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1. Introduction
A binary matrix (or 0–1 matrix) is a matrix with ones and zeroes as its entries. In
the thesis, we only consider binary matrices and so we omit the word binary. We
say that a matrix M contains a matrix P as an interval minor, if P can be created
from M by a sequence of deletion of one-entries and merges of neighboring rows
or columns. Otherwise, we say M avoids P . To distinguish among matrices and
to indicate the relationship, we usually call the matrix P a pattern.

When working with matrices, we always index rows from top to bottom and
columns from left to right, starting with one. When we speak about a row r, we
mean a row with index r. A line of a matrix is either a row or a column.

1.1 The main results
While a lot is known about matrices in general, because they can intuitively
represent much more complex objects, interval minors are a fairly new topic and
so we have a choice of the direction from which we want to approach them.

To get familiar with definitions and pattern avoidance in general, in Chapter 2,
we focus on small patterns (having up to four one-entries only) and describe the
common structure of matrices avoiding them.

We then turn our focus elsewhere in Chapter 3, and instead of looking for a
structure of matrices avoiding a pattern, given a class of matrices (closed under
interval minors) we find its basis – the smallest set of forbidden patterns that
characterizes the class. We introduce the skew sum of two matrices and show
that the closure under the skew sum of a single matrix always has finite basis.
We finish the chapter by showing a class of matrices with finite basis such that
its closure under the skew sum has an infinite basis.

Because it is very useful to study extremal questions like the maximum number
of one-entries of a matrix from a given class of matrices, in Chapter 4, we study
a variant of such complexity question, where we instead focus on the maximum
number k of appearances of pairs “01” and “10” in a single line of a matrix from a
given class. We show that even for classes that are described by just one forbidden
pattern, k can be unbounded, and we characterize exactly which patterns cause
their class to be unbounded. We conclude the thesis by showing that while the
intersection of bounded classes is always bounded, there are unbounded classes
intersection of which is even hereditarily bounded.

1.2 Preliminaries
Notation 1.1. For n ∈ N, let [n] := {1, 2, . . . , n} and for m ∈ N such that
n ≤ m, let [n, m] := {n, n + 1, . . . , m}.
Notation 1.2. For a matrix M ∈ {0, 1}m×n, R ⊆ [m] and C ⊆ [n], let M [R, C]
denote a submatrix of M induced by row indices in R and column indices in C.
Furthermore, for r ∈ [m] and c ∈ [n], let M [r, c] := M [{r}, {c}].
Definition 1.3. We say a matrix M ∈ {0, 1}m×n is empty, if there is no one-
entry in M and we denote it as M = {0}m×n. Otherwise, it is non-empty. By
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{1}m×n we denote the matrix of size m × n without zero-entries. Similarly, a row
(column) of M is non-empty if it contains a one-entry and empty otherwise.

The pattern avoidance for matrices is a generalization of a long studied theory
of pattern avoidance for permutations. There are two generally used ways to
define this generalization, either we avoid a matrix pattern as a submatrix or as
an interval minor. While this thesis works almost exclusively with the latter, to
better introduce the whole area, we start by defining the more common of the
two approaches.

Definition 1.4. We say a matrix M ∈ {0, 1}m×n contains a pattern P ∈ {0, 1}k×l

as a submatrix and denote it by P ≤ M if there are R ⊆ [m] and C ⊆ [n] such
that M ′ = M [R, C] ∈ {0, 1}k×l and for every r ∈ R and c ∈ C, if P [r, c] = 1 then
M ′[r, c] = 1.

Every matrix M ∈ {0, 1}m×n can be looked at as an adjacency matrix of a
bipartite graph GM with two sets of vertices V1 = [m] and V2 = [n] such that
a vertex i from V1 is adjacent to a vertex j from V2 if and only if M [i, j] = 1.
The order of vertices in each set is fixed and these graphs are usually called
ordered bipartite graphs. In this setting, a matrix M contains a pattern P if the
ordered bipartite graph GP is a subgraph (not necessarily induced) of the ordered
bipartite graph GM .

In graph theory, the next step is to look at graph minors. A minor is created
from a graph by a repeated applying of one of three graph operations: deletion
of a vertex, deletion of an edge and a contraction of an edge. The same can be
represented in terms of matrices:

Definition 1.5. We say a matrix M ∈ {0, 1}m×n contains a pattern P ∈ {0, 1}k×l

as an interval minor and denote it by P ⪯ M if there is a sequence of elementary
operations that applied to M creates P . The elementary operations are:

• a deletion of a line,

• a deletion of a one-entry (a change of a one-entry to a zero-entry) and

• a merge of two neighboring rows or columns into one that is the elementwise
OR of the two original lines.

For simplicity, we do not consider a deletion of a line to be a separate operation
as it can be replaced by a merge of the corresponding line with a neighboring one
and a series of changes of one-entries to zero-entries. Moreover, like in the realm
of graphs, we can assume all merging operations are done before the deletion of
one-entries. This give us an alternative way to look at the problem.

Definition 1.6. Consider matrices P and M and let P ⪯ M . A mapping of P
to M is a function that maps each row of P to an interval of rows of M and each
column of P to an interval of columns of M in such a way that if P [r, c] = 1 and
r is mapped to R and c is mapped to C, there is a one-entry in M [R, C]. An
interval of rows (columns) is a set of consecutive rows (columns). We say that
an entry P [r, c] is mapped to an entry M [r′, c′] in a fixed mapping of P to M ,
in which r is mapped to R and c is mapped to C, if r′ ∈ R and c′ ∈ C and if
P [r, c] = 1 then we also require M [r′, c′] = 1.
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P =

P = = M

Figure 1.1: An example of a mapping of a pattern P to a matrix M .

Each mapping of a pattern P to a matrix M corresponds to a partitioning of
M to intervals of rows and columns that creates a block structure. See Figure 1.1.
On the other hand, if we find a partitioning of M to blocks such that for each
one-entry P [r, c] there is a one-entry in the block that can be indexed [r, c] then
we have a mapping of P to M and so P ⪯ M . This means:

Observation 1.7. For all matrices P and M , there is a mapping of P to M ⇔
P ⪯ M .

While pattern avoidance in terms of submatrices and interval minors seem
to be very different, they have a quite tight relationship. The next observation
immediately follows from their definitions.

Observation 1.8. For all matrices P and M , P ≤ M ⇒ P ⪯ M .

As mentioned at the beginning of the section, both approaches generalize
pattern avoidance for permutations and so it makes sense that they are equal for
permutation matrices – matrices having exactly one one-entry in each line.

Observation 1.9. For all matrices P and M , if P is a permutation matrix then
P ≤ M ⇔ P ⪯ M .

Proof. If we have P ⪯ M , then there is a mapping m of P to M . To show P ≤ M
we need to find R, C such that M ′ = M [R, C] has the same size as P and for
every P [r, c] = 1 it holds M ′[r, c] = 1. We define R and C as follows. For every
row r, let R′ be the interval to which r is mapped in the mapping m. There is
exactly one column c such that P [r, c] = 1 and c is mapped to some C ′. Because
m is a mapping, there is a one-entry M [r′, c′] such that r′ ∈ R′ and c′ ∈ C ′ and
we add r′ to R and we add c′ to C.

The other implication follows from Observation 1.8.

Definition 1.10. A class of matrices M is a set of matrices that is closed under
interval minors. It means that for every M ∈ M and every M ′ ⪯ M it holds
M ′ ∈ M.

To avoid degenerate cases, we only consider classes of matrices containing at
least one matrix of size 2 × 1, at least one matrix of size 1 × 2 and at least one
matrix that is non-empty.

Definition 1.11. Let P be a set of patterns. We denote by Av⪯ (P) the set of
all matrices that avoid each P ∈ P as an interval minor.
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Observation 1.12. For all patterns P and P ′: P ⪯ P ′ ⇔ Av⪯ (P ) ⊆ Av⪯ (P ′).

Proof. Because P ⪯ P ′, every matrix that avoids P also avoids P ′. On the other
hand, if P ̸⪯ P ′ then P ′ ∈ Av⪯ (P ). As P ′ ̸∈ Av⪯ (P ′), we have Av⪯ (P ) ̸⊆
Av⪯ (P ′).

The following observation goes almost without saying and we use it throughout
the whole thesis to break symmetries.

Observation 1.13. Let P and M be matrices, P ⪯ M ⇔ P T ⪯ MT .

1.3 Pattern avoidance
Pattern avoidance is a general topic in combinatorics. A lot of attention is directed
towards permutations, see books Bóna [2012], Kitaev [2011] for references. It is
a natural generalization to regard permutations as permutation matrices and
consider matrix avoidance. This is mainly studied in terms of submatrices, so we
discuss some interesting results in this section.

Interval minors are, on the other hand, a fairly new topic first defined by Jacob
Fox in Fox [2013] as a tool to prove results about permutations in the study of
Stanley–Wilf limits. Since then, little has been discovered about the theory of
interval minors. Nevertheless, we mention some results at the end of this section.

Let us go back to submatrices for now. The question that is particularly inter-
esting is to determine the maximum number of one-entries that a matrix avoiding
a given pattern can have. This property describes complexity of a pattern and
can be used for example to prove algorithmic complexity, see Efrat and Sharir
[1996].

Definition 1.14. Let M be a matrix. The weight of M , denoted by |M |, is the
number of one-entries in M .

Definition 1.15. For a pattern P and integers m, n, we define the weight extremal
function Ex(P, m, n) := max{|M |; M ∈ {0, 1}m×n ∧ P ̸≤ M}.

Going back to the representation of the problem in terms of ordered bipartite
graphs, the question to determine Ex(P, m, n) is a variant of a classical Turán
extremal graph question and was studied by many authors, see for example Tar-
dos [2005], Füredi and Hajnal [1992] or, for a wider range of variants Brass et al.
[2003], Claesson et al. [2012], Klazar [2004], Pach and Tardos [2006]. Some ap-
plications associated with the weight extremal function are discussed in Fulek
[2009]. There are other extremal functions that have been studied, see for in-
stance Cibulka and Kynčl [2016], but we do not consider them in this thesis.

In the same spirit, we also define the weight extremal function for matrices
avoiding patterns as interval minors.

Definition 1.16. For a pattern P and integers m, n, we define Ex⪯(P, m, n) :=
max{|M |; M ∈ {0, 1}m×n ∧ P ̸⪯ M}.

Thanks to Observation 1.8 we have the following relationship between the
extremal functions.
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Observation 1.17. For all patterns P and integers m, n:
Ex⪯(P, m, n) ≤ Ex(P, m, n).

From Observation 1.12 it follows:

Observation 1.18. For all patterns P and P ′ and integers m, n: P ⪯ P ′ ⇒
Ex⪯(P, m, n) ≤ Ex⪯(P ′, m, n).

It was showed in Marcus and Tardos [2004] that for every permutation ma-
trix P and every n it holds Ex(P, n, n) ≤ cP n. While Ex(P, n, n) can be-
come even quadratic with n, because of the previous observation and the fact
that every pattern P ∈ {0, 1}k×l is an interval minor of some permutation pat-
tern P ′ ∈ {0, 1}(kl)×(kl) we have the following:

Proposition 1.19. For every pattern P and integer n: Ex⪯(P, n, n) ≤ cP n for
some constant cP independent of n.

The following observation for Ex(P, m, n) was made by several authors; see
for example Cibulka [2009], Fulek [2009].

Lemma 1.20. If P ∈ {0, 1}k×l has at least one one-entry, then

Ex(P, m, n) ≥
{

m · n k > m or l > m
(k − 1)n + (l − 1)m − (k − 1)(l − 1) otherwise.

Moreover, the same holds for Ex⪯(P, m, n).

Proof. If k > m ∨ l > m, we have P ̸⪯ {1}m,n. Otherwise, let P [r, c] = 1 and
consider Figure 1.2. Consider a matrix M such that the first r − 1 rows, the last
k − r rows, the first c − 1 column and the last l − c column contain no zero-entry
and the rest is empty. Then P ̸≤ M and even P ̸⪯ M . We can also see that
|M | = mn − (m − k + 1)(n − l + 1) = (l − 1)m + (k − 1)n − (k − 1)(l − 1).

P = M =

c − 1 l − c

r − 1

k − r

r − 1

k − r

l − cc − 1

• 0

Figure 1.2: An example of a matrix M avoiding a pattern P as an interval minor.

The following definition is due to Cibulka [2013].

Definition 1.21. A pattern P ∈ {0, 1}k×l is (strongly) minimalist if

Ex(P, m, n) =
{

m · n k > m or l > m
(k − 1)n + (l − 1)m − (k − 1)(l − 1) otherwise.

We use the adjective “strongly” to further distinguish minimalist patterns
from weakly minimalist patterns defined next.

6



Definition 1.22. A pattern P ∈ {0, 1}k×l is weakly minimalist if

Ex⪯(P, m, n) =
{

m · n k > m or l > m
(k − 1)n + (l − 1)m − (k − 1)(l − 1) otherwise.

From Observation 1.17, we immediately have:

Observation 1.23. If a pattern P is strongly minimalist then P is weakly min-
imalist.

The following result is a simplification of a lemma from Cibulka [2013].

Fact 1.24. 1. The pattern ( • ) is strongly minimalist.

2. If a pattern P ∈ {0, 1}k×l is strongly minimalist and there is a one-entry in
the last row of P in the c-th column, then P ′ ∈ {0, 1}k+1×l created from P
by appending as the last row a new row having a one-entry only in the c-th
column is strongly minimalist.

3. If a pattern P having at least two one-entries is strongly minimalist, then
after changing a one-entry to a zero-entry it is still strongly minimalist.

The following two facts come from Mohar et al. [2015]. In the article, a slightly
different definition of an interval minor is used, so we show here the proofs in our
setting.

Fact 1.25 (Mohar et al. [2015]). Let P = {1}2×l be a pattern, then P is weakly
minimalist.

Proof. Let M ∈ {0, 1}m×n be a matrix avoiding P = {1}2×l as an interval minor
and let Ai be the set of column indices j such that both M [[i], {j}] and M [[i +
1, m], {j}] are non-empty. Clearly, |Ai| ≤ l − 1; otherwise, P ⪯ M . Let bj denote
the number of one-entries in the j-th column. Each column j of M appears in at
least bj − 1 of sets Ai, 1 ≤ i ≤ m − 1. It follows that

|M | =
n∑

j=1
bj =

n∑
j=1

(bj − 1) + n ≤
m−1∑
i=1

|Ai| + n ≤ (l − 1)(m − 1) + n.

This result shows an example of a weakly minimalist matrix that is not
strongly minimalist. Consider the matrix ( • •

• • ). It is, thanks to Fact 1.25 weakly
minimalist, but it is known due to Brown [1966] that it is not strongly minimalist.

Fact 1.26 (Mohar et al. [2015]). Let P = {1}3×l be a pattern, then P is weakly
minimalist.

Proof. Let M ∈ {0, 1}m×n be a matrix avoiding P = {1}3×l as an interval minor
and let Ai be a set of column indices j such that both M [[i − 1], {j}] and M [[i +
1, m], {j}] are non-empty and M [i, j] = 1. Clearly |Ai| ≤ l−1, otherwise P ⪯ M .
Let bj denote the number of one-entries in the j-th column. Each column j of M
(for which bj ≥ 2) appears in exactly bj − 2 of sets Ai, 2 ≤ i ≤ m − 1. It follows
that

|M | =
n∑

j=1
bj =

n∑
j=1

(bj − 2) + 2n ≤
m−1∑
i=2

|Ai| + 2n ≤ (l − 1)(m − 2) + 2n.
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We now show that the third part of Fact 1.24 also holds for weakly minimalist
patterns.

Lemma 1.27. Let P ∈ {0, 1}k×l be a weakly minimalist pattern having at least
two one-entries. Then a pattern P ′ created from P be deletion of a one-entry is
also weakly minimalist.

Proof. For contradiction, consider a matrix M ∈ {0, 1}m×n avoiding P ′ as an
interval minor such that |M | > (k −1)n+(l−1)m−(k −1)(l−1). The matrix M
also avoids P ; as otherwise, we have P ′ ⪯ P ⪯ M . That is a contradiction with
P being weakly minimalist.

As a result, we have the following corollary:

Corollary 1.28. Every non-empty pattern P that has at most three rows (or
columns) is weakly minimalist.

In Cibulka [2009], the author shows that for every k ≥ 1 there is a 2k × 2k
permutation pattern for which Ex[P, n] ≥ k2n. Because of Observation 1.9, the
same construction shows that for k ≥ 2 the patterns are not weakly minimalist.
It means that the previous results cannot be easily extended. On the other hand,
in Mao et al. [2015] the authors show some form of generalization and also other
bounds regarding interval minors and their weight extremal function.
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2. Small interval minors
Our goal in this chapter is to describe, for a given small pattern, the structure of
matrices avoiding it as an interval minor.

Algorithmically speaking, deciding whether a pattern is contained in a matrix
is NP-hard, even if both matrices are permutation matrices, see Bose et al. [1998].
We do not consider complexity questions here, but for small patterns, we show
that matrices avoiding them have a quite simple structure. However, the structure
gets significantly more complex as soon as we allow the pattern to contain at least
four one-entries.

To go through cases efficiently, we first show that to some extent, we can
assume, without loss of generality, there are no empty lines in studied patterns.

Before we dive into characterizations, let us introduce some useful notion.

Definition 2.1. A walk in a matrix M is a contiguous sequence of its entries,
beginning in the top-left corner and ending in the bottom-right one. If M [i, j]
occurs in the sequence, its successor is either M [i + 1, j] or M [i, j + 1]. Symmet-
rically, a reverse walk in M is a contiguous sequence of its entries, beginning in
the top-right corner and ending in the bottom-left one.

Definition 2.2. We say a matrix M is a walking matrix if there is a walk in M
containing all one-entries.

Definition 2.3. For a matrix M ∈ {0, 1}m×n and integers r, c, we say M [r, c] is

• top-left empty, if M [[r − 1], [c − 1]] is an empty matrix,

• top-right empty, if M [[r − 1], [c + 1, n]] is empty,

• bottom-left empty, if M [[r + 1, m], [c − 1]] is empty,

• bottom-right empty, if M [[r + 1, m], [c + 1, n]] is empty.

Definition 2.4. For a matrix M ∈ {0, 1}m×n and integers r, c, we say that an
entry M [r, c] is top-left extreme, if it is top-left empty and the submatrix M [[r], [c]]
is not empty. Similarly, M [r, c] is bottom-right extreme if it is bottom-right empty
and the submatrix M [[r, m], [c, n]] is not empty. A walk in M is top-left extreme if
it contains all top-left extreme elements of M . A reverse walk in M is bottom-right
extreme if it contains all bottom-right extreme elements of M .

It is easy to see that there is exactly one bottom-left extreme walk and exactly
one bottom-right extreme walk in every non-empty matrix.

Definition 2.5. For matrices M ∈ {0, 1}m×n and N ∈ {0, 1}m×l, we define
M → N ∈ {0, 1}m×(n+l) to be the matrix created from M by appending the
columns of N at the end of M .

9



2.1 Empty rows and columns
From the definition of matrix containment, zero-entries of the pattern pose no
restrictions on the tested matrix, so, intuitively, adding new empty lines to a
pattern should not influence the structure of matrices avoiding the pattern by
much.

We first show that adding empty lines as first or last lines of the pattern
indeed does next to no difference. On the other hand, inserting empty lines in
between non-empty lines becomes a bit more tricky and we only describe what
happens when we extend a pattern of size k × 2 (or symmetrically 2 × k) by a
single empty column (row).

Observation 2.6. For matrices P ∈ {0, 1}k×l and M ∈ {0, 1}m×n, let P ′ = P →
{0}k×1 and let M ′ = M → {1}m×1. Then P ⪯ M ⇔ P ′ ⪯ M ′.

Proof. ⇒ The last column of P ′ can always be mapped just to the last column
of M ′ and P ′[[k], [l]] can be mapped to M ′[[m], [n]] the same way P is
mapped to M .

⇐ Taking the restriction of the mapping of P ′ to M ′, we get a mapping of P
to M .

The analogous proof can be also used to characterize matrices avoiding pat-
terns after adding an empty column as the first column or an empty row as the
first or the last row. Using induction, we can easily show that a pattern P ′ is
avoided by a matrix M ′ if and only if P is avoided by M , where P is derived from
P ′ by excluding all empty leading or ending rows and columns and M is derived
from M ′ by excluding the same number of leading or ending rows and columns.
Therefore, when characterizing matrices avoiding a forbidden pattern, we do not
need to consider patterns having empty rows or columns on their boundary.

We now show what happens when we add an empty column in between two
columns of a pattern that only has two columns. It is going to be achieved by
employing a notion of intervals of one-entries. More about these intervals and
their counterpart – zero-intervals can be found in the last chapter of the thesis.

Definition 2.7. A one-interval of a matrix M is a sequence of consecutive one-
entries of a single line of M bounded from each side by a zero-entry or the edge
of the matrix.

Definition 2.8. For a class of matrices M, a matrix M ∈ M is critical in M
if after a change of any zero-entry to one-entry the matrix no longer belongs to
M. For a pattern P , we denote by Avcrit (P ) the set of all matrices critical in
Av⪯ (P ).

Lemma 2.9. For every l > 1, let P ∈ {0, 1}k×l be a pattern such that only the
first and the last columns are non-empty and let M ∈ Avcrit (P ) be a matrix, then
M contains at most one one-interval in each row.

Proof. For contradiction, assume there are at least two one-intervals in a row of
M . Because M is critical in Av⪯ (P ), changing any zero-entry e in between one-
intervals o1 and o2 creates a mapping of the forbidden pattern. Such a mapping
uses the changed one-entry to map some element P [r′, 1] or P [r′, l].

10



In the first case, the same mapping also maps P to M if we use a one-entry
from o1 instead of e; thus, P ⪯ M and we reach a contradiction. In the second
case, the mapping can use a one-entry from o2 instead of e; therefore, we again
get a contradiction with P ̸⪯ M . Since e is not usable for any one-entry of P , we
can change it to a one-entry and get a contradiction with M being critical.

Lemma 2.10. Let P ∈ {0, 1}k×3 be a pattern such that its middle column is
empty. Every row of any matrix M ∈ Avcrit (P ) is either empty or it contains a
single one-interval of length at least 2 (or length m if m < 2).

Proof. Let a matrix M ∈ Avcrit (P ). The same proof as in Lemma 2.9 shows that
there is at most one one-interval in each row of M . For contradiction, let there
be only one one-entry M [r, c] in a row r:

• c = 1: we can set M [r, c + 1] = 1 and the matrix still avoids P , which is a
contradiction with M being critical in Av⪯ (P ).

• c = n: we can set M [r, c − 1] = 1 and the matrix still avoids P , which is a
contradiction with M being critical in Av⪯ (P ).

• otherwise: consider zero-entries el = M [r, c − 1] and er = M [r, c + 1]. For
contradiction, assume we can change neither el nor er to a one-entry without
creating a mapping of the pattern. It means that if we set el = 1 then some
P [r1, 1] can be mapped to it. Let ml be the corresponding mapping. At
the same time, if we set er = 1 then some P [r2, 3] can be mapped to it and
mr is the corresponding mapping. We show that the two mappings can be
combined to a mapping of P to M , giving a contradiction.
Without loss of generality, in both mappings, the empty column of P is
mapped exactly to the column c of M . We need to describe how to partition
M into k rows. Consider Figure 2.1:

– r1 ̸= r2: Without loss of generality, we assume r1 > r2. Let r3 be
the first row of the interval where the row r1 is mapped in ml and let
r4 be the last row of the interval where the row r1 is mapped in mr.
From the mapping ml, we know that the first r1 − 1 rows of P can be
mapped to rows [1, r3 − 1] and from the mapping mr, we know that
the last k − r1 rows of P can be mapped to rows [r4 + 1, m]. From the
mapping mr, we know that the row r1 can be mapped to rows [r3, r4];
thus, we have a mapping of P to M .

– r1 = r2: Let [r3, r4] be the interval where the row r1 is mapped in
ml and let [r5, r6] be the interval where the row r1 is mapped in mr.
Without loss of generality, let r3 < r5. From the mapping ml, we
know that the first r1 − 1 rows of P can be mapped to rows [1, r3 − 1].
Without loss of generality, let r4 < r6. From the mapping mr, we
know that the last k − r1 rows of P can be mapped to rows [r6 + 1, m].
Therefore, we can map the row r1 of P to the row interval [r3, r6]
without using one-entries el and er.

We showed that either el or er can be changed to a one-entry, which is a contra-
diction with M being critical in Av⪯ (P ).
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k

r2
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r4

r3

ml

mr

1
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r1

c
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r
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r6

el er el er

Figure 2.1: Red and blue lines representing mappings ml and mr of the forbidden
pattern. The two horizontal lines show the boundaries of the mapping of the
row r and the vertical lines show the boundaries of the mapping of the column c.

Similarly, we can prove that for every pattern P ∈ {0, 1}k×l such that all
(l − 2) middle columns are empty, every matrix from Avcrit (P ) that contains at
least l one-entries in each row, contains at least l + 1 one-entries in each row.
On the other hand, it cannot be generalized further, as we show in the following
proposition.

Proposition 2.11. For every integer l > 3, there exists a pattern P ∈ {0, 1}k×l

such that all (l − 2) middle columns are empty and there exists a matrix M ∈
Avcrit (P ) containing a row with a single one-entry.

Proof. We only show the construction for l = 4 and l = 5 because the first
construction can easily be extended for every even l and the latter for every odd
l. For l ∈ {3, 4}, let Pl be the forbidden pattern and Ml ∈ Avcrit (P ) be the
critical matrix that has a single one-entry in some row:

P4 =
( ◦ ◦ ◦ •

• ◦ ◦ ◦
◦ ◦ ◦ •
• ◦ ◦ ◦

)
M4 =

( • • • • ◦
• • • • •
◦ ◦ • ◦ ◦
• • • • •
◦ • • • •

)
P5 =

( ◦ ◦ ◦ ◦ •
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
• ◦ ◦ ◦ ◦

)
M5 =

( • • • • • ◦ ◦
• • • • • • •
◦ ◦ ◦ • ◦ ◦ ◦
• • • • • • •
◦ ◦ • • • • •

)
It is easy to check that Ml ∈ Av⪯ (Pl) and that changing a zero-entry to a

one-entry creates a mapping of the forbidden pattern.

Theorem 2.12. Let P ∈ {0, 1}k×2 be a pattern and let P ′ ∈ {0, 1}k×3 be the
pattern created from P by appending a new empty column in between the two
columns of P . For all matrices M ∈ {0, 1}m×n it holds M ∈ Av⪯ (P ′) ⇔ there
exists a matrix N ∈ {0, 1}m×(n−1) such that N ∈ Avcrit (P ) and M is a submatrix
of the elementwise OR of N → {0}m×1 and {0}m×1 → N .

Proof. ⇒ Without loss of generality, let the matrix M be critical in Av⪯ (P ′).
We know from Lemma 2.10 that each row of M contains either no one-entry
or a single one-interval of length at least 2. Let a matrix N be created from
M by deletion of the last one-entry from each row and deletion of the last
column. Clearly, M is equal to the elementwise OR of N → {0}m×1 and
{0}m×1 → N . If P ⪯ N then each mapping of P to N can be extended
to a mapping of P ′ to M by mapping each P ′[r1, 1] to the same one-entry
where P [r1, 1] is mapped in N → {0}m×1 and mapping each P ′[r2, 3] to the
same one-entry where P [r2, 2] is mapped in {0}m×1 → N .

12



⇐ Let a matrix M be equal to the elementwise OR of N → {0}m×1 and
{0}m×1 → N . For contradiction, assume P ′ ⪯ M and consider any mapping
of P ′ to M . Without loss of generality, one-entries of the first column
of P ′ are mapped to those one-entries of M created from N → {0}m×1.
If there is a one-entry P ′[r, 1] mapped to a one-entry of M not created
from N → {0}m×1, we just take the first one-entry in the row instead.
Symmetrically, all one-entries of the last column of P ′ are mapped to one-
entries created from {0}m×1 → N . The same one-entries of N can be used
to map P to N , which is a contradiction.

The symmetric characterization also holds when adding an empty row to a
pattern that only has two rows. We can see in the following proposition that the
straightforward generalization of the statement for bigger patterns does not hold.

Proposition 2.13. There exists a matrix P ∈ {0, 1}k×l such that for each pat-
tern P ′ ∈ {0, 1}k×(l+1) created from P by inserting a new empty column in be-
tween the two existing columns, there exists a matrix N ∈ Av⪯ (P ) such that the
elementwise OR of N → {0}m×1 and {0}m×1 → N contains P ′ as an interval
minor.

Proof. Later in this chapter, we characterize the class of matrices avoiding pat-
tern ( • • •

• ). See Proposition 2.23. Let N ∈ Av⪯ (( • • •
• )) be any matrix contain-

ing ( • •
• ) as an interval minor. Let a matrix M be equal to the elementwise OR

of N → {0}m×1 and {0}m×1 → N . Then ( • ◦ • •
◦ • ) ⪯ M and ( • • ◦ •

• ◦ ) ⪯ M .

Next, we describe the structure of matrices avoiding certain small patterns.
We restrict ourselves to patterns with no empty lines. If P ̸⪯ M then also
P ⊤ ̸⪯ M⊤ and this holds for all rotations and mirrors of P and M and so we
only mention these symmetries.

2.2 Patterns having two one-entries
These are, up to rotation, the only patterns having two one-entries and no empty
lines:

P1 = ( • • ) P2 = ( •
• )

They can be generalized to:

P ′
1 = ( • • ··· • • ) P ′

2 =
( •

•
···

•
•

)

Proposition 2.14. Let P ′
1 = {1}1×k. For all matrices M : P ′

1 ̸⪯ M ⇔ M has at
most k − 1 non-empty columns.

Proof. ⇒ When a matrix M contains one-entries in k columns, then these give
us a mapping of P ′

1.

⇐ A matrix M having at most k − 1 non-empty columns avoids P ′
1.
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Proposition 2.15. Let P ′
2 ∈ {0, 1}k×k. For all matrices M : P ′

2 ̸⪯ M ⇔ there
are k − 1 walks in M such that each one-entry of M belongs to at least one walk.

Proof. ⇒ When all one-entries of a matrix M cannot fit into k −1 walks, then
there are k one-entries such that no pair can fit to a single walk and those
give us a mapping of P ′

2.

⇐ A matrix M containing one-entries in at most k − 1 walks avoids P ′
2.

2.3 Patterns having three one-entries
These are, up to rotation and mirroring, the only patterns having three one-entries
and no empty lines that we did not characterize so far:

P3 = ( • •
• ) P4 = ( • •

• ) P5 = ( • •
• ) P6 =

( •
•

•

)
Proposition 2.16. For all matrices M ∈ {0, 1}m×n: P3 ̸⪯ M ⇔ there exist a
row r and a column c such that (see Figure 2.2):

• M [r, c] is top-left, top-right and bottom-left empty, and

• M [[r, m], [c, n]] is a walking matrix.

r

c

M1

Figure 2.2: The characterization of matrices avoiding ( • •
• ) as an interval minor.

The matrix M1 is a walking matrix.

Proof. ⇒ If M is a walking matrix then we set r = c = 1. Otherwise, there
are one-entries M [r, c′] and M [r′, c] such that r′ < r and c′ < c. If an
entry M [r, c] is not top-left, top-right or bottom-left empty then P3 ⪯ M .
If the submatrix M [[r, m], [c, n]] is not a walking matrix then it contains
( •

• ) and together with the one-entry M [r, c′] it gives us a mapping of P3.

⇐ For contradiction, assume that a matrix M described in Figure 2.2 contains
P3 as an interval minor. Without loss of generality, let P3[1, 1] be mapped
to a one-entry in the r-th row. Then both P3[1, 2] and P3[2, 1] need to be
mapped to M ′, which is a contradiction with it being a walking matrix.
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Proposition 2.17. For all matrices M : P4 ̸⪯ M ⇔ there are matrices M1, M2
such that M = M1 → M2, ( •

• ) ̸⪯ M1 and ( •
• ) ̸⪯ M2.

Proof. ⇒ Let e = M [r, c] be an arbitrary top-most one-entry in M . It holds
( •

• ) ̸⪯ M [[m], [c−1]]; otherwise, we have a mapping of P4 to M . If we also
have ( •

• ) ̸⪯ M [[m], [c, n]] then we are done. For contradiction, let e1, e2
be any two one-entries forming ( •

• ) in M [[m], [c, n]]. Symmetrically, let
e′

1, e′
2 be any two one-entries forming ( •

• ) in M [[m], [c]]. Without loss of
generality, let e2 be no higher than e′

2 and then, together with e′
1 and e1 it

gives us a mapping of P4 to M , giving a contradiction.

⇐ For contradiction, let P4 ⪯ M and consider an arbitrary mapping. Consider
the one-entry of M , where P4[2, 2] is mapped. If it is in M1 then ( •

• ) ⪯ M1
and we get a contradiction. Otherwise, we have ( •

• ) ⪯ M2, which is again
a contradiction.

Proposition 2.18. For all matrices M ∈ {0, 1}m×n: P5 ̸⪯ M ⇔ for every one-
entry M [r, c] on the bottom-left extreme walk w, there is at most one non-empty
column in M [[r − 1], [c + 1, n]].

Proof. ⇒ For contradiction, assume there is a one-entry M [r, c] on w such that
there are two non-empty columns in M [[r − 1], [c + 1, n]]. Then a one-entry
from each of those columns and M [r, c] together give us a mapping of P5 to
M , and a contradiction.

⇐ For contradiction, let P5 ⪯ M and consider any such mapping. Without
loss of generality, P5[2, 1] is mapped to a one-entry M [r, c] from w. Then
( • • ) ⪯ M [[r − 1], [c + 1, n]], which is a contradiction with it having one-
entries in at most one column.

Proposition 2.19. For all matrices M : P6 ̸⪯ M ⇔ for every one-entry M [r, c]
on the bottom-right extreme reverse walk w, M [[r−1], [c−1]] is a walking matrix.

Proof. ⇒ For contradiction, assume there are integers r, c such that M [r, c] is a
one-entry on w and M [[r−1], [c−1]] is not a walking matrix. It means that
( •

• ) ⪯ M [[r − 1], [c − 1]] and together with M [r, c] it gives us a mapping
of the forbidden pattern, and a contradiction.

⇐ For contradiction, let P6 ⪯ M and consider an arbitrary mapping of P6.
Without loss of generality, let P6[3, 3] be mapped to some one-entry M [r, c]
on w. Then, M [[r], [c]] is not a walking matrix and we have a contradiction.

2.4 Patterns having four one-entries
These are some of the patterns having four one-entries and no empty lines that
we did not characterize so far:

P7 = ( • •
• • ) P8 = ( • • •

• ) P9 =
( •

•
•

•

)
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Lemma 2.20. For any matrix M : P7 ̸⪯ M ⇒ there exist integers r, c such that
M [r, c] is either

1. a one-entry and (r, c) ∈ {(1, 1), (1, n), (m, 1), (m, n)}, or

2. top-right and bottom-left empty and (r, c) ̸∈ {(1, 1), (m, n)}, or

3. top-left and bottom-right empty and (r, c) ̸∈ {(1, n), (m, 1)}.

Proof. If there is a one-entry in any corner then the first condition is satisfied.
Otherwise, consider the entry M [2, 1]. It is trivially bottom-left empty and if
there is no one-entry in the first row of M then the second condition is satisfied.
Therefore, let M [1, ct] be a one-entry in the first row. Symmetrically, let M [m, cb]
be a one-entry in the last row, let M [rl, 1] be a one-entry in the first column and
let M [rr, n] be a one-entry in the last column.

It cannot at the same time happen that ct < cb and rr > rl (or symmetrically
ct > cb and rr < rl), because then P7 ⪯ M . Without loss of generality, let
ct ≥ cb and rr ≥ rl. The submatrix M [[rr −1], [ct +1, n]] is empty; otherwise, any
one-entry there, together with M [1, ct], M [m, cb] and M [rr, 1] forms the forbidden
pattern. Similarly, the matrix M [[rr +1, m], [ct −1]] is also empty. Thus M [rt, ct]
is top-right and bottom-left empty and it is not a corner, satisfying the second
condition.

Proposition 2.21. For all matrices M ∈ {0, 1}m×n: P7 ̸⪯ M ⇔ there are
integers r, c such that either (see Figure 2.3):

1. M [r, c] is top-right empty and bottom-left empty, ( • •
• ) ̸⪯ M [[r], [c]] and

( •
• • ) ̸⪯ M [[r, m], [c, n]], or

2. M [r, c] is top-left empty and bottom-right empty, ( • •
• ) ̸⪯ M [[r], [c, n]] and

( •
• • ) ̸⪯ M [[r, m], [c]].

M1

0 M2

0
r

c c

M4 0

0 M3

Figure 2.3: The characterization of matrices avoiding ( • •
• • ) as an interval minor.

Proof. We let M1 = M [[r], [c]], M2 = M [[r, m], [c, n]], M3 = M [[r], [c, n]] and
M4 = M [[r, m], [c]].

⇒ We proceed by induction on the size of M .
If M ∈ {0, 1}2×2 then it either avoids ( •

• • ) or ( • •
• ) and we are done.
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For a bigger matrix M , from Lemma 2.20, there is an entry M [r, c] satisfying
some conditions. If there is a one-entry in any corner, we are done because
the matrix cannot contain one of the rotations of ( • •

• ). Otherwise, assume
M [r, c] is both top-right and bottom-left empty and (r, c) ̸∈ {(1, 1), (m, n)}.
If M1 is non-empty, then ( •

• • ) ̸⪯ M2. Symmetrically, ( • •
• ) ̸⪯ M1 if M2 is

non-empty. If one of them is empty, the other is a smaller matrix avoid-
ing P7 as an interval minor and the statement follows from the induction
hypothesis.

⇐ Let P7 ⪯ M . Every mapping of P7 partitions M into four non-empty
quadrants; thus, there are no integers r, c satisfying the conditions.

Lemma 2.22. For all matrices M : P8 ̸⪯ M ⇒ there are matrices M1, M2 such
that M = M1 → M2 and

1. ( • •
• ) ̸⪯ M1 and ( •

• ) ̸⪯ M2, or

2. ( •
• ) ̸⪯ M1 and ( • •

• ) ̸⪯ M2.

Proof. Let e = M [r, c] be an arbitrary top-most one-entry of the matrix M .
It holds ( • •

• ) ̸⪯ M [[m], [c − 1]]; otherwise, we have a mapping of P8 to M .
Symmetrically, ( • •

• ) ̸⪯ M [[m], [c + 1, n]]. For contradiction with the statement,
let e1, e2 (none of them equal to e) be any two one-entries forming ( •

• ) in
M [[m], [c]] and let e′

1, e′
2 be any two one-entries forming ( •

• ) in M [[m], [c, n]].
Without loss of generality, e′

2 is no higher than e2 and together with e1, e and e′
1

it gives us a mapping of P8 to M , which is a contradiction.

Proposition 2.23. For all matrices M ∈ {0, 1}m×n: P8 ̸⪯ M ⇔ there are
integers r, c1 and c2 such that all one-entries of M above the row r are in columns
c1 and c2, M [[r + 1, m], [c1 + 1, c2 − 1]] is empty, ( •

• ) ̸⪯ M [[r, m], [c1]] and
( •

• ) ̸⪯ M [[r, m], [c2, n]]. See Figure 2.4.

r

c1 c2

0 0 0

0 M2M1

Figure 2.4: The characterization of matrices avoiding ( • • •
• ) as an interval minor.

Proof. ⇒ From Lemma 2.22, we know there are matrices M ′
1, M ′

2 such that
M = M ′

1 → M ′
2, ( • •

• ) ̸⪯ M ′
1 and ( •

• ) ̸⪯ M ′
2 (or symmetrically the second

case). Let c2 be the first column appended from M ′
2. From Proposition 2.16,

we have integers r′, c′ such that M ′
1[r′, c′] is top-left, top-right and bottom-

right empty and ( •
• ) ⪯ M ′

1[[r′, m], [c′]] = M1. Let us set r = r′ and
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c1 = c′. We also have that M [[m], [c2, n]] is a walking matrix. Without
loss of generality, M [[r −1], {c1}] and M [{r}, [c1 +1, c2 −1]] are non-empty;
otherwise, we extend M1 to cover the whole M [[m], [c2−1]. There are no two
different columns in M ′

2 having a one-entry above the r-th row; otherwise,
together with one-entries in M [[r −1], {c1}] and M [{r}, [c1 +1, c2 −1]] they
would give us a mapping of P8 to M .

⇐ A one-entry P8[2, 2] can not be mapped anywhere but to the r-th row, but
in that case, there are at most two columns having one-entries above it.

Proposition 2.24. For all matrices M ∈ {0, 1}m×n: P9 ̸⪯ M ⇔ for every
one-entry M [r, c] on the bottom-right extreme reverse walk w and every one-
entry M [r′, c′] on the top-left extreme reverse walk w′, if r > r′ + 3 and c > c′ + 3
then M [[r′ + 1, r − 1], [c′ + 1, c − 1]] is a walking matrix.

Proof. ⇒ If there are one-entries M [r, c] on w and M [r′, c′] on w′ such that
( •

• ) ⪯ M [[r′ + 1, r − 1], [c′ + 1, c − 1]], we have a a mapping of P9 to M .

⇐ For contradiction, let P9 ⪯ M and consider any mapping. Without loss of
generality, the one-entry P9[4, 4] is mapped to some one-entry M [r, c] on w
and the one-entry P9[1, 1] is mapped to some one-entry M [r′, c′] on w′. This
means that ( •

• ) ⪯ M [[r′ + 1, r − 1], [c′ + 1, c − 1]], which is a contradiction
with it being a walking matrix.

2.5 Multiple patterns
Instead of considering matrices avoiding a single pattern, we can work with ma-
trices avoiding a set of forbidden patterns.

We only describe the structure of matrices avoiding one particular set of pat-
terns, because we use the simple result later.

Proposition 2.25. Let P10 = ( • ◦ ◦
◦ ◦ • ) and P11 =

( • ◦
◦ ◦
◦ •

)
, then for a matrix M :

{P10, P11} ̸⪯ M ⇔ for every r > 1 and c > 1, if M [r, c] is a one-entry then it
either is on the top-left extreme walk w or both M [r − 1, c] and M [r, c − 1] are on
w.

Proof. ⇒ Assume there are r > 1 and c > 1 and a one-entry M [r, c] outside of
w such that M [r−1, c] (or M [r, c−1]) is outside of w. The one-entry M [r, c]
is not top-left extreme and so there is a one-entry in M ′ = M [[r−1], [c−1]].
The entry M [r − 1, c] is not top-left extreme and because M ′ is non-empty,
M [r − 1, c] is not top-left empty, and so we have r > 2. Any one-entry in
M [[r − 2], [c − 1]] together with M [r, c] give us a mapping of P11 (P10).

⇐ For any one-entry M [r, c], there are one-entries in neither M [[r − 2], [c − 1]]
nor M [[r − 1], [c − 2]].

18



3. The basis of a class of matrices
In this chapter, we look at classes of matrices from a different perspective. Unlike
in the previous chapter, where we studied the structure of matrices avoiding a
given set of forbidden patterns (usually just one), we are given a class of matrices
and a question how the class can be described by forbidden patterns.

Recall that a class of matrices is set of matrices closed under interval minors.
While it is obvious that any class of matrices can be described by a set of forbidden
patterns, as it suffices to forbid all matrices not contained in the class, it is no
longer clear how complex the set can be.

Definition 3.1. Let M be a class of matrices. The basis of M is a set of all
minimal (with respect to minors) matrices P such that M = Av⪯ (P).

We show that there are many classes of matrices having a finite basis but
there are also classes that have an infinite basis. Let us start with a few simple
observations, regarding classes of matrices and their bases.

Observation 3.2. Let M = Av⪯ (P) for some set of matrices P. Then M is
closed under interval minors.

Observation 3.3. Every finite class of matrices has a finite basis.

Proof. Let M be a finite class of matrices, let m be the maximum number of
rows a matrix from M has and let n be the maximum number of columns a
matrix from M has. We define a set of matrices P to contain all matrices of size
smaller or equal to m × n that do not belong to M and we add {0}m×(n+1) and
{0}(m+1)×n. Clearly, P is finite and M = Av⪯ (P).

3.1 The skew and direct sums
In the realm of permutations, the skew and direct sums are very useful operations.
What follows is a direct generalization to our settings and a few simple results.
More interesting statements and the relation with interval minors follow in the
next section.

Definition 3.4. For matrices A ∈ {0, 1}m×n and B ∈ {0, 1}k×l we define their
skew sum as a matrix C := A ↗ B ∈ {0, 1}(m+k)×(n+l) such that the subma-
trix C[[k + 1, m + k], [n]] = A, C[[k], [n + 1, n + l]] = B and the rest is empty.
Symmetrically, we define their direct sum D := A ↘ B ∈ {0, 1}(m+k)×(n+l) such
that D[[m], [n]] = A, D[[m + 1, m + k], [n + 1, n + l]] = B. See Figure 3.1.

A

A

A

B

B

B

A

B

Figure 3.1: The skew sum, the direct sum, the skew sum with 1 × 1 overlap and
the skew sum with 2 × 2 overlap of matrices A and B.
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Definition 3.5. For classes of matrices A and B we define their skew sum A ↗ B
as the class of matrices containing the skew sum of all pairs of matrices A ∈ A
and B ∈ B. Symmetrically, we define their direct sum.

Using this notation, we can very easily rewrite the results from the previous
chapter. Here is an example of Proposition 2.16 and Proposition 2.21:

Proposition 3.6. Av⪯ (( • •
• ◦ )) = Av⪯ (( • ◦

◦ ◦ )) ↘ Av⪯ (( ◦ •
• ◦ ))

Proposition 3.7. Av⪯ (( • •
• • )) = (Av⪯ (( • ◦

◦ ◦ )) ↘ Av⪯ (( ◦ •
• ◦ )) ↘ Av⪯ (( ◦ ◦

◦ • ))) ∪
(Av⪯ (( ◦ ◦

• ◦ )) ↗ Av⪯ (( • ◦
◦ • )) ↗ Av⪯ (( ◦ •

◦ ◦ ))).

Something, we get a great use of later is the closure under the skew sum.

Definition 3.8. For a set of matrices M, let Cl (M) denote the smallest class of
matrices containing each M ∈ M that is closed under the skew sum and interval
minors.

When speaking about interval minors, we suppose, without loss of generality,
that the merges of neighboring lines are done after all deletions of one-entries.
Similarly, a matrix created from a matrix M by reapplying the skew sum and
taking its interval minor can be also created by taking an interval minor of the
skew sum of an appropriate number of copies of M .

Observation 3.9. For every set of matrices P, each M ∈ Cl (P) is an interval
minor of the skew sum of multiple copies of P .

What follows is a simple example of the relation between the closure under
the skew sum and the description using interval minors. We greatly generalize
this result in the next section.

Proposition 3.10. Cl (( • ◦
◦ • )) = Av⪯

(
( • ◦ ◦

◦ ◦ • ) ,
( • ◦

◦ ◦
◦ •

))
.

Proof. The skew sum of an arbitrary number of copies of ( • ◦
◦ • ) avoids both for-

bidden patterns and because the relation of being an interval minor is transitive,
we have Cl (( • ◦

◦ • )) ⊆ Av⪯
(
( • ◦ ◦

◦ ◦ • ) ,
( • ◦

◦ ◦
◦ •

))
.

From Proposition 2.25, for every matrix M ∈ Av⪯
(
( • ◦ ◦

◦ ◦ • ) ,
( • ◦

◦ ◦
◦ •

))
, it holds

that for every r > 1 and c > 1, if M [r, c] is a one-entry then it either is on the
top-left extreme walk w or both M [r − 1, c] and M [r, c − 1] are on w. Clearly,
( • •

• • ) is an interval minor of the skew sum of three copies of ( • ◦
◦ • ) and from the

skew sum of multiple copies of ( • •
• • ), we can create the walk w and all one-entries

outside of it by taking an interval minor.

We generalize the skew sum to also allow an overlap between the summed
matrices.

Definition 3.11. For matrices A ∈ {0, 1}m×n, B ∈ {0, 1}k×l and integers a, b,
let C := A ↗a×b B ∈ {0, 1}(m+k−a)×(n+l−b) be a matrix such that the subma-
trix C[[k + 1, m + k], [n]] = A, C[[k], [n + 1, n + l]] = B, the part that overlaps is
the elementwise OR of the overlapping submatrices and the rest of C is empty.
We say C is the skew sum with a × b overlap of A and B. See Figure 3.1.
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Proposition 3.12. For integers a, b, m, n such that a ≤ m ≤ 2a and b ≤ n ≤ 2b,
let M be an arbitrary set of matrices, not necessarily closed under interval minors,
such that:

• M is closed under deletion of one-entries,

• M is closed under the skew sum with a × b overlap and

• there is a m × n matrix M ∈ M,

then M is also closed under the skew sum with (2a − m) × (2b − n) overlap.

Proof. Given any A, B ∈ M and a matrix M ∈ M such that M ∈ {0, 1}m×n, let
C = A ↗a×b M ↗a×b B. It has the same size as D = A ↗(2a−m)×(2b−n) B, whose
set of one-entries is a subset of one-entries of C ∈ M; therefore, D ∈ M.

We see that with some reasonable assumptions, whenever a set of matrices is
closed under the skew sum with an overlap, it is also closed under the skew sum
with a smaller overlap. On the other hand, in general, the opposite does not hold
even if we work with classes of matrices.

Observation 3.13. There is a class of matrices closed under the skew sum with
1 × 1 overlap that is not closed under the skew sum with 2 × 2 overlap.

Proof. Let M = Av⪯ (( •
• )). Clearly, M is hereditary and closed under the

skew sum with 1 × 1 overlap. On the other hand, M is not closed under the
skew sum with 2 × 2 overlap, because, for matrices ( • •

• ) , ( •
• • ) ∈ M it holds

( • •
• ) ↗2×2 ( •

• • ) = ( • •
• • ) ̸∈ M.

A similar proof shows that for all a ≥ 1, b > 1 there is a class of matrices
closed under the skew sum with a × b overlap that is not closed under the skew
sum with (a + 1) × b (or a × (b + 1)) overlap. Luckily for us, this does not hold
for a = 0 or b = 0:

Proposition 3.14. Every class of matrices is closed under the skew sum ⇔ it is
closed under the skew sum with 1 × 1 overlap.

Proof. ⇒ If a class is closed under the skew sum then, because it is also closed
under interval minors, it is closed under the skew sum with 1 × 1 overlap.

⇐ Let M be a class closed under the skew sum with 1 × 1 overlap. Using the
assumption that M is non-trivial, it contains matrices M1 ∈ {0, 1}2×1 and
M2 ∈ {0, 1}1×2. For M = M1 ↗1×1 M2, we have M ∈ M and we can use
Proposition 3.12 to show M is closed under the skew sum.

3.2 Articulations
Our next goal is to show that the closure under the skew sum of a single matrix
creates a class with finite basis. In order to prove it, we define and get familiar
with articulations.
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Definition 3.15. Let M ∈ {0, 1}m×n be a matrix. An element M [r, c] is an
articulation if it is top-left empty (M [[r − 1], [c − 1]] is empty) and bottom-right
empty (M [[r + 1, m], [c + 1, n]] is empty). We say that an articulation M [r, c] is
trivial if (r, c) ∈ {(m, 1), (1, n)}.

Observation 3.16. Let M be a matrix. If there are integers r, c such that the en-
try M [r, c] is an articulation, then for every matrix P such that P ⪯ M , if P [r′, c′]
can be mapped to a block containing M [r, c] then P [r′, c′] is an articulation.

Definition 3.17. A matrix P1 is a proper interval minor of a matrix P , if P1 ⪯ P
and P1 ̸= P . We say that the matrix P is decomposable if there exist P1, P2 proper
interval minors of P such that P = P1 ↗1×1 P2; otherwise, P is indecomposable.

Observation 3.18. Let P ∈ {0, 1}k×l be a matrix. The matrix P is indecompos-
able ⇔ P has no non-trivial articulation and both its trivial ones are empty.

Lemma 3.19. Let M be a class of matrices and let P be its basis. The class M
is closed under the skew sum with 1×1 overlap ⇔ every P ∈ P is indecomposable.

Proof. ⇒ Let P ∈ P be a decomposable pattern and let P1, P2 be proper
interval minors of P such that P = P1 ↗1×1 P2. While P1, P2 ∈ Av⪯ (P),
we have P ̸∈ Av⪯ (P) = M.

⇐ Let there be matrices M1, M2 ∈ Av⪯ (P) such that there is a pattern P ∈ P
of size k × l for which P ⪯ M = M1 ↗1×1 M2. Since P ̸⪯ M1 and
P ̸⪯ M2, the pattern P contains a non-trivial articulation or one of its
trivial articulations is a one-entry and from Observation 3.18, the pattern P
is decomposable.

In what follows, we always assume that all articulations are on a reverse walk
(no two articulations form ( •

• )) and a matrix between two articulations M [r1, c1]
and M [r2, c2] is the matrix M [[r2, r1], [c1, c2]].

Lemma 3.20. Let P be a set of matrices, then for all matrices M ∈ {0, 1}m×n

it holds that M ∈ Cl (P) ⇔ there exists a sequence of articulations of M on a
reverse walk such that for each matrix M ′ in between two consecutive articulations
there exists a pattern P ∈ P such that M ′ ⪯ ( 1 ) ↗ P ↗ ( 1 ).

Proof. ⇒ Having Proposition 3.14 in mind, consider the skew sum with 1 × 1
overlap of multiple copies of elements of P and consider the sequence of
articulations containing an articulation between each pair of consecutive
copies of matrices from P , and the trivial articulations M [m, 1] and M [1, n].
Between each pair of consecutive articulations, we have a matrix from P
with potentially new one-entries in the top-right and bottom-left corners,
and so the statement holds. When we take an arbitrary interval minor
and keep original articulations, each matrix between two consecutive ar-
ticulations is an interval minor of ( 1 ) ↗ P ↗ ( 1 ) for the corresponding
P ∈ P .

⇐ We can simply blow up each matrix M ′ between two consecutive articulation
to the skew sum of three copies of the corresponding matrix P and because
M ′ ⪯ ( 1 ) ↗ P ↗ ( 1 ) ⪯ P ↗ P ↗ P it holds M ∈ Cl (P).
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Finally, we show that the closure under the skew sum of a single matrix can
always be described by a finite number of forbidden patterns.

Theorem 3.21. For all matrices M ∈ {0, 1}m×n, Cl (M) has a finite basis.

Proof. Let F be the basis of Cl (M). We need to prove that F is finite. Thanks
to Proposition 3.14, Av⪯ (F) = Cl (M) is closed under the skew sum with 1 × 1
overlap and from Lemma 3.19 follows that every F ∈ F is indecomposable. We
denote by P the set of matrices F ∈ F such that F has at most 3m + 2 rows and
3n + 2 columns. We want to show Cl (M) = Av⪯ (P).

⊆ Clearly, P is finite and we immediately see that Cl (M) ⊆ Av⪯ (P).

⊇ For contradiction, consider a minimal (with respect to interval minors) ma-
trix X ∈ Av⪯ (P)\Cl (M). There are no X1, X2 proper interval minors of X
such that X = X1 ↗1×1 X2; otherwise, as X1, X2 ∈ Av⪯ (P) and X is the
minimum matrix such that X ̸∈ Cl (M), we would have X1, X2 ∈ Cl (M);
therefore, X ∈ Cl (M) and a contradiction.
Without loss of generality, we assume X ∈ {0, 1}k×l has at least 3n + 3
columns. Let X ′ denote a matrix created from X by deletion of the first
row. We have X ′ ∈ Av⪯ (P) and from minimality of X also X ′ ∈ Cl (M).
From Lemma 3.20, there is a sequence of articulations of X ′ on a reverse
walk such that each matrix between two consecutive articulations is an
interval minor of ( 1 ) ↗ M ↗ ( 1 ). Let X ′[r, c] be the first articulation
from the sequence (sorted by columns in ascending order) for which c > 1.
The matrix between X ′[r, c] and the previous articulation in the sequence
is an interval minor of ( 1 ) ↗ M ↗ ( 1 ), which also means that c ≤ n + 2.
Since X[r, c] is not an articulation, it must hold that X[1, c1] = 1 for some
c1 < c ≤ n + 2. Symmetrically, let X ′′ denote a matrix created from X
by deletion of the last row. Following the same steps, we consider the last
articulation X ′′[r′, c′] such that c′ < l and have that c′ ≥ l − n − 1. Since
X[r′, c′] is not an articulation, it must hold that X[k, c2] = 1 for some
c2 > c′ ≥ l − n − 1 ≥ 3n + 3 − n − 1 = 2n + 2. Therefore, there are at least
n − 1 columns between X[1, c1] and X[k, c2].
We showed that a matrix Y ∈ {0, 1}2×(n+1) such that the only one-entries
are Y [1, 1] and Y [2, n+1] is an interval minor of X. To reach a contradiction,
it suffices to show that there is a matrix P ∈ P such that P ⪯ Y . For
contradiction, let Y ∈ Av⪯ (P) and since Y ⪯ X and X is minimum such
that X ̸∈ Cl (M) it holds Y ∈ Cl (M). But this cannot be, because Y
contains no non-trivial articulation and from Observation 3.16, we know
that every matrix Z ∈ Cl (M) bigger than m × n contains at least one.

3.3 Bases
We recall that the basis of a class of matrices M is a set of all minimal (with
respect to interval minors) matrices P such that M = Av⪯ (P). It goes without
saying that it does not make sense to consider a basis of a set of matrices that is
not closed under interval minors.
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So far, we showed that whenever M is finite, its basis is also finite. The same
holds when M = Cl (M) for any matrix M . We show next, that unlike in graph
theory, there are classes of matrices that do not have finite basis. Moreover, we
show that even for a class M with a finite basis, its closure Cl (M) can have an
infinite basis.

Definition 3.22. Let P be a matrix. We denote by R (P ) a set of all minimal
(with respect to minors) indecomposable matrices P ′ such that P ⪯ P ′. For a
set of matrices P , let R (P) denote a set of all minimal (with respect to minors)
matrices from the set ⋃P ∈P R (P ).

Theorem 3.23. Let M and P be sets of matrices such that M = Av⪯ (P), then
Cl (M) = Av⪯ (R (P)).

Proof. ⊆ For contradiction, let M ∈ Cl (M)\Av⪯ (R (P)) be a minimal (with
respect to interval minors) matrix. It follows that M ∈ R (P). Then,
the matrix M is indecomposable; therefore, according to Observation 3.18,
there is no non-trivial articulations in M and both trivial articulations are
empty. According to Lemma 3.20 and the fact M contains no non-trivial
articulation, it holds M ⪯ ( 1 ) ↗ M ′ ↗ ( 1 ) for some M ′ ∈ M. Because
the trivial articulations are empty, it even holds M ⪯ M ′. We also know
P ⪯ M for some P ∈ P , which together give us a contradiction with
M = Av⪯ (P).

⊇ First of all, Av⪯ (R (P)) is closed under the skew sum with 1 × 1 overlap.
For contradiction, assume there are matrices M1, M2 ∈ Av⪯ (R (P)) but
M = M1 ↗1×1 M2 ̸∈ Av⪯ (R (P)). Then there exists a matrix P ∈ R (P)
such that P ⪯ M . Because P is indecomposable, it follows that either
P ⪯ M1 or P ⪯ M2 and we have a contradiction.
It suffices to show that the inclusion holds for any matrix M ∈ Av⪯ (R (P))
that is not a skew sum with 1×1 overlap of non-empty interval minors of M .
From Observation 3.18, we know that M does not contain any non-trivial
articulation and those trivial ones are empty. Thus, M ∈ Av⪯ (P) = M
and so M ∈ Cl (M).

Corollary 3.24. Let M and P be sets of matrices such that M = Av⪯ (P), then
R (P) is the basis of Cl (M).

What follows is a construction of parameterized matrices that become the
main tool of finding a class of matrices with an infinite basis.

Definition 3.25. Let Nucleus1 = ( ◦ • ◦ ) and for n > 1 let Nucleusn be a matrix
of size n × n + 1 described by the examples:

Nucleus2 = ( • ◦ ◦
◦ ◦ • ) Nucleus3 =

( • ◦
• •

◦ •

)
Nucleusn =

⎛⎜⎜⎝
• ◦

• •
• •

··· •
• ···

• •
• •

◦ •

⎞⎟⎟⎠.

Definition 3.26. Let Candyk,n,l be a matrix given by Ik ↗1×2 Nucleusn ↗1×2 Il,
where Ik, Il are unit matrices of sizes k × k and l × l respectively.
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Candy4,1,4 =

⎛⎜⎝
•

•
•

• ◦ • ◦ •
•

•
•

⎞⎟⎠ Candy4,4,4 =

⎛⎜⎜⎜⎜⎝
•

•
•

• ◦ •
• •

• •
• ◦ •

•
•

•

⎞⎟⎟⎟⎟⎠
Theorem 3.27. There exists a matrix P for which R (P ) is infinite.

Proof. Let P = Candy4,1,4. For all n > 3 it holds P ⪯ Candy4,n,4 and it suffices
to show that each Candy4,n,4 belongs to the basis of Av⪯ (P ) and it is indecom-
posable. According to Observation 3.18, the second condition holds as Candy4,n,4
contains no non-trivial articulation and the trivial ones are empty. To show it
belong to the basis, we need to consider any matrix M ⪯ Candy4,n,4 such that
M ̸= P and argue that either P ̸⪯ M or M is decomposable.

Thanks to Observation 3.16, when we find a non-trivial articulation M [r, c]
such that M [[r, k], [c]], M [[r], [c, l]] are non-empty, it stays there in any interval
minor, because we cannot delete one-entries M [1, n−3], M [2, n−2], M [3, n−1] and
M [4, n] (and symmetrically M [m−3, 1], M [m−2, 2], M [m−1, 3], M [m, 4]) without
losing the condition P ⪯ M . Therefore, we can only consider one minoring
operation at a time.

It is easy to see that when a one-entry is delete, then the matrix does not
belong to R (P ) anymore. Consider that rows r and r + 1 are merged to one
with the elementwise OR. If r < 4 or r > n + 2 then P is no longer an interval
minor of such matrix. Otherwise, the original Candy4,n,4[r, n − r + 2] becomes an
articulation. Symmetrically, the same holds for columns.

Corollary 3.28. There exists a class of matrices M having a finite basis such
that Cl (M) has an infinite basis.

Proof. From Theorem 3.27, we have a matrix P for which R (P ) is infinite. Class
M = Av⪯ (P ) has a finite basis. On the other hand, from Theorem 3.23, we have
Cl (M) = Av⪯ (R (P )).
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4. Zero-intervals
In Chapter 2, we characterized matrices avoiding small patterns. Their structure
is very dependent on the pattern they avoid and the results are hard to generalize
for arbitrary patterns. In this chapter, we look for a more general property that
restricts the complexity of a class of matrices.

Definition 4.1. For a matrix M ∈ {0, 1}m×n, a row interval M [{r}, [c1, c2]] is a
zero-interval if all entries are zero-entries, c1 = 1 or M [r, c1 − 1] = 1 and c2 = n
or M [r, c2 + 1] = 1. In other words, it is an interval of zero-entries bounded from
each side by a one-entry or the edge of the matrix. Symmetrically, we also call a
column interval M [[r1, r2, {c}]] a zero-interval if all entries are zero-entries, r1 = 1
or M [r1 − 1, c] = 1 and r2 = m or M [r2 + 1, c] = 1. In the same spirit, we define
a one-interval to be an interval of one-entries in a single line of M bounded from
each side by a zero-entry or the edge of the matrix.

Definition 4.2. For a class of matrices M, we say that a matrix M ∈ M is
critical in M if the change of any zero-entry to a one-entry creates a matrix that
does not belong to M. For any set of matrices P , let Avcrit (P) be a set of all
critical matrices avoiding P as an interval minor.

In Chapter 2, for a pattern P ∈ {0, 1}k×l it very often holds that any matrix
from Avcrit (P ) has at most k zero-intervals in each row and at most l zero-
intervals in each column. The main goal of this chapter is to describe patterns P
for which there can be arbitrarily many zero-intervals in matrices from Avcrit (P ).

4.1 Pattern complexity
We define the complexity of a class of matrices as the maximum number of zero-
intervals (or one intervals as they go in pair) a critical matrix from the class can
have.

Definition 4.3. For a class of matrices M, we define its row-complexity r (M)
to be the supremum of the number of zero-intervals in a single row of any critical
matrix M ∈ M. We say that M is row-bounded, if its row-complexity is finite, and
row-unbounded otherwise. Symmetrically, we define its column-complexity c (M)
and the property of being column-bounded and column-unbounded. The class
M is bounded if it is both row-bounded and column-bounded; otherwise, it is
unbounded.

Definition 4.4. We say that a set of patterns P is bounding, if the class Av⪯ (P)
is bounded; otherwise, it is non-bounding.

Now that we introduced the most essential definitions in this chapter, it is
time to state the main theorem:

Theorem 4.5. A pattern P is bounding ⇔ Pi ̸⪯ P for all 1 ≤ i ≤ 4.

P1 =
( •

•
•

)
P2 =

( •
•

•

)
P3 =

( •
•

•

)
P4 =

( •
•

•

)
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We prove the statement in several steps. We show the first implication in
Subsection 4.1.2, then we prove multiple lemmata so that we finally show the
other implication at the end of Subsection 4.1.3. Before we start proving the
main result, we introduce some useful notation and get more familiar with zero-
intervals.

Definition 4.6. Let P be a pattern, let e be a one-entry of P , consider a matrix
M ∈ Av⪯ (P ) and let z be an arbitrary zero-interval of M . We say that z is
usable for e if there is a zero-entry contained in z such that if we change it to a
one-entry, it creates a mapping of P to M that uses the new one-entry to map e.
This way, z can be usable for many one-entries of P at once.

Observation 4.7. Let P ∈ {0, 1}k×l and M ∈ {0, 1}m×n be matrices such that
P ̸⪯ M . Let z = M [{r1}, [c1, c2]] be a zero-interval of M usable for a one-
entry e = P [r, c]. If we change a zero-entry of z and create a mapping of P that
uses the changed entry to map e, then the mapping can only map column c of P
to columns [c1, c2] of M .

Proof. Since the changed entry is used to map e, clearly the mapping needs to
use a column from [c1, c2] to map column c. If, for contradiction, the mapping
uses columns outside [c1, c2] then, without loss of generality, it uses the column
c1 − 1. Since that column bounds the zero-interval z, M [r1, c1 − 1] = 1 and this
one-entry can be used in the mapping instead of the changed entry, which gives
us a contradiction with P ̸⪯ M .

Definition 4.8. Let P be a set of patterns and let e be a one-entry of any ma-
trix P ∈ P . We define the row-complexity of e, r (Av⪯ (P) , e) to be the supremum
of the number of zero-intervals of a single row of any M ∈ Avcrit (P) that are
usable for e. We say that e is row-unbounded in Av⪯ (P) if r (Av⪯ (P) , e) = ∞
and row-bounded otherwise. Symmetrically, we define the column-complexity of e,
c (Av⪯ (P) , e) to be the maximum number of zero-intervals of a single column of
any matrix from Avcrit (P) that are usable for e, and we say e is column-unbounded
if it is infinite and column-bounded otherwise.

The following observation follows directly from the definition and we use it
heavily throughout the chapter to break symmetries.

Observation 4.9. For every set M, M is row-bounded ⇔ M⊤ is column-
bounded.

4.1.1 Adding empty lines
As in Chapter 2, we show that we do not need to consider patterns with leading
and ending empty rows and columns. Recall Observation 2.6.

Observation 4.10. For a matrix P ∈ {0, 1}k×l and an integer n, let P ′ = P →
0k×n. The matrix P is bounding ⇔ P ′ is bounding. Moreover, if P is bounding,
then r (Av⪯ (P ′)) ≤ r (Av⪯ (P )) + 1.

Lemma 4.11. Consider a pattern P ∈ {0, 1}2×k and for every integer l ≥ 1,
let P l ∈ {0, 1}k×(l+2) be a pattern created from P by inserting l new empty
columns in between the two columns of P . For every one-entry e of P l it holds
c
(
Av⪯

(
P l
)

, e
)

≤ k2.
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Proof. Given a matrix M ∈ Avcrit (P ), consider an arbitrary column c of M .
Without loss of generality, assume e = P [r, 1]. For contradiction, assume there
are k2 + 1 zero-intervals z1, . . . , zk2+1 in c usable for e. In particular, the first k2

of them are bounded by a one-entry from the bottom side.

• P [r, 2] = 1: Clearly, there is a one-entry in columns [c + l + 1, n] next to
each zj and if we combine each such one-entry with a one-entry bounding
corresponding zj, we find a mapping of

(
{1}k2×2

)l
, contradicting P ̸⪯ M .

• P [r, 2] = 0: For each i ∈ [k2], we define an extended interval z∗
i to be the

interval containing zi and also all entries in the column c between zi and
zi+1. Because of the Pigeonhole principle, we can find either k consecutive
extended intervals such that there are no one-entries in columns [c+ l+1, n]
next to them, or k (not necessarily consecutive) extended intervals such that
there is a one-entry in columns [c + l + 1, n] next to each of them. Because
each extended interval contains a one-entry, in the second case we find(
{1}k×2

)l
as an interval minor.

In the first case, without loss of generality, assume P [r1, 2] = 1 and it is
the minimum such r1 > r. Let z′

1, . . . , z′
k be the consecutive zero-intervals.

Consider the mapping of P l created when a zero-entry of z′
1 is changed to a

one-entry used to map e. Since P [r1, 2] = 1 and there are no one-entries in
columns [c+ l+1, n] next to extended intervals z′

1, . . . , z′
k, P l[r1, l+2] has to

be mapped to the rows of M under the z′
k. This leaves k one-entries to be

used to map potential one-entries in P l[[r, r1 − 1], {l + 2}] and so P l ⪯ M ,
which is again a contradiction.

Corollary 4.12. Let P ∈ {0, 1}k×2 be a matrix and for any l ≥ 1, let P l ∈
{0, 1}k×(l+2) be a matrix created from P by inserting l new empty columns in
between the two columns of P . Then Av⪯

(
P l
)

is bounded.

Proof. We know Av⪯
(
P l
)

is row-bounded from Lemma 2.9. From Lemma 4.11,
we have that the class is also column-bounded.

4.1.2 Non-bounding patterns
We see that for patterns having only two non-empty rows or columns we can
indeed bound the number of zero-intervals of critical matrices avoiding them. On
the other hand, already for a pattern of size 3×3 we show that there are maximal
matrices with arbitrarily many zero-intervals.

Lemma 4.13. A class Av⪯ (P1) is unbounded.

Proof. For a given integer n, let M be a (2n + 1) × (2n + 1) matrix described by
the picture: ⎛⎜⎜⎜⎜⎜⎜⎝

• • • ··· • • •
··· • • •
··· • • •
··· • • •
··· • • •

... ... ... ... ... ... ... ... ... ... ...
• • • ···
• • • ···

• • • ···
• • • ···

⎞⎟⎟⎟⎟⎟⎟⎠
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We see that P1 ̸⪯ M because we always need to map P1[2, 1] and P1[3, 3] to just
one “block” of one-entries, which only leaves a zero-entry for P1[1, 2].

If we change any zero-entry of the first row into a one-entry, we get a matrix
containing an interval minor of {1}3×3; therefore, containing P1 as an interval
minor. In case M is not critical, we add some more one-entries to make it critical
but it will still contain a row with n zero-intervals.

Not only M ∈ Av⪯ (P1) but it also avoids any P ∈ {0, 1}3×3 such that P1 ⪯ P .
Its rotations avoid rotations of P1 and we conclude that a big portion of patterns
of size 3 × 3 are non-bounding. Moreover, the result can be generalized also for
bigger matrices.

Theorem 4.14. For every matrix P such that P1 ⪯ P , Av⪯ (P ) is unbounded.

Proof. First, assume there is a mapping of P1 into P ∈ {0, 1}k×l that maps P1[1, 2]
to a one-entry of the first row of P , P1[2, 1] to a one-entry of the first column of P
and P1[3, 3] to the bottom-right corner of P . Then, we use a similar construction
as we did in the proof of Lemma 4.13 to find a matrix M ∈ Avcrit (P ) with n
zero-intervals for any n.

Let P be an arbitrary pattern containing P1 as an interval minor. Let
P [r1, c1], P [r2, c2] and P [r3, c3] be one-entries that can be used to map P1[1, 2],
P1[2, 1] and P1[3, 3] respectively. We take a submatrix P ′ := P [[r1, r3], [c2, c3]].
Such a matrix fulfills assumptions of the more restricted case above and we find
a matrix M ′ ∈ Avcrit (P ′) having n zero-intervals. We construct M from M ′ by
simply adding new rows and columns containing only one-entries. We add r1 − 1
rows in front of the first row and k − r3 rows behind the last row. We also add
c2 − 1 columns in front of the first column and l − c3 columns behind the last
column. The constructed matrix M avoids P as an interval minor because its
submatrix P ′ cannot be mapped to M ′. At the same time, any change of a zero-
entry of the r1-th row of M to a one-entry creates a copy of 1k×l. The constructed
matrix M can be seen in Figure 4.1.

c2 c1 c3

r3

r2

r1

r1 + 1

r3

t =

b =

t t t t

b

b

b

b

c2 n− c3

r1

m− r3

P

M

Figure 4.1: The structure of a critical matrix avoiding P that has arbitrarily
many zero-intervals.
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4.1.3 Bounding patterns
What makes it even more interesting is that any pattern avoiding all rotations of
P1 as interval minors is already bounding.

Definition 4.15. We say that a matrix M can be covered by k lines if there is
a set of lines l1, . . . , lk such that each one-entry of M belongs to some li.

Fact 4.16 (Egerváry’s theorem). A matrix M cannot be covered by k lines ⇔ M
contains a permutation matrix of size (k + 1) × (k + 1) as a submatrix.

Theorem 4.17. Let P be a pattern avoiding all rotations of P1, then P

1. can be covered by at most three lines, or

2. avoids ( •
• ) or ( •

• ).

Proof. Assume P cannot be covered by at most three lines. From Fact 4.16, there
is a 4 × 4 permutation inside P and because P does not contain any rotation of
P1, the induced permutation is either 1234 or 4321. Without loss of generality,
assume it is the first one and denote its one-entries by e1, e2, e3 and e4. Clearly,
no one-entry from e1, e2, e3 and e4 can be part of any mapping of P ′ = ( •

• )
because it would induce a mapping of a rotation of P1.

Let e2 = P [r2, c2] and e3 = P [r3, c3]. The submatrix P [[r2], [c2, l]] avoids P ′;
otherwise, together with e1 it would give P2 as an interval minor. Symmetrically,
P ′ ̸⪯ P [[r3, k], [c3]]. The submatrix P [[r3 −1], [c3 −1]] is empty; as otherwise, any
one-entry would create a rotation of P1 with e3 and either e1 or e2. Symmetrically,
the submatrix P [[r2 − 1], [c2 − 1]] is also empty. This leave no one-entry in P to
be used to map P ′[1, 1] and so P ′ ̸⪯ P .

We now need to prove that whenever P avoids all rotations of P1 (and satisfies
one of the mentioned conditions) it is bounding.

Lemma 4.18. Let P ∈ {0, 1}k×l be a pattern that can be covered by one line.
Then r (Av⪯ (P )) ≤ k and c (Av⪯ (P )) ≤ l.

Proof. Without loss of generality, let the covering line be a row r. Consider any
matrix M ∈ Avcrit (P ). Submatrices M [[r − 1], [n]] and M [[m − r + 1, m], [n]]
contain no zero-entry. If we look at any other row, it cannot contain k one-entries,
so the maximum number of zero-intervals is k.

Consider a column c of M . If M [[r, m − r − 1], c] is non-empty then because
M is critical, the whole column is made of one-entries. Otherwise, there are two
one-intervals M [[r − 1], c] and M [[m − r, m], c].

Lemma 4.19. Let P ∈ {0, 1}k×l be a pattern that can be covered by two lines.
Then r (Av⪯ (P )) ≤ k2 + l and c (Av⪯ (P )) ≤ l2 + k.

Proof. First, we assume the two covering lines of P are rows r1 < r2 (or sym-
metrically columns) and consider any matrix M ∈ Avcrit (P ). From Observa-
tion 2.6 and maximality of M , we have that the submatrices M [[r1 − 1], [n]] and
M [[m − r2 + 1, m], [n]] contain no zero-entry. Therefore, we may restrict our-
selves to the case when r1 = 1 and r2 = k. From Corollary 4.12, we have that

30



there are at most k2 zero-intervals in each row of M and there are at most two
zero-intervals in each column of M .

Let the two covering lines of P be a row r and a column c. Because of
symmetry, we only show the bound for rows. For every one-entry e of P , except
those in the row r, there is at most one zero-interval usable for e in each row of any
M ∈ Avcrit (P ). For contradiction, assume there are two such zero-intervals z1
and z2 in the same row. Let Figure 4.2 illustrate the situation where red and blue
lines form two mappings of P to M when a zero-entry of z1 and z2 respectively
is changed to a one-entry used to map e. When we take the outer two vertical
and horizontal lines, we get a mapping of P that uses an existing one-entry in
between z1 and z2 to map e. This is a contradiction with P ̸⪯ M .

0 0•

Figure 4.2: Red and blue lines representing two different mappings of a forbidden
pattern. The two horizontal lines show the boundaries of the mapping of row r
and the vertical lines show the boundaries of the mapping of column c.

For a one-entry e = P [r, c′], if c′ ≤ c then there must be less than c′ one-entries
before any zero-intervals usable for e; otherwise, we could map P [r, [1, c′]] just to
the single row of M . It follows that e is row-bounded. Symmetrically, the same
holds in case c′ > c and together we have at most k + l zero-intervals in each
M ∈ Avcrit (P ).

Before we prove the other cases, let us introduce three useful lemmata that
make the future case analysis bearable.

Lemma 4.20. Let P ∈ {0, 1}k×l be one of the four matrices in Figure 4.3. Then
every one-entry in P [{r2}, [c1, c2]] is row-bounded. Moreover, the same also holds
if we delete some one-entries.

Proof. Let a pattern P be the first described matrix and let k′ = c2 −c1. We show
that for each one-entry e ∈ P [{r2}, [c1, c2]] and every matrix M ∈ Avcrit (P ) there
are at most k′ zero-intervals usable for e in each row of M . For contradiction,
assume there is a row r with k′ +1 zero-intervals usable for some e. It follows that
there are at least k′ one-entries in between the two most distant zero-intervals z1
and z2. Therefore, the whole row r2 can be mapped just to the row r. Changing
a zero-entry of z1 to a one-entry, to which e can be mapped, creates a mapping of
P to M , in which all one-entries from columns [c1] are mapped to columns before
z1 (and z1) and similarly all one-entries from columns [c2, l] can be mapped to
columns past z2 (and z2). It also holds that all the one-entries from the row r1
are mapped (in both mappings) to one-entries of M in rows [r − r2 + r1] (and
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c1 c2

r1

r2

r3

r2

c1 c2

1 2

3 4

Figure 4.3: The patterns for which all one-entries in the row r2 and the columns
[c1, c2] are row-bounded. One-entries of the patterns are inside the bold rectangles
and on the bold lines.

symmetrically for one-entries from the row r3). Thus, we can simply map empty
rows [r1 + 1, r3 − 1] around the row r and use the rest to map rows r1 and r2.

Proofs of cases two and three are similar to the first one and we skip them.
Let a pattern P be the fourth described matrix and consider an arbitrary

matrix M ∈ Avcrit (P ). For the i-th one-entry e in the row r2 (ordered from
left to right and only considering those in columns [c1, c2]) no zero-interval of M
usable for e cannot have i one-entries before it and so the row-complexity of each
such one-entry is bounded by i ≤ l.

Throughout the proof, we have never used as a fact that an entry of P is a
one-entry and so the proof also holds for any pattern P created from any of the
fourth described matrices by deletion of one-entries.

It is important to realize that we could not have used the same proof we used
for the first three cases also for the fourth case, because we can never rely on the
fact a mapping of P only uses one row of M to map the row r2. This is because
in the fourth case, there are also potential one-entries in P [{r2}, [c2 + 1, l]].

What follows is a direct corollary of the fourth case of just stated Lemma 4.20.
Even though it is very simple and straightforward, it is going to be used so often
that it is worth stating it apart from the rest.

Lemma 4.21. Let P be a matrix and let c be its first non-empty column. Then
every one-entry from c is row-bounded.

Lemma 4.22. Let P ∈ {0, 1}k×l be one of the three matrices in Figure 4.4. Then
every one-entry in P [[r1 +1, r2 −1], {c}] is row-bounded. Moreover, the same also
holds if we delete some one-entries.

Proof. Let a pattern P be the first described matrix. We show that for each
one-entry e from P [[r1 + 1, r2 − 1], {c}] and every matrix M ∈ Avcrit (P ) there
is at most one zero-interval usable for e in M . For contradiction, assume there
is a row r with two zero-intervals z1 and z2 usable for e. Consider Figure 4.5,
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r1

r2

c

r1

r2

c c

1 2 3

Figure 4.4: The patterns for which all one-entries in the column c and the
rows [r1 + 1, r2 − 1] are row-bounded. One-entries of the patterns are inside
the bold rectangles and on the bold lines.

where the red lines show a mapping of P to M created when a zero-entry of z1
is changed to a one-entry used to map e and the blue lines show a mapping of P
to M created when a zero-entry of z2 is changed to a one-entry used to map e.
If we map the column c to the columns of M enclosed by the two outer vertical
lines and map rows r1 and r2 again to rows enclosed by the corresponding two
outer horizontal lines, we get a mapping of P to M and so a contradiction with
P ̸⪯ M .

c

r2

r1

c

r2

r1

z1 z2

Figure 4.5: Red and blue lines representing two different mappings of a forbidden
pattern. The four horizontal lines show the boundaries of the mapping of rows r1
and r2 and the vertical lines show the boundaries of the mapping of the column c.

Proofs of cases two and three are similar to the first one and we skip them.
Throughout the proof, we have never used as a fact that an entry of P is a

one-entry and so the proof also holds for any pattern P created from any of the
four described matrices by deletion of one-entries.
Lemma 4.23. Let a pattern P ∈ {0, 1}k×l be created from one of the matrices in
Figure 4.6 by deletion of one-entries and let c = l − 1. Then every one-entry in
P [[r1, r2], {c}] is row-bounded.
Proof. Let a pattern P be created from the first described matrix. From 4.22,
we know that all one-entries in P [[r1 + 1, r2 − 1], {c}] are row-bounded. Thanks
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r1

r2

c c
1 2

Figure 4.6: The patterns for which all one-entries in the column c and the
rows [r1, r2] are row-bounded. One-entries of the patterns are on the bold lines
and the column c is the second last.

to symmetry, it suffices to show that the one-entry e = P [r1, c] is row-bounded.
Without loss of generality, we have P [r2, l] = 1; otherwise, we can use the fourth
case of Lemma 4.3 to prove that e is row-bounded.

Consider any matrix M ∈ Avcrit (P ) and let z1 < z2 be any two zero-intervals
from the same row usable for e. Without loss of generality, in any mapping of P
to M created when a zero-entry of z1 is changed to a one-entry used to map e,
the one-entry P [r2, l] is mapped to a column before z2. Otherwise, if we map e
to the one-entry between z1 and z2 and map P [r1, l] to any one-entry behind z2
we get a mapping of P to M .

We prove there are at most l zero-intervals usable for e on every row of M .
For contradiction, let there be l zero-intervals z1, . . . , zl such that there is a one-
entry behind each of them. For each zero-interval zi, let ei be any one-entry of
M that can be used to map the one-entry P [r2, l] if a zero-entry of zi is changed
to a one-entry used to map e. In the sequence e1, . . . , el there either are two
one-entries M [r′

1, c′
1], M [r′

2, c′
2] such that r′

1 ≤ r′
2, or the rows of one-entries form

a decreasing sequence.
Let us first consider the first case and let ei = M [r′

1, c′
1] and ej = M [r′

2, c′
2].

Consider a mapping of P to M created when a zero-entry of zi is changed to a
one-entry used to map e. If, in this mapping, we map e to a one-entry between
zi and zj, map P [r1, l] to a one-entry behind zj, map P [r2, l − 1] to ei and map
P [r2, l] to ej, we get a mapping of P to M , which is a contradiction.

And so it holds that the one-entries e1, . . . , el form a row decreasing sequence.
We can pair every ei with a one-entry bounding zi from the right and so we can
map the submatrix P [[k], [l − 2]] just to columns before zl−1. Because zl is usable
for e, there exists a mapping of submatrix P [[k], [l−1, l]] (except for e) to columns
of zl and behind zl. This only leaves e to be mapped but we can map it to a
one-entry between zero-intervals zl−1 and zl and we have a contradiction.

Let a pattern P be created from the second described matrix. All one-
entries in P [[r1 + 1, r2 − 1], {c}] are row-bounded thanks to (the second case of)
Lemma 4.22. From the fourth case of Lemma 4.20, the one-entry P [r1, c] is also
row-bounded. We only need to prove that the one-entry P [r2, c] is row-bounded.

Without loss of generality, P [r1, l] = 1; otherwise, ( •
• ) ̸⪯ P and in the

following Lemma 4.24, we show that every such P is bounding. We once again
define one-entries e1, . . . , el and use the same analysis as we did in the first case.
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Now that the very technical lemmata are stated, we just use them to easily
prove that the remaining patterns described in Theorem 4.17 are also bounding.

Lemma 4.24. Let P ∈ {0, 1}k×l be a pattern avoiding ( •
• ) or ( •

• ). Then P is
bounding.

Proof. From Proposition 2.15, we know that P is a walking pattern. Every one-
entry of P satisfies either conditions of the third case of Lemma 4.20 or it satisfies
conditions of the third case of Lemma 4.22 and therefore is row-bounded. From
Observation 4.9, we know it is also column-bounded.

What follows is the last and the most difficult case of our analysis. Its length
is caused by the fact that it is harder to describe symmetries than it is to just
use the previous lemmata to show that each pattern is bounding.

Lemma 4.25. Let P ∈ {0, 1}k×l be a pattern that can be covered by three lines
and avoids all rotations of P1. Then P is bounding.

Proof. First of all, if P avoids ( •
• ) or ( •

• ), we use Lemma 4.24.
Let the three covering lines be three rows and let a pattern P have one-

entries in at least three columns. From Fact 4.16, it contains a 3 × 3 permutation
matrix as a submatrix. Since the rotations of P1 are avoided, the only feasible
permutations are 123 and 321 and without loss of generality, we assume the
first case. In Figure 4.7 we see the structure of P . The capital letters stand
for one-entries of the permutation and are chosen to be the left-most possible,
letters a − f stand each for a potential one-entry and the Greek letters stand
each for a potential sequence of one-entries. Everything else is empty. Not all
one-entries can be there at the same time, because that would create a mapping
of P1 or its rotation. We also need to find ( •

• ) ⪯ P . The following analysis only
uses hereditary arguments, which means that if we prove that P is bounding, we
also prove that each submatrix of P is bounding. With this in mind, we restrict
ourselves to critical patterns. For each case, we prove it is bounding in Figure 4.9.

a

b

A

c

B

dα

β

C γ

e

f

Figure 4.7: The structure of a pattern only having three non-empty rows and
avoiding all rotations of P1.

1. γ = 1 ⇒ f = 0 ⇒ because ( •
• ) ⪯ P , it holds a = 1 ⇒ α = 0

(a) d = 1 ⇒ b = 0, β = 0, e = 0
(b) d = 0

i. c = 1 ⇒ β = 0, e = 0
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ii. c = 0

2. γ = 0

(a) α = 1 ⇒ a = 0, b = 0. If f = 0 we have case 1. (b) ii.; otherwise, we
have case 1. (a).

(b) α = 0
i. c = 1, d = 1 ⇒ b = 0, e = 0, β = 0
ii. c = 1, d = 0 ⇒ e = 0, β = 0 and without loss of generality, b = 1.

Otherwise, we have the previous case. Therefore, f = 0
iii. c = 0, d = 1 ⇒ b = 0. Without loss of generality, e = 1, β = 1.

Otherwise, we have the case c = 1, d = 1. Therefore, a = 0
iv. c = 0, d = 0

The same analysis also proves that if a pattern with the same restrictions only
has three non-empty columns then it is bounding.

Let P be a pattern that can be covered by two rows r1, r2 and one column c1.
Without loss of generality, we again assume the permutation 123 is present and we
distinguish three cases. Consider Figure 4.8 for the structure of P and Figure 4.9
for the proof it is bounding:

a

A

B

C

γ

α

β

b

c

d

r1

r2

c1

A

B

C

α

β

γa b

c d

r1

r2

c1

Figure 4.8: The structure of a pattern only having one-entries in two rows and
one column that avoids all rotations of P1.

1. C lies in column c1

(a) a = 0
(b) a = 1 ⇒ b = 0, α = 0

2. B lies in column c1

(a) a = 1, d = 1 ⇒ α = 0, γ = 0
(b) a = 1, d = 0 ⇒ α = 0
(c) a = 0, d = 1 ⇒ γ = 0
(d) a = 0, d = 0. The pattern avoids ( •

• ).

3. A lies in column c1. This is symmetric to the first situation.
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1.(b)

1.(a)

2.(a)

2.(b)

2.(c)

1.(a)

2.(b)

2.(d)

1.(a)

1.(b)i.

1.(b)ii.

2.(a)

2.(b)i.

1.

2.(b)ii.

2.(b)iii. 1(b)ii.

2.(b)iv.

Lemma 3.20 (case 1)
Lemma 3.20 (case 2)
Lemma 3.21 (case 1)
Lemma 3.21 (case 2)

Lemma 3.18 (case 1)
Lemma 3.18 (case 2)
Lemma 3.18 (case 4)
Lemma 3.19

Figure 4.9: A figure showing which lemma can be used to prove that each one-
entry of patterns discussed in the case analysis is bounded. The patterns from
the left half of the picture only contain three non-empty rows and the patterns
from the right half only contain two non-empty rows and one non-empty column.
Each case either contains a picture showing that each one-entry is row-bounded
and column-bounded, or an arrow describing that the case can be reduced to a
different one.

The same analysis also proves that if a pattern P can be covered by two
columns and one row then the pattern is bounding.

Combining the lemmata and Theorem 4.14, we finally get the following result.

Theorem 4.26. A pattern P avoids all rotations of P1 ⇔ P is bounding.

A lot can be implied from this theorem. Here are two straightforward corol-
laries for which we do not know any other proof.

Corollary 4.27. For every pattern P : Av⪯ (P ) is row-bounded ⇔ Av⪯ (P ) is
column-bounded.

Corollary 4.28. For every bounding pattern P and every P ′ ⪯ P it holds P ′ is
bounding.
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4.2 Chain rules
Now that we know exactly what patterns are bounding, it is time to speak about
the complexity of classes more in general. We are still going to be concerned with
classes of matrices avoiding patterns, but they will avoid a set of patterns rather
than just one pattern.

First, we show that Corollary 4.27 does not hold in general. Next, we show
that bounded classes are closed to intersection. At the end of the chapter, we
prove the same is not true for unbounded classes of matrices and even more, an
intersection of a few unbounded classes can be bounded hereditarily, which means
that its every subset is bounded.

It is easy to see that Lemma 4.20, Lemma 4.21, Lemma 4.22, Lemma 4.23
and Lemma 4.24 can be generalized to our settings. Their proofs without change
show that for every set of patterns P , if a pattern P ∈ P looks like a described
pattern, then any one-entry of P is (row-)bounded in Av⪯ (P). Therefore, we use
the lemmata without restating them.

We define classes of matrices to be bounded if they are both row-bounded
and column-bounded. From what we proved so far, we see that for a pattern P ,
the class Av⪯ (P ) is row-bounded if and only of it is column-bounded. Once we
consider classes avoiding sets of patterns, this does not have to be true.

Lemma 4.29. There exists a set of patters P such that the class Av⪯ (P) is
row-bounded but column-unbounded.

Proof. Let P =
{

P =
( •

•
•

•

)
, I4 =

( •
•

•
•

)}
. We can use a similar construc-

tion to what we did in Lemma 4.13, to prove Av⪯ (P) is column-unbounded. The
only difference is that the “blocks” are of size 4 × 2 and the whole matrix is
transposed.

To prove that the class Av⪯ (P) is row-bounded, we take an arbitrary ma-
trix M ∈ Avcrit (P) and consider any row r of M . We need to prove that every
one-entry of I4 and P is row-bounded.

From Lemma 4.24, we know that every one-entry of I4 is row-bounded (and
column-bounded) in Av⪯ (P). From Lemma 4.21, one-entries P [2, 1] and P [4, 3]
are row-bounded in Av⪯ (P). From the first case of Lemma 4.22, the one-
entry P [3, 2] is row-bounded in Av⪯ (P).

We prove that there are at most two zero-intervals usable for P [1, 2] in the
row r. For contradiction, let there be three zero-intervals z1 < z2 < z3. Consider a
mapping of P to M created when a zero-entry of z3 is changed to a one-entry used
to map P [1, 2]. Without loss of generality, the one-entry used to map P [2, 1] lies
in columns of z3 or just under the one-entry e bounding z3 from left; otherwise, we
could use e to map P [1, 2] and find the pattern in M . Then, a one-entry between
zero-intervals z1 and z2 together with the one-entries used to map P [2, 1], P [3, 2]
and P [4, 3] give us a mapping of I4 and so a contradiction with M ∈ Av⪯ (P).

Theorem 4.30. Let P and Q be set of patterns. If both classes Av⪯ (P) and
Av⪯ (Q) are bounded then Av⪯ (P ∪ Q) is bounded.

Proof. We show that r (Av⪯ (P ∪ Q)) ≤ r (Av⪯ (P)) + r (Av⪯ (Q)) = C.
For contradiction, let a matrix M ∈ Avcrit (P ∪ Q) have at least C + 1 zero-

intervals in a single row. Without loss of generality, it means there are more
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than r (Av⪯ (P)) zero-intervals usable for one-entries of the patterns from P . Let
M ′ ∈ Av⪯ (P) be a matrix created from M by changing as many zero-entries
to one-entries as possible. Clearly, it still contains more than r (Av⪯ (P)) zero-
intervals usable for one-entries of the patterns from P , which is a contradiction
with the value of r (Av⪯ (P)).

Similarly, we prove c (Av⪯ (P ∪ Q)) ≤ c (Av⪯ (P)) + c (Av⪯ (Q)).

Using induction, we can show that also an intersection of a finite number of
bounded classes is bounded. Interestingly enough, unbounded classes are not
closed the same way.

P1 =
( •

•
•

)
P2 =

( •
•

•

)
P3 =

( •
•

•

)
P4 =

( •
•

•

)
Theorem 4.31. For every 1 ≤ i < j ≤ 4] is Av⪯ ({Pi, Pj}) bounded.

Proof. We only show that Av⪯ (P1, P2) is bounded. To prove Av⪯ (P1, P3) is
bounded, we can use the same steps. All other pairs are then symmetric to these
two.

• Av⪯ (P1, P2) is row-bounded:
From Lemma 4.21, we have that one-entries P1[2, 1], P1[3, 3], P2[2, 3] and
P3[3, 1] are row-bounded. For P1[1, 2] and P2[1, 2], we prove there are at
most two zero-intervals usable for each of them in each row of any ma-
trix M ∈ Avcrit (P1, P2). For contradiction, let z1 < z2 < z3 be three
zero-intervals usable for P1[1, 2] in a row r of M . The one-entries used to
map P1[2, 1] and P1[3, 3] in a mapping created when a zero-entry of z1 is
changed to a one-entry used to map P1[1, 2], together with a one-entry in
between z2 and z3 give us a mapping of P2 to M . Symmetrically, the same
goes for P2[1, 2].

• Av⪯ (P1, P2) is column-bounded:
The proof that one-entries of P1 and P2 are column-bounded is the same.

We prove even stronger result for the class Av⪯ (P1, P2, P3, P4) by using a well
known fact from the theory of ordered sets. It is due to Higman [1952] and states
the following:

Fact 4.32 (Higman’s lemma). Let A be a finite alphabet and A∗ be a set of
finite sequences over A partially ordered by the subsequence relation. Then A∗ is
well-quasi-ordered.

In other words, whenever we have a potentially infinite S ⊆ A∗, there are
sequences a, b ∈ S such that a is a subsequence of b. This also means that no
such S contains an infinite anti-chain.

Theorem 4.33. The class C = Av⪯ (P1, P2, P3, P4) is bounded. Moreover, every
subclass of C is bounded.

Proof. We first prove that C is bounded. Consider any critical matrix M ∈ C.
If it avoids ( •

• ) (or ( •
• )), in which case it is a walking matrix then it has at

most two zero-intervals in each row and column. If M contains at most three
non-empty rows (columns) then from the case analysis in Lemma 4.25, we see

39



that there are at most four zero-intervals in each row and trivially, there are at
most four zero-intervals in each column. Otherwise, M contains at most two
non-empty rows and one non-empty column (or vice versa), and we again see
from the case analysis of Lemma 4.25 that there are at most four zero-intervals
in each row and column.

Now consider an arbitrary M ⊆ C. In terms of forbidden patterns, we have
M = Av⪯ ({P1, P2, P3, P4} ∪ P) for some set of matrices P ⊆ C. If P is finite
then we can use iterated Theorem 4.30 to show that M is bounded.

Assume that P is infinite. Then we want to find a finite subset P ′ such that
for every P ∈ P there is P ′ ∈ P ′ with P ′ ⪯ P . In other words, we need to prove
that no P contains an infinite anti-chain. To do so, we use Fact 4.32.

As the relation of being interval minor is a partial ordering on any set of
matrices, we define a finite alphabet A and define a word wM ∈ A∗ for every
matrix M ∈ C is such a way, that for every two words wP , wM ∈ A∗ it holds that
if wP is a subsequence of wM then P ⪯ M .

• For all matrices M ∈ C that have at most three non-empty rows (we proceed
symmetrically if it has at most three non-empty columns), we use words
over alphabet A = {a, b, c, d, e, f, g, h, i, j}. Let r1 < r2 < r3 be the non-
empty rows (if fewer than three are non-empty then we choose extra values
arbitrarily). We define wM ∈ A∗ as follows. First, we use the letter g r1-
times, the letter h (r2 −r1)-times, the letter i (r3 −r2)-times and the letter j
(m−r3)-times to describe the number of rows of M and the position of non-
empty rows. Then we describe the matrix column by column as follows. For
each 0 in r1, we use the letter a and for 1, we use letters ab. For each 0 in
r2, we use the letter c and for 1, we use letters cd. For each 0 in r3, we use
the letter e and for 1, we use letters ef .
Let wP , wM ∈ A∗ be two words such that wP is a subsequence of wM . Let
r1, r2, r3 and r′

1, r′
2, r′

3 be the non-empty rows of P and M respectively. Since
the number of leading letters g is not bigger in wP , P does not have more
empty rows before r1 than M does before r′

1 and similarly for the other
pairs of non-empty rows.
Now consider there is a sequence ab in wP and it corresponds to some a · · · b
in wM . Without loss of generality, the letter a in wP is the one exactly before
the letter b. Clearly, one-entries of P can be mapped to one-entries of M
and we only need to check that two one-entries of two different columns of
P are not mapped to two one-entries of the same column of M . This is not
hard to see and we have P ⪯ M (but it does not have to hold that P ≤ M).

• For all matrices M ∈ C that have at most two non-empty rows and a
non-empty column (we proceed symmetrically if it has at most two non-
empty columns and a non-empty row), we use words over alphabet A =
{a, b, c, d, e, f, g} and for non-empty rows r1, r2 and a column c1, we define
wM as follows. We first encode the matrix column by column in such a way
that for each 0 in r1, we use the letter a and for 1, we use letters ab. For
each 0 in r2, we use the letter c and for 1, we use letters cd. Right before
and right after the description of the column c1, we put the letter g. Next,
we encode each row in such a way that for each 0 in c1 we use the letter e
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and for each 1, letters ef . Right before and right after the descriptions of
rows r1 and r2 we again place the letter g.
Because of the distinct letters for encoding rows and columns we can ap-
ply the same analysis as we did in the previous case and since the entries
M [r1, c1] and M [r2, c1] are separated from the rest by the letter g there is
no way to find a one-entry where it is not.

• For all matrices M ∈ C avoiding ( •
• ) (we proceed symmetrically if it avoids

( •
• )), we use words over alphabet A = {a, b, c, d} and encode the matrix

as follows. We choose an arbitrary walk of M containing all one-entries and
index its entries as w1 . . . wm+n−1. Starting from w1, we encode wi so that
the letter a stands for 0 and letters ab for 1, if wi+1 lies in the same row as
wi, and we use the letter c for 0 and letters cd for 1, if wi+1 lies in the same
column as wi. We always use a or ab for the last entry.
We again need to check that if wP is a subsequence of wM then P ⪯ M .
For contradiction, assume that two one-entries of two different rows of P
are mapped to two one-entries e, e′ in the same row of M . Then in wP

the corresponding one-entries are separated by (or equal to) the letter c
and so the letter also appear in wM , which is a contradiction with the
one-entries e, e′ being in the same row of M .

In the construction of words corresponding to matrices, we only make sure
that if wP is a subsequence of wM then P ⪯ M and the other implication does
not need to hold. A different construction may lead to equivalence, but it is not
necessary for our purposes.

We use distinct alphabets to describe matrices from different categories and
when given a potentially infinite class of matrices P , we know from Fact 4.32 that
inside each category there is at most finite number of minimal (with respect to
interval minors) matrices. Using induction on Theorem 4.30, we have that each
M ⊆ C is bounded.

Observation 4.34. There exists a bounding pattern P having an unbounded sub-
class of Av⪯ (P ).

Proof. Let P = In (identity matrix) for n > 3. From Lemma 4.24, we have
that P is bounding. On the other hand, Av⪯ (In, P1) is unbounded, because the
construction used in the proof of Lemma 4.13 also works for this class.
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Conclusion
Throughout the thesis, we have been looking from multiple angles at classes of
binary matrices. In particular, we studied properties of matrices containing or
avoiding small interval minors.

Small interval minors We started by describing the structure of matrices
avoiding some small patterns. We managed to characterize all matrices avoiding
patterns having up to three one-entries and also showed how to generalize some
of the characterizations for much bigger patterns. Even for very small patterns
(only having four one-entries), the structure of matrices avoiding them became
very rich and hard to properly describe.

So instead, we began to consider how a small change of the pattern influences
the structure of matrices avoiding the pattern. This was mainly looked at when
adding empty lines to the pattern. We showed for patterns of size k × 2 what
matrices avoiding its blown version look like and discussed that we are unable to
generalize the result (or show something similar) when the pattern we are working
with is bigger. So the question, answer to which could later be used to describe
complexity of some patterns or help enumerate matrices from some class, is:
Question 4.35. What can we say about matrices avoiding a pattern with added
empty line with respect to the matrices avoiding the original pattern?

The basis of a class of matrices After dealing with small patterns, we defined
an operation of the skew sum and the closure under the skew and began to explore
how it relates with classes of matrices. Once again, we started by considering some
small cases, where we observed that the closure can be described by forbidden
patterns very naturally. Later, we considered the skew sum with an overlap,
which allowed us to restate the characterizations from the second chapter in a
much easier way.

We also introduced a notion of articulations that allowed us to prove a strong
result saying that any matrix closed under the skew sum can always be described
by a finite set of forbidden patterns.

In order to generalize the result, we started looking at sets of matrices and
ultimately, we showed that there are sets of matrices with finite basis whose
closure cannot be described with a finite number of forbidden minors.

Zero-intervals In the last chapter, we studied a property of a class of matrices
that in some terms describes the complexity of critical matrices from the class.

To bring the notion back to pattern avoiding, we defined a pattern P to be
bounding if and only if the class Av⪯ (P ) is bounded and we showed that a pattern
is bounding if and only if it avoids all rotations of P1 =

( •
•

•

)
.

To show for a pattern that it is bounding meant to show that each one-entry
it contains is bounded. It may be an interesting generalization to show for each
one-entry whether it is bounded or unbounded in its pattern. On our way, we only
saw one type of unbounded one-entries, and those are P1[2, 1] for rows, P1[1, 2] for
columns and corresponding one-entries in the rotations of P1. Let us call these
one-entries trivially unbounded.
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Considering this generalization, there are one-entries that are unbounded but
not trivially unbounded. Let us mention some of them (arrows point to row-
unbounded one-entries):( • ↓

• •
•

•

) ( • ↓
• •

•
•

) ( • ↓
• •
•

•

) ( • ↓
• •

•
•

)

Proposition 4.36. Let P =
( ↓

• •
• •

•

)
. For every integer n there is a matrix

M ∈ Avcrit (P ) having at least n zero-intervals.

Proof. Let M be a matrix described by the picture:⎛⎜⎜⎜⎜⎜⎜⎜⎝

◦ • ◦ • ··· • ◦ • • • ◦ •
··· • • • •
··· • • • • • • •
··· • • • •
··· • • • •

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
• • • ···
• • • • ···

• • • • • • • ···
• • • • ···
• • • • ···

⎞⎟⎟⎟⎟⎟⎟⎟⎠
We see that P ̸⪯ M because we always need to map P [2, 1] and P [3, 3] to just
one “block” of one-entries of M , which only leaves a zero-entry where we need to
map P [1, 3] or P [2, 4].

When we change any marked zero-entry of the first row into a one-entry, we
get a matrix containing a minor of {1}3×4; therefore, containing P as an interval
minor. In case M is not critical, we can add more one-entries to make it critical
but it will still contain a row with n one-intervals.

Our tools are not strong enough to let us characterize unbounded one-entries.
Based on our attempts, we state the following conjecture:
Conjecture 4.37. Every row-unbounded one-entry share a row with a trivially
row-unbounded one-entry.

Throughout the chapter, we work with arguments such that if something holds
for a matrix, it also holds for every submatrix. While it seems completely natural,
we are unable to resolve the following question:
Question 4.38. Can a bounding pattern become non-bounding after a one-entry
is deleted?

We showed that while the intersection of bounded classes of matrices is always
bounded, the intersection of unbounded classes may become bounded. For the
class of matrices avoiding all rotations of P1, we even showed that every subclass
is also bounded. The same remains open for other classes of matrices:
Question 4.39. Is Av⪯

(( •
•

•

)
,
( •

•
•

))
hereditarily bounded?
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Peter Brass, Gyula Károlyi, and Pavel Valtr. A turán-type extremal theory of
convex geometric graphs. In Discrete and computational geometry, pages 275–
300. Springer, 2003.

William G Brown. On graphs that do not contain a Thomsen graph. Canad.
Math. Bull, 9(2):1–2, 1966.
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