

)
(2.20)

to zero and multiplying by pi, the following equation derived:∑
j ̸=i

nijµij =
∑
j ̸=i

nijrij (2.21)

To find the point that satisfies (2.21) and
∑K

i=1 pi = 1, Hastie and Tibshirani

[1998] suggest the following algorithm:

1. Start with an initial guess on p̂i > 0,∀i and corresponding µ̂ij =
p̂i

p̂i+p̂j
.

2. Repeat until convergence for each class consecutively (i = 0, 1, . . . K, 1, . . .):

(a) compute the new value of p̂i := p̂i

∑
j ̸=i nijrij∑
j ̸=i nij µ̂ij

,

(b) normalize the new value pi :=
p̂i∑K

j=1 p̂j
,

(c) based on the new pi, compute the new estimates of µij: µ̂ij =
p̂i

p̂i+p̂j
.

Hastie and Tibshirani [1998] prove that the above procedure converges, which

results in stable estimates of P (Ai) for each class A1, A2, . . . AK . Based on these

estimates, one can predict a new example by selecting the class with the highest

probability p̂.

Besides the more involved process of combining the prediction of the individ-

ual binary models, another disadvantage of the one-vs-one approach is the fact

that each classifier is used for also predicting examples it did not see during train-

ing (e.g. for an observation with true output Ak, a model trained to distinguish

between Ai and Aj also needs to be used). A related problem is a lower num-

ber of training examples for each binary classifier when compared to one-vs-rest

approach. On the other hand, the models in one-vs-one approach do not suffer

from artificially introduced imbalance to the data. The way one-vs-one method

can differ from the previous ones in terms of the extracted decision boundaries

can be seen in Figure 2.1.

While sometimes the one-vs-one and one-vs-all approaches are considered “not

very elegant” [Manning et al., 2008, p. 330], in practice, they can work well as

will be shown by the experiments in a later section of the thesis.

2.2 Gradient tree boosting & XGBoost

As an alternative to logistic regression, extreme gradient boosting [Chen and

Guestrin, 2016], better known as “XGBoost”, was used. XGBoost is a specific
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implementation of gradient tree boosting, an algorithm introduced by Friedman

[2000]. The general idea of boosting is to build an ensemble of models, where

each model performs slightly better than chance (the models are often called

‘weak learners’). However, each model in the sequence is trained in such a way,

that it learns to improve upon the prediction of the previous ones. Together, the

collection of such models produces a composite model with (hopefully) accurate

predictions (the so called ‘strong learner’).

XGBoost has been shown to achieve state-of-the-art results in many machine

learning problems, as illustrated by top scoring solutions in competitions such as

Kaggle. Moreover, the fact the implementation is scalable by enabling parallel

tree learning and by effective handling of sparse data makes it also a good choice

for natural language processing applications, determiner prediction included.

In general terms, the XGBoost model is defined as a collection of functions

whose outputs are summed to produce the final prediction:

h(x) =
K∑
k=1

fk(x), fk ∈ F . (2.22)

Here, x stands for the feature vector corresponding to the example being pre-

dicted; h(x) is the model hypothesis or prediction for the particular example; f is

a function from a predefined functional space F . While XGBoost implementation

is general enough to provide more options for F , the standard choice, taken also

in this thesis, is to define F as a set of possible regression trees.

2.2.1 Regression trees

A regression tree4 is a machine learning model on its own; it is a function that

produces a real-valued outcome for each feature vector representing an observa-

tion. The function is represented as a binary tree, where each node is associated

with a splitting criterion on the data: a specific feature from the feature set and a

specific value (Figure 2.2a). By comparing data examples to the selected value of

the selected feature, the space of all possible observations is partitioned into two

distinct regions corresponding to the two children of the node. An observation is

processed by following a path from the tree root to one of its leaves based on the

conditions stored in each inner node. Each leaf of the tree represents a region of

the feature space, formed by all the data points that would follow the same path

in the tree (Figure 2.2b). Lastly, each leaf is assigned with a real-valued constant

4There are more variants of regression trees. The ones used by XGBoost and described here

are the so called ‘CART’ trees (where ‘CART’ stands for ‘classification and regression tree’)

proposed by Breiman et al. [1984].
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— the output of the function — shared by all the observations belonging to the

corresponding region (Figure 2.2c).

x2 ≤ 2

x1 ≤ 3 x1 ≤ 2

R1 ↦→ 0.5 R2 ↦→ 0 R3 ↦→ 1.3 R4 ↦→ 0.8

yes

yes no

no

yes no

(a) regression tree

0 1 2 3 4

x1

0

1

2

3

4

x
2

R1 R2

R3 R4

(b) regions

x1
x2

h
(x
)

(c) output values

Figure 2.2: An example of a regression tree for two–dimensional input data

x = (x1, x2). 2.2a shows the graph representation of the tree; 2.2b illus-

trates the final partitioning of the feature space; prediction values for each region

are shown in 2.2c. (The illustration is adapted from a similar example by [Hastie

et al., 2009, p. 306])

Let ci denote the constant corresponding to the region (leaf) Ri out of the

total number of J such regions (leaves). Then the prediction of the regression

tree can be formally written as

h(x) =
J∑

i=1

ciI(x ∈ Ri), (2.23)

where I is the indicator function signaling whether its argument is true or not.

Training

The parameters of the model described in (2.23) are the structure of the tree (i.e.

the nodes with the splitting criteria), which is represented by I in the equation;

and the set of output values {ci}J1 .
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These parameters are estimated from the training data by a greedy algorithm.

The tree is built by a top–down approach, i.e. starting at the root and finishing

at the leaves. For each node, a splitting criterion is selected out of all possible

features and their values. The objective is to split the data into two sets that

are, with respect to the target variable, as homogeneous as possible. The quality

of the split is determined by the mean squared error:

MSE =
1

N

N∑
i=1

(yi − h′(xi))
2, (2.24)

where N is the number of the training observations and h′ is the current model

(i.e. the tree built so far, including the split being evaluated). The output values

{ci}J1 corresponding to the regions {Ri}J1 are computed as the mean of the output

variable of all the observations contained within the specific region:

ci =
1

|Ri|

|Ri|∑
j=1

(yj|xj ∈ Ri). (2.25)

The same procedure of finding the best data split is applied recursively to

the resulting sets from the previous steps (Figure 2.3) until a stopping criterion

is met. This might be based on the number of observations with respect to the

leaves, or on a threshold on a node’s mean squared error beyond which the node

is not split any further.

2.2.2 Gradient tree boosting

After a brief detour to regression trees, the following sections continue with the

description of a specific form of their ensembles: gradient boosting and the XG-

Boost algorithm. The presented form of the model (2.22) i.e. a sum of base

(weak) learners is not specific to boosting only. What distinguishes boosted trees

from models such as random forests is the way of building the ensemble. Fried-

man [2000] presents gradient boosting as an analogy to numerical optimization

methods, where the estimated set of parameters P ∗ can be expressed as a sum of

sequential increments {pm}M0 (p0 being an initial guess):

P ∗ =
M∑

m=0

pm. (2.26)

Similarly, the process of building a boosted tree ensemble can be seen as

“numerical optimization in function space” [Friedman, 2000, p. 3], expressed as

a sequence of incremental boosts to the previous state of the model:

F ∗ =
M∑

m=0

fm(x). (2.27)
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Figure 2.3: First steps of the greedy algorithm minimizing the mean squared

error of a regression tree on an artificially generated dataset (500 observations of

two uniform random variables: X1 ∼ U(0, 4), X2 ∼ U(0, 4), Y = X1X2). From

top left to bottom right the MSE values are 12.1, 7.8, 4.5 and 3.2.

However, unlike in the case of the standard estimation of parameters by numer-

ical optimization, here the parameters (functions) are estimated in a stagewise

fashion, i.e. one parameter at a time without modifying the parameters that

have already been estimated. (When searching for the parameters of a logistic

regression model or a neural network, the algorithms take also many steps, but

at each step, all the parameters are fit jointly).

Concretely, the prediction of the target variable ŷi for the ith observation xi

at the step t can be expressed with respect to the prediction in the previous step

as:

ŷ
(t)
i =

t∑
k=1

fk(xi) = ŷ
(t−1)
i + ft(xi). (2.28)

At each step t, one tries to find a tree ft that makes the predictions of the

new ensemble as close to the observed values as possible. This is achieved by

minimizing a cost function, which can be, depending on the task, the mean

squared error (2.24), logistic loss (2.3), multinomial logistic loss (2.15) and many

others.

2.2.3 XGBoost

XGBoost extends on the original tree boosting algorithm by employing additional

regularization term. Thus the actual regularized cost function at the step t is
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defined as:

L(t) =
n∑

i=1

l(yi, ŷ
(t)
i ) +

t∑
i=1

Ω(fi)

=
n∑

i=1

l(yi, ŷ
(t−1)
i + ft(xi)) +

t∑
i=1

Ω(fi) (2.29)

where n is the number of training examples, l is an arbitrary differentiable cost

function (such as mean squared error) and Ω is a measure of tree complexity.

Informally, minimizing such a function should result in a model that fits the

training examples well without modeling too much of the random noise in the

data so that it can generalize on unseen examples.

Furthermore, for each training example (xi, yi), the cost function l is approx-

imated by its Taylor series5 up to the second order at the point of the previous

prediction ŷ
(t−1)
i :

L(t) ≃
n∑

i=1

[l(yi, ŷ
(t−1)
i ) + gift(xi) +

1

2
hif

2
t (xi)] +

t∑
i=1

Ω(fi) (2.30)

Here, gi and hi are defined as:

gi =
∂l

∂ŷ
(t−1)
i

(yi, ŷ
(t−1)
i )

hi =
∂2l

∂ŷ
(t−1)
i

(yi, ŷ
(t−1)
i )

This approximation enables the algorithm to handle any user-defined loss function

l while staying computationally efficient. Moreover, since both l(yi, ŷ
(t−1)
i ) and∑t−1

i=1 Ω(fi) are constant at the step t, it is enough to minimize the simplified form

of the regularized cost function:

L̃(t) =
n∑

i=1

[gift(xi) +
1

2
hif

2
t (xi)] + Ω(fi). (2.31)

The regularization term is defined as:

Ω(f) = γT +
1

2
λ

T∑
j=1

w2
j , (2.32)

where T is the number of tree leaves, wj is the predicted value for the jth leaf of

the tree and γ and λ are coefficients regulating the strength of the regularization

term with respect to the tree size and the prediction values. (Both last coefficients

serve as hyperparameters of the model). Unfortunately, the choice of the specific

form of the regularization term (2.32) is not justified by Chen and Guestrin [2016].

5 See Section 2.1.1 for its definition.
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By expanding the regularization term (2.32) and setting Ij = {i|xi ∈ Ri}, i.e.
set of all example indices belonging to the region (leaf) j, the cost function can

be further rewritten as:

L̃(t) =
n∑

i=1

[gift(xi) +
1

2
hif

2
t (xi)] + γT +

1

2
λ

T∑
j=1

w2
j

=
T∑

j=1

[(
∑
i∈Ij

gi)wj +
1

2
(
∑
i∈Ij

hi + λ)w2
j ] + γT (2.33)

For a given tree, the best estimate for the output value6 wj can be found

analytically by taking the derivative of the relevant part of the loss function and

setting it to zero: ((
∑

i∈Ij gi)wj +
1
2
(
∑

i∈Ij hi+λ)w2
j )

′ = 0. Solving the equation

for wj produces the following result

w∗
j = −

∑
i∈Ij gi∑

i∈Ij hi + λ
. (2.34)

The formula also illustrates the impact the regularization coefficient λ has on

lowering the predicted values of the tree.

After substituting the leaf values in (2.33) with their estimates from (2.34) and

simplifying, the ultimate regularized loss function of the whole tree is expressed

as

L̃(t) = −1

2

T∑
j=1

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ
+ γT. (2.35)

The derived cost function can be used to evaluate an existing tree. It is

impossible to enumerate all possible trees and compare their cost. Instead, as

mentioned in the section on the training of regression trees (2.2.1), a greedy top-

down algorithm is used. In order to compare potential splits at each stage of

the process of building the tree, the cost function (2.35) is utilized to create a

measure of a split gain:

SplitGain =
1

2

[
(
∑

i∈IL gi)
2∑

i∈IL hi + λ
+

(
∑

i∈IR gi)
2∑

i∈IR hi + λ
−

(
∑

i∈I gi)
2∑

i∈I hi + λ

]
− γ. (2.36)

Here, I stands for all the examples belonging to the potential split node, IL

and IR represent the examples belonging to its left and right child (given the

split is chosen). Thus the cost reduction of a split can be interpreted as the

difference between the cost of the node before the split and the cost of the two

new nodes after the split: (−1
2

(
∑

i∈I gi)
2∑

i∈I hi+λ
+γ)−(−1

2

(
∑

i∈IL
gi)

2∑
i∈IL

hi+λ
+γ− 1

2

(
∑

i∈IR
gi)

2∑
i∈IR

hi+λ
+γ).

Additionally, this form of the split gain equation shows explicitly the role of the

6Chen and Guestrin [2016] use the term ‘weight’ for the output of a leaf
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regularization parameter γ. It prevents the algorithm from selecting splits that do

not result in cost reduction that is ‘large enough’, namely those whose reduction

is less than γ.

The provided derivation of the split finding criterion illustrates the differences

between XGBoost and the original algorithm of gradient boosted trees. Using the

second order approximation of the original loss function l (2.30) makes it possible

to have a single implementation for any user-defined loss function (as long as l′

and l′′ are provided). Moreover, by adding the tree complexity penalty to the cost

function (2.32), regularization is embedded to the core of the tree construction.
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3. Experimental Setup

The conducted experiments were designed to firstly replicate and secondly to

improve upon the experiment by Lee [2004] who, in turn, followed rather closely

the experiment by Minnen et al. [2000]. The reason for such strong adherence to

other research (i.e. the replication step) is the desire to produce truly comparable

results. Lee [2004] provides rather clear description of experiment settings and,

on the given corpus, reaches the best results known to the author. In this chapter,

sources of data are described as well as the features used by the classifiers.

3.1 Data

3.1.1 Penn Treebank

Because of the above-mentioned replication step, the basis for the classifiers

trained for the thesis is the Penn Treebank corpus.1 It contains a collection of

manually parsed newspaper articles from the business-focused Wall Street Jour-

nal. There is about one million words in the corpus. The articles are divided

into 24 sections. The treebank has been especially popular with parsing research

which settled on de facto standard division of the data into the training, held-out

and parsing parts. This division was accepted by Lee [2004] and also by this

project. Sections 00 – 21 constitute the training, 22 the held-out, and 23 the

testing part.

Although the treebank data are manually tagged and parsed, Lee [2004] chose

to modify the training data by performing automatic preprocessing from the raw

text. For part of speech tagging, the tagger by Ratnaparkhi [1998] was used. Then

the data was parsed by the Collins parser [Collins, 2010]. Lee [2004] advocates

the use of the Penn Treebank data as a means for facilitating the comparison with

previous research, namely that by Knight and Chander [1994] and Minnen et al.

[2000]. However, it is not clear why the experiment differs from those articles by

not using manual parses. Since Lee [2004] outperforms the other two articles, the

same approach is adopted here in order to ensure that potential differences in the

results are not caused by the fact better training data are used.2

From the training data, all the base noun phrases are extracted. A base noun

1The Penn Treebank, version 3. 1999. Distributed by Linguistic Data Consorcium. URL:

https://catalog.ldc.upenn.edu/ldc99t42
2In fact, the Collins parser was trained on the Penn Treebank corpus, thus when it is used

to parse its own training data, the parses are likely to be more accurate than if different data

was used.
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phrase can be defined as a noun phrase that does not dominate any other non

possessive noun phrase. [Vadas and Curran, 2007] Examples of base noun phrases

are labeled by the ‘NPB’ tag in the following phrases:

a) NP(NPB(NN(chairman)) PP(IN(of) NPB(NNP(Elsevier) NNP(N.V.))))

b) NPB( NPB(NNP(Boston) POS(’s)) NNP(Dana-Farber) NNP(Cancer)

NNP(Institute))

While base noun phrases are marked as such by the Collins’ parser in the training

data, they have to be specifically extracted from the test data.3 There is no non-

base noun phrase that would contain an article as its direct child in the test

data.

Apart from identifying noun phrases, head of phrases had to be extracted

because — as will be described later — it is an important piece of information for

many features. Again, Collins parser identifies the heads of phrases automatically.

For the test data, the heads were extracted using the head finding rules given by

Collins [2010].

Much syntactic ambiguity stems from the fact that the hierarchy of a sentence

is manifested only as a linear sequence of words.4 In the context of determiner

prediction, this can also play a role, for example in phrases containing a posses-

sive noun phrase. Considering the string “a Bigg’s hypermarket”, its syntactic

interpretation can be either of the following:

a) NP( DT(a) NP(NNS(Bigg) POS(’s)) NN(hypermarket))

b) NP( NP(DT(a) NNS(Bigg) POS(’s)) NN(hypermarket))

From the utilitarian perspective of a grammar checker, it is not important to

which phrase the article is assigned. However, this fact is not reflected in evalu-

ation since the task is defined as classification of noun phrases. Moreover, there

is only one possessive noun phrase with an article belonging to the parent NP in

the test data (namely the example a) above). The Collins’ parser does not seem

to consider the distinction either since there is not a single such example in the

automatically parsed training data.

3 Unfortunately, this step of collecting the test data is not mentioned by Lee [2004]. Nev-

ertheless we assume it to be the case and proceed with such a test set. This decision is also

supported by the fact that models evaluated on all noun phrases (not just on base noun phrases)

achieve higher scores. Thus, it is granted that an improvement would not be achieved by using

different evaluation data.
4This is true for written texts. In speech, there might be other indicators of sentence

structure, such as intonation and other prosodic phenomena.
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From the training set, about 263 000 noun phrases were extracted. The held-

out and test sets are formed by about 10 000 and 14 000 extracted phrases re-

spectively. The distribution of the articles over the data is shown in Table 3.1.

It also shows the baseline accuracy of a model that always predicts zero article –

0.711.

train held-out test

zero 70.7% 69.7% 71.1%

the 19.8% 21.5% 19.7%

a/an 9.5% 8.8% 9.2%

Table 3.1: Distribution of the articles (determiners) over the data sets.

3.1.2 British National Corpus

For learning the countability information of nouns based on their context the

British National Corpus was used.5 The portion of the corpus consisting of writ-

ten texts was parsed by the Stanford PCFG parser [Klein and Manning, 2003].

The data were shuffled and divided into the training, held-out and test set in the

ratio 8 : 1 : 1. There are about 6.9 million tokens in the training set.

3.1.3 One Billion Word Benchmark

For learning a language model, One Billion Word Benchmark was used [Chelba

et al., 2013]. This is a large corpus of tokenized English sentences (in randomized

order) intended specifically for comparisons of different approaches to language

modeling. The sentences were selected from the monolingual English dataset orig-

inally provided by the sixth workshop on statistical machine translation [Callison-

Burch et al., 2011]

The corpus contains about 0.8 billion word tokens and there is about 0.8

million words in the vocabulary. The same division of the data to train, held-out

and test portions is used as in [Chelba et al., 2013].

3.2 Features

In this section, the features used for the classifier are described. Conceptually,

the features are divided into several groups that are then used for evaluation. The

5 The British National Corpus, version 3 (BNC XML Edition). 2007. Distributed by Oxford

University Computing Services on behalf of the BNC Consortium. URL: http://www.natcorp.

ox.ac.uk/
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later groups serve as an extension not as a substitution of the previous ones. In

what follows, each group, its label for further reference, and a list of corresponding

features are given.

3.2.1 Original features

label: Orig

As mentioned earlier, the experimental part of the thesis starts with an at-

tempt to replicate the experiment by Lee [2004]. The set of the features used

in that work is given here. Some of the attributes were introduced in older re-

search [Minnen et al., 2000], others are the contribution of the experiment being

replicated.

• head form

lemma of the head of the noun phrase;

e.g. hypermarket — a Bigg’s hypermarket

• head part of speech

part of speech of the head of the noun phrase, without the number infor-

mation (see below);

e.g. NN — a Bigg’s hypermarket

• head number

grammatical number of the noun phrase head;

e.g. singular — a Bigg’s hypermarket

• parent

part of speech of the parent of the noun phrase;

e.g. PP — The average seven-day simple yield of NP(the 400 funds) was

8.12%.

• words before head

set of lemmas of words that precede the head and belong to the noun phrase,

excluding articles;

e.g. [average, seven-day, simple] — NP( The average seven-day simple

yield ) of the 400 funds was 8.12%.

• words after head
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set of lemmas of words that follow the head and belong to the noun phrase,

excluding articles;

e.g. None — NP(The average seven-day simple yield) of the 400 funds was

8.12%.

• parts of speech before head

set of parts of speech of words that precede the head and belong to the

noun phrase, excluding articles;

e.g. [JJ, JJ, JJ] — NP(The average seven-day simple yield) of the 400

funds was 8.12%.

• parts of speech after head

set of parts of speech of words that follow the head and belong to the noun

phrase, excluding articles;

e.g. None — NP(The average seven-day simple yield) of the 400 funds was

8.12%.

• words before NP

set of lemmas of two words before the noun phrase, excluding articles;

e.g. [yield, of ] — The average seven-day simple yield of NP(the 400 funds)

was 8.12%.

• words after NP

set of lemmas of two words after the noun phrase, excluding articles;

e.g. [be, <number>] — The average seven-day simple yield of NP(the 400

funds) was 8.12%.

• non-article determiner

other determiner (not including articles);

e.g. no — There’s NP(no question) about . . .

• hypernyms

the hypernyms for the first synset (sense) of the head, as extracted from

the WordNet [Miller, 1995];

e.g. questioning — There’s NP(no question) about . . .

• referent

an indicator whether the given head appeared in any of the five previous

sentences;
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3.2.2 Extended original features

label: Ext

The features mentioned in this section are either a simple modification of the

previous features or they can be understood as directly inspired by them. There

is no additional source of information used for extracting the features, just the

text itself and syntactic parses.

• head part of speech - simple

part of speech tag of the head where the distinction between proper and

common nouns is not present (in addition to the original simplification

where grammatical number is not taken into account);

this feature replaces the head part of speech feature from the previous set,

i.e. they are not used together for any trained model;

e.g. NN — chairman of NP(the Prudential Insurance Co.)

• head proper

the information discarded in the previous feature: an indicator whether the

head of the noun phrase is a proper noun;

e.g. true — chairman of NP(the Prudential Insurance Co.)

• words before head

• words after head

• parts of speech before head

• parts of speech after head

• words before NP

• words after NP

The six features above copy the identically titled features from the original

set with the exception that the word sequences are not taken as sets of

separate words but as fixed n-grams.

e.g. (words before head feature) average seven-day simple — the average

seven-day simple yield

• referent

an extension of the same feature from the previous set, an indicator whether

the given head appeared in any of the five previous sentences or in the

current sentence up to the occurrence of the head;
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this feature replaces the referent feature from the previous set, i.e. they are

not used together for any trained model;

• postmodification type

part of speech of the following sibling of the noun phrase in case the noun

phrase is a child of another noun phrase;

e.g. PP — NP($500 million) of Remic mortgage securities

• object - main verb form

in case the noun phrase is identified as an object of a verb (its parent is a

verb phrase) the feature corresponds to the lemma of the verb form;

e.g. cause — ... will undoubtedly cause NP(renewed debate)

• object - preposition

in case the noun phrase is identified as an object of a prepositional phrase

(its parent is a prepositional phrase), the feature corresponds to the prepo-

sition;

e.g. of — At the end of NP(the day)

3.2.3 Countability feature

label: Count

The information about the grammatical category of countability of a given

noun phrase head is not directly available from the text data. However, as the

mass — count distinction determines what articles can be used with the given

noun it seems as an important feature for the classification problem at hand.

In the previous research, some authors did not attempt to extract such a

feature [Turner and Charniak, 2007], [Lee, 2004]; others extract it simply from

a dictionary [Dahlmeier et al., 2013]; still others attempt to label nouns as mass

or count by comparing the ratio of singular and plural forms of the noun within

a corpus [Han et al., 2006]. For this thesis a more involved approach by Nagata

et al. [2005] is adopted. They report achieving 93% accuracy on distinguishing

nouns as mass or count in the writings of Japanese learners of English. The

authors understand the problem as word sense disambiguation since a noun can

be either count or mass depending on the sense the noun is used in. Therefore,

they built a classifier that labels the nouns based on other words appearing in

the immediate context.
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Decision lists classifier

At first, some head nouns are extracted from a parsed corpus, namely those that

can be identified as count or mass by applying a small set of rules (e.g. Is the

noun in plural? (count noun); Does it appear with an indefinite article? (count

noun); Is the noun modified by ”much”? (mass noun); for the complete list

of rules, see [Nagata et al., 2005, p. 817]). The nouns are extracted together

with three types of contexts: all the words within the noun phrase, three words

preceding the noun phrase and three words following the noun phrase (articles,

and some other function words are excluded, context words are lemmatized and

lowercased). Each word from each context then forms a rule together with the

corresponding context type, head noun and the extracted label (i.e. count/mass).

For example, for the head noun chicken in the sentence she ate a piece of fired

chicken for dinner, three decision rules would be extracted: piece−3 →Mass; frynp

→ Mass; dinner+3 → Mass; (the subscripts identify the context type). [Nagata

et al., 2005, p. 819] All the rules are then sorted into a decision list by their log

likelihood ratio defined by:

log
p(MC|wc)

p(MC|wc)
, (3.1)

where MC is the variable denoting the mass or count label, and p(MC|wc) is the

probability of the head noun occurring with the MC label with the word w in

the context c. The probability is estimated from the corpus by:

p(MC|wc) =
f(MC,wc) + α

f(wc) + 2α
, (3.2)

where f(MC,wc) is the frequency of the head noun labeled as MC while having

word w in the context c; α is a smoothing parameter and is set to 0.5. In addition,

each decision list is extended by one rule that assigns the head noun the most

frequent label MCmajor regardless of any context. The score of this default rule

is given by

log
p(MCmajor)

p(MCmajor)
(3.3)

where p(MCmajor) is estimated by:

p(MCmajor) =
f(MCmajor)) + α

f(MCmajor) + f(MCmajor) + 2α
(3.4)

where f(MCmajor) and f(MCmajor) correspond to the frequency of the target

noun appearing with the more and less frequent label respectively, the smoothing

parameter α is set to 0.5.
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An illustration of a possible decision list for the target noun chicken is given

by table 3.2.

rule

context word context type label log-likelihood ratio

piece -3 Mass 1.49

count -3 Count 1.49

peck +3 Count 1.32

fish -3 Mass 1.28

dish -3 Mass 1.23

pig np Count 1.23

Table 3.2: Decision list for determining countability of the noun chicken; taken

from Nagata et al. [2005]

When a new noun phrase is encountered, the rules from the corresponding

decision list are checked from top to bottom. The first rule that can be applied

to the target noun and its context determines the final label of the noun. In

case more rules share the same score, the label predicted by more decision rules

is used. In case both labels are predicted by the same number of rules with the

same score, following rules in the list are taken into account. If the default rule

(assigning the target noun with a label regardless of context) is part of the tie,

its label is used. The default rule is the only rule that can be applied in any

context, therefore rules with lower scores are discarded and the decision must be

made when the default rule is met in the list.

Data

As mentioned in the section on used data sources, decision lists are trained on

the training section of the British National Corpus. Detailed information is given

in Section 3.1.2. There were about 260 000 different lemmas for which its count-

ability could be guessed at least once based on the rules in [Nagata et al., 2005].

For each of those lemmas a decision list was created.

3.2.4 Word embeddings

label: Emb

Another source of information for the classifier that cannot be extracted from

the training corpus on its own is the word embedding representation of the head

of the noun phrase.
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Motivation

A word embedding is a representation of a word that maps the word into a mul-

tidimensional space. The mapping is trained in such a way that words occurring

within similar contexts are closer to each other in the vector space than words

occurring in different contexts. Moreover, the well-known property of this rep-

resentation is that some linguistic patterns can be expressed by simple linear

operations on these vectors, e.g. “vec(‘Madrid’) - vec(‘Spain’) + vec(‘France’) is

closer to vec(‘Paris’) than to any other word vector” [Mikolov et al., 2013b, p. 1]

Even though no one-to-one relationship between an embedding dimension

and a certain linguistic phenomenon has ever been described; we try to use the

individual dimensions of the embeddings as features in the classifier, hoping the

classifier could benefit at least from some of the features.

Word2vec

There are more ways the word vectors can be obtained. For this thesis, we select

the architecture known as word2vec, proposed by Mikolov et al. [2013b]. It is

based on the Skip-gram model introduced earlier by Mikolov et al. [2013a] that is

made more efficient so that it enables learning the word vectors on large data. The

authors train a neural network with one hidden layer to predict the probabilities

of different words co-occurring with the input word within a context window.

The architecture of the neural network is shown in figure 3.1.

Each node in the input layer corresponds to one word in the vocabulary.

The words are represented in one-hot encoding, i.e. by vectors whose length

is the same as the size of the vocabulary. In each vector, there is exactly one

value (corresponding to the word) set to 1, all other values are 0. The hidden

layer (sometimes also called a projection layer) consists of 300 nodes and when

trained, represents the actual word embeddings. Each node in the output layer

is associated with a word in the vocabulary and outputs the probability that the

given word appears in the context of the input word.

Formally, the objective of the Skip-gram model is to maximize:

1

T

T∑
t=1

∑
−c≤j≤c,j ̸=0

log(p(wt+j|wt)) (3.5)

where T is the size of the training data and c determines the size size of the context

window. Probability of two words occurring in the same context is defined as:

p(wt+j|wt) =
exp(v′wt+j

Tvwt)

V∑
w=1

exp(v′w
Tvwt)

(3.6)
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Figure 3.1: word2vec neural network architecture; V - size of the vocabulary;

x1..V - (one-hot encoded) input word vector; a21..300 - input word embedding; a3i

probability of co-occurrence of the word wi and the input word

where vw is the vector representation of word w (i.e. the output of the hidden

layer), v′w is the vector of weights associated with the node w in the output layer

and V is the size of the vocabulary [Mikolov et al., 2013b, pp. 2-3].

The parameters of the neural network can be represented by two matrices:

Θ1 ∈ Rm×V for the weights needed for transition from the input (1) to the

hidden (2) layer and Θ2 ∈ RV×m for the transition from the hidden (2) to the

output (3) layer. There is no activation function between layer 1 and 2. This

means the activation of the hidden layer is given simply by a2 = θ1x; x is the

one-hot encoded input vector. Since only a single value in x is equal to 1 and all

other values are zero, the activation of layer 2 for word wi corresponds to Θ1
∗,i;

i.e. to the ith column of the parameter matrix. Therefore, by training the neural

network so that it outputs similar probabilities for words occurring in similar

contexts (3.6), it learns to represent such words with similar vectors.
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There are other ways to train word embeddings. Levy and Goldberg [2014]

show the effect of choosing different types of contexts on the nature of similarity

among the word vectors. As a response to the ‘linear bag of words contexts’ used

by word2vec, they use ‘dependency-based contexts’ that take into account not

only nearby words but also their dependency relationship to the input word. The

authors conclude that the embeddings based on the latter type of context “are

less topical and exhibit more functional similarity than the original Skip-gram

embeddings”. [Levy and Goldberg, 2014, p. 302] In word2vec type embeddings,

among most similar words to word florida are words like fla, alabama, gainesville,

tallahassee while vectors trained on dependency-based contexts favor words like

texas, lousiana, georgia, california. [Levy and Goldberg, 2014, p. 305]

However, implementing and experimenting with architectures for extracting

word vectors was out of the scope of the thesis. Instead, we choose to use the

pre-trained 300-dimensional word vectors provided by Google6. The data contain

3 000 000 embeddings and were trained on about 100 billion words.

3.2.5 Language model prediction

label: Lm

Finally, a separate language model is trained on the 1 billion word benchmark

dataset and used to produce its own predictions for the given context. These

predictions (suggestions) were used as a single feature in some of the experiments

described later.

Language model

Statistical language model is a model that assigns probability to a sequence of

units. For this project the units correspond to words:

P (w1, w2, w3, . . . wt) =
t∏

i=1

P (wi|w1, w2, w3, . . . , wi−1) (3.7)

Since estimating such probability directly from data would be impossible due

to the data sparsity, the above is further simplified by using nth order Markov

property:

P (w1, w2, w3, . . . wt) ≈
t∏

i=1

P (wi|wi−(n−1), wi−(n−2) . . . , wi−1). (3.8)

6https://code.google.com/archive/p/word2vec/
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The sequence wt−(n−1), wt−(n−2) . . . , wt−1, wt is called an n-gram. Using maximum

likelihood estimate given a training dataset, the probabilities are estimated by

P (wt|wt−(n−1), wt−(n−2) . . . , wt−1) =
#(wt−(n−1), wt−(n−2) . . . , wt−1, wt)

#(wt−(n−1), wt−(n−2) . . . , wt−1)
, (3.9)

where #(x) stands for the number of times the sequence x was observed in the

data. Even with the simplifying assumption (3.8), the problem of data sparsity

remains. When predicting the probability on some unseen data, some of the

observed n-grams are likely to have no corresponding counts in the training data,

making (3.9) unusable. To mitigate the problem couple of smoothing approaches

have been designed. Generally, the approaches reserve some of the empirical

probability mass for unseen examples. One such approach known as Kneser-Ney

smoothing was used for the language model trained as part of this thesis.

Kneser-Ney interpolated smoothing

Chen and Goodman [1999] motivate this approach by the simple San Francisco

example. If the bigram San Francisco occurs frequently in the training text, the

unigram probability of the word Francisco will be relatively high. When other

smoothing methods use this unigram probability as a back-off for higher order

n-grams, they produce a large probability estimate for the following bigram: (-

OOV-, Francisco), where -OOV- stands for any word not seen in the training

set. However, since Francisco occurs only with San, the probability of the given

bigram should be low.

Thus, instead of a simple unigram probability, Kneser-Ney smoothing uses

the probability of the word occurring within a novel context:

pKN(wt) =
|{wi : #(wi, wt) > 0}|

|{wi, wj : #(wi, wj) > 0}|
. (3.10)

Setting ht to represent the (n-1)-long history of a given word wt, i.e. h := wt−(n−1),

wt−(n−2) . . . , wt−1, the general n-gram interpolated estimate of the probability is

defined as:

pKN(wt|ht) =
max(#(ht, wt)− δ, 0)

#(ht)
+ λwt−1pKN(wt−1|ht−1). (3.11)

Here, δ is a constant standing for the strength of smoothing and λ is a normalizing

constant set so that the estimated distribution sums up to 1:

λwt−1 =
δ

#(ht)
|{wi : #(wt−1, wi) > 0}|. (3.12)
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Language model training and evaluation

For training the model, an implementation of the above algorithm by Heafield

et al. [2013] was used. The 5-gram model was trained on the training portion of

the 1 billion word benchmark and evaluated on a portion of the held-out data

as described by Chelba et al. [2013] (Section 3.1.3). The data was preprocessed

by merging the two forms of the indefinite article into a/an and replacing all

numbers by the <number> token. The model is then evaluated by perplexity

defined as:

2−
1
N

∑N
t=1 log2 pKN (xt), (3.13)

where N stand for the number of words in the test dataset. The resulting perplex-

ity 70 is close to the result reported by a comparative study of different language

models by Józefowicz et al. [2016], – 67.6.

Language model prediction as a feature

To use the trained language model as a feature for a classifier, the following

process was employed: For each noun phrase, three candidate sentences were

created by inserting the or a/an to the left boundary of the noun phrase, or

leaving the space blank. The three candidates were then evaluated by perplexity

(3.13) and the one with the lowest perplexity was selected as the winner. Its

category, i.e. definite/indefinite/zero, was the new value of the feature for the

given noun phrase. Furthermore, the suggestion was stored and used as part of

the sentence when predicting the article for the following noun phrase.

3.3 Feature post-processing

Not all the features described in the previous sections can be used for classification

directly. The categorical features need to be converted into numerical values.

Firstly, the cut-off limit of 5 is applied so that all feature values that occur

with less than the given threshold are discarder. This step leads to substantial

reduction of the dimensionality of the feature space: considering all the features

described in the previous section (and the post-processing steps described below),

the number of features drops from 287 762 to 35 516. The price for this memory

saving is a slight decrease in accuracy (see Section 4.1.3)

Firstly, each feature whose whose original values are strings (such as word

forms or tags) is converted into n binary features, where n is the number of

distinct feature values (see one-hot encoded vector in Section 3.2.4).

In a similar manner, features whose values are sets of strings, such as words

before head in the Extended feature set, are converted into series of binary fea-
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tures so that each distinct value in a list forms a new binary feature (bag-of-words

approach). Thus an example noun phrase broad market averages, with a words-

before-head feature value “broad market”, is represented by features words-before-

head-broad and words-before-head-market, whose value is 1, and other feautures

(words-before-head-{personal/his/decline/...}), which are set to 0.

Finally, for word embeddings vectors, each dimension of the vector is taken

as a separate new feature.
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4. Evaluation

In this chapter, the experiments conducted for this thesis are described and evalu-

ated. The first two sections deal with classifiers based on the two machine learning

algorithms described in Chapter 2. All the classifiers have been built and eval-

uated on the Penn Treebank Wall Street Journal data (described in more detail

in Section 3.1.1), using the features presented in Section 3.2. The next section

provides comparison of the classifier-based approach with the performance of a

language model. Finally, for reference, the human performance on the task is

given and compared to the best automatic method.

4.1 Logistic regression models

As already mentioned, the starting point for the experiments was the attempt to

replicate the results given by Lee [2004]. The author explicitly mentions the use of

the maximum entropy framework as described by Ratnaparkhi [1998], discussed

in Section 2.1.2. However, implementing the algorithm directly was not part

of this work; instead, logistic regression as provided by the scikit-learn package

[Pedregosa et al., 2011] for the Python programming language was used. The

change from maximum entropy to logistic regression model is justified in Chapter

2, specifically, sections 2.1.2 and 2.1.3 describe the equivalence of the models

under conditions that — at least in the case of the replication experiment —

were fulfilled.

4.1.1 Hyperparameter tuning

The only hyperparameter tuned for logistic regression models is the regularization

parameter λ determining the strength of the penalty for learning high values of

the model parameters θ. (See (2.13) and (2.15) for representation of logistic

regression model and its cost function.)

The optimal value of this parameter is likely to differ for different models based

on the dimensionality of the feature space, the amount of training data and the

particular approach to multinomial classification (i.e. softmax formulation vs.

one-vs-all vs. one-vs-one). Therefore, for each model trained and presented

below, the optimal value was first estimated on the training data by 5-fold cross-

validation.

The employed software implementation of logistic regression uses the param-

eter C that is defined as the inverse of λ, C = 1
λ
. For convenience, both values

will be provided in the following reports.
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4.1.2 Replication of a reported experiment

The replication of the article generation experiment reported by Lee [2004] was

attempted by following its experimental setup, namely the choice and processing

of the data, employed explanatory variables and the choice of the machine learning

algorithm. A multinomial logistic regression model was fit on the training and

tested on the test data described in Section 3.1.1. The only difference from the

referenced section was the fact that for this experiment, discarding rare values of

categorical features was not performed as there is no mention of such a step in

the original article.

The resulting accuracy as compared to the baseline model (predicting the

most frequent category to all examples) and the result reported by Lee [2004] is

given in Table 4.1. As indicated by the results, the replication experiment failed

model C (λ) feature sets accuracy

Baseline — — 71.1%

Multinomial LR 0.4 (2.5) Orig 88.36%

Reported result — Orig 87.7%

Table 4.1: Evaluation of the replication experiment on the test data. Baseline

stands for simple major vote, i.e. predicting no (zero) article for all test examples;

Multinomial LR stands multinomial logistic regression model implemented as part

of the thesis; and Reported result stands for the model by Lee [2004]. The second

column indicates the regularization parameter used for training. The accuracy

scores measure the performance on the test dataset.

to exactly meet the target accuracy. The difference between the two results is

about half a percent. It is not clear why this discrepancy occurred.1

4.1.3 Cut-off value for categorical variables

The effect of trimming the low frequency values of categorical explanatory vari-

ables is investigated by training three separate multinomial logistic regression

models for the cut-off values of 0, 3 and 5. A cut-off value represents the thresh-

old on frequency a feature value needs to exceed in order to be included in the

data. Since categorical features are one-hot encoded, introducing the threshold

leads to significant reduction in the number of final features.

The models are evaluated on the held-out data and the results, as well as

the final number of features used by the models, are presented in Table 4.2.

1One attempt to get closer to the original result was disabling regularization as it is not

mentioned in the paper. This leads to the accuracy of 87.93% on the test set.
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Similarly to the previous experiment, the models use only the original set of

features suggested by Lee [2004] (Section 3.2.1).

model C (λ) feature sets threshold accuracy #features

Multinomial LR 0.4 (2.5) Orig 0 87.90% 81 169

Multinomial LR 0.4 (2.5) Orig 3 87.91% 25 237

Multinomial LR 0.6 (1.7) Orig 5 87.81% 18 872

Table 4.2: Evaluation of the effect of the threshold for cutting off low-frequency

feature values on the accuracy and the number of final features. The models are

compared on the held-out data.

Interestingly, setting a higher threshold can actually improve the performance

of the model. The effect of increasing the threshold can be understood as a kind

of “targeted regularization”. Removing all the categorical values that occur less

then 4 times is equivalent to setting their corresponding parameters θ to zero,

which is what the regularization term approaches for all the features when it

increases. Thus, introducing a threshold can be seen as a means of preventing

overfitting. However, by rising the threshold higher the bias introduced to the

model becomes too high and the performance starts decreasing. As described in

Section 3.3 the threshold of 5 was accepted for further experiments due to the

reduction of number of features. This advantage becomes even more relevant

when training gradient boosted trees.

4.1.4 Features

Next, the effect of the newly designed features on the performance of the classifier

is evaluated. At first, a model is trained on each of the new feature set together

with the original feature set. Then the feature sets are added together iteratively

and the performance is measured with respect to the growing number of features.

Finally the model utilizing all the available features is trained. The corresponding

results are presented in Table 4.3.

The results show that when taken independently, each feature set presented

in Section 3.2 brings some new useful information for the model. Specifically, the

biggest improvement is achieved by the ‘extended’ feature set, which leaves behind

all the features that utilize additional sources of data. In that feature set, the

major role is played by the modification of the six list features: i.e. representing

the context of the noun phrase head as a fixed string rather than a bag of words (or

tags). Interestingly, utilizing each dimension of a pre-trained word embeddings

as a separate explanatory variable can also improve performance. Other two
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model C (λ) feature sets accuracy

Multinomial LR 0.4 (2.5) Orig 87.81%

Multinomial LR 0.6 (1.7) Orig-Ext 88.39%

Multinomial LR 0.4 (2.5) Orig-Cnt 88.05%

Multinomial LR 0.4 (2.5) Orig-Emb 88.27%

Multinomial LR 0.4 (2.5) Orig-Lm 88.08%

Multinomial LR 0.2 (5.0) Orig-Ext-Cnt 88.33%

Multinomial LR 0.2 (5.0) Orig-Ext-Cnt-Emb 88.80%

Multinomial LR 0.3 (3.3) Orig-Ext-Cnt-Emb-Lm 89.08%

Table 4.3: Evaluation of models trained on different sets of features. The accuracy

values represent the performance on the held-out data.

features, namely a countability prediction based on British National Corpus and

a language model trained on another large corpus bring less improvement. Since

both features utilize the same type of context as used by the original feature set,

it might be the case that most of the new useful information is already captured

by other variables.

4.1.5 Approaches to multinomial classification

The next set of experiments compares the approaches to multinomial classification

as discussed in Section 2.1.3. Namely, multinomial logistic regression — which has

been used so far — and two methods of combining binary classifiers: one-vs-one

and one-vs-rest approach. For one-vs-one approach the method of pairwise cou-

pling was implemented and used. For one-vs-rest approach two types of models

were trained: an ‘out-of-box’ method provided by the employed software package

and a manually trained and combined set of binary classifiers. In contrast to the

manual method, the ‘out-of-box’ method does not enable tuning the individual

classifiers separately as it exposes only one set of hyperparameters for all the bi-

nary models. By considering the last two methods separately, an effect of tuning

the binary classifiers individually can be estimated. All models were trained with

all available features. The evaluation of the models is given in Table 4.4.

The results show that for the given problem, training binary classifiers inde-

pendently is a better approach than fitting all the parameters jointly as is the case

in the multinomial logistic regression model. Out of the two methods of combin-

ing binary classifiers, the one-vs-rest method outperforms the one-vs-one method

with pairwise coupling. Finally, the experiment shows a minor improvement that

can be achieved by tuning the binary classifiers independently as opposed to us-

47



model C (λ) accuracy

Multinomial LR 0.3 (3.3) 89.08%

One-vs-one a|0:1.25 (0.8); a|the:0.4 (2.5); the|0:0.7 (1.43) 89.33%

One-vs-rest oob 0.6 (1.7) 89.45%

One-vs-rest man a:0.6 (1.7); the:0.5 (2); 0:0.7 (1.43); 89.49%

Table 4.4: Evaluation of four different approaches to multi-class classification

using logistic regression models. The models were trained using all the available

features and the scores were measured on the held-out data. The middle column

shows the regularization parameter. Binary classifiers are specified as ‘x|y’ or ‘x’
meaning x-vs-y and x-vs-rest, respectively.

ing the available ‘out-of-box’ implementation that uses a single regularization

parameter for all the models.

The differences between the approaches are further illustrated by Figure 4.1,

where the performance of the models with respect to the size of the training

data is compared. Four different subsets of the training dataset were randomly

selected with sizes: 20 000, 50 000, 100 000 and 200 000 examples. The dataset

consisting of all available training examples (263 088) was also added. Again,

the value of the regularization parameter was estimated for each model and each

training dataset using cross-validation.
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One-vs-rest oob

One-vs-one

Multinomial LR

Figure 4.1: Performance of different approaches to multi-class classification using

logistic regression models as a function of the training data size. The models use

all available features and were tuned for each dataset separately.

The results show that the multinomial logistic regression model was outper-

formed systematically by the other approaches. The ‘out-of-box’ and ‘manual’
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approaches towards the one-vs-rest classification are very close to each other re-

gardless of the data size. Despite their closeness, the ‘out-of-box’ model did not

achieve higher score than its alternative in any experiment. Finally, the one-

vs-one approach starts being more effective (with respect to multinomial logistic

regression) only when trained on larger datasets. This is in accord with the dis-

advantage of this approach mentioned in Section 2.1.3, namely the fact that the

individual binary models cannot use all the provided data.

4.1.6 The best model

Out of the experiments described above, the best accuracy on the held-out data

was achieved by a classifier composed of three binary models grouped together in

the one-vs-rest fashion. Each classifier was tuned individually, i.e. the strength of

its regularization term was estimated independently. The model uses all available

features. Its accuracy measured on the held-out dataset is 89.49%. On the test

dataset it achieves the accuracy of 90.00%.

4.2 Gradient boosted trees

In what follows, attempts on improving the achieved results by means of a dif-

ferent machine learning algorithm are described. As mentioned in Section 2.2,

a specific implementation of the gradient boosted trees algorithm known as XG-

Boost [Chen and Guestrin, 2016] was used. While the algorithm achieves state-

of-the-art results on many tasks, it is also significantly more difficult to tune

(compared to logistic regression) as there are many hyperparameters influencing

the final performance. After introducing the parameters and their relationship to

the model, the selected approach to their tuning is described together with the

final results.

4.2.1 Hyperparameter tuning

For tuning the gradient boosted trees model the following hyperparameters were

investigated:

• Objective Function

As explained in Section 2.2, XGBoost implementation is able to handle

different types of objective functions. For this experiment, the predefined

softmax function (2.15) was chosen.

• Number of trees

The actual amount of weak learners in the resulting ensemble. The learning
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algorithm assumes a fixed number of estimators, so it must be given by the

researcher.

• Maximum tree depth

An upper limit on the number of tree levels. Tree depth controls the order

of interactions between variables within the model. Setting this parameter

high results in more complicated and strong learners, which can lead to

over-fitting. The minimum depth of 1 results in trees with one split only

and consequently no interaction between variables. Such a tree is sometimes

called a ‘decision stub’.

• Minimum weight of a child

By setting a requirement on the minimum weight of a child, the algorithm

will only split a node when the weights of both new leaves are higher than

the given threshold. Higher values result in less complicated trees.

• Gamma

The gamma parameter of the regularization term as shown in (2.36). It

represents another way of preventing the algorithm from learning too com-

plicated base learners. Each split in the tree must result in cost reduction

that is higher than the given value.

• Column subsampling

Column subsampling is a method often used for random forests. The pa-

rameter represents a proportion of features used for building a tree. For

each tree a sample of the corresponding size is randomly drawn from the

feature pool. The parameter value of 1 represents no subsampling. Ran-

domly limiting the number of features a tree can use results in a collection

of trees that are less correlated. Less correlated trees can better reduce the

variance of the model, i.e. limit the amount of over-fitting.

• Row subsampling

Similarly to the previous parameter, when setting the parameter value to

be less then 1, a random subsample of the training examples is drawn from

the training data. Again, this is done for each new tree in the ensemble.

The motivation is the same as in the case of column subsampling.

• Shrinkage

Shrinkage can be seen as an analogy to learning rate. It takes a value from 0

to 1 which is then used to scale down the importance of each new tree. This

“leaves space for future trees to improve the model.” [Chen and Guestrin,

2016, p. 3]
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Tuning process

As mentioned above, the objective function was set to softmax to perform multi-

nomial classification. For selecting the values for the following parameters, 5-fold

cross-validation on the training data was used to get the performance of the model

Further, in accord with [Hastie et al., 2009, p. 365], the shrinkage parameter

was set to a low value (0.1) and the number of trees was estimated. In this

step, the performance of the model is measured after a tree is added to the

ensemble. If there is no improvement of the performance in the course of the last

20 trees, the algorithm finishes and the number of trees corresponding to the best

performance is selected. During this step, the other parameters were set to their

default values: maximum tree depth – 5, minimum weight of a child – 1, gamma:

0, column subsampling : 0.8, row subsampling : 0.8.

Then optimal values for maximum tree depth and minimum weight of a child

were estimated by performing a grid-search over the values (5, 7, 9, 11, 13) for

the former and (1, 3, 5) for the latter parameter.

In the next step the gamma parameter was selected out of eight possible

values: (0, 0.1, 0.2 . . . 0.7)

Finally column subsampling and row sumbsampling were selected using grid-

search over the values (0.7, 0.8, 0.9, 1) for both of the parameters.

4.2.2 The best model

Performing the parameter tuning in the way described in the previous section

resulted in the following set of parameters:

• Objective Function: softmax

• Number of trees : 1 531

• maximum tree depth: 11

• minimum weight of a child : 1

• gamma: 0.6

• column subsampling : 0.9

• row subsampling : 0.9

• Shrinkage: 0.1

With the given set of values the model achieves 91.86% accuracy on the held-

out data set and 91.84% accuracy on the test data. Table 4.5 summarizes the

most important models learned so far.
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model feature sets accuracy

Baseline — 71.1%

Reported result Orig 87.7%

Multinomial LR Orig 88.36%

One-vs-rest oob Orig-Ext-Cnt-Emb-Lm 89.08%

Boosted trees Orig-Ext-Cnt-Emb-Lm 91.84%

Table 4.5: Evaluation of the best logistic regression and gradient boosting models.

For reference, the baseline accuracy is given followed by the result reported by

Lee [2004] and the model attempting to replicate the result. The accuracy values

represent the performance on the test data.

By changing the machine learning algorithm from logistic regression to gradi-

ent boosted trees, the accuracy on the test data increased by about 2.8%. This

represents about 25% reduction in error.

Comparison between the best logistic regression model and the gradient boost-

ed trees classifier is further illustrated by Figure 4.2. Both models are evaluated

on different portions of training and held-out data (20 000, 50 000, 100 000, 200 000

and 263 088 examples). Again, each model was specifically tuned for the given

training data size. Gradient boosted trees outperform the logistic regression

model on all the datasets for the given problem. Moreover, its training accuracy

is very high as well as the difference from the test accuracy. This can be under-

stood as indication of over-fitting the training data despite the parameter tuning

described above.
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Figure 4.2: Training and held-out data accuracy for logistic regression and

boosted trees models
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4.3 Language model

The main approach presented in the thesis is linguistically motivated in the sense

that it first predicts the linguistic structure of each sentence (by part-of-speech

tagging and parsing) and only then it assigns specific elements of such a structure

with an article. Although this seems analogous to what speakers of English do,

it also raises some problems. Namely, the assumption of having correct parses is

hard to guarantee in practice.

In this section, an alternative approach is evaluated: each position between

two words is considered as a potential place for an article. For each such a position

three options corresponding to three article forms (zero, the, a/an) are evaluated

by means of a language model. The winning alternative is kept and the next

position is evaluated until the end of the sentence is reached. The process is

illustrated in Table 4.6.

step candidate string cost

1 [—] despite attempts to prevent this, . . . 501

1 [a/an] despite attempts to prevent this, . . . 875

1 [the] despite attempts to prevent this, . . . 1086

2 despite [—] attempts to prevent this, . . . 501

2 despite [a/an] attempts to prevent this, . . . 590

2 despite [the] attempts to prevent this, . . . 430

3 despite the attempts [—] to prevent this, . . . 430

3 despite the attempts [a/an] to prevent this, . . . 681

3 despite the attempts [the] to prevent this, . . . 689

Table 4.6: Illustration of the process of generating articles by a language model.

For each step (position between words) three candidates are generated and eval-

uated by the model.

The cost of each candidate is perplexity (3.13) (explained in Section 3.2.5).

The language model is identical to the one described in the same section.

With this approach, it is not desirable to rely on parsed data for evaluation,

as was the case in the previous experiments. The articles can now be predicted

in any position within a sentence, so the accuracy of noun phrases is no longer

relevant. Instead, the performance is measured by number of errors per 100

words. From the perspective of the model, an error can be either an insertion

(predicting an article for an originally empty position) substitution (predicting a

wrong article for the given position) or deletion (wrongly predicting no article for

the given position). To find the number of errors, corresponding sentences from
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the original and predicted texts are tokenized and compared. The ‘a/an’ token

is considered to be equal to both ‘a’ and ‘an’. The results on the test portion of

the Penn Treebank are given in Table 4.7. For reference, the logistic regression

and gradient boosting models are evaluated in the same manner. Both models

used automatic parses for the prediction.

model errors/100 words #correct #swaps #insertions #deletions

LM 19.73 3 340 732 10 427 51

LM-tun 7.24 19 8 8 4096

Logreg 6.80 452 328 193 3343

Boosting 6.87 232 185 12 3706

Table 4.7: Evaluation of the language model (LM) with respect to the logistic

regression (Logreg) and gradient boosting models (Boosting). The models are

evaluated on the Penn Treebank test data consisting of about 57 000 words. The

main metric is the number of errors per 100 words. #correct represents number

of correctly predicted articles (definite or indefinite, zero is not included). The

other columns represent the distribution of the error types.

Without any modification, the proposed method of using a language model

for article prediction did not work. The main source of errors is the overuse of the

indefinite article as illustrated by a random sentence taken from the test data:

Original “ I ’d like to see that initiative , and i have n’t . a/an “

everybody thouth we were looking at ”

LM a/an “ I ’d like to see that the initiative, and I have a/an

n’t .

The logistic regression and gradient boosting models, on the other hand, seem

to be too conservative, as they attempt a prediction quite rarely. This is demon-

strated by their main source of error, i.e. deletion. Interestingly, contrary to the

evaluation of the classification task, here the gradient boosting model performs

worse than logistic regression.

In order to compensate for the over-generating of the language model, two

parameters were introduced: perplexity threshold and decision margin. Both

parameters were supposed to restrict the language model to only such predictions

where it is ‘confident enough’. Perplexity threshold sets the limit in absolute

terms by setting a value above which a decision is not considered. Decision

margin attempts to control the confidence relatively, i.e. it sets the minimum

relative difference in the cost between the first and second best candidates for the
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given position. However, when both parameters were tuned by grid-search on the

held-out dataset, the solution gravitated towards the baseline performance of not

predicting anything as seen by the results of the LM-tun model in Table 4.7.

4.4 Human performance

To put the results from the previous sections into perspective, 4 expert translators

were asked to perform the same article generation task. The text they were given

was composed by selecting two random files from the British National Corpus

(see Section 3.1.2) and extracting three consecutive paragraphs from each, while

discarding all the articles. Although this setting produces only two distinct pieces

of texts, it attempts to mimic a real-world scenario by creating excerpts that are

large enough to capture some long-range dependencies among the noun phrases.

Thus under the constrained resources, it can be viewed as a trade-off between

producing statistically more relevant results on the one hand and more realistic

tasks on the other. Both the original text as well as the annotators’ responses

are given as attachments in Section 4.5.

The generated text consists of 640 words. The accuracy was measured by first

manually counting the number of positions an article could have occurred. Then

the number of differences in articles between the original and the predicted text

was computed. Table 4.8 compares the performance of the four annotators.

annotator #errors #swaps #insertions #deletions accuracy

A 29 4 4 21 82%

B 45 7 13 25 72%

C 22 2 6 14 87%

D 17 7 3 7 90%

mean 28.25 5 6.5 16.75 82.75%

Table 4.8: Human performance on the article generation task. Measured on text

with 163 candidate noun phrases.

The experiment revealed quite large differences between the annotators. In

Chapter 1, it was mentioned that in some situations there might be more options

to express the notion of definiteness of the given noun phrase. The results show

that this might happen quite often. The following example illustrates such a case:

Original In a monopoly situation, the producer may be able to

use his market power at the expense of the consumer, . . .
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Annotators A, D In a monopoly situation, a producer may be able to use

his market power at the expense of the consumer, . . .

Here, the noun producer can be seen as having definite associative reference

(i.e. as being defined based on the association with the concept of the market:

{consumer, producer, demand, supply, . . . }, which has already been mentioned

at this point), or it can be seen as having singulative indefinite reference (i.e. any

producer/some producers). A different type of ambiguity is illustrated by another

example:

Original High prices were maintained from 1974 onwards in the face

of inelastic demand for oil from oil-importing countries,

but an oil glut in the 1980s put pressure on individual

countries to . . .

Annotators B, D . . . , but the oil glut in the 1980s put pressure on individ-

ual countries to . . .

By choosing the first option, one interprets the oil glut as one in a sequence of

such periods of oversupply, which happened to occur in the 1980s. The other

option suggests the glut of the 1980s is a particular period known to the reader.

The latter interpretation leaves no place for other such gluts during the 1980s.

Apparently, to predict (or correct) an article in certain cases requires very deep

understanding of the intended meaning and cannot be predicted from the text

alone.

4.4.1 Comparison to automatic methods

Due to the different type of data, the accuracy given in Table 4.8 should not

be directly compared to the results reported in the sections on machine learning

experiments. Table 4.9 illustrates the difference in the distributions of the article

types over the two datasets. The three categories are more evenly distributed in

the manual test data. While the relative portion of the indefinite articles remains

comparable, the main change happens in the definite and zero article categories.

To facilitate the comparison between the performance of manual annotators

and automatic methods of predicting the articles, the models discussed in the

previous sections were evaluated on the same dataset. The results are shown in

Table 4.10

Clearly, machine learning models learned on the Penn Treebank do not gen-

eralize well to this new context. They remain overly conservative and their per-

formance is very close to the baseline. For 68 real articles, they predicted only 4,

one of which was false.
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penn-test manual-test

zero 71.1% 59%

the 19.7% 29%

a/an 9.3% 12%

Table 4.9: Distribution of the articles (determiners) over the Penn Treebank and

BNC manual test data

errors/100 words #correct #swaps #insertions #deletions

Man-best 2.7 54 7 3 7

Man-avg 4.4 46 5 7 17

Logreg 10.2 3 1 0 64

Boosting 10.2 3 1 0 64

Baseline 10.6 0 0 0 68

Table 4.10: Comparison of manual annotation (Man-best, Man-avg) to automatic

methods (Logistic regression, gradient boosting) on 6-paragraph BNC data of

640 words. The main metric is the number of errors per 100 words. #correct

represents number of correctly predicted articles (definite or indefinite, zero is

not included). The other columns represent the distribution of the error types.

Comparing the performance of manual and automatic annotation can also be

approached from the other direction. Instead of evaluating the automatic models

on the dataset used for manual annotation, one can estimate the performance

of the annotators on the dataset used for the evaluation of the machine learning

models.

Firstly, a confusion matrix is obtained from the manually annotated data.

This is possible because the number of noun phrases, which corresponds to the

number of potential articles, has already been extracted (also manually). The

confusion matrix for the best annotator is given in Table 4.11.

the a/an zero

the 35 6 7

a/an 1 19 0

zero 2 1 92

Table 4.11: Confusion matrix for the most successful manual annotation. The

rows correspond to the articles found in the original text, the columns correspond

to the predictions.

Out of each row of the matrix, the probability distribution over the predic-
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tions given the true article was estimated by maximum likelihood estimation:

p(x|y) = #{x & y}
#y

(x and y denote the predicted and true article, respectively).

The three probability distributions are then used to estimate the distribution

of errors that would be made on the Penn test set. Specifically, let cx|y denote the

number of times x is predicted for any noun phrase with a real article y on that

dataset. Then, the distribution of cx|y is estimated as ĉx|y = cyp(x|y), where cy

is defined as the number of noun phrases whose true class is y. By computing

ĉx|y for all the nine combinations of x and y, one creates an estimated confusion

matrix on the new dataset. From this matrix, the final estimate of the accuracy

can be expressed as
∑

x ĉx|x∑
x

∑
y ĉx|y

.

Table 4.12 gives the estimated accuracies for the best and the average human

performance together with the empirical accuracies of the best gradient boosting

and logistic regression models. The results show that when the models are tested

on the data they were prepared for, their comparison to human performance is

much more favorable. Both models perform slightly worse than the best human

annotator and above the average annotator performance.

model accuracy

Best annotator (estimated) 91.96%

Boosted trees 91.84%

Logistic regression 89.08%

Average annotator (estimated) 85.98%

Table 4.12: Comparison of manual annotation to automatic methods on the Penn

Treebank test set. The accuracies of the manual performance are estimated from

the error distribution from another dataset.

Of course, the above conclusion is valid only if the estimate of the manual

performance on the dataset is reliable. There are two issues with this assumption.

Firstly, the estimates of the three probability distributions py(x) = p(x|y) are

based on limited data. Namely, pthe is based on 48, pa/an on 20 and pzero on 95

observations. Secondly, even if taking py for granted, the accuracy estimation

assumes that for a given article, the distribution of its prediction errors is the

same for both the manual and automatic dataset. In other words, it assumes

there is the same level of uncertainty connected with an article no matter which

dataset is used.
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Conclusion

In accord with previous research [Minnen et al., 2000], [Lee, 2004], [Turner and

Charniak, 2007], [Sun et al., 2015], the thesis interprets the problem of article

error correction as an article generation task. Firstly, by looking into the previ-

ous literature on the subject, a group of papers was identified, which provided

comparable results in terms of problem formulation, approach and the data used.

Out of this group, the article reporting the best results was selected.

As the first step, the selected article was replicated (Section 4.1.2). A logistic

regression model was trained on the training section of the Penn Treebank and

evaluated on its test section. For each noun phrase, the model predicts one of the

three possible categories corresponding to the article choice: the for the definite

article, a/an for the indefinite articles and zero for noun phrases with no article.

The features used are the ones described in the paper. This leads to the accuracy

of 88.36% as compared to the original 87.7%. The source of this difference was

not identified.

This baseline experiment was further improved in several ways. Firstly, new

feature sets were designed that would hopefully improve the representation of the

examples. The first set of features used only the information already available in

the training data and achieved improvement from 87.81% to 88.39% as measured

on the held-out dataset. Then features using additional data sources were added:

prediction of countability category, prediction of a language model and word

embeddings representation of the head of the noun phrase. When used together,

the accuracy of the model further improved to 89.08% (Section 4.1.4).

Next, the effect of different approaches to extending binary logistic regression

to multi-class problems was evaluated. Apart from the original multinomial lo-

gistic regression using the softmax function, one-vs-one and one-vs-rest methods

of combining binary classifiers were evaluated. For the given problem, one-vs-

rest approach provided the best result raising the held-out accuracy to 89.49%

(Section 4.1.5).

The final attempt to improve the performance was made by replacing logistic

regression with gradient boosted trees. After tuning the model and running it on

the same data as the models discussed above, the accuracy of the classification

improved to 91.86% for the held-out dataset. When measured on the test data,

the performance is 91.84% (Section 4.2). This represents an increase of accuracy

of 4.14% when compared to the best reported result on the task known to the

author – 87.7% [Lee, 2004]. This corresponds to about 34% reduction in error.

An alternative approach based solely on the predictions of a large language
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model was also investigated. However, it was not found useful when it was eval-

uated on the Penn Treebank test data (Section 4.3).

As a reference, the performance of human annotators on the same task is given

(Section 4.4). Because the data were taken from another source, the comparison

is not straightforward. It turned out that evaluating the trained model on the

new dataset did not produce good results as the model was too conservative when

predicting article changes. On the other, when the automatic and manual meth-

ods are compared on the dataset the models were prepared for, the performance

of the best model matches the estimated performance of the best annotator.

Although this work presents an improvement on the best result for the given

task by Lee [2004], there remains much to be done in terms of practical application

of the suggested approach. The model was trained on newspaper articles focused

on the world of finance, which suggests the generalization of such a model might

be limited. This suggestion is also supported by one of the experiments.

In recent years, recurrent neural networks and long short-term memory neural

networks in particular get much attention also in the NLP community [Mikolov

et al., 2013b], [Józefowicz et al., 2016]. While gradient boosted trees seem to work

well with the given problem, it would be interesting to see if the neural network

based models can improve the performance by utilizing less constrained context

of each noun phrase.
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Attachments

4.5 Manual annotation texts

4.5.1 Original text

Sell-through, as the retail sector of the video market is obscurely known, is at the

moment very much a bull market, and there has lately been a growing shift to

releasing more recent movies in this way. This has been capped by the well publi-

cised current appearance of no less than Rain Man (Warner) for sale (£14.99) as

well as for rent, when hitherto the two spheres have tacitly been regarded as mu-

tually exclusive. But for all the changes, the prime emphasis in the retail market,

so far as movies are concerned, still seems to be on the past, and predominantly

on the mainstream Hollywood past.

Current refinements, no doubt with Christmas present buying in mind, include

boxed sets of three or more related cassettes from Warners — for example, all

three of James Dean’s movies for £29.95, or for the same price, Marilyn Monroe

in The Prince and the Showgirl, The Misfits and (a bit of a scoop, since it has not

been on video before) Some Like It Hot. This kind of collection, though usually

available individually, is increasingly and intelligently proving to be a marketing

ploy. For random instance, CBS/Fox has recently released (£9.99 each) not only

Cronenberg’s 1986 The Fly and its far from negligible 1958 forerunner, but also

the 1959 quick-buck sequel to the latter, Return Of The Fly, a collector’s item,

though not necessarily in qualitative terms.

And to move from B to Z movies, connoisseurs of the bizarre can now lay in

their own copy of Edward Woods’ Plan 9 From Outer Space (Palace, £14.99),

once voted the most incompetent film of all time. The rental sector meanwhile

provides — along with all the box-office successes which nowadays transfer to tape

within a few months and probably need no further introduction — the chance

to catch up on a variety of (often more deserving) movies which have been less

widely seen in cinemas here.

Competitive markets are essential if the market system is to operate effectively.

In a monopoly situation, the producer may be able to use his market power at

the expense of the consumer, although the likelihood of this happening will be

moderated if close substitutes for the product exist or if the monopolist fears

entry of new, but similar, products into the market, attracted by high prices

and the profits being made. It is relatively rare for a firm to have an absolute

monopoly of the market, but there are many instances where a small number of
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large firms dominate a market — this is called an oligopoly. Such firms may act

overtly (and illegally) or covertly (still illegally, but hard to detect) as if they

were in a monopoly situation.

Agreements or understandings could cover price-fixing and/or sharing out the

available work without resorting to competition (which would have resulted in

lower prices). In order for the agreement to stick, no single firm must break ranks,

encouraged by the prospect of greater market share by lowering its price, or else a

free-for-all may develop producing a competitive price, as if the market had been

operating smoothly. The operation of such a price-fixing agreement can be seen

in the way that the price of oil has been fixed by the Organisation of Petroleum

Exporting Countries (OPEC) cartel.

High prices were maintained from 1974 onwards in the face of inelastic demand

for oil from oil-importing countries, but an oil glut in the 1980s put pressure on

individual countries to reduce their prices in order to gain market share. Despite

attempts to prevent this by OPEC, the price of oil plummeted in 1986. Even if

there are no formal agreements to interfere with the market, implicit understand-

ings may be reached, in which case the behaviour of the firms involved might, in

practice, be the same as if a formal agreement had existed.

4.5.2 Annotator A

Sell-through, as a retail sector of the video market is obscurely known, is at

the moment very much a bull market, and there has lately been a growing shift

to releasing more recent movies in this way. This has been capped by the well

publicised current appearance of no less than Rain Man (Warner) for sale (£14.99)

as well as for rent, when hitherto the two spheres have tacitly been regarded as

mutually exclusive. But for all changes, a prime emphasis in the retail market,

so far as movies are concerned, still seems to be on the past, and predominantly

on the mainstream Hollywood past.

Current refinements, no doubt with Christmas present buying in mind, in-

clude boxed sets of three or more related cassettes from Warners — for example,

all three of James Dean’s movies for £29.95, or for same price, Marilyn Monroe

in Prince and Showgirl, Misfits and (a bit of a scoop, since it has not been on

video before) Some Like It Hot. This kind of collection, though usually available

individually, is increasingly and intelligently proving to be a marketing ploy. For

random instance, CBS/Fox has recently released (£9.99 each) not only Cronen-

berg’s 1986 Fly and its far from negligible 1958 forerunner, but also the 1959

quick-buck sequel to the latter, Return Of Fly, collector’s item, though not nec-

essarily in qualitative terms.
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And to move from B to Z movies, connoisseurs of the bizarre can now lay in

their own copy of EdwardWoods’ Plan 9 From Outer Space (Palace, £14.99), once

voted the most incompetent film of all time. Rental sector meanwhile provides

— along with all box-office successes which nowadays transfer to tape within a

few months and probably need no further introduction — the chance to catch up

on a variety of (often more deserving) movies which have been less widely seen

in cinemas here.

Competitive markets are essential if the market system is to operate effectively.

In a monopoly situation, a producer may be able to use his market power at

the expense of the consumer, although the likelihood of this happening will be

moderated if close substitutes for the product exist or if the monopolist fears the

entry of a new, but similar, products into market, attracted by high prices and

profits being made. It is relatively rare for firm to have an absolute monopoly

of market, but there are many instances where a small number of large firms

dominate the market — this is called an oligopoly. Such firms may act overtly

(and illegally) or covertly (still illegally, but hard to detect) as if they were in a

monopoly situation.

Agreements or understandings could cover price-fixing and/or sharing out

available work without resorting to competition (which would have resulted in

lower prices). In order for agreement to stick, no single firm must break ranks,

encouraged by the prospect of a greater market share by lowering its price, or

else a free-for-all may develop producing competitive price, as if the market had

been operating smoothly. The Operation of such a price-fixing agreement can

be seen in way that price of oil has been fixed by the Organisation of Petroleum

Exporting Countries (OPEC) cartel.

High prices were maintained from 1974 onwards in the face of inelastic demand

for oil from oil-importing countries, but oil glut in 1980s put pressure on individual

countries to reduce their prices in order to gain a market share. Despite attempts

to prevent this by OPEC, the price of oil plummeted in 1986. Even if there are

no formal agreements to interfere with the market, implicit understandings may

be reached, in which case the behaviour of the firms involved might, in practice,

be the same as if a formal agreement had existed.

4.5.3 Annotator B

Sell-through, as a retail sector of the video market is obscurely known, is at

the moment very much bull market, and there has lately been a growing shift to

releasing more recent movies in this way. This has been capped by well publicised

current appearance of no less than Rain Man (the Warner) for sale (£14.99) as
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well as for rent, when hitherto the two spheres have tacitly been regarded as

mutually exclusive. But for all changes, the prime emphasis in the retail market,

so far as movies are concerned, still seems to be on the past, and predominantly

on the mainstream Hollywood past.

Current refinements, no doubt with Christmas present buying in mind, include

boxed sets of three or more related cassettes from the Warners — for example,

all three of the James Dean’s movies for £29.95, or for the same price, Marilyn

Monroe in the Prince and Showgirl, the Misfits and (a bit of a scoop, since it

has not been on video before) the Some Like It Hot. This kind of collection,

though usually available individually, is increasingly and intelligently proving to

be a marketing ploy. For random instance, CBS/Fox has recently released (£9.99

each) not only the Cronenberg’s 1986 Fly and its far from negligible the 1958

forerunner, but also the 1959 quick-buck sequel to the latter, the Return Of Fly,

a collector’s item, though not necessarily in qualitative terms.

And to move from B to Z movies, connoisseurs of bizarre can now lay in their

own copy of the Edward Woods’ Plan 9 From Outer Space (Palace, £14.99),

once voted the most incompetent film of all time. The rental sector meanwhile

provides — along with all box-office successes which nowadays transfer to tape

within few months and probably need no further introduction — a chance to

catch up on variety of (often more deserving) movies which have been less widely

seen in cinemas here.

Competitive markets are essential if the market system is to operate effectively.

In monopoly situation, the producer may be able to use his market power at

expense of the consumer, although likelihood of this happening will be moderated

if close substitutes for product exist or if the monopolist fears entry of new, but

similar, products into market, attracted by high prices and profits being made. It

is relatively rare for a firm to have the absolute monopoly of the market, but there

are many instances where a small number of large firms dominate the market —

this is called oligopoly. Such firms may act overtly (and illegally) or covertly (still

illegally, but hard to detect) as if they were in the monopoly situation.

Agreements or understandings could cover price-fixing and/or sharing out

available work without resorting to a competition (which would have resulted in

lower prices). In order for an agreement to stick, no single firm must break ranks,

encouraged by the prospect of a greater market share by lowering its price, or else

free-for-all may develop producing a competitive price, as if the market had been

operating smoothly. The operation of such a price-fixing agreement can be seen

in way that price of oil has been fixed by Organisation of Petroleum Exporting

Countries (OPEC) cartel.

High prices were maintained from 1974 onwards in face of the inelastic de-
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mand for oil from oil-importing countries, but the oil glut in 1980s put pressure

on individual countries to reduce their prices in order to gain a market share.

Despite attempts to prevent this by OPEC, the price of oil plummeted in 1986.

Even if there are no formal agreements to interfere with the market, implicit

understandings may be reached, in which a case behaviour of the firms involved

might, in practice, be the same as if a formal agreement had existed.

4.5.4 Annotator C

Sell-through, as the retail sector of the video market is obscurely known, is at

the moment very much a bull market, and there has lately been a growing shift

to releasing more recent movies in this way. This has been capped by the well

publicised current appearance of no less than the Rain Man (Warner) for sale

(£14.99) as well as for rent, when hitherto the two spheres have tacitly been

regarded as mutually exclusive. But for all the changes, prime emphasis in the

retail market, so far as movies are concerned, still seems to be on the past, and

predominantly on mainstream Hollywood past.

Current refinements, no doubt with Christmas present buying in mind, include

the boxed sets of three or more related cassettes from Warners — for example, all

three of James Dean’s movies for £29.95, or for the same price, Marilyn Monroe

in Prince and the Showgirl , Misfits and (a bit of a scoop , since it has not

been on video before) Some Like It Hot. This kind of collection, though usually

available individually, is increasingly and intelligently proving to be a marketing

ploy. For random instance, CBS/Fox has recently released (£9.99 each) not only

Cronenberg’s 1986 Fly and its far from negligible 1958 forerunner, but also the

1959 quick-buck sequel to the latter, Return Of Fly, a collector’s item, though

not necessarily in qualitative terms.

And to move from B to Z movies, connoisseurs of the bizarre can now lay in

their own copy of Edward Woods’ Plan 9 From Outer Space (Palace, £14.99),

once voted the most incompetent film of all time. The rental sector meanwhile

provides — along with all box-office successes which nowadays transfer to tape

within a few months and probably need no further introduction — chance to catch

up on a variety of (often more deserving) movies which have been less widely seen

in cinemas here.

Competitive markets are essential if the market system is to operate effectively.

In a monopoly situation, the producer may be able to use his market power at

the expense of the consumer, although the likelihood of this happening will be

moderated if close substitutes for the product exist or if the monopolist fears

entry of new, but similar, products into the market, attracted by high prices and
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profits being made. It is relatively rare for a firm to have absolute monopoly of

the market, but there are many instances where a small number of large firms

dominate the market — this is called oligopoly. Such firms may act overtly

(and illegally) or covertly (still illegally, but hard to detect) as if they were in a

monopoly situation.

Agreements or understandings could cover price-fixing and/or sharing out

available work without resorting to competition (which would have resulted in

lower prices). In order for an agreement to stick, no single firm must break ranks,

encouraged by the prospect of a greater market share by lowering its price, or

else a free-for-all may develop producing a competitive price, as if the market had

been operating smoothly. Operation of such a price-fixing agreement can be seen

in the way that the price of oil has been fixed by the Organisation of Petroleum

Exporting Countries (OPEC) cartel.

High prices were maintained from 1974 onwards in the face of an inelastic

demand for oil from oil-importing countries, but an oil glut in the 1980s put

pressure on individual countries to reduce their prices in order to gain a market

share. Despite attempts to prevent this by the OPEC, the price of oil plummeted

in 1986. Even if there are no formal agreements to interfere with the market,

implicit understandings may be reached, in which case the behaviour of firms

involved might, in practice, be the same as if a formal agreement had existed.

4.5.5 Annotator D

Sell-through, as the retail sector of the video market is obscurely known, is at

the moment very much a bull market, and there has lately been a growing shift

to releasing more recent movies in this way. This has been capped by the well

publicised current appearance of no less than Rain Man (Warner) for sale (£14.99)

as well as for rent, when hitherto two spheres have tacitly been regarded as

mutually exclusive. But for all the changes, a prime emphasis in the retail market,

so far as movies are concerned, still seems to be on the past, and predominantly

on the mainstream Hollywood past.

The current refinements, no doubt with Christmas present buying in mind,

include boxed sets of three or more related cassettes fromWarners — for example,

all three of James Dean’s movies for £29.95, or for the same price, Marilyn Monroe

in Prince and Showgirl , the Misfits and (a bit of a scoop , since it has not

been on video before) Some Like It Hot. This kind of collection, though usually

available individually, is increasingly and intelligently proving to be a marketing

ploy. For random instance, CBS/Fox has recently released (£9.99 each) not only

Cronenberg’s 1986 the Fly and its far from negligible 1958 forerunner, but also
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the 1959 quick-buck sequel to the latter, Return Of Fly, a collector’s item, though

not necessarily in qualitative terms.

And to move from B to Z movies, connoisseurs of the bizarre can now lay in

their own copy of Edward Woods’ Plan 9 From Outer Space (Palace, £14.99),

once voted the most incompetent film of all time. The rental sector meanwhile

provides — along with all box-office successes which nowadays transfer to tape

within a few months and probably need no further introduction — a chance to

catch up on a variety of (often more deserving) movies which have been less

widely seen in cinemas here.

Competitive markets are essential if a market system is to operate effectively.

In a monopoly situation, a producer may be able to use his market power at

the expense of the consumer, although the likelihood of this happening will be

moderated if close substitutes for the product exist or if the monopolist fears

entry of new, but similar, products into the market, attracted by high prices

and the profits being made. It is relatively rare for a firm to have an absolute

monopoly of a market, but there are many instances where a small number of

large firms dominate a market — this is called an oligopoly. Such firms may act

overtly (and illegally) or covertly (still illegally, but hard to detect) as if they

were in a monopoly situation.

Agreements or understandings could cover price-fixing and/or sharing out

available work without resorting to competition (which would have resulted in

lower prices). In order for an agreement to stick, no single firm must break the

ranks, encouraged by the prospect of greater market share by lowering its price,

or else a free-for-all may develop producing a competitive price, as if the market

had been operating smoothly. The operation of such a price-fixing agreement can

be seen in the way that the price of oil has been fixed by the Organisation of

Petroleum Exporting Countries (OPEC) cartel.

High prices were maintained from 1974 onwards in the face of inelastic demand

for oil from oil-importing countries, but the oil glut in the 1980s put pressure

on individual countries to reduce their prices in order to gain a market share.

Despite attempts to prevent this by OPEC, the price of oil plummeted in 1986.

Even if there are no formal agreements to interfere with the market, implicit

understandings may be reached, in which case the behaviour of firms involved

might, in practice, be the same as if a formal agreement had existed.
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