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Chapter 1

Introduction

Interaction between magnetic and electric properties is a phenomenon that attracts a lot
of attention of physicists and also engineers, spin-dependence of electron transport is an
important subject of research. Consider the fact that magnetism allows information to be
permanently stored while electron transport allows its distribution. Both of them can co-
operate in its analysis. Magnetoresistance is a change of resistance under in�uence of a
magnetic �eld, hence it allows for a detection of a magnetic state. It was discovered in
1856 by Lord Kelvin and originates from the Lorentz force acting on the itinerant electrons,
which causes extra de�ection on their trajectories. This kind of magnetoresistance in bulk
materials reaches very low values of up to a few percent. It depends on the angle between
current direction and the orientation of magnetization, hence it is called anisotropic mag-
netoresistance (AMR). Bulk magnetoresistance can go up to much higher values for some
recently found materials, typically f-electron based, where the jump in resistance can be
attributed to a magnetism induced phase transition, but these phenomena happen usually
at uselessly low temperatures and require high switching �elds.

A completely di�erent source of magnetoresistance arises on microscopic scale, from
the spin-dependence of electron scattering at interfaces. The transition probability of spin-
polarized electrons is strongly in�uenced by the spin-polarization of states in the magnetic
material it is entering. In order to exploit this e�ect, the distances between spin-polarized
interfaces must be smaller than the spin di�usion length, so that electrons incident on an
interface remain polarized from the previous one. With the advent of new fabrication tech-
niques, such as molecular beam epitaxy (MBE) it became possible to manufacture these
nanoscale systems. Only one dimension is required to ful�ll that size condition, which is the
case of thin layers or its many repetitions to amplify the e�ect: multilayers. Another impor-
tant point was the observation of the interlayer exchange coupling (IEC) in 1986 [1], that
may cause antiparallel orientation of the mentioned thin magnetic layers in the ground state
and allows lower magnetization switching �elds than in setups with negligible IEC. These
progresses stimulated the discovery of the giant magnetoresistance (GMR) [2] and the tun-
neling magnetoresistance (TMR) [3], which capitalize the idea of multiple spin-dependent
electron scattering at interfaces, their principle is explained in chapter 2.3. The correspond-
ing magnetoresistance ratio (according to the de�nition in Eq. 2.37) reaches values of up
to a few hundred percent, note for example the MR ratio of 271% found in a Co | MgO
| Fe junction at room temperature [4]. Recently also other di�erent microscopic processes
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6 CHAPTER 1. INTRODUCTION

were found to give rise to high magnetoresistance. Tunneling anisotropic magnetoresistance
(TAMR) was shown to reach values of the same order in (Ga,Mn)As based diluted semi-
conductors [5, 6]. This e�ect is believed to be caused not by the spin-dependent interface
scattering, but by the spin-orbit coupling. It is also present only in thin layers, where the
necessary additional symmetry breaking can be achieved.

The GMR e�ect was recognized to be so interesting for the industry that it took only
about a decade since its discovery until it was applied in consumer electronic devices [7].
This success has stimulated higher interest in spin-dependent transport and that branch of
physics has later shown itself to be extraordinary fruitful. Devices combining intentionally
e�ects of spin and electronics have been proposed and this whole topic has been covered in
under the name spintronics. Magnetoresistance represents not only reading, but also further
operations on signal. This is the case of recently proposed spintronics device: a spin valve
transistor [8]. It is basically a combination of the GMR e�ect and semiconductor transistor
technology. In addition to traditional metal base transistors it features a base including two
FM layers with di�erent coercivities leading to spin-dependent scattering of hot electrons.
As for GMR the spin-dependent scattering of electrons depend on the relative orientations of
the two layers, which can be controlled due to their di�erent coercivities. The ratio between
collector and emitor current is much higher than the CIP-magnetoresistance of this system,
which is explained by much higher sensitivity of hot electrons to its mean free path and
subsequent exponential dependence of collector current on it. Spin valve transistors are not
examined here, but represent an example of the vast opportunities of combining spin and
semiconductor technology.

The magnetization in�uences strongly the electron transport. As was pointed out by
Slonczewski [9], an opposite e�ect is also possible: Spin polarized current incident on a
di�erently polarized FM layer exerts a spin torque which rotates the magnetization direction
of that FM layer. Spin polarization of the current can be achieved in another FM layer
preceding the rotated one. This e�ect has no relation to Oersted �elds and can be easily
recognized from it by its behavior with respect to current direction reversal. It has also
an important advantage over magnetic �eld induced switching, where the switching �eld
is roughly independent of grain size. The magnetic �eld due to current decreases with
decreasing wire radius at constant current density. The spin torque e�ect allows applications,
which avoid direct manipulation with magnetic �eld and its source and it scales di�erently:
It is independent of wire radius at constant current density, therefore it dominates over
Oersted �elds caused by the same current for low wire radii, typically the threshold radius
is about 0.1µm [10, 11]. One of the applications can be a nonvolatile magnetic computer
memory (MRAM) with top parameters comparable to classical computer random access
memory (DRAM) and without a need for constant power supply. If the spin torque is
insu�cient to rotate magnetization to another stable position, the magnetization precess,
which gives rise to radio frequency oscillations on nanoscale [12,13]. This is a conveniently
measurable e�ect and another prospect for interesting applications.

1.1 Outline
The main aim of this work is to develop and apply �rst principles (ab initio) methods
to deal with the presented phenomena. Chapter 2 describes ab initio methods and other
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fundamentals necessary to understand the physics employed in subsequent text. Chapters 3-
5 present novel methods developed in this work and together with Chapter 2 they constitute
the theoretical part of this thesis.

Existing theoretical results for transport in thin layers based on the local spin den-
sity approximation (LSDA, Sec. 2.1), linear mu�n-tin orbital (LMTO, Sec. 2.2) method
and Kubo-Landauer formalism (Sec. 2.4.1) are in many cases in good agreement with ex-
periments. Signi�cant problems arise for systems with substitutional disorder, either at
interfaces or spread across thin layers. These problems have been up to now solved by
means of the supercell method (Sec. 2.5.2), where the results are quite satisfactory, but its
calculations' numerical demands can grow very fast and there are some other drawbacks.
An alternative approach is based on the coherent potential approximation (CPA - Sec.
2.5.3), and its �rst complete application to transport in 2D structures without crude ap-
proximations neglecting the e�ect of two-particle correlated motion is described in Chapter
3 (already published in [14]).

Many works have been published about the dynamics of system under in�uence of a
given spin torque, but quantitative understanding of this observable is no less necessary and
there are only plenty of publications dealing with ab initio evaluation of this phenomena
[15]. Chapters 4 and 5 of this work attempt to contribute solving questions related to this
topic. More approaches are available: One can see spin torques as results of an in�uence
of in�nitesimally small spin accumulation (Sec. 4.2) in NM lead adjacent to the FM layer
as described in Chapter 4 and soon to be published [16]; or it is possible to describe the
whole non-collinear spin valve and evaluate the spin torque acting on one of FM layers,
which is done in chapter 5. The �rst approach gives more insight into the mechanism of
current induced magnetization reversal and the role of material properties, while the second
one corresponds better to real experiments and catches properties connected with the non-
collinear setup as is the angular dependence of calculated quantities. The correspondence
of these two approaches was also studied (Sec. 5.3). Both these chapters contain a section
summarizing main results obtained for real materials, more details about these materials
can be found in the second part of this thesis.

All transport calculations presented in this work assume linear response regime, which
allows to utilize the successful Kubo theory (Sec. 2.4) [17, 18]. Some derivations shown
here (Sec. 4.2) are based on non-equilibrium Green's function formalism [19], but they are
con�ned to zero bias. Non-equilibrium situations with �nite bias represent a formidable
problem beyond the scope of this work. Although there are many successful �nite bias
calculations [20, 21], some issues connected with lead self-energies [22, 23] or with the use
of the DFT (discussed in Sec. 2.1) remain still unresolved. We have also proven that the
presented transport calculations are independent of the choice of partitioning of the system
into the left and right lead and the intermediate region (provided that the preconditions for
this partitioning are satis�ed), see Appendix B.

The second part of this thesis demonstrates applications of the derived theories and
methods for various particular systems. In Chapter 6 Co|Cu|Co based trilayers are examined
with a special attention to the problem of interface interdi�usion. The cases of magnetic
impurities in one Cu layer and other metal impurities in Co layers are also mentioned. The
latter case may lead to the negative GMR, this rather rare situation is explained in Sec.
6.4.2.



8 CHAPTER 1. INTRODUCTION

Spintronics applications depend strongly on spin and hence it would be bene�cial to
have a material which permits electrons with spin in only one direction, an ideal spin-�lter.
This requirement is satis�ed by magnetic materials which behave partially like metals and
partially like semiconductors: half-metals [24], whose bands are spin-split in such a way,
that the band crosses the Fermi energy in one spin direction while in the other one a band
gap is located at the Fermi energy (see Fig. 7.2 for an example density of states). Mate-
rials presented in Chapters 7, 8 are both half-metals. Chapter 7 describes diluted magnetic
semiconductors (DMS) [25], a novel material combining properties of semiconductors with
ferromagnetism. They may also help to resolve the problem of spin injection into semicon-
ductors [26]. Their unique features are achieved by substituting some of atoms on its cation
sublattice by magnetic impurities, a process which was made possible only recently due to
the progress in technology. We examine its transport properties, the role of native struc-
tural defects and also the spin-mixing conductance (Chap. 4), for which some unexpected
�ndings are shown. Chapter 8 deals with a Heusler alloy Co2MnSi. Here the halfmetallicity
is accompanied by a very high Curie temperature. Its structure is simpler than that of
(Ga,Mn)As because in its ideal form it contains no intrinsic disorder, however we �nd that
disorder is probably present anyway in real samples in quite high amount as a defect and
that it can explain some of experimental observations.



Chapter 2

Fundamentals

Most of the properties of the solids are closely related to the behavior of electrons, the par-
ticles that holds atoms together to form a solid. The determination of electronic structure
(ES) is thus a key step in realistic predictions of these properties, including the main subject
of this work: transport properties. Traditional ES calculations involving phenomenological
parameters were given a more powerful alternative: The exponential rise of speed of avail-
able computers made it possible to calculate the electronic structure from �rst principles
of quantum mechanics, thus avoiding any such parameters. They allow to describe wide
number of systems on equal footing, gain a better understanding of unexplained phenom-
ena, test proposed theories rapidly, and predict behavior of systems in new conditions, with
arbitrary modi�cations. These features can be combined so that one can even design com-
pletely new materials with desired properties based on ab initio calculations. Even though
exact solutions of the Schrödinger equation for a solid are far beyond capabilities of any
computer, there are approximations that make ab initio solutions possible while retaining
a high accuracy. The present chapter describes mainly the more or less general methods
necessary for a particular ab initio scheme used in this work.

Atomic Rydberg units will be used throughout the text, hence ~ = 2me = e2/2 = 1,
where me denotes the electron mass. This de�nes all other involved units, the length unit
is the Bohr radius a0 = ~2

me2 = 1 (≈ 5.29.10−11 m ) and the energy unit is 1 Rydberg
ERyd = e2

2a0
= 1(≈ 13.6 eV ).

2.1 Density functional theory

Early attempts to solve any systems bigger than a few atoms from �rst principles were
stopped by the complexity of many-electron problems. The number of electrons in solids
prevents any exact solution and calls for reasonable approximations. In 1964 Hohenberg and
Kohn [27] introduced a theory which is nowadays used as a powerful tool to reduce the many-
electron ground state problem to a single-electron equivalent. The essence of their formalism
is a change-over from many-electron wave functions Ψ(r1, s1,r2, s2...rN , sN ), where ri and
si denote the space and spin coordinates of i-th particle, to one-electron (spinless) densities
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10 CHAPTER 2. FUNDAMENTALS

de�ned as

n(r) =
∫
d3r1d

3r2...d
3rN

∑
s1,s2,..,sN

N∑

i=1

|Ψ(r1, s1, r2, s2, ...rN , sN )|2 δ (r− ri) , (2.1)

which gave it its name density functional theory (DFT). The �rst Hohenberg-Kohn theorem
states that the electronic density n(r) of the ground state uniquely determines the external
potential Vext(r) up to a trivial additive constant, and all other quantities are then in
principle functionals of the electronic density also. The second theorem provides a recipe
how to �nd the ground state: The ground state energy corresponding to the given external
potential Vext(r) can be found by minimizing the total energy functional with respect to
changes in the electron density n(r) while the number of particles is held �xed. The density
associated to the minimum total energy is the ground state density.

Soon after the discovery of the DFT a strong tool for condensed matter calculations
based on these two general theorems was introduced, the Kohn-Sham equations [28]. They
provide a direct transition from the many-electron Hamiltonian to a single-electron one
with a di�erent potential, the Kohn-Sham potential VS (r). The Schrödinger equation is
then replaced by the Kohn-Sham equation:

(−∇2 + VS(r)
)
Ψi(r) = εiΨi(r) , (2.2)

where Ψi (r) is a one-electron wave function and εi the corresponding energy eigenvalue.
It is a sum of the original external potential, Hartree-like term and an exchange-

correlation potential which incorporates all the many-body e�ects of the original system.

VS(r) = Vext(r) +
∫

n(r′)
|r− r′|dx

′ +
δExc[n(r)]
δn(r)

(2.3)

DFT is in principle exact, but the important exchange-correlation functional is de�ned
in such a way that does not allow us to evaluate it directly. In the end it is necessary to
introduce some approximations to it, their choice depends on the speci�c situation. Surpris-
ingly, even the crudest approximation of the exchange-correlation functional, local density
approximation (LDA) [28] or local spin density approximation (LSDA) [29] is su�cient for
many situations. It is based on an assumption that the xc-energy per one electron of our
system in the position r is the same function of the local density n(r), as if our system
would be entirely homogeneous with the same density. Therefore the L(S)DA exchange-
correlation functional is local function, this fact is crucial for the speed of calculations. The
xc-energy per one particle εxc(n(r)) is speci�ed by parameterizations which were obtained
from exact calculations of the homogeneous electron gas. The parameterization of Vosko-
Wilk-Nusair [30] is adopted in the presented calculations. L(S)DA becomes exact only in
the limit of slowly varying spatial density and is therefore suited well to treat electronic
charge clouds where the electron density varies by but a small fraction of itself over a de
Broglie length of a characteristic electron. There is a systematic overbinding predicted by
LDA particularly for the s-p bonded systems due to strong energy gradients in these direc-
tional bonds. Nevertheless it describes well electronic structure of wide class of materials,
many of transition metals and simpler materials, one must avoid i.e. strongly correlated
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systems, where LDA+U functional [31] or the dynamical mean-�eld theory [32] would be
appropriate.

Since the whole problem is expressed as a set of integro-di�erential equations (2.2, 2.3)
allowing no analytical solution, it must be solved iteratively. The direct iteration procedure
diverges, hence a mixing with previous iterations must be used. Accelerated mixing scheme
based on the Anderson mixing [33] was used in calculations presented here. More details
can be found in Sec. 10.8.2 of [34].

Note that the key quantity in DFT, the density of states, is closely related to the resolvent
of the Hamiltonian H, i.e. its Green's function (GF) [31,35]:

G (z) = (z −H)−1 =
∫ ∞

−∞

1
z − εδ (ε−H) dε , (2.4)

where z is a complex energy variable. Retarded and advanced Green's functions are de�ned
as Gr (E) = G (E − i0) and Ga (E) = G (E + i0), respectively, where symbol 0 denotes an
in�nitesimally small value and its sign is important. One can quickly show thatGa = (Gr)+,
the imaginary part operator is here commonly rede�ned so that it in fact provides its
antihermitean part: 2iImGr = Gr−Ga. An important property of Green's functions is the
fact that the spectral density δ (E −H) is directly related to its imaginary part:

δ (E −H) = − 1
π
ImGr (E) . (2.5)

Then one knows also the way to obtain the total density of states de�ned as

N (E) = Tr δ (E −H) . (2.6)

The Green's function may be expressed using the orthogonal and complete set of eigen-
functions Ψi (r) and eigenenergies εi in the form:

G
(
r, r′, z

)
=

∑

i

Ψi (r)Ψ∗
i (r′)

z − εi . (2.7)

The local single-particle density n(r) is given by an energy integration of the spectral density
at point r multiplied by the Fermi-Dirac distribution f (E):

n (r) = − 1
π

∫ ∞

0
f (E) ImGr (r, r, E) dE . (2.8)

In this work calculations are restricted to zero temperature, hence f (E) = ϑ (E − EF ),
where ϑ (E) denotes the Heavyside function. Since there are poles in the Green's functions
on the real axis at points corresponding to eigenvalues of the Hamiltonian, energy integra-
tions over the occupied part of the valence bands are performed here in the complex energy
plane along a closed contour starting and ending at the Fermi energy (Chap. 10.3 of [34]).
For evaluation of Green's functions near the real energy axis the analytic continuation is
used (Chap. 10.4 of [34]).

A lot of discussion concerns the question if DFT as a ground state theory is suitable
for transport calculation. The presented work is restricted to the linear response regime,
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one can then assume that the single particle potential of the ground state, obtained from
DFT, is not changed by the transported electrons. Note that there is a well-known problem
with DFT prediction of the band gap in insulating solids or semiconductors. The proper
treatment of band gap or �nite bias calculations, an excited state DFT extension like the
GW approximation [31,36] or time-dependent DFT [37�39], would be too computationally
expensive, but within the linear response regime the corresponding error again should not be
signi�cant. More likely the previously mentioned error due to exchange-correlation potential
is more important.

2.2 TB-LMTO method
When solving the one-electron Kohn-Sham equation (2.2), the basic point of ES calculation
is a reasonable choice of an approximative description of potential and basis in Hilbert space.
We adopt here mu�n-tin potentials approximated as:

• spherically symmetric potential inside non-overlapping spheres centered on individual
nuclei. The positions of its centers are labeled R. The potential can then be written
as

V (r) = VR(rR) , rR ≤ sR , (2.9)

where VR(r) is the potential inside the R-th atomic sphere of radius sR (Wigner-Seitz
radius), rR denotes the di�erence vector r−R and r the magnitude of vector r.

• constant potential in the interstitial area.

It is combined with the atomic sphere approximation (ASA) - spheres are slightly overlap-
ping, kinetic energy in the interstitial region is neglected. This region is then described by
the Laplace equation. These are distinctive approximations in comparison to full potential
based methods (with no approximation of the potential shape), but calculations based on it
are much less computationally demanding and for a wide class of materials the introduced
error is almost negligible. Furthermore full potential methods can hardly be combined with
the coherent potential approximation (sec. 2.5.3). The basis may then be constructed as
follows [34,40]:

In the interstitial region the wave function satis�es the Laplace equation. Its solution
is expressed in terms of spherical harmonics YL (r̃) and radial amplitudes al (r), where
r̃ = r/r is a unit vector parallel to r and index L stands for usual angular momentum
indices (l, m). The di�erential equation for al (r) leads to the irregular solutions KL (r) and
the regular solutions JL (r). The former one centered at R can be expanded in terms of the
latter centered at R′ (R′ 6= R), which introduces the so called structure constants SLRL′R′

describing the geometry of the problem:

KL (rR) =
∑

L′
SRLR′L′JL′ (rR′) . (2.10)

The solutions φRl (r,E)YL (r̃) of radial Schrödinger equation for a single isolated sphere
with spherically symmetric potential and interstitial region solutions must be matched
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smoothly (up to �rst derivative) on the sphere boundary given by the Wigner-Seitz ra-
dius sR. This condition leads to the de�nition of the potential function PRl (E) and the
normalization function NRl (E):

PR`(E) =
{K`(r), ϕR`(r, E)}
{J`(r), ϕR`(r, E)} |r=sR , (2.11)

NR`(E) =
w

2
1

{ϕR`(r,E), J`(r)} |r=sR , (2.12)

where {f1(r), f2(r)} is the Wronskian of two radial functions (Eq. 2.20 of [34]). These
functions ensure correct matching of the two solutions:

NR`(E) ϕR`(r, E) → K`(r) − PR`(E) J`(r) . (2.13)

The so called mu�n-tin orbitals are constructed in analogy to the partial waves in the
multiple scattering theory [41,42] from the solutions of the two regions:

ΨRL (r, E) = NRl (E)φRl (r, E) + PRl (E) JL (rR) for rR ≤ sR ,

= KL (rR) for rR ≥ sR . (2.14)

The parts of ΨRL(r, E) inside and outside the R-th sphere are often referred to as the
head and the tail of the mu�n-tin orbital (2.14), respectively. For regions rR′ ≤ sR' of
mu�n-tin orbitals (2.14) the expansion (2.10) is used. Linear combinations of such mu�n-
tin orbitals satisfy the Schrödinger equation (2.2) provided that the coe�cients for JL (rR)
inside each sphere are canceled by incoming tails (2.10) from other spheres. Non-trivial
solutions of this tail cancellation condition corresponds to the following equation:

det (PRL (E) δRLR′L′ − SRLR′L′) = 0 , (2.15)

where we de�ned the on-site canonical structure constants trivially such that

SRL,RL′ = 0 . (2.16)

Eq. (2.15) is often called the KKR-ASA secular equation for its close similarity with the
Kohn-Korringa-Rostoker (KKR) matrix derived within the multiple scattering formalism
[41, 42]. More details of its derivation can be found in [34]. This equation clearly shows
a separation of the problem into two parts: potential functions PRL (E) that describe the
properties of the individual atomic spheres and structure constants related to the positions of
the atomic spheres. The disadvantage lies in the non-linear energy dependence of PRL (E),
which will be removed in the next section.

2.2.1 Linearization
Let us recall that solving the Schrödinger equation (2.2) is equivalent to the use of the
variational procedure

δ

∫
ψ(r) [−∆ + V (r) ] ψ(r) d3r = 0 ,

∫
ψ2(r) d3r = 1 , (2.17)
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where the second equation represents a normalization constraint. For simplicity, we use only
real wave functions ψ(r) in Eq. (2.17) which is consistent with the use of a real potential
V (r) in Eq. (2.2). Due to the constraint in Eq. (2.17), the energy E enters the variational
approach as a Lagrange multiplier. If the trial wave function ψ(r) is assumed in the form of
a linear combination of basis functions χi(r) which satisfy the correct boundary conditions,
the variational principle (2.17) leads to the following eigenvalue problem:

det ( E Oij − Hij ) = 0 , (2.18)

where the Hamiltonian matrix Hij and the overlap matrix Oij are given by

Hij =
∫

χi(r) [−∆ + V (r) ] χj(r) d3r ,

Oij =
∫

χi(r) χj(r) d3r . (2.19)

Analogous procedure can be performed for the Schrödinger equation in ASA and allows for
a reduction of the original problem (KKR-ASA secular equation) to an eigenvalue problem,
provided that the basis function χi (r) are energy independent. The basis can be transformed
so that overlap matrix O is replaced by the unit matrix, and an orthogonal Hamiltonian is
obtained.

The linearization of the KKR-ASA secular equation corresponds to an approximation
of radial amplitudes φRl (r, E) by its Taylor expansion in energy truncated after its �rst
two terms(thus linear). The potential function PRL (E) can be written as a fraction of two
linear functions, which is uniquely parameterized by three constants CR`, ∆R`, γR` called
potential parameters. One possible parameterization of PRL (E) is given by

PR`(E) =
E − CR`

∆R` + γR` (E − CR`)
. (2.20)

The exact and parameterized potential functions are required to coincide at the energy
expansion point Eν,Rl up to the second derivative. The KKR-ASA secular equation (2.15)
expressed using the parameterization (2.20) can be reduced to a standard eigenvalue problem
of the type

det
(
E δRL,R'L′ − Horth

RL,R'L′
)

= 0 , (2.21)

where the orthogonal Hamiltonian Horth corresponds to a new orthogonal basis of the so-
called linearized mu�n-tin orbitals.

2.2.2 Tight-binding technique
It is desirable to reduce Hamiltonians with a far reaching interaction between sites (in
LMTO corresponding to slowly decaying structural constants) to rather limited ones with
interaction only between nearest neighbors. These are analogues of simple tight-binding
models, but with ab initio calculated parameters that best reproduce the true physics, i.e.
give results closest to that of original Hamiltonian. Green's functions (Sec. 2.1) represent
a fundamental tool in physical ab initio calculations and are crucial for accomplishing this
job. One of its biggest advantages is that it easily allows for perturbation expansion. For
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an unperturbed Hamiltonian H = H0 + U an unperturbed Green's function is de�ned:(
z −H0

)
G0 = 1. In ASA the unperturbed linear operator corresponds to the following

equation for the interstitial area:

z +H0
(
r, r′

)
= ∆rδ

(
r− r′

)
. (2.22)

The choice of the unperturbed part of potential is in principle arbitrary, and the tight-
binding method is based on a di�erent choice of potential (V1) that leads to the least extend
of interaction. A transformation was found, that rede�nes the potential (expressed in terms
of LMTO potential functions and screening constants) in such way, that Green's functions
corresponding to that virtual potential can be easily calculated, and then transformed back
to its physical counterpart.

The transformation to a representation with the limited interaction extent is therefore
called the screening transformation (inspired by the electrostatic screening) and the corre-
sponding screened potential functions Pα

R`(z) and screened structure constants Sα
RL,R'L′ are

de�ned by the following implicit equations:

Pα
R`(z) = PR`(z) + PR`(z)αR`P

α
R`(z) ,

Sα
R'L′,R�L′′ = SR'L′,R�L′′ +

∑

RL

SR'L′,RLαR`S
α
RL,R�L′′ . (2.23)

In contrast to the vanishing on-site elements SRL,RL′ of the canonical structure constants,
Eq. (2.16), the on-site elements Sα

RL,RL′ of the screened structure constants are generally
non-zero and re�ect the environment of a particular site R (crystal �eld e�ects).

In LMTO it is customary to de�ne an auxiliary Green's function g (z) closely connected
to the original KKR-ASA secular equation (2.15):

g(z) = [ P (z) − S ]−1 , (2.24)

this object is more suitable for calculations. It is related to the physical Green's function
by the formula

G(z) = λ(z) + µ(z)g(z) µ(z) , (2.25)
where diagonal matrices λ(z) and µ(z) can be expressed in terms of the potential function.
The de�nitions of screened counterparts of these objects, non-diagonal matrix gα(z) and
diagonal matrices µα(z) and λα(z), are the same as of the unscreened ones, but related to
the screened potential function Pα(z). It is possible to �nd explicit expressions of Pα(z),
µα(z) and λα(z) in terms of the second-order parameterization (2.20):

Pα
R`(z) =

z − CR`

∆R` + (γR` − αR`) (z − CR`)
,

µα
R`(z) =

√
∆R`

∆R` + (γR` − αR`) (z − CR`)
,

λα
R`(z) =

γR` − αR`

∆R` + (γR` − αR`) (z − CR`)
. (2.26)

In agreement with the previous statements the physical Green's function G(z) can be
shown to be independent of the screening constant α. Note that structure constants of
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the unscreened system are closely related to unperturbed Green's function of system with
reference potential given by that chosen for interstitial area. Their screened counterparts
are related to unperturbed Green's function of the �screening� reference potential V1. The
transformation leading to the least extend of interaction will be denoted as β and the
corresponding optimal screening constants αRl = βl depend for a given lattice only on the
cuto� value lmax.

The knowledge of the physical Green's function allows one to calculate for example
the density of states (Eq. 2.6). For the R-th atom it is given as (disregarding possible
summation over spin states):

NR (E) = − 1
π

∑

L

ImGr
RL,RL (E) . (2.27)

2.2.3 Lattice translational symmetry, principal layers, leads
For systems with 3D translational symmetry the in�nite problem of �nding the auxiliary
Green's function is easily solvable by means of the lattice Fourier transformation. In this
case, the lattice points R can be expressed in the form R = B + T, where the vectors B
denote the basis vectors (non-primitive translations), while the vectors T refer to the trans-
lation vectors (primitive translations). The translational invariance of the system implies
the validity of the Bloch theorem and leads to the concepts of a reciprocal space, a reciprocal
lattice, and Brillouin zones (BZ). The problem can then be transformed from real space to
the reciprocal space, where it is diagonal and thus can be solved for each vector k from the
�rst BZ separately.

In systems with translational symmetry reduced to two dimensions (layered systems)
the centers R of the space-�lling atomic spheres can be written as R = B+T‖, where
the vectors B specify in general individual atomic layers parallel to the interface (including
non-trivial basis vectors in the presence of a long-range atomic order within the layers).
The translation vectors T‖ are parallel to the interface and de�ne a two-dimensional lattice
in real space which in turn gives rise to the corresponding two-dimensional reciprocal lat-
tice. Translationally invariant two-center quantities XRL,R'L′ , i.e., matrices in RL such as
SRL,R'L′ satisfying

X(R+T‖)L,(R′+T‖)L′ = XRL,R'L′ , (2.28)

can be transformed into quantities XBL,B'L′(k‖) depending on vector k‖ from 2D BZ ac-
cording to

XBL,B'L′(k‖) =
∑

T‖
XBL,(B′+T‖)L′ exp(i k‖ ·T‖) . (2.29)

The inversion of this Fourier transformation (2.29) is usually called a BZ-integration and is
traditionally written as

XBL,(B′+T‖)L′ =
1

ABZ

∫

BZ
XBL,B'L′(k‖) exp(−i k‖ ·T‖) d2k‖

=
1
N‖

∑

k‖
XBL,B'L′(k‖) exp(−i k‖ ·T‖) , (2.30)
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where ABZ denotes the area of the two-dimensional BZ and N‖ is related to two-dimensional
periodic boundary conditions.

The direction perpendicular to interfaces is obviously excluded from this transformation
and the dimension of the transformed matrices XBL,B′L′(k‖) remains in�nite. In order to
deal with this situation, the concept of principal layers is introduced. They are constructed
from the original atomic layers in the following way: (i) each principal layer contains a �nite
number of neighboring atomic layers, (ii) the whole system can be considered as a stacking
of an in�nite sequence of the principal layers labeled by an integer index p, and (iii) the
elements Sβ

RL,R'L′ of the tight-binding structure constants are non-zero only for sites R and
R' belonging to the same or neighboring principal layers. The sites R of a given system
can be then written in a form R ≡ (p,B,T‖) where p is the index of the principal layer, B
denotes the corresponding basis vector (mostly atomic layer) in the p-th principal layer, and
T‖ is a 2D translation vector. The tight-binding LMTO representation becomes particularly
useful in that situation as it reduces the minimum number ν of atomic layers comprised in
one principal layer. In the case of the most closely-packed planes, fcc(111) and bcc(110),
the principal layer consists only of a single atomic layer, in other low-index cases it is 2 or
3 layers (Tab. 3.4 of [34]) .

In practice the whole system is always truncated to a region of �nite thickness, which
can be calculated in �nite time, the so called intermediate region. Outside this region the
system is assumed to be already solved and described by a bulk-like electronic structure.
It is desirable that the change of self-consistent electronic structure of boundary principal
layers from its bulk counterpart is negligible, so that the two regions are smoothly matched
without creating any arti�cial interface. Therefore a su�ciently high number of layers of
the same composition as the outer region must be included in the intermediate region. Note
that the role of contributions from truncated area to the intermediate region Hamiltonian
is very important, without them the system would be just embedded in a vacuum with
completely re�ecting boundaries. For transport calculations the truncated part represents
leads, which allow an in�ux and out�ux of electrons to and out of the system. Results should
not depend on a particular choice of truncation positions inside the bulk-like regions, this is
studied in detail in Appendix B. These two semi-in�nite parts of the system will be referred
to as the left (L) and right (R) lead.

The Green's function corresponding to the intermediate region Hamiltonian can then be
found by means of the partitioning technique [43] for matrix inversions. We start with 2D
lattice Fourier transform of Eq. (2.24) and introduce the matrix

Mβ(k‖, z) = P β(z) − Sβ(k‖) , (2.31)

which describes the whole system and is used to calculate the auxiliary Green's function:

Mβ(k‖, z) gβ(k‖, z) = 1 . (2.32)

The auxiliary Green's function at layer p (omitting k‖- and z-dependences) is then given
as:

gβ
p,p =

{
P β

p − Sβ
p,p − Sβ

p,p−1

[(
Mβ,p,<

)−1
]
p−1,p−1

Sβ
p−1,p

− Sβ
p,p+1

[(
Mβ,p,>

)−1
]
p+1,p+1

Sβ
p+1,p

}−1
, (2.33)
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where Mβ,p,<(k‖, z) and Mβ,p,>(k‖, z) are semi-in�nite block submatrices of the matrix
Mβ(k‖, z) containing only layers p′, where p′ > p or p′ < p, respectively.

It motivates the de�nition of the surface Green's functions [44, 45] for semi-in�nite sys-
tems, i.e. leads. Let us assume that the intermediate region comprises principal layers
p, 1 ≤ p ≤ N . Layers pL (pL < 1) and pR (pR > N) then correspond to the left and right
lead, respectively. Let Mβ

L(k‖, z) denote the semi-in�nite square submatrix for layers pL of
the whole system matrix Mβ(k‖, z). The surface Green's function (SGF) Gβ

L(k‖, z) of the
considered semi-in�nite stacking of principal layers is then de�ned as the (pL, pL) subblock
of the inverted semi-in�nite submatrix Mβ

L(k‖, z):

Gβ
L(k‖, z) =

{ [
Mβ
L(k‖, z)

]−1
}

pL,pL
, (2.34)

which is independent of the particular choice of pL due to the homogeneity of leads. Let us
remind that this SGF is a matrix in BL-indices and that analogously a SGF Gβ

R(k‖, z) for
the right semi-in�nite lead can be de�ned. Eq. (2.33) allows to evaluate auxiliary Green's
function in the intermediate region using only intermediate region properties and surface
Green's functions for both leads. The formula for the intermediate region auxiliary Green's
function gβ

p,p′(k‖, z) can be recast into the form:

gβ
p,p′(k‖, z) = {[ P β

p (z)δp,p′ − Sβ
p,p′(k‖)

−Σβ(k‖, z)
]−1}p,p′ , (2.35)

where

Σβ(k‖, z) = Σβ
L(k‖, z) + Σβ

R(k‖, z) ,
Σβ
L(k‖, z) = Sβ

1,0(k‖) Gβ
L(k‖, z) Sβ

0,1(k‖) ,
Σβ
R(k‖, z) = Sβ

N,N+1(k‖) Gβ
R(k‖, z) Sβ

N+1,N (k‖) . (2.36)

The in�uence of leads is represented by these operators derived simply from SGF; they are
in fact self-energies representing the perturbation of the intermediate system due to presence
of leads [19]. Note that due to properties of principal layers they act only in the corners
(1, 1) and (N,N) of the intermediate region subblock of the matrix M , in this text they are
used as the matrix in layers space as well as its corner: Σβ

L p,p′(k‖, z) = Σβ
L(k‖, z)δp,1δp′,1,

Σβ
R p,p′(k‖, z) = Σβ

L(k‖, z)δp,Nδp′,N . Various methods of SGF evaluation can be found in
Sec. 10.6 of [34], here we use the renormalization-decimation technique [46], which is best
suited for simulations with very low value of Im z. The screening transformation superscript
β will be omitted in further text as all relevant quantities are assumed to be expressed in
the least-extend TB representation unless otherwise stated.

2.3 Spin-dependent transport in layered nanostructures
In systems with collinear magnetizations electrons spin direction must be also collinear to
it, hence conductances of electrons restricted to spins parallel or antiparallel to the speci�ed
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magnetization describe fully its spin-dependent transport properties within linear response
regime (see Chap. 5 for a more general situation). If spin �ip is neglected, transport in
one spin channel is independent of the other one and it is su�cient to de�ne only two
conductances C↑, C↓ for the two spin channels, where the �rst typically corresponds to the
more conducting (majority) channel. This approximation is referred to as the two-current
model [47,48], but do not confuse it with an assumption of an equal conductance per all k‖
vectors, which is also sometimes labeled by this name [49]. The spin polarization of current
is de�ned as P = (C↑ − C↓) / (C↑ + C↓).

Simple magnetic multilayer can be built according to Fig. 2.1, it consists of alternating
ferromagnetic (FM) and nonmagnetic (NM) layers. Current can �ow through the structure
either in the in-plane direction (CIP) or perpendicular to planes (CPP). The latter case leads
to higher MR values and will be described here. The origin of GMR e�ect in multilayers can
be roughly explained by the two-current and series resistor model [48,50]: In one of possible
multilayer realizations the interlayer exchange coupling [1] forces the magnetic layers to
align antiparallel (AP) under zero magnetic �eld (Fig. 2.1 (a)). An applied magnetic �eld
reverts all magnetizations to one direction (parallel magnetizations - PM state, Fig. 2.1
(b)). Let us assume that all FM and NM layers are the same and denote the resistances
of NM | FM↑| NM and NM | FM↓| NM part of system for spin-↑ electrons as Rmaj , Rmin,
respectively. Spin-↓ electrons experience the oppositely assigned resistances, i.e. Rmaj for
FM↓ and vice versa. If Rmaj 6= Rmin, in the PM arrangement electrons in the majority spin
channels always experience only the more conducting channel, while in the AP arrangement
all electrons meet layers with alternating Rmaj and Rmin regardless of its spin. We introduce
the average resistance R̄ and spin asymmetry β(β = P/ (P + 1)), so that Rmaj = 2R̄ (1− β)
and Rmin = 2R̄ (1 + β). The resistance of the PM arrangement is RPM = R̄

(
1− β2

)
per

two consecutive FM layers, while for the AP arrangement it is RAP = R̄. The �rst one is
obviously bigger for β 6= 0; we will typically work here with the corresponding conductances
CPM = R−1

PM , CAP = R−1
AP . AP / PM switching can be also accomplished by employing

consecutive FM layers with di�erent switching �elds or using some other way to pin a subset
of FM layers to a di�erent magnetization direction than other ones. The simplest structures
where magnetoresistance can be achieved comprise only two FM layers (NM | FM1 | NM
| FM2 | NM junction), which we will refer to as spin valves here. The magnetoresistance
ratio is de�ned in this work as

γ =
CPM

CAP
− 1 . (2.37)

The nonmagnetic spacer between FM layers can be replaced by a semiconductor or an
insulator. Such structure comprising only two magnetic layers (FM1 and FM2) is referred
to as the magnetic tunnel junction (MTJ). The corresponding analogue of GMR is the
tunneling magnetoresistance (TMR) [3, 51], �rst successful realizations with non-negligible
TMR ratio at room temperature were realized in 1995 [52,53], inspired by the success of the
GMR. Its size is determined mainly by the spin polarization of density of states at the Fermi
energy: P̃ = (N↑ −N↓) / (N↑ +N↓). This allows to formulate a very simpli�ed relation for
it, Julliere's formula (named after the author of �rst observation of spin-dependent scattering
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Figure 2.1: Magnetic multilayers: a) antiparallel magnetic alignment; b) parallel magnetic
alignment

in magnetic tunnel junctions [54]):

γ =
2P̃FM1P̃FM2

1− P̃FM1P̃FM2

. (2.38)

This approach is in fact based on ideas of the tunnel Hamiltonian theory [55]. Similarly
to the series resistor model, there is no momentum dependence. Realistic calculations
must take into account the band structure (momentum dependent property), its mismatch
between di�erent layers is often the most important factor determining the conductance and
causing the nonzero spin asymmetry (polarization) needed for GMR to work.

Electron transport is a non stationary process caused by an external perturbation. Var-
ious sophisticated approaches to its evaluation exist. One of basic tools for quantitative
transport description is the Boltzmann equation [31]. This is a semiclassical approach and
cannot describe some subtle quantum e�ects neither can it derive the relation between
current and external potential without phenomenological parameters. However it is well
su�cient to get some quick qualitative understanding of some phenomena, or to examine
areas which are not yet accessible for more accurate theories described further. The simple
structure of this model allows to take into account quickly many additional processes if their
phenomenological description in terms of Boltzmann collision term is available. Probably
the most successful framework for quantitative understanding of spin transport phenomena
based on it is the Valet-Fert model [56] with a collision term accounting for the spin-�ip
scattering. The latter mechanism provides an extension of the two-current series-resistor
model [48, 50] and it has important consequences for layer thicknesses comparable to the
spin-di�usion length.

For microscopic/mesoscopic devices a more appropriate formalism has been developed:
the Landauer-Büttiker scattering theory [19, 57�59]. The current through a conductor is
expressed here in terms of a probability T that an electron can transmit through it, this
idea leads to the famous Landauer formula for conductance

C =
e2

h

∑
n,m

Tn,m, (2.39)

where the sum runs over all possible incoming and outgoing states. Important consequence
of this formula is the non-zero resistance even for a system without scattering (the so



2.4. CONDUCTANCE FROM THE LINEAR RESPONSE THEORY 21

called ballistic conductor), where the conductance is limited by the �nite number of incom-
ing/outgoing channels. This phenomenon, the Sharvin or contact resistance, may play role
only in nanoconstrictions. If one would want to obtain the resistance of multiple interfaces
from the knowledge of each interface resistance within the spirit of the series resistor model,
he must take into account the fact that Sharvin resistance is then added to each interface
as an artifact of the Landauer formulation. An advantage of the Landauer approach is the
fact that it allows for an extension to �nite bias situations, where it in fact resembles the
non-equilibrium Green's function formalism [19]. Within linear response regime the Lan-
dauer formalism has been shown to be equivalent [60] to the Kubo theory [17] employed in
our calculations and presented in the next section.

2.4 Conductance from the linear response theory
The conductance calculation is restricted here to the static (zero-frequency) case and the
linear response regime, where the external perturbation causes only an in�nitesimal shift
of system from its ground state. The perturbation operator B̃ acts as an additional term
in the Hamiltonian: H → H + eαtB̃, where α → 0+ ensures good analytical properties for
a derivation in terms of Green's functions. The observable in question is associated with
a hermitean operator A, its Heisenberg representation is A (t) = eiHtAe−iHt. Their linear
response coe�cient can be obtained from the general Kubo formula [18,35] and is given by

CAB̃ = −i lim
α→0+

∫ ∞

−∞
dte−αtϑ (t)Tr

{
f (H)

[
A (t) , B̃

]}
. (2.40)

We de�ne an operator
Ã = ˙̃B = −i

[
B̃,H

]
, (2.41)

and an operator B for which
A = Ḃ = −i [B,H] . (2.42)

An important achievement of the linear response theory, the Kubo formula for con-
ductance [17], is employed to express CAB̃ conveniently. In order to derive the charge
conductance, one typically starts with its canonic form:

C
(C)

AB̃
= π

∫
dξf ′ (ξ)Tr

{
Aδ (ξ −H) Ãδ (ξ −H)

}
. (2.43)

In this work we will deal also with other kinds of linear response than the charge conduc-
tance. A more general form of the Kubo formula must then be used because some common
assumptions must not be valid, although the result may also be called conductance. There-
fore we sketch here a derivation starting from general formula (2.40). Operator A (t) is
replaced by its Schrödinger representation, two energy integrations are employed for the
integrand C ′

AB̃
of (2.40):

C ′
AB̃

= e−αtϑ (t)
∫ ∞

−∞
dξ

∫ ∞

−∞
dηei(ξ−η)tTr

{
f (H)

[
δ (ξ −H)Aδ (η −H) , B̃

]}
, (2.44)
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where the δ- function properties allows to replace H by energy arguments:

C ′
AB̃

= e−αtϑ (t)
∫ ∞

−∞
dξ

∫ ∞

−∞
dηei(ξ−η)t [f (ξ)− f (η)]Tr

{
δ (ξ −H)Aδ (η −H) B̃

}
.

(2.45)
Going back to complete CAB̃ and integrating over time leads to the following equation:

CAB̃ = lim
α→0+

∫ ∞

−∞
dξ

∫ ∞

−∞
dη
f (ξ)− f (η)
ξ − η + iα

Tr
{
δ (ξ −H)Aδ (η −H) B̃

}
. (2.46)

Using the de�nition of Green's functions (2.4) yields this formula:

CAB̃ = lim
α→0+

∫
dξf (ξ)Tr

{
δ (ξ −H)AG (ξ + iα) B̃ +G (ξ − iα)Aδ (ξ −H) B̃

}
. (2.47)

The evaluation of the limit α → 0+ is complicated by the fact that the operator B̃ can be
non-zero in an in�nitely large area in contrast to the operator A. Therefore it is desirable to
recast Eq. (2.47) into form explicitly restricted by operators A or Ã, which can be assumed
to be localized in a �nite region.

The general derivation of CAB̃ shown in Appendix A leads to the following formula:

CAB̃ = C
(1)

AB̃
+ C

(R)

AB̃
, (2.48)

where

C
(1)

AB̃
= − i

2

∫
dξf ′ (ξ)Tr

{
Aδ (ξ −H) ÃG (ξ − i0)−AG (ξ + i0) Ãδ (ξ −H)

}
, (2.49)

and the remaining part is

C
(R)

AB̃
=

1
4π

∫
dξf (ξ)Tr

{
AG (ξ + i0) ÃG2 (ξ + i0)−AG2 (ξ + i0) ÃG (ξ + i0)

−AG (ξ − i0) ÃG2 (ξ − i0)−AG2 (ξ − i0) ÃG (ξ − i0)
}
. (2.50)

A more transparent transcription of C(R)

AB̃
is available, it is decomposed into two terms and

the total response coe�cient is then given as

CAB̃ = C
(1)

AB̃
+ C

(2)

AB̃
+ C

(3)

AB̃
, (2.51)

where

C
(2)

AB̃
= −1

2

∫
dξf ′ (ξ)Tr

{
δ (ξ −H)

(
BÃ− B̃A

)}
, (2.52)

C
(3)

AB̃
= − i

2

∫
dξf (ξ)Tr

{
δ (ξ −H)

(
B̃B −BB̃

)}
. (2.53)

The term C
(1)

AB̃
is equivalent to C(C)

AB̃
in some situations. One can see that additional terms to

formula (2.43) appeared, C(2)

AB̃
is for example present when Hall resistances are derived [61].
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Note that C(3)

AB̃
contains the Fermi-Dirac distribution instead of its derivative, hence even

for zero temperature the energy integration would not reduce just to the Fermi energy.
There is a general rule which guarantees that the terms CAB̃ reduces only to C(1)

AB̃
, which

becomes equivalent to Eq. (2.43). It is valid even for case when an operator B cannot be
found for A and the decomposition (2.51) is not possible. In order to satisfy this rule, there
must exist a regular operator U and a scalar ε ∈ {−1, 1} so that the operators A, B̃, H
have the following properties with respect to its transposition:

HT = UHU−1 ,

B̃T = εUB̃U−1 ,

AT = −εUAU−1 . (2.54)

To prove this, we �rst note that assumptions (2.54) lead quickly to GT (z) = UG (z)U−1

and another similar relation:

ÃT = −i
(
B̃H −HB̃

)T
= −iεU

(
HB̃ − B̃H

)
U−1 = −εUÃU−1 . (2.55)

Note that the �rst and third term in Eq. (2.50) di�er only by the choice of energy substitu-
tion z = ξ+ i0 or z = ξ− i0. We label the common expression for these terms as C(R,1)

AB̃
(z),

and analogously C(R,2)

AB̃
(z) for the second and fourth term. Employing the general identity

TrM = TrMT for the �rst one we �nd

C
(R,1)

AB̃
(z) = Tr{AG (z) ÃG2 (z)} = Tr{[G2 (z)

]T
ÃTGT (z)AT } . (2.56)

Substitution of the already known transposes of involved matrices shows that the term
(2.56) turns into the second (or fourth) term C

(R,2)

AB̃
(z) of Eq. (2.50):

C
(R,1)

AB̃
(z) = Tr{AG2 (z) ÃG (z)} = C

(R,2)

AB̃
(z) .

These two terms with opposite sign cancel and C(R)

AB̃
vanishes.

One example of linear response satisfying conditions (2.54) is described in the following
section, other can be found in Sec. 4.3 and 5.2.1.

2.4.1 Charge conductance
The starting point is the choice of the position operator X (r) as the response operator:
B = X (r). If the operator X (r) is de�ned as a Cartesian coordinate at a point r, the
operator A then equals the velocity operator, which is useful to examine charge conductivity.
If the operator X (r) is de�ned as a projector to a given subspace, the operator A =
−i [X,H] gives the �ux from/into the subspace, which corresponds to calculation of charge
conductance through the surface of the subspace. B̃ = ϕ (r) is a pro�le of a spin-independent
external electrostatic �eld. One can quickly show that this kind of linear response ful�lls
the conditions (2.54), this is achieved with the choice U = 1 and ε = 1.
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Substituting these operators into Eq. (2.43) leads to the Kubo formula for conductance
(or conductivity) :

C = −2π
∫

dξf ′ (ξ)Tr {[X,H] δ (ξ −H) [ϕ,H] δ (ξ −H)} , (2.57)

where the additional pre-factor 2 comes from atomic units expression of electron charge
e2 present in conductance formula. Only zero temperature conductance is considered here,
hence f ′(E) = −δ(E−EF ) and the energy integration reduces to an evaluation at the Fermi
energy. Substitution of Eq. (2.5) to (2.57) leads to:

C (EF ) = − 2
π
Tr {ImGr (EF ) [X,H] ImGr (EF ) [ϕ,H]} . (2.58)

In the LMTOmethod the commutator [X,H] reduces to [X,S] simply because the remaining
terms from H are diagonal in position as well as X. The same is valid for [ϕ,H]. Its version
expressed in an arbitrary LMTO representation α is given as

C (EF ) = − 2
π
Tr {Im gα (EF + i0) [X,Hα] Im gα (EF + i0) [ϕ,Hα]} , (2.59)

and it is invariant with respect to the representation (denoted by α) [62]. It has been
proved that this formula is correct up to second order in energy ε = E − Eν [62]. The
derivation was actually done for a form with a commutator [X,Sα] instead of[ϕ,Hα], but
the same argumentation can be applied. The index related to LMTO representation (α)
will be omitted in the subsequent text.

The quantity of interest is the CPP charge conductance in layered systems. Note that
the system is always attached to leads which allow electrons to enter or leave the structure.
They are described by surface Green's function as was explained in Sec. 2.2.3. The trace
in Eq. (2.59) is restricted to the intermediate region, where Green's functions ful�ll Eq.
(2.35). It allows us to write

(gr − ga) = gr (Σr − Σa) ga = ga (Σr − Σa) gr , (2.60)

where we introduced the retarded and advanced form of self-energy (embedding potential
of leads, Eq. 2.36) in the same way as for the corresponding Green' functions. The anti-
hermitean part of embedding potentials (self-energies) ΣL,R will be denoted here as BL,R
instead of the commonly used Γ in order not to confuse it with vertex corrections Γ in the
next part:

B = i (Σr − Σa) , (2.61)
BL,R = i

(
Σr
L,R − Σa

L,R
)
. (2.62)

Eq. (2.59) can be then rewritten as:

C (EF ) = − 1
2π

Tr {Bgr[X,H]grBga[ϕ,H]ga} . (2.63)

Employing [X,Σr] = 0 we �nd that

gr[X,H]gr = gr[X,E −H − Σr]gr = grX −Xgr , (2.64)



2.4. CONDUCTANCE FROM THE LINEAR RESPONSE THEORY 25

with a similar relation valid for [ϕ,Σa] this leads to

C (EF ) = − 1
2π

Tr{B(grX −Xgr)B(gaϕ− ϕga)} . (2.65)

From this equation it is clear that only the (constant) values of the functions X(r)
and ϕ(r) inside the leads enter the resulting conductance, it is therefore independent of
the actual spatial pro�le of the potential. Note that this statement need not hold for ac
conductance, as was shown for a quantum wire in [63]. In order to obtain conductance
through the intermediate region we consider Eq. (2.61) and take the pro�les such that the
unitary �eld is generated inside the left lead (X = 0 and ϕ = −1 there) while the response
to it (current) is measured inside the right lead (X = 1 and ϕ = 0 there) :

BX = XB = BR , Bϕ = ϕB = −BL , XBϕ = ϕBX = 0 . (2.66)

Charge unit e was already employed in (2.57), which justi�es the choice of unitary potential
and current as 1. The negative value of the chosen ansatz for ϕ ensures that commutators
[X,H] , [ϕ,H] picks elements of H going in one direction with the same sign (Sp,p′ for p′ > p
and −Sp,p′ for p′ < p) consistently with the physical meaning of current. Relations (2.66)
yield a compact Caroli-like [64] expression for conductance:

C (EF ) = − 1
2π

Tr {BRgrBLga + BLgrBRga} . (2.67)

It is a sum of two terms of the form

C (EF ) = −C (EF + i0, EF − i0)− C (EF − i0, EF + i0) ,

C (zµ, zν) =
1
2π
Tr {g (zµ)BLg (zν)BR} . (2.68)

If the system is invariant with respect to the reversal of time, the terms C (EF + i0, EF − i0)
and C (EF − i0, EF + i0) are equal. In transport calculations presented here the values
±10−7 Ry were taken as the imaginary parts of energy arguments zµ and zν .

An alternative derivation of this formula can be seen in the appendix of Ref. [65]. The
de�nition of surface Green's functions (SGF) [34] together with the partitioning technique
[66] allows one to derive relations (A16 of Ref. [65]), with which the products of current
operators and system Green's functions are replaced by embedding potentials ΣL,R (Eq.
2.36).

The formula (2.68) is obviously analogous to the transmission probability in the Lan-
dauer formulation of transport [19]. The relation between the Kubo formulation and trans-
mission matrices has been examined in [67]. If, for example, Eq. (2.68) is applied to a pure
in�nite wire (ballistic conductor), its contact resistance is obtained as in the Landauer point
of view [19].

For spin-dependent systems within the two-current model (Sec. 2.3) the two spin chan-
nels are independent. Spin-resolved conductances C↑, C↑ can be derived directly from for-
mula (2.68), where Green's functions for the corresponding spin state are employed:

Cs (zµ, zν) =
1
2π

tr (gs (zµ)BLgs (zν)BR) , s = ↑, ↓ . (2.69)

All relations valid for Eq. (2.68) are valid also for (2.69) as long as no spin-dependent
operations are involved.
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2.5 Substitutional disorder
Interfaces between two di�erent materials are hardly completely clean and distinct. Be-
cause of manufacturing limitations and additional thermal processes, atoms of one species
(A) can di�use to the other one (B) and vice versa. This interface interdi�usion creates sub-
stitutional disorder at few monolayers near the interface. It means that its lattice sites are
occupied by one of atoms Q, where Q ∈ {A,B}, but lattice geometry remains unchanged.
Generally the number of species Q is unlimited. The occupation of the site R by the atom
Q is described by ηQ

R ∈ {0, 1}, and
∑

Q η
Q
R = 1.

Alloys represent substitutional disorder not limited to only a few monolayers. Bulk
disorder can be intrinsic property of the material, it can also be a defect present under
some conditions. In any case its presence has often a strong impact on transport and other
properties and may lead to some unique phenomena [68].

2.5.1 Con�gurational averages
One particular realization of occupations of the lattice sites is called a con�guration C.
Physical observables are obtained as averages of the observable's mean value 〈X〉 over all
possible con�gurations weighted with their probabilities p (C):

〈〈X〉〉 =
∑

C

p (C) 〈X〉 (C) . (2.70)

Common assumption here is complete randomness of occupations, given by probabilities
(concentrations) cQR, with no short range order or correlations. The probability of one
con�guration is then given as:

p (C) =
∏

R


∑

Q

cQRη
Q
R


 . (2.71)

Very useful tool for dealing with substitutional disorder are again Green's functions.
Their con�gurational averages 〈G〉 are related to the averaged particle density and thus
they allow us to extract relevant observables due to the Hohenberg-Kohn's �rst theorem
(Sec. 2.1). Their advantage is the possibility to treat the random con�guration-dependent
part of Hamiltonian as a perturbation U : H (C) = H0 + U (C), where H0 is con�guration-
independent. Note that the con�gurationally averaged Green' function 〈G〉 obtained by
substitution into Eq. (2.70) has again the full translational symmetry of the original lattice.

For disordered systems the property called Bloch spectral function becomes particularly
useful. In the case of a system with a 3D or 2D translational symmetry, one can transform
the density of states (Eq. 2.27) to reciprocal space and obtain the Bloch spectral function,
which allows to examine how di�erent parts of the BZ contribute to the total density of
states. In bulk crystals without substitutional disorder discrete bands are formed and the
Bloch spectral function is reduced to δ-functions located at crystal eigenenergies, which
correspond to its band structure. For disordered systems the peaks in the Bloch spectral
function are no longer δ-functions, their extent and relation to the peaks of the original pure
materials may be important to understand properties of the disordered system. Energy
bands of such system are thus not discrete.



2.5. SUBSTITUTIONAL DISORDER 27

The main problem is to �nd desired con�gurational averages without evaluating all
possible con�gurations. There are simple methods available: virtual crystal approximation
(VCA), where the random perturbing potential U is replaced by its average; and self-
consistent Born approximation (SCBA), which corresponds to �rst order of perturbation
theory [18]. However, these cannot describe real physical properties of disordered systems
quantitatively and cannot even catch some qualitative properties, for example the creation
of split bands for strong disorder (big |UA − UB| as compared to the bandwidth).

2.5.2 Supercell method
One possible approach to this problem is stochastic: to evaluate a number of possible random
con�gurations chosen with respect to prescribed concentrations and �nd its average. In�nite
systems must be split into small clusters (supercells) with size allowing it to be solved in real
space [69]. A random con�guration is generated for one supercell, which is then assumed to
be repeated in�nitely across the lattice (or a layer in case of 2D translational invariance).
This de�nes boundary conditions of the supercell as periodic. The splitting into �nite
supercells represents key question of the method, the su�cient size of the supercell is not
known as well as the necessary number of trial con�gurations, one should always check
whether the result converges when increasing supercell size and what is the error due to its
variation.

An advantage of this method is its relatively simple implementation. Everything is
performed here for one con�guration so that no theory describing the e�ect of disorder must
be employed. Therefore it can be used quite simply not only for one particle properties but
also two-particle ones, which is one of the common areas of its application [15, 70]. It can
also handle situations beyond the complete randomness assumption, i.e. short range order.

Unfortunately the supercell method has high computational demands. Concentrations
of involved species are employed only by the ratio of atoms of their species with respect to
total number of atoms in the supercell. In order to catch slight changes of concentrations
very big supercell must be used, the demands may then grow to the maximum currently
available computers can o�er. On the other hand, the bigger the supercell, the less k vectors
must be used in calculation to maintain equal accuracy [70].

2.5.3 Coherent potential approximation
The coherent potential approximation (CPA) [71] is a single-site approximation - each site of
the lattice is examined as a single impurity in an e�ective medium. The total Hamiltonian
of the system can be rewritten as

H = [H0 + Σ (z)] + [U − Σ (z)] , (2.72)

whereH0 is the part of the Hamiltonian independent of con�guration and U is its con�guration-
dependent complement. The CPA self-energy Σ(z) (so far unde�ned) added to H0 corre-
sponds in CPA to the e�ective medium and it is associated to Green's function Ḡ, overbars
denote CPA averaged quantities. The remaining part of Hamiltonian U − Σ(z) is now
treated as a perturbation and the Dyson equation for the problem can be written:

G = Ḡ+ ḠT Ḡ . (2.73)
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It is immediately visible that if Ḡ = 〈G〉, the Eq. (2.73) leads to the exact condition

〈T 〉 = 0 . (2.74)

The CPA has been shown to be the best single-site approximation [72]. The T -matrix
can be expanded as sums of site contributions T =

∑
R TR, these contributions are expressed

in terms of single impurity scattering matrix tR [31]: TR = tR + tRḠ
∑′

R′ TR′ , where the
prime at the sum denotes exclusion of R′ = R. Statistical correlations between tR and TR′

are neglected, which is partially justi�ed by the complete randomness of occupations, this
is the so called CPA decoupling. Then a simple condition can be derived from Eq. (2.74)
also for tR :

〈tR〉 =
∑

Q

cQtQR (z) = 0 . (2.75)

The scattering matrix is required to behave so that scattering at a single site from the
medium vanishes on average. This is the Soven equation [71] for CPA, which allows to �nd
the CPA self-energy. The self-energy is also decomposed into site contributions: Σ(z) =
ΣR (z). Matrices tR can be expressed in terms of these contributions:

tR = [UR − ΣR (z)]
{
1− Ḡ (z) [UR − ΣR (z)]

}−1
. (2.76)

Substituting (2.76) into (2.75) allows to �nd the unknown CPA self-energy Σ(z). The
exact condition (2.74) is then ful�lled with high accuracy, the only error is due to the
CPA decoupling. This is the desired state, the CPA-averaged Green's function Ḡ resembles
closely the true con�gurational average of the system.

CPA can be conveniently combined with the TB-LMTO method [73]. This leads to
an elegant formulation of the CPA-averaged auxiliary Green's function in the form of Eq.
(2.24):

ḡ(z) = [ P(z) − S ]−1 , (2.77)
where P (z) is de�ned by this equation and is called a coherent potential function, LMTO
representation indices are omitted. Due to the single-site character of the CPA it is site-
diagonal: PR,R′ (z) = δR,R′PR (z). For an atom Q in the e�ective medium described by
the coherent potential one can rewrite the formula (2.76) in terms of the coherent potential:

tQR(z) =
(
PQ
R (z)−PR(z)

) [
1 + ḡR,R(z)

(
PQ
R (z)− PR(z)

)]−1
. (2.78)

For a binary alloy combining this equation with the CPA equation for t-matrices (2.75)
leads to the following formula for the coherent potential function:

PR(z) = 〈 PR(z) 〉+ (
PA
R(z)− PR(z)

)
ḡR,R(z)

(
PB
R (z)−PR(z)

)
. (2.79)

A general solution for alloys with arbitrary number of components can be found in Chap.
10.7 of [34]. The coherent potential function is obtained in an iterative process which should
lead to self-consistency. There are numerous particular schemes of this iterative process [34]
and it is often combined with the DFT iteration scheme.



Chapter 3

CPP conductance in disordered
metallic multilayers

The CPA is widely used to determine electronic structure of disordered systems. For two-
particle observables, for example the conductance, there are additional obstacles to be
solved, which are addressed in Sec. 3.1. The Kubo formula for conductance has been
combined with the CPA a long time ago [74]. Its ab initio KKR implementation for residual
resistivity of random bulk alloys [75] has been used by many authors [76�78]. However, for
layered systems it has been applied only exceptionally, being con�ned mostly to models with
a single orbital per site [79] or to a weak scattering limit [80]. In work [14] we have applied
for the �rst time the coherent potential approximation to this problem on an ab initio level,
which is the approach presented here. Its results are compared to supercell method results
where possible, see sections 6.2.2, 6.3, 6.4.1.

3.1 CPA averages of two-particle observables, vertex correc-
tions

In general, the Kubo formula (2.57) can be expressed so that it contains terms of the form
Tr {G (zµ)BG (zν)B′}. Current operators B, B′ are nonrandom within the TB-LMTO
method, thus con�gurational averages of the following form are to be found:

K (zµ, zν) = 〈G (zµ)BG (zν)〉 . (3.1)

Con�gurational average of a product of two Green's functions corresponds to a two-particle
Green's function and it generally includes more complicated multiple-scattering processes
than those included in the one particle Green function described in sec. 2.5. Since the oper-
ator B is nonrandom, after substituting the Dyson equation (2.73) into (3.1) and employing
(2.74) one obtains :

〈GBG〉 = ḠBḠ+ ḠΓḠ , (3.2)

where Γ =
〈
TḠBḠT

〉
and energy arguments are omitted for brevity. The simple contribu-

tion corresponding to one-particle diagrams given as ḠBḠ will further be denoted as the

29
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coherent part. Vertex corrections to it given by term ḠΓḠ represent genuine two-particle
correlation e�ects [18]. This contribution to 〈GBG〉 in many cases cannot be neglected, as
will be shown further.

Vertex corrections can be derived with the same assumptions as the CPA self-energy,
namely the CPA decoupling. No diagrammatic expansion is involved here. Due to the
localized nature of the single-site T-matrices tR (z), Γ can be decomposed within the CPA
into a sum of site-localized contributions:

Γ =
∑

R

ΓR . (3.3)

A closed set of exactly soluble linear equations for unknown ΓR has been derived [74]:

ΓR (zµ, zν) =
〈
tR (zµ) Ḡ (zµ)BḠ (zν) tR (zν)

〉
+∑

R′(6=R)

〈
tR (zµ) Ḡ(zµ)ΓR′ (zµ, zν) Ḡ (zν) tR (zν)

〉
. (3.4)

Vertex corrections satisfy an important consistency condition, the Ward identity:

Γ (zµ, zν , 1) =
−1

zµ − zν (Σ (zµ)− Σ (zν)) , (3.5)

where the third argument of Γ speci�es the operator to which it corresponds. Satisfaction
of this identity is natural since the derivation of vertex corrections is compatible with the
self-energy.

3.2 LMTO full CPA solution for conductance
Vertex corrections have been shown to vanish for conductivities in a single band model [74].
However, this is not true for a multiband case. We express the abstract set of Eqs. (3.4) in
the TB-LMTO basis (Sec. 2.2) and solve it.

The equation for ΓR in terms of the matrix elements (energies omitted) :

ΓL1L′1
R =

∑

Q

∑

L2L′2

cQRt
Q L1L2

R [ḡBḡ]L2L′2
RR t

Q L′2L′1
R +

∑

Q

∑

R′(6=R)

∑

L2L′2L3L′3

cQRt
Q L1L2

R ḡL2L3
RR′ ΓL3L′3

R′ ḡ
L′3L′2
R′R t

Q L′2L′1
R . (3.6)

They can be formally simpli�ed by introducing the following composed indices and auxiliary
variables:

Λ =
(
L,L′

)
, (3.7)

ξΛ1
R (zµ, zν) = ξ

L1L′1
R (zµ, zν) = (ḡ (zµ)Bḡ (zν))

L1L′1
RR , (3.8)

ωΛ1Λ2
R (zµ, zν) =

∑

Q

cQRt
Q L1L2

R (zµ) tQ L′2L′1
R (zν) , (3.9)
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χΛ1Λ2
RR′ (zµ, zν) = (1− δRR′) ḡ

L1L2
RR′ (zν) ḡ

L′2L′1
R′R (zν) . (3.10)

The original Eqs. (3.6) are then rewritten compactly as:

ΓΛ1
R =

∑

Λ2

ωΛ1Λ2
R ξΛ2

R +
∑

R′;Λ2Λ3

ωΛ1Λ2
R χΛ2Λ3

RR′ ΓΛ3
R′ , (3.11)

where energy arguments have been omitted for brevity. Matrices with one R index are
treated here as if were multiplied by δRR′ . The set of equations (3.11) for Γ is solved by
matrix inversion, which yields the following matrix equation:

Γ = (1− ωχ)−1 ωξ =
(
ω−1 − χ)−1

ξ . (3.12)

Auxiliary variables can be de�ned in a slightly di�erent way, which leads to a solution more
suitable for a direct calculation:

λ−1 = ω−1 + ϕ , (3.13)

where
ϕΛ1Λ2

R (zµ, zν) = ḡL1L2
RR (zµ) ḡL′2L′1

RR (zν) . (3.14)

Then the matrix equation for vertex corrections reads:

Γ =
(
λ−1 − ψ)−1

ξ , (3.15)

where ψΛ1Λ2
R1R2

(zµ, zν) = ḡL1L2
R1R2

(zµ) ḡL′2L′1
R2R1

(zν), hence it ful�lls χ = ψ−ϕ. The advantage is
that λ is site-diagonal and ψ has a more simple structure than χ, which allow to perform
lattice Fourier transformation easily. The central matrix is given its name:

∆ = λ−1 − ψ . (3.16)

The equation for vertex corrections with explicit typing of all indices reads:

ΓΛ1
R1

(zµ, zν) =
(
∆−1

)Λ1Λ2

R1R2
(zµ, zν) ξΛ2

R2
(zµ, zν) . (3.17)

3.3 CPP conductance in disordered multilayers
With the knowledge of vertex corrections the conductance can be derived directly from the
formula (2.68). As both operators BL and BR are nonrandom, one of them can be put
out of the con�gurational average; the remaining part to be averaged corresponds to the
product of two Green's functions and an operator, which already appeared in equation (3.1),
the second one from operators BL,R is identi�ed with the generic operator B. Hence (3.2)
can be employed and the main term in conductance expression is also expanded into the
coherent and VC part:

Tr 〈g (zµ)BLg (zν)BR〉 =
Tr {ḡ (zµ)BLḡ (zν)BR}+ Tr {ḡ (zµ) Γḡ (zν)BR} . (3.18)
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The coherent part is similar to the case without disorder, but now the auxiliary Green's
function g (z) is replaced by its con�gurationally averaged counterpart ḡ. The trace property
for the VC part is employed:

CV C (zµ, zν) =
1
2π

Tr {ḡ (zµ) Γḡ (zν)BR} =
1
2π

Tr {ḡ (zν)BRḡ (zµ) Γ} . (3.19)

Substituting Γ from (3.17) leads to:

CV C (zµ, zν) =
1
2π

∑

R1Λ1

∑

R2Λ2

[ḡ (zν)BRḡ (zµ)]Λ̃1

R1

[
∆−1 (zµ, zν)

]Λ1Λ2

R1R2
[ḡ (zµ)BLḡ (zν)]

Λ2

R2
,

(3.20)
where the index Λ̃ means Λ with a transposed order of orbital indices and the quantity
ξ (zµ, zν) is now labeled as [ḡ (zµ)BL,Rḡ (zν)] to make its close relation to operators BL, BR
more transparent. The result is again explicitly symmetric in BL, BR, although vertex
corrections were expressed with respect to only one of the operators during the derivation.

Multilayers can be viewed as systems with 2D translational invariance, there are always
two dimensions much larger than electron mean free path and the corresponding boundaries
does not play role, contrary to its thickness, which is on the nanoscale. In disordered systems,
the 2D translational invariance is destroyed, but the e�ective system replacing the physical
one is again translationally invariant. This is greatly facilitated in calculations of Green's
functions, where the 2D lattice Fourier transformation from the real to reciprocal space is
then employed (Sec. 2.2.3). Matrix quantities in real space transform according to Eq.
(2.29), the opposite transformation is given by (2.30). Generally the site position vector R
is decomposed as R ≡ (p,B,T‖) as described in Sec. 2.2.3. The quantities involved in Eq.
(3.20) expressed in terms of k‖-resolved Green's functions:

∆ (0, zµ, zν)
Λ1Λ2

p1,B;p2,B2
= δp1B1;p2B2

[
λ−1 (zµ, zν)

]Λ1Λ2

p1B1
−

1
N

∑

k‖

ḡL1L2
p1B1;p2B2

(
k‖, zµ

)
ḡ

L′2L′1
p2B2;p1B1

(
k‖, zν

)
. (3.21)

[ḡ (zµ)BRḡ (zν)]
Λ
pB =

1
N

∑

k‖

∑

LaBa

∑

LbBb

ḡLLa
pB;pRBa

(
k‖, zµ

)B LaLb
RBa;Bb

(
k‖

)
ḡLbL

′
pRBb;pB

(
k‖, zν

)

(3.22)
Note that they are independent of k‖ as well as T‖, which signi�cantly simpli�es the cal-

culation. The �rst expression is nothing but the lattice Fourier transform for zero k‖ vector
of the matrix ∆Λ1Λ2

R1R2
(zµ, zν), Eq. (3.16). The formula for VC contribution to conductance

is then given as [14]:

Tr 〈g (zµ)BLg (zν)BR〉V C = (3.23)
1
2π

∑

p1B1Λ1

∑

p2B2Λ2

[ḡ (zν)BRḡ (zµ)] Λ̃1
p1,B1

[
∆−1 (0, zµ, zν)

]Λ1 Λ2

p1,B1;p2,B2
[ḡ (zµ)BLḡ (zν)] Λ2

p2,B2
.

Equation (4.41) together with the de�nitions of auxiliary variables (Eqs. 3.21,3.22,
3.13) represents the central result of this chapter and was implemented in an ab initio
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calculation scheme. The matrix ∆ to be inverted is of the size l4maxÑ
2, where Ñ =

∑N
p=1 Ñp

and Ñp denotes the number of disordered basis atoms in one principal layer p. This can
yield for example matrices of the order 1000 × 1000 for (Ga,Mn)As slab containing 12
principal layers, but the numerically demanding inversion of it has to be done for only one
k‖ point. The smaller basis with respect to the supercell method (Sec. 2.5.2) leads to a
signi�cant performance gain of the full CPA scheme, although all subblocks of ḡ

(
k‖, z

)
must

be evaluated here in contrast to the CPP conductance formula for a clean system (2.68) used
also in supercell transport calculations, where only the layer-wise subblocks in corners (1, N
and N, 1) are needed. As the evaluation of the whole ḡ

(
k‖, z

)
is the most time-consuming

part, it is advantageous to utilize the tridiagonal character of the Hamiltonian in space, this
procedure then becomes roughly of order N2.

This CPA based method has been used to examine selected impure Co/Cu based mul-
tilayers (Chap. 6), thin layers of (Ga,Mn)As (Chap. 7) and possible disorder in Co2MnSi
(Chap. 8). In the �rst case results were compared to alternative supercell calculations and
their overall agreement con�rms the validity of this approach. The presented derivation can
be also adapted to spin-mixing conductances, see Sec. 4.5.

3.3.1 Lattice point group symmetry
In addition to translation symmetry, lattice point group symmetry represents an important
factor in�uencing the solid properties. If it is utilized in ES and transport calculations,
it allows to evaluate general quantities X for k-points only inside the irreducible Brillouin
zone (IBZ), while the rest of the total Brillouin zone (BZ) can be obtained from appropriate
similarity transformations U (O) [34], where O are symmetry operations. This rests on
the existence of matrices M and M ′ such that X for vectors Ok outside the IBZ can be
expressed as

X (Ok) = M (O)X (k)M ′ (O) . (3.24)

This provides signi�cant reduction of calculation time and memory requirements. Its imple-
mentation in CPA transport for disordered systems is not so straightforward as for systems
without disorder, but in principle it can reduce the amount of k-points to calculate by the
same ratio, 1/ |NO|, where |NO| is the order of the group of allowed symmetry operations.
The argumentation is valid for any translational symmetry, hence only vectors from Bril-
louin zone will now be generally denoted as k. Quantities averaged over the whole BZ (XBZ)
are expressed in the following way in terms of an IBZ-averaged quantities XIBZ :

XBZ =
1
|NO|

∑

O
XIBZ (O) . (3.25)

Let us �rst examine the behavior of TB-LMTO Green's functions: elements diagonal in B
transform as

gB,B (Ok) = U+ (O) gB,B (k)U (O) , (3.26)

which is already in the form of Eq. (3.24). Explicit matrix structure of similarity trans-
formations is UL1,L2 , summations over these orbital indices L are omitted for brevity. For
transformation of elements non-diagonal in B an additional factor (unitary matrix in orbital
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indices)
fB (O,k) = eik(O

−1B−B) (3.27)
is present:

gB,B′ (Ok) = fB (O,k)U+ (O) gB,B′ (k)U (O) f−1
B′ (O,k) . (3.28)

BZ summations in Eqs. (3.21, 3.22) allows to utilize these properties of Green's functions.
Value of Eq. (3.22) for a part of BZ obtained by a symmetry operation O is given (with
omitted explicit dependence of U (O) and fB (O,k) on O) as:

[ḡ (zµ)Bḡ (zν)]pB (O) =
1
N

∑

k(IBZ)

∑

Ba

∑

Bb

fB (k)U+ḡpB,pRBa (k, zµ)Uf−1
Ba

(k) fBa (k)U+

×BBaBb
(k)Uf−1

Bb
(k) fBb

(k)U+ḡpRBb,pB (k, zν)Uf−1
B (k) .

All adjacent UU+ terms cancel, all fB (k) terms cancel with their counterpart f−1
B (k).

Then

[ḡ (zµ)Bḡ (zν)] (O) = U+ (O) [ḡ (zµ)Bḡ (zν)]
IBZ U (O) , (3.29)

where [ḡ (zµ)Bḡ (zν)]
IBZ is given by Eq. (3.22), but with the k-summation restricted only

to the irreducible Brillouin zone. This result has the form of Eq. (3.24), it is valid for each
k point from IBZ as well as the whole IBZ average.

For ψ (zµ, zν), the only k-dependent component of ∆(0, zµ, zν) (Eq. 3.21), we �rst
examine the e�ect of the inclusion of fB (k) and for clarity omit U , which commutes with
fB (k):

ψ̃
L1L′1;L2L′2
p1B1;p2B2

(O, zµ, zν) =
∑

k(IBZ)

f−1
B1

(k) ḡL1;L2
p1B1,p2B2

(k, zµ) f−1
B2

(k) fB2 (k) ḡL′2;L
′
1

p2B2,p1B1
(k, zν) f−1

B1
(k) .

(3.30)
All fB (k) terms cancel here. The true ψ (zµ, zν) for the part of BZ corresponding to
symmetry operation O is given as:

ψ
L̃1L̃1

′
;L̃2L̃′2

p1B1,p2B2
(O, zµ, zν) =

=
∑

L1L2L′1L′2

∑

k(IBZ)

(
U+

)L̃1L1
(
U+

)L̃′1L′1 ḡL1L2
p1B1,p2B2

(k, zµ) ḡL′1L′2
p2B2,p1B1

(k, zν)UL2L̃2UL′2L̃′2

=
∑

L1L2L′1L′2

(
U+

)L̃1L1
(
U+

)L̃′1L′1 ψ
IBZ L1L′1;L2L′2
p1B1,p2B2

(zµ, zν)UL2L̃2UL′2L̃′2 , (3.31)

where ψIBZ (zµ, zν) is given by Eq. (3.21), but with the k-summation restricted only to the
irreducible Brillouin zone. The transformation k→ Ok is now performed by a proper mul-
tiplication of submatrices of ψ by U matrices, it cannot be expressed in terms of compound
indices Λ, but it is still in the form of (3.24) suitable for the replacement of BZ averaging
by IBZ one.



Chapter 4

Spin torques due to spin
accumulation

If a current incident on a thin ferromagnetic (FM) layer is polarized non-collinear with
respect to the layer magnetization direction, it exerts a spin-transfer torque on the magnetic
layer and may change its magnetization direction [9]. This phenomenon is therefore referred
to as the current induced magnetization switching (CIMS).

One of successful quantitative descriptions of this process is based on Valet-Fert model
(Sec. 2.3), which has been recently extended to non-collinear spin structures [81�83]. It
rests heavily on two additional properties of spin currents (Sec. 5.1). First, the transverse
(perpendicular to local exchange �eld) component of the spin current inside a ferromagnet
becomes rapidly damped on a typical distance of a few interatomic spacings [84]. This
very short magnetic coherence length is a result of a large exchange splitting which leads to
mostly destructive interference e�ects due to all contributions of wave vectors on the two
Fermi surfaces of the ferromagnetic metal. Consequently, the spin torque experienced by a
ferromagnetic (FM) layer can be identi�ed with the transverse spin current at its interface
with a neighboring non-magnetic (NM) layer. Second, the proper boundary conditions
inevitable for a full solution of the di�usion equations must be formulated in terms of
properties of individual interfaces and it comes out that more information is needed than
contained in the spin-resolved conductances of the interfaces.

The magneto-electronic circuit theory [15, 85, 86] represents another �exible approach
to the transport properties of non-collinear magnetic systems consisting of FM and NM
elements (nodes). This scheme is highly e�cient especially when dimensions of individual
nodes are smaller than the spin-di�usion lengths but bigger than the electron mean-free
paths of the corresponding materials. The theory is based on the semiclassical concept of
spin accumulation (Sec. 4.1). Within the developed formalism, the chemical potentials
and spin accumulations of the nodes are contained in 2 × 2 distribution matrices in the
spin space. The change of spin current due to junctions among the nodes is related to the
non-collinear part of spin accumulation in terms of the so called spin-mixing conductance.
The steady-state currents, spin currents and spin torques in a device can be obtained from
applied voltages by solving a set of linear equations quite similar to the Kirchho�'s laws for
usual electronic circuits, see Ref. [15] for a review.

A truly microscopic (quantum mechanical) approach to all aspects of CIMS seems to

35
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be prohibitively complicated having in mind the large layer thicknesses and the quality
of interfaces in presently used multilayers and spin valves. A reasonable compromise be-
tween the accuracy and the complexity has been adopted by several authors in addressing
the spin-polarized electronic and transport properties of a single ferromagnet/non-magnet
interface [84,87] with emphasis put on the conductances and their sensitivity, e.g., to inter-
face alloying. Since the traditional scheme for the transport, namely the Landauer-Büttiker
scattering theory [19,58,59], has been used in majority of papers, the e�ect of disorder was
included by a supercell technique [15,88].

Here we sketch an alternative approach to the mixing conductances that employs the
non-equilibrium Green's function (NEGF) formalism [19] applied to a ferromagnetic (FM)
layer embedded between two semi-in�nite non-magnetic (NM) leads; in one of them the
spin accumulation is present. The derived general formula is implemented in an ab initio
technique. The spin-mixing conductances of FM layers of a �nite thickness attached to
two NM leads have been studied very recently for Co/Cu, Fe/Au and Fe/Cr systems [89].
We calculate these properties for two of these systems too, so that both methods can be
compared, and also provide novel results for systems where the spin-mixing conductance
may have extraordinary properties, namely (Ga,Mn)As (Chap. 7) and Co2MnSi (Chap. 8).

4.1 Spin accumulation and spin torques
Conductance electrons passing transversally through a FM1 | NM | FM2 junction experience
spin-dependent re�ections at interfaces which leads to spin-polarization of electrons even in
NM layer (if NM layer thickness is smaller than the spin-di�usion length). This can be
represented by spin-dependent chemical potential in the NM layer, which corresponds to
the so called spin accumulation. The spin accumulation is assumed to be uniform across
NM layer and it can be described by its direction s and size. The spin-transfer torque can
then be related directly to this spin accumulation, and a model with only one FM layer (Fig.
4.1) is su�cient to describe this problem. We examine the linear response of the spin torque
to the spin accumulation, thus only in�nitesimal spin accumulation is taken into account,
see Fig. 4.2.

The Hamiltonian H is limited to the so called intermediate region and semi-in�nite NM
leads are included in the system Hamiltonian as a self-energy (Sec. 2.2.3), see Fig. 4.1. The
Hamiltonian is given as

Ĥ = H0 + γ(σ · n), (4.1)
whereH0 represents a spin-independent part, σ = (σ̂x, σ̂y, σ̂z) is the vector of Pauli matrices,
n de�nes the direction of the exchange �eld of the FM layer and γ its corresponding exchange
splitting (nonzero only inside the FM layer). Matrices in spin space are denoted by hat (ˆ).

For the purpose of magnetization switching we de�ne the spin torque as a time derivative
of the total spin moment and obtain this quantity of interest directly using its operator
de�ned as:

τ = −i
[
σ, Ĥ

]
. (4.2)

This approach is formally di�erent, but physically equivalent to existing approaches based
on evaluation of di�erence between spin currents on both sides of the FM layer [15], see Sec.
5.1.
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Figure 4.1: NM | FM | NM junction with spin accumulation s parallel to the y-axis in the
left lead.

Figure 4.2: In�nitesimally small spin accumulation parallel to the y-axis direction
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The well known algebraic rules for the Pauli matrices

(σ · p)(σ · q) = p · q + i(p× q) · σ,
(σ · p)σ = p + iσ × p,

σ(σ · q) = q + iq× σ, (4.3)

valid for arbitrary classical vectors p and q, yield an explicit form of the torque operator

τ = 2γn× σ. (4.4)

This relation shows that the spin torque is a local operator non-zero only inside the inter-
mediate region. Ab initio expression for the response CL of the spin torque to the spin
accumulation can be found using NEGF. An alternative approach based on the Kubo linear
response theory is also possible, we use it to derive a less general formula only for spin
torque response in the direction parallel to the spin accumulation. NEGF based derivation
for this component of the total spin torque will be published elsewhere [90].

4.2 Derivation based on NEGF
The thermodynamic average of the spin torque τ for the NM|FM|NM system in a stationary
non-equilibrium state is given by

τ̄ =
1
2π

∫ ∞

−∞
Tr

{
τG<(E)

}
dE, (4.5)

where G<(E) is the lesser component of the non-equilibrium Green's function. The latter
quantity is related to the retarded and advanced Green's functions Gr(E) and Ga(E) by
means of the kinetic equation

G<(E) = Gr(E)Σ<(E)Ga(E),
Gr(E) = [E −H − Σr(E)]−1 ,

Ga(E) = [E −H − Σa(E)]−1 , (4.6)

where Σ<(E), Σr(E) and Σa(E) denote the lesser, retarded and advanced components of
the self-energy, respectively, which are usually de�ned in NEGF formalism [19]. The total
self-energies are given as sums of separate contributions due to the left (L) and the right
(R) leads,

Σx(E) = Σx
L(E) + Σx

R(E), x = r, a,< . (4.7)
These self-energies therefore correspond to embedding potentials (2.36) once the TB-LMTO
formulation is assumed (Sec. 4.5). Note that all operators in Eqs. (4.5, 4.6) are de�ned in
the Hilbert space of the intermediate region.

The spin accumulation in the NM leads results in a change of the lesser self-energy
δΣ<(E) (see below), which induces the following �rst-order change of the thermodynamic
average (4.5):

δτ̄ =
1
2π

∫ ∞

−∞
Tr

{
Ga(E)τGr(E)δΣ<(E)

}
dE. (4.8)
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The special form of the torque operator, Eq. (4.2), together with the expression for Gr,a(E),
Eq. (4.6), provide a relation

Ga(E)τGr(E) = −i [σGr(E)−Ga(E)σ] +Ga(E)σB(E)Gr(E), (4.9)

where the abbreviation for the antihermitean part of self-energy due to leads according to
Eq. (2.61, 2.62) is employed.

In deriving Eq. (4.9), use was made of the fact that the self-energies of the unperturbed
NM leads are spin-independent, so that [σ,Σr,a(E)] = 0.

For stationary non-equilibrium systems without spin accumulation, the lesser self-energies
are given by

Σ<
L,R(E) = fL,R(E)BL,R(E), (4.10)

where the functions fL,R(E) refer to the Fermi-Dirac distributions of the two leads.
In the thermodynamic equilibrium, the distributions fL,R(E) coincide with the Fermi-

Dirac distribution of the whole system. In presence of the spin accumulation in one of the
leads (L), the system is driven out of equilibrium by adding a spin-dependent shift δEL to
the Fermi energy of the lead. This yields the �rst-order change of the lesser self-energy in
a form

δΣ<(E) = δΣ<
L(E) = f ′(E)(σ · s)BL(E)δEL, (4.11)

where f ′(E) means the derivative of the Fermi-Dirac distribution and s is a unit vector
pointing in direction of the spin accumulation. For systems at zero temperature, which will
be considered in the following, f ′(E) = −δ(E −EF ) where EF is the Fermi energy. Substi-
tution of Eqs. (4.9, 4.11) into Eq. (4.8) provides a starting expression for the corresponding
response coe�cient CL:

CL ≡ δτ̄

δEL
=

1
2π

Tr [i(σGr −Gaσ)(σ · s)BL − σBGr(σ · s)BLGa] , (4.12)

where all omitted energy arguments equal the Fermi energy EF .
In order to extract the dependence of the response coe�cient CL on orientation of the

spin accumulation s and the magnetization direction n, the explicit structure of the Green's
functions Gr,a of the Hamiltonian (4.1) with respect to the spin must be used,

Gr,a =
Gr,a
↑ +Gr,a

↓
2

+
Gr,a
↑ −Gr,a

↓
2

(σ · n), (4.13)

where the spin-resolved Green's functions are de�ned by

Gr,a
s (E) = [E −Hs − Σr,a(E)]−1 , s = ↑, ↓ . (4.14)

The substitution of Eq. (4.13) into Eq. (4.12) reduces its r.h.s. to a sum of terms of the form
Tr(ξX) = trS(ξ)tr(X) where ξ is a matrix in the spin indices only while X is a matrix in the
other (site and orbital) indices and where the symbols trS and tr denote the respective trace
operations. Further steps employ the rules (4.3) and their consequences for trace relations:

trS[σ(σ · s)] = 2s,
trS[σ(σ · n)(σ · s)] = 2in× s,

trS[σ(σ · n)(σ · s)(σ · n)] = 4(n · s)n− 2s. (4.15)
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The resulting expression for CL follows after a lengthy but straightforward manipulation:

CL = D1s+D2s× n−D3(n · s)n, (4.16)

where the prefactors D1, D2 and D3 are given by

D1 =
1
2π

tr
[
i
(
Gr
↑ +Gr

↓ −Ga
↑ −Ga

↓
)BL − BGr

↑BLGa
↓ − BGr

↓BLGa
↑
]
,

D2 =
1
2π

tr
[(
Gr
↑ −Gr

↓ +Ga
↑ −Ga

↓
)BL + i

(BGr
↑BLGa

↓ − BGr
↓BLGa

↑
)]
,

D3 =
1
2π

tr
[B (

Gr
↑ −Gr

↓
)BL

(
Ga
↑ −Ga

↓
)]
. (4.17)

The form of Eq. (4.16) can be simpli�ed by using a general relation

i [Gr(E)−Ga(E)] = Ga(E)B(E)Gr(E) (4.18)

that follows from Eqs. (4.6, 2.62). After inserting the spin-resolved counterparts of Eq. (4.18),
i(Gr

s −Ga
s) = Ga

sBGr
s (s = ↑, ↓), in the expression (4.17) for D1 one obtains D3 = D1. The

previous formula (4.16) for the response coe�cient CL can thus be rewritten as

CL = D1n× (s× n) +D2s× n. (4.19)

Note that this results has a general form of a vector perpendicular to n, in agreement with
Eq. (4.4). A closer inspection of the real quantities D1 and D2, Eq. (4.17), reveals their
simple relation to a single complex quantity � the spin-mixing conductance Cmix

L :

Cmix
L =

1
2π

tr
[
i
(
Gr
↑ −Ga

↓
)BL − BGr

↑BLGa
↓
]
, (4.20)

which yields
D1 = D3 = 2ReCmix

L , D2 = 2 ImCmix
L . (4.21)

The formulas (4.19, 4.20, 4.21) represent the central result of this Chapter. It is interesting
to compare them to the well-known spin-resolved charge conductances, Eq. (2.69). We have
shown that these formulas are invariant with respect to the position of boundaries between
the leads and the intermediate region (Appendix B), which is an important feature for the
consistency of the theory and for practical calculations.

4.3 Derivation based on the Kubo theory
The real part of the spin mixing conductance Cmix can also be derived within the Kubo
linear response approach and the result is equivalent to that from the NEGF derivation.
The Hamiltonian is in the form of Eq. (4.1), but we set the magnetization direction along
the z-axis for simplicity:

Ĥ = H0 + γσ̂z, (4.22)
The setup of the system can be seen in Fig. 4.1. We employ the linear response theory
(Sec. 2.4). The spin-transfer torque τ̂α = −i[σ̂α, Ĥ] is substituted as an operator in the
form A = −i [B,H], and the perturbation operator is given as B̃ = σ̂yφ (x), where φ (x)



4.3. DERIVATION BASED ON THE KUBO THEORY 41

is the pro�le of the spin accumulation across layers and the spin accumulation is assumed
to be parallel to the y-axis. Response coe�cient CAB̃ is in general given by three terms
C(1), C(2) , C(3) (Eq. 2.51). If we consider only the most interesting situation, the spin
torque in the direction of the spin accumulation, B̂ = σ̂y, the spin-transfer torque operator
is then

Â = −i
[
σ̂y, Ĥ

]
= −i [σ̂y,H0 + γσ̂z] = 2γσ̂x . (4.23)

The operator Ã is evaluated as follows:

Ã (x) = −i
[
B̃ (x) , Ĥ

]
= −i [φ (x) ,H0] σ̂y + 2φ (x) γσ̂x. (4.24)

Then the terms C(2) and C(3) vanish. Di�erently speaking this combination of A, B̃ opera-
tors satis�es the condition (2.54). The presence of C(3) would require an integration over the
whole energy range below Fermi level even at zero temperature, which would complicate
the solution. This term cannot be shown to vanish in the calculation of an out-of-plane
response in the direction given by σ̂x, therefore we examine only the �rst case here. Then
only the term C(1) constitutes the linear response coe�cient denoted Cmix

K , analogously to
the charge conductance solution and for zero temperature it is given by substituting into
(2.43):

Cmix
K = π

∫
dξf ′ (ξ)Tr {2γσ̂xδ (ξ −H) (−i [φ,H0] σ̂y + 2φγσ̂x) δ (ξ −H)} . (4.25)

Employing explicit spin structure of Green's functions of collinear system (described in the
preceding section) and the zero temperature assumption we �nd after a few manipulations:

Cmix
K = − 2

π
tr

{
2γImGr

↓ ([φ,H0] + 2φγ) ImGr
↑
}

(4.26)

Both γ and [φ,H0] + 2φγ are localized to the intermediate region, hence the trace is
evaluated only in that region. One can quickly �nd that for the Green's functions de�ned
as the resolvent of the Hamiltonian (4.22) the following relations hold:

Gr
↑2γG

r
↓ = Gr

↑ −Gr
↓ , (4.27)

Ga
↓2γG

a
↑ = Ga

↑ −Ga
↓ . (4.28)

Employing the relation between ImGr
s and self-energies, Eq. (2.60) and the de�nition of its

anti-hermitean part (2.61), formula (4.26) can then be rewritten as

Cmix
K =

1
2π

tr
{
Gr
↑BφGa

↑B −Gr
↑BGa

↓φB−
−Gr

↓BφGa
↑B +Gr

↓BGa
↓φB

}
. (4.29)

Operators B are non-zero only at boundaries (interfaces to leads), therefore the response
depends only on spin accumulation φ (x) at these boundaries, its arbitrary variations in the
intermediate region are not signi�cant. Consistently with Sec. 4.2 we express the response
to the spin accumulation in the left lead (L), hence limx→∞ φ (x) = φR = 0 and the pro�le
is then normalized so that limx→−∞ φ (x) = φL = 1. This yields

Cmix
K,L =

1
2π

tr
{(
Gr
↑ −Gr

↓
)BLGa

↑B −
(
Gr
↑ −Gr

↓
)BGa

↓BL
}
. (4.30)
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Note that during BZ averaging this quantity for each k‖ vector is summed together with
its time inversion corresponding to its appropriate −k‖vector and this inversion is related
by symmetry operations to its origin: G

(−k‖
)

= GT
(
k‖

)
. Using these operations one can

show that the NEGF result in the linear response limit for the real part of the spin-mixing
conductance (quantity D3 in Eq. 4.17) is equivalent to that of the Kubo based approach
(Eq. 4.30) if their sums together with their time-inversions are considered:

∑
k‖ C

mix
K,L

(
k‖

)
=∑

k‖ 2ReCmix
L

(
k‖

)
. It has been also proved that an actual shape of spin accumulation pro�le

in the system is irrelevant for the real part of the spin-mixing conductance, it depends only
on its values at interfaces to leads. In NEGF derivation we assumed spin accumulation to
be present only in the leads and now this assumptions was shown to be appropriate.

4.4 Comparison to scattering theory
The resulting dependence of the spin torque, Eq. (4.19) on the orientation of the spin
accumulation and the magnetization is identical to that obtained within the Landauer-
Büttiker scattering theory of transport [15]. In order to make the relation of this traditional
tool to the present approach more explicit, we consider here the simplest case, namely a
one-dimensional system with one propagating mode in both of the identical NM leads.

The con�guration space of the system is a real axis with positions denoted by a continu-
ous variable x (−∞ < x <∞), see Fig. 4.1. The spin-independent part of the Hamiltonian
is given by H0 = −(∂/∂x)2 (atomic units are used) and the exchange splitting γ(x) vanishes
for x ≤ xL and x ≥ xR, where the points xL and xR denote the boundaries between the NM
leads and the intermediate region containing the FM part. The Fermi energy corresponds
to a positive kinetic energy in the leads, EF = k2 with k > 0.

The spin-resolved retarded and advanced Green's functions Gr,a
s (s = ↑, ↓) at this real

energy are constructed from two independent solutions χ1s(x) and χ2s(x) of the Schrödinger
equation for the Hamiltonians H↑ = H0 + γ and H↓ = H0 − γ. The asymptotics of the two
solutions is

χ1s(x) = exp(ikx) for x ≥ xR,
χ2s(x) = exp(−ikx) for x ≤ xL, (4.31)

and the retarded Green's function is given by

〈x|Gr
s|x′〉 =

χ1s(x>)χ2s(x<)
Ws

, (4.32)

where Ws = χ2s(x)[∂χ1s(x)/∂x] − χ1s(x)[∂χ2s(x)/∂x] denotes the (x-independent) Wron-
skian of the two solutions while x> = max{x, x′} and x< = min{x, x′}.

The asymptotic behavior of the solution χ1s(x) for x ≤ xL is given by

χ1s(x) = t−1
s [exp(ikx) + rs exp(−ikx)] , (4.33)

where we introduced the spin-resolved transmission (ts) and re�ection (rs) coe�cients of
the wave incoming from the left. They satisfy the usual condition |rs|2 + |ts|2 = 1 and their
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knowledge allows us to evaluate explicitly the Wronskian in Eq. (4.32), Ws = 2ikt−1
s , as

well as the asymptotics of the solution χ2s(x) for x ≥ xR:

χ2s(x) =
1
ts

exp(−ikx)− r∗s
t∗s

exp(ikx). (4.34)

These relations yield, e.g., the following elements of the retarded Green's functions:

〈xL|Gr
s|xL〉 =

1
2ik

[1 + rs exp(−2ikxL)] ,

〈xR|Gr
s|xR〉 =

1
2ik

[
1− r∗sts

t∗s
exp(2ikxR)

]
,

〈xL|Gr
s|xR〉 =

ts
2ik

exp[ik(xR − xL)]. (4.35)

Other elements, including those of the advanced Green's functions, can be obtained with
help of general identities 〈x′|Gr

s|x〉 = 〈x|Gr
s|x′〉 and 〈x|Ga

s |x′〉 = 〈x|Gr
s|x′〉∗. Since the

antihermitean parts of the self-energy B = BL + BR, Eq. (2.62), are in this particular case
given by

〈x|BL|x′〉 = 2kδ(x− xL)δ(x′ − xL),
〈x|BR|x′〉 = 2kδ(x− xR)δ(x′ − xR), (4.36)

the total spin-mixing conductance, Eq. (4.20) is equal to

Cmix
L =

1
2π

(
1− r↑r∗↓ − t↑t∗↓

)
. (4.37)

Note that the formula is analogous to sum of Eqs. (144) and (146) of [15] and to Eq.
(16) of [91]. The mixing conductance in the �rst formula (144) corresponds to a situation
with only one interface - NM|FM, the transmission across FM layer is included in (146).
In the latter reference another FM layer causing the spin accumulation is also taken into
account, which leads to additional prefactor to the formula (4.37) present in its counterpart
from ref. [91]. This agreement is in fact an extension of the Fisher-Lee's statement [67] that
Kubo formula can be expressed in terms of transition probabilities to the area of spin-mixing
conductance. Note that the spin-resolved CPP conductances, Eq. (2.69), reduce within the
present model to Cs = |ts|2/(2π).

4.5 TB-LMTO-CPA formulation and implementation
The formalism of Section 4.2 is well suited for implementation within the ab initio TB-
LMTO method (Sec. 2.2). The same argumentation as provided in Section III of [62]
for charge conductance can be used to derive TB-LMTO formulation of Eq. (4.20). The
expression of operators BL,R in a LMTO representation is analogous to that of current
operators (Eq. 10 of [62]):

BL,R =
(
∆̂α

)1/2
Bα
L,R

(
∆̂α

)1/2
. (4.38)
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Since matrices ∆̂α are space diagonal and operators BL,R are localized at system boundaries,
terms

(
∆̂α

)±1/2
present in Eq. (4.38) and Eq. (11) of [62] are localized there as well. Hence

these terms are spin-independent and the cancellation of these terms during multiplications
involving Green's functions for di�erent spin channels in Eq. (4.20) is not obstructed. An
analogue of Eq. (14) of [62], the �nal TB-LMTO formula for spin-mixing conductance Cmix

L
can then easily be derived. Its value per unit two-dimensional (2D) cell is given by

Cmix
L =

1
2π

1
N‖

tr
[
i
(
gr
↑ − ga

↓
)BL − (BL + BR) gr

↑BLga
↓
]
, (4.39)

where N‖ refers to a large number of 2D cells in directions parallel to atomic layers and the
trace is taken over the site and orbital indices of the intermediate region.

For epitaxial systems with perfect 2D translational symmetry, the evaluation of Eq. (4.39)
rests on the lattice Fourier transformation of the involved matrices. For FM layers with sub-
stitutional disorder, attached to non-random NM leads, the CPA is used for con�gurational
averaging. The con�gurational average of the second term (quadratic in Green's functions)
in Eq. (4.39) has the structure of Eq. (3.1) and thus CPA vertex corrections are to be
evaluated for it and this can be done in complete analogy to charge conductance (Chap.
3). The derivation of the general formula for CPA vertex corrections (Eq. 3.4) performed
in [74] is valid also in case that the involved Green's functions correspond to di�erent spin
channels s, s′. Then:

Γs,s′
R (zµ, zν) =

〈
tsR (zµ) Ḡs (zµ)BḠs′ (zν) ts

′
R (zν)

〉
+ (4.40)

∑

R′(6=R)

〈
tsR (zµ) Ḡs(zµ)Γs,s′

R′ (zµ, zν) Ḡs′ (zν) ts
′

R (zν)
〉
.

Spin indices were located up for tR, ΓR to maintain readability. The term tr
〈
(BL + BR) gr

sBLga
s′
〉

can undergo the same operations that were applied to tr 〈g (zµ)BLg (zν)BR〉 in Sec. 3.3.
The formula for VC contribution to this term (analogous to Eq. (4.41) for charge conduc-
tance) reads:

tr 〈gr
sBLga

s′ (BL + BR)〉V C =
∑

p1B1Λ1

∑

p2B2Λ2

(4.41)

[ḡa
s′ (BL + BR) ḡr

s ]
Λ̃1
p1,B1

[(
∆s,s′

)−1 (0, E + i0, E − i0)
]Λ1 Λ2

p1,B1;p2,B2

[ḡr
s (BL) ḡa

s′ ]
Λ2
p2,B2

The de�nitions of ∆s,s′ and terms of the form [ḡsBḡs′ ] are easy to obtain from their charge
conductance counterparts (Eqs. 3.21 and 3.22).

Note that due to Eq. (4.18) the real part of Cmix
L can be expressed in the form of term

D3 from Eqs. (4.17), where both terms are quadratic in Green's functions. TB-LMTO
formula analogous to Eq. (4.39) can then be derived:

ReCmix
L =

1
2π

1
N‖

tr
[
(BL + BR)

(
gr
↑ − gr

↓
)BL

(
ga
↑ − ga

↓
)]
. (4.42)
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Figure 4.3: fcc Cu | Ni | Cu in (111) and (001) directions and Cu | Py (Ni0.84Fe0.16) | Cu
(111) junctions: Real and imaginary parts of spin-mixing conductance as functions of FM
layer thickness.

In this case vertex corrections must be evaluated to more terms than in the case of Eq.
(4.39). The decomposition of Cmix

L into coherent and incoherent part is then ambiguous.
Nevertheless, the physical observable is their sum and it is independent of the choice between
Eq. (4.42) and the real part of Eq. (4.39).

4.6 Summary of calculations results
Calculations were performed for model junctions with purely interface scattering (Co and
Ni sandwiched by fcc Cu leads, Fe with bcc Cr and V leads), junctions with interface and
bulk scattering (disordered Cu0.2Ni0.8 and Ni0.84Fe0.16 with fcc Cu leads), junctions with
halfmetals (Co2MnSi and Mn-doped GaAs with bcc Cr leads), or tunneling junctions with
vacuum between the FM layer and one of the NM leads (Co with fcc Cu leads). All interfaces
were clean except for one case ( Co with Cu leads ), 4 layers of NM leads on each side were
included in the intermediate region. The BZ-averages were evaluated using N‖ ≈ 500 k‖
points in the IBZ (equivalent to about 5000 k‖ points in the full 2D BZ).

Dependences of spin-mixing conductance on FM layer thickness are shown in Fig. 4.3
for systems with Ni and permalloy as FM layers, Fig. 4.4 for systems based on Co and
Fig. 4.5 for systems based on (Ga0.92Mn0.08) As diluted magnetic semiconductor (DMS).
Concerning another examined half-metal, Co2MnSi, the trends (Fig. 8.7) are very similar
to that of (Ga,Mn)As. There is one feature which has been found to be common for all
examined materials: with respect to the FM thickness the spin-mixing conductance is either
a constant or oscillating around a constant value once the thickness is big enough so that
interface states do not change. Oscillations are decaying with FM layer thickness until Cmix

L
reaches its saturation value.
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Figure 4.4: fcc Cu | Co | Cu in (111) and (001) directions and Cu | Ni | Cu (111) junctions:
Real and imaginary parts of spin-mixing conductance as functions of FM layer thickness.
The imaginary part for Cu | Co | Cu (001) is very similar to its (111) counterpart (not
depicted).

Note that these quantum oscillations of mixing conductance are present for both pure
transition metals but for disordered systems as permalloy and DMS they are smeared out,
a necessary precondition for their presence is coherence. The spin-mixing conductance is
only weakly a�ected by interface roughness contrary to the GMR e�ect, see Fig. 4.6 for
Cmix
L as a function of interface disorder in Cu | Co | Cu junctions. Figs. 4.6 and 4.5 provide

also information about the participation of the coherent and incoherent contributions to
Re Cmix

L obtained from Eq. (4.42). If Re Cmix
L is calculated from Eq. (4.39), the vertex

contributions are generally much smaller. The fact that for vanishing interface disorder the
incoherent part approaches zero helps to verify that the CPA implementation is correct.

There is also an apparent di�erence in the extent of quantum oscillations between Co
and Ni (Fig. 4.4), oscillations of the former one are generally weaker and they are damped
much faster. For half-metallic Co2MnSi oscillations almost completely vanish even without
disorder (Fig. 8.7). This can be ascribed to the di�erence of magnetic exchange splitting
between the two metals, which is much bigger in Co than Ni. States propagating across FM
layer and non-collinear to its magnetization precess, see explanation of this phenomena in
Sec. 5.1. The frequency of this precession is di�erent for di�erent points of Fermi surface,
which leads to cancellation of these states on average for su�ciently thick FM layers [15].
The precession frequency depends also linearly on the exchange splitting, therefore the
contribution to spin-mixing conductance due to transmission across FM layer vanishes on
much shorter distance for materials with bigger splitting (Co, Co2MnSi). This behavior is
equivalent to the very short magnetic coherence length and it proves that the spin-mixing
conductance is predominantly an interface property for these metals. On the contrary,
the transmission contribution to spin-mixing conductance remains quite high in Ni based
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Figure 4.5: Thin Cr | (Ga0.92Mn0.08)As | Cr slabs: Real and imaginary parts of the spin-
mixing conductance, the decomposition of the real part into coherent and incoherent contri-
butions based on results of Eq. (4.42) and CPP conductance spin polarization as functions
of (Ga0.92Mn0.08)As layer thickness. The sign of the imaginary part is reversed to allow
better graph composition.

junctions. The often adopted neglect of this term (for example the Valet-Fert model) is
not justi�ed in this case. Note that there is also a signi�cant di�erence between the extent
of oscillations for (001) and (111) directions (Fig. 4.3), this can probably be ascribed to
di�erent Cu - Ni Fermi surface matching in these two cases. Less distinct di�erence can be
seen between (001) and (111) Cu | Co | Cu junctions (Fig. 4.4).

4.6.1 Properties of saturated mixing conductance
Table 4.1 provides a comparison of spin-mixing and CPP charge transport properties of
selected NM | FM | NM junctions representatives. Once the saturation thickness is reached
the spin current is completely absorbed in all transition metal systems and the real part of
the mixing conductance per unit cell is thus proportional to Sharvin conductance of leads
CSh

N . This �nding is in agreement with the conclusions of [89].
Another interesting observation is the fact that the imaginary part of Cmix approaches

zero or is at least an order of magnitude lower than the real part for junctions based on
transition metal ferromagnets once the saturation thickness was reached; the same thing
was found also in other works [87, 89]. This property has been employed in a number of
theoretical studies concerning steady-state torques [81, 82] and angular magnetoresistance
[92] of spin valves as well as magnetization dynamics of thin FM �lms [89]; its validity,
however, has to be checked in each particular case. Our calculations show that (Ga,Mn)As
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Figure 4.6: Real and imaginary parts of spin-mixing conductance and the decomposition of
the real part into coherent and incoherent contributions based on results of Eq. (4.42) as
functions of interdi�usion concentration x in fcc Cu | 4 ML Co | Cu (111) system.

and Co2MnSi do not have this property, an explanation of this based on the free-electron
model was proposed for the Co2MnSi case [16].

In (Ga,Mn)As based diluted magnetic semiconductors the average exchange splitting is
much smaller than in the 3d transition metals and the size of the Fermi surface for the spin-
up channel is small. This could enhance the coherence length [15, 82], because it probably
prevents the possibility of cancellation of contributions with di�erent k‖ vectors [15] common
in transition metal systems. It is interesting to see that the thickness dependence of Re Cmix

L
is almost immediately saturated, which can probably be ascribed to disorder destroying the
coherence, but Im Cmix

L is far from zero while also being not oscillatory.
For (Ga,Mn)As junctions both real and imaginary parts of the mixing conductance in-

crease with Mn-content x in a similar way as the charge conductance or spin polarization,
the ratio between Re Cmix and C remains roughly the same when Mn concentration is
varied. This behavior was not observed in any other system, disorder induced reduction of
conductance had no e�ect on the saturated mixing conductance; it can probably be ascribed
to a change of Fermi surface due to Mn-content change. The advantage of (Ga,Mn)As is its
good Cmix

L /C ratio together with low energetic barrier against magnetization change. Suc-
cessful experiments with magnetization reversal have already been performed in (Ga,Mn)As
at critical currents signi�cantly lower than for other systems [93].

4.6.2 Magnetic tunneling junctions
Our calculations also con�rm the previous result [87,94] that in properly designed magnetic
NM | FM | Vac | NM tunneling junctions (Fig. 4.8) the total charge conductance C can
be made arbitrarily small, while the mixing conductance Cmix

L remains of the same order
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Table 4.1: Saturated spin-mixing conductances Cmix
L (in atomic units) for selected thin

layers, its ratio to charge conductance C and Sharvin conductances of NM leads CSh
N .

Saturation values are calculated as averages over 10 thickest calculated slabs. For strongly
oscillating Cu | Ni | Cu (001) the average is taken over its last period. Note that conductance
of (Ga,Mn)As decays quickly with its thickness, the value for thickness of 9ML is taken to
provide rough orientation.

material/leads Re Cmix
L Im Cmix

L Re Cmix
L /C CSh

N

Cu | Ni | Cu fcc(111) 1.53 0.16 1.37 1.59
Cu | Cu0.2Ni0.8 | Cu fcc(111) 1.51 0.14 2.01 1.59
Cu | Ni0.84Fe0.16 | Cu fcc(111) 1.53 0.11 2.05 1.59

Cu | Co | Cu fcc(111) 1.52 -0.02 1.55 1.59
Cu | Ni | Cu fcc(001) 1.74 0.11 1.35 1.86
Cu | Co | Cu fcc(001) 1.88 0.06 1.79 1.86
V | Fe | V bcc(001) 2.79 -0.23 1.99 2.93
Cr | Fe | Cr bcc(001) 2.41 -0.07 2.08 2.43

Cr|(Ga0.92Mn0.08)As|Cr bcc(001) 0.71 -0.58 4.06 5.24
Cr|Co2MnSi|Cr bcc(001) 4.74 2.46 11.97 5.24

Cu | Co | Vac | Cu fcc(111) 1.47 -0.06 3.4× 1010 1.59

Figure 4.7: Cr | 21ML (Ga1−xMn)As | Cr slabs: Spin-mixing conductances, CPP charge
conductances and its spin polarization as functions of Mn concentration x .
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Figure 4.8: Magnetic tunneling junction with a schematic graph of one-electron potentials
and the Fermi energy.

as without tunneling. This can be seen from a perturbation expansion with respect to
exchange splitting (V↑ − V↓) in the FM layer. If g↑ is considered as a perturbation to g↓:
g↑ = g↓ + g↓Tg↓, the T-matrix is given as follows:

T = (V↑ − V↓) [1− g↓ (V↑ − V↓)]−1 . (4.43)

Matrix T is nonzero only inside FM layer, the set of layer indices associated with it is
denoted as F . Terms of the form (g↑ − g↓)p,p′ present in Eq. (4.42), where p, p′ are layers
adjacent to one of the leads (L, R), can be expanded as

(g↑ − g↓)L,R = g↓L,FTg↓F,R
(g↑ − g↓)L,L = g↓L,FTg↓F,L . (4.44)

Note that g↓L,F is not crossing the vacuum area therefore the term (g↑ − g↓)L,L is not
exponentially damped. In the TB-LMTO formulas for spin-mixing conductance Cmix

L (4.42,
4.39) there is always a term where only Green's functions on the left side of the junction
are involved, which is thus not suppressed if FM layer is located left from the vacuum area.
Similarly for a spin-mixing conductance due to spin accumulation in right lead Cmix

R a term
with only Green's functions on the right side is present and it is non-negligible if FM layer
is right from the vacuum area. However, charge conductance (2.68) contains always Green's
function across the junction and these must be exponentially damped when tunneling occurs.
This is illustrated in Tab. 4.1 by a Cu | Co | Vac | Cu junction, where Vac represents 6
monolayers of empty spheres.



Chapter 5

Spin torques in non-collinear layered
systems

Consider electrons incident on a ferromagnetic (FM) layer with a spin polarization non-
collinear to FM magnetization direction. Their state is not an eigenstate inside the FM
layer and decays exponentially with its thickness. Electrons lose their original moment,
which is then transferred into the FM layer and exerts the spin torque on it. The problems
mentioned in previous chapters were evaluated using the two-current model in which one as-
sumes that the e�ect of spin polarized currents can be described in terms of separately calcu-
lated spin-up and spin-down currents. However, a complete model of a structure exhibiting
current induced magnetization reversal must contain non-collinear magnetizations, so the
electrons can possess non-collinear spin polarizations. This problem cannot be simpli�ed to
a two-current model, relevant quantities are vectors in spin space and can be conveniently
represented by 2× 2 matrices. The non-collinearity represent a formidable challenge in the
formulation of a computational model, in fact majority of operations involved in quantity
evaluations have to be reprogrammed to respect the general spin structure. There are many
non-collinear structures, which can exhibit current induced magnetization reversal. The
simplest one is the so called spin valve composed of two FM layers separated by a NM
spacer and connected to NM leads (Fig. 5.1), where the �rst magnetic layer FM1 simply
polarizes the current, and the polarized current exerts the torque on the FM2 layer. Domain
walls traversed by a current represent another example of such structure, here the torque
causes steady movement of the domain wall. Current induced domain wall propagation [95]
is currently quite well experimentally examined and may lead to important applications in
the data storage area. A principally similar e�ect is expected to be possible in spin spirals,
but has not been experimentally observed yet [96].

5.1 Spin currents and spin-transfer torques
Apart from standard charge current, a spin current density can be de�ned:

←→Iσ (r) = iRe [Ψ∗ (r)σ ⊗ vΨ(r)] , (5.1)

where σ = (σ̂x, σ̂y, σ̂z) is the vector of Pauli matrices.

51
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Figure 5.1: Junction comprising two FM slabs with non-collinear (in this case perpendicular)
magnetizations sandwiched by NM leads. The direction of the spin accumulation s generated
in the NM spacer by current lies in the x− z plane.

Let us examine its basic properties, mainly a continuity equation, which should be
consistent with the de�nition (5.1). We choose to show the derivation for the direction of
an arbitrary Pauli matrix σ̂α to maintain clarity about the structure of involved quantities
in spin space, a general vector of Pauli matrices can of course be decomposed to it. Time
derivative of the spin-density matrix is given as

∂

∂t
(Ψ∗σ̂αΨ) =

(
∂

∂t
Ψ∗

)
σ̂αΨ + Ψ∗σ̂α

∂

∂t
Ψ , (5.2)

explicit r dependence of Ψ(r) matrices is omitted. The Schrödinger equation can be em-
ployed:

∂

∂t
Ψ = −i

(
−41̂ + Vp1̂ + V̂s

)
Ψ , (5.3)

where Vp and V̂s are spin-independent and spin-dependent parts of the Hamiltonian. The
latter vanishes in the non-magnetic parts of the system. Unit matrix in spin space

(
1̂
)
will

be omitted in the following text. Substituting (5.3) into (5.2) leads to

∂

∂t
(Ψ∗σ̂αΨ) = i

(
−4+ Vp + V̂s

)
Ψ∗σ̂αΨ + iΨ∗σ̂α

(
4− Vp − V̂s

)
Ψ . (5.4)

Using the fact σT
α = σ∗α valid for all Pauli matrices, after a few manipulations the Eq. (5.4)

is simpli�ed:

∂

∂t
(Ψ∗σ̂αΨ) = −i (4Ψ∗) σ̂αΨ + iΨ∗σ̂α4Ψ + iΨ∗

[
V̂s, σ̂α

]
Ψ . (5.5)

Then the �rst two terms on the RHS can be identi�ed with the divergence of the spin current
density (Eq. 5.1) projected to direction σα:

i5 · (Ψ∗σ̂α 5Ψ−Ψσ̂α
∗ 5Ψ∗) = 5 · Îσ

α . (5.6)



5.1. SPIN CURRENTS AND SPIN-TRANSFER TORQUES 53

Contrary to the charge conductance the continuity equation contains an additional term
iΨ∗

[
V̂s, σ̂α

]
Ψ, in vector formulation iΨ∗

[
V̂s,σ

]
Ψ. As was already pointed out [84], spin

is generally not conserved and the additional term corresponds to an in�uence of a spin-
split potential. For the potential given by a magnetic exchange �eld B, the term reads
i [B · σ,σ] = 2B × σ due to the Pauli matrix algebra. This term perpendicular to both
the magnetic �eld and the spin density is apparently similar to the precession term present
in the Landau-Lifshitz-Gilbert equation. In a ferromagnet, where the �eld B corresponds
to its exchange �eld, this spin-precession term contains averages over many states with
di�erent Larmor frequencies, which leads to a quick relaxation of terms in the spin-density
matrix non-collinear to the magnetization n in the ferromagnet [86]. However presence
of these terms due to divergence of spin current also twists the magnetization of the FM
layer and the e�ective �eld B, the absorbed spin is transferred to the lattice magnetization
giving rise to spin-transfer torque τ . These processes have to be studied in more detail
when the dynamics of spin-transfer torque generated rotation is examined, here we restrict
only to evaluation of torque τ acting to a FM layer with prescribed uniform magnetization
direction n and not its further evolution. A discussion about how the spin-transfer torque
is balanced by the torque exerted by the e�ective magnetic �eld and the relations valid for
the spin-current divergence in a steady state can be seen in [97].

The mechanism of the spin-precession term leads to the quick decay of spin current
component perpendicular to the magnetization direction n of FM layer [15] so that the
current leaving the su�ciently thick FM layer is polarized parallel to n. Note that the
component parallel to the magnetization can be understood completely within the two-
current model (with no non-collinearity taken into account), it can be only re�ected or
transmitted as it is una�ected by the spin-precession term. The spin-precession term is
perpendicular to n and the torque τ is too. In order to �nd τ it is natural to evaluate
spin currents in NM regions adjacent to the FM region. The spin-precession term is zero
there (without the spin-orbit coupling), hence spin current is conserved and its value does
not depend on a position inside the NM region. A deviation from the equilibrium (non-
polarized) spin density called spin accumulation (Sec. 4.1) may arise there because of spin
currents and it is not destroyed as in FM layer. Spin-transfer torque acting on a subsequent
FM layer can alternatively be related directly to it.

The additional source term in continuity equation is also denoted as angular spin current
and this kind of continuity equation is analogous to a �ow of a classical vector [98]. If spin-
orbit coupling is included in V̂s and thus participates in the angular spin current, it becomes
particularly important to postulate a better de�nition of the spin current so that it remains
conserved [99]. Within fully relativistic treatment a suitable generalization of spin density
has been discovered, leading to a new de�nition of spin current; spin-transfer torque due to
spin-orbit coupling has been examined in this framework [100]. Recently a relation between
the electrical polarization and the antisymmetric components of the spin current has been
found based on fully relativistic theory [101], which allowed to propose a way to measure
spin-current directly and thus help experimental characterization of the spin-transfer torque
phenomena.
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5.2 Ab initio formulation
In LMTO approach system's spin-dependent properties are incorporated in the potential
function P . In the non-collinear situation these are general matrices in spin space P̂ . In the
local reference frame associated with its magnetization direction its matrix P̂ (0) is diagonal
in spin space:

P̂ (0) =
(
P ↑ 0
0 P↓

)
. (5.7)

Its representation in the global reference frame is obtained using a rotation matrix in spin
space, assuming rotation by angle ϑ in the x− z plane:

R̂ϑ =
(

cos ϑ
2 − sin ϑ

2

sin ϑ
2 cos ϑ

2

)
, P̂ (ϑ) = R̂ϑP̂ (0) R̂ϑ

+ (5.8)

In principle, self-consistent DFT calculation of electronic structure should be also per-
formed in spin space, leading to an exact knowledge of Green's functions direction in spin
space. Our aim here is not to examine systems with complicated non-collinear bulk mag-
netic structure but only non-collinear arrangement of separated magnetically homogeneous
layers. This problem can be replaced within reasonable accuracy by a DFT solution of a
corresponding collinear system, parts of its ground state solution corresponding to magnetic
layers are then rotated in spin space by means of Eq. (5.8) to attain the desired angle. This
is justi�ed by the theory leading to the frozen potential approximation [102]. Di�erently
speaking we assume that the ground state of one magnetic layer is not in�uenced by a change
of magnetization direction of another magnetic layer. It also implicates that the magnetic
structure of material is assumed completely known and prescribed initially, deviations from
it that would minimize the total energy cannot be found this way, this is the same as for
two-current model solutions.

5.2.1 Spin currents from linear response theory
As we have shown spin torques acting on FM layers of a magnetic multilayer are closely
related to spin currents �owing through the structure. These are not conserved in non-
collinear systems, hence the point of their evaluation must be properly chosen. The spin
current operator at a given point r is de�ned as

Jσ (r) = −i[X (r) ,H]σ . (5.9)

Its linear response to external potential applied at the leads is evaluated (Sec. 2.4), we
label it spin conductance Cσ. For the corresponding spin-torque response we use the term
torkance Cτ . One should �rst check whether the spin conductance ful�lls the conditions
(2.54) that allow the general linear response formula to reduce to the canonical form (2.43).
For this purpose we choose the axis system so that both magnetization directions lie in the
x−z plane and the response direction �rst coincides with the x axis (the in-plane response).
Hence the Hamiltonian reads

Ĥ = H0 +Wxσ̂x +Wzσ̂z , (5.10)
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where H0 represents the spin-independent part of the Hamiltonian and Wx, Wz are compo-
nents of the exchange splitting. The explicit dependence of H0, Wx,z and X on position is
omitted for simplicity. The response operator is

Â‖ = −i
[
X, Ĥ

]
σ̂x = −i [X,H0σ̂x +Wx + iWzσ̂y] . (5.11)

Note that both operators X andWx, Wzσ̂y are diagonal in real space, Wzσ̂y is non-diagonal
in spin space, but X is a unit matrix there, hence their commutator is always zero. The
operator B̃ corresponds to an external electrostatic potential ϕ (r). Only the trivial choice
Û = 1 = Û−1 satis�es the condition for the Hamiltonian (�rst Eq. of 2.54). Obviously
B̃T = B̃, hence ε = 1. For the operator Â‖ = −i [X,H0σ̂x] it follows:

−ÂT
‖ = −i [X,H0σ̂x] (5.12)

The last condition in (2.54) is therefore satis�ed. A similar derivation for Â‖z = −[X, Ĥ]σ̂z

leads to the same conclusion, but for the out-of-plane response Â⊥ = −i[X, Ĥ]σ̂y the condi-
tion (2.54) cannot be satis�ed, hence all terms in Eq. (2.51) need to be evaluated. Generally
a linear combination of Pauli matrices after the commutator in Â should ful�ll the same
condition as the Hamiltonian, and therefore we restrict the calculation to in-plane compo-
nents. Now the general spin current operator (5.9) is substituted into Eq. (2.43) with the
assumption of zero temperature:

Cσ (EF ) = − 1
π
Tr

{
Im Ĝr (EF ) [X,H]σIm Ĝr (EF ) [φ,H]

}
. (5.13)

5.2.2 TB-LMTO expression
Eq. (5.13) is expressed in the LMTO formulation in a way analogous to that for charge
conductance [65]. Note that a transformation to a particular LMTO representation corre-
sponding to its TB form is desirable, and one should �nd a formulation of (5.13) independent
of representation. We follow the way adopted in [62] for charge conductance. All potential
parameters (Sec. 2.2.1) are diagonal in space, but now they are general matrices in spin
space. Note that the tight-binding Hamiltonian (see Eq. (8) of [62]) therefore contains
terms

(
∆̂α

Rl

)1/2
ŜRL,R′L′ (z)

(
∆̂α

Rl

)1/2
o�-diagonal in real space, which are now non-trivial

in spin space within exchange-split areas, and the commutator
[
X, Ĥ

]
may possibly void

the last condition in (2.54). However, consistently with statements in Sec. 5.1 we choose
to evaluate spin currents only in NM areas, the operator X is then replaced by a projector
ΠN−N to (yet unspeci�ed) continuous set of layers terminated at NM areas. The commu-
tator

[
ΠN−N , Ĥ

]
is non-zero only inside NM areas, where Ĥ reduces to the form of H0 and

the argumentation of the preceding subsection applies.
For the �rst-order accuracy, we note that ĜR,R′ (z) =

(
∆̂α

)−1/2

R
ĝα

R,R′ (z)
(
∆̂α

)−1/2

R′
remains valid regardless of the spin structure of the involved matrices. These matrices
are multiplied by current operators localized at NM areas, hence the only involved spatial
parts of matrices

(
∆̂α

)−1/2
are also unitary in spin space, so that they commute with σ.
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They can then be canceled with
(
∆̂α

)1/2
in the transformed current operator (Eq. (10) of

Ref. [62]). Spin conductance formula for non-collinear situations in TB-LMTO is therefore
analogous to Eq. (2.59), note that commutators of an operator diagonal in space with H
can be replaced by commutators with S :

Cσ
N−N (EF ) = − 2

π
Tr {Im ĝr,α (EF ) [ΠN−N , S

α] σIm ĝr,α (EF ) [φ, Sα]} . (5.14)

For the second-order accuracy, the derivation presented in Section III B of [62] holds also for
potential parameters given as matrices in spin space. Current operators are again nonzero
only in NM regions and σ commutes there with the term

(
∆̂

)−1/2
{1 + Sα (α− γ)} present

in the second-order current operator (Eq. (28) of Ref. [62]). Hence it can be shifted so that
it is adjacent to [Πp, S

α] and the resulting formula (5.14) is correct up to the second order
in energy expansion ε = E − Eν . The LMTO representation index and energy argument
will be omitted from now on.

In order to �nd the torkances Cτ
2 acting on the monitored magnetic slab (FM2) in a spin

valve structure we need to express the spin conductances Cσ in NM areas on both sides of
FM2. One side can correspond to an end of the structure, we choose the right lead (labeled
R), the opposite side is always inside the NM layer between two FM layers and one its layers
is chosen and labeled p (Fig. 5.1). The choice of the projector ΠN−N to be restricted to
layers between p and R leads directly to torkance evaluation. Term [ΠN−N , S

α] is nonzero
only at the edges of this area, calculation of Eq. (5.14) at these two points separately
corresponds to an evaluation of spin conductances at layers p and N (adjacent to R): Cσ

p

and Cσ
R . The torkance acting on the second FM layer is then given by

Cτ
2 = Cσ

R −Cσ
p , (5.15)

in agreement with the presented statements about the spin current continuity (Sec. 5.1).
Equation (5.14) can be evaluated using Eq. (2.60) as in Sec. 2.4.1. Equation (2.64) can

be utilized only for the commutator [φ, S], this yields:

Cτ
2 = − 1

2π
Tr{Bĝr [ΠN−N , S] σĝrB(ϕga − gaϕ)} . (5.16)

Using the assumption of �eld source in the left lead (Bϕ = ϕB = BL) and performing
substitution (2.60) backwards leads to the following formula:

Cτ
2 =

i

2π
Tr {[ΠN−N , S] σgrBLga − [ΠN−N , S] σgaBLgr} . (5.17)

Spin conductance at the right lead (Cσ
R) corresponds to the �ux between layers N and

N + 1:

Cσ
R =

i

2π
Tr{SN,N+1σĝ

r
N+1,1BLĝa

1,N − SN+1,Nσĝr
N,1BLĝa

1,N+1 −
SN,N+1σĝ

a
N+1,1BLĝr

1,N + SN+1,Nσĝa
N,1BLĝr

1,N+1} . (5.18)
Employing identities (A16) of [65] leads to a compact formula in the Caroli-like form [64].
The �nal result is that for the charge conductance (2.68) multiplied by the vector of Pauli
matrices:

Cσ
R (zµ, zν) =

1
2π

Tr {ĝN,1 (zµ)BLĝ1,N (zν)BRσ} . (5.19)
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Note that Cσ
R (E + i0, E − i0) 6= Cσ

R (E − i0, E + i0) since σ̂y 6= σ̂y
T . Charge conductance

formula for non-collinear situations is obtained from Eq. (5.19) by substitution of σ by a
unity matrix in spin space. Note that due to the current conservation it is independent of
position, but the most convenient choice is to evaluate it at layer N adjacent to the right
lead as in Eq. (5.19).

Spin conductance at the opposite side corresponds to the �ux between layers p and p+1,
its expression is analogous to Eq. (5.18), where N is replaced by p. This quantity cannot
be reduced to more simple form like Eq. (5.19). The �nal formula for spin conductance at
layer p:

Cσ
p (zµ, zν) =

i

2π
Tr {BL (ĝ1,p (zµ)Sp,p+1σĝp+1,1 (zν)− ĝ1,p+1 (zµ)Sp+1,pσĝp,1 (zν))} .

(5.20)

5.2.3 Ab initio torkance in non-collinear spin valves
For a non-collinear NM | FM1 | NM | FM2 | NM system there is another approach leading
very quickly to a torkance formula, limited also to its in-plane part. Note that the torque
acting on each FM layer is perpendicular to its magnetization direction as discussed in
Sec. 5.1. Therefore the in-plane component of the torque acting on layer FM2 τ2‖ is fully
determined by the projection of τ2 to the magnetization direction n1:

∣∣τ2‖
∣∣ = τ2 ·n1/ sinϑ,

where ϑ is an angle between n1 and n2. Also note that this projection equals the projection
of the total torque τ acting on the spin valve, because for FM1 it also holds τ1 ⊥ n1 :

τ2‖ · n1 = τ · n1 . (5.21)

The fact that the total torkance can be used instead of a partial one signi�cantly simpli�es
the calculation. We perform the derivation in NEGF formalism here, similar to the one
performed in Sec. 4.2. Operator τ can be chosen as the examined response operator,
the same as in the spin-mixing conductance derivation, and the only physically reasonable
quantity, its projection τ ·n1, is then extracted immediately. In contrast to the assumptions
of Sec. 4.2, the perturbation of the Hamiltonian is now due to external electrostatic potential
and thus not spin-polarized, the non-collinear spin structure is incorporated into system
Green's functions. The �rst order change of self-energy is then

δΣ<
L = f ′ (E)BLδφL . (5.22)

Substitution of Eqs. (5.23, 4.9, 5.22) into Eq. (4.8) and use of the fact that [σ,BL] = 0
allows to obtain Cτ

2‖, the linear response coe�cient for τ2‖ given by the �nal formula:

Cτ
2‖ sinϑ =

1
2π

Tr {(n1 · σ) [i (Gr −Ga)BL −GrBLGaB]}

=
1
2π

Tr {(n1 · σ) [GrBRGaBL −GrBLGaBR]} (5.23)

In contrast to the derivation of Cτ
2 , Eq. (5.15) the whole formula can be expressed in

the Caroli-like form as charge conductance does. For the situation with external potential
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acting on the opposite side (R) of the system the torkance is found to be:

Cτ
R2‖ sinϑ =

1
2π

Tr {(n1 · σ) [GrBLGaBR −GrBRGaBL]} , (5.24)

which is the exact opposite of Eq. (5.23). This way a crucial feature of current induced
magnetization reversal is directly obtained: current direction reversal causes also torque
direction reversal [91], which has been already observed in experiments [103] and is in fact
used to recognize current induced magnetization switching from other phenomena. We have
found that total torque in system is exactly antisymmetric with respect to current direction
in agreement with [91], its in-plane component exerted on one of FM layers is then also
antisymmetric due to relation (5.21).

Transformation of formula (5.23) to the TB-LMTO formulation is straightforward:

Cτ
2‖ sinϑ =

1
2π

Tr
{
(n1 · σ)

[
ĝr

1,NBRĝa
N,1BL − ĝr

1,NBLĝa
N,1BR

]}
. (5.25)

5.3 Comparison to spin-mixing conductance
We have presented another calculation of spin torques in Chapter 4. Now an obvious
question arises, what is the relation of its results to the results of the theory presented
here. The �rst one provides spin torques as a response to the spin accumulation, while the
second one relates it directly to the electrostatic potential di�erence (similarly to the well-
known charge conductance) of a more complicated structure where the spin accumulation
is generated internally. We �rst verify whether the spin currents present due to the spin
accumulation lead to the same spin torque as the approach described in Chap. 4 based on
the spin-mixing conductance.

We again examine the NM | FM | NM junction, the spin currents on the two sides of
the FM layer can then be de�ned as

JL = −i[ΠL,H0]σ = −i[ΠLσ,H],
JR = −i[ΠR,H0]σ = −i[ΠRσ, H], (5.26)

where the kinetic energy (intersite hopping) is contained in the spin-independent part H0

of the Hamiltonian H, Eq. (4.1), and where the ΠL and ΠR denote projection operators on
the two NM leads including a few adjacent (non-magnetic) layers of the intermediate region
such that ΠLγ = ΠRγ = 0. The spin accumulation (δEL) again acts as an in�nitesimal
perturbation to the lesser self-energy Σ< (Eq. 4.10), the linear response coe�cients for the
spin currents are de�ned as

KL
L =

δJ̄L
δEL

, KR
L =

δJ̄R
δEL

. (5.27)

Their direct evaluation reveals that because of the similar arrangement of Pauli matrices
they can be obtained by the same approach as in the section 4.2 for the response coe�cient
CL, Eq. (4.12). The explicit expressions are given by

KL
L =

1
2π

Tr [i(σGr −Gaσ)(σ · a)BL − σBLGr(σ · a)BLGa] ,

KR
L = − 1

2π
Tr [σBRGr(σ · a)BLGa] , (5.28)
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where several simple properties of the projectors, such as [ΠL,Σr,a(E)] = 0 and ΠLB = BL
(and similarly for ΠR), were used. Note that KL

L + KR
L = CL which re�ects the above

mentioned relation between the torque and the spin currents.
The resulting formulas can be summarized as

KL
L = 2ReCL,mix

L n× (a× n) + 2 ImCL,mix
L a× n+ (C↑ + C↓)(n · a)n,

KR
L = 2ReCR,mix

L n× (a× n) + 2 ImCR,mix
L a× n− (C↑ + C↓)(n · a)n, (5.29)

where we introduced complex coe�cients in analogy to the spin-mixing conductance, Eq. (4.20),
namely

CL,mix
L =

1
2π

tr
[
i
(
Gr
↑ −Ga

↓
)BL − BLGr

↑BLGa
↓
]
,

CR,mix
L = − 1

2π
tr

(BRGr
↑BLGa

↓
)
. (5.30)

Two comments to these results are now in order. First, the dependence of the spin currents
on the orientation of the spin accumulation (s) and the magnetization (n), Eq. (5.29), is
more complicated than that of the spin torque, Eq. (4.19). Second, an obvious relation
Cmix
L = CL,mix

L +CR,mix
L can be proved from Eqs. (4.20, 5.30). However, this decomposition

does not justify a direct interpretation of the quantities CL,mix
L and CR,mix

L as respective
contributions to the total spin-mixing conductance due to the left and right spin currents,
since the latter contain also terms proportional to the total charge conductance C↑ + C↓
and parallel to the magnetization direction n, see Eq. (5.29). Hence, the quantities CL,mix

L
and CR,mix

L refer only to the transverse components of the left and right spin currents with
respect to the exchange �eld of the FM layer.

In the scattering theory analogy, we can show that Eq. (4.37) can be decomposed to its
left and right contributions due to the transverse spin currents , Eq. (5.30) in the same way
as Cmix

L is decomposed:

CL,mix
L =

1
2π

(
1− r↑r∗↓

)
, CR,mix

L = − 1
2π
t↑t∗↓ (5.31)

We have shown that evaluations of the spin torque from the change of �spin conduc-
tances due to spin accumulation� KL and from the spin-mixing conductance are in fact
equivalent methods, in agreement with the continuity equation for spin currents (5.5). Note
that our non-collinear methods provide only the in-plane component of the torque, while
from the mixing conductance method in-plane (real part) and out-of-plane (imaginary part)
components are obtained. In principle, if the spin accumulation generated in given structure
was known, the spin-mixing conductance should give the spin-torque as well as Eq. (5.23).
Hence the results of Eq. (5.23) contain in addition to spin-mixing conductance information
about the spin accumulation. Information about the spin accumulation can alternatively
be obtained from the magneto-electronic circuit theory [15, 86], which is accurate in the
limit of purely di�usive transport. When some trends of Cmix and Cσ for dependencies
where spin accumulation is expected not to be changing signi�cantly are compared, they
should be strongly correlated. The right panel of Fig. 5.2 compares these two spin torque
coe�cients for Cu | Co | Cu | Co | Cu (001) junctions with perpendicular oriented FM slabs
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Figure 5.2: Torkances on the second FM layer in fcc Cu | 5ML Co | 3ML Cu | M ML Co
| Cu (001) junction with perpendicular oriented magnetizations of Co slabs as function of
Co thickness M . Left panel: comparison to its decomposition to contributions due to spin
conductances on left and right side of FM2. Right panel: comparison to the real part of
spin-mixing conductance of a Co layer of thickness M surrounded by Cu leads.

and Cu|Co|Cu (001) slabs respectively as functions of Co thickness M , and the correlation
is clearly visible. It is interesting to examine the behavior of spin conductances on both
sides of the free Co layer (Fig. 5.2, left panel), which together constitute the torkance (Eq.
5.15). The oscillations of the spin torque are mainly due to the variations of the spin con-
ductance on the right side (transmitted spin current), while the oscillations due to re�ected
spin current are weaker.

Table 5.1 provides a comparison of torkances in the junctions Cu | 5ML Co | 3ML Cu
| 11ML X | Cu (001) and mixing conductances in the junctions Cu | 4ML X | Cu (001),
for two di�erent materials subjected to torque: X = Co, Ni. Note that both phenomena
are in�uenced by the material change in a roughly similar way, which again supports the
statements of the previous paragraph.

These statements should not hold in situations where the spin accumulation changes
rapidly with given variable, so that e�ect observed for spin-mixing conductance or for
torkance cannot be seen for the other one. Note the magnetic tunneling junction described
in Sec. 4.6 and the surprising behavior of spin-mixing conductance for this system - it
almost does not decay when tunneling barrier is enlarged. However, for a spin valve con-
taining such element instead of one of FM layers the spin accumulation should probably
decay exponentially similar to the charge conductance and so the torkance should. This
agrees with our results and it is also supported by the observation that while the formula
(4.42) for spin-mixing conductance contains Green's function elements avoiding the tunnel
barrier, only those going through it are present in (5.23). Nevertheless, this fact does not
mean that the design of such junction lacks any application potential, but it must be up-
dated so that enough spin accumulation is generated by an additional current going in other
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Table 5.1: Torkances in junctions Cu | 5ML Co | 3ML Cu | 11ML X | Cu (001) and
corresponding mixing conductances in junctions Cu | 11ML X | Cu (001), for two di�erent
materials subjected to torque: X = Co, Ni. Ratio between Co and Ni results for both these
quantities.

System Cτ
2‖ Re

(
Cmix
L + Cmix

R
)

Ratio Co/Ni
Cu | 5ML Co | 3ML Cu | 11ML Co | Cu 0.37 1.28
Cu | 5ML Co | 3ML Cu | 11ML Ni | Cu 0.29

Cu | 11ML Co | Cu 3.59 1.38
Cu | 11ML Ni | Cu 2.61

direction, as was proposed in [87].

5.4 Summary of calculations results
Non-collinear transport calculation was implemented only for systems with no substitutional
disorder. All calculations were performed for NM | FM1 | NM | FM2 | NM model spin
valves. First we brie�y review few important general properties of obtained results. All these
properties are expected to be ful�lled if there is no fundamental error in the implementation
or formulation of torkance calculation:

• Our calculations have shown perfect agreement between torkances Cτ
2‖ obtained from

(5.23) and a projection of Cτ
2 from (5.15) to the magnetization direction n1, which

also corroborates the equivalence of the NEGF and Kubo based derivation here.

• The antisymmetry with respect to current direction found as a consequence of the
theory developed for Cτ

2‖ was also veri�ed by means of Cτ
2 obtained from (5.15). All

torkance results will from now on be therefore labeled as Cτ
2‖ without specifying the

method.

• We veri�ed that charge conductance is invariant with respect to an arbitrary rotation
of the whole system in spin space.

• For parallel and antiparallel orientations of FM layers torkance vanish.

• Spin conductances are independent of the measurement position within one NM layer.

• The component of torkance Cτ
2 parallel to the magnetization of the FM2 layer vanish,

and for torkance Cτ
1 the same is valid concerning the direction parallel to FM1 layer.

• Spin currents at the NM layer preceding the FM1 layer are polarized mostly in the
direction of FM1, while those at NM layer after the FM2 layer are polarized in the
direction of FM2, which is consistent with the statements on decaying perpendicular
spin current component in Sec. 5.1.
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Table 5.2: Torkances Cτ
2‖ and total charge conductances C in junctions Cu | 4ML X | 4ML

Cu | 4ML Ni | Cu (001) for X=Co,Ni and Cu | 4ML Fe | 4ML Cu | 4ML Fe | Cu (001)
with perpendicular magnetizations of FM layers, spin polarization of conductance via Cu |
X | Cu and Cr | Fe | Cr junctions, and the ratio of Cτ

2‖ to it.

System Cτ
2‖ C FM1 Pol Cτ

2‖/C/Pol
Cu | 4ML Co | 4ML Cu | 4ML Ni | Cu (001) 0.38 0.97 31% 1.26
Cu | 4ML Ni | 4ML Cu | 4ML Ni | Cu (001) 0.092 1.23 7.2% 1.07
Cr | 4ML Fe | 4ML Cr | 4ML Fe | Cr (001) −0.36 0.81 −46% 0.97

Ab initio formulation of torkance allows to examine the role of FM1, FM2 and NM spacer
materials, their thicknesses and the angle ϑ between the two FM layers. The dependence
on the switching layer FM2 should be in rough agreement with the information on it from
the spin-mixing conductance as is discussed in the preceding section. The polarizing layer
FM1 determines the torkance exerted on FM2 mainly by the amount how much does it
polarize the current passing through it, this is supported by �ndings presented in Tab.
5.2. Note that even though torkance di�ers between systems with Co and Ni as FM1 slab
signi�cantly (cca. four times), its ratio to spin polarization of a standalone NM | FM1 |
NM junction is very similar. There are slight changes of the ratio caused mainly by the
di�erence between spin polarization in the NM | FM1 | NM junction alone and accompanied
by another perpendicularly oriented magnetic slab (FM2). The two FM slabs cannot of
course be accurately seen as independent with their e�ect on spin current summed, that is
an idea within the series resistor model (see Sec. 2.3).

This �nding about the dependence on FM1 slab polarization also proposes the way to
reverse torque direction: Use systems where conductance is polarized opposite to magnetiza-
tion of FM1, this idea was already realized experimentally [104]. Negative spin polarization
(also referred to as negative spin asymmetry) may arise due to scattering properties of
particular interfaces with NM metal or due to bulk scattering properties of FM layer in-
�uenced suitably by a strong disorder. The latter case is not accessible currently for our
non-collinear calculation, but one such system is examined in Sec. 6.4 with respect to its
magnetoresistance, which is also impacted. The former case corresponds for example to Fe
| Cr (001) interface. This interface prefers minority electrons (with respect to Fe magneti-
zation) and the overall (referred to as net) spin polarization of Cr | Fe | Cr conductance is
negative even though standalone Fe layer of course contains more conducting channels for
majority electrons, an experimental veri�cation of this fact can be seen in [105]. Inversion
of torque direction for this system is clearly obtained from our calculations (Tab. 5.2). Note
that spin torque exerted on FM2 layer can be reversed by having negative spin anisotropy
corresponding to layer FM1, but not layer FM2.

5.4.1 Angular dependence
Dependences of the total resistance and spin-transfer torque on the FM1 and FM2 relative
angle ϑ are one of the most interesting problems to be solved for non-collinear systems.
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Analytical formulas for these dependencies have been proposed based on experimental �nd-
ings and justi�ed theoretically [15, 106] for spin valves with identical FM layers within an
assumption that electrons' phase coherence is lost between interfaces (semiclassical approx-
imation):

R̃ (ϑ)−R (0)
R (π)−R (0)

=
1− cos (ϑ)

χ (1 + cos (ϑ)) + 2
(5.32)

C̃τ
2‖ (ϑ) =

CP

8π
ω

sin (ϑ)
1 + ω − (1− ω) cos (ϑ)

, (5.33)

where

χ =
1

1− P 2
ω − 1 , ω =

∣∣Cmix
∣∣2

C.ReCmix
, (5.34)

and spin polarization P , mixing and charge conductances Cmix, C are properties of one of
NM/FM/NM junctions.

Torkances and resistances of a Cu | Co | Cu | Co | Cu junction are depicted in Fig. 5.2.
We calculate coe�cients χ, ω and compare results from (5.32,5.33) to our results in the
same Figure, C̃τ

2‖ (ϑ) is multiplied by a constant to best accommodate extent of Cτ
2‖. Note

that the agreement between approximate formulas (5.32,5.33) and our more accurate ab
initio calculations is quite good, especially the angular position of the spin torque extreme.
However, the small almost saddle of angular dependence left from the torque maximum is
not caught by the simple formula (5.33).

With increasing spin polarization the value of χ grows and with increasing Cmix/C both
ω and χ grows. This supports the asymmetry of Eq. (5.33) so that its peak angle ϑm is
shifted towards ϑ = π. This prediction is in overall agreement with our results (Tab. 5.3),
but some additional subtle phenomena not accounted for in Eq. (5.33) may shift the peak
position about ±0.1π. Therefore we rather compare the ratio between the absolute values
of torque angular derivatives at angles ϑ = 0, π, which should also describe the angular
asymmetry:

η =
∂
∂ϑ C̃

τ
2‖ (ϑ = 0)

∂
∂ϑ C̃

τ
2‖ (ϑ = π)

. (5.35)

Results of this comparison are provided in Tab. 5.3 for selected junctions. A complete
angular dependence of a pure half-metal can be seen in Sec. 8.8.

The asymmetry of torkance angular distribution can be understood from examining the
asymmetry of spin accumulation in NM spacer, which is commonly higher for situations
closer to antiparallel orientation. However if the spin valve is constructed from such mate-
rials, that its NM | FM1 | NM part has negative and NM | FM2 | NM part positive net spin
polarization (or vice versa), antiparallel alignment of the layers is more conducting, which
corresponds to the negative GMR (Sec. 6.4.2). Spin accumulation is then higher for parallel
alignment and the torque angular asymmetry is reversed, this is illustrated in Tab. 5.3 for
Cr | Fe | Cr | Co2MnSi | Cr system.

For asymmetric junctions with di�erent CPP conductance spin polarizations or conduc-
tivities of FM1 and FM2 layers the angular dependence of resistance can have its minimum
localized at angles di�erent from 0 or π, as is discussed in [107] and observed in [108]. Note
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Figure 5.3: Torkances and resistances in fcc Cu | Co | Cu | Co | Cu (001) junction as
functions of angle ϑ between the two Co slabs, both from ab initio calculations (markers)
and analytical formulas (lines).

Table 5.3: Angle ϑm of spin torque angular dependence maximum and ratio η between the
absolute values of torque angular derivatives for non-collinear NM | FM1 | NM | FM2 | NM
(001) systems compared to ω and ratio η̃ between the C̃τ

2‖ (ϑ) derivatives for corresponding
NM | FM | NM (001) junctions. The latter are printed only in case that both FM junctions
are the same.

System η ϑm ω η̃

Cu | 4ML Ni | 4ML Cu | 4ML Ni | Cu 0.83 0.50π 1.58 0.74
Cu | 4ML Co | 4ML Cu | 4ML Co | Cu 0.69 0.58π 1.73 0.6
Cr | 4ML Fe | 4ML Cr | 4ML Fe | Cr 0.73 0.56π 2.06 0.5

Cr | 12ML Co2MnSi | 8ML Cr | 12ML Co2MnSi | Cr 0.15 0.80π 17.06 0.09
Cr | Fe | Cr |Co2MnSi | Cr 3.15 0.25π
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Figure 5.4: Torkances and resistances in fcc Cu | Co | Cu | Ni | Cu (001) junction as functions
of angle ϑ between the Co and Ni slabs.

that spin accumulation is then generated in NM spacer also for the parallel con�guration.
The nonmonotonic angular dependence is probably caused by the increased possibility of
this spin accumulation to transfer into magnetic layers for non-collinear situations, which
for low angles surmounts the slower increase of resistance due to transition from parallel to
antiparallel state. Angular dependence of conductance and torkance for such asymmetric
system is depicted in Fig. 5.4. Note that no apparent deviation of spin-transfer torque from
its standard shape is seen.
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Chapter 6

Co/Cu based multilayers with
substitutional disorder

GMR e�ect in Co/Cu based multilayers has been observed [109] recently after the initial
GMR experiments on Fe/Cr multilayers done by Baibich et al. in 1988 [2]. Production
of Co/Cu metallic multilayers is well developed and they exhibit a reasonable GMR ratio
even at room temperature, while having lower coercivity �elds than Fe/Cr. Moreover Cu
represents a truly nonmagnetic spacer in contrast to the complicated magnetic structure
of Cr. From the theoretical point of view they are based on quite simple transition metals
with no signi�cant relativistic contribution, whose electronic structure and other calculation
predictions are in good agreement with experiments. Therefore they represent an ideal
material to test the validity of presented theories before going to more complicated systems,
that may show an even more interesting physical behavior.

6.1 Electronic structure
The self-consistency of one-electron potentials was achieved in intermediate regions com-
prising also a few (3-5) monolayers of the attached metallic leads. One principal layer (Sec.
2.2.3) was formed by one atomic layer for fcc(111) stacking while two neighboring atomic
layers per principal layer were necessary in fcc(001) and bcc(001) cases. The integrations
over the 2D BZ were performed on a uniform mesh of about 1000 k‖ points to determine
the electronic structure.

The key to understand the origin of high magnetoresistance in metallic multilayers is
the band structure for energies near the Fermi energy. It is well known that there is a very
good matching between the band structures of Cu and Co↑, while Cu and Co↓ exhibit a
band mismatch. The calculated band structures of these two materials depicted in Fig.
6.1 demonstrate this behavior, which is the source of the high spin polarization of electron
scattering at their interfaces leading to GMR phenomena calculated in subsequent sections.
Systems with the 2D translational symmetry must in reality be described by the Bloch
spectral function which contains peaks of �nite width instead of δ-functions, hence the
simple band structure picture is inaccurate, but an assumption of bulk-like atoms in the
multilayer is su�cient for a qualitative understanding of the multilayer's spin-dependent
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Figure 6.1: Band structures of bulk Cu and Co (spin-resolved).

transport behavior.

6.2 Co | Cu | Co multilayers with interface roughness
At any interface there is always a high probability of interdi�usion of atoms from one side
to the other one, thus creating a thin alloyed layer at the interface. The concentration and
spatial extend of this layer depends on materials, temperature, manufacturing technique and
many other factors, determination of it is not a subject of this work. Here we concentrate
on its impact on transport properties, which has shown up impossible to be described by
some simpli�ed models and it is not completely understood to date, although this impact is
rather high. Experimental characterization of interface roughness is quite di�cult and it is
rather predicted indirectly. Attempts to describe pro�le of interfacial impurity concentration
have been done based on a comparison of magnetic moments between measurements and
theory [110]. There are works which address the GMR e�ect in Co|Cu|Co multilayers with
interface interdi�usion [70, 111]. These calculations are based on the supercell method,
which allows us to compare this method to pure CPA calculation. Here we studied fcc(001)
5 ML Co | 4 ML Cu | 5 ML Co trilayers sandwiched by two semi-in�nite Cu leads with
all four interfaces imperfect; the atoms were placed at sites of an ideal Co fcc lattice (with
a lattice parameter smaller by ∼ 2% than that of pure Cu). The interface roughness was
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Table 6.1: Trilayer 5ML Co | 4ML Cu | 5 ML Co fcc(001) sandwiched between two Cu leads:
spin-resolved CPP conductances and MR ratio for trilayers with ideal and rough interfaces
obtained using various methods to treat disorder. SC results taken from [70], CPA results
were presented in [14]. AP conductances for both spin channels coincide due to geometric
symmetry of the trilayer.

Case C↑PM C↓PM C↑↓AP γ

Ideal 0.743 0.238 0.228 1.15
CPA - coherent 0.673 0.016 0.054 5.38

CPA - full 0.722 0.260 0.356 0.38
SC 0.733 0.256 0.354 0.40

simulated by disordered alloys in two atomic layers at each Co/Cu interface; the neighboring
layers have composition Co1−xCux on the Co side and CoxCu1−x on the Cu side, where x
is a concentration variable, 0 ≤ x ≤ 0.5. As noted in [65], the particular thicknesses of the
Co and Cu layers are less important for understanding the in�uence of disorder on the CPP
magnetotransport in this model.

6.2.1 Transport properties
Tab. 6.1 shows, what results are provided from various calculation methods for the di�erence
between the transport through ideal and rough interfaces. The presented CPA calculations
employed BZ-averages evaluated using N‖ ≈ 400 k‖ points in the IBZ (equivalent to about
3000 k‖ points in the full 2D BZ). Within the CPA it is necessary to calculate vertex
corrections for transport properties, because a great portion of the transmission is di�usive,
which is a very interesting e�ect and it cannot be handled by the coherent part of the CPA.
The results involving only the coherent part would obviously be completely misleading.
Both SC and CPA results also show the high sensitivity of the MR ratio to the interface
roughness, which is a crucial information for potential applications.

This e�ect can be examined in more detail at a dependence of spin-dependent transport
on interface interdi�usion concentration x ( Fig. 6.2). This dependence is much more easily
obtained within the CPA than the SC method because very small changes of concentration
can be re�ected only if very big supercells are used. For the AP conductance, the interdif-
fusion obviously opens large amount of new conduction channels, and this e�ect dominates
over almost unchanged PM↑ and sightly varying PM↓ conductance. This massive increase
of AP conductance causes the decrease of the MR ratio γ from approx. 115% for ideal inter-
faces to its minimum value 37% with the interdi�used atoms concentration around x = 0.2.
Another interesting thing is the fact, that introduction of even a very small interdi�usion
concentration x < 0.1 has a great impact on the magnetoresistance, which is rapidly decay-
ing with x in this area, while then for x in the range 0.1−0.4 the change in magnetoresistance
is almost negligible (37% - 43%). We observed this behavior also for other multilayers. This
strong sensitivity of MR ratio to small amount of interface disorder contradicts a recent
prediction of minor GMR changes due to the rough interfaces [112]. Note however that the
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Figure 6.2: Spin-resolved CPP conductances in PM and AP arrangements and the MR-ratio
for fcc(001) 5 ML Co|4 ML Cu|5 ML Co trilayers sandwiched by two Cu leads as functions
of the concentration x of interdi�used atoms at the rough interfaces [14].

SC calculations of Ref. [112] were performed only for a single Co/Cu(001) interface while
the present model contains four intermixed interfaces; the MR-ratio decreases with increas-
ing number of rough Co/Cu interfaces, as shown in another SC study [65]. Re�ection and
transmission probabilities and specularity parameters of a single rough Co/Cu(001) inter-
face have recently been investigated using a LKKR-CPA approach [113]. In agreement with
the present results, the calculated probabilities of Ref. [113] exhibit pronounced changes due
to a small (x ∼ 0.1) amount of disorder; however the underlying k‖-resolved quantities are
based on a highly simpli�ed form of the VC and their reliability for a thorough quantitative
analysis is thus limited.

6.2.2 Comparison to supercell calculations

We compare our results with supercell calculations from work [70], see Tab. 6.1. Obviously
the agreement between the SC and CPA calculations is almost perfect. This demonstrates
that the CPA, an e�ective-medium theory, is reliable even for 2D alloys, in contrast to com-
mon wisdom on a general failure of mean-�eld like approaches in low-dimensional systems.
The present case, however, is not a genuine 2D system: the imaginary parts of self-energies
of the (nonrandom) metallic leads play a signi�cant role for the success of the CPA. Also
the CPA results provide an independent validity check of previous SC calculation results,
which could have been a�ected by supercell size or by an incorrect choice of a limited set
of evaluated con�gurations.
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Figure 6.3: Resistances per one interface atom of the fcc(001) 5 ML Co|s ML Cu0.84Ni0.16|5
ML Co trilayers sandwiched by two pure fcc(001) Cu and Co leads for minority electrons
and the FM orientation of the Co slabs. The present CPA values [14] are compared to the
SC results of Ref. [70].

6.3 Co | Cu0.84Ni0.16 | Co trilayers with randomness in the
spacer

Systems with magnetic impurities in a nonmagnetic spacer represent another challenge for
CPA transport calculation, now the disorder is spread across the whole slab. The e�ect of
random Ni impurities in the Cu spacer on the CPP transport in fcc(001) Co/Cu/Co trilayers
has been studied in detail by the SC technique [70]. For this reason we focus merely on a
comparison of the present CPA results to the existing SC values for two cases, namely for
fcc(001) 5 ML Co|s ML Cu0.84Ni0.16|5 ML Co trilayers sandwiched by two pure fcc(001)
Cu and Co leads. Note that the latter case refers to the CuNi slab embedded between two
semi-in�nite Co leads. We have taken the ideal fcc Co lattice in both cases (see Section 6.2)
and considered the minority spin (σ = ↓) channel of the FM arrangement with the CuNi
spacer thickness s varying in the range 1 ≤ s ≤ 10.

The results are plotted as resistances R↓FM(s) = 1/C↓FM(s) in Fig. 6.3. The depicted
resistances prove a very good quantitative agreement between the two approaches (CPA, SC)
for both leads (Cu, Co); in particular, the di�erent slopes of R↓FM(s) for very thin spacers as
compared to thicker spacers are clearly reproduced. This phenomenon can be explained by
quantum-well states formed in Cu-based spacers sandwiched by two Co slabs [70,114]. The
resistivity of the alloy in a thin spacer is high, because the quantum well states are localized
and do not contribute to conduction. With increasing spacer thickness the quantum well
states delocalize due to electron scattering into other k‖ states and begin to contribute to
electron transport. The degree of agreement shown in Fig. 6.3 indicates that the localized
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Figure 6.4: MR-ratio for fcc(111) trilayersM ML Co0.8Cr0.2|20 ML Cu|2 ML Co sandwiched
by two Cu leads calculated by the present CPA approach [14] and the SC technique of
Ref. [115] as functions of the CoCr slab thickness M . The experimental values of Ref. [105]
refer to Co0.8Cr0.2|Cu|Co|Cu multilayers.

nature of the quantum-well states does not represent a principal obstacle for applicability
of the CPA.

6.4 CoCr | Cu | Co trilayers exhibiting negative GMR
Recently, several various F1|Cu|Co|Cu fcc(111) multilayers containing a random binary
ferromagnetic alloy F1 have been manufactured that exhibit a transition from a positive
to negative GMR e�ect with increasing thickness M of the ferromagnetic alloy [105]. The
negative GMR corresponds to a situation when the AP state is more conducting than the
PM one. The value of M where the transition occurs is called a compensation thickness
Mt. The experimental observation has been explained theoretically for Co0.8Cr0.2|Cu|Co
trilayers using the SC method [115].

6.4.1 Transport properties
Here the CPA transport calculation is compared to the SC approach [115], both for fcc(111)
trilayers M ML Co0.8Cr0.2|20 ML Cu|2 ML Co, where the Co0.8Cr0.2 layer thickness covers
an interval 2 ≤M ≤ 20, sandwiched by two semi-in�nite Cu leads (all atoms placed on the
ideal fcc Co lattice). This replaces the experimental setup of 20x repeated F1|Cu|Co|Cu
sandwiched by Nb leads, which is impossible to compute using standard ab initio methods
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without intensive approximations because of high numerical demands. The resulting MR-
ratio of both techniques together with the experimental results of Ref. [105] are shown in
Fig. 6.4 as functions of the CoCr thickness M . The theoretical dependences exhibit very
similar features, namely small oscillations on top of slowly decreasing trends; the latter follow
roughly the experimentally observed dependence. The theoretical compensation thickness
Mt is around 5 ML CoCr while the experimental compensation takes place at about 8 ML.
This di�erence can most probably be ascribed to e�ects of multilayer repetitions in real
samples [115].

The oscillations in the calculated Co0.8Cr0.2 thickness dependence of the MR-ratio
(Fig. 6.4) are due to quantum oscillations in the minority-spin conductances, as documented
in Fig. 6.5 for the AP con�guration. Minority conductance is regarded here as the minor-
ity one with respect to Co0.8Cr0.2. The majority-spin conductances show up a completely
di�erent thickness dependence: a faster decrease with increasing M without any sign of os-
cillations, see Fig. 6.5 for the PM arrangement. The decision which of these types of behavior
occurs depends on the spin channel regardless of the magnetic arrangement. The di�erent
transport regimes in the two channels are re�ected also by the coherent and di�usive con-
tributions of the conductances: while the coherent part of the majority-spin conductance
represents a smaller contribution, exponentially decaying with M , the coherent part of the
minority-spin conductance survives throughout the whole range ofM studied and it re�ects
a weak scattering regime inside the CoCr slab. Note the big di�erence between the full and
coherent conductance especially for the PM majority channel, which corresponds to vertex
corrections.

6.4.2 The origin of the negative GMR

In order to understand the negative GMR, one should �rst notice the asymmetry of the
junction structure, where the AP state corresponds to opposite magnetic direction of di�er-
ent magnetic layers, the Co layer and the CoCr one. In the dependence of the conductance
through a standalone Co0.8Cr0.2 layer ( Fig. 6.6) it can be seen that the Co majority channel
is the less conducting one even for the lowest thickness without any transition. This means
that the transition cannot be explained in terms of the series resistor model [48]. Within
this model a di�erent sign of the interface and bulk spin anisotropy of Co0.8Cr0.2 layer was
believed to cause the transition [105]. The calculated spin polarization of Co0.8Cr0.2 nega-
tive for any thickness should within the series resistor model immediately lead to a negative
GMR of Co0.8Cr0.2| Cu| Co trilayer. Realistic calculations take into account di�erent con-
ductances for di�erent k‖ vectors and the coherence of electron transport across pure layers,
and they cannot be replaced by simpli�ed models in this case.

The origin of the negative bulk spin polarization was identi�ed with a ferrimagnetic spin
structure of the bulk random fcc Co0.8Cr0.2 alloy, i.e. the Co and Cr magnetic moments
point in opposite directions. In the density of states (Fig. 6.7) a very good matching of
minority Co and Cr-projected bands is clearly visible, while a virtual bound state is formed
in the Cr-projected density of states of the CoCr alloy majority electrons [115]. This state
re�ects a strong scattering regime leading thus to a rapid decrease of the majority-spin
conductances with increasing CoCr layer thickness M .
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Figure 6.5: CPP conductances (solid lines) together with their coherent parts (dashed lines)
of fcc(111) trilayers M ML Co0.8Cr0.2|20 ML Cu|2 ML Co sandwiched by two Cu leads
calculated by the present CPA approach: for spin ↑ in the PM arrangement and for spin ↓
in the AP arrangement [14].

Figure 6.6: Spin-resolved CPP conductances and conductance spin polarization of fcc(111)
system Cu | M ML Co0.8Cr0.2 | Cu as functions of the CoCr slab thickness M .
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(a) (b)

Figure 6.7: Density of states (DOS) for fcc Co0.8Cr0.2 bulk random alloy calculated in [115]
employing the same ab initio scheme as used here. (a) Minority spin DOS for Co0.8Cr0.2

alloy (upper panel) and atom-resolved DOS (lower). (b) Majority spin DOS for Co0.8Cr0.2

alloy (upper panel) and atom-resolved DOS (lower). For the purpose of a comparison the
DOS of a pure bulk fcc-Co is also shown. The vertical lines denote the Fermi energy.

6.4.3 The in�uence of interface interdi�usion
The oscillations of the MR-ratio, clearly present in theoretical results, are not seen in ex-
periment [105]. For this reason, we investigated their sensitivity to interface roughness at
the two CoCr/Cu interfaces by putting one atomic layer of composition Cu1−xCox on the
Cu side of the interfaces and another one Co0.8−xCr0.2Cux on the CoCr side, where x is
a concentration variable. Figure 6.8 contains the results for x = 0.2; very similar trends
were found for other values of x in an interval 0.1 ≤ x ≤ 0.4, in full analogy to the Co |
Cu | Co case (Section 6.2.1). The obtained changes prove a strong in�uence of the interface
roughness on the oscillations which brings the calculated MR-ratio towards a better agree-
ment with the experiment and that leads us to conclusion, that the measured multilayers
interfaces are annealed in a way similar to our proposal. This is another argument for the
statement, that interface disorder should be taken into account in GMR calculations. An
explanation of this smoothening e�ect rests on the fact that the Co impurities in the Cu
layers represent strong scatterers for minority electrons suppressing thus the quantum con-
ductance oscillations in this channel. Note however that the compensation length is only
weakly a�ected by the interface roughness (Fig. 6.4 and 6.8).
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Figure 6.8: MR-ratio for fcc(111) trilayersM ML Co0.8Cr0.2|20 ML Cu|2 ML Co sandwiched
by two Cu leads calculated with clean and rough CoCr/Cu interfaces and compared to
experimental values of Ref. [105].



Chapter 7

(Ga,Mn)As thin layers

The successful doping of GaAs with Mn has been realized for the �rst time in 1996 by H.
Ohno [116], giving rise to (Ga,Mn)As, an important representative of the diluted magnetic
semiconductors (DMS). The III-V DMS like, e.g., Mn-doped GaAs, GaN, and InAs with
Mn atoms substituting the cations, represent nowadays the most frequently studied DMS
systems [25]. The �rst III-V DMS (In,Mn)As was grown by molecular beam epitaxy in
1989 [117], subsequently the same group discovered hole-mediated ferromagnetism in this
compound [118]. Holes are introduced into the system by the replacement of Ga or In by
Mn and the hole-mediated ferromagnetism attracts ongoing interest [119]. The change in
parent semiconductor caused by doping can be understood as a kind of the metal-insulator
transition [68].

General feature of these systems is the random distribution of a small concentration
of transition metal atoms as for example Mn on the cation sublattice. Due to the small
concentrations these systems behave structurally as semiconductors and can be easily grown
on their corresponding parent substrate, i.e. (Ga,Mn)As on GaAs. Moreover they can be
doped and manipulated as semiconductors and they are half-metals [119�123], which both
o�ers a large prospect for applications. However a problem of these DMS systems is that
their Curie temperatures are well below room temperature because of their main property,
the low concentration of magnetic atoms. This is the major obstacle for applications, hence
a strong e�ort is targeted towards its resolution, and new representatives of DMS or al-
ready known ones prepared in other ways are currently exhibiting still higher, although yet
insu�cient Curie temperatures.

DMS represent system with a complicated interplay of various physical phenomena [25].
Some of its properties appear to be described or explained satisfactorily only by ab initio
calculations. The detailed theory including, e.g., magnetic interactions and Curie tempera-
ture evaluation [124], the role of e�ects of spin-orbit coupling, remains far beyond the scope
of this work. Here we concentrate mainly on its zero temperature transport properties and
on an inclusion of properties that can in�uence it. Thin layers of (Ga,Mn)As or similar ma-
terial may provide features useful for many spintronics applications. High spin polarization
of electron transport is a crucial property for these applications.

77



78 CHAPTER 7. (GA,MN)AS THIN LAYERS

Figure 7.1: (Ga,Mn)As structure

7.1 Bulk (Ga,Mn)As
In order to explore thin layer properties, it is desirable to �rst understand its bulk coun-
terpart complex behavior. Existing theoretical studies include �rst-principles calculations
of the exchange interactions and the Curie temperatures [123�126]. The theoretical studies
of transport properties of these systems, on the other hand, remain con�ned to a model
level [127, 128]. It has been shown in a recent experiment [129] that controlled annealing
of thin (Ga,Mn)As �lms accompanied by monitoring the resistivity during growth can lead
to high Curie temperatures of the �lms. Moreover, a pronounced correlation between the
Curie temperatures and the conductivities of the real samples has been reported [129].

The structure of (Ga,Mn)As is shown in Fig. 7.1. In the presented calculations, empty
spheres in tetrahedral interstitial positions of the zinc-blende lattice were employed for
reasons of a good space �lling and equal Wigner-Seitz radii for all atoms and empty spheres
were used. The valence basis comprised s-, p-, and d-type orbitals, where the Ga 3d orbitals
were put into the core, which improves the calculation estimate of the band gap width
(1.3 eV) and the valence-band width (6.8 eV). The Mn atoms were placed randomly on the
cation sublattice. Electronic structure calculations reveal a band gap on the Fermi level
in the minority DOS (Fig. 7.2), thus the system acts as an half-metal: an insulator for
minority spin electrons and a metal for majority ones.

Bulk transport properties were in detail examined by TB-LMTO and CPA methods
in [130]. Residual resistivities as functions of Mn-content x are depicted in Fig. 7.3. Their
calculated values for a typical Mn-content x = 5% lie in the range 1 − 5 × 10−5 Ωm (see
below), in good agreement with experiment [129, 131]. Note that the vertex part of the
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Figure 7.2: (Ga,Mn)As: density of states with highlighted local DOS on Mn atom, and the
Bloch spectral function at the Γ point.

conductivity is very small in this case. We observe the decrease of the resistivity with
concentration of Mn-impurities, which is just an opposite dependence to that known for
metallic alloys. The reason for such behavior is a competition of two trends in the DMS's:

(i) the increase of ρ with increasing concentration of defects which is due to impurity
scattering, and

(ii) the increase of the conductivity, i.e., the decrease of ρ, with increasing number of
carriers which is in turn proportional to the concentration of Mn atoms.

The second e�ect is obviously dominant in the examined range of Mn concentration.
Such a strong dependence on the number of carriers is missing in typical metallic alloys
with a large number of carriers at the Fermi energy only weakly depending on the alloy
composition. In agreement with the prediction from the density of states, the minority spin
component of conductance is zero.

7.1.1 Lattice defects

Real samples of (Ga,Mn)As tend to contain lattice defects, namely As antisites on the Ga
sublattice (AsGa, concentration y) and Mn interstitials (Mni, concentration z), both act
as double donors [122]. These defects reduce the Curie temperature [123] and in�uence
a number of ground-state properties including the lattice parameter [132]. This fact can
also be used to estimate the actual amount of lattice defects from X-ray lattice parameter
measurements. DFT calculations [132] have shown that the lattice constant dependence
on impurity concentrations can be approximated as linear (Fig. 7.4), dependences on each
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Figure 7.3: Residual resistivity of the (Ga1−x−yMnxAsy)As alloy as a function of the Mn-
content [130]: without As-antisites (y = 0, squares) and with 1% As-antisites (y = 0.01,
triangles). The open and full symbols refer to the coherent and the total conductivities,
respectively.
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separate impurity concentration can be combined into a single formula

a (x, y, z) = a0 + 0.02x+ 0.69y + 1.05z
(
Å

)
. (7.1)

Note that the coe�cient at the desirable substitutional Mn concentration (x) is more
than order of magnitude smaller than that at the defect concentrations (y, z). Experimen-
tal lattice constant measurements [131] show that lattice constant grows signi�cantly with
increasing Mn content and comparisons of experimental data to the formula (7.1) leads to
the conclusion that lattice defects must be present in available samples. Another possible
structural defect is segregation into related compounds. As antisites have a stabilizing e�ect,
which prevents segregation and also incorporation of Mn into interstitial positions. These
e�ects are not studied here, we refer the reader to Ref. [133].

Important question is the magnetic orientation of interstitial Mn with respect to substi-
tutional one. First let us note that Mni prefers to be in interstitial position corresponding
to sphere C in Fig. 7.1 [133]. Density of states of (Ga0.95+zMn0.05−z)AsMniz alloy with both
FM and AFM oriented Mni is shown in Fig. 7.5. Note the peak of local DOS on Mn atom
at the Fermi energy in FM case, which suggests that this state is energetically less favorable.
Energetic comparisons of these two states corroborate this conclusion [130, 133]. From this
it also follows that system prefers to remain in halfmetallic state even for quite high amount
of defects, because (Ga0.95+zMn0.05−z)AsMniz in AFM arrangement still contains a gap in
the minority band at the Fermi energy. As impurities in (Ga,Mn)As cause mainly a shift
of EF towards the top of the majority spin valence band [123] and half-metallic character
is also retained in this case.

Residual resistivities as functions of the As-antisite concentration y and the Mn-interstitial
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Mn-moments [130]. The energy zero coincides with the Fermi level.
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(Ga0.95+zMn0.05−z)AsMniz alloy for the antiferromagnetic (AFM, open squares) and fer-
romagnetic (FM, full diamonds) alignment of magnetic moments on the substitutional and
interstitial Mn atoms.

concentration z are depicted in Fig. 7.6 for (Ga,Mn)As alloy with 5% Mn. The resistivity
monotonically increases with defect concentrations y and z. While this looks like a conven-
tional metallic behavior due to impurity scattering, simultaneously with disorder increase
the number of carriers is reduced (both AsGa and Mni acts as donors) and this is the domi-
nant e�ect [130]. For high enough concentration of double donors (y → 0.025), all holes are
removed. This is the compensation limit and resistivity diverges.

The resistivity increases with the Mn-interstitial content z for both FM and AFM states;
however, the two dependences di�er from each other. In particular, the resistivity in the
AFM case quickly increases if we approach the fully compensated state (z → 0.0166 . . . ),
this is similar to the dependence on As antisites. On the contrary, the resistivity for the
rather improbable FM state increases with z nearly linearly in the whole concentration range
studied. One can understand such di�erence from the corresponding densities of states (Fig.
7.5) for z close to the compensation limit. The large resistivity in AFM state is due to the
Fermi level lying in the energy region of strongly disordered Mn-interstitial states formed in
the majority band gap. On the contrary, EF for the FM case lies in the minority conduction
band (Fig. 7.5), and both majority and minority carriers contribute to the conductivity, so
that the resistivity is smaller as compared to the AFM case.
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7.1.2 Uncompensated DLM state
Recent theoretical studies indicate that magnetic structures with partial disorder of local
magnetic moments (pDLM) can lower the total energy of system with lattice defects as
compared to the ferromagnetic state [134]. This structure can be described as an alloy com-
prising two oppositely oriented Mn atoms: (Ga1−x−yMn+

(1+r)x/2Mn−(1−r)x/2Asy)As, where
r is an auxiliary order parameter (0 ≤ r ≤ 1) which speci�es the fraction of Mn atoms
with local moments oriented oppositely to the remaining Mn-moments. The concentrations
of Mn+ and Mn− atoms are x+ and x− respectively. The order parameter is de�ned as
r = (x+ − x−) /x, therefore x± = (1± r)x/2. Magnetic moments are not completely disor-
dered unless r = 0, the system retains a nonzero average magnetic moment lower than that
of its FM phase, this case is also called uncompensated DLM state.

In ref. [134] it is shown that for a situation without As antisites the oppositely oriented
Mn− moments would form a very narrow impurity band located exactly at the Fermi level,
which is energetically very unfavorable situation and forces Mn moments to the FM state.
However the enough amount of extra electrons donated by As antisites cause the impurity
subband of Mn− to lay completely below the Fermi level thus being energetically inexpensive.
The shift of EF therefore contributes to energetic stabilization of the DLM state as well as
to the full spin polarization of the DLM conductivities. Ab initio calculations can evaluate
the energy associated with each amount of magnetic disorder (parameter r), depicted in Fig.
7.7. Thus they reveal the threshold value of As antisites concentration y leading to partial
DLM (Fig. 7.8 for various Mn-content x) and determine the order parameter associated
with each y.

The presence of additional disorder of course increases the amount of scattering, its
in�uence on the residual resistivity can be seen in Fig. 7.6. Calculations of conductance
shows that the transport remains completely spin polarized up to quite high values of
antisite disorder, in agreement with the �nding that Mn− states (potentially destroying the
full spin polarization) are located mainly below the Fermi level. Their contribution to spin
polarization is negligible up to y ≤ 0.02 (and x = 0.05), for higher values the corresponding
strong magnetic disorder (r > 0.3) starts to in�uence the DOS heavily [135].

7.2 Ideal (Ga,Mn)As layers coupled to metallic leads
The interesting in�uence of (Ga,Mn)As on conductance spin polarization can be utilized
in systems where it is comprised in a form of layers with nanoscale thickness. A tunneling
junction comprising two such layers has already been prepared [136], yielding an impressive
TMR of 290% at 0.39K. Here we examine properties of its basic elements, single thin
(Ga,Mn)As slabs, which may provide important information for construction of arbitrary
spintronics devices based on it.

The calculations reported here were performed for (001) layers of zinc-blende Ga1−xMnxAs
alloys with Mn content in a range 0.03 ≤ x ≤ 0.10, sandwiched by two semi-in�nite bcc(001)
leads of nonmagnetic chromium. The lattice (Ga,Mn)As is equivalent to four inpenetrating
fcc lattices as described in sec. 7.1. These two di�erent lattices allow quite precise match-
ing, where the lattice constant abcc =

√
2afcc. One atomic (001) layer of the resulting bcc

lattice thus contained two spheres: either a Ga sphere and an empty sphere or an As sphere
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Figure 7.9: CPP conductances and the spin polarization of (Ga0.95Mn0.05)As (001) slabs
sandwiched by two semi-in�nite nonmagnetic bcc Cr(001) leads as functions of its thickness
n [137].

and an empty sphere inside the (Ga,Mn)As slab, or two Cr spheres inside the Cr leads; all
spheres have equal radii. This kind of layer will here be referred to as a monolayer (ML)
or simply layer, but always only units of principal layers are added to or removed from the
system, these contain both Ga and As spheres in the (Ga,Mn)As part and are twice as thick
as ML. No relaxations of an ideal bcc lattice were allowed; its lattice parameter was set
according to the equilibrium fcc lattice of pure GaAs (a = 0.565 nm) which required a small
compression (∼ 2%) inside the Cr leads as compared to an equilibrium bcc Cr lattice. The
(Ga,Mn)As slabs comprised an odd number n of atomic layers, where 3 ≤ n ≤ 31 and their
description was similar to the bulk case; the slabs were As-terminated with no disorder at
the As/Cr interfaces. 4-6 ML of Cr were used on each side to allow the model to achieve
self-consistency. Transport calculations were performed on a uniform mesh of 3600 k‖ points
in the 2D BZ.

The calculated total and spin-resolved CPP conductances for slabs with 5% Mn are
depicted in Fig. 7.9. Their thickness dependence exhibits two di�erent slopes: a rapid
decrease for thin layers (n < 11) followed by a much slower decrease for thick layers (n > 11).
The transition between these two regimes can be explained by the formation of the bulk-
like electronic structure in the middle of thicker (Ga,Mn)As slabs; it can also be observed
in the behavior of local electronic quantities as illustrated in Fig. 7.10 for the local spin
Mn moments in the central plane of the slabs with 5% Mn. The central Mn moments
in thin slabs are strongly in�uenced by the leads while a slow monotonous trend towards
the bulk value is found only for thicker slabs. The decreasing in�uence of the Cr leads on
the CPP conductances (Fig. 7.9) is also re�ected by a strong spin polarization due to the
exponentially decaying minority conductance C↓ for n > 11, while the majority one C↑ is
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Figure 7.10: The local magnetic moment of Mn atoms in the middle of (Ga,Mn)As (001)
slabs with 5% Mn sandwiched by two semi-in�nite nonmagnetic bcc Cr(001) leads as a
function of the slab thickness [14]. The horizontal line marks the Mn moment in the bulk
Ga0.95Mn0.05As alloy.

approaching an ohmic regime. Both these features are expected because of the half-metallic
nature of bulk (Ga,Mn)As alloys [119,121�123]. It is interesting to see how thick DMS layer
is required to reach a relatively high polarization of the current. Note that higher values
of the spin polarization within our model have to be taken with care due to the neglected
e�ects of spin orbit coupling.

In the limit of high slab thickness the derivative of the total CPP resistance with respect
to the disordered slab thickness is in good agreement with the resistivity obtained from bulk
calculations [130] and with experimental data [129], their comparison is provided in Tab.
7.1. The experimental values for x = 0.05 and x = 0.06 provide an independent check of
reliability of the ab initio CPA scheme whereas the markedly higher resistivity measured
for x = 0.08 re�ects a high amount of compensating As antisite defects in the sample [129].

The coherent and vertex contributions to the majority conductance are shown in Fig. 7.11
for (Ga0.92Mn0.08)As (001) slabs. The former decreases rapidly with (Ga,Mn)As thickness
and it vanishes practically for n > 10 whereas the latter does not change appreciably over
the range of n studied. These trends witness that the intrinsic disorder of (Ga,Mn)As slabs
is strong enough to destroy the coherence after a very short distance traveled by electrons.
This conclusion is in qualitative agreement with e�ects of strong disorder (non-quasiparticle
behavior) manifested in the Bloch spectral function of majority electrons at the Fermi level
of the bulk alloy [138]. Note that the decomposition to coherent and vertex contributions
is completely di�erent from its bulk counterpart, but their sums agree well as was shown in
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Table 7.1: Residual resistivities (in 10−5 Ωm) of Ga1−xMnxAs as obtained from the CPP
conductances (ρCPP ) of thick (Ga,Mn)As(001) slabs sandwiched by two nonmagnetic
bcc(001) Cr leads [137] and from bulk calculations (ρbulk) of Ref. [130]. The experimental
values (ρexp) are taken from Ref. [129].

Mn content x ρCPP ρbulk ρexp

0.05 1.23±0.04 1.20 1.49
0.06 1.06± 0.02 1.07 1.32
0.08 0.88± 0.01 0.89 2.87

Figure 7.11: Majority-spin CPP conductance and its coherent and vertex part for
(Ga0.92Mn0.08)As (001) slabs sandwiched by two semi-in�nite nonmagnetic bcc Cr(001)
leads as functions of its thickness n [14].

the preceding paragraph. In the bulk case vertex corrections can almost be neglected, while
in the layered one they play a dominant role.

Thin (Ga,Mn)As layers represent also a very interesting system from the point of view
of spin torque related phenomena. An extensive discussion of spin-mixing conductance of
this system and a graph of the spin-mixing conductance as a function of slab thickness (Fig.
4.5) can be seen in Sec. 4.6.

Increasing Mn concentration raises the majority (and total) conductance (Fig. 7.12),
which proves an importance of the number of carriers (holes in the valence band) in addition
to the strength of impurity scattering and is consistent with calculations of bulk (Ga,Mn)As.
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Figure 7.12: Total CPP conductance, its spin polarization and the real and imaginary parts
of the mixing conductance for thin (Ga1−xMnx)As (001) slab of thickness t = 21 atomic
layers as functions of Mn concentration x. Results for charge conductance were published
in [137].

Also the minority states penetrating to (Ga,Mn)As from metallic leads become more quickly
suppressed, which results in an increase of the conductance spin polarization P . The be-
havior of mixing conductances is analyzed in Sec. 4.6.

7.3 (Ga,Mn)As layers with lattice defects
The total resistance as a function of defect concentration exhibits trends similar to the one
observed for bulk (Fig. 7.13). Bulk (Ga,Mn)As with As antisites of concentration below full
compensation remains half-metallic. For the layered geometry, layers deep inside (Ga,Mn)As
have the same property. However, the metal induced gap states (MIGS) and their spatial
extent change, and this in�uences the spin polarization of the conductance. The majority
conductance is decreasing with increasing amount of defects as expected, but the minority
one rises, which leads to a decrease of the spin polarization (Fig. 7.13). This contrasts the
constant full spin polarization of the bulk conductivities.

Fig. 7.14 shows the spin polarization of the layer-resolved density of states (DOS) at the
Fermi energy (EF ) for thin (Ga,Mn)As slabs. With increasing amount of As antisites MIGS
penetrate deeper into slabs, which explains the rise of minority conductance [137]. When
the slab thickness is enlarged, the tunneling part deep inside it will dominate the transport,
and the minority conductance will again be exponentially decaying with the slab thickness
(Fig. 7.15). This �nding also supports the described explanation based on changes of DOS
at the interfaces.
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Figure 7.13: CPP conductances and the spin polarization for thin
(Ga0.95−yMn0.05Asy)As (001) slab of thickness n = 21 atomic layers as functions of
As antisite concentration y [137].
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Figure 7.14: Spin polarization of layer-resolved DOS at EF for monolayers m inside
(Ga0.95−yMn0.05Asy)As (001) slabs of thickness n = 21 monolayers, where m = 1 is ad-
jacent to one of Cr leads [137]. Each m and m + 1 correspond to one elementary cell and
its DOS is summed.
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Figure 7.15: CPP conductances and the spin polarization for thin
(Ga0.935Mn0.05As0.015)As (001) slab as functions of its thickness [137].

The in�uence of the Mn interstitials on the CPP conductances for (Ga,Mn)As slabs with
5% Mn and the thickness of 21 ML is summarized in Fig. 7.16. Similarly to the case of the
As antisites (Fig. 7.13) and to the bulk behavior (Fig. 7.6), the total conductances decrease
with increasing Mn-interstitial content z; the decrease becomes more pronounced for the
AFM state [135]. The polarization of the CPP conductances decreases with z as well; the
reduction of P is especially strong for the FM state and higher contents of Mn interstitials
(Fig. 7.16).

7.3.1 Uncompensated DLM state
The presence of the uncompensated DLM state reduces signi�cantly the conductivity of
bulk (Ga,Mn)As. It also impacts the spin polarization of transport, but only in the case
of a very high magnetic disorder. Very similar trends (Fig. 7.17) can be observed for thin
(Ga,Mn)As layers [135].

In calculations whose results are depicted in Fig. 7.17 order parameter r across the whole
thin slab was assumed to be the same as for bulk (Ga,Mn)As with the same concentration
of impurities. However a new partial DLM state characterized by r has to be found for
thin layers and its value is generally layer-dependent, we denote it rm. Order parameter is
reasonably de�ned only for monolayers m containing Ga(Mn) spheres, therefore only those
even numbered. The discovery of partial DLM state is performed as a search for a set of
values rm minimizing the total energy and it is signi�cantly more complicated than for bulk
systems.

We perform an iterative energy minimization with respect to rm with a simplifying
assumption on the energy dependence on rm: we assume that there are no local minima
of E in the (n− 1) /2-dimensional space of possible rm values. First order parameter r̂min
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Figure 7.16: The total CPP conductances of the (Ga0.95+zMn0.05−z)AsMniz (001) slabs with
a �xed thickness of 21 ML and the spin polarization of these conductances as functions of the
Mn-interstitial concentration z in the ferromagnetic state (FM) and in the antiferromagnetic
state (AFM) [135].

Figure 7.17: The total CPP conductances of the (Ga0.95−yMn0.05Asy)As (001) slabs with
a �xed thickness of 21 ML sandwiched by two semi-in�nite nonmagnetic bcc Cr(001) leads
and the spin polarization of these conductances as functions of the As-antisite concentration
y in the ferromagnetic state (FM) and in a disordered-local-moment state (DLM) [135].
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homogeneous across the slab minimizing the total energy E is found, then rm corresponding
to monolayers m = 2..n− 1 are varied from this r̂min in sequence to �nd their values rmin

m

minimizing E, previously obtained rmin
m are always put into system instead of r̂min so that

the surrounding monolayers (m′ 6= m) of examined m is simultaneously updated. The loop
starts with those m adjacent to interfaces and continues inwards, when the reached rmin

m is
close to r̂min it varies rm for m in the direction from middle monolayers towards interfaces
until all m are examined. The mirror symmetry of the slab with respect to the central layer
is employed to reduce the number of steps. The whole iteration is then repeated and if
there are no changes of rmin

m for all m due to updated surrounding, the iterative process is
�nished.

The obtained distribution of substitutional Mn+ and Mn− atoms is depicted in Fig.
7.18 for (Ga0.94Mn+

x+Mn−x−As0.01)As (001) slabs of thickness t = 21 with x = x+ + x− =
0.05. For this combination of concentrations x, y the bulk (Ga,Mn)As remains completely
ferromagnetic, but for thin layers we see a clear formation of a strong magnetic disorder
penetrating deep into the slab (rm = 0.3 for m = 4..8 and vice versa on the opposite side of
the slab), and the interface Mn atoms are even oriented opposite to the slab magnetization.

For the FM arrangement of Mn atoms the corresponding CPP conductance spin polar-
ization of the (Ga0.94Mn+

x+Mn−x−As0.01)As (001) slabs is 93%. In its more realistic magnetic
state described by the calculated order parameter (Fig. 7.18) the polarization is reduced to
79%, and the total conductance is 0.63 times smaller. We estimate that for higher defect
concentrations, which correspond to a presence of slight pDLM even in bulk, the magnetic
disorder in thin slabs will be much higher and the spin polarization would be completely
destroyed sooner than it is shown in Fig. 7.17. However, note that the presented results for
thin layers are also strongly sensitive to the material of leads and to the thickness of DMS
slabs.
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Figure 7.18: Distribution of total Mn concentration between Mn+ and Mn− atoms for
monolayers m inside (Ga0.94Mn+

x+Mn−x−As0.01)As (001) slabs of thickness n = 21 atomic
layers with x = x+ + x− = 0.05. Mn atoms are located at even numbered layers m and
m = 2, 20 are locations adjacent to one of Cr leads. Terminating As atoms are atm = 1, 21.
Each m and m+ 1 correspond to one principal layer.



Chapter 8

Co2MnSi thin layers

The intermetallic compound Co2MnSi is chosen here as a representative of the wide class of
full Heusler alloys. This name originates from Friedrich Heusler's discovery of ferromagnetic
alloy Cu2MnAl, whose all elements are non-magnetic. Later the name was adopted for all
intermetallic compounds with similar structure and the �rst discovered half-metal belongs
to this class [24]. It can be viewed as 4 inpenetrating fcc lattices (Fig. 8.1) with lattice
parameter (a = 0.565 nm) very close to that of GaAs, which allows very good matching to
it.

Halfmetallicity is common among Heusler alloys, and Co2MnSi also should have this
property according to ab initio calculations [139]. However, attempts to prove this exper-
imentally were not successful until recently, when the halfmetallic energy gap in Co2MnSi
was observed by tunneling conductance spectroscopy [140,141]. There are few most probable
reasons for di�culties with con�rming halfmetallicity of this structure [142]:

• The used methods are often surface sensitive, but the half-metallic character is de-
stroyed at surfaces.

• Antisite disorder is likely to occur, especially swapping between Mn atoms and similar
sized Co atoms, which are also close to each other

One of the most important advantages of Co2MnSi over other halfmetals is its high Curie
temperature 985K, magnon e�ects can be neglected even at room temperature [143]. An-
other crucial feature is the expected width of the minority bandgap, which should preserve
the half-metalicity even at room temperature (depending on the position of the Fermi energy
inside the gap). Therefore this material is de�nitely worth further examination.

8.1 Bulk properties
The calculated band structure and density of states of ideal Co2MnSi are depicted in Fig.
8.2 and the left panel of Fig. 8.3, respectively. Transport calculations show zero conductance
in the minority spin channel as expected because of its predicted half-metallic character.
Calculated magnetic moment is 5 µB per f. u. (formula unit), in agreement with the
fact that conduction band is cut by Fermi level for one spin channel only, hence there

95
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Figure 8.1: Co2MnSi structure, four time the formula unit volume displayed [142].

must be an integer number of electrons per f. u. present in both spin directions. SQUID
based measurements of samples without special disorder reduction have yielded a value
of 4.78µB [144], which is another proof of lower quality of these common samples and
supports the idea of antisite disorder. We have investigated

(
Co1−y/2Mny/2

)
2
(Mn1−yCoy) Si

with swapping between Co and Mn in the range of up to y= 20% Co as antisites on the
Mn sublattice (Fig. 8.4). The range of magnetic moments of these alloys obtained from
ab initio calculations comprise also the experimental value of magnetic moment, it can
be matched to y = 8 %. X-ray measurements [145] (on di�erent samples) have shown
a similar y = 7%, which corroborates that disorder of these really not negligible values
can be expected in samples without a special treatment to improve quality. This amount
of disorder corresponds to the conductance spin polarization of 98.5% (Fig. 8.4). The
calculated density of states shows that the Co impurity band (on the Mn sublattice) is
formed in the minority channel close to the Fermi energy (see Fig. 8.3, right panel). The
halfmetallicity is in fact destroyed, but a conductance through such a virtual bound state
remains strongly suppressed. Hence the conductance spin polarization is still high, but the
non-negligible number of states near EF in the minority channel may signi�cantly impact
the spin polarization measurements.

Recently a special annealing method was utilized in order to remove antisite disor-
der [140]. The minority spin energy gap was successfully observed [141] by tunneling con-
ductance spectroscopy, the measured width of the gap (350 - 400 meV) and separation
between the Fermi energy and the bottom edge of conduction band (10-20 meV) agree ap-
parently well with ab initio electronic structure calculations of ideal Co2MnSi (Fig. 8.3,
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Figure 8.2: Band structure of the full-Heusler compound Co2MnSi in the spin-↑ (left panel)
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Figure 8.4: Total Mn moment and conductance spin polarization in disordered bulk(
Co1−y/2Mny/2

)
2
(Mn1−yCoy) Si as functions of antisite disorder y.

band gap width 430 meV). To prepare half-metallic Co2MnSi is thus within the reach of
current technology.

8.2 Thin layers
Thin layers of Co2MnSi were examined as sandwiched by bcc Cr(001) leads. Lattice match-
ing of Cr and Co2MnSi and the used techniques are similar to the case of Cr and (Ga,Mn)As,
see Sec. 7.2. The Cr lattice was slightly compressed by cca. 2% to �t the equilibrium lat-
tice of Co2MnSi. One atomic (001) layer inside the Co2MnSi slabs contained either two Co
atoms or a Ga sphere and an As sphere, these two layers together form a principal layer.
The slabs comprised an even number of atomic layers n, where 4 ≤ n ≤ 30, they were thus
terminated by a Co atomic layer on one side (L) of the junction and by a layer containing
Mn, Si on the other side (R). Transport calculations were performed on a uniform mesh
of 3600 k‖ points in the 2D BZ. The CPP conductance and its spin polarization for ideal
slabs is depicted in Fig. 8.5, the transport is purely ballistic, hence the conductance is
oscillating around a constant value which re�ects mainly the interface mismatch between
Cr and Co2MnSi and Cr Sharvin resistance. The minority conductance is suppressed even
more quickly than in the (Ga,Mn)As based junctions (Sec. 7.2), which obviously leads to a
quick saturation of conductance spin polarization.

Thin layers with antisite disorder should provide better agreement with real experi-
ments. CPP conductances and the electronic structure for y = 8 % corresponding to the
expected disorder were calculated (Fig. 8.6). Note that while for bulk this disorder led to
relatively very small reduction of the spin polarization (100% →98.5%), CPP conductance
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Figure 8.5: CPP conductances C, C↓ and the spin polarization of Co2MnSi (001) slabs
sandwiched by two semi-in�nite nonmagnetic bcc Cr(001) leads as functions of its thickness
n.

polarization of the thin layer remains at signi�cantly lower value even for the thickness of 24
monolayers. This thickness was enough to yield 99.99% polarization for pure thin layers, but
for (Co0.96Mn0.04)2 (Mn0.92Co0.08) Si it is reduced to 90.2%. The minority conductance now
has apparent ohmic behavior for larger thickness, which supports the previously presented
idea based on the analysis of the DOS (Fig. 8.3, right panel) that for disordered Co2MnSi
this conductance is reduced mainly due to strong scattering and not tunneling.

Spin-mixing conductances of half-metallic materials may have some speci�c features,
therefore we calculated the dependence of this quantity on slab thickness for both ideal and
disordered Co2MnSi (Fig. 8.7). The mixing conductance reaches its almost maximum value
immediately for layers of thickness 5 ML because of its high exchange splitting, which is in
good agreement with the statements in Sec. 4.6. Similar to (Ga,Mn)As case any oscillations
are hardly observable. The imaginary part of Cmix

L is also exceptionally high with respect
to the real part, an explanation of this phenomena based on a free-electron model was
provided in [16]. Properties of spin-mixing conductances of both (Ga,Mn)As and Co2MnSi
are surprisingly similar, the main di�erence is the fact that ReCmix

L is almost an order of
magnitude lower than the lead Sharvin conductance for (Ga,Mn)As, while for Co2MnSi it
is reduced only slightly (Tab. 4.1). It is interesting to see that the spin-mixing conductance
is only very slightly reduced due to disorder and oscillations are additionally smeared out
in the presence of it.
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Figure 8.6: CPP conductances C, C↓ and the spin polarization of
(Co0.96,Mn0.04)2 (Mn0.92,Co0.08) Si (001) slabs sandwiched by two semi-in�nite non-
magnetic bcc Cr(001) leads as functions of its thickness n.

Figure 8.7: Spin-mixing conductances Cmix
L of both Co2MnSi (001) and

(Co0.96,Mn0.04)2 (Mn0.92,Co0.08) Si (001) slabs sandwiched by two semi-in�nite non-
magnetic bcc Cr(001) leads as functions of its thickness n.
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8.3 Spin valves
The uniquely high spin polarization of Co2MnSi encourages its use in spin valves as ideal
spin �lters. Such a device should exhibit extraordinary high magnetoresistance ratio and
also very high spin torques on FM layers (Chap. 4) should be present. Experimental real-
ization of such a device should avoid the problem of surface sensitivity of some polarization
measurements and give better information about the realized spin polarization and how well
does it compare to the theoretical predictions. An experimental measurement of tunneling
junction Co2MnSi | AlOx | Co0.7Fe0.3 gave TMR ratio 86% at 10K, from which a spin po-
larization 61% was deduced [142] based on Julliere's formula (Eq. 2.38). In work [146] a
tunneling junction Co2MnSi | MgO | Co0.5Fe0.5 was investigated and provided quite high
TMR 70% at room temperature and 169% at 4.2 K. A very similar result was obtained for
amorphous Al-O spacer [147]. Their similarity suggests that transport properties do not
depend for this system strongly on spacer properties, in contrast to recent �ndings about
Fe | MgO | Fe junctions [4]. Upon the improved annealing which removed antisite disorder,
Co2MnSi | AlOx | Co2MnSi samples recently exhibited an extraordinary TMR ratio of 570%
at 2K [140]. For similarly developed Co2MnSi | AlOx | Co0.75Fe0.25 the TMR 159% was
obtained [141].

We have calculated ideal spin valves Cr | 12ML Co2MnSi | 8ML Cr | 12ML Co2MnSi
| Cr (001). The MR ratio of pure layers is over 105% as can be expected for halfmetallic
junction, with antisite disorder y = 8% it is reduced to 320%. This indicates that antisite
disorder can explain the di�erence between values obtained in di�erent measurements, but
only more experimental data could eliminate other explanations.

Another interesting topic is the possible non-collinear setup of magnetic layers and as-
sociated spin-torques (Chap. 5) in non-collinear Cr | 12 Co2MnSi | 8 Cr | 12 Co2MnSi | Cr
(001) spin valves. We have investigated dependences of CPP resistances and spin torques
on FM layers relative angles ϑ (Fig. 8.8). Both curves show features of a typical half-metal.
In formulas (5.32, 5.33) coe�cients χ and ω have high values and multiply the terms sup-
porting asymmetry of the result and shift the torkance maximum towards the AP oriented
end of graph, which is seen in Fig. 8.8.
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Figure 8.8: CPP resistances and the spin torque exerted on the second FM layer of the Cr
| 12ML Co2MnSi | 8ML Cr | 12ML Co2MnSi | Cr bilayer as functions of FM layers relative
angle ϑ from ab initio calculations (markers) compared to empirical formula results (lines)



Chapter 9

Conclusions

The theoretical part of this work was aimed mainly towards a development of very general ab
initio methods. First we have enlarged the range of materials that can be handled by existing
approaches: transport properties calculations for disordered systems based on the CPA were
extended from bulk materials also to systems with one reduced dimension, multilayers. We
have shown the importance of vertex corrections for this particular situation. This kind of
problems can be evaluated on ab initio level also by means of the supercell method, but
for some materials or situations our method appears to be more suitable, for example for
the diluted magnetic semiconductors. Comparison of the supercell and the full CPA results
proves that important aspects of the spin-polarized CPP transport are fully within the reach
of an e�ective medium treatment (Sec. 6.2.2, 6.3).

Secondly we have derived ab initio methods for evaluation of novel observables connected
with the phenomena of current induced magnetization switching, namely the spin-mixing
conductance and spin torque. This area is yet only scarcely examined and we believe that
our work has contributed signi�cantly to understanding of this phenomenon, we have for
example revealed its connection to system Green's functions (Eqs. 4.19, 4.20, 4.21). For
the �rst time the spin-mixing conductance was combined with the CPA approximation for
disordered systems. We have also demonstrated the equivalence between the Kubo and
NEGF approach within linear response regime for one particular direction of spin-mixing
conductance. The key features of our technique are the correct inclusion of evanescent states
and the fact that it can be treated in a similar way as the charge conductance, thus it is
compatible with the previously mentioned method for disordered systems. This general
formulation of mixing conductances allows to �nd whether some often adopted assumptions
are correct in all situations. Namely the assumption of a fast convergence of spin-mixing
conductance with increasing thickness is found not to be valid for thin Ni layers (Fig. 4.3).
Imaginary part of the mixing conductance was believed to be much smaller than the real
part, this was disproven here for thin layers of (Ga,Mn)As (Fig. 4.5) or Co2MnSi (Tab. 4.1,
Fig. 8.7). A compact Caroli-like formula was formulated for spin torque caused by CPP
current in non-collinear magnetic layered systems (Eq. 5.23). The relation between spin-
mixing conductances and spin torques in non-collinear magnetic junctions has been found
to be quite close (Sec. 5.3) and the theory has been shown to be capable of dealing with
arbitrary angular arrangements of magnetic layers (Sec. 5.4.1). In the future this approach
to non-collinear systems can be combined with the CPA too and the spin-orbit coupling
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may also be included with no major obstacles.
The second part containing informations about concrete materials served two purposes.

First it was used to test the presented methods. The systems were therefore selected so that
they were as diverse as possible. Its results were compared to experimental data or other
computational results if available, and the agreement was generally within the expected
accuracy. Predictions for observable and material combination without relevant previous
information were tested successfully for symmetries and conditions it should ful�ll and at
least the trends were found appropriate to what can be expected according to material prop-
erties. Therefore the developed methods appear to have passed the tests, and the chosen
approximations were appropriate. The second main purpose was to �nd more information
about the selected systems, explain not yet understood phenomena and predict its behavior
under yet untested conditions, therefore we attempted to choose primarily physically inter-
esting systems with unique or novel features or systems with a high application potential.

For thin (Ga,Mn)As layers many presented �ndings are novel since almost all existing
ab initio studies deal only with its bulk counterpart. The obtained transport properties has
therefore been checked for compatibility with calculated and measured bulk data, which
turned out to be successful (Tab. 7.1). Very interesting is the discovered relation between
the current spin polarization and native structural defects (Sec. 7.3). We have provided
an explanation of this dependence based on the variation of metal induced gap states. We
were also the �rst to calculate the spin-mixing conductance of this system and some results
are rather surprising, especially the already mentioned magnitude of its imaginary part.
Although we do not believe that the Curie temperature of (Ga,Mn)As can be raised high
enough to allow practical utilization of this material, the same ideas can be more or less
applied to other diluted magnetic semiconductors. In this class of materials there are some
other promising novel types which may overcome the Curie temperature problem, in this
context Li(Zn,Mn)As has been proposed recently [148].

Interest in Heusler alloys is high because of its unique features. An obstacle for obtain-
ing theoretically predicted features in Co2MnSi is its high tendency to antisite disorder,
which leads quickly to a loss of halfmetallicity, we have calculated its impact on transport
properties of thin Co2MnSi layers (Sec. 8.2). Its direct elimination did not appear to be
easily doable, but very recent experiments seems to have overcome this problem [140]. Our
results may help to understand how the expected total spin polarization can be reached.
We examined the angular dependence of spin torque (Fig. 8.8) exerted on one part of a
spin valve constructed from such almost ideal spin-�lter, this may be very important for
attempts to create CIMS based applications of this or a similar material.



Appendix A

Derivation of Kubo formula for
generalized CPP transport

The starting formula (2.47) can be rewritten using Eq. (2.5):

CAB̃ =
i

2π
lim

α→0+

∫
dξf (ξ)Tr

{
[G (ξ + i0)−G (ξ − i0)]AG (ξ + iα) B̃ (A.1)

+G (ξ − iα)A [G (ξ + i0)−G (ξ − i0)] B̃
}
.

We decompose the last equation to three contributions distinguished by the sign of the
imaginary parts of both complex energy arguments, labeled as:

• CP ... for both imaginary parts positive

• CN ... for both imaginary parts negative

• CM ... for imaginary parts with mixed signs

The following commutator allows to revert the order of G (z) and B̃:
[
G (z) , B̃

]
= G (z)

(
B̃ (z −H)− (z −H) B̃

)
G (z) = −iG (z) ÃG (z) .

From this a relation corresponding to our problem can be derived:

Tr
{
AG (zµ) B̃G (zν)

}
= Tr

{
AB̃G (zµ)G (zν)

}
− iTr

{
AG (zµ) ÃG (zµ)G (zν)

}
, (A.2)

or alternatively

Tr
{
AG (zµ) B̃G (zν)

}
= Tr

{
AG (zµ)G (zν) B̃

}
+ iTr

{
AG (zµ)G (zν) ÃG (zµ)

}
. (A.3)

We employ (A.2) for the part of (A.1) corresponding to CM :

CM
1 =

i

2π
lim

α→0+

∫
dξf (ξ)Tr

{
AB̃G (ξ + i0)G (ξ − iα)−AB̃G (ξ + iα)G (ξ − i0)

−iAG (ξ + i0) ÃG (ξ + i0)G (ξ − iα) + iAG (ξ + iα) ÃG (ξ + iα)G (ξ − i0)
}
,
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where the involved products of two Green's functions can be rewritten by means of the
Ward identity given here as:

G (zµ)G (zν) =
1

zν − zµ [G (zµ)−G (zν)] . (A.4)

Its use in formula for CM
1 leads to:

CM
1 =

i

2π
lim

α→0+

∫
dξf (ξ)Tr

{
AB̃

G (ξ + i0)−G (ξ − iα)
−iα −AB̃G (ξ + iα)−G (ξ − i0)

−iα
−iAG (ξ + i0) Ã

G (ξ + i0)−G (ξ − iα)
−iα + iAG (ξ + iα) Ã

G (ξ + iα)−G (ξ − i0)
−iα

}
.

It can be assumed that operators A, Ã are restricted only to the intermediate region as
there is no need to have them de�ned out of it.

Since B̃ in the last formula is also bounded there by multiplication by A, the limit
α→ 0+ can be correctly performed:

lim
α→0+

G (ξ + i0)−G (ξ − iα)
−iα − G (ξ + iα)−G (ξ − i0)

−iα =

lim
α→0+

G (ξ + iα)−G (ξ + i0)
iα

− G (ξ − iα)−G (ξ − i0)
−iα = G′ (ξ + i0)−G′ (ξ − i0) .

This yields:

CM
1 =

i

2π

∫
dξf (ξ)Tr

{
AB̃

[
G′ (ξ + i0)−G′ (ξ − i0)

]}
(A.5)

+
i

2π
lim

α→0+

1
α

∫
dξf (ξ)Tr

{
AG (ξ + i0) ÃG (ξ + i0)−AG (ξ + i0) ÃG (ξ − iα)

}

+
i

2π
lim

α→0+

1
α

∫
dξf (ξ)Tr

{
AG (ξ + iα) ÃG (ξ − i0)−AG (ξ + iα) ÃG (ξ + iα)

}
.

Alternatively, (A.3) can be employed instead of (A.2) for the part of (A.1) corresponding
to CM :

CM
2 =

i

2π
lim

α→0+

∫
dξf (ξ)Tr

{
AG (ξ + i0)G (ξ − iα) B̃ −AG (ξ + iα)G (ξ − i0) B̃

+iAG (ξ + i0)G (ξ − iα) ÃG (ξ − iα)− iAG (ξ + iα)G (ξ − i0) ÃG (ξ − i0)
}

We transform CM
2 analogously to the preceding derivation for CM

1 :

CM
2 =

i

2π

∫
dξf (ξ)Tr

{
B̃A

[
G′ (ξ + i0)−G′ (ξ − i0)

]}
(A.6)

+
i

2π
lim

α→0+

1
α

∫
dξf (ξ)Tr

{
AG (ξ + iα) ÃG (ξ − i0)−AG (ξ − i0) ÃG (ξ − i0)

}

+
i

2π
lim

α→0+

1
α

∫
dξf (ξ)Tr

{
AG (ξ − iα) ÃG (ξ − iα)−AG (ξ + i0) ÃG (ξ − iα)

}
.
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Averaging the two expressions for CM , Eqs. (A.5, A.6), we �nd

CM =
i

4π

∫
dξf (ξ)Tr

{(
AB̃ + B̃A

) [
G′ (ξ + i0)−G′ (ξ − i0)

]}

+
1
4π

lim
α→0+

∫
dξf (ξ)Tr

{
AG (ξ + iα) ÃG (ξ + iα)−AG (ξ + i0) ÃG (ξ + i0)

iα

}

+
1
4π

lim
α→0+

∫
dξf (ξ)Tr

{
AG (ξ − iα) ÃG (ξ − iα)−AG (ξ − i0) ÃG (ξ − i0)

−iα

}

− 1
2π

lim
α→0+

∫
dξf (ξ)Tr

{
AG (ξ + iα) ÃG (ξ − i0)−AG (ξ + i0) ÃG (ξ − i0)

iα

}

− 1
2π

lim
α→0+

∫
dξf (ξ)Tr

{
AG (ξ + i0) ÃG (ξ − iα)−AG (ξ + i0) ÃG (ξ − i0)

−iα

}
,

where limits can be replaced by derivatives:

CM =
i

4π

∫
dξf (ξ)Tr

{(
AB̃ + B̃A

) [
G′ (ξ + i0)−G′ (ξ − i0)

]}

+
1
4π

∫
dξf (ξ)

d

dξ
Tr

{
AG (ξ + i0) ÃG (ξ + i0) +AG (ξ − i0) ÃG (ξ − i0)

}

− 1
2π

∫
dξf (ξ)Tr

{
AG′ (ξ + i0) ÃG (ξ − i0) +AG (ξ + i0) ÃG′ (ξ − i0)

}
.

Since f (ξ) → 0 for ξ → ∞ and [G (ξ + i0)−G (ξ − i0)] → 0 for ξ → −∞, an integration
by parts can be performed:

CM =
−i
4π

∫
dξf ′ (ξ)Tr

{(
AB̃ + B̃A

)
[G (ξ + i0)−G (ξ − i0)]

}

+
1
4π

∫
dξf ′ (ξ) d

dξ
Tr

{
A [G (ξ + i0)−G (ξ − i0)] ÃG (ξ − i0)

−AG (ξ + i0) Ã [G (ξ + i0)−G (ξ − i0)]
}
.

The second term is now in the form of the desired coe�cient C(1)

AB̃
(Eq. 2.49), which gives

rise to charge conductance.
A similar approach is used for CP , CN . We �nd the averaged formula for CP :

CP =
i

4π

∫
dξf (ξ)Tr

{(
AB̃ + B̃A

)
G2 (ξ + i0)

}

+
1
4π

∫
dξf (ξ)Tr

{
AG (ξ + i0) ÃG2 (ξ + i0)−AG2 (ξ + i0) ÃG (ξ + i0)

}

The formula for CN di�ers only by signs:

CN =
−i
4π

∫
dξf (ξ)Tr

{(
AB̃ + B̃A

)
G2 (ξ − i0)

}

− 1
4π

∫
dξf (ξ)Tr

{
AG (ξ − i0) ÃG2 (ξ − i0)−AG2 (ξ − i0) ÃG (ξ − i0)

}
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We sum these two contributions, for their �rst terms we employ the relationG2 (z) = −G′ (ξ)
and an integration by parts, which yields:

CP + CN =
i

4π

∫
dξf ′ (ξ)Tr

{(
AB̃ + B̃A

)
[G (ξ + i0)−G (ξ − i0)]

}
(A.7)

+
1
4π

∫
dξf (ξ)Tr

{
AG (ξ + i0) ÃG2 (ξ + i0)−AG2 (ξ + i0) ÃG (ξ + i0)

−AG (ξ − i0) ÃG2 (ξ − i0)−AG2 (ξ − i0) ÃG (ξ − i0)
}

The total response coe�cient is given as

CAB̃ = CM + CP + CN . (A.8)

The �rst terms of CM and CP + CN cancel each other in (A.8). Note that the remaining
part of CM is equivalent to C(1)

AB̃
, formula (2.49), while the remaining part of CP + CN ,

the second term in Eq. (A.7), is equivalent to C(R)

AB̃
, formula (2.50), and the validity of Eq.

(2.48) has been proven. This proof does not require an existence of an operator B which
ful�lls A = −i [B,H].



Appendix B

Invariance property of the
spin-mixing conductance

Let us consider the thermodynamic average of a one-particle quantity Q (e.g., a component
of the spin torque or of the spin current) in a stationary non-equilibrium state,

Q̄ =
1
2π

∫ ∞

−∞
Tr

{
QGr(E)Σ<(E)Ga(E)

}
dE, (B.1)

where Q is an operator non-zero only inside the intermediate region, denoted here by I, the
trace refers to the Hilbert space of I and the selfenergy Σ<(E) is given by Eqs. (4.7, 4.10).
In contrast to the usual case of scalar Fermi-Dirac functions fL,R(E), the presence of spin
accumulation in the leads requires to include spin-dependent distributions. This means that
fL,R(E) in Eq. (4.10) must be understood as operators acting only on spin indices; for a
given lead (L,R) and a given energy E, this operator is uniquely speci�ed by a hermitean
2 × 2 matrix. We assume that fL(E) commutes with the Hamiltonian H inside the left
lead, so that [fL(E),Σr,a

L (E)] = 0, and similarly for the right lead; however, the operators
fL,R(E) do not in general commute with H inside the intermediate region I and with the
operator Q. Let us prove that the resulting Q̄, Eq. (B.1), does not depend on positions of
interfaces L/I and I/R (provided that Q remains localized in I). It is implicitly assumed
that matrix elements of H are short-ranged, i.e., H is a tight-binding Hamiltonian.

The total value Q̄ can easily be decomposed in two contributions according to Eqs. (4.7,
4.10), Q̄ = Q̄L + Q̄R, where

Q̄L,R =
1
2π

∫ ∞

−∞
Tr {QGr(E)fL,R(E)BL,R(E)Ga(E)} dE. (B.2)

Since the propagators Gr,a(E) refer to the whole in�nite system, while the operator Q is
localized in the interior of I and the operators BL,R are localized in narrow regions at the
respective interfaces, it is obvious that the contribution Q̄R does not depend on the position
of the L/I interface and vice versa.

Let us investigate the dependence, e.g., of Q̄L on the position of the L/I interface. Let
us move the interface towards the left, which results in a modi�ed lead L̃ ⊂ L and a region
Λ of a �nite thickness such that Λ = L \ L̃, L = L̃ ∪ Λ. The original intermediate region I
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is thus modi�ed to an extended region Ĩ = Λ ∪ I. An explicit expression of Q̄L, Eq. (B.2),
in terms of the left selfenergies is given by

Q̄L =
i

2π

∫ ∞

−∞
Tr {QGr(E)fL(E) [Σr

L(E)− Σa
L(E)]Ga(E)} dE, (B.3)

where the trace refers to the original intermediate region I.
Let us consider the original lead L decoupled from the rest of the system; its Green's

function projected on the region L are analogues of the TB-LMTO surface Green's functions
(Sec. 2.2.3) and will also be denoted Gr,a

L (E). It holds [fL(E),Gr,a
L (E)] = 0. The selfenergy

of the original left lead can be expressed as

Σr,a
L (E) = tGr,a

L (E) t†, (B.4)

where t denotes that part of the Hamiltonian H that describes hoppings from Λ to I
while t† describes hoppings from I to Λ, in the TB-LMTO picture of layered system with
leads (Sec. 2.2.3) they correspond to Sβ matrix elements Sβ

0,1 and Sβ
1,0, respectively; these

(spin-independent) hoppings satisfy [fL(E), t] = 0. We assume for simplicity that Λ is thick
enough so that no matrix elements ofH couple L̃ to I. Substitution of Eq. (B.4) in Eq. (B.3)
yields

Q̄L =
i

2π

∫ ∞

−∞
Tr

{
QGr(E)tfL(E) [Gr

L(E)− Ga
L(E)] t†Ga(E)

}
dE. (B.5)

Let us further denote by Σ̃r,a
L (E) the selfenergy of the modi�ed lead L̃. Since Gr,a

L (E) refers
to the Green's function of L = L̃ ∪ Λ, i.e., of a �nite region Λ attached to the semi-in�nite
lead L̃, the following relation holds in the Λ region:

Gr
L(E)− Ga

L(E) = Gr
L(E)

[
Σ̃r
L(E)− Σ̃a

L(E)
]
Ga
L(E), (B.6)

which represents an analogy to Eqs. (2.62, 4.18). The use of Eq. (B.6) in Eq. (B.5) leads to

Q̄L =
i

2π

∫ ∞

−∞
Tr

{
QGr(E)tGr

L(E)fL(E)
[
Σ̃r
L(E)− Σ̃a

L(E)
]
Ga
L(E)t†Ga(E)

}
dE. (B.7)

Finally, let us take into account the Dyson equation for a coupling of the isolated left
lead L = L̃ ∪ Λ to the rest of the whole system, I ∪ R, by using the hoppings t and t† as
a perturbation. Since the operator Q is localized inside the region I while the selfenergy
Σ̃r,a
L (E) is localized in Λ, one can replace the products Gr(E)tGr

L(E) and Ga
L(E)t†Ga(E)

in Eq. (B.7) by the perturbed Green's functions G̃r(E) and G̃a(E), respectively. Here
the G̃r,a(E) denote propagators of the coupled in�nite system, projected on the extended
intermediate region Ĩ, in contrast to their projections Gr,a(E) on the original region I. This
replacement yields a modi�ed formula for Q̄L,

Q̄L =
i

2π

∫ ∞

−∞
Tr

{
QG̃r(E)fL(E)

[
Σ̃r
L(E)− Σ̃a

L(E)
]
G̃a(E)

}
dE, (B.8)

where the trace is taken over the extended region Ĩ. A comparison of Eq. (B.8) and Eq. (B.3)
proves insensitivity of the contribution Q̄L to the position of the L/I interface. This com-
pletes a proof of the invariance of the thermodynamic average Q̄, Eq. (B.1), with respect to
the L/I/R partitioning.
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The same invariance holds for the spin-mixing conductance Cmix
L , Eq. (4.20), as well as

for other quantities, Eqs. (5.30, 2.69), that can be obtained by in�nitesimal variations of
averages of the form (B.1).
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