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Abstract

Flows of normal and superfluid 4He (He I and He II, respectively) are investigated
experimentally. Relatively small particles of solid hydrogen and deuterium are
suspended in the experimental volume and their motions are tracked in both me-
chanically and thermally driven flows. A statistical study of the particle velocity
and velocity increment distributions is performed at scales smaller and larger
than the mean distance between quantized vortices, the quantum length scale
of the investigated flows. We show that, at small scales, the observed particle
dynamics in He II is greatly influenced by that of quantized vortices. We, addi-
tionally, report that this behavior is independent of the imposed large-scale flow.
Instead, at large scales, we observe that particle motions are quasiclassical, that
is, very similar to those reported to occur in turbulent flows of viscous fluids. The
study reinforces therefore the idea of close similarity between viscous flows and
large-scale (mechanically-driven) flows of He II, and simultaneously highlights the
small-scale differences due to the presence of quantized vortices in He II.
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Preface

The research in the field of low temperature physics begun more than a century

ago, when adequate cooling techniques were developed and low enough tempera-

tures were achieved. The first milestone of low temperature physics is considered

to be the liquefaction of helium. It was performed by the Dutch physicist Heike

Kamerlingh Onnes in 1908 [1]. He achieved temperatures below 2K. Later, many

striking properties of condensed matter were revealed at such low temperatures,

e.g., superconductivity, which was also discovered by Onnes in 1911 [2]. But

besides the usefulness of liquid helium as a coolant [3], it displays a variety of

interesting properties on its own.

For example, the phase diagram of liquid 4He does not contain the triple point,

i.e., the point of coexistence of three phases, liquid, solid and gaseous. Moreover,
4He remains liquid in the absolute zero temperature limit, at finite pressure.

This behavior is linked with the second-order phase transition that occurs in the

liquid phase at Tλ ≃ 2.17K, at the saturated vapor pressure, called the superfluid

transition. The high-temperature, viscous phase of liquid 4He is called He I, and

we refer to the superfluid or low-temperature phase as He II.

He II gained the attention of the scientific community for the first time in the

1930’s when researchers discovered its non-trivial hydrodynamic and thermo-

dynamic properties. For example, the heat conductivity of He II is orders of

magnitude larger than that of He I and in fact the largest among the known

materials [4]. Additionally, Kapitza observed that He II can flow through nar-

row channels without internal friction [5]. This property, i.e., the occurrence

of inviscid flows, defines the superfluid nature of He II. But almost simultane-

ously Andronikashvili reported that torsional oscillations of a pile of thin disks

submerged in He II are damped by friction forces due to a non-zero effective vis-

cosity [6]. Other experiments carried out by Allen and Jones [7] revealed that the

heat input to the He II bath produces a measurable flow. More specifically, they
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observed that temperature gradients in He II induce pressure gradients and thus

a flow. These early results indicated indeed that the hydrodynamics of He II is

very rich.

The most successful phenomenological model of He II is called the two-fluid

model. While the first ideas were reported by Tisza [8], the model was refor-

mulated and completed by Landau [9]. The model is based on the assumption

that the flow of He II can be decomposed into the flow of two interpenetrating

fluids, the normal fluid and superfluid components. While the normal component

is viscous and carries the entire He II entropy, the superfluid component is an

inviscid fluid, capable of frictionless flow. Such an approach enabled researchers

to clarify various experimental observations. For example, the abnormally large

heat conductivity of He II [4] can be explained as the occurence of a thermally

driven flow of the normal component without any net mass flow (i.e., the super-

fluid component flows in the opposite direction).

The loss of viscosity in He II can be interpreted as the localization of a macroscopic

amount of helium atoms to their ground state. These atoms display a collective

behavior, i.e., they create a macroscopic mass wave, associated with the order pa-

rameter ψ(r, t), a function of position r and time t. Feynman [10] suggested that

one-dimensional singularities of the order parameter, called quantized vortices,

can exist in the superfluid component. They greatly influence He II hydrodynam-

ics, because they, for example, determine the small-scale motion of the superfluid

component.

The most general form of turbulence in fluids displaying superfluidity is called

quantum turbulence [11]. In He II, it occurs at temperatures above 1K. Research

in quantum turbulence is well established as a vivid branch of fluid mechanics and

low-temperature physics, including experimental investigation, numerical simu-

lations and theoretical works.

The method we employed for the experimental study of quantum flows is direct

flow visualization. It is based on observing the motion of small probes, such

as solid particles or bubbles, dispersed in the experimental volume. The probes

are usually sensitive to both components of He II, as they interact with the

normal component due to viscous drag, but they can also interact with quantized

vortices. Experimental data regarding particle dynamics hence provide complex

information about both components of He II.
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The results we present in this work were obtained from the tracks of small solid

particles in He II flows that were generated both mechanically, i.e., by the motion

of an obstacle, or thermally, i.e., by a local heat input into the He II bath.

Structure of the thesis

In the first chapter, we explain the underlying physics of the investigated prob-

lems. We describe He II from the point of view of quantum mechanics and

classical hydrodynamics and we study particle dynamics in He II. In the second

chapter, we outline various experimental techniques of flow visualization in super-

fluids that are accessible by date. We describe our experimental apparatus and

relevant data processing techniques in the third chapter. In the fourth chapter

we present the obtained experimental results and we provide their interpretation

in the scope of present theories. In the fifth chapter we summarize the outcome

of the work.
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1 Theoretical Part

1.1 Liquid helium and superfluidity

Although helium is the second most abundant element in the Universe after hy-

drogen, its sources on Earth are scarce. Gaseous helium is usually obtained from

natural gas [12].

An atom of 4He consists of two protons and two neutrons that form its nucleus,

and a pair of 1s electrons. Therefore, 4He atoms are bosons, while atoms of
3He, another stable helium isotope, are fermions. As a consequence, the low-

temperature behavior of 3He significantly differs from that of 4He and is not the

subject of this thesis.

The superfluid transition in liquid 4He is linked with its bosonic nature. It is

a second-order phase transition and it separates the two liquid phases of 4He

called He I (normal phase) and He II (superfluid phase), see dashed line in fig. 1.1.

Although the temperature of the transition is slightly pressure-dependent, for

practical reasons we refer to the transition temperature as to Tλ ≃ 2.172K, i.e.,

its value at the saturated vapor pressure, 37.8 torr [4].

He I, the normal liquid phase, behaves as a viscous fluid of small density, ca.

125 kg/m3 at 4.2K, and low kinematic viscosity, of the order of 10−8 m2/s [4]. It

is a colorless and odorless liquid. Its refractive index is close to unity, therefore

one can struggle to observe its surface in a glass vessel. Due to the low value of

its specific and latent heat [12], He I can be easily overheated. Bubbles rising

from the volume of boiling He I make the observation of the liquid easier.

The superfluid phase is called He II and remains liquid also in the absolute zero

limit, i.e., 0K = −273.15 ◦C, below pressure of 2.5MPa. Its density and optical

properties are not very different from those of He I. Its thermal conductivity is,

however, orders of magnitude larger. The existence of thermal inhomogeneities
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Figure 1.1: Phase diagram of 4He. Note that 4He does not have a triple point,
i.e., the point of coexistence of gaseous, liquid and solid phases. Solid helium exists
only at increased pressure. The liquid phase can exist also in the zero temperature
limit. The phase transition between the normal and superfluid phases (He I and He II,
respectively), the lambda-transition, is marked with a dashed line.

in He II is suppressed, which leads to the lack of volume boiling. Superfluid

properties of He II include, for example, the occurrence of the two-fluid behavior,

the vorticity quantization and various types of flows, some of which have no

classical counterparts. We will address these properties in detail below.

The two fluid model

The most successful phenomenological large-scale model of He II is called the

two fluid model. The first ideas regarding this model were developed by Tisza

in 1938 and the model was completed by Landau in 1941 and 1947 [8, 9]. Sev-

eral hydrodynamic phenomena occurring in He II can be explained if we look at

He II as if it were a system consisting of two interpenetrating fluids, the normal

and superfluid components. The density of He II is given as the sum of those of

its components, ϱs + ϱn, where subscripts “s” and “n” represent the superfluid

and normal components, respectively. Although the total He II density, ϱ, does

not vary much with temperature, the respective densities of the components are

strongly temperature dependent, see fig. 1.2. At Tλ, just below the superfluid

transition, there is only the normal component present. But at lower tempera-

tures, the density of the normal component quickly decreases, while that of the

superfluid component rises.
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Figure 1.2: The density of liquid 4He as a function of temperature. The black
lines denote the density of He I (solid line) and the combined density of the normal
and superfluid components of He II (dashed line). The densities of the normal and
superfluid components of He II are denoted by the red and blue lines, respectively.
Relevant data values are obtained from [13].

The normal component of He II is represented as a gas of thermal excitations or

quasiparticles. The heat and momentum transfer in He II is allowed by quasipar-

ticle emissions and absorptions. The normal component has therefore nonzero

entropy and viscosity.

The superfluid component instead represents the microscopically coherent part

of He II. Such a system, localized in the ground state, in momentum space, has

zero entropy and viscosity.

Macroscopically, one can define two velocity fields in He II: vn and vs, for the

normal and superfluid components, respectively. The incompressibility condition

for He II can be written, for a constant temperature, as

∂ϱ

∂t
+∇ · (ϱnvn + ϱsvs) = 0. (1.1)

In the equation ϱ = ϱn + ϱs denotes the total density of He II.

Two equations of motion have to be written for He II. The viscous normal com-

ponent can be described by the incompressible Navier-Stokes equation. On the

other hand, the Euler equation for ideal fluids is more appropriate for the in-

viscid superfluid component. Moreover, we must take into account the mutual
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interaction between the components that couples them together. The final form

of the equations of motion is, in the case of incompressible flow, for the normal

component [3]

ϱn
∂vn

∂t
+ ϱn(vn · ∇)vn = −ϱn

ϱ
∇p− ϱsS∇T + Fns + µ∇2vn, (1.2)

and for the superfluid component

ϱs
∂vs

∂t
+ ϱs(vs · ∇)vs = −ϱs

ϱ
∇p+ ϱsS∇T − Fns. (1.3)

In the equations above, ∇p indicates the pressure gradient, S is the entropy of
He II per unit mass and ∇T represents the temperature gradient. Fns denotes the

force of mutual friction, i.e., the coupling term between the components. Note

that Fns has opposite signs in equations (1.2) and (1.3). Finally, µ is dynamic

viscosity of the normal component that is tabulated, as well as the He II specific

entropy in [4].

The terms proportional to the thermal gradient ∇T are also of opposite signs. As
a consequence, any flow induced by local heat sources, such as resistive heaters,

will produce the flow of the normal component away from the heater and the flow

of the superfluid component towards the heater. We call this flow type thermal

counterflow. The use of thermal counterflow in He II research is frequent, because

such flow has no obvious classical counterpart in viscous liquids and is easy to

obtain. The relative velocity of the components is, in the simple case of a channel

that is closed at one end and open at the other, with a flat heater at the closed

channel end [11],

vns = |vn − vs| =
q̇

ϱsST
, (1.4)

where q̇ indicates the heat flux supplied to the channel.

Quantized vortices

The superfluid component displays a collective behavior, which leads to all the

phenomena listed above. To describe such a state, we can use the order parameter

ψ(r, t), a function of space coordinate r and time t. From the point of view of

quantum mechanics, we can associate ψ with the macroscopic wave function of

the superfluid component. The complex function ψ can be decomposed to its
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amplitude |ψ(r, t)| and phase ϕ(r, t):

ψ(r, t) = |ψ(r, t)|eiφ(r,t). (1.5)

The square of the amplitude represents the probability of finding a 4He atom in

a unitary volume. In the case of He II, we can identify this quantity with the

density of the superfluid component, i.e.,

|ψ|2 = ϱs ⇒ |ψ| = √
ϱs. (1.6)

The phase ϕ of the macroscopic wave function influences the resulting hydrody-

namics of the superfluid component. We can calculate its velocity as vs = ps/m4,

where m4 is the mass of a 4He atom and ps indicates the eigenvalue of the mo-

mentum operator p̂ = −iℏ∇:

p̂ψ = −iℏ∇
(

|ψ|eiφ
)

= −iℏ|ψ|∇
(

eiφ
)

= ℏψ∇ϕ ⇒ ps = ℏ∇ϕ. (1.7)

We get therefore that vs is proportional to the gradient of the phase ϕ

vs =
ps

m4

=
ℏ

m4

∇ϕ. (1.8)

A velocity field that is obtained as the gradient of a scalar function is called

potential. The corresponding flow has no vorticity ωs = ∇× vs, since the curl of

any gradient is identically zero.

Experimental observations of rotating He II, which mimics the rotation of a solid

body, showed that the flow of the superfluid component can be of non-zero vortic-

ity. In consequence, Feynman and Onsager [10, 14] introduced one-dimensional

topological defects that occur in the superfluid component, called quantized vor-

tices, to explain the experimental findings. The vortices have a few ångstrom in

size, their cores do not contain the superfluid component and break the volume

of He II into multiply connected domains. Possible values of circulation Γ of the

superfluid component along an arbitrary closed curve ∂Ω are given as a spectrum

of discrete values

Γ[∂Ω] =

∮

∂Ω

vs · dℓ = 2πn
ℏ

m4

= nκ, (1.9)

where n is a non-zero positive integer and κ = h/m4 = 9.97× 10−8 m2/s denotes

the quantum of circulation [15].
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assume that the density ϱs is constant in the range of possible radial distances,

we can directly calculate the kinetic energy of the superfluid component per unit

vortex length as

ε =

∫ R

ξ

1

2
ϱsv

2
s 2πrdr =

n2κ2ϱs
4π

∫ R

ξ

dr

r
=
n2κ2ϱs
4π

ln

(

R

ξ

)

. (1.12)

The energy ε is proportional to n2, which means, for example, that the combined

energy of two singly quantized vortices is smaller compared to the energy of one

vortex for which n = 2. Therefore, from the principle of minimum energy follows

that all the vortices in He II are singly quantized. This result is also supported

by experiments [15]. In order to quantify the amount of quantized vortices in

He II, it is necessary only to measure their total length per unit volume. We call

this quantity the vortex line density L.

Quantized vortices exist in the form of closed loops, called vortex rings, or as

vortex lines. However, these lines cannot be open inside the He II volume: they

must be pinned to the container walls or end on the liquid surface. On the

other hand, they are allowed to bend, stretch, and reconnect. In consequence,

the vortex line density can vary in time. Besides the superfluid component, the

dynamics of quantized vortices is influenced also by the normal component via the

scattering of thermal quasiparticle excitations. This opens a channel for mutual

interaction, denoted by the force of mutual friction Fns, see eq. (1.2) and (1.3),

between the normal and superfluid components [17]. Due to these interactions,

quantized vortices tend to create a dense vortex tangle, the main ingredient of

quantum turbulence.

1.2 Quantum and classical turbulence

Turbulence in He II, at temperatures above 1K, includes, in its most general

form, turbulence in the normal component, the flow of the superfluid component

and their interactions with the dynamics of the vortex tangle. The most striking

feature of the turbulent vortex tangle is that it includes only monodisperse, singly

quantized vortices, while the size distribution of turbulent eddies in viscous flows

is instead continuous.
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Dynamics of vortex tangle

As we have already mentioned, quantized vortices can exist in He II in form

of rings or lines. Propagating quasiparticle excitations often interact with the

vortices, which leads to reconnections of the vortex lines. As a result, the total

vortex line density L increases until a steady state is reached, accordingly to the

relevant flow forcing. Possible flow generators that can trigger the increase of

vortex line density in He II include heaters for thermal counterflow or mechanical

generators commonly used in classical turbulence, e.g., moving grids or various

propellers.

When the flow forcing is switched off, the vortex line density follows a transient

and eventually decreases. Note that the quiescent He II is not vortex-free, some

quantized vortices are always preserved; they are called the remnant vortices.

Both the steady-state and decaying vortex tangle are subject to vivid scientific

research by various numerical and experimental methods [18].

Classical turbulence

The nature of turbulence in viscous fluids can be often characterized, for exam-

ple, by a non dimensional parameter, introduced for the first time by Reynolds,

defined as the ratio of inertial to viscous forces in the flow:

Re =
V D

ν
, (1.13)

where V denotes a characteristic flow velocity, D indicates a characteristic flow

scale and ν is the kinematic viscosity of the fluid. Turbulent instabilities are linked

with large values of Re, while small values of Re indicate a strong influence of

viscous forces and subsequent energy dissipation.

In tridimensional turbulent flows, dissipation occurs often at small scales, i.e.,

for small D, when Re ≃ 1. As a consequence, the kinetic energy of the flow

is transferred between scales towards the smaller ones, at which viscous forces

dominante and effectively dissipate the energy. This small scale is called the

Kolmogorov dissipative scale η [19]. It is customary to express the length scales,

or size of turbulent eddies, in the space of wave numbers (k-space). Small scales

are therefore represented by large k values, i.e., in steady-state turbulence, energy

that enters the system at small values of k must be transferred towards larger
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k at a constant rate ϵ. The energy transfer is governed by inertial forces and

dissipate very little energy [20].

The Kolmogorov length scale depends, under the assumption of the small-scale

self similarity of turbulence [19], only on the kinematic viscosity of the fluid and

the energy transfer rate as

η = (ν3/ϵ)1/4. (1.14)

If the Reynolds number of the flow of He II is large enough, classical turbulence

can occur in the normal component. If this is the case, He II provides a complex

turbulent system that consists of two coupled turbulent components. Strikingly,

the resulting physical picture is quite similar to the classical one. For example,

Maurer and Tabeling [21] reported that the measured energy spectra of turbulence

in He I and in He II are indistinguishable. However, some differences can be

observed as well. Visualization of mechanically driven flows in liquid helium [22]

showed that the strength of macroscopic vortices shed by an oscillating cylinder

is qualitatively different in He I and in He II, at small scales.

1.3 Particle dynamics in 4He flows

In most cases, flow visualization techniques require to suspend solid particles into

the fluid to track the investigated flow. Therefore, we have to study the forces

acting on the particles and understand to what extent the particles are able to

faithfully track various flows. The analysis of the forces acting on a particle

is notably important in He II, where the motions of particles are influenced by

the normal and superfluid components at the same time, alongside with their

interactions with quantized vortices.

Hydrodynamic forces and particle equation of motion

According to Poole et al. [23], we will consider spherical particles, of radius a and

density ϱp. In the following equations we denote the velocity of a particle as u.

Firstly, we neglect interactions with quantized vortex lines. We also assume that

the particles are smaller than the relevant Kolmogorov length η.

The dominant force that the normal component flow generates on a particle is

the viscous drag. In the case of small Reynolds numbers, the force scales linearly
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with the velocity of the particle u relative to that of the normal component vn:

Fd = 6πaµn(vn − u). (1.15)

This formula is correct only when the gas of quasiparticles, representing the

normal component, can be considered as a continuum, i.e., the mean free path of

a quasiparticle is less than the typical particle size (that is of the order of 1µm

for typical experiments). Due to the temperature dependence of the mean free

path, this condition is safely fulfilled for T > 1K [23].

For a particle whose density does not match that of the fluid, which is usually

the case in experiments, the combined forces of gravity and buoyancy are nonzero

and equal to

Fg = V (ϱp − ϱ)g, (1.16)

where V = 4πa3/3 denotes the particle volume and g indicates the acceleration

due to gravity.

The fluid that accelerates around the particles creates an additional inertial force

Fi = ϱV
Dv

Dt
, (1.17)

where D/Dt denotes the operator of material (substantial) derivative

D

Dt
=

∂

∂t
+ v · ∇. (1.18)

The added mass force, due to the acceleration of a particle embedded in the fluid,

can be expressed as

Fam = CϱV

(

Dv

Dt
− du

dt

)

, (1.19)

where C is the added mass coefficient (C = 1/2 for spherical particles). Note that

eq. (1.17) and (1.19) are valid for both the normal and superfluid components,

i.e., one can use vn or vs instead of v and ϱn or ϱs instead of ϱ, respectively.

Other hydrodynamic forces due to the flow history, particle rotation, etc. can

be neglected if the particles are small enough compared to the smallest scale of

turbulence, which is usually the case [23]. We can hence write the equation of
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motion for a single particle in He II

ϱpV
du

dt
= 6πaµn(vn − u) + V (ϱp − ϱ)g+

+ ϱnV
Dvn

Dt
+ CϱnV

(

Dvn

Dt
− du

dt

)

+

+ ϱsV
Dvs

Dt
+ CϱsV

(

Dvs

Dt
− du

dt

)

. (1.20)

This equation can be simplified, for neutrally buoyant (i.e., Fg = 0) and spherical

(C = 1/2) particles, to the form

du

dt
=

1

τ
(vn − u) +

1

ϱ

(

ϱn
Dvn

Dt
+ ϱs

Dvs

Dt

)

, (1.21)

where ϱ = ϱn + ϱs and τ is defined as

τ =
ϱa2

3µn

(1.22)

and represents the characteristic response time of a particle to the flow variations.

Interactions between particles and quantized vortices

Quantized vortices in He II can influence the motion of suspended particles, pro-

vided that the particles are small enough to react on their presence in He II. We

will illustrate the underlying physics in the case of a neutrally buoyant spherical

particle in the vicinity of one straight vortex. If we neglect the influence of the

particle on the vortex line, the imposed velocity field vs is, in the cylindrical

coordinate system, vs = (0,κ/(2πr), 0), see eq. (1.11). For the sake of simplic-

ity, we assume that the normal component is at rest, i.e., vn = 0. Under these

assumptions, the relevant equation of motion can be derived from eq. (1.20):

du

dt
= −1

τ
u+

ϱs
ϱ
(vs · ∇)vs. (1.23)

The last term on the right hand side of the equation above has only a radial

component other than zero and can be expressed as

(vs · ∇)vs =
1

2
∇(vs

2) =
κ2

8π2
∇
(

1

r2

)

. (1.24)
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Due to this term, the particle is attracted towards the vortex line and starts to

move radially from its initial position. The motion is governed by the equation

du

dt
= −u

τ
− 2β

r3
, (1.25)

where β = ϱsκ
2/(8π2ϱ) is a scaling factor dependent on temperature. We can

solve this equation numerically or we can calculate its approximative solution

analytically. Following [23], we can argue that the left hand side of eq. (1.25),

i.e., the particle acceleration, is negligibly small compared to the right hand side,

when the particle is far away from the vortex core. Therefore, we can set the

acceleration to be zero, which leads us to an equation that can be solved by

variable separation. The resulting solution is

r(t) =
(

r40 − 8βτt
)1/4

, (1.26)

where r0 is the original position of the particle at t = 0. The second derivative

of this equation yields the acceleration that is proportional to (βτ)2. For micron-

sized particles, suspended in He II, the value of this factor is as low as 10−42 m8/s4

and the acceleration can be indeed neglected.
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Figure 1.4: Attraction of a particle by a straight infinite vortex line, located at
r = 0. The considered particle is neutrally buoyant, of 1µm radius and originally put
in rest at 20µm away from the vortex. The temperature of the He II bath is chosen
to be 1.95K when He II contains the same amount of the normal and superfluid
components. The red solid line represents the approximate analytical solution (1.26),
the blue dashed line indicates the numerical solution of particle equation of motion
(1.25) performed by the lsode solver in the Octave environment.
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In fig. 1.4, we plot the function r(t) according to eq. (1.26) and the numerical

solution of eq. (1.25) for neutrally buoyant spherical particles of 1µm diameter,

suspended in He II at 1.95K. We can observe that the exact and approximate

solutions do not differ when the particle is located relatively far away from the

vortex line (ca. 10µm). However, nonzero particle acceleration becomes impor-

tant when the particle gets close enough.

Moreover, when the particle is too close to the vortex, the model described above

becomes insufficient and one has to consider that the particle affects the geometry

of the vortex [23]. More specifically, the vortex becomes curved and starts to

move. Eventually, the particle approaches the vortex with a finite velocity and,

if this velocity is not too large, becomes trapped on the vortex line, see fig. 1.5.

1. 2. 1. 2. 3. 4.

Figure 1.5: Interaction between a quantized vortex and a solid particle. Left: particle
approaches the vortex line, which becomes deformed and, eventually, the particle gets
trapped. Right: particle approaches the vortex, gets trapped but instantly de-traps
and excites waves along the vortex line. Image from [16], reprinted with permission
from Elsevier.

Particle trapping is energetically favorable, because a trapping event releases the

energy equal to the kinetic energy of the superfluid component, replaced by the

trapped particle. For a particle of radius a and a vortex line of core radius ξ, this

energy is approximately [16]

∆E ≃ ϱsκ
2a

4π
ln

(

a

ξ

)

. (1.27)

Consequently, ∆E represents the relevant de-trapping energy the particle must

obtain in order to be released from the vortex line.
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Quantized vortices, decorated with sub-micron particles trapped onto them, were

already observed experimentally, see, e.g., [24]. Trapping and de-trapping events

represent another feature of particle dynamics in He II flows that can be observed

experimentally.
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2 Experimental Techniques

Flow visualization techniques are well developed and of great precision in classical

fluid dynamics. Many different experimental techniques are applicable to date, for

example ink and smoke visualization, hydrogen bubbles, Baker’s pH technique,

hot wire anemometry, laser Doppler anemometry, particle image velocimetry or

particle tracking velocimetry [25, 26].

However, in order to visualize the flows of He II, the experimentalists have to

face serious technical challenges. The low-temperature vessel containing liquid

helium must be well insulated, therefore the optical access to the experimental

volume is usually significantly restrained. Low density and viscosity of He II put

another barrier for the use of standard methods, especially regarding the use of

tracer particles that will faithfully probe the imposed flows.

Nonetheless, various experimental techniques are available to date [16, 26]. Here

we provide a short review on available techniques, but we mainly focus on the

particle tracking velocimetry technique that was used by us.

2.1 Microscopic tracers and relevant techniques

There are several efforts to produce microscopic tracer particles in He II. These

nonintruisive probes faithfully track the imposed flows. Possible tracers include
3He atoms that are visualized by means of neutron absorption tomography, posi-

tively and negatively charged ions and metastable He∗2 molecules [26].

A positive ion in He II attracts nearby helium atoms that agglomerate and com-

press around the ion. The increase of pressure usually leads to the local solidifi-

cation and creation of solid helium particles of a few nm in diameter. Contrarily,

negative ions (or electrons) repel helium atoms and, consequently, they form bub-

bles of a few nm diameter [16, 27]. While positively charged particles seem to
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follow the normal component of He II, negative bubbles are likely to get trapped

on quantized vortices and slide along their length [28].

The use of excimer He∗2 molecules is a relatively new technique [29]. The molecules

are created by a series of femtosecond laser pulses in a line ca. 100µm thick.

The mean lifetime of He∗2 excimers is ca. 13 s and their diameter is ca. 6 Å.

Usually, the image of the line is collected, by laser-induced fluorescence, after

a given time since its creation. Deformations of the line serve to observe the

imposed channel flows, such as thermal counterflow [30], see fig. 2.1.

Figure 2.1: Visualization of a line of excimer He∗
2
molecules by laser-induced fluo-

rescence. Left: line of excimers in a quiescent flow. Center and right: images of the
line distorted by thermal counterflow in laminar and turbulent regimes of the normal
component. Image from [26].

2.2 Solid particles and relevant techniques

Other techniques are based on the injection of solid particles into the experi-

mental volume. These particles are larger than the microscopic tracers described

above and their positions can be captured optically, e.g., by a high-speed camera.

The available experimental techniques are able to follow the motion of a single

particle and deduce its velocity (laser Doppler velocimetry), capture many parti-

cles at once (particle image velocimetry) or track individual particles in the field

of view (particle tracking velocimetry).

Requirements on particle properties

We impose several criteria on particle physical properties in order to faithfully

track the investigated flow. Generally, the particles used to seed the flow should

be such that they do not disturb the imposed flow, can properly react to turbulent
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variations and be easily detected in the experimental volume. According to Van

Sciver and Barenghi [16], one has to take into account particle density, size, and

its ability to scatter light and not to agglomerate.

Particle density

The buoyancy force (see eq. (1.16)) acting on the particles is proportional to

the difference between the densities of the particles and that of liquid helium

(ϱ ≃ 145 kg/m3, in the superfluid phase [4]), and null for neutrally buoyant

particles, i.e., those whose density matches ϱ.

However, the production of neutrally buoyant particles is extremely challenging

and, usually, there is a mismatch between the densities. Consequently, one has

to consider particle settling. Assuming laminar regime and spherical particles of

density ϱp, the terminal velocity u∞ of particle settling results from the balance

between the buoyancy force (1.16) and the Stokes drag (1.15):

u∞ =
2a2g(ϱp − ϱ)

9µ
, (2.1)

where µ denotes the dynamic viscosity of He II tabulated in [4]. Light particles,

i.e., those with ϱp < ϱ, raise towards the liquid surface, while heavy particles

(ϱp > ϱ) sink to the bottom of the vessel. For typical particles used in He II

experiments, acceptable settling velocities are of the order of few mm/s, at most.

From the practical point of view, particle settling velocity should not overcome

few per cents of the typical flow velocity.

Although particle settling is considered to be a parasitic effect, it might be some-

times useful. The velocity u∞ is dependent, besides some physical constants, on

the particle radius a only. The measurement of the settling velocity can hence

be used to estimate the size of the particles. Moreover, these particles gradually

leave the experimental field of view, which means that the experimentalists have

to periodically re-seed the flow. It also means that the visualized particles are

being constantly renewed, which can improve their quality.

Particle size

There are several restrictions imposed on the particle size, especially related to

their inertia and ability to respond to the flow variations. We can describe this
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ability by particle relaxation time τ , see eq. (1.22), that is, for spherical and

neutrally buoyant particles, equal to [16]

τ =
ϱa2

3µn

=
a2

3ν
, (2.2)

where ν = µn/ϱ is the kinematic viscosity of the normal component of He II. In

order to track fine turbulent variations, particles should be small enough (note

that τ scales as τ ∼ a2) so that their relaxation time would be smaller than or

equal to the characteristic time scale of the imposed flow. Such a time scale is

called the Kolmogorov time and is defined as τη = (ν/ϵ)1/2, where ϵ denotes the

mean energy dissipation rate [31]. From the condition τ ≤ τη we get

a ≤
(

81ν3

4ϵ

)1/4

. (2.3)

Additionally, the particle size sets a limit on the resolution of the applied method.

Besides the inertial effects described above, the particles should also be smaller

than the characteristic small scale of the flow. For the viscous normal component

one can define the Kolmogorov length scale [31] η = (ν3/ϵ)1/4, which poses more

severe limit on particle size than eq. (2.3) by a factor of (81/4)1/4 ≃ 2.1.

Moreover, another length scale arises from vortex dynamics, namely the intervor-

tex distance ℓ ≃ L−1/2 (L denotes the vortex line density) and represents the mean

distance between neighboring vortices. This scale separates different regimes of

particle interactions with the vortices and greatly influence the resulting particle

motions, as we describe in the following.

Light scattering

Sufficient intensity of the scattered light limits, contrarily to the requirements

above, the minimum particle size. Again, according to [16], particles should be

at least twice as big as the wavelength of the light used to illuminate the exper-

imental volume. Since most of the methods uses visible light, i.e., the relevant

wavelength is λ ≃ 500 nm, this sets the lower limit on particle size as a > 1µm.

Note that the scattered light intensity scales with particle size approximately as

a3 [16].
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In conclusion, the micron-sized particles meet, at least to a certain extent, all the

criteria listed above. For a typical experiment in He II, η ≃ ℓ ≥ 1µm and typical

velocities of seeding particles are of the order of a few mm/s.

Particle seeding techniques

Many different particles can be purchased, in a wide range of sizes and densities.

For example, hollow glass microspheres can be obtained with density close to

that of He II [16], but their diameter ranges from 10µm to 100µm with wide size

distribution. As a result, their use in visualization studies is scarce. For example,

Donnelly et al. [32] used smaller (less than 10µm in diameter) but heavier glass

spheres to study grid flows in He II.

Zhang et al. [33] used, for their visualization studies, small polystyrene spheres.

Despite their high density (ca. 1 000 kg/m3), they can be obtained with diameter

of 1.7µm and narrow size distribution. This results into relatively small and uni-

form settling velocity, ca. 0.5mm/s, that can be taken into account as a constant

correction of the measured vertical velocity.

Commercially available fluorescent nanospheres were used recently by Meichle

and Lathrop [34]. These particles are of sub-micron size and, consequently, do not

rely on light scattering. Instead, they can be visualized by laser-induced fluores-

cence and they provide better signal-to-noise ratio than other seeding techniques.

The method of nanoparticle seeding is already in use to visualize turbulent flows

of He II.

Another widely used seeding technique, is based on solidification of various gases

in the bath of liquid helium. First attempts in this field were carried out by

Chopra and Brown [35]. They used a mixture of gaseous hydrogen and deu-

terium and they obtained solid particles smaller than 1mm. Other experimental-

its improved this technique, in order to obtain hydrogen or deuterium particles of

diameters between 1µm and 10µm, see, e.g. [36, 37] with narrow size distribu-

tions. Besides hydrogen and deuterium, particles can be obtained by solidification

of neon [38] (particles smaller than 10µm) or air [39] (sub-micron particles that

are used mainly to decorate quantized vortices and study their dynamics [24]).

The usual procedure to obtain solid particles is as follows. The seeding gas

is firstly diluted with gaseous helium and then pressurized to a defined pressure

difference relative to the liquid helium vessel. The gaseous mixture is then injected
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in He I (at temperature of ca. 2.2K) in a series of short pulses of a few ms in

length. Since the melting temperature of the seeding gas exceeds that of liquid

helium, the diluted gas desublimates in form of small particles, see fig. 2.2.

Figure 2.2: Snapshot of the visualization field of view, containing solid deuterium
particles suspended in He II, at 1.75K. Colors are inverted for convenience.

Due to the density mismatch, the particles made of deuterium, neon and air

settle towards the bottom of the experimental volume, while hydrogen particles

tend to float on the liquid surface. However, due to the relatively narrow size

distribution of the particles and moderately slow settling velocities, their use in

visualization studies is possible. Attempts to provide neutrally buoyant particles

made of a mixture of hydrogen and deuterium failed due to different melting

temperatures (14K and 19K, for hydrogen and deuterium, respectively) [37].

A more promising option is the use of solid deuterium hydride (HD), in which

hydrogen and deuterium atoms are bound in molecules. Detailed study of the

compound’s potential is yet to be done.

We observed experimentally that solidified particles slowly coalesce, but more

detailed explanation of this phenomenon is yet to be done. While hydrogen par-

ticles seem to create filaments, deuterium ones agglomerate in form of spherical

clusters [37]. Both structures are, however, unsuitable for experimental obser-

vation, but settle relatively quickly. However, the progressive deterioration of

particle quality limits the duration of one experiment to two or three days. After

that, the helium cryostat must be warmed to room temperature and evacuated

to remove residual seeding gases.
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Particle image velocimetry

The main goal of the particle image velocimetry technique (PIV) is to obtain the

velocity field in the entire region of interest at once. The visualized experimental

volume is illuminated by a thin laser sheet, where densely seeded particles scatter

the incident light. However, the concentration of seeding particles must not be

too high in order not to influence the investigated flow. The obtained signal is

acquired, perpendicularly to the laser sheet, by a fast camera in pairs of two-

dimensional images with well-defined time gap, determined, for example, by the

frequency of the laser light pulses.

Later, pairs of images are analyzed. Firstly, the images are split into small in-

terrogation regions containing ca. 15 particles per region [16]. Then, a cross-

correlation algorithm is used to compare the mean brightness of individual regions

and to calculate the mean velocity vector for each region, see, e.g., fig. 2.3.

Figure 2.3: PIV study of large-scale flow around a cylinder in thermal counterflow
of He II. Left: snapshot of the field of view. Seeding particles subject for visualization
are polymer microspheres of 1.7µm diameter and density 1 100 kg/m3. Right: PIV
velocity field of the same region. Source of image [40], reprinted by permission from
Macmillan Publishers Ltd.

Laser Doppler velocimetry

Laser Doppler velocimetry (LDV) aims to measure the velocity of a single par-

ticle, located at a specific point within the experimental volume. This point is

illuminated by two laser beams that interfere with each other. The beam inter-

ference is, however, disrupted in the presence of the particle, and the resulting
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signal is Doppler-shifted due to the nonzero velocity of the particle. Combination

of multiple lasers allows to obtain tridimensional velocity of the particle.

Since the velocity measurement is localized in a given point in the experimental

volume, LDV is mostly suitable to probe steady flows [16]. Under such condition,

one can move gradually the region of interest to obtain velocity maps, similar

to those obtained by PIV, but with greater precision and underlying velocity

statistics. LDV was used to study, for example, jet flow in He II counterflow

seeded with H2/D2 particles, see [41].

Particle tracking velocimetry

In contrast with the methods described above, the particle tracking velocimetry

technique (PTV) allows us to track individual particles as they move in the field

of view, i.e., it does not provide any data linked to a specific location. Therefore,

PTV represents a technique suitable for Lagrangian studies, while PIV and LDV

are Eulerian methods. In classical turbulence, PTV is a frequently used method

of great spatial and time resolution for a variety of turbulent flows [42].
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3 Experimental Setup

The experiments we present in this work were performed at the Department of

Low Temperature Physics. We describe here the flow visualization experimental

setup. It consists of a custom-made cryostat that enables optical access to the

liquid helium bath. The data acquisition system includes a laser source, relevant

optical components and a fast camera. We will also present the setup for particle

generation to seed the flow of liquid helium with small solid particles. Finally,

we will focus on relevant data processing techniques.

3.1 Cryogenic flow visualization setup

Cryostat

We show a schematic view of the cryostat in fig. 3.1. The inner volume of the

cryostat consists of two vessels, for liquid nitrogen and helium, respectively. The

separation volume is evacuated. More specifically, the pressure between the two

volumes is lower than 10−5 torr, in order to insulate cryogenic liquids from outside

heat inputs.

The main purpose of the liquid nitrogen bath (kept ca. at 77K) is to precool the

helium vessel from room temperature (ca. 300K) to ca. 100K before the transfer

of liquid helium. The middle wall of the cryostat is thermally anchored to the

liquid nitrogen bath (see fig. 3.1) and protects the helium vessel from radiative

heat leaks. According to the Stefan-Boltzmann law, the radiative power scales

with the temperature as T 4, which means that the coating kept at 77K decreases

the heat input by a factor of (300K/77K)4 ≃ 230.
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The vessel for liquid helium usually contains ca. 60 l of liquid at the beginning

of each experiment. It is accessible from the top of the cryostat and enclosed by

the top flange of the insert, see fig. 3.1 for further details. The flange is mounted

with ports for wiring, the cryogenic level meter, the pressure gauge, the line for

particle injection, and the line for helium transfer; two wide ports are used to

pump helium vapors and to vent the cryostat, respectively.

During experiments, the helium bath is being constantly pumped by the pump-

ing system that consists of a rotary pump and a Roots pump connected in series.

The pumping rate is controlled remotely via a butterfly valve in order to main-

tain a constant pressure above the level of helium. In equilibrium, the vapors

are saturated, i.e., their pressure uniquely corresponds to the temperature of the

liquid, see fig. 3.2. As a result, by setting a constant pressure of the vapor one

eventually controls the temperature of the liquid. In addition, two resistive ther-

mometers are used to probe the temperature close to the experimental channel

during the precooling phase.
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Figure 3.2: Pressure of the saturated vapor of liquid helium as a function of tempe-
rature. Data obtained from the HEPAK package [13]. The dashed lines indicate the
temperature and the pressure of the superfluid transition, i.e., 2.172K and 37.8 torr,
respectively [4].

Typically, we transfer liquid helium from a transport Dewar at a pressure of ca.

760 torr, which corresponds to the temperature of 4.2K. After the transfer, the

pumping system is switched on to slowly decrease the pressure. The superfluid

transition occurs at 37.8 torr [4]. The lowest pressure that the current setup is
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channel. The thickness of the sheet is ca. 1mm and its height can be set up to

ca. 20mm. Perpendicularly to the sheet, a high-speed CMOS camera is sharply

focused by a macro lens on the illuminated plane to capture the light scattered by

the seeding particles, see fig. 3.3. The resolution of the camera is 1280× 800 pix,

at the maximum frame rate of 6 kHz. The synchronization between the laser

pulses and the camera shutter is controlled by a computer. The images provided

by the camera are saved in series of gray scale bitmaps.

Production of solid particles

The particles we use are made of solid hydrogen or deuterium that are dispersed

in the experimental channel. The process of their production is detailed in [37].

Firstly, we dilute hydrogen or deuterium gas with helium, approximately in 1 : 100

ratio. The mixture is kept at room temperature and at an overpressure of ca.

2 bar, relative to the pressure inside the cryostat. Then the gas is introduced

into the liquid helium bath in series of short injections, e.g., 5 pulses of 100ms

width, each. The width and the number of pulses is controlled remotely by a PC

via a solenoid valve. The quick cooldown of the mixture leads to the creation

of particles whose diameter ranges from 1µm to ca. 10µm. We also observe

that smaller and more uniformly sized particles are obtained when the mixture

is injected in He I instead of He II. See fig. 3.4 for typical size distributions of

the particles.

The density of solid hydrogen is 88 kg/m3 and that of deuterium is 202 kg/m3 [43].

Both densities do not match with that of liquid helium (145 kg/m3, in the su-

perfluid phase [4]). In other words, the particles are not neutrally buoyant and

settle; the particles made of hydrogen tend to float on the surface of the liquid,

while the deuterium ones settle on the bottom of the experimental cell. During

the experiment, one can resuspend the particles by injecting pure helium gas into

the experimental channel.
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Figure 3.4: Typical size distribution of solid hydrogen (red) and deuterium (blue)
particles. The size of the particles was calculated from eq. (2.1), the final settling
velocity u∞ was measured in quiescent He II, at ca. 1.95K, for both types of particles.
4.1× 104 and 2.4× 104 velocity points are included, for hydrogen and deuterium
particles, respectively.

3.2 Design of the performed experiments

As we have already stated several times, flows of He II can be obtained either

mechanically or thermally. Here we present the design of two different oscillating

bodies that were used to probe mechanically driven flows and the cell for the

investigation of thermal counterflow.

Oscillating obstacles

We mount the oscillators at the end of the vertical metallic shaft, whose top

end is connected to a step motor. The connection via a short crank provides

quasi-harmonic oscillatory motion of the shaft. The amplitude of oscillations is

set to 5mm or 10mm, while the remotely controlled frequency ranges between

0.05 and 3.0Hz.

The first oscillating object is a cylinder of rectangular cross section. It is made

of transparent Plexiglas, to reduce the absorption of the incident laser light.

The cylinder is firmly attached to the bottom end of the shaft via a brass rod.
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in the following frame based on their positions in previous ones. If the estimated

position matches with the position of a detected particle within certain error,

the trajectory is extended. The algorithm is also capable of such linking across

multiple frames. Note, however, that the trajectories are of different lengths, due

to the fact that we track only a two-dimensional plane in the flow having three

dimensions. In other words, the particles are likely to leave the illuminated plane

and disappear from the image sequence.

The obtained numerical data are further processed in order to improve the quality

of the dataset. Firstly, we filter out the trajectories containing less than 5 parti-

cle positions. Then we smoothen the remaining trajectories by using the linear

smoothing algorithm. Finally, we interpolate missing particle positions. These

missing positions are due to the fact that the same particle is not detected in

every consecutive frame, but yet the original trajectory is recovered.
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4 Results and Discussion

The flows of He II that are generated mechanically and thermally are fundamen-

tally different. In the case of thermal counterflow, the normal and superfluid

components move, on average, in opposite directions. Such a flow has no obvious

classical analogue. For mechanically driven flows instead, the two components of

He II are locked together via the mutual friction force. As a result, large scale

mechanically driven flows of He II should not differ from viscous ones [45]. More

precisely, it is expected that He II behaves as a single fluid with a finite effective

viscosity.

For example, the flow due to an oscillating cylinder displays macroscopic (large-

scale) eddies of a few millimeter size that look similar in He I and in He II [22].

The strength of the vortices can be quantified from the available particle positions

and velocities, as a coarse-grained vorticity estimate. Despite the same appear-

ance, we observed that the strength of the vortices differs in normal liquid and

superfluid 4He, when the scale we resolve becomes smaller than the estimated

intervortex distance.

These results strongly indicate that the features characteristic for quantum tur-

bulence are more pronounced at small enough length scales. In the following

we define the smallest probed scale ℓexp and the characteristic scale of quantum

flows, i.e., the quantum scale ℓq. The use of solid particles of finite size and their

tracking with a finite time resolution limits the smallest accessible ℓexp. There

are two relevant limiting factors. Firstly, we can only probe scales larger than

the size (diameter) d of the particles. In our case, d ranges between ca. 1µm

and 14µm, see fig. 3.4. The second factor is due to the finite temporal resolution

of the camera and, usually, exceeds the former. A relevant length scale can be

hence defined as the mean displacement δ of the particles between the consec-

utive frames. We can obtain δ directly from the experimental data or we can

calculate it as the ratio between the typical velocity and the camera frame rate.
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Subsequently, the smallest accessible scale is

ℓexp = max{d, δ}. (4.1)

Note that d < δ for the experiments presented below, in the range of investigated

parameters, i.e., the smallest ℓexp is limited by the camera frame rate. If this is

indeed the case, we can also artificially increase ℓexp by removing particle positions

from the measured trajectories. Estimates of the quantum length scale ℓq are

dependent of the type of the flow and will be discussed below.

4.1 Universality of particle motions at small scales

Here we present results obtained in thermal counterflow (in the bulk and in

the proximity of a wall) and in mechanically driven flows due to an oscillating

cylinder. We use the measured particle positions to calculate their velocities in

the horizontal and vertical directions. For a trajectory containing N positions we

obtain N velocity points as

u1 =
r2 − r1

τ
,

ui =
ri+1 − ri−1

2τ
for i ∈ {2, . . . ,N − 1}, (4.2)

uN =
rN − rN−1

τ
.

where τ denotes the time separation between two consecutive particle positions.

We process the obtained data statistically and we plot them in the form of prob-

ability density function (PDF). The distributions are centered around their mean

and normalized by their standard deviation. As a result, the distributions are of

zero mean, unitary variance and unitary area, so that we can directly compare

different data sets.

We plot the PDFs of the normalized horizontal velocity in figures 4.1 and 4.2,

for small and large scales, respectively. We quantify the investigated scale via

a parameter R defined as R = ℓexp/ℓq; its numeric values are specified in the

figure legends. In the case of thermal counterflow, we set ℓexp = uabsτ , where

uabs denotes the mean absolute velocity of the particles obtained at the lowest

R and τ is the time separation defined above. The calculation of the relevant

quantum length scale is specified in [46]. We estimate ℓq ≃ 1/(γ|vns|), where γ
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is a parameter whose approximate value can be obtained from experiments [47]

and |vns| indicates the counterflow velocity.

In the case of the mechanically driven flow, we calculate ℓexp based on the motion

of the submerged cylinder. We estimate that a typical flow velocity is approx-

imately equal to the peak velocity of the cylinder, i.e., 2πfa, where f and a

are the frequency and amplitude of oscillations, respectively. It therefore fol-

lows that ℓexp can be expressed as ℓexp = 2πfaτ . The quantum scale can be

estimated as a relevant analogue of the Kolmogorov length scale η, dependent

on ν and ϵ, i.e., kinematic viscosity and energy dissipation rate, see eq. (1.14).

The latter can be calculated, for homogeneous isotropic turbulence, as ϵ = νΩ2,

where Ω indicates the mean vorticity. In He II we can estimate the mean vor-

ticity from a custom-defined parameter θ that can be seen as a Lagrangian ana-

logue of the coarse-grained vorticity [22]. Ω2 can be subsequently expressed as

Ω2 ≃ ⟨θ2⟩, where the angle brackets indicate the ensemble average of θ2. As a re-
sult, ϵ ≃ ν ⟨θ2⟩ and eq. (1.14) yields

ℓq ≃
(

ν2

⟨θ2⟩

)1/4

. (4.3)

Table 4.1: Summary of the experimental data sets plotted in fig. 4.1. The first
two data sets were obtained in the flow generated by an oscillating cylinder, at
0.05Hz frequency and 5mm amplitude; the middle and last pair of data sets
correspond to wall-bounded and bulk counterflow, respectively. P: type of parti-
cles; T : temperature in K; R: ratio of the probed to quantum length scales; ℓq:
quantum length scale in µm; ⟨u⟩ and σ(u): mean value and standard deviation
of the particle horizontal velocity u in mm/s; w: heat flux supplied to the He II
bath in W/m2 (relevant only for counterflow).

Symbol (figures 4.1 & 4.2) P T R ℓq ⟨u⟩ σ(u) w

black squares D
2
1.24 0.07 235 -1.2 1.9 –

green open squares D
2
1.50 0.07 226 1.0 2.4 –

blue triangles H
2
1.95 0.03 145 0.2 1.2 293

orange open triangles H
2
1.95 0.06 73 0.2 1.3 587

red filled circles H
2
1.77 0.09 70 -0.3 1.6 612

black open circles D
2
1.77 0.14 70 0.5 1.9 608
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The kinematic viscosity of He I is tabulated in ref. [4]. Contrarily, the effective

kinematic viscosity of He II as a function of temperature is known to date only

with a limited precision [47]. We can thus estimate its value as a zero-order app-

roximation. Since the temperature dependence of the He II kinematic viscosity

is weak, we set, for the sake of simplicity, its value to be approximately constant

and equal to ν ≃ 1.66 × 10−8 m2/s, i.e., the value of the kinematic viscosity of

He I at a temperature close to the superfluid transition [22].
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Figure 4.1: Probability density function (PDF) of the normalized horizontal velocity
of six data sets. Pairs of data sets are vertically shifted for the sake of clarity. Empty
green and black squares: mechanically driven flows due to an oscillating cylinder;
empty orange and blue triangles: counterflow in the proximity of a wall; empty black
and red circles: counterflow in the bulk. See table 4.1 for more details. Values in the
legend indicate the relevant values of R . Green, blue and red solid lines indicate the
same |unorm|−3 scaling.

Figure 4.1 shows the velocity distributions of six data sets, including mechani-

cally driven flows, bulk and wall-bounded counterflow of He II, see tab. 4.1 for

details. For all the data sets R = ℓexp/ℓq < 1, see the legend of the same figure.

This means that the distributions reflect the small scale nature of He II and,

consequently, reveal several non-trivial features.
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The shape of the distributions is almost identical for mechanically driven flows

(green and black squares), counterflow close to the wall (blue and orange trian-

gles) and bulk counterflow (red and black circles), despite the difference between

mechanically and thermally generated flows at large scales.

This is the most striking outcome and we call it the small-scale universality of

quantum turbulence. It seems that the underlying dynamics of the particles, at

small scales, does not depend on the large-scale flow. Instead, the shape of the

distribution curve is governed mainly by the parameter R.

Note that only some distributions we measured are plotted here. Other results

were obtained at different cylinder frequencies and amplitudes, as well as at differ-

ent values of the heater power, and at temperatures ranging from 1.2K to 2.2K.

We observe that these results overlap with the shown data too. This indicates

that the behavior just outlined is insensitive of temperature and the relevant flow

forcing, which reinforces the idea of universality just outlined.

Small, but visible differences can be seen in the shape of distributions obtained

in the bulk and the wall-bounded counterflow. More specifically, the distribution

tails appear to be wider in the bulk; see also fig. 4.3 below for relevant flatness

values.

Our second observation is that the distribution shape does not match with similar

experimental results obtained in viscous fluids, see, e.g., ref. [48]. Velocity distri-

butions, normalized in the same manner as in here, and obtained, e.g., in water,

have shapes similar to that of the standard Gaussian distribution. Instead, the

distributions we measure in He II are characterized by wide non-Gaussian tails.

This outcome is in agreement with recent experimental results [46, 49] in other

counterflow experiments. More precisely, the central parts of the distributions, up

to ca. 2-times the standard deviation, are broadened probably due to the finite

precision of the tracking algorithm. Non-Gaussian tails span from ca. 5-times up

to 25-times the standard deviation and follow the power-law scaling with −3 ex-

ponent (see the solid lines in fig. 4.1), again in agreement with the references

cited above.

A simple model can be introduced to interpret the power-law scaling [46]. Let us

consider the radial velocity profile of the superfluid component vs generated by

a single straight vortex, specified by eq. (1.11). The probability density function

PDF(vs) that describes the distribution of different values of vs in a 2D plane
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perpendicular to the vortex line is

PDF(vs) =
dP

dvs
∼ 2πrdr

dvs
, (4.4)

where dP represents the probability of measuring a velocity inside the interval

(vs; vs + dvs). Within the considered 2D plane, this interval is represented by

an annulus of radius r and thickness dr. From eq. (1.11) one can express r as

a function of vs (r ∼ 1/vs) and calculate dr/dvs ∼ 1/v2s . As a result, we obtain

PDF(vs) ∼ vs
−3, which is in agreement with the scaling law of experimentally

accessible particle velocities.

A more elaborate model of particle dynamics can be developed, see attach-

ment [A1]. Besides the force that attracts a particle towards a vortex, one must

consider that particles are often trapped on vortex lines. The dynamics of vortex

reconnections can thus act as the source of the excessive particle velocity [49].

However, the maximum particle velocity (i.e., the maximum width of the relevant

PDF) is limited due to the nonzero drag force of the normal component. More

specifically, if the particle velocity is large enough, the drag force can exceed the

trapping force and subsequently the particle can detrap. Moreover, a simplified

model of a single vortex, outlined above, can be used to calculate the lower limit

of the non-classical tail width, i.e., the velocity before particle trapping occurs.

See [A1] for further details.

We conclude that our observations strongly indicate that relevant particle mo-

tions, probed at scales smaller than ℓq, clearly display non-classical physics. From

the shape of the distributions, we can argue that the motion of seeding particles

is mainly influenced by the presence of individual quantized vortices that, as

we have shown in the theoretical part, can alter the motions of small enough

particles.

Furthermore, the value of R can be increased artificially, by removing particle

positions from the trajectories obtained experimentally. We replot the six data

sets from fig. 4.1 in fig. 4.2, for R > 1, to compare them. Again, the distributions

overlap, but now they follow the standard Gaussian distribution (denoted by

a solid line), similarly to what is observed in classical flows [48].
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Figure 4.2: PDF of the normalized horizontal velocity of the same data sets as in fig.
4.1, at scales larger than unity. See fig. 4.1 for more detailed information. Again, the
data sets are shifted vertically. Solid lines denote the standard Gaussian distribution,
i.e., of zero mean and of unitary variance.

Is is evident that the physical picture of quantum flows of He II is strongly depen-

dent on the observed length scale: apparently, wide tails of velocity distributions

gradually vanish as the scale increases. We can evaluate this transition in terms

of flatness, i.e., the fourth moment of the distributions. In fig. 4.3 we plot the

flatness as a function of the parameter R for several data sets, including both

mechanically and thermally driven flows. While wide tails at small scales, i.e.,

R < 1, result in large values of flatness, up to ca. 50, Gaussian-like distributions

at large scales (R > 1) display values close to 3, which is the exact flatness of the

standard Gaussian distribution. Note that for measurements performed in He I

(cyan empty diamonds), i.e., in a viscous fluid, the value of flatness remains equal

to ca. 3, independently of the probed length scale (here the typical flow scale

was defined as the Kolmogorov scale η, see eq. (1.14). The flatness of velocity

distributions can be therefore seen as a simple, yet powerful indicator of quantum

features in He II flows.

45



0.01 0.1 1 10 100

0

10

20

30

40

50

R

 F
la

tn
es

s

R

0.01 0.1 1 10 100

105

106   
Figure 4.3: Flatness (fourth moment) of the horizontal velocity as a function of R
(see text for details). The green squares are obtained in the proximity of the oscillating
cylinder, in He II (between ca. 1.2 K and 1.7 K); the cyan diamonds represent the
data obtained in the same experimental geometry in normal liquid He I (ca. 2.2 K).
Accordingly to the previous notation, the blue triangles indicate counterflow close to
a boundary and the red circles denote bulk counterflow. The black dashed horizontal
line denotes the flatness of the standard Gaussian distribution. Insert: number of
points as a function of R . Note that the measured trajectories are not of the same
length, i.e., the decrease of statistics for counterflow is due to the artificial removal
of velocity points from the trajectories. In the case of the oscillating cylinder data
sets, individual data points were obtained in different experimental runs.

4.2 Large-scale grid turbulence

In the previous section we demonstrated that turbulent flows of He II display both

quantum and classical features. Tracking of relatively small particles revealed that

He II flows differ from classical ones at small scales. At large scales instead, He II

flows seem to mimic classical (viscous) turbulence. However, detailed information

on possible similarities or differences between the large-scale flows of He II and

flows of viscous fluids is still lacking. Here we report on a systematic study of

mechanically generated turbulence, by a pair of grids, in He II, and probed by

solid deuterium particles.

The grid pair oscillates in phase, see fig. 3.6, at frequencies up to 3Hz. In clas-

sical fluid dynamics, the use of grids as turbulence generators is well established,

as they can generate nearly isotropic turbulence [50]. Nevertheless, the use of
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oscillating grids in He II is scarce. Honey et al. [51] reported on several experi-

ments regarding the propagation of turbulent fronts in He II and relevant vorticity

profiles in a channel mounted with a grid. Sy et al. [52] studied instead the dis-

persion of small solid particles in grid-generated turbulent flows. At sub-kelvin

temperatures, researachers use microscopic vibrating grids to create and probe

quantum turbulence in pure superfluids [53].

The quantum scale ℓq of grid flows can be estimated by using the analogy with

viscous flows. More specifically, we write a quasiclassical relation for the energy

dissipation rate as ϵ = νeff(κL)
2, where κL is seen as the mean vorticity in

quantum flows and νeff is the effective kinematic viscosity [47], whose value is of

the order of 10−8 m2/s. Simultaneously, the energy dissipation rate is linked to

the motion of the grids. One can express ϵ as ϵ = u3grid/M , where ugrid is the

grid peak velocity and M is the grid mesh size. As a result, the quantum length

scale is

ℓq =
√

1/L = 4

√

κ2νeffM

u3grid
. (4.5)

Furthermore, we compute the approximate probed scale ℓexp based on ugrid as

ℓexp ≃ ugridτ . As a result, the ratio R = ℓexp/ℓq is a function of the grid frequency

only (all the other parameters remain constant). Here we restrict ourselves only

at experiments performed at 1Hz oscillation frequency and 10mm amplitude,

which result in R ≃ 23.

Table 4.2: Velocities and velocity increments obtained in the flow shed by a pair
of oscillating grids. We present only data sets obtained at 1Hz grid oscillation
frequency and 10mm amplitude. The relevant length scale ratio is R ≃ 23.
T denotes the temperature in K, Re = ugridM/ν indicates the mesh Reynolds
number (here ν represents the kinematic viscosity of the normal component).
Angle brackets represent relevant mean values, σ indicates the standard deviation
of the velocity (ux, uy, in mm/s) and velocity increment (dux, duy, in mm/s2),
respectively. Positive values indicate right and upward directions, respectively.

T Re ⟨ux⟩ σ(ux) ⟨uy⟩ σ(uy) ⟨dux⟩ σ(dux)

2.53 14 200 2.2 4.2 3.2 5.2 -2.2 197
1.95 32 900 0.4 3.8 1.0 5.4 -0.6 191
1.75 35 000 0.5 4.2 -1.1 5.2 -1.1 171
1.50 32 300 -1.5 3.8 -1.7 6.3 -1.7 171
1.27 24 900 -0.6 4.7 4.6 7.8 -2.2 197
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We plot the velocity distributions for five data sets in fig. 4.4; see also tab. 4.2 for

additional information. We observe that the large scale velocity distributions are

nearly Gaussian (black dashed line), which is in agreement with former results.

Small, but visible deviations from the Gaussian shape are probably due to flow

anisotropy.
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Figure 4.4: Velocity distributions in the horizontal (filled symbols) and vertical
(empty symbols) directions. Note that the grid pair oscillates in the vertical direction.
Both distributions are centered around their mean values and scaled by their standard
deviations. All the data sets are obtained for 1Hz oscillation frequency and 10mm

amplitude. Data series differ in temperature. Red squares: 2.53K (He I); green
circles: 1.95K; blue triangles: 1.75K; orange diamonds: 1.50K; violet stars: 1.27K.
Both distributions follow the Gaussian distribution (dashed black lines). For the sake
of clarity, distributions in the vertical direction are shifted downwards.

Another quantity that is accessible from the available particle positions is the

(horizontal and vertical) velocity increment, defined as

dui =
ui+1 − ui−1

2τ
for i ∈ {2, . . . ,N − 1}, (4.6)

i.e., from N velocity points one obtains N − 2 velocity increments. This quantity

does not represent particle accelerations; for a faithful calculation of the accel-
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eration from Lagrangian tracks, one needs to oversample them, i.e., the data

sampling rate should be a few times larger than the desired time resolution [54].

More likely, the velocity increments can be seen as a measure of velocity variations

due to particle accelerations or decelerations.

We plot the horizontal velocity increments in fig. 4.5, for the same data sets as

in the previous figure. The distributions are again centered around their mean

values and normalized by their standard deviations. We observe that their shape

is strongly non-Gaussian, having tails spanning up to ca. 25-times the standard

deviation. This observation is consistent with similar measurements in water

by Mordant et al., at scales smaller than the integral scale, but larger than the

Kolmogorov scale [55].
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Figure 4.5: PDFs of horizontal velocity increments, centered and normalized. We
plot the same data sets as in fig. 4.4: red squares: 2.53K; green circles: 1.95K; blue
triangles: 1.75K; orange diamonds: 1.50K; violet stars: 1.27K. The black dashed
line represents eq. (4.7), i.e., the theoretical fit for viscous flows [56].

Mordant et al. [56] found that the distribution for ideal tracers in classical tur-

bulence is of the form

PDF(dunorm) =
exp(3s2/2)

4
√
3

[

1− erf

(

ln |dunorm/
√
3|+ 2s2√

2s

)]

, (4.7)

where s = 1 and dunorm indicates the normalized velocity increment. This func-

tion is plotted in fig. 4.5 as a black dashed line and fits also our data. More

precisely, the measured data points are slightly below the theoretical curve. This
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is probably due to particle inertia (keep in mind that the seeding particles are

made of deuterium, which is slightly heavier than liquid helium). Nonetheless,

a good agreement with the theoretical curve strongly suggests that in the range

of investigated parameters, there is no difference between classical and large-scale

quantum flows. These findings are complementary to similar results obtained in

thermal counterflow [57].

Summary

We can summarize our findings as follows. Hydrodynamics of He II, probed at

scales smaller than the mean intervortex distance (R < 1), differs from that of

viscous fluids. We argued that the seeding particles, subject of our experimental

investigations, are influenced, at small scales, mainly by quantized vortices that

attract and trap these particles. The robustness of this observation is emphasized

by the fact that the same behavior is observed in both mechanically and thermally

driven flows, in contrast with the fact that their large scale flow structures are

fundamentally different. Moreover, we see no obvious dependence on temperature

or flow forcing (i.e., the cylinder oscillation frequency or the heater power).

Small differences between the bulk and wall-bounded counterlow distributions

suggest that the vortex line density close to solid boundaries is slightly larger,

i.e., the computed values of the R parameter may be underestimated. This is

also supported by the horizontal shift between the respective counterflow data in

fig. 4.3.

Contrarily, at large scales, the apparent particle dynamics is similar to that of

viscous flows. We observed that the influence of quantized vortices gradually

vanishes with the increasing scale, up to scales larger than the mean intervortex

distance (R > 1). Once these scales are reached, velocity and velocity increment

distributions, measured in mechanically or thermally driven flows of He II, overlap

the same results obtained in viscous fluids. Consequently, these results reinforce

the idea that quantum turbulence does not differ from the classical one, at least

in the scope of low-order statistics of particle dynamics.
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5 Conclusions

The hydrodynamics of superfluid flows of He II is very rich. It includes the flow

of the viscous normal component, that of the inviscid superfluid component, and

their dynamic interactions with the tangle of quantized vortices. We investigated

flows of He II that were generated either mechanically or thermally, at tempera-

tures spanning between 1.2K and 2.5K. We observed the motions of relatively

small particles of solid hydrogen and deuterium, suspended in the fluid, and

tracked their positions in time. The extracted particle positions were used for

the computation of their velocities and velocity increments.

We observed that the shapes of the normalized velocity distribution, obtained in

different experiments (flow due to an oscillating cylinder and channel counterflow,

in the bulk and close to a boundary), at scales smaller than the mean intervortex

spacing, do not depend on the imposed large-scale flow. Moreover, the distribu-

tions obtained at different temperatures and different intensities of the relevant

flow forcing overlap. This likely indicates that the small-scale particle dynamics

in He II is universal and dependent only of the probed length scale. We also

showed that the observed dynamics is non-classical and can be linked with the

interactions between particles and quantized vortices. We published these results

in Physical Review B, see attachment [A1].

Note, however, that the respective flows of He II were not investigated to the

fullest extent. We proposed a simple model of one straight quantized vortex that

attracts one particle (see eq. 4.4) to explain the observed velocity distributions at

small scales. In reality, the vortices are not straight and dynamically reconnect

with other vortices. These effects release energy in the form of Kelvin waves,

that can be directly observed by decorating the vortices with trapped solid par-

ticles [24]. The presence of these waves is likely to influence the observed particle

motions, but an experimental study is yet to be performed.
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Secondly, we performed a detailed study on the large-scale flows of He II that

were generated mechanically, by a pair of oscillating grids. Large statistical data

sets, obtained at different temperatures, were used to calculate velocity and ve-

locity increment distributions. We observed that the shape of both distributions

is independent of temperature and, more importantly, the distributions are in

general agreement with similar results obtained in classical flows. More specifi-

cally, we observed that the velocity distributions are quasi-Gaussian and velocity

increment distributions follow eq. (4.7). The obtained results support the idea

that large-scale flows of He II, generated mechanically, faithfully mimic turbulent

flows of viscous fluids, as the force of mutual friction locks the two components

of He II into a single (large scale) velocity field. These results were presented

at scientific conferences [A2-A4] and submitted for publication in the Journal of

Fluid Mechanics.

The comparison between large-scale flows of He II and those of viscous fluids can

be further extended. One possibility for future studies lies in the investigation

of energy dissipation in turbulent flows and in the resulting time irreversibility

based on the observation of longitudinal velocity increments [58]. Another inter-

esting feature that is connected with large scales of turbulence is the dispersion

of seeding particles [59]. Although the first measurements of the so-called prefe-

rential concentration of particles have been already carried out [52], an extenstive

comparative study is lacking.

In conclusion, the presented study extends the current knowledge on turbulence in

cryogenic helium at small scales, and clarifies what are the similarities and differ-

ences between quantum and classical turbulence at a large variety of length scales.

The study of quantum turbulence, alongside with possible analogies between su-

perfluid 4He and viscous fluids, may contribute to the general understanding of

viscous fluid turbulence, confirming its role as a vivid branch of fluid dynamics

and low-temperature physics.
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