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Preface 

In this thesis we analyse approximation abilities of one-hidden-layer feedforward neural net­
works and from theoretical point of view propose and analyse some practically applicable 
algorithms. In Chapter 1 we explain the model of f eedforward neural network and present 
known universa! approximation results applicable to this model. We overview the state of the 
art in approximation theory with stress on one-hidden-layer feedforward neural networks to 
introduce the reader to problems addressed in Chapter 2. Here we build on results of Maurey, 
Jones and Barron and Kůrková et al. on rates of approximation achievable in convex hulls 
and extend some of these results to a more general setting. These results were published 
in [S03a] and in [SOS]. In Chapter 3 we use results of Darken et al. on rates of approxi­
mation to infer probabilistic algorithm for neural networks. It is shown that this algorithm 
can be u sed for learning and also for pruning big networks with theoretically guaranteed 
error of approximation. Results in this chapter were presented in cooperation with Robert 
v 

Sámal in [SS08]. Chapter 4 comes closer to practical applications proposing special types 
of kemel-based neural networks. These have been tested on practical applications in coop­
eration with Petra Kudová-Vidnerová [KS06] and [KS05b]. Intrinsic trouble of kernel-type 
networks is high number of hidden units. We suggest one possible pruning method by ap­
plying probabilistic algorithm proposed in Chapter 3. These ideas were presented as part 
of [SS08]. Testing on practical applications is running in cooperation with Petra Vidnerová . 

. 
VI 
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Chapter 1 

lntroduction to Neoral Networks and 
Universal Approximation 

In this chapter we start by introducing the concept of neural networks in Section 1.1. In 
Section 1.2 we overview two basic and widely used models of neural networks - the mul­
tilayer perceptron and radial basis function (RBF) network which we study further in our 
work. In Section 1.3 we present universa! approximation results applicable to our objective. 
Section 1.4 is basically an introduction to the next chapter, presenting the concept of rates of 
approximation and overviewing some relevant results. 

1.1 Neural Networks 

There is no universally accepted definition of what a neural network and theory of neural 
networks is or should be. Basically it is agreed that neural network theory is a collection of 
models of computation very loosely based on biological motivations. Neural network is a 
highly parallel distributed processor that is able to store experimental knowledge making it 
available for use. Knowledge is acquired in learning process and stored as strength of inter­
neuron connections (synaptic weights) - bere lies the resemblance to brain (see for example 
Haykin [Ha94]). 

Now for some more mathematical formulation: Neural networks deal with problems where 
we are given a set of data z == {(xi, Yi); i == 1, ... , N} C JRd x IRm of N inputs and 
corresponding outputs. Input x == (x1, ... , xd) E JRd is processed in some way obtaining the 
output y == (y1, ... , Ym) E IRm. We assume that the process is given by some mathematical 

function 

y == F(x), 

1 
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where F could be quite complicated. We even cannot expect to be able to compute the 
unknown function F exactly. Another thing to keep in mind is that the given data might be 
noisy. We do not address the issue bere because it generally doesn't affect our considerations 
but techniques discussed in Chapter 4 can deal with the problem very elegantly. 

So we try to chaose our candidate G for the unknown function F from some parameterized 
set of functions using a given set of examples E C Z (some inputs x and associated correct 
outputs y). The set E should help us chaose the right parameters. Neural network models 
can be considered as particular choices of classes of functions G ( x, w), where w E JR k are 
the parameters, accompanied by various rules and specific procedures for choosing optima] 
parameters. Most neural network models have some training rule to learn parameters w from 
a set of examples E. There are many different models of neural networks, for an overview 
of some basic types see for example [Sa02, SiNe96]. 

Neural networks are a powerful and general means for representing non-linear mappings 
from several input to several output variables where the form of the mapping is adjusted by a 
number of parameters. Nonlinearity of neural network models is of great advantage but there 
is a cost. Determining values of the parameters is a problem of nonlinear optimization and 
tends to be computationally complicated. Finding efficient algorithms is of great importance 
since utility of any model depends on them. 

Our work does not deal with concrete means to find values of parameters. Instead, we try 
to understand, what are the abilities of neural networks: In Chapter 2 we investigate the 
ability of networks ( of a certain type) with a given number of neurons to approximate a 
given function. In Chapter 3 we address the same question from an algorithmic point of 
view. In particular, we propase an algorithm to "prune" a network with too many units. 
Finally, in Chapter 4 we consider the problem of learning from data as described above. 
While this is a diff erent problem than approximation, it is reasonable to expect that good 
approximation properties will imply the ability to leam well. Indeed, we will be able to 
use methods of Chapter 3. We explain Tikhonov regularization - a successful approach to 
the problem of learning from data. We report on computer experiments using this theory 
(with use of specific kemels) and explain how to use pruning (as described in Chapter 3) to 
improve upon it. 

1.2 One-hidden-layer Feedforward Neoral Network 
Models 

In this section we will introduce two basic models of networks that we will deal with in 
our work. There are numerous others but these two are the most used and best understood 
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from mathematical point of view. In our further work we concentrate only on one-hidden­
layer networks since unfortunately (or luckily) two- and more-hidden-layer network exhibit 
rather different approximation behaviour than one-hidden-layer network , ee for example 
[MaPi99]. 

1.2.1 Model of Perceptron 

Model of multilayer perceptron works with basic unit - the f ormal neuron. It is a implified 
mathematical model of biological neuron. Formal neuron with weights ( w1 , ... , wd) obtain 
its input x == (xi, ... , xd) E ~d, computes weighted sum E~_ 1 wi.'l:ú compares it to threshold 
(} and computes final output using activationfanction a: 

There are many standard types of activation functions: 

• Heaviside function a ( t) == {) ( t) == x [o,oo) ( t) ( the characteristic function of interval 
[O,oo)) 

• piecewise linear function 

• logistic sigmoid 

o t < -1 

(J ( t) == t~ 1 -1 < t < 1 ' 

1 t > 1 

1 
a(t) == --

1 + e-t' 

• hyperbolic tangens (equal to the logistic sigmoid) 

( ) 
_ tanh(t/2) ~ 

at- 2 +2, 

• Gaussian sigmoid 

- 1 lt -y2/2 
<J( t) - (27r )1/2 -oo e dy, 

• arctan sigmoid 
1 1 

<J(t) = 7r arctan(t) + 
2

. 
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Figure 1.1: Sigmoidal functions. 

The listed activation functions are all sigmoidal (by this we mean that limx~-oo a(x) == O, 
limx_.00a(x) == 1 and a is nondecreasing; we do not require continuity). These are the most 
commonly used and investigated activation functions, but generally, any activation function 
is conceivable. The choice, however, has implications on approximation properties of the 

model. On the other hand Theorem 2.2.9 shows that all sigmoidal activation functions behave 
the same with respect to the known convergence estimates in Lp spaces. 

Multilayer feedforward perceptron is specified as fixed architecture consisting of finite num­
ber of successive layers. Each layer has finite number of units (formal neurons). Generally, 
activation function a is chosen at the beginning and is the same for all units. Each unit in 
(i + 1 )-st layer connects to all neurons in the previous i-th layer. 

The connections have weights assigned to them, Wijk is weight of connection between k-th 
neuron in (i - 1)-st layer and j-th neuron in i-th layer. All neurons have thresholds - (}ij is 
the threshold in j-th unit of i-th layer. 

Multilayer feedforward perceptron (see Figure 1.2) computes its output in a series of dis­

crete steps. Computation starts in input layer (values xo,j are assigned according to input). 
Neurons propagate computation through the network from layer to layer until output layer is 
reached. Value of the j-th unit in the i-th layer is computed as f ollows: 

Xi ,j = CJ ( ~ WijkXi - l,k - (}ij) · 

As we already mentioned, the number of layers and units therein remain fixed and so does 
also a. Weights and thresholds are parameters of the system and are adapted to find the 
best approximating function G to the desired function F. This is done in a process called 
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Figure 1.2: Multilayer feedforward perceptron. 

learning or training. The basic learning algorithm for multilayer f eedf orward perceptron is 

called backpropagation. It is a gradient descent method based on backward propagation of 

error and is used in majority of all applications of neural networks. In its basic form it uses 

first derivative of activation function. For details see for example [SiNe96]. 

Multilayer perceptrons are usually classified according to the number of hidden layers, that 

is the number of layers excluding input and output layer. We will deal only with one-hidden­

layer models. Zero hidden layer model is no longer used except for problems of linear 

separation since it cannot do more. Zero hidden layer model computes 

XI,j == a (t WjkXO,k - (}j) , J == 1, ... , m. 
k=l 

We can see that this function is constant along parallel hyperplanes, see Figure 1.4 in Section 

1.3. This argument along with the fact that no learning algorithm was known for networks 

with hidden layers was used in the sixties (M. Minsky and S. Papert [MiPa69]) to discredit 

neural networks. lt was shown later that hidden layers (one is enough) allow for approximat­

ing arbitrarily well and learning algorithm (backpropagation) was found (Rumelhart, Hinton, 

Williams [RHW86]). 

We will further consider one-hidden-1ayer perceptron with minor modifications - we sim­

plify to only single output networks and we do not apply activation function and threshold 

in the output layer. This presents no real restriction. In fact from mathematical point of view 

applying activation function in output layer does not bring anything new and may introduce 
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restrictions, single output basically on ly simplifies notation. Thus for d-dimensional input 
and n units in hidden layer we have the output of the network computed as: 

Y = t CiO (t WijXj - ()i) , 
i= l j=l 

where Xj are inputs, Wij is the weight between the j-th unit in the input layer and the i-th 
unit in hidden layer, ()i is the threshold at the i-th unit of hidden layer and c i is the weight 
between the i-th unit in hidden layer and output. We can equivalently write 

n 

Y = L cia(wi · x - ()i)· 
i=l 

This is the type of schema we will mainly concentrate upon. 

For completeness we include the f ormula for more hidden layer perceptron - we iterate the 
one hidden layer model. So two hidden layer perceptron with n units in first hidden layer 
and s units in second hidden layer computes: 

y = t t dka ( f; Cika(wik · x - ()ik) - /'k) . 

As stated above further we address only one-hidden-layer perceptron. 

1.2.2 Model of RBF Network 

Now we introduce another very well-known and used model of network - radial basis fu,nc­

tion networks or RBF networks. Our task has been made easy as we can apply most of the 
section above. RBF network architecture is exactly the same as in one hidden layer percep­
tron. We fix number of units in layers. Each unit in higher layer connects to all units in 
previous layer. Input units simply pass input values on to the hidden layer. Hidden layer 
RBF units compute their outputs using radial basis function and pass their result to the linear 
(summing) output unit. 

The RBF unit has again d-dimensional real input x == (x1, ... , xd) and one real output y. We 
also apply activation function cr as in the perceptron model but bere we apply it to something 
else than weighted and shifted sum, namely we put 

_ (''X - W") y-cr () . (1.1) 

Here w == (w1 , ... , wd) is now interpreted no more as weights but rather as coordinates of 
center of the unit and () plays the role of width of the unit. The norm applied is usually 
Euclidean. The most commonly used activation function in the RBF model is: 
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t2 

a(t) == e -711 f3 >O (Gau ian). 

Functions defined by ( 1.1) are called radia/ symmetric, as the value of the function only 
depends on distance from some center. Functions that are not radial symmetric are u ed a 
well. 

Figure 1.3: Gaussian activation function on JR2• 

Summing up, an RBF network with d inputs and n units in the hidden layer computes: 

where Wij is the j-th coordinate of the center of the i-th hidden unit, ()i is width of the i-th 
unit and ci is weight applied to the i-th hidden unit. 
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Although this is the most common model, in many models the norm is omitted and most 
properties remain unchanged. Then we have: 

(x-w) 
y == a () ' (1.2) 

which can be rewritten as y == a(ax + (3), where a E JR and (3 E JRd. Note that bere (in 
contrast to the previous section) a is a function from JRd to IR. 

RBF networks can learn similarly as perceptrons using backpropagation. It is also possible 
to take advantage of meaning of concrete parameters (centers, widths) and introduce new 
learning methods as self-organization or genetic algorithms. We will not go into more detail 
on this subject as it generally does not affect the topic of our work. 

It is easily seen that RBF networks are working on local basis (their activation functions are 
localised around the centres w - see Figure 1.3) and thus certain kinds of tasks are much 
easier for them to handle than they are for perceptron s. 

1.3 Universal Approximation 

Universal approximation of a model is of crucial importance as it answers the question 
whether reasonable functions can be approximated by the model at all. We consider the 
set M of functions on IRd computable by our model. We call the model to have the property 
of universa/ approximation if Mis dense in the space C(ffi.d) of continuous functions on JR.d 
in the topology of unif orm convergence on compacta: 

For any f E C(JR.d), any compact subset K c IRd and any c > O there exists g E M such 
that 

max lf(x) - g(x)I < c. 
xEK 

The norm of uniform convergence on compacta is very strong. If µ is any nonnegative finite 
Borel measure with support in some compact set K, then C(K) is dense in Cl( K, p) for 
any 1 < p < oo. Thus density results extend also to these spaces, the approximation is 
"universal". In some cases only the easier task of approximation in ,CP -norm is considered, 
then we talk about density in these spaces. 

Universal approximation alone, however, does not ensure nice practical approximation prop­
erties of the chosen schema, it only says the schema is able to approximate with arbitrary 
precision. It does not talk about efficiency (in the case of neural networks how many units in 
the network are needed to achieve a given precision of approximation). 

The universa} approximation question for the one-hidden-layer models we have chosen (per­
ceptron and RBF) has been studied by many authors (see for example surveys in [Pi99], 
[SiNe96]). We will present only the most general results relevant to our study. 
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1.3.1 Universal Approximation for One-hidden-layer Perceptron 

For one-hidden-layer perceptron the solution was given in Leshno, Lin Pinku and Schoc­

ken [LLPS93]. For a continuous activation function the necessary and sufficient condition on 

universa! approximation is that it is not a polynomial. The authors al o con ider condition 

on non-continuous activation functions and possibilities to restrict weights and threshold . 

Figure 1.4: Ridge function x .--+ a-( a · x) where a, x E ~2 and a- is the logistic sigmoid. 

Theorem 1.3.1 (Universal approximation - characterization for a- continuous [LLPS93]) 
Let a- E C(R). Then 

M(a-) == span{a-(w. X - fJ) : e E JR, w E JR.d} 

is dense in C(Rd) in the topology of uniform convergence on compacta if and only if a- is not 

a polynomial. 

Remark 1.3.2 (Preprocessing [LiPi94]) The Theorem 1.3.1 is still valid for preprocessed 

inputx == (xi, ... ,xd) ~ h(x) == (h 1 (x), ... ,hk(x))forgiven.fixed hi E C(JR.d),j == 
1, ... , k, if and only if h separates points. Here we define 

Mh(a-) == span{a-(w · h(x) - O): w E ~k,() E ~}. 
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We very briefly outline the proof of Theorem 1.3.1. First, one uses the notion of ridge 

fanctions - functions g : JRd -7 JR given by g(x) == g1(a · x) for some g1 : IR -7 JR (see 
Figure 1.4). Result of Vostrecov and Kreines [VoKr61] implies that linear combinations 
of ridge functions given by continuous g1s are dense in C(JRd) in the topology of uniform 
convergence on compacta. Then one shows that the set span {a- ( at + b) : a, b E JR} is dense 
in C(IR) for a- continuous nonpolynomial. (For details, see [Pi99].) We only state bere the 
result of Vostrecov and Kreines [VoKr61]: it is very elegant and may have further use in the 
theory of neural networks. 

Theorem 1.3.3 (Ridge functions are dense in C (JRd) [VoKr61]) The set of ridge fanctions 

R(A) == span{g(a · x); g E C(JR), a E A} 

is dense in C(JR.d) in the topology of uniform convergence on compacta if and only if there is 

no nontrivial homogeneous polynomial that vanishes on A. 

Pinkus et al. further extend their result to noncontinuous a but some smoothness demands 
rema1n: 

Theorem 1.3.4 (Universal approximation for o- integrable [LLPS93]) Let a- : IR -7 JR be 

bounded and Riemann-integrable on every finite interval (set of discontinuities of a- has 

Lebesgue measure zero). Then span{a(ax - b) : a E IR, b E IR} is dense in C(R), unless a 

is a polynomial almost everywhere. 

By similar arguments as in proof of Theorem 1.3.1 and by Vostrecov and Kreines we can 
obtain universa! approximation in C(IRd). 

Pinku s et al. also present some results granting universa! approximation for limited sets of 
weights and thresholds (again, see [Pi99] for details). Similar techniques as were used to 
prove universa! approximation for the model give also the following interpolation result: 

Theorem 1.3.5 (lnterpolation with continuous a [Pi99]) Let a E C(R) be not a polyno­

mial. For any k distinct points {xi}f 1 C JRd and associated outputs {yi}f 1 C JR there exist 

{wj}j 1 C JRd and {cj}j 1, {Oj}j 1 C1R. such that 

n 

I: CjO"(Wj • Xi - (}j) = Yi, Í = 1, ... , k. 
j = l 

Ifspan{a(x - b): b E IR} is dense in C(IR) then we can choose {wi}j 1 c sd- 1• 

Universal approximation property for one-hidden-layer perceptron clearly implies the same 
property for any perceptron type network. Note, that networks with more layers not only 
give universa! approximation of the model but also yield some interesting approximation 
properties - see for example [ChLM94] or [MaPi99] for two-hidden-layer perceptron. 
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1.3.2 Universal Approximation for RBF Networks 

Universal approximation of RBF networks has been tudied by many author but the mo t 

well known result comes from Park and Sandberg [PaSa91], [PaSa93]. They howed that if 
the radia! basis activation function used in hidden layer is bounded and integrable on JRd and 

the integral is not zero, then an RBF network (as defined above in the more general en e 

- Equation (1.2)) can approximate any function in .CP(JRd) with respect to the [,P norm for 

1 < p < oo arbitrarily well. Similar result is valid for activation function a integrable, 

continuous and either with non-zero integral over JRd or radia! symmetric with re pect to 

Euclid norm Cllxll == llYll => a(x) == a(y)). In this case RBF network can approximate any 
function on C (X) for X compact subset of JRd arbitrarily well. We present these results here 

as restated in [SiNe96]: 

Theorem 1.3.6 (RBF dense in .[} (IRd), necessary and sufficient condition [PaSa91]) Let 

a : JRd ~ JR. Then span{ a ( x0w) , w E JRd, B E IR} is dense in C1(IRd) if and only if <7 is 

integrable and 

{ <7(x)dx f- O. 
JR_d 

We can even fix() ( all units have the same width) and the result still holds. 

Theorem 1.3.7 (RBF dense in ť,P(JR.d) [PaSa91]) Let p > 1 and let a : IRd ~ JR be such 
that O" E ť,P(JRd) and 

{ <7(x) <lx f- O. 
JR_d 

Then span{<7 (x0w), w E JRd, (} E JR} is dense in í,P(JRd). 

Theorem 1.3.8 (RBF dense in C(X) [PaSa93]) Let X C JRd compact. Let a be integrable 

continuous and let either 

r <7(x) <lx i- o 
JR_d 

or O" be radia/ symmetric with respect to Euclid norm. Then span {a ( x0w) , w E JRd, (} E IR} 
is dense in C(X). 

Liao, Fang and Nuttle (2003) [LFN03] extend this result in the respect that integrability of 

the activation function is not required - they claim the same conclusion for a E C 00 (JRn) that 
is not a polynomial. Inspection of the proof, however, reveals that they in fact are requiring 

a to be anal ytic. 
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1.4 Rates of Approximation 

Rates of approximation will be studied in detail in Chapter 2, here we give an overview of 
basic notions and of one type of results. 

As we already mentioned, universa! approximation of a model only guarantees existence 
of arbitrary good approximations - it does not say anything about how "efficient" these 
approximations are. To measure this quality of the approximation schema we introduce 
rates of approximation. 

Generally we are working in a normed space of functions X trying to approximate a function 
J E X. We have a family of manifolds {Mn}~_1 , so that Mn C X and M == Un Mn is 
dense (in some sense) in X and 

Thus the distance to our desired function f from Mn decreases with increasing n and ap­
proximation in Mn can get arbitrarily close to f provided we use sufficiently large n. 

Since computational time needed to find approximation in Mn is increasing with n it is of 
great interest to know the rate of convergence to zero of distance of f from Mn as a function 
of n - the rate oj approximation. 

There are generally two ways in which this problem has been approached. Either we con­
sider standard smoothness classes (Sobolev spaces, etc.) and estimate worst case error of ap­
proximation by perceptron from functions in this class (Pinkus, Maiorov, De Vore, Howard, 
Micchelli, Meir, Petrushev and others). 

A different approach is, given approximation schema {Mn}~ 1, to try to find classes of 
functions which are well approximated by it (Jones, Barron, Hornik, Maurey, Makovoz, 
Darken, Donahue, Gurvits, Sontag, Stinchcombe, White, Kainen, Kurkova, Kreinovich and 
others). 

In our further work we will pursue the second approach and so we will not elaborate on it 
bere and postpone overview of concrete results to Chapter 2. Here we will mention only a 
few results from the first group. For further details see for example [Pi99]. 

1.4.1 Rates of Approximation in Standard Smoothness Classes 

For a given activation function a let us define 

n 

Mn(a) = {L cw(wi. X - ei) : Ci, ei E IR., Wi E IR.d}. 
i=l 
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Universal approximation has been proven for this schema for a continuou non-polynomial 
see Theorem 1.3.1. Now we are concemed with error of this approximation and asymptotic 
properties of the error. As in the proof of Theorem 1.3.1, ridge functions are of help. We 
define 

n 

Rn = {2=gi(ai · x): ai E !Rd , gi E C(IR) i= 1 ... ,n}. 
i=l 

Obviously for any a continuous we have M n (a) C R n, thus we can e timate the error of 
approximation using Mn by 

inf Ilf - gllx > inf Ilf - gllx. 
gEMn(a) gERn 

In 1999 Maiorov [Ma99] proved lower bound for the error of approximation by ridge func­
tions. 

Theorem 1.4.1 (Lower bound on rates of approximation for perceptron [Ma99]) Let 

m > 1 and d > 2. Thenfor each n there exists an f E wm,2 (Bd); Ilf llm,2 < lfor which 

inf Ilf - 9112 > cn-m!(d-1). 
gERn 

Here the positive constant C is independent of f and n, Bd denotes the unit ball in JRd. 

It can be shown [MMR99] that the set of functions f for which the lower bound holds is in 
fact of large measure, in other words this is not only a worst case result. We see that there 
are functions in wm,2 that cannot be approximated by ridge functions with better rates than 
n-m/(d-l), in other words if m (the smoothness) does not grow with the dimension d of the 

input space, we get so-called curse of dimensionality. This aspect will be discussed in more 
detail at the end of Section 2.4. 

Theorem 1.4.1 gives a lower bound also for infgEMn Ilf - gll2 on Bd since the Mn( a) con­
sists of ridge functions of a certain type (the "one-dimensional" function defining the ridge 
function is restricted to shifts of a given activation function). The question now is: how rele­
vant are these bounds? It has been shown already in [Ma99] that the bound in Theorem 1.4.1 
is asymptotically tight. Moreover, Maiorov and Pinkus [MaPi99] show that there exists an 
activation function that is sigmoidal, strictly increasing and C00 (JR) and for which the lower 
bound is attained. The activation function they use, while infinitely smooth, is somewhat 
artificial. For the logistic sigmoid a(t) == 1/(1 + e-t) a slightly larger lower bound was 
shown [MMOO]. Yet more importantly, a slightly larger bound (Cn-mfd) than that in The­

orem 1.4.1 is an upper bound for all sufficiently nice activation functions (including the 
logistic sigmoid). This was shown by Mhaskar [Mh96], see also [Pi99] for a nice exposition. 

So we see that when approximating any function f E Wm,p for which llfllm,p < 1 by 
the perceptron schema with smooth activation function, we always have (for nonpolynomial 
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functions) rate of approximations O(n-m/d), while we never can achieve better rate than 
n( n-m/(d-1)). 

Theorem 1.4.2 (Upper bound on rates of approximation for perceptron [Mh96]) Let 

I be an open interval. Assume o- : JR-+ JR is such that o- E C00 (J) and o- is not a polynomial 

on I. Thenfor each p E [1, oo], m > 1 and d > 2 

for some constant C independent of n. 

Maiorov [Ma03] proved similar bounds for radial functions: 

Theorem 1.4.3 (Lower and upper bound on rates of approximation for RBF [Ma03]) Let 

d > 2, m > O and n be natural numbers. Then there exist weights w1 , · · · , Wn on the unit 
sphere 5d-l such that 

sup 
f EWm,2 ; Ilf li m,2::; 1 

and for any w1, · · · , Wn E JRd we have lower estimate on error: 

sup 
f EWm, 2 ; 11f11m,2::; 1 

m 

inf Ilf - 9ll2 > c2n-d-1 , 

gEJ?,'fv~~ · · · , w n 

where RÁad == span{g(llx - wll 2 ), w E AC JRd, g E C(JR)}, c1, c2 are constants depending 

only on m and d and li· li is Euclidean. 

A different approach to the study of rates of approximation (the "second group" mentioned 
above) will be discussed in the next chapter. 



Chapter 2 

Estimates on Rates of Approximation by 
Neoral Networks Using Integral 
Representations 

In this chapter we address a crucial question of interest when building a neural network: how 
precisely can we approximate a given function using a limited number of units. We proceed 
along the lines initiated by Barron in the respect that we try to derive classes of functions 
that are well approximated by some specific approximation schema {Mk}ť-1 . 

In Section 2.1 we first review the pioneering work of Maurey [Ps8 l], Jones [Jo92], and 
Barron [Ba93], and the extension by Darken, Donahue, Gurvits, and Sontag [DDGS93]. 
Then we show how these results were utilized by Kůrková, Kainen, and Kreinovich [KKK97] 
who (implicitly) used so-called Q-variation ( explicitly defined in [Ku97]) of the function f to 
be approximated. We will see that bounded 9-variation is a sufficient (though not necessary) 
condition for good rates of approximation. 

In Section 2.2 we first present results of [KKK97] where bounds on Q-variation are obtained 
for functions in the form of integral representation using continuous or Heaviside functions. 
We then extend their results to more general function spaces. We do not require continuity 
of the functions involved in the integral representation; we also present simpler proof of the 
estimate from [KKK97]. The obtained improvements enable more direct and more general 
application of results of Maurey, Jones, Barron and Darken et al. giving approximation error 
rate of order O(n1/q) for one-hidden-layer networks with n hidden units. Here q is a constant 
depending on the "type" of the involved function space, but not on the "dimension". E.g., if 
we are dealing with functions in L:P(~d) (1 < p < 2) then q == p/(p - 1) is the conjugate 
exponent; in particular, q does not depend on d (note that for high d we may obtain large 
constant in the O(·), though, [KHS98]). Using .CP spaces for p -:/:- 2 is of practical interest, 
as by using L:P-norm for 1 < p < 2 one can cope better with functions with peaks, which 

15 
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are probably errors in measurement, so-called outliers [Re83, HaBu88]. We also present an 
interesting property of Q-variation for neural network approximation schema with sigmoidal 
activation functions - we show that the presented estimates on approximation rates cannot 
distinguish between different activation functions (Theorem 2.2.9). 

For our estimates on Q-variation we need to have function f represented in form of an in­
tegral representation. In Section 2.3 we listed examples of functions where such integral 
representation exists. We generalise integral representation of function by using measure 
instead of weights. This enables us to provide in Section 2.3.2 explanation and justification 
of the metaphor "neural network with continuum many neurons", which is used in [KKK97] 
to motivate special type of integral representation of functions. By an application of Helly's 
theorem on w* sequential compactness we get that, in a proper setting such representation is 
equivalent to a limit of "classical" finite neural networks. 

In Section 2.4 we combine the three previous sections and thus provide a few concrete esti­
mates on rates of approximation of the type: If a function is "smooth enough" then it can be 
approximated by one-hidden-layer neural network with n units with rate of approximation 
of O(n1/q). We also discuss possibilities to weaken the smoothness assumptions. 

Results presented in this section have been published in [S08, S03a, S03b]. 

2.1 Rates of Approximation in Banach Spaces 

A general topic (not only) in mathematics is, how to approximate some complicated object 
using limited resources. To be more specific, we have a Banach space X of functions, and a 
set Q C X of functions we are allowed to use for approximation of a given function f E X, 
while we want to use as few functions from Q as possible. 

In Section 2.1.1 we show results from approximation theory that provide good rates of ap­
proximation for function f in the closure of convex hull of the set of approximating functions. 
In Section 2.1.2 we show how the above results ha ve been ref ormulated in a more explicit 
form taking into account relationship between the set of approximating functions and the 
function to be approximated. We will see that the condition of f being in convex huli is 
sufficient (though not necessary) for the existence of efficient approximations of f. On the 
other band, if f is merely in the closed linear span, the rates of approximation of f may be 
arbitrary bad (Corollary 2.1.8). 
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2.1.1 Approximations in the Closed Convex Huli 

A frequent approach in approximation theory is to iteratively con truct a equence of ap­

proximants f n to a function f, where at each step we add an appropriate elem nt of Q: 

J n+l == Ín + g, g E g. (2.1) 

Here, g is chosen to minimize the norm ll!n+l - f li (or to make it close to inf{ ll(fn + 
g) - !li : g E Q}). A natural setting for this is when X is a Hilbert space. Huber [Hu85] 

conjectured that for projection pursuit regression (which corresponds to g consisting of all 

ridge functions) this method always produces a sequence f n converging to f. This wa 

affirmatively resolved by Jones [Jo87]. However, the convergence can in general be very 

slow. 

In a subsequent work [Jo92] Jones studies approximations when slightly more general iter­

ative step is allowed - instead of adding some g E Q to the previous function, we take a 

convex combination: 

Ín+l == afn + (1 - a)g, g E Q, a E [O, 1] (2.2) 

where g and o: are chosen (approximately) optimal. Somewhat surprisingly, this modification 

significantly increases the speed of convergence: 

Theorem 2.1.1 (Maurey-Jones-Baron - lterative rates in Hilbert sp. [Ba93, Jo92, Ps81]) 

Let g be a set oj fanctions, subset oj a Hilbert space 1t oj fanctions on ffi.d. Suppose f is in 

cl conv Q, and that for every g E g we have Jllgll~ - Ilf li~ < p for some constant p E JR. 
Then it is possible to find a sequence {! n} satisfying 

p 
Ilf - fnllrt < .,;n, 

by using the recurrence (2.2), when the fanctions g and numbers a are chosen sufficiently 

close to the optimum. Observe that we have f n E convn Q. 

Note that p does not depend on n, however it depends on 1t, Q, and, in particular, on f. 
We'll present estimates of this constant later (Theorem 2.1.5 and 2.1.6), the dependence 

on f is actually the topic of the rest of the chapter. The above result in slightly weaker 

versi on is attributed to Maurey by Pisier [Ps81]. Barron [Ba93] was the first who noticed 

that it is applicable to neural networks. He also provides the improved bound: instead of 

Jn sup
9

Eg Ilf - glht (Maurey) he obtains Jn sup9Eg Jllgll~ - Ilf li~, which in the natural 

applications is lower. 



18 CHAPTER 2. Rates of approximation 

We feel obliged to comment here that the title of the theorem (lterative rates) is slightly 

misleading but for a good reason. Maurey's proof of the theorem is in fact probabilistic but 

we retain the title iterative to stress that an iterative proof is possible as this is interesting 

from algorithmic point of view. We f ollow this approach also in titles of further theorems. 

The above result was extended in various ways. The strongest result obtained in this direction 

is dueto Makovoz [Mk96]. He replaces the bound p/ ylnby cn (CJ)/ Jn, where cn(9) E (O, p] 
depends on Q and on n: 

cn(9) == inf { c > O : Q can be covered by at most n sets of diameter < c}. 

When Q is finite-dimensional, cn(9) == o(l) (as n ~ oo), so this is a stronger result. Con­

sider the particular case where 9 corresponds to neural networks with Heaviside activation 

functions, with inputs in JRd. In this case Q == Q"l == {TJ( a · x + b), a E ~d, b E IR}. 
This yields [Mk96] an improved bound on the error of the n-term approximation, namely 

1 1 
0(1/n2+2d). We will not pursue this direction, as our particular interest is on the case of 

large d, where the improvement is only slight. The drawback of Makovoz' approach is that 

it does not yield existence of approximants that can be computed in an iterative manner, as 
in (2.2). 

Let us pause bere to explain the dependence on the "dimension of the data". In early proofs of 

universa! approximation property of neural networks, the "amount of work" needed for effi­

cient approximation of a function on JRd seemed to depend exponentially on the dimension d. 
This so-called "curse of dimensionality" is obviously a major obstacle in applications of 

neural networks, as many interesting applications are intrinsically multi-dimensional. The­

orem 2.1.1 tells us, that for a fixed function f, space Ji and approximating functions g, the 
error of approximation decreases fast with n, the number of approximants. This is certainly 

useful (and in particular proves superiority of the approximation schema (2.2) over (2.1) ), 
the dimension, however, is "cursed" in more ways than this. One other problem is, that with 

increasing dimension of inputs, we are likely to see larger constants p in Theorem 2.1.1. 

In [KHS98] a sequence of functions is presented, where p grows exponentially with the di­

mension. Yet another problem is met when we consider the algorithmic point of view. The 
amount of work to do "elementary operations" (estimating the norm, scalar product, etc.) 
with functions on JRd grows exponentially with d. This can be remedied by using more so­

phisticated numerical methods (as Monte Carlo), however. We will address some of these 

issues in the next chapter. 

lt is natural to ask, whether the above-mentioned result can be generalized to arbitrary Ba­

nach spaces. Not only this is an interesting question in itself, it was motivated by the fact, that 

spaces J:,P (for p < 2) possess better approximation properties than C2: namely, they can cope 

better with an "error in measurement" of the function to be approximated [Re83, HaBu88]. 

In Darken et al. [DDGS93] this question was addressed in a great detail. It is shown, that 
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Theorem 2.1.1 can be extended to any Banach space with unit ball that i not too 'pointed" 

- namely to any uniformly smooth space. We say that a Banach pace X ha modulu of 

smoothness {} if {} : [O, oo) ---+ [O, oo) is a function given by 

{>(r) := sup ('lf + rgllx +Ilf - rgll _ 1) 
llf llx=ll9 llx=l 2 

(the supremum is taken over all f, g E X of unit norm). It is easy to observe that g( r) < r 

for any Banach space, and that in a Hilbert space e(r) ==JI+ r 2 - 1 == O(r2 ) (a r ~ 0). 
A Banach space is termed uniformly smooth if Q( r) == o( r) ( as r ~ O). This i in particular 

satisfied for CP spaces with 1 < p < oo, the modulus of smoothness is (see [DDGS93]) 

g(r) < {rP/p if 1 < p < 2 
P;

1 r 2 if2 < p < oo. 

Darken et al. [DDGS93] prove a result about approximating functions in Banach space 

based on modulus of smoothness of these spaces (see Theorem 3.1.1 where numerical issues 

are discussed). This theorem applied to CP spaces yields Theorem 2.1.2. It also tums out, 

that the convex combination in (2.2) can be chosen so that a== n/(n + 1). 

Theorem 2.1.2 (Rates in CP spaces - iterative [DDGS93]) Let Q be a bounded subset of 

an CP-space X (l < p < oo), with f E cl conv Q given. Put q == p/ (p - 1) and let p > O be 

such, that Ilf - gll < pfor all g E Q. Thenfor every c > O there is a sequence {gn} C Q 

such that the sequence {fn} C conv<] defined by 

n 1 
f n+l = n + l f n + n + l 9n 

satisfies 

ifl<p<2 

and 

if 2 < p < 00. 

When we lift the condition to construct the approximants iteratively, it is possible to get 

somewhat better bounds. The improvement is only in the constant factor - in this case, 

however, the result is tight for p E (1, 2]; for p > 2 it is still "only" asymptotically tight. 

Theorem 2.1.3 is obtained by a different approach than Theorem 2.1.2 - by using the prob­

abilistic method in Banach spaces. We will go into more detail in Chapter 3 when we will 

discuss algorithmic consequences of this approach. 
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Theorem 2.1.3 (Rates in f2P spaces - probabilistic [DDGS93]) Let Q be a bounded subset 

of an f2P-space X (l < p < oo), with f E cl conv g given. Put q == max{p/(p - 1), 2} and 

let p > O be such, that Ilf - gll < p for all g E Q. Thenfor all n 

Ilf - COllVn gll < ~~: . 

Here CP= 1 if p < 2 and CP= v'2(f(P~ 1 )/ y'?r) I/p for p > 2. For large p, CP'"" ~-

Further we go into more detail regarding the constants that appear in the presented estimates. 

2.1.2 Approximation Rates using Q-variation 

The results of Jones and of Darken et al. were used by Kůrková [Ku97, Ku03], Kůrková, 

Kainen, and Kreinovich [KKK97] and Kůrková, Kainen and Vogt [KKV07]. Kůrková 

[Ku97] exhibited a natural way to obtain functions f and system of functions Q, such that 

f E cl conv Q and the constant p from the previous section can be estimated. As we will 

build on and extend their results, we explain them now in some detail. 

Consider a set g of functions, a bounded subset of a Banach space X. For convenience, we 

will assume that g E g implies -g E Q. 1 A function f E X can be approximated arbitrarily 

well by a linear combination of elements of g if and only if f E cl span g. To apply the 

results of [Jo92, DDGS93] we need a set Q' such that f E cl conv Q'. As 

cl span g = cl LJ conv eg 
c>O 

we may try to put Q' == cQ for some c. To this end, we follow Kůrková [Ku97]2 and define 

Q-variation as the Minkowski functional of the set cl conv g. N ote that g == -Q implies 

conv g == {l::i Ci9i : 9i E g, ci > O, I:i ci < 1}. Consequently, the set cl conv 9 is convex, 

bounded, balanced (that is, h E conv g and lal < 1 implies ah E conv Q) and closed. Thus, 

we may put 

Ilf llg == inf { c > O I f E cl conv cQ} (2.3) 

and we get a norm on the subspace {! : Ilf lig < oo }. Note that (2.3) defines Ilf llg == oo 

if we do not have f E cl conv cQ for any c. This will certainly happen if f tf:. cl span Q, 
in which case we can not get arbitrary close approximations. lt will also happen when 

f E cl span Q \ span Q. As the next example shows, this may occur even for "reasonable" f 
and 9. 

1 This will simplify some of the expressions and is satisfied for the practically interesting applications. 
2who did extend the concept of variation with respect to half-spaces introduced in [Ba92]. 
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Example 2.1.4 (lnfinite 9-variation) Consider == ·2 and let { k}k=l be the orthonormal 

basis ( ek == (O, ... , O, 1, O, ... ) is the sequence with 1 exactly at the k-th place). Then we 

put f == (1/k)k~b ln== (11/2, ... 1/n O ... ), andQ =={±k I k> 1}. ltiseasyto 

see that ln is the best approximant to f in spann g and that Ilf - fnll2 ~ O. However. 

llfnllg == L~ 1 t rv Iogn, and so 11111 9 == oo. 

In the example above, the error of approximation of f by combination of n term 1 

JLk>n f2 = 0(1/ Jn), so one may think, that the assumption on finite 9-variation is not 
that crucial. However, this is not the case, as we will show later, in Theorem 2.1. 7. 

We need one more definition to describe the approach of [Ku97, Ku03]. Let s9 == up{fgj : 

g E 9}. Recall that we are assuming 9 to be bounded, so sg < oo. A consequence of the 

definitionof 11/llgisthatl E clconvcQforc > llfljg. If c == llfllg,andg E c9,thenthe 
following bound holds: 

Ilf - 911 < Ilf li+ 11911 < 2 sup{llhll : h E c9} == 2sgllf 119 · 

Consequently, one gets the following corollaries of results of Jones/Barron and of Darken et 

al., as stated by Kůrková [Ku97, Ku03], see also [KKK97, KKV07]. 

Theorem 2.1.5 (Rates with 9-variation - iterative [Ku97]) Let 1i be a Hilbert space with 

norm 11 · llH and let 9 be a bounded subset of1-l. Let us denote sg == sup9Eg ll9ll1í· Then,for 
every f E cl span Q withfinite Ilf llg andfor every natural number n the following holds: 

Ilf _ r.ll < J(sgllfllg)2 
- llfll~ 

spann '::! 1í _ Jn . 

Theorem 2.1.6 (Rates with 9-variation - probabilistic [DDGS93, Ku03]) Let Q be a 

bounded subset of an ,CP-space X (1 < p < oo) and sg == sup9Eg llgllp· Let f E cl span Q 
have finite Ilf 119· Thenfor every n 

Ilf _ í?.ll < 2Cpsgllfllg 
spann '::! P - nl-1/t ' 

where t = min{p, 2}, CP= 1 if p < 2 and CP= v'2(f(P~ 1 )/ v11f) l/p for p > 2. Forlarge p, 

CP rv vfiTě. 

Note that in both the theorems above one could instead of Ilf - spann 911 write the more 

accurate expression Ilf - convn c9ll, where c == Ilf 119· This actually gives a stronger result: 
we do not need to use the entire span of 9 to attain good approximation. This is interesting 
also from the numerical point of view: it will not happen that we need to work with big 
numbers to approximate small ones as convex combinations work with ci E (O, 1), E Ci == 1. 
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Further one would like to estimate 11f11 g in concrete instances of approximation schemas; we 

do this for neural networks in the next section. Before that, we discuss assumptions in the 
above estimates on rate of convergence. 

Analogues of Theorem 2.1.6 are false in many spaces of interest, including C[O, 1] and 

.C1 [0, 1]. By Theorem 2.3 and 2.4 in [DDGS93], in such spaces we may see arbitrary slow 

convergence even for elements of 9-variation equal to 1. We complement this by showing 
that the same happens in f P spaces for elements of infinite 9-variation. (Note that by the 
obvious embedding this yields the same result for .CP spaces as well.) 

Theorem 2.1.7 (Slow rate of approximation) Suppose 1 < p < oo and let (an)~ 0 be 

a sequence of real numbers decreasing to Oso that the sequence (a~) is convex (that is, 

a~_ 1 + a~+l > 2a~). Then there is a set g C fP and an element f E cl span Q so that 

So we have f E cl span Q and the rate of convergence is an. 

This is in particular possiblefor an == l/na (for any a > O), and an == 1/ logk n (where logk 
denotes k-times iterated logarithm). More generally, we may have an == 1 / g( n) whenever g 

is a concave increasing function with limit oo. 

Proof: We let 9 == {±ei : i > O}. Put bn == (a~ - a~+ 1 ) 11P for n > O and f == 

(b0 , bi, b2 , ... ). As an > an+1' the numbers bn are well-defined and an easy computation 

shows llJllP == ao, in particular f is in RP. Convexity of the sequence (a~) implies that ~ == 

a~ - a~+ 1 is decreasing, so the element of spann Q closest to f is f n == ( b0, ... , bn- l, O, O, ... ) . 

Now 

Ilf - fnllP =~)a~ - a~+1) = an , 
i?:_n 

as claimed. 

For the specific examples of sequences (an): (x-po:)" == pa(pa + l)x-pa-2 is positive for 
x > O, a > O, so x-po: is a convex function, thus n-pa is a convex sequence. If an == 1/ g(n) 

then a~ == 1 / g( n )P. The first derivative (replacing again n by a continuous variable) is 

( 
1 )' -pg'(x) 

g(x )P - g(x )P+l ' 

which is an increasing function (as g' is decreasing and g increasing), thus a~ is convex as 
required. Computing the first derivative of the iterated logarithm reveals that it is a concave 
function, which finishes the proof. O 

The convexity assumption in the above theorem may be a bit misleading. It is in fact possible 
to do away with this assumption, if we only want a lower bound on the error of approxima­
tion. 
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Corollary 2.1.8 (Slow rate of approximation - lower bound) Suppose 1 < p < oo and 

let ( an)~_0 be a strictly decreasing sequence oj real numbers converging to O. Then there is 
a set Q C f P and an element f E cl span g so that 

Proof: We find a sequence a~ > an so that a~ decreases to O and ( a~)P i convex. Thi 
is a standard exercise in analysis, we may for example take a~ max{an, (2(a~_ 1 )P -
(a~_2 )P) 1 1P]}. Then we apply Theorem 2.1.7 for (a~) . O 

2.2 Properties of Q-variation 

So far we showed several results describing how efficiently can we approximate a function 
f using functions in some set Q, provided f E cl conv cQ holds for some constant c. (Recall 
that cl and "approximation" are to be understood with respect to some Banach space that 
contains f and Q.) Severa! questions come up. Given Q, for which functions f such finite 
constant c exists? How can we estimate it? 

In Theorem 2.1. 7 we have shown that for elements of cl span g, the rate of approximation 
can be arbitrarily bad; this happens if the Q-variation is infinite. Perhaps surprisingly, the 
situation tums out to be diff erent for systems g corresponding to neural networks - such 
systems Q are sufficiently rich, so that Ilf llg is finite for large class of functions f. 
In Section 2.2.1 we start with the general set-up and with bounds for the Q-variation due to 
Kůrková et al. [KKK97]. In Sections 2.2.2 and 2.2.3 we follow up with developing bounds 
for Q-variation that are applicable in a more general setting of Banach spaces. Finally, in 
Section 2.2.4 we clarify the dependence on the activation function. 

2.2.1 Q-variation: Continuous I Heaviside Activation Functions 

To answer the questions regarding existence and finiteness of c in the expression c<] we 
have to be more specific as to the task investigated: We consider one-hidden-layer neural 
networks, which consist of interconnected computational units with activation functions de­
pending on parameters and input variables: Consider a function cp(x, a) : H x A -t ~' 

where x E H are inputs and a E A parameters, H C ~d, A C JRk. For a E A we let 
'Pa == cp(·, a) be the function parametrized by a. One-hidden-layer network with n units of 
type <p computes a function of d variables of the f orm: 

n 

J(x) = L Wi!pai(x), 
i=l 
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where wi E JR, ai E A, and x E H. More specifically, in the case of neural networks we 
would typically let 

<p(x, a)== a(w · x + fJ), where a== (w, fJ) E JR_d+ l. (2.4) 

for perceptron-type networks or 

x-w 
<p ( x, a) = O" ( (} ) , w here a = ( w, (}) E ffi. d+ 1 (2.5) 

for RBF networks. 

Following Kůrková [Ku03] and Kůrková et al. [KKK97], we extend this notion to a "contin­
uum of hidden units". That is, we consider functions with integral representation 

f (x) = L w(a)<p(x , a) da, (2.6) 

with a weight function w : A --7 IR. (We will discuss the relation between such generalized 
neural networks and ordinary neural networks later, in Section 2.3.2.) 

We wish to apply the results of the previous section to a more specific case of the set g, 
namely we put 

g == {±<pa : a E A}. 

In the case that <p is given by (2.4), we use <Jcr to denote this particular set Q. We will consider 
the set g as a subset of various spaces of functions from H to JR. The results to follow show 
in various circumstances how function f can be approximated by convex combinations of 
elements of <;;. In view of Theorem 2.1.5 and 2.1.6, this amounts to estimating Q-variation 
of f, that is Ilf lig. (A surprising phenomenon is that Ilf ll9u does in fact not depend on a, for 
a large class of functions a. This first appeared implicitly in [KKK97], we will prove this 
more generally as Theorem 2.2.9.) The following result appears as Corollary 2.3 in [KKK97] 
(without explicitly using the term Q-variation). 

Theorem 2.2.1 (<;J-variation for continuous activation functions [KKK97]) Let d, k be 

positive integers, H C JR.d and A C JRk compact sets. Finally, let w E C(A), <p E C(H x A) 

and g == {±<pa}· 

Let f E C(H) be represented as 

f(x) = L w(a)<p(x, a) da. (2.7) 

Thenf E clcconvcQ, wherec == JAlw(a)lda. Usingourpreviousterminology, llfllg < 
llwlli-
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We have to give some remarks here: The theorem speaks about upremum norm. Car ful 

reader might have noticed, that theorems on rates of approximation (Section 2.1.1) do not 

hold for this norm. However, when the measure of H i finite (a it i when H i compact) 

then closure in C(H) is contained in the closure in CP(H). Con equently, the above theorem 

can be combined with the results in Section 2.1.1. 

Note that in [KKK97] a slightly sharper version is presented, with == JA I (a) I a where 
<p 

A<t? is the set of a E A, such that r.p(x, a) i- O for some x E H. We pre ent bere the horter 

statement, because for natural choices of activation function cp we have A'P == A. 

Without going into details, the main idea of the proof of Theorem 2.2.1 in [KKK97] i u ing 

the definition of Riemann integral to approximate an integral by a sum. In Section 2.2.2 we 

generalize this result to bounded functions in CP. To prove that, we will use Luzin' theorem 

to approximate a measurable function by a continuous function (and Fubini's theorem to deal 

with the error of the approximation). In Section 2.2.3 we will use more abstract functional­

analytic approach to generalize this result even further, with easier (though non-constructive) 

proofs. 

Theorem 2.2.1 was further extended in [KKK97] to cp(x, a) given by the Heaviside function 

('l9(x) == 1 for x > O, and 19(x) == O otherwise): 

Theorem 2.2.2 (Q-variation for Heaviside activation functions [KKK97]) Let d be a pos­

itive integer, A c sd-l X JR, where sd-l denotes the unit sphere in JRd. Let H be a compact 

subset of"IR.d and let f E C(H) be any function that can be represented as 

f(x) = L w(e,b)'ď(e·x+b)d(e,b) 
where w E C(sd-l x "JR) is compactly supported and supp( w) C A. Then f E cle conv c(iíJ, 

where c == JA jw(e, b)I d(e, b). Using our previous notation, Ilf llg19 < llwlli-

2.2.2 Q-variation in LP Spaces 

In this section we shall use the Luzin's theorem (see Theorem C.2.7 in the Appendix) to ex­

tend Theorem 2.2.1 of Kůrková, Kainen and Kreinovich [KKK97] to a more general setting, 

where the activation functions need no longer be continuous. This also in a sense general­

izes Theorem 2.2.2: we do not prove that some function is in cle (closure in the supremum 

norm), but only that it is in cl_cp (closure in the CP-norm), which is, however, what we will 

use later to obtain rates of approximation using results in Section 2.4. 

Theorem 2.2.3 (Q-variation in ,CP spaces) Let k, d be positive integers, let p E (1, oo ). 

Consider sets A C "IR.k and H C JRd of finite measure, that is A.k(A) < oo and A.d(H) < oo. 
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ip (x, a) · íf(x, a) 

H x A 

f (x) = J A w(a)ip(x , a)da 

. ] (x) 

Figure 2.1: Illustration of proof of Theorem 2.2.3. 

Consider fanctions w E C1 (A, >..k) and <p E f2P(H x A , >..d+k) such that there exists b E IR so 
that 

• lwl < b holds >..k-almost everywhere on A and 

• l'PI < b holds Ad+k-almost everywhere on H x A. 

Put f(x) == JA w(a)cp(x, a) da and g == {±cp(·, a) I a E A} C [,P(H). Then 

Note: an almost everywhere bounded function on a set of finite measure is clearly in ,CP for 
any p. We still included the condition cp E [,P and w E 121 to indicate the "right" spaces to 
consider these functions in. In particular, let us emphasize that in the definition of 11f11 g the 
CP norm is used. See also the end of Section 2.2.3, where the achieved results are stated in 
terms of bounds on certain operators. 

Proof: In the definition of Ilf jjg, the underlying space (in our case [,P) is used. Thus, the 
statement we are proving can be equivalently rewritten as f ollows 

J(x) E clpconv{ccp(x, a): a E A, lcl < llwlli}. 
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We will prove that f can be approximated arbitrarily well (in l,P-norm) by function of the 
type 

To achieve this we first approximate functions w and <p by continuou functions (u ing a 

version of Luzin's theorem) and then apply Theorem 2.2.1. 

We start, however, by showing that we can restrict to the case when A and H are compact. 

A finite measure subset of JRn can be approximated arbitrarily closely by its compact ub et 

(Lemma 15.3 and Theorem 26.1 of [LuMa95]). So let us choose c >O and find compact set 
AeP, Hep, so that Aep CA, Hep C H, Ak(A \ AeP) < c, and Ad(H \Hep) < c. We apply the 

theorem for sets Acp, Hep instead of A, H. That is, we put 

JC'fl(x) = r w(a)cp(x, a) da 
}Acp 

-
for x E Hep and find an approximation of fcp in J:,P(Hcp) by a function f == Li cicp(x, ai), 
where ai E AcP, Ci> O, and Li Ci< llwll.c1(ACP) < llwl1.c1(A)(== llwlli). We can demand 

and we only need to observe, that 1 (extended to H) is close to f. Clearly, lf(x)- fcp(x)I < 
c · b2 whenever x E Hep_ For any x E H, we have max{lf(x)I, lf(x)I} < bllwlli· Together 

we have 

Ilf - fll~v(H) = L lf (x) - f(x)IP dx 

= f IJ(x) - f(x)IP + f lf(x) - J(x)IP 
}Hep JH\Hcp 

< li(! - JC'fl) + (fcp - f)ll~P(HCP) + r (IJ(x)I + IJ(x)l)P 
JH\Hcp 

< (Ilf - JC'flll.cv(Hcv) + ll(Jcp - J)lb(Hcv))P + { (IJ(x)I + lf(x)l)P 
JH\Hcp 

< (c · b2 ·Ad( Hep)+ c)P + (2b · llwll1)P · c 

== O(c), as c tends to O. 

Thus we will assume further on, that A, H are compact sets. 

Let us fix an c >O, we may assume that c < 1. Using part (iii') of Theorern C.2.7 we find a 

continuous function w on A and a set E C A such that 

w == w on A\ E, lwl < bon A, and Ak(E) < c. 
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Similarly, we find function cp on H x A and a set F C H x A such that 

0 == cp on (H x A)\ F, 101 <bon H x A, and ~d+k(F) <s. 

In order to apply Theorem 2.2.1 we need to define another small "exceptional set" to describe 
where our approximation fails, namely the set of such a's that for many x's the functions cp 

and cp differ on (a, x). To be precise, put 

U'== {a E A I Ad{x; (a, x) E F} >VS} U E. 

By an application of Fubini 's theorem we get that ~k (U') < Vf + s. Continuity of measure 
implies that we can choose an open set U ~ U' such that .Xk(U) < 2ýf (recall that E < 1). 
Finally we define 

f (x) = { c.p(x, a)W(a) da 
JA\U 

.......,, 

g == {±cp(·,a) I a E A\ U}. 

,......, ,......, 

Next we use Theorem 2.2.1 for the functions w, cp, and f, set g and with the set A\ U in 
place of A. We conclude that 

Ilf 119 < llwlli. 
This means that there is n ~ N, and ci E JR, ai E A\ U (i == 1, ... , n) such that L~ 1 !cil < 
llwll1, and for the function !1 defined by 

n 

fi(x) = l::ci<f?(x,ai) 
i=l 

,...._, ,...._, 

we have lf(x) - f 1 (x)I < s for all x E H. We use these parameters to define our desired 
approximant, f1: 

Ji (x) = '2:: cic.p(x, ai) . 
i 

We have llwlli == JA\U lwl == JA\U lwl < JA lwl == llwlli· To finish the proof, we need to 
establish an upper bound on li f - f 1 llp· To this end, we first use the triangle inequality 

,....._,. ,......_,. ,,...._,,. ,...._,. 

Ilf - !1llp < Ilf - fllp +Ilf - !1llp + ll/1 - !1llp. 

Now we deal with these three terms one by one. 

,,.....,, ,,.....,, 

(A) Ilf - !111~ ,...._, ~ ,...._, 
We know that lf(x) - f1(x)I < c on H, thus Ilf - f1llp < s>..d(H). 



2.2. PROPERTIES OFQ-VARIATION 29 

,..._, 

(B) llJ1-f1llP 
Observe first, that 

i 

i 

Dueto the bounds on <pand <p, each of the absolute values in the la t um i at mo t 2b for 
every x E H. Moreover, each of these absolute values is equal to O for most of x E H 
namely up to a set of measure yE, (recall that ai tt. U). Now, we have 

lili - lill~ =Lili - filP 

= l 1!1 - filp-llli - fil 

< l (2bllwll1)P-1lli - lil 
n 

< (2bllwll1)p-l 1 'L lcili<P(x, ai) - <p(x, ai)I dx 
H i=l 
n 

= (2bllwll1)p-l 'L lcil 1 l<P(x, ai) - <p(x, ai)I dx 
i=l H 

According to the previous paragraph, we can bound each of the integrals in the last sum by 

2by'c, yielding 

(C) Ilf - f llp 

lili - fill~ < (2bllwll1)p-l 'L ICil · 2b../i 
i 

< (2bllwlli)P-1ll wll1 · 2b../i 

< (2bllwlli)P-lllwlli · 2b../i 

== (2bllw li 1)P ý'Ě · 

Here we proceed similarly as in part (B): 

IJ(x) - f(x)I = r (w(a)<p(x, a) - W(a)<p(x, a)) da + 1 w(a)<p(x, a) da 
ÍA\U U 

< f lw(a)<p(x, a) - w(a)<p(x, a) i da + f lw(a)<p(x , a) Ida 
jA\U U 

We will use that both lw(a)<p(x, a)I and lw(a)<p(x, a)I are at most b2
, the set U is small, and 

lw(a)<p(x, a) - W(a)<P(x, a)I is "usually" zero. In particular, lf(x) - f(x )I < 2b2 Ak( A). 
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Ilf - Ill~= l lf - flP 

= l 1J - T1p-1lf - JI 

< l(2b2Ak(A))P-1lf- Jí 

< (2b2 >..k(A))P-l f ( f lw(a)'P(x, a) - W(a)'P(x, a)I da 
JH JA\U 

+ [ lw(a)'P(x, a)I da) 

Next we use Fubini's theorem - note that we integrate a nonnegative measurable function: 

< (2b2Ak(A))P-l ( f lw(a)'P(x, a) -W(a)'P(x, a)I d(x, a) 
J Hx(A\U) 

+ f lw(a)'P(x,a)ld(x,a)) 
lHxU 

< (2b2>..k(A))P-1 (L lw(a)'P(x, a) - W(a)(j?(x, a)I d(x, a)+ lxu b2 d(x, a)) 

< (2b2>..k(A))P-l (c2b2 + >..d(H)2V"f b2
) 

By combining (A), (B), and (C) we see that we can choose c small enough to get as good 
approximation as desired. D 

We have proven Ilf llg < llwlli for f computed by one-hidden-layer neural network with [/X> 

(almost everywhere bounded) activation function. Together with Theorem 2.1.6 we derive 
rates of approximation for this approximation schema: 

Corollary 2.2.4 (Rates in .CP) Let k, d be positive integers, A a compact subset offfi.k and H 

a compact subset of"!Rd. Let w E C1(A, Ak) and rp E CP(H x A, Ad+k)for some 1 < p < oo. 
Additionally let w and rp be bounded almost everywhere on A and H x A respectively. Let 

9=={ <p(·, a) : a E A} be bounded and sg== supipEQ ll'Pllp· Let f be any fanction that can be 

represented as J(x) == JA w(a)rp(x, a) da. Then 

Ilf - r.11 2Cpsgllwlli 
spann ~ P < 1 1/t ' n -

where t = min{p, 2} andCp = 1 ifp < 2 and CP= v'2(f(P~ 1 )/J1f) 11P forp > 2. 
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As in Theorems 2.1.5 and 2.1.6 one could write in tead of Ilf - p n 9llP th mor ccurate 

expression Ilf - convn c9llP, with c == llwlli · 

2.2.3 Estimates of Q-variation via Hahn-Banach Theorem 

In this section we provide a generalization (and also an altemative proof) of the re ult of the 
previous section. We extend Theorems 2.2.1 and 2.2.3 (the estimate of Q-variation) to more 
general Banach spaces in place of C(K), resp. LP n LOCJ. We also generalize the integral 
formula to employment of signed measures. 

The proof of the main result in this section is in fact shorter than previously presented proof 
of weaker results. This is achieved by using more advanced tools from functional analy­

sis. A slight drawback is that this approach (relying on Hahn-Banach theorem) is no longer 
constructive: given formula f ( x) == J A w( a )c.p( x, a) da, the previous proofs suggested a tech­
nique to really obtain a sequence of convex combinations that converge to f. The functional­
analytic approach, on the other hand, only proves that such a sequence exists. This, however, 
has no implications for our present considerations; we will revisit this issue in Chapter 3. 

The main tool we will use in this section is the following version of geometrie Hahn-Banach 

theorem [Lax02, LuMa95]. 

Theorem 2.2.5 (Geometrie Hahn-Banach [Lax02]) Let X be a Banach space, consider 
x E X and T C X. Then x E cl conv T, unless there is afanctional ť E X* and z E JR such 

that 
ť(x) >z and ť(t) < zforevery t E T. 

We also refer the reader to the appendix for description of dual spaces C*, (.CP)*. 

First we present an altemative proof (a generalization) of Theorem 2.2.1. 

(2.8) 

Theorem 2.2.6 (Q-variation for continuous activation functions using measure) Let d, k 
be positive integers, H C JRd and A C JRk compact sets. Suppose v is a signed Radon mea­

sure on A. Finally, let <p E C(H x A) and g == {±c.pa}· 

Let the fanction f E C( Jí) be represented as J (x) == JA c.p(x, a) dv( a). 

Then f E cle conv c Q, where c == li vil is the norm of v. Using our previous terminology, 

Ilf 119 < llvll· 

Proof: Let (P, N) be a Hahn decomposition for the measure v. That is, A is the disjoint 
union of Pand N, and v(E) > O (resp. < O) whenever E C P (resp. E C N). Define the 
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clconvT 

l(·) ==z 

Figure 2.2: An illustration of the geometrie Hahn-Banach theorem. 

function s by 

s(a) == {+1 for a E P 
-1 for a E N 

that is, s(a) is the "sign of vat a". In particular, we have c == llvll == JA s(a) dv(a). 

If c == O then v( E) == O for any set E, thus f ( x) - O and the assertion is trne. So we may 
assume c > O; note that c == llvll < oo, as vis a signed measure. 

We need to prove that f E cl conv c g. Suppose the contrary; according to the geometrie 
Hahn-Banach theorem (Theorem 2.2.5), there is a constant z, and a functional ť E C(H)* 
such that (2.8) is trne with x == f and T == cQ. Let µ be the signed measure defining ť as 
in (C.l). We have ť(f) > z and for every a 

ť( ±c<pa) = ±c l % dµ < z . (2.9) 

By definition, 

ť(J) = l1 dµ 

= l 1 <p(x, a) dv(a) dµ(x). 
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Note, that c.p( x, a) is a continuous function and it i only integrat d ov r compact t. o 
the integral of the absolute value is finite and, obviou ly, both v and µ ar cr-finit (they are 
even finite). Thus we can use Fubini 's theorem to get 

ť(J) =li <p(x, a) dµ(x) dv(a) 

= ~ r s(a) r s(a)c<p(x, a) dµ(x) dv(a). 
C }A JH 

Next, we use (2.9) and the definition of s 

< ~ r s(a)zdv(a) 
c }A 

== z llvll 
c 

==z. 

This contradiction finishes the proof. o 

As a corollary, we obtain an altemative proof for Theorem 2.2.1 (that appears as Corollary 2.3 
in [KKK97]). Actually, we obtain a stronger version, as we do not require w to be continuous. 

Corollary 2.2.7 (Q-variation for continuous activation functions (weaker assumptions)) 
Let d, k be positive integers, H C JRd and A C JR.k compact sets. Let w E C1 (A), 
c.p E C(H X A) and Q == { ±cpa}· 

Finally let the f E C(H) be represented as f (x) == JA w(a)cp(x, a) da. 

Then f E cle conv c<], where c == JA lw(a)I da. Using our previous terminology, Ilf lig < 
llwlli-

Proof: We define a signed measure v by letting for any Lebesgue-measurable E C A 

v(E) = L w(a) da. 

We easily get 

llvJI = l lw(a)I da = llwJl1 

and 

J (x) = l w(a)<p(x, a)= l <p(x, a) dv(a). 

It only suffices to apply Theorem 2.2.6 and we conclude. o 

Now we present a theorem bounding 9-variation for CP activation function. 



34 CHAPTER 2. Rates of approximation 

Theorem 2.2.8 (Q-variation for CP activation functions using measure) Let d, k be posi­

tive integers, let p E (1, oo ). Consider sets H C ~d and A C ~k, and a signed Radon mea­

sure v on A. Let r-.p be a measurable function such that there is b E JR so that for any a E A 

thefunction '-Pa== r-.p(·,a) is in CP(H, Ad), and ll'PallP < b. PutQ == {±cpa,a E A}. 

Let thefunction f be represented as f (x) == JA r-.p(x , a) dv(a) (that is, the integral existsfor 

almost every x ). 

Then f E cl.cP conv c Q, where c == llvll is the norm of v. Using our previous terminology, 

ll!llo < llvll. 

Proof: We proceed similarly as in the proof of Theorem 2.2.6. Again, we use Hahn decom­

position of v to define s(a) as the "sign of vat a" and put c == llvll == J s(a) dv(a). We first 

remark that f is in ,CP(H, Ad): For any linear functional l in (,CP)* we will derive in (2.10) 

that l (f) is finite. This shows, that f is an element in (.CP)**, and as ,CP is reflexive, we see 

that indeed f E ,CP. 

lf f tf. cl conv c Q then, using Theorem 2.2.5 again, there is an ť E (,CP)* such that 

ť(j) > Z > ť(±C'fJa) 

for some z and all a E A. Let i); E ,Cq (with l/p + l/q == 1) be the representant of ť. 

Similarly as before, we get 

R(!)= iN 
=i i 1.p(x, a)'lf;(x) dv(a) dA(x) 

To apply Fubini's theorem, we observe that cp(x, a)ij;(x) is a measurable function, and that 

J H 11.p(x, a )tj;(x) I < (I H 11.p(x, a )IP tP (J H l'l/J(x W tq = ll'Pa llpll'l/J llq (HOlder inequality 

for l'Pal and 11/Jj). Consequently, 

i i l'P'l/JI < llvll · b · lll/Jllq (2.10) 

and we may use Fubini's theorem to obtain 

ť(f) = i i 1.p(x, a)'lf;(x) dA(x) dv(a) 

= ! { s(a) { s(a)c1.p(x, a)'lj;(x) dA(x) dv(a) 
cJA JH 

< ~ 1 s(a)z dv(a) 
C A 

==z 
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Again, by Hahn-Banach Theorem we found a contradiction. o 

Note, that we get Theorem 2.2.3 as a corollary. Also we recovered a ver ion of a re ult 
of [KKK97] (Theorem 2.2.2). We do not obtain that f i in the clo ure in the upremum 

norm. This, however, is not needed to apply the Maurey-Jones-Barron theorem or any of the 
other theorems on rates of approximation. 

The technique of using Hahn-Banach theorem can be applied to other pace a well- all we 

need is to have elements of the dual to that space "behave nicely with re pect to integration", 
that is, some version of Fubini's theorem holds. Natural candidates ·to consider in thi setting 

would be Sobolev spaces, leading to a simultaneous approximation of a function and it 
derivatives. We will not elaborate on this topic, as it was already researched by Hornik et 
al. [HSW89]. 

Before we end this section, let us remark that we can express the obtained results in terms of 

functional analysis. Define an operator Ti.p by 

Tcp(v) =lip(·, a) dv(a). 

We consider Ti.p as an operator from M(A) (the space of all signed measures on A) to a 

subspace of C(H) (or [,P(H), etc.) with the norm li · llg (the subspace consists of functions 
of finite li · llg-norm). Then the above results say that the operator norm of Ti.p is at most (in 

fact exactly) equal to 1. 

2.2.4 Surprising Property of Q-variation 

In this short section we are going to prove a surprising property of the 9a-variation, namely 

its independence of a for a large class of activation functions. 

We will assume a is a sigmoidal function (that is limx-+-oo a( x) == O, limx-+oo a( x) == 1 

and a is nondecreasing). Note that we do not require continuity: after all, from practical 
perspective, the easiest functions to evaluate are step functions, that is linear combinations 

of characteristic functions of intervals. 

If we consider 9u as a subset of [,P(H) (for a compact set H) then the 9u-variation Ilf llQO' 
does not depend on a. A version of this result appears implicitly in [KKK97]. However, 

there a was assumed to be either continuous, or the Heaviside function. 

Theorem 2.2.9 (9u-variation independent of a) Suppose 1 < p < oo, let H C IRd be a 
compact set and f E [,P(H). Then there is Cf E [O, oo] so thatfor any sigmoidalfunction a 

we have 
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( Recall that sigmoidal function means a function JR ~ IR that is nondecreasing with limits 

in ±oo being O and 1; we do not demand continuity.) 

Proof: We put c == Ilf ll9t> and show that for any sigmoidal function a we have Ilf ll9a == c. 
To this end, we prove an auxiliary claim first, reducing to a question about functions of one 
real variable. Then we utilize this claim by letting either a 1 or a2 be the Heaviside function {). 

Claim Let a 1, a2 be two sigmoidal functions so that for each finite interval J C JR 

a2(t) E clconv{a1 (rt +s): r, s E IR}, 

where the closure is taken in .CP(J). Then for any function f E .Cl(H) we have Ilf llga
1 

< 
llJllga2• 

Indeed, by definition of the Q-variation, there are functions f apx(x) that are arbitrarily close 
to f(x) (in .CP(H)-norm), and that are of form 

fapx = I:>ia2(ai ·X+ bi), L 1ci1 < 111119"2 . 
i i 

lf the assumptions of the Claim are satisfied, then we can approximate each of a2 ( t) by 

a finite convex combination 9i(t) == Ej ki,ja1(ri,jt + si,j) in .CP(J) for a finite interval J 
containing Ui{ai · x + bi: x E H}. If we put E(t) == l9i(t) - a 2 (t)IP, we get 

l E(ai · x + bi) dx < ,:, 1 E(t) dt. 

Here Bis the upper bound on Ad-i(Hai,c), where Hai,c == {x E H : ai · x == c} are the 
sections of H. In particular, B can be chosen as a constant depending only on H. So we can 

for any given é >O find functions 9i so that ll9i(ai · x + bi) - a2(ai · x + bi)ll.cP(H) < é. By 
triangle inequality it follows that llfapx(x) - Ei cigi(ai · x + bi)ll.cP(H) < c, too. 

Also Ei Ej lciki,jl == Ei !cil Ej ki,j == Ei lcil < llfllga
2

, which finishes the proof of the 
claim. 

(A) Ilf ll9a < Ilf ll9t> for any f (This part appears in [KKK97], we repeat the simple argu­
ment for reader's convenience.) According to the Claim, we only need to observe, that for 
any M, lla(Nt) - {)(t)ll.cv([-M,M]) tends to zero as N ~ oo. To observe this, we only need 
for any é >O choose N so large that a(c · N) > 1 - é and a(-é · N) < é. Then 

!la( Nt) - '!9( t) "~P([-M,M]) < r la( Nt) - '!9( t )IP + r la( Nt) - '!9( t)IP 
l[- é,é] l[- M, - é]U[é ,M] 

< 2é · 1 + 2M · éP 

A choice of arbitrarily small c finishes the proof. 
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(B) llfllg19 < ll!llga for any f Now we pur ue with the mor urpri ing part of the proof. 
We will actually prove something stronger than required by the Claim. amely for any 
E > O there is a function g of f orm 

k 

g(t) = L cd)(t - bi) (2.11) 
i=l 

so that lg( t) - a( t) I < E for every t E IR\ { b1 , ... , bk}. This clearly implie that g and a are 
close in LP norm on any set of finite measure. 

We will construct g by inductively finding points bi. We will rely heavily on the re ult from 
first-year analysis: all points of discontinuity of a nondecreasing function a are jump , that 

is, for any x there exists a( x_) (the limit from the left) and a( x+) (the limit from the right). 

To start the process, we put b0 == -oo and ho = O. Now, whenever bi was defined (and 
bi < oo), we put 

bi+I == sup{x E ffi.: a(x) <hi+ c} 

and 

Nowforanyy > bi+l wehavea(y) > hi+E,soinparticularhi+I == a((bi+i)+) > hi+E. 

This implies our process ends after at most ll/cJ + 1 steps (recall that a is bounded by 1). 

When we reach bk+l == oo, we define g by (2.11) with ci ==hi - hi-l· 

Next, observe that for any i== O, 1, ... , k we have a((bi+i )- ) <hi +c (by definition of bi+l· 

As for t E (bi, bi+i) the constructed function g(t) is equal to Li~j~i(hj - hj_ 1) == hi, we 
see that I g ( t) - a ( t) I < E unless t is one of the points bi. Thus we conclude that (B) holds as 
well and this finishes the proof. D 

Let us now comment about implications of the above result. The result applies whenever we 
want to estimate the rate of convergence in LP norrn, using results of Maurey, Jones, Barron, 
and Darken et al. As far as these estimates are concemed, all sigmoidal functions are of 
equal utility. Let us mention some limitations for practical applications, though: 

• In part (A) of the above proof ("any a is at least as good as the Heaviside function") 
we need to use Jarge multiplicative coefficients, which is not numerically feasible. 

• It says nothing about convergence in the supremum norm. (For supremum norm the 
analog of Maurey-Jones-Barron theorem is false [DDGS93]. See the discussion pre­

ceding Theorem 2.1. 7 for more detail s.) 
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• To elaborate further on the previous point, we can extend part (B) of the above proof 

to get the following simple bound for estimates in the supremum norm: If Ilf -
spann 9ull <Ethen Ilf - spanN YrJll < 2c with N == n/E. 

• Theorem 2.2.9 implies equality of bounds on the rate of convergence. It is quite possi­

ble, that for problems of practical interest, convergence will be faster (but perhaps not 

for all activation functions). This question deserves further study. 

2.3 lntegral Representations 

As we have seen in the previous section we needed integral representation of the function 
f to estimate its Q-variation. Thus a natural question is: when does such a representation 

. ? ex1st .. 

In Section 2.3.1 we present several specific examples of functions where integral represen­

tation is known to exist. In Section 2.3.2 we discuss relationship between integral represen­
tation and neural network with number of units going to infinity. 

2.3.1 Integral Representations for Specific Classes of Functions 

In this sec ti on we present known integral representations for specific type s of function f. 

A. Absolutely continuous functions Let us consider one-dimensional functions first. Let 
f be an absolutely continuous function on [a, b]. It is known (see, e.g., Corollary 23.5 
of [LuMa95]) that f' exists almost everywhere as a function in J:} [a, b]. Moreover, 

f (X) = f (a) + lx J' ( t) dt . 

Assume now that f (a) == O and recall that {}( x) is the Heaviside function ( {}( x) == 1 if x > O, 
{} ( x) == O otherwise). Then the above f ormula can be expressed as 

J(x) =lb J'(t)ťJ(x - t) dt. (2.12) 

B. Integral representation of f ( x) based on Poisson's theorem I inverse Radon trans­
form To apply the above mentioned types of bounds we need function f expressed in 
the form of an integral as in (2.7). To this end, the following consequence of Poisson's 

theorem of potential theory was proved in [KKK97]. (The same result, but only for func­
tions in the Schwartz space, is obtained in [lto91] using inverse Radon transform [He99]. 
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In [KKV06] a variant of Theorem 2.3.1 (for function of weakl ontrolled de a ) i proved 

and in [KKV07] this is utilized to find bounds on 9-variation in t rm of th Sobol v norm.) 

Let De be the operator of directional derivative in the direction given by that i f (y) = 
limh-+O f(y+h·~)-f(y). For a positive integer d, D~d) i d-fold iteration of D . ote, th t if f i 

Cd, that is the partial derivatives of order at most d exist and are continuou th n one can 

use the partial derivatives to express all directional derivatives. Finally, H b == {y E JRd : 
y · e + b ==O}. 

Theorem 2.3.1 (lntegral representation in Cd(~d) [KKK97]) For every odd positive in­
teger d every compactly supportedfanction f E Cd(~d) can be represented as 

J(x) =-ad r r ( r D~d) J(y) dy){)(e. X+ b) db de 
j Sd-l JR. j Heb 

- (-l)(d-1)/2 
where ad - 2(2n )a- 1 • 

Thus from Theorems 2.1.6, 2.1.5, and 2.2.2 it follows that if f E Cd(~d), then it can be 

approximated efficiently by neural networks with Heaviside activation functions, that is with 

rate O(n1! 11p) in the space [,P, 1 < p < 2 and with rate O( Jn for p > 2. We can get the same 

conclusions with somewhat weaker assumptions. Namely, instead of requiring d continuous 

derivatives, we only ask for weak derivatives (as members of an Lp space): 

Theorem 2.3.2 (lntegral representation in Wd,p(n)) Let d be an odd integer, p > 1 and 
let O C JRd be a bounded open set with a C 1 boundary. Then every f E Wd,p(n) can be 

represented as 

J(x) =-ad { f( { D~d)J(y)dy){)(e·x+b)dbde 
J Sd-l JR. j Heb 

(-l)(d-1)/2 
where ad == 2(2n )d-1 . 

Proof: Let f be a function in Wd,p. It is known [Lan93] that we can find functions f n E 

C00 (0) such that Ilf n - f ,,d,p < l/n. For f n we know the formula 

fn(x)=-ad { f( { D~d)fn(y)dy)'l?(e·x+b)dbde J Sd- l JIR J Heb 

(2.13) 

from several sources ([He99], [lto91], Theorem 2.2.1, [KKV07]). It remains to show, how 

we can derive the same formula for f itself. 
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By definition of Wd,p_norrn we easily conclude that Did) J n ~ Did) J in Lp-sense. For a 

given e > O let us choose n so that IDid) f n - Did) f I < e. Then we have for each e E 5d-I 

{ ( { (D~d) Ín(Y) - D~d) J(y)) dy )-a(e ·X+ b) db 
JR JHeb 

< f ( { jD~d)fn(y)-D~d)J(y))jdy)'!9(e·x+b)db 
JR }Heb 

< fn 1n~d) fn(Y) - D~d) f (y))I dy 

and by the power mean inequality we get that for some C depending only on the measure 

ofn 

< Cli! n - f lld,p 
<Ce 

Consequently, the right-hand side of (2.13) for f and for f n differ by at most ad Ad-I (sd-I )Ce. 
The difference of the left-hand sides of (2.13) can be estimated too. 

Ilf n - f llc(n) < C'llf n - f lld,p < C1e. 

Here we are using the Sobolev inequality; c1 depends only on d, p, and D. It follows, that 

there is a constant c2 > O such that for each e > O the representation (2.13) holds for f with 

the error at most c2e. Letting e > O go to O finishes the proof. O 

C. Wavelets For set g obtained from functions of RBF type (2.5), the theory of wavelets 

is of use. The basic result there is the following. Let a be an L2 function with llall 2 == 1, 

such that J I.Tf :?'2 
da is finite (such CT is called a wavelet). Under suitable conditions (which 

we will not describe bere in detail) one has 

where wa,b are suitable "weights". For more details, any book about wavelets, e.g. [Bl98] 

can be of use. 

D. Integral representation of f ( x) based on Fourier transform Another approach to 

bounds on Ilf 11 9 (although without this notation) is dueto Barron [Ba93]. Let B C ffi.d be 

bounded. Let OB,p be the set of all functions f : B ~IR such that 
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1. For some complex-valued measure fr( dw) and for any x E B 

f(x) = f(O) + J (eiw·x - l)fr( dw). 

2. We have J lwlBF( dw) < p. Here F( dw) denotes the magnitude distribution of 

fr( dw) from part 1, and lwlB == supxEB lx · wl. 

"' 
Examples of such functions include functions f for which the Fourier transform f exists, 
the inverse Fourier transform produces f, and w J ( w) is integrable. Many more examples 
(positive definite functions, functions in es where s == l d/2 J + 2, etc.) are listed in [Ba93]. 

Theorem 2.3.3 (lntegral representation based on Fourier transform [Ba93]) Let a be any 

sigmoidalfunction, let f E OB,p· Then llJ(x) - f(O)llga < p. Consequently, f(x) - /(O) 
can be approximated well by elements in <Ja: 

p 
ll{f(x) - f(O)) - convn P9crll2 < fo· 

To compare with Theorem 2.2.2, this method is more widely applicable; it does not yield an 

explicit formula for f ( x), though. 

2.3.2 Networks with Continuum Many Units 

The term neural network with continuum many units was metaphorically used in [KKK97] 
to describe a function in integral representation 

f (x) = l w(a)rp(x, a) da (2.14) 

where it is to be understood that for every a we have a function rp(·, a) as the activation 
function of one neuron; we take this neuron with weight w(a). This concept enabled an 
interesting application of results of Section 2.1.1. It is not clear, however, what is the relation 
between the class of functions representable as (2.14 ), functions realizable by finite neural 
networks, that is expressible as 

n 

f(x) = L cirp(x, ai) (2.15) 
i=l 

and functions that can be approximated by finite networks. 

In this section we will try to clarify these relationships. To this end, we extend the notion of 
neural network with continuum many neurons even further. For any signed measure v on A, 
we consider the function 

J(x) = l rp(x,a)dv(a). (2.16) 



42 CHAPTER 2. Rates of approximation 

Any function representable by (2.14) can be represented as (2.16), when v has density w (a). 

We recall (and introduce) some notation. We have a continuous function r..p on H x A. As 

in previous sections, we put Q == { ±r..p( ·, a), a E A}. In this notation, finite neural networks 

compute functions in span 9. As we want to restrict the size of the weights towards the output 

neuron, it makes more sense to consider functions in conv cQ for some real c. Functions that 

can be approximated by such bounded finite networks are those in cl conv cQ. Finally, we 

let I ( c, 9) denote the set of functions f that can be represented as (2.16) for some measure v 

on A with llvll < c. 

lt is obvious that conv Q C cl conv 9 and conv cQ C I ( c, Q). Less obvious is the relationship 

between cl conv Q and I ( c, Q): 

Theorem 2.3.4 (Sum=} Integral) Let cp E C(H x A), Hand A compact subsets ofRd and 

JRk, respectively. Thenfor every real c 

cl conv cQ C I(c, 9). 

Explicitly, every function that can be approximated by functions of form E:n 1 cicp(x, ai) for 

E;n 1 lcil < c can be expressed as J (x) == J r..p(x, a) dv(a) for some signed measure v of 

norm at most c. 

Proof: Let f be a function in cl conv cQ, and choose a sequence f n converging to f. We 

can write fn == E~~ Cn,i'P(an,i, x), where Ei lcn,il < c. We let Vn be the weighted counting 
measure, that is for any set E C A we put 

Vn(E) = L Cn,i · 
i:an,iEE 

Recall that the space M(A) of signed measures on A is the dual to C(A). As C(A) is sepa­

rable, Helly's theorem implies that the ball of radius cin M(A) is w*-sequentially-compact. 

This in particular implies that there is a measure v and a subsequence vnk converging to v in 

the w* topology (as v is w* -limit of measures with norms at most c its norm is at most c as 

well). This in tum means that for every function g E C(A) we have J g dvnk ~ J g dv. We 

apply this for g == cp(·, a) for every x E H. We obtain 

fnk(x) = L rp(x, a) dvnk(a) -t L 'f?(X, a) dv(a). 

As limn f n ( x) == f ( x) by our choice of f n, this finishes the proof. o 

In Theorem 2.2.6 we showed the converse to the above theorem: if a function f (x) is in 

form (2.16) then it is a limit of functions of form (2.15). This tells us that certain functions 

can be approximated well. Moreover, combination of Theorem 2.2.6 and 2.3.4 concludes 

our intention to compare these two ways to extend the notion of neural networks to infinity. 
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2.4 Applications 

In this section we combine results regarding rates of approximation (Section 2.1 ), Q-variation 

(Section 2.2) and integral representation (Section 2.3) to derive practically applicable results. 

We start with a result that appears already in [KKK97]. 

Corollary 2.4.1 (Approximation for Cd(JRd) functions [KKK97]) Let d be an odd posi­
tive integer and f E Cd (~d) a compactly supported function. Let a be a continuous sig­

moidal function. Then there is a constant C so that 

Corollary 2.4.2 (Approximation for Cd(JRd) functions in Lp, gen. sigm. function) Let 

1 < p < oo, let d be an odd positive integer and f E Cd(JR.d) a compactly supported 
function. Let a be a nondecreasing sigmoidal function (not necessarily continuous ). Then 

there is a constant C so that 

c 
Ilf - spann 9,,.llP < nl-1/t , 

where t == min{p, 2}. 

Proof: By Theorem 2.3.1 we have integral representation of f using Heaviside functions: 

f(x)=-ad { f( { D~d)f(y)dy)fJ(e·x+b)dbde. J Sd-l JR J Heb 

Thus by Theorem 2.2.2 we obtain bounded Y'ď-variation, bound given by integral of direc-

tional derivatives: 

giJ < f f ad { D~d) f(y) dy db de). 
j Sd-l JR. j Heb 

Using Theorem 2.2.9 we observe that Y'ď(f) == 9a(!) for any sigmoidal activation function 

a. Now it remains to use Theorem 2.1.6, we observe that 9a is ,CP-bounded on support of f 
and having shown that 9a(!) is finite we conclude the proof. D 

Corollary 2.4.3 (Approximation for wd,P(JRd) functions in Lp, gen. sigm. function) Let 

1 < p < oo, let d be an odd positive integer, let n c JRd be a bounded open set with a C1 

boundary and consider an f E Wd,P(f2). Let a be a nondecreasing sigmoidalfunction (not 
necessarily continuous). Then there is a constant C so that 

c 
Ilf - spann 9,,.JIP < nl-1/t , 

where t == min{p, 2}. 
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Proof: By Theorem 2.3.2 we have integral representation of f using Heaviside functions: 

f(x)=-ad { f( { D~d)f(y)dy)rJ(e·x+b)db .de J Sd- l JR J H e b 

(the derivatives are taken in the weak sense). Thus by Theorem 2.2.8 we find that the <]73 -

variation is bounded. The bound is given by integral of directional derivatives: 

In [KKV06] this computation is carried on to provide an upper bound on <]13 variance in terms 

of Sobolev norm (even Sobolev seminorm) li · lld,l· As n is of finite measure, this implies a 

bound Ilf llg~ == 0(11 · lld,p)· Using Theorem 2.2.9 we observe that Q13(f) == Ya(f) for any 
sigmoidal activation function (]". Now it remains to use Theorem 2.1.6, we observe that Ya is 
CP-bounded on support of f and having shown that Ya(!) is finite we conclude the proof. D 

By using Theorem 2.2.9 instead of results in [KKK97], we can weaken the assumption on a 
- we do not need a continuous, it is enough, if a is nondecreasing and bounded. More 

disagreeable, though, are the assumptions required on f, which are perhaps too strong for 
applications. We mostly care about rather large d, so we need f to be very smooth. Next, 
we will discuss the possibilities to weaken this requirement. First, we will see that for d == 1 

such weakening is possible. (Similar result for (]" being the Heaviside function is suggested 
in [KKV06].) 

Theorem 2.4.4 (Rates for absolutely continuous functions) Let f be an absolutely con­

tinuous fanction on [a, b]. Let rJ be any sigmoidal fanction (not necessarily continuous). 

Then there is a constant C so that 

c 
Ilf - spann Yu llP < nl-l/p · 

Proof: We represent f (x) in form (2.12) (Section 2.3.1, part A). Theorem 2.2.8 implies 

that Ilf llg~ < llf'lli (which we know is finite). From Theorem 2.2.9 we know that Ilf ll9a == 
ll!llg19 , so it remains to use Theorem 2.1.6. o 

We see that we lowered the smoothness assumption - we require f to be absolutely con­
tinuous, instead of being C1. However, it is possible to weaken the assumptions on f even 
further and at the same time improve the approximation, at least in the one-dimensional case. 
(This result may be known in the analysis community, we have been unable to find it in the 
literature, though.) 
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Theorem 2.4.5 (Rates for bounded variation functions) Let f be a bounded variationfunc­

tion on [a, b]. Then 

Ilf _ í? li < Ilf llBV[a,b] spann ':liJ oo - 1 . 
n-

If a is any sigmoidal function (not necessarily continuous) then we have for any p E ( 1, oo) 
and a constant c == c( a, b, p) 

Ilf _ í? li < cJIJ llBV(a,b] spann ':l<r P _ 
1 

. 
n-

Proof: It is known from calculus (see, e.g., Theorem 1.2 in Section X.1 of [Lan93]) that a 

bounded variation function can be expressed as a diff erence of two nondecreasing functions, 

f == !1 - !2 in such a way, that llfllBv[a,b] == dl+ d2, where di == fi(b) - Íi(a). Using 
the technique in the proof of Theorem 2.2.9 (part (B)) we approximate fi(x) - fi(a) by a 

function 9i ( x), which is a linear combination of ni shifts of the Heaviside function ťJ, so that 

ni< l~J andforallbutfinitelymanyvaluesofxwehaveO < (fi(x)-fi(a))-gi(x) <s. 
Consequently, 

l(g1(x) - 92(x) + f(a)) - f(x)I < c 

for all but finitely many values of x. We may realize addition of f(a-) as one extra Heaviside 

function, so we found an approximation using n 1 + n 2 + 1 < di ~d2 + 1 Heaviside functions 

and achieved an C00 error s. 

The second assertion follows immediately by approximating ťJ(t) by a(Nt) for N large 

enough. D 

We remark that a weaker version of the above theorem (with the usual rate of conver­
gence O(l/n1- 1/P) in J:,P-norm) could be proved also using Theorem 2.2.8: if f is a bounded 

variation function on [a, b] and µ1 the corresponding Riemann-Stieltjes measure, then we 
have the following formula (Proposition 1.8 in Section X.1 of [Lan93]) 

f (x) - f (a)= lx 1 dµ/, 

whenever f is continuous at both a and x. As bounded variation function is continuous at all 

but finitely many points, we can indeed apply Theorem 2.2.8. 

Next, we will consider the case of larger d. 

In Theorem 2.3.2 we decreased the differentiability requirement - instead of existence of 

continuous d-fold derivatives as in 2.4.1 and 2.4.2 we only require that d weak derivatives 

exist (and are bounded in the CP norm). This may not seem as a tremendous improvement. 
On the other band, in this setting we have the following result that presents a limit on how 

much can we weaken the assumptions on the function to be approximated. 
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Theorem 2.4.6 (Good rates ====} many weak derivatives) Let a : IR ~ IR be a continu­

ous function. Suppose that for each function f E wm,2 ( Bd) (where Bd is the unit ball in 

JRd) there is a constant C so that 

Then m > (d - 1)/2. 

c 
Ilf - spann <J(7 ll2 < Jn . 

Proof: By Theorem 1.4.1 there is a function f E wm,2(Bd) such that 

Sowe have ~ > C'n-m/(d-l). Considering the limit as n -+ oo finishes the proof. O 

We finish this discussion by mentioning the connection with Theorem 1.4.2 from Chapter 1. 

Indeed, this theorem actually gives better bounds on Ilf - spann Yu llP than the results of this 
chapter. The drawback, however, is that we need to use linear combinations with unbounded 

coefficients. (The inspection of the proof, as presented in [Pi99] shows that, indeed, un­

bounded coefficients are crucial for the proof.) This renders the result useless for practical 

applications: we can find good approximation of f in form 

n 

L cia(ai · x + bi ) 
i=l 

(2.17) 

for small n, but at the expense of using large coefficients ci. Consequently, we need to do the 

computations with a high precision - which only shows that n is not an appropriate measure 
of complexity of the expression (2.17). This problem is partially avoided by using convex 

combinations (or, rather, combinations with bounded sum of the coefficients). However, a 
detailed study of the numerical issues involved remains to be done. 

Similar results as in Theorem 2.4.4 can be easily derived for wavelets and Baron's represen­

tation - paragraphs C and D in Section 2.3 .1. 

2.5 Conclusion 

In this chapter we studied properties of approximations of functions using convex combina­

tions. Results of Maurey, Jones and Barron and of Darken et al. show that, when applicable, 

such convex combinations yield good rates of approximation (independent of input dimen­

sion). 
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Further study of constants that appear in these rates bring the notion of 9-variation (as de­

fined in [Ku97]). To maintain the mentioned rates when approximating a function f by 

functions from g we have seen that fininte 9-variation of f is needed. Pursuing this idea 
Kůrková [Ku97] show s that for continuous approximating functions in 9 for f representable 
as integral of these functions weighted by a continuous function 9-variation is finite. She 
pro ves this result al s o for Heaviside activation functions. We extend these results to ,CP 

almost everywhere bounded activation functions and weights by a constructive proof (The­
orem 2.2.3) and nonconstructively using Hahn-Banach Theorem to continuous or CP activa­
tion functions and weights represented by any signed measure (Theorems 2.2.6 and 2.2.8). 

We further investigate the notion of 9-variation and show that for f with infinite 9-variation 
we can have arbitrarily slow convergence of approximation (Theorem 2.1.7). A surprising 
result comes from Theorem 2.2.9 - we show that the presented rates of approximation cannot 
distinguish between sigmoidal functions. 

As mentioned above, all the presented results require f to representable as an integral. In 
Section 2.3 we overview known results towards this direction and also show that integral 
representation is a necessary condition for f to be approximable with good rates of approxi­
mation by convex sums of continuous activation functions (Theorem 2.3.4). 

In Section 2.4 we combine the above mentioned and present a few instances of theoretical 
bounds on rates of approximation for specific functions f showing how to easily derive 
corollaries of the type using results of previous sections. One more interesting and less 
obvious result of this section is the less optimistic information presented in Theorem 2.4.6 -
if we wish to ha ve good rates of approximation for function f we ha ve to demand it to ha ve 
many weak derivatives. 
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Chapter 3 

Algorithmic Aspects 

As we already mentioned in Chapter 2, along the Barron-type investigation there are two 
established ways to estimate rates of approximation in Hilbert (and more generally Banach) 
spaces. The first one (pioneered by Jones [Jo92] and Barron [Ba93], and generalized ·to 
Banach spaces by Darken et al. [DDGS93]) analyzes the process of iteratively improving 
the approximating function. The intrinsic f eature of this approach is, that to get the n-th 

approximating function, f n' we first compute f 0 , fi, ... , f n - I· This makes each of the 
iterative steps easier to manage, but it also may constitute unnecessary work. 

The other approach (established by Maurey [Ps81], and also pursued by Barron [Ba93], 
Darken et al. [DDGS93], and Makovoz [Mk96]) is nonconstructive: it is possible to show 
that there exists a good approximant using the so-called probabilistic method; that is in 
appropriately chosen probability space, the probability of getting a good approximant is 
nonzero. 

In this chapter we extend this second approach - we suggest a randomized algorithm and 
compare it to the iterative approach. To this end, we also analyze complexity of the iterative 
algorithm, a task, which seems not to be addressed in existing literature. 

By its nature the randomized algorithm is very well suited to prune networks with too many 
units to obtain smaller ones with still good approximation abilities (probability estimates 
on error with respect to error of original big network can be expressed). We propose how 
to use the randomized algorithm to prune any kemel-method attained network (see Chapter 
4) to obtain reasonable number of hidden units. Experiments towards this end are running 
in cooperation with Petra Kudová-Vidnerová on kemel-based neural network schemas (for 
more details see Chapter 4). 

We start by analyzing the iterative algorithm in Section 3.1. In Section 3.2 we propase and 
study the randomized algorithm. In Section 3.3 we briefly discuss the complexity of various 
"subprocedures" used in the algorithms under study. Finally, in Section 3.4 we compare the 
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suggested algorithms in various situations. 
v 

Results presented in this chapter came from cooperation with Robert Sámal and have been 
published in [SS08]. 
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3.1 Iterative Algorithms 

In this section we analyze time complexity of the algorithm suggested by Jones [Jo92] and 
Barron [Ba93], and further analyzed by Darken et al. [DDGS93]. In these papers, the au­
thors concentrate on the estimate of approximating abilities of some approximation schemas 

(in particular neural networks), without addressing the amount of computations needed to 
achieve such approximation. In this section we try to clarify this point. We start by speci­
fying the algorithm under study - or, more precisely, the algorithms, as there are (at least) 
two distinct ways to organize the computations. Then we do a "high-level" estimate of 
complexity, postponing the discussion of how some standard tasks can be implemented to 
Section 3.3. 

Let us recall basic assumptions from Chapter 2. We consider approximations of a function f 
using convex combinations of functions from (], a subset of some function space X (which 
is a Banach space ). We are given n, the upper bound on the number of elements of g we are 
allowed to use. The key idea is to use the f ollowing iterative transformation. 

fo== O 

Ík+l == afk + (1 - a)gk, 9k E Q, a E [O, l] (3.1) 

We will use a result that appears as Theorem 3.5 in [DDGS93]: 

Theorem 3.1.1 (lterative rates in smooth Banach spaces [DDGS93]) Let X be a uniform­
ly smooth Banach space having modulus of smoothness p( u) < ~ut with t > 1. Let g be a 

bounded subsetof X and let f E clconvQ be given. Select p >O such that Ilf - gll < pfor 
all g E g and fix rJ > O. We choose sequences {f k} C conv g and {gk} C g recursively so 
that 

1. f1 E g 

2. Fk(9k - !) < kt- 1 111~~fllt- 1 ((p + TJ)t - pt) =: ók 

3. f k+l == k!l f k + k!l 9k, 

where Fk is peakfunctionalfor Ík - f (we terminate the procedure if fk == f ). Then we have 

Ilf _!li< (2-yt) 1ft(p+11) (l + (t- l)log2 k)1/t 
k - kl-l/t 2tk . (3.2) 

Note that the error bound presented bere holds in every step and thus also for an n given in 
advance by the "enemy". There are two natural ways to find an appropriate function 9k in 

(3.1). 
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1. U sing repeated optimization. The first approach is to use (3 .1) as a way to reduce 
dimensionality of an optimization problem (it was apparently meant soby Jones, who orig­

inally proposed this method). That is, instead of choosing all functions to form the ap­
proximation at the same time, we only decide about one function at a time. This amounts 
to n times solving a (multidimensional) optimization problem, to find good enough gk: in 

view of Theorem 3.1.1 this means to find 9k for which Fk(9k - J) < ók. Here Fk is the 
peak functional for f k - f, that is a linear continuous functional of unit norm for which 

Fk(fk - J) == llfk - f li· We denote the time needed for finding such 9k by topt(9 , ók)· We 
will discuss iopt further in Section 3.3.2. In (3.3) a lower bound on ók is presented; it yields 
ók == O(l/k1- 1/t). Based on these considerations we have the following algorithm and time 

analysis. 

Algorithm 3.1.2 (lterative from scratch) 

Given: f, Q, n 

1. fo == O 

2. For k == O to n - 1: 

• Let Fk be a peakfanctionalfor Ík - f. 

• Find 9k E Q so that Fk(9k - J) < óh where ók is as in Theorem 3.1.1. 

• Put f k+1 == k!i f k + t9k 

Output: fn 

Time: L~-i(topt(Q , <5k) + 0(1)) == O(n · topt(Q, O(n1!1;t))) 

2. Using an auxiliary approximation. The second approach (inspired by the proofs in 
[Jo92, Ba93, DDGS93]) is to first find an auxiliary approximation of f, possibly using a 

large number of terms: For i == 1, ... , N we find hi E Q and ci (ci > O, L~ 1 ci == 1) and 
put 

N 

J apx = L Cihi · 

i=l 

We let éapx denote the error of this approximation, that is éapx == Ilf - fapxll. We will discuss 
the possibilities to obtain such approximation later, in Section 3.3.3. Meanwhile, we just let 

tapx (Q , éapx, N) denote the time needed to find such fapx· Next, in each iteration of (3.1) we 
choose for gk one of the functions hi, i== 1, ... , N. We will do so to make Fk(9k - f) < ók. 
Let us pause for a while to analyze when is this possible. Due to linearity of Fk we have 
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The second term is at most llFk li · li f~px - f li == Eapx · The first term is "zero in the average": 

N N N 

L ciFk(hi - fapx) = Fk(L Cihi) - L ciFk(Japx) =o. 
i=l i=l i=l 

Consequently, there is at least one hi for which Fk(hi - fapx) < O, therefore Fk(hi - f) < 
Eapx· We will let 9k be this hi ( or one of them, if there is more than one such hi). 

Theerem 3.1.1 states that we need Fk(9k - f) < ók, thus it is sufficient to ensure Eapx < ók. 

As we do not know in advance the size of Ilf - fkll, we need a lower bound on ók, that can 
be evaluated before we start the algorithm. Using the estimate (p + ry)t - pt > 77tpt-l for 

t > 1 and the inductive bound on Ilf - fkll, we get that 

p 

k (2„t)l/t(p+11) ( 1+ (t-l~tl~g2 k) l/t 
kl -1/t 

t-1 

==(2 t)I/t 'r} ( p )t-l(l+ (t-l)log2 k)1/t-1==:d. (3.3) 
' ki - 1/t P +TJ 2tk k 

Thus, we will chaose fapx such as to make Eapx < dn-l· Hence the assumptions of Theo­
rem 3.1.1 will be satisfied, and so we get approximation fn as guaranteed by this theorem. 

Algorithm 3.1.3 (lterative from auxiliary approximation) 

Given: f, Q, n 

1. Choose rJ > O ( smaller TJ yields better approximation, as given by Theorem 3.1.1 ). Let 
the modulus oj smoothness oj the given space be g(u) < 7ut. 

2 p t == (2 t)l/t TJ (_f!_)t-l (l + (t-l)log2 (n-1)) 1/t-1 
• U Eapx f (n-1)1 -1 /t p+'rJ 2t(n-l) 

3. For i == 1, ... , N findfunctions hi E Q, and coefficients ci > O with 2:~1 ci == 1 so 
that 

N 

IJ - L Cihi I < Capx. 
i=l 

4. Put fo == O. 

5. For kfrom O to n - 1: 

• Find i E {1, ... , N}, so that Fk(hi - J) < ók, where ók is as in Theorem 3.1.1. 

• Put 9k == hi. 
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Output: f n satisfying the estimate (3.2) 

Time: tapx(<J, Capx, N) + nNtint 

Two remarks are in place. 
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How to compute peak functionals In a general Banach space, the existence of a peak 

functional for every nonzero element is only guaranteed nonconstructively, by means of 

Hahn-Banach theorem. In many concrete spaces, however, peak functionals are given by a 

simple integral formula (which is why we denote time to evaluate peak functionals by tint, 

the time needed to enumerate an integral). For instance, in a Hilbert space, peak functional 

corresponding to f is given by scalar product with f /Ilf li· More generally, if f is an element 

of the ,CP space, then we may put 'lj;( t) = sgn(J ( t)) '{ih~b~~1 • lt is easy to verify that F given 
by F(g) == J g(t)ij;(t) dt is a peak functional corresponding to f. 

An improvement for Hilbert spaces In Hilbert spaces we may utilize the simple form 

of the peak functionals to improve time complexity of the above algorithm. A simple way 

to calculate the required peak functionals (that is, scalar products) is to compute N scalar 

products at each iteration. This requires time nNtint; we can do better, though. 

Before we start our iteration process, we can compute the N scalar products (hi , f) and also 

(f, f). We also store all the scalar products ((hi, fk) for i == 1, ... , N and for the "current 
value" of k. After each step, when f k+l is found using (3.1), we recalculate these scalar 

products. We assume that all scalar products (hi, hj) are easy to compute, or precomputed, so 
the computation of (gi, fk) only takes O(N) operations with numbers, but no scalar products. 

In this way, all the scalar products are computed in time (N + l)tint + O(nN). 

3.2 Randomized Algorithms 

In this section we are going to follow closely the proof of Theorem 3.2.1 (more general 

version of 2.1.3) as it appears in Darken et al. [DDGS93]. At the end of it, rather than using 

the basic observation "there is always something at least as good as the average", we use the 

Markov inequality (Theorem C.2.8). This extra step has useful algorithmic consequences, 

which we state as Corollary 3.2.3. 

Recall that CP spaces for p > 1 are of Rademacher type min {p , 2}. 
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Theorem 3.2.1 (Probabilistic estimate of error in Banach spaces (based on [DDGS93])) 
Let X be Banach space oj Rademacher type t, 1 < t < 2. Suppose Q C X, J E cl conv g 
and let p > O be such thatjor every g E Q we have 119 - f 11 < p. 

As s ume we ha ve an approximation oj f oj the f orm 

N 

L Ci = 1, Ci > O, hi E g 
i=l i=l 

so that Ilf - fapxll < c. We pick g1, ... , 9nfrom hi, ... , hN independently at random, so 

that Pr[gj == hi] == cijor each i, j. 

Then the average 
n 

9apx = ~ L9i 
i=l 

is (with high probability) a reasonable approximation, namely 

1/t (C(p+s) ) 1 
Pr[ll9apx - f li > Q · nl-l/t + E J < Q · 

Here C is a constant depending on X but independent oj n, and Q > 1 is a parameter 

specifying the trade-off between quality of approximation and time needed to find it. 

Proof: We follow the proof of [DDGS93] altering it slightly at the end of the proof. Put 

~ == f - fapx' SO that 11~11 < é. 

Take 9) to be a sequence of independent random variables on X every one of them taking 
value hi with probability ci. Then for any /3 E (O, 1) 

This is trne since x ~ xt is a convex function on JR+ for 1 < t < 2. Since the range of 9) 

has finitely many values, 9) is a Radon random variable. As the Rademacher type of X is t, 



56 CHAPTER 3. Algorithmic Aspects 

by Proposition 9.11 in [LeTa91] we have that there is a constant C == C(X) so that 

n t n 

E l:)J - 9J - ó) < ctLEll!- 9j - t!.W. (3.5) 
j=l j=l 

It is also true that for every j 

N 

Ellf - 9J - t!.W = L cillf - hi - óllt 
i=l 

N 

< L Ci(llf - hill + llóll)t 
i=l 

i=l 

(3.6) 

Combining (3.4), (3.5) and (3.6) we get 

At this point we divert from the proof in [DDGS93]. The above equation is valid for every 
{3 E (O, 1). A simple calculus shows that the right hand side is minimized when /3 == (1 + 
C(p+c) )-1. This value of Q yields 
cnl-1/t fJ 

1 n 

E f--"g· n~ J 
j=l 

Thus, by Markov inequality C.2.8 we have 

t 

(
C(p +s) )t 

< nl-l/t + c · 

[ 
t l 1 n C( + ) t 

Pr f - - "g. > Q . ( p c + s) n ~ J nl - l/t 
j=l 

== Pr [ f - !_ ~ g. > QI/t . ( C(p + c) + c) l 
n ~ J nl-l/t 

j=l 

1 
<--Q. 

Theorem 3.2.1 leads to the following algorithm. 

D 
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Algorithm 3.2.2 (Probabilistic from auxiliary approximation) 

Given: f, Q, n 

57 

1. Pick TJ > O and put Eapx == ni~i/t . The value of TJ affects the quality of approximation; 

as we will see below, for Lp spaces (l < p < 2) it is reasonable to make TJ comparable 

with p, orsup{llg - ! li: g Eg. 

2. Findfor i == 1, ... , N fanctions hi E g, and coefficients ci > O with L~ 1 ci == 1 so 
that 

N 

I J - I.>ihi I < Eapx 
i= l 

3. For j from 1 to n choose randomly tj E {1, ... , N} with Pr[tj == i] == ci. 

4. Put 9apx == ~ '2:7 1 htj 

5. I/Ilf - 9apxll > Ql/t(C~1~~"/t) + Eapx) go back to step 2. 

Output: 9apx 

Expectedtime: tapx(Q, Eapx, N) + (O(nlogN) + ntint)Q~i· 

Corollary 3.2.3 (Error of probabilistic algorithm) Algorithm 3.2.2 gives an approxima­

tion of f with an error at most 

Qi/tCp+ry(l- C/n1-1/t) 
nl-l/t 

after an expected number oj Q~ 1 repetitions. 

Proof: By Theorem 3.2.1 the probability of failure in Step 5 is at most 1/Q, so we can 
bound the number of repetitions by a geometrie random variable with probability of success 
1 - 1/Q. The expectation of this random variable is ~· O 

Remark We have kept C in the estimates to preserve generality. However, in the most 
interesting case (from the practical point of view), which is Lp with p E [1, 2], we have 
C == 1 (see [DDGS93], the discussion above Corollary 2.6). 

Now we set out to estimate the running time of Algorithm 3.2.2. As in the previous section, 
we will postpone the discussion of some "sub-procedures" to Section 3.3. 

The second step has time complexity tapx(9, Eapx, N). Then we need to pick a random 
number n times with the correct distribution. The standard way to do this is to define bi = 
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Ej~i Cj, so that O == b0 < b1 < · · · < bN == 1. Then we pick a uniformly random number 
u E [O, 1] and find i such that u E (bi-I , bi); we let the next ti be equal to i. To be able to tell 
which interval u belongs to, we need to sample it with sufficient precision. When we do this 

"adaptively", that is we only generate as many bits as needed to tell which interval will u end 

up in, we need on average 

N 1 N 1 
~ ci ( 1 + log2 -) < 1 + log2 ~ ci - == 1 + log2 N 
~ c· ~ c· 
i=l i i=l i 

random bits (we have used concavity of log and the Jensen inequality (C.2.6) for numbers 

l/ci). Altogether Step 3 takes time O(n log N). 

For Step 4 and 5 we need time O(n · tint), as we need to compute the sum in Step 4 for every 

point, where we will be evaluating fapx when checking the norm Ilf - f apxll in Step 5. 

Altogether, we obtain the expected time complexity 

Q 
tapx(<J,Eapx , N) + (O(nlogN) + ntint) Q . 

-1 

In Section 3.4 we will discuss how this compares to the estimates obtained for the iterative 

algorithm. 

Next we proceed with a variant of the above results for functions for which an integral rep­
resentation is known. The following theorem is based on ideas from [DDGS93]. 

Theorem 3.2.4 (Probabilistic error in Banach spaces, int. repr.) Let H C ffi.d be open 

and let X== .Cp(H). Putt== min{p, 2}. Let Abe a subset ojffi.k. Suppose 'Pa== cp(·, a) is 

in X j or each a E A. Put Q == { ±cpa : a E A} C X and assume that we ha ve an integral 

representation oj f oj form 

f (x) = i w(a)<p(x, a) <la i lw(a)I = 1. 

Let p >O be such thatforevery g E Q we have llg - !li< p. 

We pick g1, ... , 9n jrom Q independently at random, so that I w (a) I is the density of the 

probabilityojchoosing±cp(·, a). Wetake+cp(·,a)forw(a) > Oand-cp(· , a)forw(a) <O. 

Then the average 9apx == ~ E~ 1 9i is (with high probability) a reasonable approximation, 

namely 

[ 
1/t c p ] 1 

Pr ll9apx - f li > Q · nl-1/t < Q · 

Here C > O is a constant depending on X but independent oj n, and Q > 1 is a parameter 

specifying the trade-off between quality of approximation and time needed to find it. 
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Proof: Take 9i to be a sequence of independent random variables on X every one of them 
taking value hi with probability ci. 

(3.7) 

The range of 9i is a subset of CP(H), which is a separable Banach space. (C0(H) is dense in 
CP(H) (for 1 < p < oo) - Corollary 19.20 in [Js03]. Then we use the Weierstrass theorem 
to approximate continuous functions by polynomials and we observe that it is enough to con­
sider polynomials with rational coefficients.) Consequently, gj is a Radon random variable 
[LeTa91, p.38]. As the Rademacher type of X is t, by Proposition 9.11 in [LeTa91] we have 
that there is a constant C == C(X) so that 

t n 

< ctL EllJ - 9JW· 
j=l 

It is also true that for every j 

EllJ - 9Jllt = L lw(a)lllf ± <p(x, a)W 

< L lw(a)IPt 

== pt. 

Combining (3.7), (3.8) and (3.9) we get 

1 n 

E f- - Lgj 
n . 1 

J= 

Thus, by Markov inequality C.2.8 we have 

Pr [ f - ]:_ ~ g. t > Q . ( CP ) tl 
n ~ J nl-1/t 

j=l 

==Pr[ J-]:_~g · >Q1/t.( Cp )] 
n ~ J nl-1/t 

j=l 

Theorem 3.2.4 leads to the following algorithm. 

(3.8) 

(3.9) 

o 
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Algorithm 3.2.5 (Probabilistic from integral representation) 

Given: f, (j), n 

1. Find an integral representation for f of f orm 

J(x) = L w(a)<p(x,a), 

so that JA lw(a)I == 1. 

2. For j from 1 to n chaose randomly aí E A with the density of probability lw(a)I. 

3. Put 9í == (j)aj if w(aí) > O, and gj == -(j)aj if w(aj) < O. 

4. Put 9apx == ~ E~ 1 9j 

5. If li f - 9apx li > Ql/t ( n1~~/t) go back to step 2. 

Output: 9apx 

Expectedtime: O(nsgen(w)d · tintQ~ 1 ) 

For discussion of s9en see below. 

Corollary 3.2.6 (Error of integral probabilistic algorithm) Algorithm 3.2.5 gives an ap­

proximation of f with an error at most 

Qi/t Cp 
nl-1/t 

after an expected number of Q~ 1 repetitions. 

The proof is the same as for Corollary 3.2.3. 

In Algorithm 3.2.5 we need to generate a according to a non-uniform distribution, the density 

of the probability being lw(a)j. A general approach to do this is the acceptance-rejection 
method (developed by von Neumann). The basic idea is as follows. We find C so that 

lw(a)I < C for each a. For simplicity assume first that vol(A) == 1 and J lw(a)I == 1. 
We generate a E A and u E [O, 1] uniformly at random, and accept a if u < ~w2;1)I (that is, 

we accept a with probability proportional to lw( a) I). If we reject the generated a, we repeat 

the procedure. lt is easy to see, that the expected number of steps needed to generate one 

a according to lw(a) I is C: thus this basic approach is inefficient if lw(a)I varies widely. 

In such case we try to find a simple upper bound CW(a) on lw(a)I (so that JA W(a) == 1) 
and generate a with density W(a), rather than uniformly. For the details we refer the reader 

to Section 5.1.2 of [WeOO]. If we are given w such that I == JA lw(a) I i: 1, we just find 
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(estimate) I (for example by Monte Carlo integration, see Section 3.3.1) and then we will be 

generating a according to lw( a) I/ I and then put 9i == ±I <p( ·, a). 

The conclusion is that our ability to efficiently generate with density lw(a)I depends on our 
knowledge of the function w. We will use Sgen( w) to denote the number of steps needed to 
generate one a with probability density I w (a) I· 
The estimate of the running time of Algorithm 3.2.5 is derived similarly as that of Algo­
rithm 3.2.2. There are two differences: instead of finding an approximating function f apx, 

we need to get the integral representation - more precisely, we will be repeatedly evaluating 
w(a). 

When the approach of [KKK97] is used to obtain the integral representation, we may use the 
discussion in Section 3.3.3, where we estimate the time to evaluate w(a) by d · tint· Also we 
need to estimate JA lw(a)j, which takes about d · (tint)2. 
Altogether, we obtain the expected time complexity 

In the above equation we needed to compare tint and nsgen: from Section 3.3.1 we have 
1 

tint rv é-2, while n rv E- 1 - 1/t. We see that for t == 2 we have tint ,....., n, if t gets closer to 1 
(arguably the most interesting case) n gets larger. Moreover Sgen is at least 1. This allows us 
to simplify the time complexity as above. 

In Section 3.4 we will discuss how this compares to the other algorithms. 
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3.3 Numerical Issues 

In this section we will discuss numerical issues that arose when estimating running times 

of the algorithms proposed in the previous two sections. We do not claim any originality in 
this section, and also, given the limited space, we hardly scratch the surface of the extensive 
field of research, which numerical analysis presents. Our purpose bere is to shortly overview 
relevant known results in order to be able to somewhat understand the running times of the 

studied algorithms. We will deal with tint in Section 3.3.1, topt in Section 3.3.2, and lapx in 
Section 3.3.3. 

Our model of computation is a simple one: we assume, that variables in our algorithms hold 
one real number, and that we can perform basic operations with real numbers at unit cost. 
Thus, we avoid discussing in detail numerical stability of the presented algorithms and also 
the effect of required precision is treated only partially. 

3.3.1 Numerical Integration 

In the discussed algorithms we need to compute numerically various integrals. In this section 
we start by an overview of known methods for estimating integrals. Then we show how to 
extend the idea of Monte-Carlo integration for the situation when the integral depends on 
parameter. We will include an estimate of time complexity of these methods. This will in 

the end lead to an estimate on tint· 

A. Classic methods Finding numerical estimates of definite integrals is a central topic 
in numerical analysis. The classical approach to estimate I == f s h(x) dx is as follows: 
We divide the region S into small parts (by a "dense regular grid"). On each of them we 
approximate h by polynomials and integrate those. The next claim summarizes such results. 

Claim 3.3.1 (Classic numerical integration [Numerical Basics]) Suppose h E cr(S), 
where S C JRd. We can estimate fs h(x) using values h(xi) in some ( carefully chosen) points 

x1, ... , x N· with error at most 
r 

O(N-ll) 

(the constant in 0(-) depends on maxxES IJ(r)(x)I and on the volume of S). 

We see another case of the "curse of dimensionality": to achieve error bounded by E, we need 
to take N == f2( E-d/r). One way out of this would beto consider functions defined in JR.d that 

are d-times continuously differentiable, but this may be a too strict requirement. Another 
common method is to use "sparse grids" - i.e., we use more points to sample the function h 

(lo N)(d - l)(r+ l) 
in that parts of S, where h varies more. This method yields error O( g Nr ), where, 
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again, N is the number of sample points and r the regularity of f. When d is large (as is 
usually the case in applications of neural networks), the standard approach is to use random 
sampling, which we discuss in the next section. 

B. Monte-Carlo methods of integration We start by an overview of the basic Monte­
Carlo method. For more details, see e.g. [WeOO]. In the same setting as above, let x1, ... , 

xN be chosen uniformly at random from S. Put 

N 

E = vol(S) J. L h(xi)· 
i=l 

As expectation of h( xi) is I/ vol (S), we get that Eis an unbiased estimator for I. To find how 
reliable results E yields, one use s tail estimates for sums of independent random variables. 
For example, by using the Chebyshev and Chemoff-Hoeffding bound C.2.1 we can easily 
get the following. 

Claim 3.3.2 (Monte-Carlo integration, see, e.g., [CuSmOl]) Let h, S, and E be as above. 

Then the expected value of E is f 8 h(x ). Moreover: 

(a) If h is in .C2(S) and 0"
2 == vol( s) f 8( h vol (S) - f 8 h(x) )2, then for any TJ > O we have 

r TJ a2 
Pr[IE - j s hl > VN] < rJ2 . 

(b)IfhisinC00 (S)andMissuchthatlh(x)vol(S)-f8 h(s)dsl < Mforalmosteveryx E 

S, then for any TJ > O we ha ve 

r TJ 2 

Pr[IE - Ís hl> VN]< 2e-~. 

As a side-remark, we note that in the literature about the application side of Monte-Carlo 
integration, the method is frequently justified by mentioning the Central Limit Theorem. 
Indeed, Centra! Limit Theorem gives that the distribution of (E - fs h)VN converges to 
normal distribution. This yields bound similar to that in part (b) for any function h, that 
satisfies assumptions of the Centra! Limit Theorem, in particular the Lyapunov condition is 
satisfied for h E .c2+c(S) for any c > O. However, this only yields inforrnation about the 
limit distribution. If we want a bound for some particular N, we need to utilize the Berry­
Esseen theorem: it estimates the speed of convergence to the normal distribution, but the 
guaranteed bound is only 0(1/ VN). 

Claim 3.3.2 allows us to quickly estimate the various integrals we need for time complexity 
estimates for our algorithms. If we want to get the "probable" error c, it suffices to use 
N > C(l/c)2 , with the constant C depending on the function to be integrated (and also on 
the probability with which we want to get the desired precision). As we do not care about 
constants in our analysis, we summarize this as tint(E) == 0(1/c2

). 
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3.3.2 Optimization 

In this section we briefly touch the problem of optimization, as we are using it in one of 
our iterative algorithms. We can give only a glimpse of this interesting subject, for a more 
thorough treatment we suggest for instance [BoVa04]. 

In Algorithm 3.1.2 we needed to find a function for which a certain functional is small. 
lt would be bard to be searching for an arbitrary function, fortunately we are looking for 
functions in specific forms. In the perceptron model we are searching for an optima! ridge 
function O"( a· x + b ), where O" is the given activation function, a, x E JR.d, b E IR.. This means 
that we are actually minimizing a function of d + 1 real variables (a, b). 

Generally, suppose we are seeking for a minimum of a function h, defined on A C JRď; we 
assume that d' is large. There is a plethora of branches of the optimization theory, where this 
question is studied under various assumptions (h is linear, quadratic, convex, ... ). Unfortu­
nately, none of these assumptions is applicable. The only general approach that guarantees 
finding the global optimum, is to sample h at all points of a dense enough grid, where what 
is dense enough depends on some bounds on derivatives of h (or its modulus of continuity). 
Obviously, this is not practical even for moderately large d', as the number of sample points 
scales as mď. (Here m is the number of division points in one dimension, which depends 
on the size of the region we are optimizing over, and on the modulus of continuity of the 
optimized function.) Thus, we need to leave the realm of guaranteed methods. Most meth­
ods used in practice are actually searching for local minimum. Then, a variety of methods 
(multiple runs of the algorithm with random starting points, simulated annealing, etc.) is 
used to get a chance of finding the global minimum. Obviously, without some knowledge of 
the function h, nothing can be said, and we can only attempt for a reasonably good heuristic. 

A better understood question is how to search for the local minimum. The basic way is 
the gradient method: 1 we start at a random point a == a0 , compute the gradient Vh(a) 
(assuming it exists), and move against the gradient, by a (carefully guessed) distance. In 
Algorithm 3.1.2 we need to optimize the peak functional Fk(g). As we discussed after the 
algorithm Fk(g) == J g(x )1/J(x) dx for some function 1/J. In the notation of this section, the 
point a== (a1 , ... , a~) E A corresponds to parameters we use to describe the function g, h(a) 
is the integral J g?j;. Under mild assumptions the gradient V'h(a) is the integral f (Vg)'l/J. 
(Here V g == ( a~i g )i is a collection of functions that describe how g changes if we change 
the parameters a.) It follows that single step of gradient method will take time d' · tint· 

The speed of convergence depends on both the chosen variant of this method, and on proper­
ties of h. One of the estimates for the number of repetitions ( under the assumption of strong 
convexity of h) is as follows, see Chapter 9 in [BoVa04]. We let"" denote an upper bound on 

1This is the usual way to carry on the backpropagation algorithm, the common way to train a feedforward 
neural network. 
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the condition number of the matrix of the second partial derivatives \72 h( a). We let a* E A 
be the point where the minimum of h is attained (for strongly convex h such point exists 
and is unique ). Finally, c > O is the required precision, that is we want to find a so that 
h( a) - h( a*) < c. The number of iterations of the gradient method to achieve this is at most 

log h(ao)~h(a*) 

log(l - ~) · 
(3.1 O) 

Unfortunately, the condition number can be rather large and, what is worse, we need to 
minimize a function that is not convex. In this view, the time topt needed to find a minimum 
of a function, is bard to evaluate. A reasonable estimate is 

lapt rv d' · tint · Sopt ' 

where Sopt == Sopt(E) (the required number of steps) is estimated by the formula (3.10). 

3.3.3 Approximation 

In this section we discuss several ways to obtain a "starting approximation" of a func­
tion f ( x) we are trying to estimate. Our point of view will be somewhat different from the 
one in Sections 3.1 and 3.2 in that we are not striving to get small number of approximating 
functions. Thus, we allow a somewhat larger number of functions (resulting in a larger time­
complexity of obtaining the solution, but, perhaps, also making it easier to find a solution). 
Then we shall use algorithms in Sections 3.1 and 3.2 to get efficient approximations. 

So suppose we are given a function f (x), for x E H. Let us assume that this function is 
given to us by means of values at sample points (the position of these sample points may or 
may not be under our control). 

High-dimensional optimization One way to find the desired approximation is to choose 
N and optimize expression E!i cigi(x). We optimize by modifying the ci's and the param­
eters describing the functions 9i· We choose N high enough, so that we can get good enough 
approximation, but small enough, so that the task is still computationally feasible. By choos­
ing N larger, than will be the number n of the functions in the final approximation, we may 
hope to partially overcome one of the complications of the high-dimensional optimization 
- the fact, that optima can be hard to find. By choosing N large, we make sure that very 
good approximations exist, so our desired precision may not be so bard to achieve. If we use 
some variant of the gradient method to do the optimization, the amount of computation for 
one step is N times larger than when we optimize just one function. It is not clear how the 
number of steps is affected by having a large N. However, we may roughly estimate 
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Using integral representation It may be easier to first find an integral representation. 
(Then we will "sample from the integral", instead from the sum.) Two different approaches to 
obtain a relevant integral representation were pursued by Kůrková, Kainen and Kreinovich, 
and by Barron, see Section 2.3. We will concentrate on the approach of Kůrková, Kainen 
and Kreinovich, that is we will use Theorem 2.3.1. Using this result, we express f(x) as an 
integral of f orm 

J(x) =i w(a)cp(x, a) dx. 

Here, c.p(·, a) is the Heaviside function in a direction and shift given by a. 

We will discuss next, how computationally accessible this representation is. In Algorithm 
3 .2.5 we needed to evaluate w (a) and J A I w (a) I· To get w (a) we need to compute the d­
th directional derivative of f and integrate it over a hyperplane. Numerical estimate of the 
d-th derivative takes time proportional to d, so we can evaluate w(a) in time O(dtint)· To 
estimate JA lw(a)I, we will use Monte-Carlo integration, which takes time O(d(tint) 2

). In 
this f ormula, the two instances of ti nt correspond to different integrals ( one over x and the 
other over a), but in most applications these variables have similar dimension, so we neglect 
this small distinction. 

Kernels Yet another way to obtain the starting approximation to the given function is using 
the Tikhonov regularization method and Reproducing Kemel Hilbert Spaces. This will be 
discussed in Chapter 3. In Section 4.3 we will see how the algorithms presented in this 
chapter may be used in such setting. 

3.4 Comparison 

In this section we will compare the algorithms under discussion: the iterative algorithms 
(either with repeated optimization, or using an auxiliary approximation) and the randomized 
algorithms (using an auxiliary approximation or an integral representation). In Table 3.1 
we summarized what we f ound in the previous sections. However, the time complexities 
depend highly on the particular problem at hand. Indeed, the choice of functions used in 
the approximation, as well as the data we are trying to approximate affect, among else, 
the number of steps needed in the gradient method, which is usually the workhorse of the 
optimization "subprocedure". We make no attempt to analyze these subtleties; for this reason 
(and for the sake of brevity) we also suppress Q from the expressions in Tahle 3.1. We will 
not try to provide universa! conclusion, which of the algorithms is the best. Instead, we will 
try to address this question in diff erent "scenarios". The scenarios will describe how we 
search for the "auxiliary" approximation f apx· 
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It t. 1 ( t" • ) ""'n-1 t ( C1 ) t ( C1 ) era IVe rep. Op Imiz. .L...Jk=l opt kl - l / t rv n · opt nl - 1/ t 

Itrative 2 ( using aux. approx.) tapx ( n~~f/t , N) + nN · tint 

Randomized 1 (approx.) tapx(n~~f;t, N) + ( O(n log N) + n · tint) Q~I 

Randomized2 (int.repr.) O(nd · Sgen(w) · tint · Q~ 1 ) 

Table 3.1: Time complexities of the discussed algorithms. 

Disclaimer about N One piece of information that will be missing from our analysis is 

the size of N relative to n. The value of N depends on our choice, and in tums affects 

the complexity of the approximation. Roughly speaking, if N increases, it is more work 

to find the approximation, but the approximation will become an easier task (we know from 

Chapter 2 that the achievable error decreases with the number of terms in the approximation). 

As such, optima! choice of N depends on the task being solved and the used methods. From 

practical considerations, however, it is reasonable to expect that n < N < nk for some small 

constant k. 

Iterative 2 vs. Randomized 1 In this paragraph we will (somewhat in contrary to the first 

paragraph) compare the algorithms Iterative 2 and Randomized 1 "universally". Recall that 

Q in the randomized algorithm describes the expected quality of the solution (we are ready 

to be satisfied with a solution Q times worse than what is guaranteed to exist). As this is a 

constant greater than 1, we can see, that when using auxiliary approximation the Randomized 

algorithm is always superior to Iterative 2. In the following, we will only discuss Iterative 1 
and Randomized. 

1. scenario: auxiliary approximation is found by high-dimensional optimization As 

discussed in Section 3.3.3, tapx(9, c, N) rv N · topt(Q, c). Consequently, 

This suggests, that in this case we should be using the iterative algorithm, especially if N is 

very large. This is probably the expected result: after all, the idea behind the Iterative algo­

rithm as suggested by Jones [Jo92] is to reduce the dimension of the problem. 

2. scenario: an auxiliary approximation is given In this second scenario, we assume 

that we are given some approximation of a function f (x ), possibly using many functions. 

Our task is to find an approximation using less functions and achieving a reasonable error. 

In this setting, the first iterative algorithm is wasteful, as it cannot anyhow use the given 

approximation. lndeed, we certainly have lopt rv dtintBopt >> tint· Also, for the typical range 
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of N we have lopt >> log N. Consequently, in this scenario the randomized 1 algorithm 

provides an efficient method to improve a given approximation by "pruning it at random". 

tRandl < iuerl 

This will be utilized in Chapter 4: there we will consider situations where a natural approach 

yields sums with large number of terms N (Theorem 4.2.1 ). 

3. scenario: auxiliary approximation is obtained from an integral representation In 

many situations we may ha ve access to some sort of integral representation of the f unction 
under study. Severa! methods to obtain those were described in Section 2.3. We will use the 

second version of the rendomized algorithms in such case. 

We will consider bere an approach of this type, which was studied by Kůrková, Kainen 

and Kreinovich [KKK97], that is we will use Theorem 2.3.1. As discussed in Section 3.3.3 

and 3.2, the time complexity of our algorithm is O(nsgen(w)d · tintQ~ 1 ) To compare this 
to the iterative algorithm, recall from Section 3.3.2 that topt rv d · tintSopt· Thus we are 
companng 

Q 
nd · tintSgen(w)Q 

-1 
with nd . tintSopt , 

or Sgen( w) Q~l with Sopt· Now S gen can be as small as 1 (and even in the simplistic approach 
it is at most (maxw(a))/ JA lw(a)I). In particular, (in our simple analysis, at least) it does 
not depend on the required precision. On the other hand, Sopt is much larger than 1, and it 
depends on the required error (although only by a factor log l/s). Most importantly, we may 
run into troubles with finding a local minimum that is not global. Thus, we may conclude 

that when the integral representation is available, the randomized algorithm that utilizes it 
(Algorithm 3.2.5) is better than the iterative one. 

tRand2 < tuerl 

3.5 Conclusions 

In this chapter we proposed a new algorithm to find neural networks with small number of 

units and reasonable approximation error. (Equivalently, we are seeking an approximation 

of a given function by a sum with each term being one of a given set of approximating func­
tions, where we want this sum to have a small number of terms.) Roughly speaking, the 

algorithm utilizes an auxiliary approximation (using a large number of units) and "prones" 
this approximation by taking only some of these units. This selection process is done ran­
domly, and, as shown in Corollary 3.2.3 it provides an approximation with close-to-optimal 
error in a small expected number of steps. 
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We analyzed two scenarios, where this algorithm is useful. One is when we are given an 

approximation and the goal is to use a smaller number of units without increasing the error 

too much. (This combines well with the techniques that we will discuss in Chapter 4.) 

Another scenario, where the proposed algorithm is better than the usual one (which uses 

repeated optimization), is when our function admits an integral representation. We utilize a 
result of Kůrková, Kainen and Kreinovich [KKK97] (Theorem 2.3.1): given f E Cd(JRd), 
there is an integral representation using Heaviside units with explicitly given weights. 

Finally, let us remark, that the suggested randomized algorithm works without modification 
for other models of neural networks (such as RBF networks). 
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Chapter 4 

Pruning Solutions of Specific 
Regularization Problems 

In this chapter we show a natural way to use randomized algorithm for pruning a too rich 
network. We consider the approximation task formulated as regularized minimization prob­
lem with kemel-based stabilizer. These approximation tasks exhibit easy derivation of solu­

tion to the problem in the shape of linear combination of kernel functions (see for example 
[SchS102]) that can be interpreted as one-hidden-layer feedforward network schemas. For 
basic quadratic error functional parameters of these networks can be computed from a lin­
ear system; however, these networks tend to have too many hidden units (in fact as many 
as was the number of data). There are many ways around this problem (see for example 
[SchWe06]). We propose a solution that uses randomized algorithm (3.2.2) from Chapter 3. 
This is probably the most interesting result of this chapter. 

We also mention concrete applications of a special type of kemels proposed by the author 
- sum kemels and product kernels. As part of our joint work [KS05b], [KS06] Petra Ku­
dová-Vidnerová tested these new schemas on real-life data and compared them to classical 
solutions. Experiments on pruning by randomized algorithm are running. 

In Section 4.1 we briefly introduce theory of reproducing kernel Hilbert spaces (RKHS) fol­
lowing [Ar50]. This is utilized in further sections: In Section 4.2 learning from data using 
Tikhonov regularization employing kemels is presented. As has been mentioned in various 
detail in many works existence, uniqueness and form of solution to the basic problem can 

be proven. In Section 4.3 we present how to use the randomized algorithm to yield approx­
imations that use less terms than the above derived one. Section 4.4 shows applications of 
some concrete regularization networks, part of the section comes from joint work with Petra 
Kudová-Vidnerová [KS05b], in cooperation with her_ we are also working on experiments 
employing randomized algorithm to these specific schemas. 

Results presented in this chaper have been published in [SS08, KS06, KS05b, S04a]. 

71 
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4.1 Reproducing Kernel Hilbert Spaces 

Reproducing kemels proved themselves very useful in approximation theory. We introduce 
the basic concept and properties in Section 4.1.1. In Sections 4.1.2 and 4.1.3 we show two 
special types of composite kemels which we will use later in Section 4.4 to derive concrete 
approximation schemas. 

4.1.1 Basic Properties 

Reproducing Kernel Hilbert Spaces were formally defined by Aronszajn [Ar50], although 
related concepts were u sed even bef ore. They find ample use in applications ranging from 
PDE's to machine learning, see e.g. a survey [SchWe06]. In this section we present the 
reader with definitions and a brief overview of the properties needed for our purposes. We 
follow [Ar50], where we also kindly refer the reader for more details and all of the proofs. 

Given a Hilbert space H of functions (real or complex) defined on O C JRd we let Fx denote 
the evaluation functional, that is Fx (!) == f ( x). If for each x E O the evaluation func­
tional Fx is continuous, we say that H is a Reproducing Kernel Hilbert Space, shortly an 
RKHS. The term is suggested by the following important property: In an RKHS as above 
there exists a positive definite symmetric function k : n X n -1' IR (reproducing kernel 

corresponding to 1t) such that 

(i) for any f E H and y E n the following reproducing property holds 

J(y) == (! (x), k(x, y)), 

where ( ·, ·) is scalar product in 1t and 

(ii) for every y E O, the function ky(x) == k(x, y) is an element of H. 

We bring here some basic properties of RKHS. 

Lemma 4.1.1 (Uniqueness of reproducing kernel [ArSO]) Let 1t be a Hilbert space with 

a reproducing kernel k. Then k is unique. 

Proof: We include here this short proof (dueto [Ar50]) to illustrate the reproducing property 
of reproducing kemels. Suppose we have two reproducing kemels k, k' and k f. k'. Then for 

some y we have O< Ilky - k~ll 2 == (ky - k~, ky - k~) == (ky - k~, ky) - (ky - k~, k~). By the 
property (i) in the definition of kernel, this equals (k(y, y) - k' (y, y) )- (k(y, y) - k'(y, y)) == 
O, which is a contradiction. o 
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Lemma 4.1.2 (Existence of reproducing kernel [Ar50]) Let 1t be a Hilbert space of fanc­

tions on O C JRd. Suppose that all evaluation fanctionals Fx are continuous. Then there 

exists a reproducing kernel satisfying properties (i) and (ii) andfrom the reproducing prop­

erty it follows that the kernel is positive definite. On the other hand from (i) and (ii) we 

conclude that evaluation fanctionals are continuous. 

Lemma 4.1.3 (Uniqueness of RHKS [Ar50]) To every k(x , y) satisfying the properties (i) 

and (ii) there corresponds one and only one Hilbert space 1t admitting k as a reproducing 
kernel. 

4.1.2 Sum of Reproducing Kernels 

In this section we will present the notion of a sum of RKHS's, as described in [Ar50]. This 
will be utilized later, in Section 4.4.2. The sum of two RKHS's is defined simply as the space 
containing all sums of two functions, one from each of the RKHS's. Same care has to be 
taken when defining the norm (and scalar product) as there may be many sums that yield the 
same function. 

For i == 1, 2 let Fi be an RKHS of functions on O, let ki be the corresponding kernel and 11. lli 
the corresponding norm. Consider the space H == { {f1, f2} I f 1 E F1, f 2 E F2}. with norm 

given by ll{fi, !2}11 2 
== ll!1lli + ll!2ll~· 

We have to deal with duplicities. Consider the class F0 of all functions f belonging to 
F1 n F2. We define H0 :== { {f, - f}; f E Fo}. H0 is a closed subspace of H and thus 
we can write H == H0 EB H', where H' is the subspace complementary to H0 • Now to 
every element {f1 , f2 } of H there corresponds a function f(x) == f 1(x) + f 2 (x). This is 
a linear correspondence transf orming H in to a linear class of functions F. Elements of H 0 

are transformed into zero functions and thus the correspondence between H' and F is one­
to-one and has an inverse (for f E F we let {g1 (!), g2 (!)} be the corresponding element 
in H' C H). We define norm on F by 

(4.1) 

Here we present a result from [Ar50] showing that to the class F with the above defined 
norm there corresponds a reproducing kernel k == ki + k2. 

Theorem 4.1.4 (Sum-kernel RKHS [Ar50]) Let Fi be RKHS and ki and 11 · lli the c·orre­
sponding kernels and norms. Let F be as above with norm given by (4.1). Then 

k(x, y) == k1(x, y) + k2(x, y) 
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is the kernel corresponding to F. 

The same holds when F is defined as the class oj all functions f == f 1 + f 2 with Íi in Fi and 

norm 11111 2 ==min llf1lli + llf2ll~, the minimum taken over all decompositions f == f 1 + !2 
with Íi in Fi. 

It is easy to extend this theorem to sum of more than two spaces: k(x, y) == E~ 1 ki(x, y). 
We call Fa Sum-Kemel Reproducing Hilbert Space. 

4.1.3 Product of Reproducing Kernels 

Here we will consider product of Reproducing Kemel Hilbert Spaces, again following [Ar50]. 

For i == 1, 2 let Fi be an RKHS of functions on ni, let ki be the corresponding kernel. Con­
sider the set of functions Oll !1 == !11 X !12 defined by 

n 

F' = {'I: Íi,i(x1)Í2,i(x2) I n E N, Íi,i E F1, Í2,i E F2}. 
i=l 

Clearly, F' is a vector space. We define a scalar product on F': Let f, g be elements of F' 
expressed as f (xi, x2) == E~ 1 f1,i(xi)f2,i(x2), and g(xi, x2) == ET 1 gi,j(x1)g2,j(x2). We 
define 

n m 

(!, 9) = L L U1,i1 91,jh (h,i, 92,jh 
i=l j=l 

(with (·,·)i denoting the scalar product in Fi). It is a routine to check that this definition does 

not depend on the particular form in which f and g are expressed and that the properties 

of scalar product are satisfied. We define norm on F' by Ilf li == /(T,7). Finally, let F 

be the completion of F'. It can be shown [Ar50] that the completion exists not only as an 

abstract Hilbert space but that F is in fact a space of functions on n. We call F the product 

of F1 and F2 and write F == F1 0 F2. 

Theorem 4.1.5 (Product-kernel RKHS [ArSO]) For i == 1, 2 let Fi be an RKHS on ni with 

kernel ki· Then the product F == F1 ® F2 on fl 1 x 0 2 is an RKHS with kernel given by 

(4.2) 
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4.2 Learning from Data in RKHS Spaces 

As advertised at the beginning of this chapter we are interested in learning from data, i.e., 
we are given a set of data z == { (xi, Yi) }{" 1 C IRd x IR and we want to "learn" from it how to 
obtain y from a given x. This means we want to find a function f so that f (xi) · Yi· We do 
not require exact equality as we may assume the given data are not precise. 

However, even if we require f (xi) == Yi exactly, the problem to find f is still ill-posed -
there are many solutions to it (see Figure 4.1). This issue is addressed in a variety of ways 
(Lagrange interpolation, least square interpolation, ... ). The approach to the approximate 
problem we describe here was suggested by Tikhonov [TiAr77] and studied by a plethora 
of researchers (see for example [PoSm03, SchS102, CuSmOl, Gi98, PaSa93, Wa90]). We 
follow the most basic exposition of [GJP95]. 

f (x) 

I. ' 

\ 

' 

• ..... ________ _,, __ 

I 

X 

Figure 4.1: Illustration of the basic problem in learning. Data, an over-fitted function, a 
well-fitted function and a too much generalised function 

We combine the goal of fitting the data with the goal to find a function with good "global 
properties" or complying with some a-priori knowledge. This can be partially achieved 
by appropriate choice of the space over which we are minimizing but we can do more. 
The common approach constructs a functional that quantifies the precision to which a given 
function fits the data and also the global properties; then we seek to minimize this functional 
over appropriately chosen set of functions. 

Let us be more precise now. We are looking for a function f : n ---+ IR as a member of some 
function space X. (Thus the given data z are subset of n x IR and we also assume n C IRd.) 

We let the functional F be defined by 

F(J) == Ez(J) + r<P(J) (4.3) 
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where Ez is the error functional depending on the data z == {(xi, Yi)}f 1 and penalizing 
distance from the data, <I> is the regularization part - the stabilizer - penalizing "remoteness 

frorn the global property" and I is the regularization parameter giving the trade-off between 
the two terms of the functional to be minimized. 

The error functional is usually of the form Ez(f) == E~ 1 V(f (xi), Yi)· We can easily infer 
sufficient conditions on V (for solvability) from proof of Theorem 4.2.1, but we shall not 
elaborate on it bere. A typical example of the empirical error functional is the classical mean 
square error: Ez(f) == ~ E~ 1 (! (xi) - Yi) 2 and we will restrict ourselves to it as it exhibits 
easy derivation of solution. In order for this problem to be well-defined, we would have to 
have the function f defined pointwise - which is not always the case (consider for example 
X == L:2(0) where we may change the values of f on any set of measure O). In the sequel 
we will assume, that the evaluation fanctionals f ~ f ( x) are not only well-defined but also 
continuous. In the important case when we want X to be a Hilbert space as well, we will be 
working with the reproducing kernel Hilbert spaces, as introduced in Section 4.1. 

If X is an RKHS with norm 11 · llk, a useful choice for the regularization functional is <P(f) == 
Ilf li~ (square of the norm), yielding 

:F(J) == Ez(f) + 111! 11% · (4.4) 

For such F it is possible to show the existence and uniqueness of the minimum and derive 
a simple form for this minimum. Many authors have addressed this topic for general or 
specific settings (see for example [Wa90, SchS102, Gi98, PaSa93, PoSm03] and others). 

Derivation of the shape of the solution to the regularized minimization problem is referred 
to as Representer theorem. For the proof of existence, uniqueness and form of solution to 
the most basic setting we ask the reader to refer to Appendix C.2.9. We presented the proof 
merely to acquaint the reader with the nice behaviour of the schema and partly also because 
we were unable to find these simple arguments put cleary elsewhere. 

4.2.1 Representer Theorem 

In this section we will discuss the solution to the problem of minimizing the functional in 
(4.4). This is a well-known question addressed for instance in [Wa90]. Our treatment follows 
the one sketched in [GJP95], which seems to be applicable to a wider class of functionals 
( 4.3). Some details are omitted there, though, in particular it is not verified that the minimum 
exists. (Incidentally, the existence of minimum is not verified in [Wa90], either, although 
the proof presented there is easy to fix.) We present the proof in Appendix C, restated as 
Theorem C.2.9 (without any claim on being original) for the reader's convenience, as this 
result is the basis of the results in the later parts of this chapter. Also, the usage of RKHS 's 
enables the proof to be short and iluminating. 
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Theorem 4.2.1 (Representer Theorem - basic version [KiWa71, SchSl02]) Let 

z == { (xi, Yi) }~1 C JRd x IR be given, let X be an RKHS with kernel k and norm li · llk· Let 

the functional F(f) be given by 

1 N 

F(f) = N LU(xi) - Yi)2 + rllf li~ 
i=l 

for afunction f E X (1 > O is a constant). 

Then there exists a unique function f 0 E X that minimizes F. Moreover, Jo is of form 

N 

fo(x) = L cik(x, xi), 
i=l 

for real ci 's, where these can be found as 

(4.5) 

where K[x]i,j == k(xi, xj) is Gramm matrix of kernel k with respect to vector x, I is N x N 
identity matrix. 

Notice that bere we consider only the simplest case where existence and uniqueness of min­
ima can be proven easily. For more detail see for example [SchS102] or [DRCD005, Ku04], 
where (as opposed to proof presented in Appendix C.2.9) theory of inverse problems is used. 

We remark that the same proof comes through also when the error part of the functional is 

"Jv L~ 1 V(f (xi) - Yi) for any continuous convex function V, however derivation of form of 
the solution will use derivative of V. 

The form of solution was derived for example in [GJP95], we will use it in Section 4.4. Solu­
tions have been derived also for schemas where uniqueness cannot be proven (regularization 
part <I> is not strictly quasiconvex). In that case we have to add functions from null space of 
<I> to the solution (see e.g. [GJP95]). 

The solution derived above is very nice, since it resembles a neural network with k(x, xi) as 
the activation functions parameterized by the data points Xi. 

The problem of the number of hidden units being too large to be implemented can be solved 
by variable-basis approximation using the obtained shape of the activation functions (see 
[KuSa05b]). Another approach is proposed and discussed in Section 4.3. 

4.3 Randomized Pruning 

In this section we will show how to combine results of Chapter 3 and 4. We saw how to 
apply regularization to find a function f that strikes a good balance between fitting the given 
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data z == {(xi, Yi)}ť 1 and possessing good global properties - we find fo so that F(fo) is 
as small as possible (F is given by ( 4.4) ). Theorem 4.2.1 claims that the (unique) optimal 

function with respect to these criteria is of a simple form (4.5), the only drawback being that 

the number of terms in the sum is equal to the number of data - which may be too many. We 

will show, how to "prune" this expression to get an expression using lower number of terms. 

The basic idea is simple. We approximate the minimizing function fo using Algorithm 3.2.2. 

We only need to show that this does not change the value of F too much (bere we will use 

again, that we are searching for an approximating function as a member of a certain Hilbert 

space ). The regularization paradigm then suggests, that we will get a reasonable solution to 
the original problem. 

Theorem 4.3.1 (Randomized pruning of kernel-based neoral networks) Let X be an 

RKHS with kernel k and norm 11 · llk and according to Theorem 4.2.1 let fo == 2=~ 1 cik(x, xi) 
be the unique solution oj minimization problem 

based on data z == { (xi, Yi) }ť 1 C JRd x IR and some a-priori knowledge.Thenfor any 8 > O 
there is n == 0(}2 )for which we canfind 

n 

g~px = ~ L k(x, xj), 
j=l 

so that 

Each xj (j == 1, ... , n) is one of Xi (i== 1, ... , N)from the data z. 

Proof: We use Algorithm 3.2.2 to obtain g~px· We will utilize our analysis of the algorithm 
to derive the claim. To do so we introduce an auxiliary norm on X: 

ll9llaux == 

This is indeed a norm, and it corresponds to the scalar product 

1 N 
(g, h)aux = N L g(xi)h(xi) + "f(g, h)k. 

i = l 
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For every g E X we have llgllaux > vfYllgllk· Consequently, a Cauchy sequence in li · llaux is 
also Cauchy in 11 · llb thus the completeness of (X, 11 · llk) implies completeness of (X 11 · llaux) 
- so we again have a Hilbert space. Consequently, by Corollary 3.2.3 we may efficiently 

obtain a simpler function g~px so that li/o - g~px l laux < ó and g~px uses n == 0(1/ó2 ) term 
in the sum. Now by the triangle inequality for li · llk and for the C2 norm we get that 

J F(g~px) = 2_".)g~px(xi) - Yi) 2 + rll9~pxll% 
i 

< L(g~PAxi) - Jo(xin2 + rll9~px - !011% 
i 

==Ilf O - 9~pxllaux + J :F(Jo) 

<Pl/J+<5. 

o 

We see that F(g~px) is close to the optima! value F(f0 ), so g~px is a reasonable function to 
be learnt from the original data assuming that F is the right measure. 

In the following remark we will try clarify the quality of g~px as an approximation to the 
original underlying function. 

Remark 4.3.2 (Kernel-based networks with feasible number of units) Let 
z== {(xi,Yi)}ť 1 C ffi.d x JR be given data sampledfrom an unknown underlyingfunction 

!orig' (that is, Íorig(xi) == Yifor i == 1, ... , N ), let X be an RKHS with kernel k and norm 
li · llk derivedfrom a-priori knowledge on !orig' in particular we assume that Íorig EX. 

Let again the functional F(f) be given by 

1 N 
F(J) = N l:U(xi) - Yi) 2 +111!11% 

i=l 

for afunction f E X (1 > O is a constant). Let fo E X be the uniquefunction that minimizes 

F; according to Theorem 4.2.1 it is of the form 

N 

fo(x) =I: cik(x, Xi), (4.6) 
i=l 
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for some real Ci 's. 

Let co > O be such that 

Ilf orig - follk < co· 
If our choice oj X and r capture well the properties of f orig the we can assume that co is 
small. 

Then we can claim the following estimate 

li n li 1;2 (P +co ) 9apx - Íorig k < Q · yírí, +Co · 

Here g~px == ~ E; 1 k(x, xj), each xj (j == 1, ... , n) is one oj Xi (i == 1, ... , N) from the 
data z; Q > O, p is a positive constant depending on X and f orig but not on n. 

Now it is appropriate to comment on the constant p that appears in the above bound. Our 
reader might have noticed that analysis of p was the topic of most of Chapter 2. By Theo­
rem 2.1.3 (upon which Corollary 3.2.3 is based) p is defined so that it holds: for every g E g 
(bere g == {k(·, x 1), ... , k(·, x N)} we have llg - fo llk < p which can be further expressed in 
terms of Q-variation <llfollg < L,f 1 lcij) and sg == max k(xi, xi)· Heuristically p expresses 
how good our chosen kemel-based approximation schema is for approximating given f orig 

and how good was our a-priori knowledge of Íorig that helped us create kernel k and further 
also the functional F. 

The proposed method seems to be of practical interest, in cooperation with Petra Vidnerová 
we work on experiments showing applicability in practical settings. 

4.4 Specific Types of Kernels 

In this section we try to come closer to practical results by presenting a few specific examples 
of kemels used in regularized minimization and mainly by proposing their natural combina­
tions that may aid to tailor regularized minimization schemas better to specific situations. 

4.4.1 Simple Kernels 

Lef f be an C} function on ffi.d. In [GJP95] a special stabilizer based on the Fourier Transform 
was proposed: 
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~bere k : JRd -+ lR+ is a symmetric function (k ( ) = k ( - ) ) tending to zero a li li -+ oo, 
f is Fourier transform of f and md is the normalized d-dimensional Lebesgue measure (md 

on JRd is definded as dmd(x) == (27r) - d/2 dA(x)). In this setting 1/ k is a low-pass filter. 

Thus the functional F to be minimized is of the form: 

where / E ffi.+. Now we show how to build an RK.HS corresponding to the regularization 
part of our functional: 

Let us define 

k(x, y) = K(x - y) = { f<(t) eit·xe-it·y dma(t). 
}Rd 

For k E S(JR2d) symmetric positive definite we obtain an RKHS X (using the classic con­

struction, see [SchS102], [Gi98], [Wa90]). We put (!, g)x = Ju~.d f<:Jt!( dma(s) and obtain 
the norm 

"' 2 

11!11~ = r IJA(s)I dma(s). 
}JRd K(s) 

This enables us to put X to be the completion of the set span{k(x, .), x E JRd} in the above 
norm. It is easy to check the reproducing property of k, resp. K on X, that is (! (x), K(x -
Y)) X == f (y) · 

Special type s of reproducing kemels and f ollowing RKHS are for example the well known 

11
2 • • "' ~ • Gaussian kernel k1(x, y) == e-llx-y w1th Founer transform K 1 (s) == e- 2 

or in one dimension 

• kernel k2 (x, y) == e-lx-yl with Fourier transform K2 (s) == (1 + s2)-1. 

The norm for this RK.HS is of the form Ilf llt2 = J (lJ~~~ - 1 = Ilf li~ + 11!'11~· Sowe see we 
obtain a Sobolev space W 1'2 . These and many more specific instances of kernels are pre-
sented for example in [SchWe06]. Here also feature maps for deriving specifically tailored 

kemels are discussed. 

4.4.2 Composite Kernels 

This section discusses two types of composite kemels proposed by the author and proposes 
their possible use in practical situations. Experiments have been done by Petra Vidnerová, 

se for example [KS06]. 
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Sum of Kernels Here we will consider a more sophisticated type of kemels - sum of 
kemels introduced in Section 4.1.2. We will study two cases. First suppose that a-priori 

knowledge or analysis of data suggests to look for a solution in the form of a sum of two 
functions (for example data is generated from function influenced by two sources differing 

in frequency). We will use a kernel summed of two parts (employing Theorem 4.1.4) corre­
sponding to high and low frequencies, in the easiest case two Gaussians of different widths: 

In this case we will consider regularized minimization schema of the f orm: 

(4.7) 

Since we operate in an RKHS we can employ Representer theorem (for this case the simpli­

fied version of it 4.2.1) and obtain solution in the form of 
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Figure 4.2: An example of the sum kernel (an optimal combination of widths for cancerl 

data). 
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This schema has been tested by Petra Vidnerová in [KS06] on data from [Proben], (see tahle 
4.1, that shows also experiments done on product kernel networks discussed in the next 
paragraph). Figure 4.2 shows sum kernel as derived for specific task of cancerl from 
[Proben]. 

The experiments proved the schema to be promising for spec i al types of tas ks. Further 
experiments on improved schema (see section 4.3) are running. 

Another conceivable task would be to approximate data with diff erent distribution in the 
input space. Here again sum of kernel s might be helpful if we use different kernel s for 
different parts of the input space. 

First, we present the following auxiliary lemma from [Ar50]. 

Lemma 4.4.1 (Restriction of kernel [Ar50]) Let X be an RKHS of real-valued functions 

on O with kas kernel. Thenfunction kA defined by 

( ) {
k(x, y) if x, y E A, 

kA x,y == 
O otherwise; 

isakernelforaspaceXA(n) == {fA;f E XandfA(x) == J(x) if x E A and fA(x) = 

O otherwise }. 

We may use this lemma for different sets A c n. Then we can apply Theorem 4.1.4 for 
kemels gained in this way. Consequently, our kernel s may look as f ollows: 

Choose constants di, ... , dr > O and partition ffi.d to sets A 1, ... , Ar. Then define 

x, y E Ai 

otherwise. 

The outcomming sum kernel then is k(x, y) = E;=l ki(x, y) and we can chose the basic 
regularization schema 

1 N 2 [ lf (s)l2 
F(f) = N ~)f(xi) - Yi) +I }R - dmd(s). 

i=l JRd LKi(s) 

Now by 4.2.1 again we obtain a form in which we will expect the solution: 

N r 

fo(x) = L<L>j(x - xi)· 
i=l j=l 

At the present we ha ve unf ortunately no experiments available to show performance of this 
type of sum kernel schema. 

Let us proceed with another type of composite kemels: 
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RN SKRN1 PKRN SKRN2 

Tas k Etrain Etest Etrain Etest Etrain E test Etrain Etest 

cancerl 2.28 1.75 0.00 1.77 2.68 1.81 2.11 1.93 

cancer2 1.86 3.01 0.00 2.96 2.07 3.61 1.68 3.37 

cancer3 2.11 2.79 0.00 2.73 2.28 2.81 1.68 2.95 

cardl 8.75 10.01 8.81 10.03 8.90 10.05 8.55 10.58 

card2 7.55 12.53 0.00 12.54 8.11 12.55 7.22 13.03 

card3 6.52 12.35 6.55 12.32 7.01 12.45 6.22 12.86 

diabetes I 13.97 16.02 14.01 16.00 16.44 16.75 12.92 16.66 

diabetes2 14.00 16.77 13.78 16.80 15.87 18.14 13.64 17.33 

diabetes3 13.69 16.01 13.69 15.95 16.31 16.62 12.85 16.34 

ftarel 0.36 0.55 0.35 0.54 0.36 0.54 0.35 0.59 

ftare2 0.42 0.28 0.44 0.26 0.42 0.28 0.41 0.28 

ftare3 0.38 0.35 0.42 0.33 0.40 0.35 0.38 0.34 

glassl 3.37 6.99 2.35 6.15 2.64 7.31 2.56 6.78 

glass2 4.32 7.93 1.09 6.97 2.55 7.46 3.27 7.29 

glass3 3.96 7.25 3.04 6.29 3.31 7.26 3.48 6.44 

heartl 9.61 13.66 0.00 13.91 9.56 13.67 9.51 13.79 

heart2 9.33 13.83 0.00 13.82 9.43 13.86 8.52 14.31 

heart3 9.23 15.99 0.00 15.94 9.15 16.06 8.30 16.75 

heartal 3.42 4.38 0.00 4.37 3.47 4.39 3.20 4.45 

hearta2 3.54 4.07 3.51 4.06 3.28 4.29 3.17 4.34 

hearta3 3.44 4.43 0.00 4.49 3.40 4.44 3.37 4.40 

heartacl 4.22 2.76 0.00 3.26 4.22 2.76 3.68 3.37 

heartac2 3.50 3.86 0.00 3.85 3.49 3.87 2.99 3.97 

heartac3 3.36 5.01 3.36 5.01 3.26 5.18 3.14 5.13 

heartcl 9.99 16.07 0.00 15.69 10.00 16.08 6.50 16.07 

heartc2 12.70 6.13 0.00 6.33 12.37 6.29 11.06 6.69 

heartc3 8.79 12.68 0.00 12.38 8.71 12.65 9.91 11.74 
horsel 7.35 11.90 0.20 11.90 14.25 12.45 7.66 12.62 

horse2 7.97 15.14 2.84 15.11 12.24 15.97 6.84 15.70 

horse3 4.26 13.61 0.18 14.13 9.63 15.88 8.56 15.24 

soybeanl 0.12 0.66 0.11 0.66 0.13 0.86 0.12 0.64 

soybean2 0.24 0.50 0.25 0.53 0.23 0.71 0.19 0.54 

soybean3 0.23 0.58 0.22 0.57 0.21 0.78 0.15 0.72 

Table 4.1: Comparisons of errors on training and testing set for RN with Gaussian kemels 

and SKRN and PKRN. 
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Product of Kernels We consider the product of kernels introduced in Section 4.1.3. Sup­
pose that a-priori knowledge of our data suggests to look for the solution as a member of 
product of two function spaces. In one dimension the data may be clustered faraway thus be­
ing suitable for approximation via narrow Gaussian kemels, in the other dimension the data 
is smooth, hence we will use broader Gaussian kernel. Employing Theorem 4.1.5 we obtain 

a kernel for the product space of the form: k((.rri, x2), (y1, Y2)) == ki(x1, Y1) · k2(x2 Y2) == 
e-llx1 - Y1 ll2 . e-llx2-Y2ll' where X1, Y1 E 01, X2, Y2 E 02. 

Regularized minimization schema in this case is of the f orm: 

:F(f) == Nl f)f(xi) - Yi)2 + 'Y { ~)12 dmd(s). 
i=l }Rd k1k2(s) 

(4.9) 

Taking advantage of this being an RKHS we have the form of the solution to such a type of 
minimization: 

N 

fo(xi, x2 ) = L Cie-llx1-x;,ifl2 
• e-llxrxi.211 . ( 4.1 O) 

i=l 

Product kernel network of this type was used to predict the flow rate on the Czech river 
Ploučnice [KS06]. Our goal was to predict the current ftow rate from the flow rate and total 
rainfall from the previous date, i.e., we were approximating a function f : JR x ~ --+ JR. 

We have chosen the Gaussian function e -( llc_;;xll) 
2 

for both kernel functions (k1 and k2 ), the 

kemels differ in the width di of the Gaussian. Ail parameters ry, d1 and d2 were estimated 
by crossvalidation. Outcomes of the experiments done by Petra Vidnerová are presented in 
Figure 4.3 and in Tahle 4.2. 

The Tahle 4.2 compares the resulting errors of Product Kemel Regularization Network, Reg­
ularization Network (for detailed discussion see [K06]) and conservative predictor. Conser­
vative predictor is a predictor saying that the value will be the same as it was yesterday, and 
in spite of its simplicity it is very successful on some tasks, including this one. We can see 
that the PKRN overperf orms both the Regularization Network and Conservative Predictor. 
We can also see that PKRN shows higher parameter ry which suggest better generalisation. 

Results of Section 4.3 on pruning were not used in these experiments. They are, however, 
the topic of our current cooperation with Petra Vidnerová. 

4.5 Conclusion 

In this section we have shown how to use randomized algorithm proposed in Section 3.2 
in the specific case of neural networks derived from kemel-based regularized minimization 

schemas. 
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Figure 4.3: Prediction of flow rate on the river Ploucnice. 

PKRN RN CP 
Etrain 0.057 0.008 0.093 

Etest 0.048 0.056 0.054 

network ~ == 10-4 ry == 1.48 . io-5 

parameters d1 == 0.8 d == 0.5 

d2 == 1.9 

Tahle 4.2: Comparison of error of Product Kemel Regularization Network (PKRN), Regu­
larization Network (RN) and Conservative Predictor (CP) on training set and testing set. 

We overviewed briefty basic theory regarding RKHS spaces and regularized minimization 
that is applicable to our objective. Based on this theory and on results of Chapter 3 we 
show how to overcome the intrinsic problem of regularization-inferred neural networks - i.e. 
too high number of hidden units. We have derived bounds on approximation by so derived 

networks with a fixed (smaller) number of units. 

We showed several special types of kemels used widely in practice and their combinations 
proposed by the author. We added a few illustrations of experiments done on these schemas 

by Petra Vidnerová. Unf ortunately we cannot bring experiments on networks pruned by 
randomized algorithm as these are currently running. 



Chapter 5 

Conclusion 

In this thesis we addressed many problems of interest when approximating functions by 
one-hidden-layer feedforward neural network. We derived conditions under which rates of 
approximation are applicable to this schema extending known results from continuous to 
J.2P activation functions and proved related results regarding limitations of the presented ap­
proach. 

Exploiting and modifying probabilistic proof of [DDGS93] we derived probabilistic algo­
rithm that was praven to be theoretically very well suited to prune too rich neural network 
schemas. We presented analysis of time complexity of the proposed algorithm and compared 
it to related algorithms for deriving trained neural networks from given data. 

We proposed how to apply the probabilistic algorithm to kemel-based neural networks that 
by definition suffer of too high number of hidden units. This schema is being tested on real 
data. 

The work is based on results published by the author and cooperators ([S08, S04c, S04b, 
S04a, S03c, S03b, S03a, S02, SOl, SS08, KS06, KS05a, KS05b]), the older of the results 
were published under the author's maiden name Šidlofová. 

As grateful as the author is to all who read, re-read and commented on the thesis, she would 
like to stress that all mistakes therein are solely her own. This is even more so regarding her 
advisor Věra Kůrková who due to the circumstance of long-term stay abroad of the author 
could not supervise over the thesis as she would have wished to. 
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AppendixA 

Suggested Future Research 

During our work we came across many interesting questions that were unfortunately out of 
our time possibilities to pursue further on. As we find it a pity these to be forgotten entirely, 
we give a brief overview of them here in the hope of them appealing to someone better 
time-equipped: 

• Rates of convergence for sigmoidal functions In 2.2.9 we have proven equality of 
theoretically known bounds on the rate of convergence for sigmoidal functions. It is 

quite possible, that for problems of practical interest, convergence will be faster (but 
perhaps not for all activation functions). This question deserves further study. 

• Numerical stability In the end of Section 2.4 we discussed why we consider Theo­
rem 1.4.2 not too relevant for practical applications, basically because we need to use 
high precision in all computations. It would be interesting to know, to what extend 
is this alleviated by using methods of Chapter 2. Consequently, we are interested in 
the numerical stability of the approximations obtained using the Maurey-Jones-Barron 

theorem. 

• Experiments for Probabilistic algorithm In Section 3.2 probabilistic algorithm 3.2.2 
has been proposed. Experiments testing the algorithm are running in cooperation with 

Petra Kudová-Vidnerová. 

• Numerical issues Section 3.3 brings an overview of estimates necessary to assess 
time complexity of algorithms proposed in Sections 3.1, 3.2 but more detailed study 

was out of scope of this work and could be of practical interest. 

• Feature maps versus composite kernels We did not discuss bere the to pic of f ea­
ture maps for creating specifically tailored kemels [SchWe06], but this issue deserves 
further study mainly in connection with composite kemels proposed in Section 4.4.2. 
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Appendix B 

Original Contributions 

This thesis builds upon many results of other researchers, and I have found it necessary 

to provide a somewhat lengthy introduction into the subject to explain the context of the 

obtained results. As a consequence, it might be difficult at first glance to see, what are the 

original contributions of this work. For this reason, I prepared the following list of results, 

that are (to the best of my knowledge) original. 

2 Estimates on Rates of Approximation by Neoral Networks Using Integral Representa­
tions Several results about properties of Q-variation; application of Hahn-Banach theorem 

to estimate Q-variation for functions with integral representation in various settings; depen­

dence on the activation function. 

• Example 2.1.4: Infinite Q-variation 

• Theorem 2.1.7: Slow rate of approximation 

• Corollary 2.1.8: Slow rate of approximation - lower bound 

• Theorem 2.2.3: Q-variation in ,CP spaces 

• Corollary 2.2.4: Rates in ,CP 

• Theorem 2.2.6: Q-variation for continuous activation functions using measure 

• Corollary 2.2.7: Q-variation for continuous activation functions (weaker assumptions) 

• Theorem 2.2.8: Q-variation for [f activation functions using measure 

• Theorem 2.2.9: 9a-variation independent of a 

• Theorem 2.3.2: Integral representation in Wd,p(O) 
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• Theorem 2.3.4: Sum => Integral 

• Corollary 2.4.2: Approximation for Cd (JR.d) functions in .CP, gen. sigm. function 

• Corollary 2.4.3: Approximation for wd,P(JR.d) functions in .CP, gen. sigm. function 

• Theorem 2.4.4: Rates for absolutely continuous functions 

• Theorem 2.4.5: Rates for bounded variation functions 

• Theorem 2.4.6: Good rates :::=:::} many weak derivatives 

3 Algorithmic aspects We suggest a randomized algorithm and compare it to the classical 
one. 

• Algorithm 3.1.3: Iterative from auxiliary approximation 
- the algorithm is based on ideas of Jones (who basically proposed Algorithm Iterative 
from scratch 3.1.2) 

• Theorem 3.2.1: Probabilistic error in Banach spaces (based on [DDGS93]) 
- we modified proof of this theorem using Markov inequality, which enabled algorith­
ffilc consequences 

• Algorithm 3.2.2: Probabilistic from auxiliary approximation 

• Corollary 3.2.3: Error of probabilistic algorithm 

• Theorem 3.2.4: Probabilistic error in Banach spaces, int. repr. 

• Algorithm 3.2.5: Probabilistic from integral representation 

• Corollary 3.2.6: Error of integral probabilistic algorithm 

• Comparisons of algorithms 3.1.2, 3.1.3, 3.2.2 and 3.2.5 in Section 3.4 

4 Pruning Solutions of Specific Regularization Problems We propose use of probabilis­

tic algorithm for kemel-based regularization solutions. 

• Theorem 4.3.1: Randomized pruning of kemel-based neural networks 

• Remark 4.3.2: Kemel-based networks with feasible number of units 

• Composite kernel s - we proposed to use sum and product kernel s for learning problems 
and suggested justification for doing so. 



Appendix C 

Mathematical Background and Symbols 

C.1 Notation and Terminology 

N, Z, IR Let N, Z, IR denote the sets of natural, integer, and real numbers, 

respectively. 

r 

Am(A) 

lµI 

no 
() .. 

'tJ 

XI 

absolutely continuous 

function 

Let zi denote the set of all nonnegative multi-integers. For mul­

tiindex a == (ai, ... , an) E Z~ we set laj == a1 + · · · + an and 
a_ a1 an 

X - x 1 ... Xn • 

Gamma fanction is a generalisation of f actorial. Let z > O we put 
r(z) == fooo tz-le-t dt. 

We will denote the m-dimensional Lebesgue measure of a set A C 

IRn by Am(A). Measurability will be considered with respect to 

Lebesgue measure in some subset of IRn. 

see total variation of measure 

See o(), O(), D() 

The threshold in the j-th unit of the i-th layer in perceptron or 

the width of the j-th unit of the i-th layer in RBF (i is again usually 

omitted). 

activation function 

Characteristic function of interval I. 

Led X, d be a metrie space, I C IR interval. Then f : I ~ X is 

absolutely continuous on I if for every c > O there exists <5 > O such 

that whenever a sequence of pairwise disjoint sub-intervals [ak, bk] 
of I, k== 1, ... , n satisfies EZ=i lbk-akl < ó then E~=l d(f (bk)­
f (ak)) < c. 

93 



94 

almost everywhere 

analytic function 

balanced set 

Banach space 

bounded variation 
function 

C(X) 

C*(X) 

cQ 

cI11.11 s 

APPENDIX C: Mathematical background and symbols 

A property is valid almost everywhere if it is valid everywhere ex­

cept on a set of measure O. 

An analytic fanction is a function that is locally given by a conver­

gent power series. 

unit ball in IRn: Bn == { x : ll xll2 == (xi+, ... , x;) 1/ 2 < 1 }. 

Let X be a normed space. We denote by Br(ll·ll) the ball of radius 

r innorm li.li i.e. Br(ll.11) == {x EX; llxll < r}. 

A set X is balanced if h EX and lal < 1 implies ah E X. 

Banach space ( B, 11.11) is any normed linear space that is complete 
in its norm. 

Let f be a real valued function on interval [a, b] C IR. Then 
f has bounded variation on [a, b] if total variation of f on 

[a, b] is finite. We define total variation of f on [a , b] by 

sup(P partition of [a,bJ) 2::?~ 1 
IJ(xi+i) - f(xi)I. 

For a topological space X, C(X) denotes the set of all continuous 

real-valuedfanctions on X and li.Ilc denotes the supremum norm 

li !Ilc == sup I! (x) I· 
xEX 

For a topological space X, k E NUoo, space Ck(X) denotes the set 

of all continuous real-valuedfanctions with continuous derivatives 
up to order k on X. For k == oo we call the functions smooth. 

Cg\X) is space of infinitely differentiable functions with compact 
support in X. 

Let X C JRd compact. Then 

C* (X) == { ť : exists signed Borel measure µ on X with compact 

support such that lµll < oo and 

ť(h) == f x h d11 for every h E C(X)} 

(C.l) 

Let Q be a set and c E IR. Then cQ =={eg: g E Q}. 

11 · ll-closure of a subset Sofa normed space X 11. 11 contains all limits 
(in the norm 11.11) of elements of S (smallest closed subset contain­
ing S). Closure of the convex hull is called the convex closure. 
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condition number 

conv,convn 

convex funcional 

Da(!) 

dualspace 

E(~) 

esssup 

Fourier transf orm 

Condition number of a matrix i the ratio of the large t and the 

smallest eigenvalue. 

Convex hull of a set S is the set of all convex combination of el­

ements of S, i.e. conv S == {E~ 1 Ci i : n E N+ i E , c· E 

JR+, E~1 ci == 1}. Analogously we define convex huli of at 

most n elements of S: convn S == {2:~1 ci i : i E Ci E 

JR+, E~=l Ci== l}. 

A functional F is convex on a convex set E C <lom F if for all 

J, g E E and all ,\ E [O, 1], F(,\f + (1 - ,\)g) < AF(J) + (1 -
>..)F(g ). 

For a == ( a 1 , ... , ad) multiindex we define mixed partial derivative 

Da (J) == 8xa1~.~[)xdd (J). 
1 d 

De is the operator of directional derivative in the direction given 
by e, that is Def (y) == limh-+O f(y+h·~)-f(y). For a positive integer k, 

D~k) is k-fold iteration of De. 

Let X be a normed linear space. Then the space of bounded linear 
mappings from X to IR is called dual space to X and denoted by 

X*. 

expectation or mean value of random variable ~ 

k 

E(I;,) = „~~>iP~(xi) 
i=l 

for finite probability space or 

E(t;,) =k I;, dP 

for general probability space. 

Let (X,~'µ) be a measure space and f : X ----} IR. Then essential 

supremum of f is defined as 

esssup(f) == inf{a E JR: µ{x: f(x) >a}== O}. 

Let f E .C1 (JRd). Then Fourier transform of f is defined as f (w) == 
CA1/ ÍJRd f (x)e-i(w·x) dx. 
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Q-variation 

Hilbert space 

I(c , Q) 

measure, Borel 

measure, density 

APPENDIX C: Mathematical background and symbols 

Let Q be bounded subset of a Banach space X of functions. For 
convenience, we will assume that g E Q implies - g E 9. Let 

f E X. Then 9-variation of f is defined as llJllQ == inf{c > O : 
f E clconvc9}. 

Lete E JRd and b E IR then H eb == {y E ffi.d : y · e + b == O} is a 
hyperplane in JRd given by e, b. 

Hilbert space is a Banach space in which the norm is given by an 

inner product (., . ), that is llx li == (x, x) 112
. 

Denotes the set of functions f that can be represented as f ( x) 
JA cp(x, a) dv(a), where vis signed measure on A such that llvll < 
c, cp E Q. 

See normalised Lebesgue measure. 

For p E [1, oo] and X a space with measure µ, .CP(X) denotes the 
space of functions with finite CP-norm, which is defined by 

llfllp == { \} fx IJ(x)IPdp(x) 1 < p < oo 

esssupxEX lf(x)I p == oo 

Note that for CP to be a linear space we have to identify functions 
that are equal almost everywhere. 

For p E [1, oo] and X a measure space, Cf
0
c(X) denotes the space 

of functions with finite .CP -norm on every compact subset of X. The 
functions are called locally integrable. 

Let p, q > 1 be conjugated coefficients (i.e., 1/p + 1/ q == 1). Then 

(CP)* == { ť : exists k E Cq such that ť(h) == f kh}. (C.2) 

see measure, normalised Lebesgue 

Measure µ on space X is Borel if all open subsets of X are JL­

measurable. 

Let µ, v be a-finite measures such that whenever µE == O then also 
v E == O. Then there exists a nonnegative function f E .C1 (µ) so 
that 

v(E) = L J dp, 

for any E a µ-measurable set. Function f is called density of v with 
respect to µ. 
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measure, 

Hahn decomposition 

measure, Lebesgue 

(P, N) is a Hahn decomposition of for the m ure µ if i th 

disjoint union of P and N , and µ(E) > O (re p. < O) wh nev r 
E C P (resp. E C N). 

For an arbitrary set A C JRn we define outer Lebe gue mea ure a 

00 00 

A~A = inf{L volh: LJ h ~A, hopen interval} 
i= l i= l 

where interval I c JRn is a Cartesian product of n one-dimensional 

intervals I == (b1 - a1) x · · · x (bn - an) and vol! == (b1 - a 1) · 

· · · · (bn - an). We say that a set A C JRn is Lebesgue measurable if 
,.\*I== ..\*(A n /)+(A\ A) for every interval I c JRn. On Lebesgue 
measurable functions outer measure A* is denoted by ,.\ and called 
the Lebesgue measure. 

measure, normalised Following [Ru91] we define normalized Lebesgue measure md on 
Lebesgue [Ru91] JRd as dmd(x) == (27r) - d/2 d.A(x). 

measure, norm 

measure, Radon 

measure, a-finite 

measure, signed 

Let (P,N) be Hahn decomposition for measure µ. Define the func­
tion s by 

s(a) == {+1 for a E P 
-1 for a E N 

that is, s(a) is the "sign of µ at a". Then we have norm of µ llµll == 
JA s(a) dµ(a). 

Let X be a locally compact space. We say that µ is Radon measure 

on X if Borel a-algebra on X is µ-measurable, /LK < oo for every 
compact K c X, µG == sup{µK : K c G, K compact} for every 
open G c X and µA == inf{µG : G :) A, Gopen} for every µ­

measurable A. 

Measure µon space X is called a-finite if there exist sets Mn C X 
such that µ(Mn) < oo and X== U: 1 Mn. 

Let S be a-algebra of subsets of X. Set function µ : S ~ JR is a 

signed measure on X if µ0 == O and JL (LJ: 1 An) == I:~ 1 µ(An) 
whenever An are pairwise disjoint. 

measure, total variation Let µ be signed measure on space X. Then lµI denotes the total 

variation of µ and for a set E E X it holds that 

lµj(E) == µ+ E + µ- E, 

where all of lµI, µ+, µ- are positive measures. 
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modulus of smoothness A Banach space X has modulus of smoothness Q if {2 : [O , oo) ~ 

[O, oo) is a function given by 

normal space 

e(r) :== sup (Ilf+ rgll + Ilf - rgll _ i). 
Il f 11=1 1911=1 2 

Topological space X is norma[ if for any two disjoint clo sed subsets 

Fi of X there are neighbourhoods Ui of Fi that are also disjoint. 

normed linear space A normed linear space W is any vector space over IR or C with a 

norm li.li, where for all x, y E W, A E IR (or C). 

o(),0() ,0() 

peak functional 

1. llxll >O and llxll ==O only if x ==O 

2. 11,\xll == IAlllxll, and 

3. llx + Yll < llxll + llYll· 

This notation describes asymptotic behaviour: Let f (x ), g(x) be 

real functions, a E IR U { oo}. 

• f (x) is O(g(x)) as x -----+ a if and only if lim supx-+a ~~~? < 
00, 

• f (x) is o(g(x)) as x -----+ a if and only if limx-+a ~~~? = O, 

• J(x) is O(g(x)) as x ~a if and only if g(x) is O(f(x)). 

F is the peak fanctional for f if it is a linear continuous functional 

ofunitnormforwhichF(f) == llJll· 

positive definite func- Let B be a Banach space, n c B and let f : n X n ~ IR be a 
tion symmetric function (that is f ( x, y) == f (y , x) ). Then f is positive 

quas1convex, 

quas1convex 

definite if for any ai, ... , an E C and ti, ... , tn E 0 

n 

L aiajf (ti, tj) > O, 
i,j=l 

where a is complex adjoint of a. 

strictly Let E C domF. Functional F is quasiconvex if for all f, g E E 

and all ,\ E [O, 1] we have F(Af + (1- A)g) < max{F(f), F(g)}. 
If the inequality is strict for all f -=I g and ,\ E (O, 1), we say F is 

strictly quasiconvex. 

see Radial functions 
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R see Ridge functions 

Rademacher sequence A Rademacher sequence { Ei }f 1 is a finite equence of indep ndent 

zero mean random variable taking value from { -1 1}. 

Rademacher type space Let X be Banach space. Space is of Rademacher type t (with 

Radial functions 

constant C) if for any Rademacher sequence { Ei }~1 and any fix d 

finite sequence {fi}r=1 of elements of X it hold that 

Radia! functions are defined as follows: R,):Vd 
wll 2 ), w E WC JRd, g E C(JR)}. 

span{g(llx -

Radon random variable Random variable ~ with values in a Banach space B is called Radon 

random variable if for each E > O there is a compact set K = K ( é) 
in B such that Pr{~ E K} > 1 - c. 

reflexive space 

Ridge functions 

5n-l 

Sgen( W) 

Sopt 

Schwartz space 

separable space 

sigmoidal function 

Banach space X is reflexive is second dual (X*)* is again the orig­
inal space X, i.e. (X*)* ==X. 

Ridge functions are defined as f ollows: 

n 

R= {L gi(ai · x) : n E N, ai E ~d, 9i EC(~)}. 
i=l 

By Rn we denote linear combinations of up to n functions. 

unit sphere in IR.n: 5n-l == { x : llxll2 == (xi + ... x~) 1/2 == 1 }. 

sgen( w) denotes the number of steps needed to generate one a with 

probability density I w (a) 1-

Sopt == Sopt(c) denotes number of steps necessary for finding "c­
precision" minimum of function by gradient method (see 3.1 O). 

We say that a C00 function on JR.d belongs to the Schwartz space in 

pDa f is a bounded function for any multiindex a and any polyno­
mial p on JRd. 

A topological space X is separable if it contains a countable dense 

subset. 

Function a : JR -t (O, 1) is sigmoidal if limx-.-oo a(x) = O, 
limx-+oo a ( x) == 1 and a is nondecreasing. 
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span, spann 
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finite linear combination of elements: Let S be a set (finite or in­

finite ), then span S == {2:::~ 1 cisi : si E S, ci E IR, n E N} and 
linear combination of at most n elements is denoted by spann S == 
{2:::~ 1 cisí; Ci E JR, si E S}. 

strictly positive definite We call the function f strictly positive definite if it holds 
function 

suppµ 

supp(f) 

unbiased estimator 

uniformly smooth 

vanance 

n 

L aiajf (ti, tj) >O 
i,j=l 

and 

n 

L aiajf(ti, tj)= O ==::::}- ai =aj= O,i,j = 1, ... , N. 
i,j=l 

Let µ be Radon measure on a space X. Then support of µ is 

suppµ =X\ LJ{G: G open,µ(G) =O}, 

i.e. the smallest closed set whose complement is of zero measure. 

Let (X, 11-11) be a normed space. For a function f : X ---+ JR the 

support of f is defined by supp(f) == cl11.11{x E X; f(x) i- O}. If 
supp(f) is compact we call function f to be compactly supported. 

tapx(<J, Eapx, N) denotes time needed to find Eapx-close approxima­
tion to f using at most N functions of <]. (Note that Eapx and N are 
interconnected.) 

By tint we denote the time needed to enumerate a (d-dimensional) 
integral. 

topt(<], ók) denotes the time needed to find 9k E <] such that 

Fk(9k - J) < ób where Fk is the peak functional for Ík - f (see 
Theorem 3.1.1). 

-
Let~ be random variable. Then ~ is and unbiased estimator if ex-

pectation E(~ - ~)==O. 

A Banach space is termed unif ormly smooth if g( r) == o( r) as r ---+ 

O, where g is the modulus of smoothness. 

variance of random variable ~ 

var(~) == E(~ - E(~)) 2 . 
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wm,p 

w* convergence 

weak convergence 

weak derivative 

weight of connection between k-th neuron in i - 1- t lay r nd j -th 

neuron in i-th layer in perceptron or 

k-th coordinate of centre of j-th unit in i -th layer in RB (h r i i 
usually omitted as it is 1 ). 

Sobolev space wm,p: Let X be an open etin IRn let m b a natural 

number and let 1 < p < 00. The Sobolev space wm P(X ) is d fin d 

to be completion of the set of all C ( ) function defined on 

such that for every mul ti-index a the mixed partial derivative Do:(! ) 
is locally integrable and in ,CP(X) for lal < m. Norm on thi 

Sobolev space is defined as f ollows: 

we use weak derivative where necessary. 

l<p<oo 

p == ()() 

Let {xn} be a sequence in X* a dual of some Banach space X. 

Then { xn} w* -converges to x E X*, Xn ~ x, if for any t E X it 

holds that Xn( t) ~ x( t). 

Let { Xn} be a sequence in X. Then { Xn} converges weakly to x E 

X, Xn ~ x ( or Xn ~ x ), if for any g E X* from du al space it holds 

that g(xn) ~ x. 

Let u, v E .Cl0 c(U), where U C JR is open. For a multiindex a we 

say that v is a-th weak derivative of u if for each ~ E CC(U) we 

ha ve 

weakly sequentially Set E is weakly sequentially compact if any sequence in E has a 

compact set weakly converging subsequence. 

weakly sequentially Functional F is weakly sequentially lower semicontinuous if and 

lower semicontinuous only if J n ~ J implies F(j) < lim infn~oo F(J n), where f n ~ f 
stands for weak convergence. 

Xij In context of neural networks Xij is value in the j-th unit of the i-th 

layer. 

C.2 Relevant Mathematical Theorems 

Theorem C.2.1 (-Hoeffding bound) Let~ be a random variable on a probability space X 

with mean E(~) == µ and variance 0"2 (~) == a2
• If l~(x) - E(~)I < M for a/most all x EX 
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then for all E > O 

Theorem C.2.2 (Fubini's Theorem) Let (X,µ), (Y, v) be a-finite measure spaces (there 

exist sets {Mi} such that µ(Mi) < oo and X == LJ:1 Mú (the samefor Y) and f measurable 

fanction on X x Y. If f xxY J exists ( f nonnegative or integrable), then 

LxY J (x, y) = L ([ J (x, y) dv(y)) dµ(x). 

Theorem C.2.3 (Geometrie Hahn-Banach) Let X be a Banach space, consider x E X 
and T C X. Then x E cl conv T, unless there is afanctional R E X* and z E IR such that 

ť(x) >z and ť(t) <z for every t E T. (C.3) 

Theorem C.2.4 (Helly's Theorem) Let X be separable Banach space, X* its dual space. 

Then the closed unit ball in X* is w* -sequentially compact. 

Theorem C.2.5 (Holder's inequality) Let (X,µ) be a measure space. Let f E ,CP(X) and 

g E .Cq(X), where p, q E (1, oo), l + l == 1. Then f g E .C1(X) and p q 

Theorem C.2.6 (Jensen's Inequality) Let (X,µ) be finite measure space (let µ(X) == l). 

For f real-valued integrablefanction on X and 'l/J measurable convexfanction on JR then 

For the case oj probability space, ~ inegrable real-valued random variable we have: 

1/;(E(~)) < E( 1/;(~) ). 

Theorem C.2.7 (Luzin) Let (P, µ) be a locally compact space, µa complete Radon mea­

sure, suppose P is a-finite (for example the Lebesgue measure on JR.n satisfies these assump­

tions ). Let f be a measurable fanction on P. 
,..._, 

Then for any c > O exists a continuous fanction f on P and an open set E such that JLE < E 

and 
,..._, 

f ==fon P \ E. 
""" 

Furthermore, we may choose f so that 

sup lf(x)I == sup lf (x)I 
xEP\E xEP\E 
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Theorem C.2.8 (Markov-Chebyshev Inequality) Let ( µ) be mea ure pa e f mea ur­
able real-valuedfanction and t r > O. Then 

µ( {x EX : IJ(x)I > t}) < t~ i lf (xW dµ. 

For the case of probability space, ~ random variable we have: 

Theorem C.2.9 (Representer Theorem - basic version [KiWa71, SchSI02]) Let 

z == { (xi, Yi) }~1 C JRd x JR. be given, let X be an RKHS with kernel k and norm li · llk· Let 
the fanctional F(f) be given by 

1 N 

F(J) = N ~)J(xi) - Yi) 2 +111/11% 
i=l 

for afanction J E X (7 > O is a constant). 

Then there exists a uniquefanction fo EX that minimizes F. Moreover, fo is of form 

N 

fo(x) = L cik(x, xi), (C.4) 
i=l 

for some real Ci 's. 

Proof: We will use several basic results in approximation theory, see e.g. [Dn71, p. 7-15]: 

Lemma C.2.10 (Existence of minimizing function [Dn71]) Let F be a weakly sequentially 
lower semicontinuous fanctional defined on a weakly sequentially compact set E. Then F 
attains its minimum: there is fo E E such that F(Jo) ==inf fEE F(f). 

Lemma C.2.11 (Uniqueness of minimizing function [Dn71]) A strictly quasiconvexfunc­

tional F can attain minimum over a convex set C at no more than one point. 

Lemma C.2.12 (Necessary condition for minimum [Functional analysis]) Let thefunctional 

F defined on a set E in a Banach space X be minimized at a point fo E E, with fo an in­
terior point in the norm topology. For any h E X, if F has a derivative DhF(f o) at fo in 

direction h, then DhF(f o) == O. 
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Now we can prove easily existence, uniqueness and form of solution to the kemel-based 
minimization problem (4.4). Once more we would like to stress that this is not our result nor 
is it in any sense new (see for example [SchWe06, PoSm03, SchS102, CuSmOl, Gi98, Wa90] 

and others). The reason for stating it including the proof is that the ideas are simple and we 
consider them illuminating for understanding the role of kernel in learning and we will also 
need the theorem in our considerations (Theorem 4.3.1). 

We start by proving that F attains minimum and to achieve this we will use Lemma C.2.10. 

Pick any g EX. Certainly, any f for which F(f) < F(g) needs to have ll!llk < ý'F(g)/1, 
so we only need to minimize F over the ball in X with radius ý' F(g) / r. As X is a Hilbert 
space, this ball is weakly compact (see, e.g., Theorem 7 in [Lax02]), thus also weakly se­
quentially compact. Thus all we need to do to assure existence of minimum is to prove 
that F is weakly sequentially lower semicontinuous. (Perhaps confusingly, weak continuity 
is stronger property than continuity, so although F is continuous, that is not enough.) 

So let us consider a sequence of functions f n weakly converging to some f. From the basic 
properties of RKHS's (Theorem 4.1.2) we know that the evaluation functionals Ai : f .---+ 

f (xi) are continuous (and, obviously, linear). Thus, by definition of weak convergence, 

limn~oo Ai(Í n) == Ai(f). It follows, that the data part of the functional F is weakly sequen­
tially lower semicontinuous. 

The second part of F is a square of a norm. A norm in any Banach space is weakly sequen­
tially lower semicontinuous (see, e.g., Theorem 5 in [Lax02]). It easily follows that so is the 
square of the norm and thus F itself. Consequently, F attains its minimum. 

To show uniqueness of the minimum, we will use Lemma C.2.11. The functional F is 
actually strictly convex, but verifying strict quasiconvexity is somewhat easier. 

The first part of F is a sum of N elements, each of which is a convex functional, as the (real) 

function z .---+ ~(z - Yi) 2 is convex. 

For the second part, let f, g be two distinct elements of X, s E (O, 1) and t == 1 - s. Put 

M ==max{ Ilf li%, 11911%}. We have 

(sf +tg, sf +tg) == s2 (J, f) +st( (J, g) + (g, J)) + t2 (g, g) 

< M 2 (s2 + 2st + t2
) 

== 1\1/2 

(we have used Cauchy inequality to estimate (f, g) and (g, f) ). This proves quasiconvexity 

of the mapping f ~ Ilf 11%, to obtain strict quasiconvexity, we analyze when equality is 
achieved in the above formula. We need to have Ilf llk == llgjjk, moreover (to have equality 
in the Cauchy inequality) f and g are collinear. This implies f == ±g; f == -g does not 
produce equality and f == g is false by assumption. 
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Altogether, F is a sum of a convex functional and a trictly qu iconv functional it i 
strictly quasiconvex itself. Thus we may apply Lemma C.2.11 (with ). 

So we have shown that there exists a unique fo at which the minimum of :F i att ·n d. 

As a final step we derive the form of f 0 . Lemma C.2.12 implie that for each h we hav 

Dh:F(f o) == O. A routine computation yields 

1 N 
Dh:F(J) = N L 2(J(xi) - Yi)h(xi) + f' ( (!, h) + (h, !) ) . 

i=l 

We put h(y) == k(y, x). The reproducing property yields (fo , h) == f 0 (x), and o (h fo) = 

f o(x) == f o(x) (as fo was assumed to be real). Putting Ci == -(! o(xi) - Yi) / ( 1N) we obtaine 
the desired form (recall that k is symmetric) 

N 

fo(x) = L cik(x, xi) . 
i=l 

And we easily obtain the form of ci: c == (K[x] +'"'IN J) - 1y, where K[x]i,j == k(xi, xi ) 
is Gramm matrix of kernel k with respect to vector x, I is N x N identity matrix, c, y are 

vectors. O 

Theorem C.2.13 (Tieze's extension) Jf f is a continuous function on closed subset F oj a 
normal topological space 1 X, then there exists a continuousfunction Jon X such that 

J ==Jon F and sup lfl ==sup I! I 
X F 

1 N ote that any metrie space is normal. 
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AppendixD 

Pictures 

Due to its theoretical nature, this work contains only few pictures. In this appendix we try to 

make up for it a bit. Below are neural networks, as depicted by my sons 

Toníček (on the left) and Prokůpek 

107 
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