Charles University in Prague

Faculty of Mathematics and Physics

Doctoral Thesis

Martin Pergel

Special Graph Classes and Algorithms
on Them

Department of Applied Mathematics

Advisor:

Prof. RNDr. Jan Kratochvil, CSc.

Study program:
I} — Discrete models and algorithms

Acknowledgements

I am grateful to my advisor, Jan Kratochvil. As well I would like to thank
my friends, who were supporting me against all disturbing events. Among
them mainly Johanka and Mirek Spoustovi. Many thanks also go to all my
colleagues working on similar or related topics who were discussing with me
a lot, namely and mainly to Cornelia Dangelmayr, Jessica Enright, Mareike
Massow, Peter Allen and Mike Newman. As well I am thankful to Stefan
Felsner and Lorna Stewart for performing research on related topics and
permitting me to cooperate with their workgroups. Also, it is necessary to
thank to my basic- and secondary-school teachers of mathematics, Tomas
Mar and Vaclav Beneda, whose effort motivated me to focus on this topic.
Simultaneously, I apologize to all whom I forgot to mention on this place and
who deserve it, nevertheless, I am grateful for their help.

Preface

This thesis deals with several problems on intersection graphs, namely with
problems related to recognition of particular intersection classes. Our results
can be divided into three parts. The first part contains results on finding
efficient intersection representations for particular classes. We cover this in
Chapter 2; this is based on [1, 3].

Chapter 3 deals with generalization of the recognition problem. Given
plenty (infinitely many) of intersection classes, it is inefficient to decide for
each class separately what is the complexity of its recognition problem. Our
aim is to find subchains (or even more complicated subposets) in the par-
tially ordered set (by inclusion) of intersection classes where no polynomially-
recognizable class can be found. This chapter is based on [4, 5].

The third topic considered in this thesis is based on [2]. We investigate
the hardness of the recognition problem. Namely we ask whether the absence
of large cliques or even of short cycles can simplify the recognition problem.
The results on this topic are presented in Chapter 4.

Results in chapters 2, 3 and 4 are mainly original (up to exceptions where
we present respective references). Chapter 1 provides the necessary defini-
tions, notation and known facts that are used later in the work. Finally,
we provide a brief list of results presented in the rest of thesis in context of
already known results.

List of publications relevant to
thesis

[1] J. Enright, M. Pergel: On Some Particular Problems on Subtree Overlap
Graphs, in preparation.

[2] J. Kratochvil, M. Pergel: Geometric intersection graphs: Do short cycles
help? In G. Lin, editor, COCOON, volume 4598 of Lecture Notes in
Computer Science, pages 118 — 128. Springer, 2007.

[3] J. Kratochvil, M. Pergel: Two Results on Intersection Graphs of Poly-
gons, In G. Liotta, editor, Graph Drawing, volume 2912 of Lecture Notes
in Computer Science, pages 59 — 70. Springer, 2003.

[4] J. Kratochvil, M. Pergel: Intersection graphs of homothetic polygons,
In: Proceedings of TGGT 2008, ENDM, pages 265 — 268.

[5] M. Pergel: Recognition of Polygon-circle Graphs and Graphs of Interval
Filaments is NP-complete, In A. Brandstadt, D. Kratsch and H. Miiller,
editors, WG, volume 4769 of Lecture Notes in Computer Science, pages
238 — 247. Springer 2007.

Contents

1 Introduction
1.1 Introduction to general graph theory
1.2 Introduction to the computational complexity
1.3 Introduction to the Intersection graphs
1.4 Overview of new results

2 Complexities of Representations
2.1 PC-graphs and Complicacy
2.1.1 Complicacy of representations — the lower bound
2.1.2 Complicacy of representations — the upper bound
2.1.3 Computational complexity
2.2 CONV-graphs and Cartesian Coordinates.
2.3 Subclasses of subtree-filament graphs
2.3.1 Tree with three leaves
2.3.2 General fixed number of leaves

3 Recognition Problem and Sandwiching
3.1 Homothetic polygons in the plane
3.2 Polynomial reduction for PC-graphs
3.3 Extension for IFA-graphs

4 Graphs with large girth
4.1 PC-graphs
4.1.1 Decompositions
4.1.2 Pseudoears
4.1.3 Jammed polygons
4.1.4 Algorithms
4.2 SEG- and PSEG-graphs

5 Conclusion and open problems

17
18
19
21
25
27
34
34
38

41
41
49
o4

59
59
60
66
68
72
73

79

CONTENTS

Chapter 1

Introduction

1.1 Introduction to general graph theory

Graph theory was first introduced by Leonhard Euler to prove a simple result
on traversing the bridges of Konigsberg, and has many real-world applica-
tions. Many types of graphs have been defined, including oriented, directed,
simple graphs, multigraphs, hypergraphs, finite or infinite (see [42]). We
focus on finite undirected simple graphs.

An ordered pair G = (V, E) is called a graph if E C (‘2/), where V' is a
set of vertices and F is called a set of edges. Given a graph G, we denote
the set of its vertices by V(G) and the set of its edges by E(G). When we
are considering only one graph, we omit the argument G and simply refer
to V and E as to vertex-set and edge-set, respectively. In that case we also
denote by n the number of vertices and by m the number of edges. When

referring to a particular edge {u, v}, we use the notation uv.

A sequence vg, e1,v1,€a,...,0,_1,€n, U, Where v; are vertices and e; are
edges and for all 7 the edge e; connects the vertices v;_; and v; is called a
walk. A walk with no repeated edges is called a tour. Similarly, a walk
without repeated vertices is called a path. A walk with no repeated vertices
except for vg = v, is called a cycle. The length of a cycle or of a path refers
to the number of its edges. A graph is called acyclic if it contains no cycle.
The length of a shortest cycle in a graph G is referred to as the girth of G.
If there exists a path from u to v in a given graph G, we say that vertex
u is reachable from v in G. We say that a graph is connected if any of its
vertices is reachable from any (other) vertex. A graph is called a tree if it
is connected and acyclic. To denote a complete graph on n vertices, we use
the notation K,. A cycle and a path of length n get denoted by C,, and P,
respectively.

4 & Introduction

The maximal connected subgraphs of a given graph are said to be its
connected components. A graph is called (vertex-)k-connected if it has at least
k 4 1 vertices and after removal of any k& — 1 vertices it remains connected.
Similarly, a graph is called edge-k-connected if it remains connected even
after removal of any (at most) & — 1 edges.

If it is possible to partition the vertex set of a given graph G = (V| E)
into disjoint sets A and B such that each edge has one endvertex in A and
one in B, such a graph is called bipartite.

For a particular vertex we define its degree as number of edges incident
with it. Minimum (or maximum) degree refer to the degree of a particular
vertex, which is the highest (or the smallest, respectively) and for a graph G
we denote them by A(G) or (G), respectively.

A clique of a graph is (some) of its complete subgraphs. Maximum clique
is a largest complete subgraph present in a given graph. We denote the size of
a maximum clique in a graph G by w(G). An independent set in a graph is an
empty induced subgraph. The size of a maximum independent set is denoted
by a(G). When we assign to each vertex a real number called its weight, by
maximum weighted independent set and maximum weighted clique we mean
an independent set (or a clique, respectively) which maximizes the sum of
the vertices contained in it. The chromatic number of a graph G, denoted
by x(G), is the minimum number of colors such that we can assign to each
vertex of G some colour in such a way that any two neighboring vertices have
different colours.

Clearly, w(G) < x(G) holds for any graph G. Equality does not hold in
general. A graph is perfect if for any its induced subgraph G’ it holds that
w(G') = x(G').

When we refer to an oriented graph, the edges are ordered pairs.

The complement of a graph G is its edge-complement. That is, co-G =
(V, (g) \ E). For a class C of graphs we define co-C = {co-G|G € C}.

A graph H = (U, F)) is called a subgraph of a graph G = (V. E)if U CV
and F' C E. If for all u,v € U such that uv € E also holds uv € F', subgraph
H is called an induced subgraph.

We say that a graph H is a minor of graph G if H can be obtained by
a sequence of edge-contractions of a subgraph of G. Similarly, we say that
H is an induced minor of a graph G if it can be obtained by a sequence
of edge-contractions of an induced subgraph of G. One of the most impor-
tant theorems of Graph Theory is Robertson-Seymour Theorem (also known
as Wagner’s conjecture) which states that each minor-closed class can be
characterized by finite number of forbidden minors. This does not hold for
induced minors.

1.2 Introduction to the computational complexity 5

Graphs whose edges can be transitively oriented, are called comparability-
or CO-graphs. This class of graphs has several applications in theory of
intersection graphs. One such application is called mizing. For a class C
of graphs a graph G is called C-mized if there exist H = (V, E) € C and a
comparability graph I = (V, F') such that G = (V,EUF), ENF = () and
the following holds: For any triple of vertices a, b, ¢ in such a graph if ab € £
and b < ¢ in the poset associated with the graph I, then ac € E.

Note that comparability graphs are denoted by capital letters, while com-
plements are denoted by lower case!

1.2 Introduction to the computational com-
plexity

For algorithms many computational models were introduced. For the sake
of complexity, algorithms are formalized on Turing Machines. Conversely,
particular algorithms are usually designed either for model RAM (Random
Access Machine) or in pseudocode.

The time complexity of an algorithm A is the maximum number of ele-
mentary operations performed by A computing on inputs of length n.

We do not consider the space complexity of algorithms in this work.
Therefore, complexity always refers to the time complexity. We consider
only total algorithms, i.e., algorithms that halt on every input.

Although complexities of particular algorithms for a given problem may
differ for different computational models, we are usually interested only in
existence of algorithms whose running time is bounded by some polynomial
and note that for all mentioned computation models this set is the same.

An alphabet is a finite set of elements (zeroes and ones suffice). Elements
of the alphabet are called letters. A word in a given alphabet is any sequence
of letters. A language is a set of finite words.

For the sake of simplicity, we may consider a suitable encoding of the input
before we subject it to some algorithm. This encoding forms a sequence
consisting of zeroes and ones. Thus we may restrict our attention from
exploring complexity of a particular problem to the complexity of recognition
of a particular formal language. The encoding of the input can be done easily,
for further details see [16].

We say that a language L is in class P if there exist an algorithm A and a
polynomial p such that for each z, A(x) decides (correctly) whether z € L or
not, and A has time-complexity at most p(|x|) where |z| refers to the length
of z.

6 & Introduction

Encoding of input instances (for a given particular problem) introduces a
bijection between recognition of formal languages and solving decision prob-
lems (i.e., problems, whose solution is only 'yes’ or 'no’). In further text
we often implicitly use this bijection. The first case when we do so is that
if there exists a polynomial p such that for all input instances of length n,
the running-time of a given algorithm is bounded by p(n), such problem is
called polynomially solvable and to the time required to do so we refer as to
polynomial time.

There are several equivalent definitions of the class NP. In combinatorics
the most suitable is to consider class NP as the class of problems for which
given an instance of particular problem and a certificate of a solution, we can
decide in polynomial time whether the supplied certificate is valid or not. It
means, we show that a particular problem is in NP by showing that we can
verify a solution we are provided with for a particular instance in polynomial
time.

A problem R is called N'P-hard if for all z € NP there exists a polynomial
reduction (realizable in polynomial time) of to R. A problem R is called
NP-complete if R is N'P-hard and R € N'P.

More theory on computational complexity can be found in [16]. Many
other classes (mainly between classes P and N'P) are defined. E.g., ZPP, the
class of languages recognizable by randomized algorithms that make mistakes
with probability 0, but finishes in polynomial time only in the average case.
Randomized algorithms enter this thesis only sporadically when we refer to
third-party results.

At the end of this section we present NP-hard problems that get later
used in our thesis:

1. E3-SAT: ,
Instance: A 3-formula ¢ in conjunctive normal form (i.e., V A l;j,
1

i=1j=
where [;; is a literal, i.e., either a variable or its negation).
Problem: Is formula ¢ satisfiable (i.e., does there exist an assignment

of variables x such that ¢(z) is true)?

2. E3-NAE-SAT:
Instance: A 3-formula ¢ in conjunctive normal form.
Problem: Does there exist an assignment x such that in each clause of
formula ¢ at least one literal is assigned true and at least one false?

1.3 Introduction to the Intersection graphs 7

3. PURE-E3-NAE-SAT:
Restriction of E3-NAE-SAT to input with all literals positive (i.e., there
is no negation).

4. E3-NAE-SAT(4):
The same as E3-NAE-SAT, except each variable occurs at most four
times.

5. P3CON-E3-SAT(4):
Instance: A formula ¢ in conjunctive normal form such that a bipartite
graph G4 having in one partition variables and in the other clauses and
an edge va says that a vertex v is in clause a is planar and 3-connected.
Moreover, each clause of ¢ consists of exactly 3 literals and each variable
occurs at most 4 times.
Problem: Does there exist satisfying assignment for ¢?

6. DISTINCT-3-COL:
Instance: A bipartite graph G with partitions A and B. All vertices in
partition A have degree 3.
Problem: Can we color vertices of B to get for each v € A its three
neighbors colored by all three (distinct) colors?

7. K-CON-K-COL:
Instance: A K-connected graph G.
Problem: Is it possible to assign K colors to individual vertices of G in
such a way that no adjacent pair has the same color?

Problem 6, in fact, is exactly edge-coloring explored in [28]. Other prob-
lems can be found, e.g., in [16]. Note that E3-SAT is sometimes called just
3-SAT, but we prefer emphasizing the fact that we expect always all three
literals in each clause, not at most three.

1.3 Introduction to the Intersection graphs

For a set system S = (51, ...5,,) we define an appropriate intersection graph
G = ({V1,..V,,}, E) where V;V; € E whenever S;NS; # (). A graph is called
an intersection graph if it has an intersection representation.

It is a well known fact that every graph is an intersection graph of a
suitable set-system. Proof of this fact can be found e.g., in [43].

Therefore we are interested in particular classes of intersection graphs
representable usually by arc-connected objects in a plane. For class of objects
M we define class of intersection graphs of M (usually denoted IG(M))

8 & Introduction

Figure 1.1: Example of a graph with an intersection representation by arc-
connected sets in the plane.

Figure 1.2: Example of an INT-representation.

as class of graphs having intersection representation by objects of M. For
technical purposes, we consider two objects always to properly intersect (not
just touch). Note that this is without loss of generality and whenever we use
notion of touching sets, we can by perturbation argument modify it into a
representation without touching.

Intersection graphs of geometric objects, namely in the plane, are inten-
sively studied both for their practical motivations and for interesting struc-
tural and algorithmic properties. Many hard (NP-complete in general) opti-
mization problems become polynomially solvable when restricted to various
classes of intersection graphs. These classes of graphs have motivation e.g.,
in biology, history or VLSI-circuit design. Intersection-defined classes were
introduced both to recognize whether a particular graph has some represen-
tation and to provide more efficient algorithms for graph-optimization prob-
lems. In both cases we are usually interested in a corresponding intersection
representation, which motivates the recognition problem, i.e., to determine
whether a given graph belongs to a particular class.

As we will be interested mainly in intersection graphs of polygons, sub-
trees, intervals and filaments, throughout the thesis we use small letters as
a,b,u,v,... for vertices of the graph under consideration, given a represen-
tation by polygons, P, denotes the polygon representing vertex v. However,
in figures, to avoid multiple subscripts, we will usually omit the symbol P.
Similarly, for representation by filaments (curves above a given object), we
use symbol F), for the filament representing vertex v and I, for its underlying
interval. In a similar way we use 5, to denote subtree representing vertex v.

Probably the oldest and simplest of these are interval graphs, we also
use to denote as INT-graphs, intersection graphs of intervals on a line [21],

1.3 Introduction to the Intersection graphs 9

Figure 1.3: Example of a CA-representation.

Figure 1.4: Example of a CIR-representation.

whose structure is well understood, they are recognizable in linear time, and
for which problems like clique, independent set, dominating set, chromatic
number and many more are tractable. It is also interesting to say that INT-
graphs are perfect.

Intersection classes yield many inclusions. Many classes contain class
of interval graphs, while on the other end of the spectrum are STRING
graphs, intersection graphs of arc-connected sets in the plane [8, 35, 36], which
are hard to recognize [33], and whose recognition was only recently shown
decidable [44, 49] and then even more surprisingly in NP [48]. Note that
following classes usually contain class of interval graphs and are contained in
class of STRING-graphs.

An obvious generalization of class INT is class called circular-arc or CA-
graphs [18]. This class is defined as intersection graphs of arcs of a circle. If we
consider an interval representation of a particular graph, we may assume all
intervals are finite. When we cut ends of the underlying line to get a segment
instead of a line, whose endpoints we grab and stick together, we obtain a
CA-representation of the same graph. CA-graphs can be also recognized in
polynomial time [53, 13] and these graphs can be colored in polynomial time
by fixed number of colors [17].

10 eH Introduction

¢ b C

e N
/N

a € d

Figure 1.5: PC-representation and an appropriate PC-graph

If we take straight line segments (chords) inscribed into a circle, we get
class of circle graphs, also called CIR. Also circle-graphs can be recognized
in polynomial time [3, 6, 50]. This class seems very similar to class of CA-
graphs, but there is a lot of differences. Main difference is that circle graphs
cannot be colored in polynomial time even by k colors, where k& > 3 is fixed
[54].

Owverlap graphs are defined similarly as intersection graphs. Again, given a
set system, each set corresponds to a vertex, but an edge corresponds only to
such a pair of vertices, that not only their corresponding sets have nonempty
intersection, but also both their symmetric difference are nonempty. Simi-
larly to class INT, we may define class of interval-overlap graphs (IO) and it
is well known that interval-overlap graphs are exactly circle graphs.

A natural common generalization of circle and circular-arc graphs is a
class of polygon-circle graphs. This class was first suggested by M. Fellows
[in personal communication with applicant’s advisor] in 1988, when it was
pointed out that this class of graphs is closed under taking induced minors.
Under the name of spider graphs, polygon-circle graphs appeared in [31],
where several claims that could help to design polynomial recognition al-
gorithm were presented. Later the recognition problem for PC-graphs was
posed, e.g., by Spinrad [52].

Note that as circle graphs are not perfect, a structural property of graph
classes which many intersection graphs possess is near-perfectnessin the sense
of Gyarfas [24]. A graph class is near-perfect if the chromatic number of
each of its graphs is bounded by a function of the clique number of the
graph. (For perfect graphs this function is identity.) Polygon-circle graphs
are near-perfect as shown in [32].

The class of PC-graphs was generalized by Gavril into the class of interval-
filament graphs (IFA-graphs) which are defined as the intersection graphs of
filaments above a given line in a plane. Filaments are curves with endpoints
on the given line. The endpoints of each filament define an interval on the

1.3 Introduction to the Intersection graphs 11

V1 V2 V3 Vg Vs Vg vt

Figure 1.6: Representation by interval-filaments.

A

\

Figure 1.7: SEG-representation.

line. Filaments belonging to disjoint intervals must not intersect each other
and filaments over overlapping invervals must intersect each other. IFA-
graphs were defined by Gavril [20] and characterized by the mixed property
as complements of (co-INT)-mixed graphs. They were equivalently described
as caterpillar-overlap graphs [23]. Descriptions by the mixed property, as well
as subcaterpilar-overlap description shows testability of membership in class
IFA in polynomial time. Despite the structural characterization, the recog-
nition has been open since. IFA-graphs contain PC-graphs and therefore
Gavril’s polynomial algorithm for the problem of the maximum weighted
clique and maximum weighted independent set [20] immediately yield poly-
nomial algorithms for PC-graphs and also for CIR-, CA-graphs.

In terms of filaments, we may similarly define class of circular filament
graphs (shortly CFA) and subtree-filament graphs (SFA). Again, filaments
above disjoint structures (circular arcs or subtrees of a tree, respectively)
must not intersect each other and, again, filaments above overlapping struc-
tures must mutually intersect. Also these two classes were described by the
mixed-property [20]. Recently, [11] it was shown that subtree filament graphs
are exactly subtree overlap graphs (shortly SOG, i.e., overlap graphs of sub-
trees of a tree).

In the thesis, we are also interested in SEG or segment graphs, which
are intersection graphs of segments in a plane, CONV or convex graphs, i.e.,
intersection graphs of polygons in a plane and PDISK or pseudo-disk graphs,
intersection graphs of pseudo-disks! in a plane.

!pseudo-disks are sets in a plane having at most two common points on a boundary

12 ® Introduction

e == @

Figure 1.8: On the left, PDISK-representation, on the right representation
of a 5-polygon-graph.

Given a representation R of G' by polygons (not necessarily convex, not
necessarily inscribed into a circle) with G C H, we say that R can be extended
into a representation S of H if S is obtained from R by adding new corners
to existing polygons and by adding new polygons representing the vertices
of V(H)\ V(G).

Intersection graphs of homothetic convex polygons in a plane are defined
as follows: Objects in a plane are called homothetic if one can be obtained by
shifting and scaling of another. If all objects used for representation of a par-
ticular graph are homothetic convex polygons, that graph is an intersection
graph of homothetic convex polygons.

Another important class of intersection graphs is the class of permutation
graphs, for shortness PER-graphs [14]. Given a permutation = € S, the
appropriate permutation graph has vertices vq,...,v, and an edge v;v; is
present if ¢ > j and 7(i) < 7(j). When we consider a permutation 7 written
below an identity permutation, the intersection representation is obtained
by connecting each number in the identity-line with the same number in the
permuted line. This class can be generalized in such a way that instead
of one permutation we consider k permutations, begin with the identity-
permutation and establish a wire connecting all occurrences of one number
(by piecewise linear segments). We denote such a class (for a fixed k) as
PERk. When we permit number £ (of permutations) to be arbitrary, we ob-
tain the class of FUN-graphs, by full name the function-graphs, intersection
graphs of continuous real functions on interval < 0,1 >.

It is important to note that FUN-graphs are exactly co-CO-graphs [22]
and that while PER-graphs as well as FUN-graphs can be recognized in
polynomial time, for a fixed k£ > 2 it is NP-hard to recognize whether a given
graph is a PER-graph.

1.3 Introduction to the Intersection graphs 13

IFA STRING

PﬁC k-CROSS k-CONV k-SEG PDISK
k-PC |1-CROSS (PSEG)| 3-CONV ~ 2.SEG DISK
t t —"

3-PC SEG

. HOM-k-GONS

CIR

/ \
k-PG; k fixed PG

PER

Figure 1.9: Illustration of inclusions among intersection-defined classes. Note
that also for each & it is k-PC C k-CONYV and that IFA C STRING.

Now, please, note that we have defined infinitely many classes that contain
class PER and simultaneously they are contained in class FUN. In a similar
way we define also infinitely many classes even between other classes:

Between classes of CIR-graphs and PC-graphs, infinitely many classes of
k-PC-graphs (intersection graphs of convex k-gons inscribed into a circle) can
be sandwiched. Note the difference from polygon-graphs introduced in [9] as
k-polygon-graphs are graphs representable as intersection graphs of straight
line segments inscribed into a k-gon which are sandwiched between PER-
and CIR-graphs. Similarly we can generalize the class of SEG-graphs into
STRING-graphs in three completely different ways. First of them proceeds
in terms of k-CONV-graphs and generalizes class of SEG-graphs into class
of CONV-graphs exactly in the same way as when we are generalizing CIR-
graphs into PC-graphs by classes of k-PC-graphs. Second generalization is
in terms of k-STRING-graphs. We define k-STRING as a string consisting
of (at most) k piecewise linear segments. The third way is topological and
defines class of pseudo-segments (PSEG) [4] also known as 1-CROSS graphs.
1-CROSS graphs are graphs of curves in a plane such that any pair of seg-
ments intersects at most once. Analogously, we define k-CROSS graphs.

Also chordal graphs (CHOR) can be described as intersection graphs.
Primarily, they are defined as class of graphs without chord-less cycle of
length larger than three or by the existence of perfect elimination scheme
[47]. They are also the intersection graphs of subtrees of a tree. They are
known to be perfect and it is known that the maximum clique as well as
chromatic number (and even coloring) can be found in polynomial time.
Obviously, they contain class of interval graphs. A more sophisticated proof
is necessary to show that they form a subclass of PC-graphs.

14 & Introduction

The proof of inclusion of CHOR-graphs in class of PC-graphs is shown
through another class: Cactus is a graph defined recursively: Arbitrary cycle
Cy is a cactus. A larger cactus is obtained from already existing cactus by
picking one its vertex v, adding a new cycle C; whose (exactly) one vertex is
unified with v. Class CACT is a class of cactus-subtrees. Obviously CHOR
C CACT. And if we consider CACT-representation of a graph G, we may
consider all cycles of underlying cactus to be drawn outside all other cycles,
i.e., boundary of the cactus contains all vertices (of the cactus). If we split
each vertex attaching one cycle to the other into a chord, original cactus
changes into a (geometrical) circle and if we take convex hull of vertices be-
longing to individual subtrees, we obtain a PC-representation, which proves
that CACT C PC (and therefore also CHOR C PC).

On the recognition problem many results were obtained. Among them,
at the moment, let us recall following:

e It is NP-hard to determine whether a given graph is a PDISK-graph [34].

e The recognition problem of the PDISK-graphs without K3 is polyno-
mially solvable [34].

e [t is NP-hard to recognize whether a given graph is a STRING-graph
(and remains so even for graphs with girth 4) [34].

e It is NP-hard to determine whether a given graph is a SEG- or a
STRING-graph. Moreover, no polynomially recognizable class can be
sandwiched between these two classes [33].

e Classes PER and FUN can be recognized in polynomial time [14, 22].

e For any k > 2, it is NP-complete to recognize PERj-graphs [55].

These theorems motivated our research whose results are presented in
following chapters.

1.4 Overview of new results

In Chapter 2 we explore how difficult is it to get some representation of
reasonable size (i.e., the smallest possible in some sense) and what size can
be enforced by some graphs. We show that it is NP-complete to find an
optimal representation for PC-graphs and that it is even hard to decide
whether a particular graph can be represented by k-gons inscribed into a
circle or not. As well, we show that for graphs on n vertices, there exist

1.4 Overview of new results 15

PC-graphs requiring polygons with at least n — logn + o(logn) corners for
its representation and that this bound is tight (i.e., any PC-graph on n
vertices can be represented by polygons with n — logn + o(logn) corners).
Then we show that it is impossible to use Cartesian coordinate-system to get
polynomial certificate proving whether a given graph is a CONV-graphs and
the chapter gets concluded by hardness of recognition for some subclasses
of subtree-overlap graphs (as the recognition problem for the whole class of
subtree-overlap graphs remains still open).

As we have outlined, a lot of intersection-defined classes are defined and
being explored and some of them form non-collapsing infinite sequences.
Therefore for the recognition problem it is not sufficient to show that one
particular class can be (or cannot be) recognized (under particular assump-
tions), but it is necessary to ask, between which classes we can or cannot
find some efficiently recognizable class. First result of this type is due to
Kratochvil in [33] for classes of SEG- and STRING-graphs. This reduction
produces either a SEG-graph or not even a STRING-graph. To this problem
we devote Chapter 3 where we show that for any fixed convex polygon S
no polynomially recognizable class can be sandwiched between the classes of
intersection graphs of homothetic convex polygons S and pseudodisk graphs
and also that no polynomially recognizable class can be sandwiched between
the class of PC-graphs and IFA-graphs.

The fact that the recognition problem becomes polynomial for PDISK
graphs when restricted to graphs with girth at least 4 yield a question
whether it is possible to recognize efficiently intersection classes when we
require graphs to have large girth. So in Chapter 4 we focus on the recogni-
tion problem for intersection-defined graphs with large girth. There we show
that PC-graphs can be polynomially recognized when restricted to graphs
with girth at least 5. Conversely, we show that the recognition problem re-
mains NP-hard for SEG-graphs even for graphs with arbitrarily large girth.
The last theorem combines question of this chapter with problem studied
in previous chapter, as it also shows that for any fixed k, when restricted
to graphs with girth at least &, no polynomially recognizable class can be
sandwiched between class of SEG-graphs and PSEG-graphs.

16

Introduction

Chapter 2

Complexities of
Representations

As mentioned in the introduction, it is easy to decide whether a given graph
is a PER-graph or not. The same holds for FUN-graphs. Since algorithms
operate on the intersection representation rather than on the graph, we want
to find an optimal (in some sense) representation in polynomial time. The
size of the representation is measured in several ways. For connected sub-
structures in a tree, the size may be measured in number of leaves of the
underlying trees or in maximum number of leaves of individual subtrees. For
SEG- and CONV-graphs, the size of a given representation can be measured
in size of numbers needed to describe individual endpoints, size of STRING-
representation is usually considered as the number of intersections in the
representation. Size of PC-representation gets measured in terms of compli-
cacy, which gets defined later in this section and for a FUN-representation
we consider as its size number of permutations forming a realizer of a corre-
sponding poset, it means, minimum k& such that G is a PER-graph.

For some classes, the optimum representation can be found in polynomial
time, e.g., for INT-graphs this problem is trivial and therefore solvable in
linear time by any recognition algorithm (when we consider INT as a subclass

of CHOR-graphs).

Example of the converse are FUN-graphs. Despite the fact that FUN-
graphs (on n vertices) can be recognized in time O(n?) through transitive
orientation of their complement, it is NP-hard to find their optimum repre-
sentation [55] (and it remains hard even to get a reasonable approximation
if NP & ZPP [25]). Conversely, given a transitive orientation, we can easily
get its FUN-representation of size O(n?) by finding n permutations forming
a realizer [41]. More sophisticated constructions can improve multiplicative

18 ® Complexities of Representations

constant of the size [26] and, moreover, for all functions f(n) € o(n) there
are posets requiring size of representation w(nf(n)) [30, 41].

2.1 PC-graphs and Complicacy

In this section, based on [39] (which extends [45]), we pay closer attention
to the question of how complicated should be the polygons representing the
vertices of a polygon-circle graph with n vertices. One can easily see that
n-gons always suffice, which means that polygon-circle graph recognition is
definitely in NP. It is conceivable, however, that polygons with less corners
would suffice. To be able to precisely formulate this question, we define the
complicacy of a graph G as the minimum £ such that G is the intersection
graph of convex k-gons inscribed to a circle, and we denote this invariant by
emp(G) (we set emp(G) = oo if G is not a polygon-circle graph). We further
define emp(n) to be the maximum of ecmp(G) over all polygon-circle graphs
with n vertices. The main result in this direction is the following (here and
throughout the section, all logarithms are base 2):

Theorem 1 We have cmp(n) =n —logn + o(logn).

The lower and upper bounds are proved separately. At the end of this section
we consider the computational complexity of determining the complicacy of
a graph with the following result:

Theorem 2 For every fixed finite k > 3, it is NP-complete to decide if
emp(G) < k holds for an input graph G.

This result answers an open problem listed at J. Spinrad’s web page [51].
The fact that recognition of k-PC-graphs is in NP follows directly from the
proof of Lemma 24 and from Theorem 1. In this chapter we focus on the
hardness part. Note also that for £ = 2, emp(G) < 2 if and only if G is a
circle graph, a polynomially decidable question.

If P is a polygon, then the connected parts obtained from the bounding
circle by deleting the corners of P are referred to as the P-segments. If two
polygons represent nonadjacent vertices, they must be disjoint and hence all
corners of one of them lie within the same segment determined by the other
one, and vice versa. In the following technical definition we assume that all
polygons under consideration are disjoint.

Definition 3 We say that polygon P blocks polygon Q from polygon S if the
corners of Q lie in a different P-segment than the corners of S. If a set S of
polygons is such that none of them blocks any other two polygons from each
other, we say that the polygons are positioned around the circle.

2.1 PC-graphs and Complicacy 19

See Figure 2.1 for an illustrative example of blocking polygons, and a set
of polygons positioned around the circle. Next we make the first simple but
useful observation.

Figure 2.1: In the left, polygon P blocks polygon @) from polygons S and T,
in the right, all four polygons are positioned around the circle.

Proposition 4 In any representation R of the cycle Cy, with 2k wvertices
Uy, U, ..., U, the polygons R,,, : 1 =1,2,... k are positioned around the
circle. If W\ is the graph obtained from Cyy. by adding a vertex v adjacent to
Uiy i = 1,2,... k (i.e., W[is the wheel Wy, with each rim edge subdivided),
then R, has at least k corners and cmp(W)]) > k (in fact, the complicacy of
W equals k).

2.1.1 Complicacy of representations — the lower bound

Theorem 5 For n large enough, we have cmp(n) > n —logn — 2loglogn.

Proof. The proof is by constructing graphs of large complicacy by an explicit
construction. Suppose n is large enough (how large will follow from the
calculations in the proof). Let ¢ be the uniquely defined integer such that

20 20+ 2
142¢ <1+2(0+1 .
+ +<€><n_ +2(€ +)+<€+1>
We construct the graph G = (V, E)) with vertex set
V={v}ULUP,

where vertex v is adjacent to all other vertices, L is a clique of size 20 + 2,
and P is an independent set whose vertices are indexed by distinct (£ + 1)-
element subsets of L. These indices will determine the adjacencies between

20 & Complexities of Representations

Figure 2.2: An example of the lower bound construction for £ = 2 and n = 11.
We write simply pi3 for py; 3 etc.

vertices of P and L as follows. If p, € P (with a C L, |a] = ¢+ 1), we make
pa adjacent to all z € a and to no other vertices of L. (Note that G is not
determined uniquely, it depends on the choice of the sets used for indexing
the vertices from P. Any choice of distinct indices works.)

We claim that G is a polygon-circle graph and that emp(G) > |P|. For
the first part of the claim, choose a point O on the circle and position the
polygons corresponding to the vertices of P around the circle (so that they
do not block O from one another). Choose one corner of each of them as its
reference point and represent each vertex x of L by the convex hull of the
reference points of the vertices of P adjacent to x and of O. By making O
a corner of each R, we guarantee that every two polygons R,, Ry, u,w € L
intersect (L is a clique). Finally R, will be the convex hull of O and the
reference points of all polygons representing vertices of P. (Note that the
auxiliary point O may not be necessary, e.g., in the case when for every two
vertices in L, P contains a vertex adjacent to both of them.)

To argue that cmp(G) is large, consider an optimal representation R of
G. Note first that for n > 5 we have ¢ > 1 and hence (2;) > 2. This means
that n > 2¢ 4 3 and indeed G contains all vertices of L.

The key observation is that the polygons R,,p € P must be positioned
around the circle. For suppose this is not the case, say R,, blocks R,, from
R, for some a,b,c C L. Since these subsets are different but of equal size,
there must be an x € a\band ay € ¢\b. By the definition of G, R, intersects
R, and R, intersects R., but none of R, R, intersects R,. But that means
that R, blocks R, from R, and these two polygons cannot intersect each
other (though z and y belong to the clique L).

2.1 PC-graphs and Complicacy 21

To intersect all polygons representing vertices of P, R, must have at
least | P| corners, and hence emp(G) > |P| = n—2¢ — 3. The rest is a simple
calculation.

Assume for contradiction that ¢ > &7

2

- 20 - 22 - nlog?n -
" 14 204+1 " 8(logn + 2loglogn — 2) "

3
+loglogn — 3. Then

log? n
+2loglogn—2)

Therefore (for every large enough n), ¢ < 10% + loglogn — % and

for large enough n (since lim,_ SloaT = 0), a contradiction.

emp(G) > |Pl=n—20 —3>n—logn — 2loglogn

as claimed. ' Y

2.1.2 Complicacy of representations — the upper bound

Theorem 6 For every positive constant ¢ < 1, there exists an ng such that
emp(n) < n — clogn for every n > nyg.

Proof. Let G = (V, E) be a graph on n vertices and let emp(G) = k > 4.
Consider a polygon-circle representation R of G such that no two polygons
share a corner and such that every polygon has at most k corners (this can
be always achieved by splitting the corners). Let our representation have the
minimum total number of corners among all such representations. Choose a
vertex v € V such that R, has k corners, and denote its corners v',v?, ... v*
as they appear clockwise around the circle.

Based on this representation R, define A to be the set of vertices x such
that R, has all corners within two consecutive R,-segments, i.e., such that
R, intersects R, only in the triangle v*~'v‘v'*!, for some i. For € A, denote
this ¢ by j(z) and call it the index of . We can see that for every i, there
exists an x € A of index i. For if such a vertex did not exist for some i,
we could reduce the number of corners in the representation by deleting the
triangle v'~ o't from R,, contradicting the choice of R.

Now assume that R’ minimizes Y, 4 j(z) among all representations with
the same central polygon R,, with the same total number of corners and with
the same set A (when defined as above) as R. For the sake of simplicity we
call R' again just R.

For every 7, choose one vertex as a representative of the vertices of index 4,
and call it a;. As argued above, a; is well defined for every 7. The intersection
graph of the polygons R,,,? =1,2,...,k is either a cycle or a disjoint union

22 ® Complexities of Representations

Figure 2.3: Illustration to the choice of representatives of index classes.

of paths, since a; can only intersect a; 1 and/or a;1 ;. We denote A; the
set of those a; that have no neighbors among the other a;’s, and A, =
{a1,aq,...,a;} \ A1. We then denote B = (V' \ {v}) \ (A1 U Ay) and B; the
set those vertices of B which are adjacent to at least one vertex of A;.

Next we claim that every two vertices of A; have different sets of neigh-
bors. For suppose that {z|za;, € E} = {z|ra; € E} for some j < i. Then
the polygons representing the neighbors of a; intersect one side of R,;, and
hence both R,, and R, could be replaced by two parallel chords (digons)
placed close enough to this side. This would result in a new representation
of the same graph, with the same position of R, and the same set A, but
with a strictly smaller sum of the indices of the vertices of A, contradicting
the choice of R. See an illustrative example in Figure 2.4.

The immediate but very important consequence is that

|A1| < 2|31|’

since v is a common neighbor of all vertices in A;, and on the other hand no
vertex of A; is adjacent to any other vertex of A; U As.

Finally we attend to vertices of A;. Consider the example in Figure 2.5.
If R,, and R,, intersect, they must intersect in the area bounded by the v'v?
side of R, and the corresponding R,-segment. Choose a point v'? in this
segment between the leftmost corner of a; and the rightmost corner of a;. If

2.1 PC-graphs and Complicacy 23

Figure 2.4: Illustration to reducing the sum of indices of the A vertices.

we now replaced the central polygon R, by the convex hull of v'%, v3, ... v*

(i.e., the corners v' and v? are replaced by v'?), the new R, (denoted by
dashed lines in the figure) would still intersect both R,, and R,,, but the
total number of corners would decrease. Since this is impossible by the choice
of R, the new collection of polygons does not represent G anymore. There
are only two possible reasons. Either the new R, intersects a polygon R,
which is not supposed to be intersected (as in Figure 2.5 bottom left), or
the new R, loses intersection with some R, that it previously crossed (as
in Figure 2.5 bottom right). In the former case, R, would lie fully within
the segment v'v?, in the latter one, b € A and its index is j(b) = 1 (or,
symmetrically, j(b) = 2). In any case, we choose one such b and call it a
witness for (1,2). Similarly, we choose a witness for every (i,7+ 1) such that
Ra, M R,,., # 0, and denote by B, the set of witnesses constructed in this
way. By the construction, B, C B. It may happen, though, that one vertex
of By is a witness for two pairs (a witness of the latter type and index ¢ could
have been chosen both for the pair (i —1,4) and for (i,74 1)). Given the fact
that a path of ¢ consecutive vertices from A, would involve t — 1 pairs, such
a path would give rise to at least % distinct witnesses, and we obtain the
following inequality:
|Az| < 3[Bsl.

(Note here, that B; and B, are not necessarily disjoint.)
Now we summarize

k= emp(G) = | Ar| + |Ag] < 251 4 3|By| < 27 + 3(n —)

(the last inequality follows from the fact that A; U Ao U By C V and A; U
As U By C V, while in each case the three summands are pairwise disjoint),

24 ® Complexities of Representations

Figure 2.5: Illustration to the construction of B, the blocking set for As.

and hence

2" > 2k (4k — 3n).
For k > n —clogn (0 < ¢ < 1), we would get

n — 4clogn

2" > 2nelosn (4(n — clogn) — 3n) = 2" > 2"
nC
for every n > ng for some ng, as lim, .. 7= = oo and lim, .., 40711# = 0.
Which is the final long worked for contradiction. '

=

The proof of Theorem 1 is now at hand. Consider the difference f(n) =
cmp(n)—n+logn. On one hand, Theorem 5 states that f(n) > —2loglo
o(logn). On the other hand, Theorem 6 yields that for every e > 0, f(n)
elogn for every large enough n (by setting ¢ = 1 — ¢), and hence f(n)

o(logn).

aQ
S

—~

2.1 PC-graphs and Complicacy 25

2.1.3 Computational complexity

We first restate Theorem 2 in a slightly stronger form:

Theorem 7 For every fized k > 3, it is NP-complete to decide if cmp(G) <
k for an input graph G, even if G is promised to have complicacy at most
k+1.

Proof. We reduce from the Distinct-3-COL, i.e., following hypergraph color-
ing problem: Given a set 7 of triples over a base set X, decide if the elements
of X can be colored by three colors so that every triple T" € 7 receives all
three colors.

Given such a 7', we construct a graph G = (V, F) as follows. The vertex
set will consist of a cycle of length 2k on vertices wuq,us, ..., us, a pair of
vertices a,, b, for every x € X, and a vertex ¢y for each triple T' € 7. The
¢ vertices form a clique and each of them is adjacent to all u vertices with
even subscripts, to all b vertices, and to those a vertices which correspond to
x’s belonging to the particular triple. The b vertices are further adjacent to
their corresponding a vertices and to o, w4, ug. Formally

V=A{wli=1,2,...,2k} U{a,,b.lr € X} U{cr|T € T}
E = {ujus, ugus, . . ., ugpuq } U {azb.|z € X} U {byu;lz € X,i=2,4,6}
U{buby|z,y € X} U{crazlz € T € TYU {erb,|T € T,z € X}
U{eres|T,S € T U {crw|T € T,i=2,4,6,...,2k}.

We claim that G'7 is always a PC graph of complicacy at most k+ 1, and
its complicacy is (at most) k if and only if 7 allows a coloring as desired.

Let R be a PC representation of Gy. We first note that all polygons
R,.,,r € X must be positioned around the circle. For if one of them would
block another two from each other, some R, would block some R, from R,,
and the auxiliary polygon R, would not be able to intersect both R, and
R.,.

As observed in Proposition 4, the polygons R,,,,i = 1,2,...,k are posi-
tioned around the circle, and only these vertices of the cycle are intersected
by R..’s. Since the polygons representing the b’s intersect (only) R,,, R.,
and R,,, all the polygons representing the a vertices must lie in the segments
determined by R,,, R,, and R,,. So color an element z € X by color ¢ if
R,, is blocked by R, from the other R, , i,7 = 2,4,6. We claim that this
is a good coloring. For if a triple 7" € 7 contained two vertices of the same
color, say x and y of color 2, the polygon R., would need k — 1 corners for

26 ® Complexities of Representations

intersections with R,,,7 = 4,6,...,2k, plus at least two more corners for
intersections with R, and R,, that is at least k + 1 corners altogether.

On the other hand, given a feasible 3-coloring of X by colors 2,4,6, a
representation by k-gons can be achieved by placing the polygons R, ,x € X
around the circle such that polygons corresponding to vertices of color ¢ are
placed within the segment determined by the chord R, ,¢ = 2,4,6. Each c
vertex can then be represented by a k-gon with one corner in each segment
determined by R,,,,7 = 2,4,6,...,2k. An illustrative example is in Figure 2.6,
where a triangle representing a triple 7' = {x,y, z} is marked. For the sake
of simplicity, we only illustrate the case £k = 3, and the auxiliary polygons
Ry, are not shown (drawn with invisible ink).

Along the same lines it is seen that emp(Gr) < k+ 1 if (X, 7) allows a
2-coloring without monochromatic triples. '

Figure 2.6: Illustration to the NP-completeness proof.

One may ask for what function f(n) of n it is still hard to decide if
emp(G) < f(n) for an input polygon-circle graph G on n vertices. As we
have seen in previous sections, f(n) must be somewhat smaller than n so
that we might expect NP-hardness. By a closer examination of the proof of
Theorem 2 we see that we can get close to §:

Theorem 8 For every rational ¢ < %, it is NP-complete to decide if cmp(G) <
cn for an input graph G on n vertices.

2.2 CONV-graphs and Cartesian Coordinates 27

Proof. Consider the previous construction of Gr. If we start the reduction
from 3-edge coloring of a graph with 2m vertices and 3m edges, we get

n=|V]|=2k+2|X|+|T|=2k+8m.

Hence setting n = % (if 1—2¢ > 0 is rational, we may start with sufficiently
many copies of the cubic graph to make n an integer) we get

2k=n—8m=8m(—1):2cn

1—-2¢c

and hence our previous proof shows that deciding
emp(Gr) <k =cn

is NP-complete. ' Y

2.2 CONV-graphs and Cartesian Coordinates

In this section we show that it is impossible to use Cartesian coordinate-
system as a polynomially-sized certificate for existence of CONV-representa-
tion. To do so, we reuse the construction of [37] and modify it. First though,
we define some notation and make some basic observations.

Note that a given arrangement of convex polygons can be considered as
a planar embedding of a (planar) graph. Corners of individual polygons
and intersection-points of their boundaries form vertices, particles of sides
of polygons form edges. In this context it makes sense to talk about faces.
To each such face we may assign its depth, which refers to the number of
individual polygons containing this face. The notion of depth is a useful
technical tool for analysis of convex-polygon arrangements [5]. Note that
maximum depth is bounded from above by the maximum clique in a graph
whose representation we are investigating. Thus given a representation of a
cycle (of length larger than three), an appropriate representation consists of
faces with depths 0, 1 and 2.

It is an easy observation that while looking for CONV-representation of

a circle Cy,(= ({v1, va, ..., v, }, U {vl, Vit1} U{vn, v1})) where n > 3, polygons

representing vertices of this 01rcle form a Jordan circle in the plane, which
allows us to place representants of non-adjacent vertices either inside or out-
side this topological circle. This circle is unique (unless the representation
consists only of segments or is degenerate), but this is not important for us.

We use the Frame-gadget introduced in [37] (see Figure 2.7) and we prove
that in any its representation the circle abed has to be represented inside the
representation of the circle A...B...C...D....

28 % Complexities of Representations

B C

A D

Figure 2.7: The Frame-gadget — the graph with property that in CONV-
representation the circle abed has to be inside the representation of
A..B..C...D.... We refer to the circle abcd as to the small circle while the
circle around it containing ABC'D we call the big circle.

Lemma 9 While representing a circle C,, with n > 4 by convex polygons,
there appear only two faces not covered by any polygon (i.e., with depth 0).
We call them the outer and the inner face.

Proof. We look at faces of depth 2. As intersecion of two convex polygons is
a convex polygon, in a representation of C, there are exactly n faces of depth
2 and each such face can be indexed by pair of vertices that lie consecutively
on C,. Note that each convex polygon is contained in exactly two consecutive
faces of depth 2. Therefore individual faces of depth 2 are connected by faces
of depth 1 in a circular way. Thus we get at least two faces of depth 0. As
each polygon is contained in exactly two faces of depth 2, no other faces of
depth 1 connect two faces of depth 2. Now note that faces of depth 1 are
always incident to some depth-2 face. So the only way to have more than two
faces of depth 0 is that any depth-0 face is adjacent only to depth-1 faces,
which are themselves separated by depth-2 faces. But two faces in depth 2
are connected by depth-1 face covered by one (fixed) polygon and this is not
possible when this polygon is convex. [

Lemma 10 [In the Frame-gadget the circle D = A..B..C..D has to be repre-
sented in the outer face of the representation of the circle C = abed.

2.2 CONV-graphs and Cartesian Coordinates 29

Figure 2.8: Demonstration of the cutting-procedure. When two polygons
start alternating on the boundary, we start cutting-off particles of individual
polygons along the dashed line up to the point where this alternation ends.
In this way we establish an equivalent representation whose outer face forms
a polygon without any convex angle, which causes a contradiction.

Proof. First let us note that C and D are non-intersecting circles, each of
whose must be represented by convex polygons forming two faces. Thus
either they are concentric, or non-concentric. The representation of D must
be in the outer face of the representation of C, since only the outer face (of
C) formed by the representation can be used to connect D to C. This fact
gets proven now by contradiction:

Let there exist a representation where the circle D is represented in the
inner face with respect to the representation of C (let us call it P¢). Then we
know that on the boundary of the inner face given by Fc, polygons have to
appear in this ordering: bacbdcad.

We know that this face forms a polygon. Now we transform it into an
equivalent representation and show that the polygon would not contain any
convex angle, although we know that any polygon has to contain at least
three convex inner angles. As the face we are acting in is surrounded by the
representation of four-cycle, two polygons alternate on the boundary, then
one of them disappears and a new one appears (and the new pair alternates
again several times).

For each pair A, B we take two points: Where the alternation begins and
where it finishes (without loss of generality, let around the surrounding circle
appears as the first polygon A and thus polygon B occurres on the boundary
after A stops appearing). Between these two points we start this cutting
procedure: We follow the polygon A to the first intersection (with B). Then

30 ® Complexities of Representations

we cut off the corner of B along the boundary of A to the next intersection.
By the next intersection we cut off the corner of A along the boundary of B
and so on up to the end of the alternation. After a slight perturbation we
obtain an equivalent representation of the four-cycle with the property that
the inner face is formed by the polygon with all inner angles non-convex.
This follows from the fact that every corner of one polygon we obtain a non-
convex angle (as the surrounding polygon has to be convex). If we take an
intersection of two polygons then it is either some of the ”inner intersections”
which after the cutting-procedure is limited to the common border of two
convex polygons (and thus we obtain non-convex angles too), or it is the
first or last intersection. Then we know that between the first and the last
intersection there had to be at least one "middle intersection” and after the
cutting procedure the sector between the first and the last intersection is
formed by the common border of two convex polygons. Also, the polygon
that continues along the border is one of those bordering two and thus as
the border is formed (among others) by the border of this polygon (and as
this polygon is still convex), we obtain a non-convex angle, too. This is the
contradiction (as each convex polygon contains at least three inner angles
convex) and we know, that the only possibility how to represent the frame,
is to place the representation of abed to the inner face of the representation
of the large circle.

Now we easily observe that if we add to the Frame-gadget a vertex X,
that is connected with abed by four disjoint paths (of length at least 2, one
path to each of abed), the only possibility where to place Py is in the inner
face of the representation of abcd. The outer face is used to represent the
circle D and each of P,, P, P., P,; is connected to some polygon representing

D. [)

Now we introduce an explicit construction which uses graphs requiring such
size in SEG-representation. Then we replace each vertex with a gadget,
make these gadgets ”specifically adjacent” and show that from any CONV-
representation of such a graph we can extract SEG-representation of the
original graph. Our gadget is shown in the Figure 2.9. We take a graph
that requires in SEG-representation exponential size (when describing by
Cartesian system of coordinates), replace each vertex by our gadget and for
two adjacent vertices v, v; between gadgets W, Wy place edges from A, a, x, ¢
and C' to Ay, a1, 21,1 and Cf.

Claim 11 The graph, we have constructed is SEG-graph.

Proof. The Frame-gadget has a representation with segments. We take this
representation and transform it in the following way: By "pressing” Py

2.2 CONV-graphs and Cartesian Coordinates 31

A D

Figure 2.9: Gadget we use for replacing each vertex of the original graph. To
dashed paths we refer as to M and N, polygons representing vertices on this
path are called (together) Py, and Py. To the inner face of representation of
the circle consisting of path M and vertices a, b and ¢ we refer as to "among
P77, to the inner face of N U {a, b, c} we refer as to "below Py”.

32 ® Complexities of Representations

against Po we make this representation very thin. Then we pull P, to become
almost as long to pass through almost whole representation of gadget. Then
we take SEG-representation of the original graph and replace each segment
by our deformed gadget and we obtain SEG-representation of the new graph.

)

Theorem 12 There exists a sequence of graphs such that each graph is a
CONV-graph and description of this representation requires double-exponen-
tial coordinates (with respect to the number of vertices).

Proof. As we know that P, has to be represented inside the representation of
circle abed, clearly for two neighboring vertices in the original graph our gad-
gets have to cross in a well described way: the inner face of the representation
of abed cannot contain any a-, b-, ¢- or d-vertex of another gadget W’. This
is clear, as otherwise we could not intersect by polygon representing z-vertex
all polygons we have to. Thus P/ and P} have to lie in the outer face of rep-
resentation of abed. And thus P has to pass through the representation of
abed 7 from left to right” and we know, that polygons representing path from
x to b have to lie in the same outer face. Now for each gadget we take P, and
start the cutting procedure to obtain greedily minimal representation with
respect to the complicacy of P,-polygons. From each P, we either obtain a
segment (and we are done) or a triangle, or a rectangle.

Now we examine only the inner part of the Frame (circle abed and its
interior). From Lemma 10 we know that we may consider the circle abed
with its interior to form a convex polygon. Now we show that two gadgets
representing two neighboring vertices have to cross ”across”, it means that a
path to b passes through (WLOG) P, and path to d passes through P.. Oth-
erwise we may consider that we are trying to connect P, with the border of
convex polygon replacing representation of circle abed. And both connections
are reached (when looking from P)) through (without loss of generality) P..
Then we know that on the border of the circle there appear always an inter-
lacing pair of consecutive vertices. And then we know that (without loss of
generality) P. has to lie between those two points where paths from P, reach
the border of our replacement of representation of abcd-circle (representation
of path to P, and P;). Thus it is impossible to intersect P. with P..

We can easily see that there is at least one corner of P, among P,; and
at least one below Py. Moreover, P, and P, can cross only between Py
and Py. So, as P! crosses P, across the gadget, we may take from each P,
one corner “among” P,; and one "below” Py, we take the segment between
them and from each CONV-representation of the new graph we obtain SEG-
representation of the original graph. And as we took SEG-graphs requiring

2.2 CONV-graphs and Cartesian Coordinates 33

exponential size of representation, made a constant blow-up, we constructed
sequence of graphs with property that any their CONV-representation has
exponential size. '

34 Y Complexities of Representations

2.3 Subclasses of subtree-filament graphs

This section is based on author’s common work with Jessica Enright [10].

As mentioned in the Introduction, subtree-filament graphs are exactly
subtree-overlap graphs [11] and we reference them as class SOG. In this
section we describe some results which are now being prepared for publica-
tion. We define classes of k-SOG graphs as classes of graphs representable
as overlap-graphs of subtrees in a tree with (at most) k leaves.

Theorem 13 The recognition problem of 2-SOG is in P. For any (fized)
k > 2 the recognition problem of k-SOG is NP-hard. Moreover, given any
fized tree T with maximum degree at least 3, it NP-hard to decide whether a
given graph can be represented as overlap graph of subtrees of some tree T’
where T is obtained from tree T by subdividing its edges (or equivalently by
replacing its edges by arbitrarily long paths).

The first part of the proof is already known and follows from the fact
that 2-SOG are exactly overlap graphs of subpaths in a path. This class is
exactly class of interval-overlap graphs and also class of CIR-graphs, which
are polynomially recognizable. The hardness part gets represented in three
steps:

2.3.1 Tree with three leaves
Lemma 14 [t is NP-hard to recognize 3-SOG.

Proof. We shall represent a graph by subtrees of three (arbitrarily long) paths
connected to one common vertex. To prove that this is an NP-hard problem
we reduce 3-CON-3-COL. Before we start, we modify the input graph G’ in
the following way: Instead of G’, we need at least 5 copies of it and we need
a 3-connected graph, thus we take two disjoint copies G’ and G”, we pick
one (arbitrary) edge uv and we make adjacent copy of u in G’ with copy of
v in G”. Let us denote these two copies as H. Now we take three copies of
H and for each vertex v, we place a triangle on its three copies. In this way
we obtain a 3-connected graph G consisting of 6 copies of the original graph
G'.

First we use the fact that in any subtree-overlap representation of the
graph S; (see Figure 2.10) either a tree representing s is contained in a tree
representing b or vice versa [12]. In the rest of this section we consider without
loss of generality the former situation, i.e., s gets represented by a subtree of
b (mnemonically, vertex s is the small, while b is the big). For the graph S; we

2.3 Subclasses of subtree-filament graphs 35

S

Figure 2.10: The S;-graph having such a property that when representing it
by overlaping subtrees of a tree, either the subtree representing s is a subtree
of the tree representing b.

observe that there are only two ways how to represent it as an overlap graph
of subdivided star with three leaves. In both cases, both vertices, s and b,
be represented over the branching vertex. We always include the S;-gadget
into the graph we are asking for its representability.

Given an instance G = (V, E) of 3-CON-3-COL, for each v € V we
establish two vertices a,, b, such that a,’s form an independent set, while
b,’s form a clique. Moreover, b,-vertices are adjacent to, both, b and s. Each
a, is adjacent to corresponding b,. For each edge e = {u, v} we add a vertex
ce. These vertices behave very similarly to b,. It means, they form a clique,
they are adjacent to s and b, for each vertex w there is an edge c.b,, and each
¢, is also adjacent to a, and a, (i.e., to a-vertices of its incident vertices).

Coloring of vertices v € G corresponds to representing individual a,’s
onto one wire in the subdivided star. In this way we observe that each 3-
colorable graph can be represented (see Figure 2.11). To show the converse,
we calculate how many "mistakes” can be done by inappropriate representa-
tions of a-vertices. We show that at most edges incident to four vertices can
get represented otherwise than with its endvertices on two different paths
and as we took 6 copies, at least one copy must be properly colored.

Under these assumptions we can observe:

1. At most one a, gets represented as a subset (subtree) of the represen-
tation of b (for such a pair of vertices we would not be able to represent
their c-vertices to overlap b and s and avoiding each other’s a-vertex).

2. No representation of any a, can lie inside the representation of b and
avoid a representation of s at the same time (as there are ”technical
wires” already present and surrounding all three endvertices in the
representation of both s and b), so each a-vertex is represented either
inside s or outside b.

36 ® Complexities of Representations

Ay

Figure 2.11: Given a 3-coloring of the original graph, for a particular vertex
colored by color i, we represent its a-vertex on ith wire. Corresponding b-
vertices are represented in the following way: We start inside corresponding
a-vertex, continue towards the branching-vertex, there we split and attach
two short ”legs”. Subtrees corresponding to a-vertices placed further away
from the branching vertex get shorter ”legs”. This causes a clique on b-
vertices. Each c-vertex (corresponding to individual edge) passes from one
wire to another. Note that two c-vertices represented on the same pair of
wires need not to overlap so far. This problem is solved in the same way as
for b-vertices, i.e., by attaching one short ”leg”. If we have one tree contained
in another, then we attach a new "leg” to each in such a way that the smaller
tree gets a longer ”leg”. Note that generally c-vertices get shorter ”leg” than
b-vertices to get a complete bipartite graph on b- and c-vertices.

2.3 Subclasses of subtree-filament graphs 37

3. Given representations of two a-vertices (a,, a,) that are inside the rep-
resentation of s or outside b, neither contains the other. (We do not
say what contains the a-vertex whose representation contains the whole
representation of b!)

4. It may happen that for some pair of neighboring vertices a-vertices of
both endpoints are represented on the same branch. Such vertices are
called bad guys. Should bad guys occur on two (or more) branches,
say as ay,a, on one branch and a,,a, on another representing ver-
tices connected by edges uv and wz, then it is impossible to represent
buw and by, so as to overlap their respective a-vertices and each other
simultaneously. Moreover, note that these bad guys always occur in
pairs. One member of this pair lies always inside s and other outside b
(or at least one containing the whole b; otherwise b, cannot overlap b
(and not even s).

5. Bad-guy-pairs must not be nested (they must overlap each other; oth-
erwise we cannot force respective b, and by to overlap as one must
contain the other).

6. Bad guys which are not the two "middle-ones”, must have no legally
colored neighbor (otherwise respective b, avoids by passing from any
vertex closer towards the middle).

7. A graph with minimum degree 3 cannot be represented by ”bad guys”
only.

Proof. Either it is K4 (and we check by brute force that at most two
its vertices can be represented on one branch, the other must at least
partially lie in the other branches), or it has at least 5 vertices and then
we draw a picture showing that the fifth vertex must have two edges to
the second vertex (and therefore it is not a graph, but a multigraph).

)

8. As a corollary of 6 and 7, if each 3-connected component of an instance
of 3-COL has minimum degree at least 3, then the whole graph can be
represented using at most two bad guys (a single bad guy is impossible).
More of them cannot be used, because collapse of the whole 3-connected
component is impossible (either it is K, — special analysis why it is
impossible, or it has at least 5 vertices and then we draw until vertex
5 has two edges to vertex 2). If at least 3 vertices in one 3-connected
component collapse into bad guys, from 3-connectivity at least 3 of

38 & Complexities of Representations

them must have legally-colored neighbors violating 6. Now we argue
that among all 3-connected components at most 2 bad guys appear:
Each 3-connected component contains at least 4 vertices and each bad
guy lies in some such component. Therefore each bad guy has at least
one legally-colored neighbor and at most two bad-guys are permitted
to have such a neighbor.

9. As a corollary of 8, 3 and 1 at most one a-vertex may be represented
over the branching vertex (a vertex of degree 3), at most one a-vertex
may be represented over the representation of b and at most one pair of
a-vertices is represented by bad guys. For all other a-vertices belonging
to a particular branch, we give them a color corresponding to this
branch. So in this way we may counterfeit coloring of at most 3 vertices
(these three vertices in two cases simulate that the vertex has all three
colors depending on which color is prohibited and in the third case
one monochromatic edge can be represented). But we take (together)
6 copies of the original graph and if the original graph was not 3-
colorable, a defect must appear in each of these six copies, while only
three of them can be masked by ”inappropriate coloring” (i.e., twice
an a-vertex represented over the branching vertex (once inside s, once
around b) and once bad-guys).

)

2.3.2 General fixed number of leaves

Lemma 15 Given any fized tree T with mazimum degree at least three, it
1s NP-complete to decide whether G can be represented as a subtree-overlap
graph of any T', where T' is obtained from T by subdividing its edges.

To prove this lemma, we need following terminology:

Definition 16 In a tree T a vertex v of degree larger than two is called leaf-
like if removal of v splits T into at most one tree U with maximum degree
larger than two and arbitrarily large set of paths Py, ..., Py.

Proof. We proceed in a very similar way to the previous proof. Let k be
number of leaves of 7" and [minimum degree of leaf-like vertices. We reduce
the k-CON-k£-COL problem. Again at first we add copies of a given graph
to get at least 5 its copies. Instead of S; we establish U} as depicted in the
Figure 2.12. This U} can be represented only in such a way that without

2.3 Subclasses of subtree-filament graphs 39

blfk+:;117k+2

Figure 2.12: Gadget U} consists of k— 1 paths of length 2 connecting vertices
b and s and one path of length 3 connecting these vertices. The middle vertex
of the latter path is x and a similar gadget with [— k4 2 paths is attached to
the vertex x: the first vertices of the first and of the last paths are adjacent
to z; and yy, respectively.

loss of generality, this U can only be represented in such a way that s gets
represented by a subtree of b and s has to be represented over some ver-
tex of degree larger than 2. Similarly, vertex x, which must be represented
by a subtree disjoint with subtree representing s, must be represented over
some branching vertex. Note that it is necessary to find [disjoint paths from
boundary of subtree representing s to subtree representing b and k — [+ 2
disjoint paths from boundary of subtree representing x to the boundary of
subtree representing y. Note that this is possible only when the representa-
tion of s contains some leaf-like node of degree [, while the representation
of x (and as well y) contains all other branching vertices. The rest of the
construction is similar to the case of 3 colors and the analysis is also almost
the same. It means, again, there can be at most two bad guys, a-vertices of at
most one vertex (of the original graph) may be represented over a branching
node (inside the representation of s), at most one may contain the represen-
tation of b and at most one gets represented between the branching-vertex
in subtree representing s and subtree representing x. Again no other pair of
a-vertices contain each other and coloring of v in the original graph by color
1 corresponds to a representation of a, on path from ith leaf. [

40 @ Complexities of Representations

Corollary 17 For all k > 2, it is NP-hard to recognize k-SOG.

Proof. Follows from Lemma 15. We perform the same construction, now
considering the minimum degree of leaf-like vertices to be 3. By the argu-
ments of Lemma 15 we see that we have to represent the vertex s (we still
consider without loss of generality that s gets represented by a subtree of b)
over some leaf-like vertex of degree 3. Vertex x then gets represented over all
other vertices of degree larger than 3. The rest of the argument then holds.

)

Chapter 3

Recognition Problem and
Sandwiching

Since many intersection classes are defined, instead of asking for the recog-
nition problem for each class separately, it is more useful to show that no
polynomially recognizable class can be sandwiched between two particular
classes or that polynomial recognition is preserved under certain conditions.
Given three classes A C B C C, we say that the class B is sandwiched be-
tween classes A and C. This chapter is dedicated to results on sandwiching.

3.1 Homothetic polygons in the plane

Proposition 18 Homothetic convex bodies in a plane win general position
(i.e., no pair has an infinite number of common points on their boundaries)
form an arrangement of pseudo-disks.

Proof. Consider two homothetic convex bodies as given in the Theorem.
Firstly, we consider the case where one body is smaller. In this case we may
use the Banach fixed point theorem for linear mapping which maps the bigger
polygon to the smaller one (it can be obtained as a composition of shift and
scaling). From Banach theorem we obtain a fixed point (it suffices to know
it exists, we do not need an efficient algorithm constructing it). From this
fixed point we start drawing both convex bodies in following way on rays
(from the fixed point): Either the fixed point is inside (both) bodies, then
there appears no intersection. Or the fixed-point is outside (both) bodies.
Then we know that our drawing procedure places appropriate points can be
considered in such a way that we start emanating a ray from the fixed point
in each direction, i.e., we behave like a radar watching its neighborhood. In

42 @® Recognition Problem and Sandwiching

this radar-like method we place/reach (on each ray) points of boundaries of
our convex bodies in this ordering:

1. We reach the start-point of the smaller body,

2. we reach the start-point of the bigger body or the endpoint of smaller
body,

3. the second from the previous point,
4. endpoint of the bigger body.

Let there be at least three rays where the second and the third points (i.e.,
points 2 and 3 of the "radar” algorithm in previous paragraph) are the same
(i.e., the smaller body ends where the bigger body begins). Then these
three points either lie on a common line or not. In the former case, in order
to preserve both polygons between these three points to be convex, we see
that the line between these three points has to be a common border (with
infinitely many common points) and we have a contradiction. In the latter
case, these three points do not lie on a common line, and thus the border
of one of the polygons cannot be convex (the middle point excludes points
between the outer two points for one of the bodies). If the fixed point is
on the boundary, we start ”distributing” the borders of convex bodies with
placing the start-point of the smaller and start-point of the larger. Then we
only have to place the endpoints which have to be distinct (as one body is
smaller, one is larger) and we obtain only one common point of borders (as
otherwise we would have again infinitely many common points).

For two convex bodies of the same size we proceed in the same way, except
that we use parallel lines instead of rays (in appropriate direction) and the
argumentation is the same (which reflects the fact that the ”fixed point” lies
in the infinity). This completes the proof. [)

Observation 19 As the convex polygons are not allowed to intersect only
on their boundaries (they are required to properly intersect or not), we may
consider that any representation is perturbation resistant, i.e., we may slightly
move with any polygon in any direction and obtain (topologically) the same
result. Thus we may consider only representation satisfying the assumptions
of the previous proposition.

Theorem 20 [t is NP-complete to decide whether a graph is an intersection
graph of homothetic copies of a fized convex polygons.

3.1 Homothetic polygons in the plane 43

Proof. For triangles the proof can be found in [29].

We use the construction introduced in [27]. It is known that for an unsat-
isfiable formula the graph (obtained from the construction, see details below)
cannot be represented by pseudo-disks (and due to the previous proposition
the graphs representable by our homothetic polygons form a subset of graphs
representable by pseudo-disks). Thus it suffices to show that the graph ob-
tained from any satisfiable formula can be represented by homothetic poly-
gons in a plane. To do so, we have to introduce following terminology:

Definition 21 For a convex polygon P we choose some orthogonal basis
b1, by such that all sides of the polygon P are neither parallel to by, nor to
by. Given such a basis by, by, we consider the smallest axis aligned rectangle
containing P (its bounding box) and denote it by BB(P). One can easily
see that we may choose a basis such that P touches BB(P) inside BB(P)’s
edges (not in corners).

For an arrangement of homothetic convex polygons we may pick such a basis
bi,by. As we will not be interested in this basis but only in the bounding
boxes, we will not mention that BB(P) depends on the choice of basis. The
basis will be fixed so that no corner of BB(P) is an elements of P.

Now let us recall the reduction. Since the reduction is already described
in [27], we do so briefly:

We reduce E3-NAE-SAT(4) known to be NP-complete to representabil-
ity by homothetic polygons of any shape. The graph consists of gadgets for
clauses, gadgets for variables and connections between them. The gadget for
a variable is Cg with vertices cq, ...cg, which can clearly be represented by ho-
mothetic polygons in a plane. Each occurrence of the variable is represented
by 2 consecutive vertices (cop_1, cor). If the variable’s occurrence is negated,
we swap the labels of cg,_1 and cox. The truth assignment in the representa-
tion is determined by the orientation of the polygons P,,,...P., (which may
be either clockwise or anti-clockwise). The connections are represented by a
ladder (see Figure 3.1) and crucial for the construction is the fact (proven in
[27]) that the ladder cannot distort (i.e., swap vertices ”from the left to the
right”). The path that begins on the left side, never crosses the path on the
right side.

Figure 3.1: The ladder

44 ® Recognition Problem and Sandwiching

The ladders representing the first and the second occurrence (of the par-
ticular variable) are connected by a ”cross-over”-gadget. The third and the
fourth occurrence, too. We want to obtain the ladders representing partic-
ular occurrences (of the variable) with respect to clockwise orientation for
positive and negative variable to appear around the variable-gadget always
in the same ordering (i.e., ladder 1, ladder 2, ladder 3, ladder 4). This cross-
over ensures this. If the variable is assigned true, we make the respective
ladders touch, if the variable is assigned false, we cross them. The crucial
fact (proven in [27]) is that it is impossible for ladders to be twisted: There
is always a "left” row and a "right” row. The cross-over gadget is depicted
in the Figure 3.2.

I i I left raw
b right raw
7

Figure 3.2: Figure shows one cross-over on two ladders. One row in each
ladder is called the left one, the other the right one. Vertex labels correspond
to the labels on the next figure.

Figure 3.3 shows how two ladders can touch or cross. In following text
we use the names from the figure.

More precisely, if we want to cross two ladders, we represent P4 and
Pg by polygons of the same size crossing only slightly. We create Pr and
Pp to be of the same size. So we obtain a quadruple of polygons of width
(2 —¢) - width(P4) and height (1 + ¢) - height(P4). We choose factor p and
create polygons Pp and Pr scaled to Py by factor (1 + p) and make them
crossing slightly more than are P4, and Pg. Now we are using the fact about
bounding boxes that except for small intervals around (four) points where
the polygon touches the boundary of its bounding box, there is a small stripe
(inside the boundary of the bounding box) disjoint with the polygon.

If we want the ladders to touch only, P4...Pp get represented in the same
manner. We represent Pg by a polygon obtained in this way: We take
Pg as a copy of P4 (placed over P4). Then we shift it to the left (to avoid
intersection with P;) and to the bottom. Then we scale it slightly to intersect
Pp (it can be done by scaling by factor (1 +2-¢). Now we have a proper
representation of the whole gadget except Pg. To represent Pg, we take a

3.1 Homothetic polygons in the plane 45

Figure 3.3: The first picture shows how to cross representations of two ladders
in cross-over, the second shows how to touch them only.

46 ® Recognition Problem and Sandwiching

Figure 3.4: The clause gadget, wavy "edges” depict arbitrarily long paths.

copy of Pp (placed over Pp). Then we shift it slightly to the right and start
scaling it up to force the right place of intersections with Pp. We surely may
stop scaling before the critical factor (2 —0) is reached as for the factor 2 — ¢
we could place the polygon to intersect Pg4...Pr and moreover the right-most
corner could be placed below the (bottom) intersection of P4 with P;.

Whenever two ladders leading from variables to clauses cross, we represent
this crossing by the cross-over, too.

After cross-overs the ladder enters the clause gadget. This is repre-
sented by a surrounding circle and a structure inside it (see Figure 3.4).

We can easily see that in the gadget problems can occur only when rep-
resenting vertices abcdB and their neighbors. How to do so is depicted in
the Figure 3.5 and its description, which completes the proof (it suffices to
note that the polygons inside their bounding boxes are convex). Just note
that we analyze the situations on positions of polygons F,, P, and P,, P,.

)

Corollary 22 For any shape between the intersection class of corresponding
homothetic convexr polygons and PDISK no polynomially recognizable class
can be sandwiched.

Proof. The reduction is exactly the same for PDISK as for homothetic convex
polygons. Therefore we obtain either a graph of homothetic convex polygons
or a graph which is not even PDISK-graph. [

3.1 Homothetic polygons in the plane 47

/
/
N
Py XY) N S Wl N AN

Figure 3.5: Case 1 — False/True: We build this representation as while mak-
ing cross-over, but P, has y-coordinate of its left touch-point between y-
coordinates of left touch-points of P; and P, (and the x-coordinates the
same), similarly for the top and bottom touch-point. P, will be created as
a copy of P, slightly scaled down and shifted to the top and to the left to
be from the bottom covered by P, and to have the left and top touch-point
with the same properties as P..

Case 2 — True/True is just special case of the cross-over.

48 ® Recognition Problem and Sandwiching

Pp
2 oY
\P(hl/ \Pc
LS ’e
b SAREN N
'S N N / N
100N N \ AN
h) A N R S
RN N N /1] N AN
111N N\ L N\ N
111 O O 4 N N
it AN ¢ TN AN N
111 NN [N N \\
Pb Y A R \ N \
/7 SO Ve N 1. P
arl \ L7 A \ 'S
/L\ S< 7'~ A \\,
RS ’ g A X
/ ~>~o - N ~~. N KaN
SSSA S T 4 Pm
P, ’ < ~¢l7 4
d S~o 7
~o SS s~ ’ z
S S 4)’\ 7
\\\ \\\ 4 ~Sod/
SS S/ 4
~o ~< »
= SRS

Case 3 — Like Case 1, but instead of P, we start with P.. Then we create
P, as a copy of P., scale P, down slightly, move slightly upwards and even
more slightly to the left to obtain the left touch-point of P,’s z-coordinate
still larger than that of P., but the top touch-point to be on the same y-

coordinate and x-coordinate slightly lower.
P, P,

PB >

~ ~ - \'

S~
= \.,’ —¢

Case 4 — False/False: We proceed like in case 1. After we add P,., we obtain
P, as a copy of P, slightly shifted to the right and we scale it up to obtain
x-coordinate of the left touch-point of P, less or equal than that of P. and
y-coordinate of the left touch-point of P, between those of P, and P;. Now

we start scaling P, up to cover by it the intersection point of P, and P, and
we are done.

3.2 Polynomial reduction for PC-graphs 49

3.2 Polynomial reduction for PC-graphs

First we show that the recognition problem for PC-graphs is in NP (as for
several classes, like segment-graphs or CONV-graphs it is not known whether
respective recognition problem is in NP [37]). We use the notion of alternating
sequence, which was first introduced by Bouchet [3] to recognize circle-graphs:

Claim 23 G is a PC-graph if and only if it has an alternating representation.
Moreover, for a vertex of degree d > 2, at most d occurrences are sufficient,
for vertices of degree at most one two occurrences are sufficient. For a vertex
v we use P, to denote the polygon representing v in a PC-representation.

Proof. This is a well-known fact. The alternating sequence can be ob-
tained from a PC-representation when we take an arbitrary start-point on
the boundary of the circle, go around the circle up to the start-point and
write down names of polygons having a corner on the boundary of the cir-
cle. For a vertex v we use P, to denote the polygon representing v in the
PC-representation. 'y

Lemma 24 The recognition problem for PC-graphs is in NP.

Proof. We guess an alternating sequence (which is polynomially large with
respect to the size of the graph) and verify that exactly those pairs forming
an edge alternate.

Definition 25 We say that a polygon P is visible from a point x if there
exists a ray starting in x that intersects P in a point y such that no point of
the segment xy is contained in any other polygon of the representation. We
say that a polygon P is visible from a polygon Q) if there exists a point x € Q)
such that P is visible from x.

Now we reduce the problem PURE-E3-NAE-SAT to the recognition of
PC-graphs. Given formula ¢, we define a graph G as follows: We start
by two non-neighboring vertices e; and e;. Then we order (and number)
variables vy, vs, ..., v, of ¢. Each variable v contributes to the graph by two
important vertices v and v. Technical details of the construction force us
to represent each v; and v; with polygons which lie under P,, with respect
to P., or under P,, with respect to P., (i.e., for no i neither P, , P.,, P,
nor P,,, P.,, P;, lie around the circle). When v gets represented in the place
under P, and v under P,,, v is assigned TRUE, if v is represented under F,,
and v under P, , v is FALSE, all other possible placements get obstructed
(by not yet described constructions). Under P,, and P,, (with respect to

50 @ Recognition Problem and Sandwiching
a) V3 Vo b) U3 U2
V4 U1 Uy U1
TRUE TRUE
FALSE FALSE
U1 Uy
U2 1_)3
c) VU3 Vg d)
Vg U1
TRUE TRUE
FALSE FALSE
U1 ()
U2 U3 U2 U3

Figure 3.6: Case (a) shows how vertices representing literals should be dis-
tributed around the circle, cases (b) and (c) describe a representation of
satisfied clauses, case (d) shows an unsatisfied clause — note that in the last
case polygons representing the clause must intersect each other. All other
possibilities are equivalent to one of those depicted.

each other) vertices v; and v; get represented, in the ordering of increasing
index as depicted on the first picture of Figure 3.6 where instead of P, and
P., we show a line separating them. We represent each clause (vq,vs,v3) by
two mutually non-adjacent vertices ¢; and g9, where ¢; is adjacent to vy, vy
and v3, and ¢y to vy and vs.

Note that under assumptions of the last paragraph the ”clause”-vertices
(¢1,q2) can be properly represented if and only if neither all three of vy, vo, v3
are assigned TRUE nor (all three) FALSE. These ideas are demonstrated in
the Figure 3.6.

Now we describe the technical part of the reduction. We give a description
of what should be done for three consecutive variables (with respect to the
indices of variables) A, B and C' and for a clause (). Variable B contributes
16 vertices: aq,...as, by, ...bs, c1,...c4,71,72. These vertices behave as in the
Figure 3.7. Variable A contributes 16 vertices with the same labels as for B,
but with a prime. These two variables share four vertices in the following
way: a) = aq,ay = a,b) = by and by = by. In the same way C contributes 16
vertices with double-primes, and so: b] = by, by = bs,af = a; and a7 = as.
All ¢- and r- vertices of distinct variables are adjacent. We add a 6-cycle
e1,T1, Ta, €9, T3, x4. We make the vertex e; adjacent to all c-, r- and a-vertices

3.2 Polynomial reduction for PC-graphs 51

Figure 3.7: Variable gadget. Vertices aq, as, by, b5 and as, ay, bo, by are shared
by gadgets with index larger or smaller by one, respectively. Dashed and
dotted edges are valid only for gadgets belonging to the first or the last
variable, respectively.

except all az’s and the vertex ey adjacent to all ¢-, - and b-vertices except
bs’s. When representing variable v, we connect its copy of a; to x; and b5
to x4, similarly for the last variable we connect its b; to x9 and as to x3.

For each clause) containing literals [q,ls,l3 we add two nonadjacent
vertices ¢; and ¢o make both adjacent to all c- and r-vertices, to e, e and to
all vertices representing the other clauses. Then we make ¢; adjacent with the
bs-vertices of the gadgets representing variables [; and [3 and to the as-vertex
of the gadget representing I, (note that ¢ has only positive occurrences).
Finally we connect g with the as-vertices of the gadgets representing [; and
I3 (not for Iy, it is okay to do so, but more convenient not to).

Note that the as- and bs-vertices of respective variables are exactly the
vertices v and v introduced in the idea of the reduction. When we prove
that as’s and b3’s appear around the circle in desired ordering (i.e., such
that there are two disjoint half-circles in each of which one of as and b
corresponding to each variable v; occur, and do so in order of increasing
index of the corresponding v;), we are done. This gets proven by following
lemma with easy consequence that the variable-gadget must be represented
as depicted in the Figure 3.8.

Lemma 26 When representing one fized variable gadget, polygons represent-
ing its ay, ag, ay, as, bs, by, bo and by appear around the circle and, moreover,
in this ordering.

52 <@ Recognition Problem and Sandwiching

asC3 43 Cog, of v;
¢ (*)64 c3
CQCLQCl K
€1 \ 1
€9 I \
bs b1 . h ey C1
b Ty b2 of vit1 /

Figure 3.8: The picture on the left describes the unique possibility of how to
represent the variable-gadget (up to switching az and b3), the picture in the
middle describes how representants of neighboring variables are represented
and share vertices, polygon (*) represents as of v; and simultaneously as of
vi11, the picture on the right sketches representation of c-vertices belonging
to three consecutive variables.

Note that sharing vertices with "neighboring” gadgets propagates this
orientation to all other variable-gadgets.

Proof. First of all we observe that all mentioned polygons must lie around
the circle, otherwise (if one is blocked by another from the third one, by
simple case-analysis we find a path from the first to the third one avoiding
neighbors of the second — a contradiction).

Another remarkable observation is that a- and b- vertices must not inter-
lace (i.e., around the circle a- and b- vertices are represented in two disjoint
circular-arcs). This is straightforward as otherwise we cannot represent ver-
tices e; and e,.

The rest is simple observation following from the fact that C; can be
represented only by four-tuple of polygons lying around the circle, thus the
subgraph consisting of as, as, a4, by, b3, ba, ¢1, ...c4 enforces polygons represent-
ing as, a4, by and by in desired way. Polygons representing aq, as, b5 and b,
follow from simple case analysis (another placement immediately leads to
irrepresentability). [

Lemma 27 The constructed graph without clause-vertices can be represented
only in such a way that polygons representing the as’s and bs’s appear around

the circle, and consecutive literals (around the circle) have increasing indices
(mod n).

Proof. Corollary of Lemma 26.

3.2 Polynomial reduction for PC-graphs 53

=

Figure 3.9: Illustration to the proof of Lemma 28. We demonstrate how
to extend P, and F,, with respect to representants of c- and r-vertices of
particular variables, arrows show some of the corners of ¢g-polygons, arrows
connected by a curve belong to one another. First we extend the polygons
to cover the area depicted in the left picture, then we extend both polygons
to almost touch as depicted in the right picture.

Now we know that an unsatisfiable formula cannot be represented (be-
cause polygons representing corresponding vertices must intersect each other
although they represent non-adjacent vertices). Thus we have to show:

Lemma 28 For a satisfiable formula ¢, it is possible to represent the graph
obtained from our construction.

Proof. After representing the variable-gadgets as depicted in the Figure 3.8
for each clause we add two vertices ¢; (having three neighbors among the
az’s and b3’s) and ¢ (having two such neighbors) in such a way to intersect
relevant P,,’s and P,,’s and extend them to correctly intersect all auxiliary
polygons. We choose one variable v; of [; and I3 which is the ”end-variable”
for P, (i.e., which is not blocked by P,, from P,,’s of [; and I3)'. We extend
P, and P, to cover almost half of the circle (we proceed for P,, P, is
similar): P,, has three corners intersecting relevant P,, and P,,’s. We add a
corner intersecting P, of v;_;. Now except P,, and P,, of v;_; and v; we are
intersecting exactly what we should. So we add a corner under P,, of v;_
with respect to P,, and P,, and simultaneously P,, of v; and we are done.

'Formally when exploring this blocking we consider P, restricted not to intersect P,
of I; and l3 because blocking is defined only for disjoint polygons.

54 9 Recognition Problem and Sandwiching

Lemma 28 finishes the proof of the theorem:

Theorem 29 [t is NP-complete to recognize whether a graph G has a PC-
representation.

3.3 Extension for IFA-graphs

Definition 30 Let G be an interval-filament graph G and R be its represen-
tation. For each vertexv € V(G) we denote by F, the filament corresponding
to v and by I, the underlying interval (of the filament).

We are interested in the ”topological” position for three mutually non-
intersecting filaments. Note that two principal positions are that either from
each filament either both other are visible or neither are. This visibility can
be defined in the following technical way:

Definition 31 For a triple of non-intersecting filaments F,, F, and F,. we
say that F, is covered by Fy against F, if either I, C I, C I. (or the reverse)
or I, C I, and IyN 1. = 0 (or the reverse). For a set F of filaments we say
this set lies consecutively on the base-line if I, is not covered by F, against
F. for any triple F,, Fy, F. € F .

Theorem 32 [t is NP-complete to decide whether a given graph is an [FA-
graph.

The theorem is proven in two parts. First it is necessary to show that the
recognition problem is in NP. This was already proven in [19]:

Theorem 33 G is IFA-graph if and only if it is co-(co-INT-mized)-graph.
Corollary 34 The recognition problem of IFA-graphs is in NP.

Proof. We guess an appropriate INT-graph H (with an interval representa-
tion), an appropriate partial-ordering P of vertices and check correctness.

)

For the reduction we use almost the same graph as for PC-graphs and the
same basic ideas. We subdivide each a- and b-vertex into two new vertices for
a; named f;, g; and for b; we name them h; and j; (to obtain 6-cycles instead
of 4-cycles in the variable-gadget). New variable-gadget is depicted in the
Figure 3.10. The e; is adjacent to all f;’s and g¢;’s again, except f3’s and g3’s,
and similarly the e; is adjacent to all h- and j-vertices. The clause gadget is

3.3 Extension for IFA-graphs 55

Figure 3.10: The variable-gadget for graphs of interval filaments is similar to
the gadget for PC-graphs, only C}y’s are subdivided into Cj’s. Again dashed
lines apply only to the first variable while the dotted to the last.

created similarly as for PC-graphs, both new polygons Py, and P,, (or P,
and Pj,) are intersected instead of P,,’s (or P,’s, respectively). Note that
for a satisfiable formula this graph is a PC-graph. Now we show that for an
unsatisfiable formula such a graph does not even have an [FA-representation.
The argument is similar to the case of PC-graphs, there are just more cases
to analyze.

Observation 35 Filaments representing f- and j- (and similarly g- and h-)
vertices lie consecutively on the base-line.

This observation is almost obvious. If it does not hold, there is a triple
F,, F,, I, such that F, is covered by F), against P,. But for each possible
triple in G exists a path connecting x with z avoiding neighborhood of y
(corresponding to arc-connected curve from F, to F), either we traverse
directly inside the variable gadget, or we traverse to the neighboring gadget
and use "a bridge” of ¢;’s. But F} together with the base-line form a Jordan
circle, F is (without loss of generality) inside, F, outside, a contradiction.

We generalize the notion of consecutive occurrences to circularly consec-
utive:

Definition 36 For a set of disjoint filaments Fy,...F, lying consecutively
on the base-line we say that this set is circularly consecutive if there exists
i € {0,...,n} such that for all j # i interval I; precedes interval I;41 (i.e.,
its right endpoint is to the left of the left endpoint of I;11) where j + 1 is

56 @® Recognition Problem and Sandwiching

¢ C3 €4 C2 C2 G4 c3 €1 C2 €4 C3

C2 C1 C3 Cq

Figure 3.11: These are (up to symmetries) the only possibile representations
of vertices ¢, co, c3 and ¢4 of the variable gadget.

considered modulo n+1 and I; either contains all other intervals or I; precedes
Tigy.

Lemma 37 To represent a variable-gadget up to symmetry the c-vertices
must occur as depicted in the Figure 3.11.

Proof. By simple case analysis. [
We prove following Lemma similar to Lemma 26:

Lemma 38 Filaments representing f1, fa, f1, f5, J5, Ja, J2, J1 are circularly con-
secutive.

Proof. By case-analysis: Again we start observing that relevant f- and j-
filaments must not interlace (otherwise e; and ey irrepresentable) and we
check that in none possibility described in the Figure 3.11 this assumption
can be violated unless the sub-representation cannot be extended. We start
by exploring possible placements of pairs ¢;,c;i1. We observe that when

I., C I, , endpoints of I, are covered by Jordan circle consisting of (possibly
parts of) Fy,, ., Fy, , and Iy, U, oneand Fy,,,, Fj;,, and Iy, , I;,,. For

case when I, NI, = () this is true for both F,, and F,, . This observation
proves Lemma for cases 2, 3 and 4 of the Figure 3.11. In case 1 it is necessary
to note that I, cannot lie between [y, and [, (irrepresentability of e;,es)
and the Lemma follows. '

This Lemma finishes the proof of NP-hardness of IFA-graphs.
As the construction for IFA-graphs produces either a PC-graph, or a
graph that is not an IFA-graph, we proved:

Theorem 39 No polynomially recognizable class can be sandwiched between
PC-graphs and IFA-graphs (i.e., C such that PC C C C IFA), unless P=NP.

Proof. By contradiction. We show that existence of such a problem implies
P=NP. Consider such a polynomially recognizable class C. Then we may

3.3 Extension for IFA-graphs 57

consider its polynomial recognition algorithm. But when we use the reduction
for IFA-graphs (which produces either PC-graph or not IFA-graph), this
polynomial algorithm would be able to solve E3-PURE-NAE-SAT, which is
NP-hard and therefore P=NP. [

58

Recognition Problem and Sandwiching

Chapter 4

Graphs with large girth

4.1 PC-graphs

Note that in this section we use terminology defined in subsections 2.1 and
3.2. Let us recall that a graph G = ({vy,...,v,}, E) is a PC-graph if and
only if there exists an alternating sequence S of letters vy, ..., v, such that
vv; € E(G) if and only if v; and v; alternate in S.

In general, visibility of polygons is representation dependent and two
representations with the same alternating sequence may differ in visibilities
from one point (see Fig. 4.1). This is not the case for K3-free graphs:

Lemma 40 Let S be an alternating sequence containing one occurrence of a
special symbol x (that corresponds to a 1-gon in any respective PC-representation)
and let R and R’ be two PC-representations with alternating sequence S. If
S (and thus R and R') represent a Ks-free graph, any polygon that is visible

o

Figure 4.1: An example of two representations of the same graph with the
same alternating sequence. In the first one, the polygon a is visible from =,
but not in the second one.

60 y Graphs with large girth

from x in R is also visible from x in R’, and vice versa.

Proof. By contradiction. Consider two representations R and R’ of a K3-free
graph G. Let R and R’ provide the same alternating sequence and let there be
a point x and a polygon A such that in R the polygon A is visible from x and
in R’ not (note that by a point x we refer to a place between two consecutive
symbols in respective alternating sequences). Consider individual polygons
that block visibility in R’. All of them must intersect with A (otherwise such
a polygon blocks visibility in R, too). Consider the last polygon B that has
some corner (without loss of generality) "to the right” from z (see Figure 3).
We know that B intersects with A (it must have all corners on the bounding
circle and must not cover A against point z, as it would do so in R). Then
the next one C must have at least one corner "to the left” from x, moreover,
it intersects with B (because on the ”envelope” it is the next one) and by the
same argumentation as for B it intersects with A. Thus we have a triangle
in G and a contradiction with the assumption that G is Ks-free.

We conclude this introductory subsection by making two observations
regarding the connectivity of minimal non-PC-graphs.

Lemma 41 A graph G is a PC-graph if and only if all its connected compo-
nents are PC-graphs.

Proof. We take alternating representations of individual components and
place them one after another.

Lemma 42 A graph G is a PC-graph if and only if all its biconnected com-
ponents are PC-graphs.

Proof. Again we use alternating representations. Let H and J be induced
subgraphs of GG sharing an articulation m. We rotate the alternating repre-
sentations of H and J in such a way to obtain one occurrence of m at the
beginning of the sequence representing JJ and one at the end of sequence rep-
resenting H. We concatenate the representation of J after the representation
of H. An inductive application of this argument proves the lemma.

4.1.1 Decompositions

In this section we introduce technical notions and lemmas leading to the
recognition algorithm.

4.1 PC-graphs 61

b

Figure 4.2: An example of the pair-cutting decomposition. At the top of
the figure is the original graph with vertices a and b forming a cutting edge.
Below are depicted the three elements of its pair-cutting decomposition based
on ab. Note that the left one and the right one are pc-primes, but the middle
one is not

Definition 43 Let G = (V, E) be a graph. An edge ab whose endpoints form
a cut in G is called a cutting edge. Let C1, Cy, ..., C) be the connected compo-
nents of G[V \ {a,b}] for a cutting edge ab. The pair-cutting decomposition
of G based on ab is the collection of graphs G = (C; U {a,b, c}, E(G[C; U
{a,b}] U {ac,be}, where ¢ is a new extra vertex, i = 1,2,... k.

A graph is called pe-prime (pair-cutting-prime) if it has no nontrivial
pair-cutting decomposition (i.e., if every cutting edge divides the graph into
one connected component and a single vertex).

Proposition 44 A biconnected graph G with a cutting edge ab is a PC-graph
if and only if all the graphs in the pair-cutting decomposition based on ab are
PC-graphs.

Proof. We start with the alternating representations Si,...S; of the graphs
G, ...G in the pair-cutting decomposition. Without loss of generality we
may assume that each of them begins with the newly added vertex c. Let S;
be obtained from S; by removing all occurrences of ¢ and adding an occur-
rence of a to the beginning and an occurrence of b to the end of the sequence.
Then the concatenation S; ... S} is an alternating representation of G.

62 O Graphs with large girth

Obviously a and b alternate. By our transformation we could not lose any
alternation among vertices of G. Thus it suffices to check that we did not
add new ones. For i # j, any symbol from S; distinct from @ and b cannot
alternate with any symbol from Sj (distinct from a and b). Suppose that by
replacing the first occurrence of ¢ by a we have created a new alternation of
a and x # bin S;. Thus in S; all occurrences of a lie between two occurrences
of x. But a and c alternated in S;, thus between these two occurrences of
x there is an occurrence of ¢ and thus x and ¢ alternated. Hence x = b (c
alternated only with a and b), which is a contradiction.

The converse is clear from the fact that the class of PC-graphs is closed
under taking induced minors and the fact that each G is an induced minor
of G. Indeed, for some j # i, contract all vertices of C; into a single vertex
¢ and contract all vertices of all remaining C)’s for [# ¢, j into the vertex
a. Since GG was biconnected and vertices a and b formed a cut, ¢ is adjacent
exactly to a and b.

The previous proposition could be a corner stone of a recognition al-
gorithm for PC-graphs. However, presently we are only able to decide on
graphs of large girth, and then the reduction is inconvenient because it cre-
ates short cycles. For this sake we introduce the following adjustment. In
each element of the pair-cutting decomposition G[V (C;) U {a,b}] we mark
the edge ab "red” instead of adding the triangle abc. We will talk about the
red-edged decomposition and each element of this decomposition will be called
a red-edged graph. 1t is not true anymore that a biconnected graph is in PC
if and only if each red-edged component of the decomposition is a PC-graph.
However, we can still control how to glue representations together if G' has
no short cycles.

In the sense of Definition 43 we denote by G¢ the graph obtained from G
by adding a new vertex adjacent to the end-vertices of e. Similarly, Gk is
the graph obtained by adding k new vertices, each connected to the endpoints
of one of the edges e;.

Observation 45 Let R be an alternating representation of a graph G . If
this representation can be extended to a representation of G, it can be done

so by adding the subsequence cabc between some two consecutive symbols in
R.

Proof. Consider an alternating representation S of G® which is an extension
of R. First we remove all new occurrences of symbols distinct from a, b and
c (if any). Still we have a representation of G® which extends R. Now we

4.1 PC-graphs 63

T

Figure 4.3: Polygon B has one corner to the right from z, polygon C' to the
left.

reduce the occurrences of ¢’s. We greedily try to remove them one by one.
For each of them, if ¢ still alternates with both a and b, the occurrence is
removed. Note that after we process all occurrences of ¢, exactly two of
them remain in the representation. (Since c alternates with a, b, at least two
occurrences must remain. A simple case analysis shows that among more
than two occurrences of ¢ at least one is superfluous.) Since in this step we
removed only occurrences of ¢, no alternations were lost.

Now we replace the rightmost occurrence of ¢ with cabc and denote this
alternating sequence S. We show that no new alternations appear. This is
obvious for alternations of any pair of symbols distinct from a and b. Suppose
a alternates with some = # b (for alternation of b and z, the argument is
analogous). We know that S contains a subsequence ...c...a...cabc... and to
create a new alternation of x with a by adding cabc, the newly added a
must appear between two occurrences of . But then these occurrences of
x surround the rightmost occurrence of ¢ and thus ¢ alternates with x in S.
Hence x = b, a contradiction. Finally, we remove the leftmost occurrence of
¢ and all new occurrences of a and b (with respect to R) except of cabc and
we obtain the desired extension of R. Indeed, ¢ alternates with both a and
b since both a and b occurred in R.

Proposition 46 Let G be a connected red-edged graph of girth at least 4 with
Q = {e,...ex} being the set of its red edges. Let R be a PC-representation
of G. If for any e € Q, the representation R can be extended into a rep-
resentation of G¢, then R can be extended into a representation of G,

Proof. We prove the statement by induction on the number of red edges.
Of course, the statement is obvious if G has just one red edge. Otherwise,
consider e; = ab.

64 © Graphs with large girth

Using Observation 45 we extend R to R’ by adding cabc to represent G,
but then (in order to eliminate the triangle abc) we replace the newly added
cabc by ciacocibey. In this way we obtain a representation R* of the graph
G* = (V(G)U{cy, e}, E(G) U{acy, cica, cob}), and clearly R* extends R.

The key observation (proved below) is that for any other red edge wv,
R* can be extended to a representation of (G*)". Since G* is K3-free and
has smaller number of red edges than G, the induction hypothesis implies
that R* can be extended to a representation R of (G*)®. The desired
representation of G extending R is now obtained by renaming ¢; = ¢y =
¢, which corresponds to contraction of the edge cicy into vertex c.

Key observation: Let R be a representation of a connected Kj-free
graph G with red edges ab and uv. If R can be extended to R’ representing
G and to R” representing G, then R can be extended to R representing
Gab,uv.

Without loss of generality consider that R’ is obtained by adding cabe
to the beginning of R. Note that since each subsequence cabc or wuvw can
be added separately, problems may be caused only by unwanted alternations
between some symbol of a, b and some of u,v. We analyze two cases. Either
R’ is also created by placing wuvw to the beginning of R, or not.

Case 1: R” is wuvwR. In this case we without loss of generality consider
that a and u do not alternate in R (a cannot alternate with both v and v as
G is Ks-free) and that all occurrences of a are preceded by all occurrences
of u (either this holds or we reverse the sequence, if none of these sequences
are good, R contains ...u...a...u... or ...a...u...a... and R’ or R” would not
represent G% or G*, respectively).

Let R = cabcwuvwR. By the assumptions on occurrences of a and u in
R, a and u do not alternate in R. Suppose a and v do not alternate in R,
we show that they do not alternate in R either (and similar arguments apply
to alternations of b and u, and also of b and v). Since v alternates with u
in R, v occurs at least once before the last occurrence of v and hence all
occurrences of v lie before the first occurrence of a (otherwise again R’ or R”
do not represent G or G, resp.). Hence v and a do not alternate in R.

Case 2: Let R’ = cabcR and let Ry, Ry be nonempty sequences such that
R" = RywuvwRy (and hence R = R Rs). Let R = cabcRywuvw Ry (i.e., the
smallest common extension of R’ and R”). We continue by contradiction.
Suppose without loss of generality that @ and u alternate in R but not in R
(and hence neither in R’ and R”). We claim then either R; or Ry contains
neither u nor a. At least one of R; and R, contains both a and u, and assume
without loss of generality that both symbols appear in R,. Again we analyze
two cases:

4.1 PC-graphs 65

a) Both a and u appear in both R; and R,. To avoid alternation in R’
and R”, no a may appear after the first v in Ry, thus in R; all a’s lie before
all u’s. The same argumentation implies that in R, all a’s lie after the last
u. So

R = cabc...a...a.. 0UVW. . U AU..G..q....

and hence u and a do not alternate in R.

b) The sequence Ry only one of the symbols, say a (for u the argument
is similar). We know that the new alternation in R uses the first occurrence
of a (in cabc) and the first occurrence of u (in wuvw), otherwise a and u
would alternate in R’ or R”. So R contains a subsequence caRjwu...a...u...
(since there are no u’s in Ry). But we know that R; contains at least one
occurrence of a and hence a and u alternate in R”.

Therefore R; contains no a’s and u’s.

Similarly as we argued before, all occurrences of a must preceded all
occurrences of a in Ry (because a and u alternate in R but not in R’ nor in
R"). Thus R contains subsequence

cabcRiwuvw...a...u...

Because the graph G is connected, at least one symbol x occurring in R
also occurs in Ry (otherwise the symbols in R; would form connected com-
ponents).

Depending on the position of occurrences of x in Ry, x alternates with
a or uin R and hence also in R (if z # b, v, then this follows from the fact
that 2 alternates with the same symbols in R as in R, and if = b or & = v
then z alternates with a or with u, respectively, by default).

If x alternates with u in R, we know that at least one its occurrence is
after the last occurrence of a in Ry (because all u’s are after the last a) and
thus x alternates with a in R’ and therefore in R, too. Analogously, when x
alternates with a in R, it alternates with u as well. Thus x alternates with
both a and « in R and hence R contains a subsequence

cabe...x.. wuvw...T...q.. ... T. ..

The rightmost a and u refer to the last a and to the first u in Ry, without
loss of generality let © # v. We know that at least one occurrence of v is
after the first u and hence after the last a in Ry (otherwise u and v would
not alternate in R). Therefore R contains a subsequence

cabe...x.. wuvw...T...q.. ..V

and v alternates with x in R” and thus in R, and we have a triangle zuv in
G, a contradiction.

66 7 Graphs with large girth

Figure 4.4: The first two pictures show pseudoears of type I and II, the
third one is an example of a vertex we operate with in our version of ear-
decomposition lemma. Solid lines denote edges, dashed lines represent paths.

4.1.2 Pseudoears

A well-known characterization of biconnected graphs is given by the ear-
decomposition lemma:

Lemma 47 A biconnected graph can be constructed from any of its cycles
by consecutive addition of paths (with endpoints in the already constructed
subgraph, so called ears) and/or single edges.

However, we need a version where the constructed graph is an induced
subgraph, and therefore we need to avoid adding edges. Thus we define the
technical notion of a pseudoear and introduce a special version of this lemma
for Ks-free graphs.

Definition 48 Let H be an induced subgraph of a graph G, and let U =
ay ...as be an induced path in H of length at least 2. A pseudoear attached
along U is an induced path P = py...py in G\ H of length at least 1 such that
either

I. H has length at least 8 and E(P, H) = {p1a1, pras}, or

II. U = ajasas has length 2 and E(p, H) = {pra1}, E(px, H) = {pras},
and E({p2a ce >pk—1}7 H) g {pza'2|z = 27 ey k— 1}

Lemma 49 Any biconnected Ks-free graph without cutting edges can be con-
structed from any of its induced cycles by consecutive addition of pseudoears
and/or single vertices adjacent to at least two vertices of the so far con-
structed subgraph. On the other hand, any Ks-free graph constructed in this
way 18 biconnected and has no cutting edges.

4.1 PC-graphs 67

D1

ay

Figure 4.5: Ilustration to the proof of Lemma 49.

Proof. Since pseudoears are special types of ears and addition of single ver-
tices can be composed from addition of one ear and several edges, the bicon-
nectedness of the constructed graph follows from the classical ear-decomposition
lemma. The nonexistence of cutting edges follows from the assumed Ks-
freeness. Hence the key part of the lemma is its first (constructive) part and
we proceed with the proof of this one.

Suppose the statement is not true and consider a smallest counterexample
G. Let H be a largest (induced) subgraph of G that can be created by adding
pseudoears and/or single vertices as stated in the lemma. Then each vertex
in G\ H has at most one neighbor in G, otherwise we have a contradiction
with the maximality of H. Let us consider a shortest path P = pps...px on
vertices of G\ H such that this path has exactly two distinct neighbors a;
and as in H (such a path exists since G is biconnected, e.g., each shortest
ear from the classical ear-decomposition has this property). Obviously, pia;
and pras are the only edges between P and H. If ajas is not an edge in G,
p1.--pr is a pseudoear (attached along any induced path a;...az) and H was
not the largest possible subgraph, a contradiction. If ajas do form an edge
in G, we know (because G has no cutting edge) that there exists a path R
connecting P with H \ {aj,as}. Consider a shortest possible R = p;ry...rpas.
Observe that az is not adjacent to both a; and as (G is Ks-free), but r
can be adjacent to several vertices of P. Without loss of generality assume
as3aq € E(G)

Since H is biconnected, as lies on a path ajas...a3. Because of the min-
imality of R, all neighbors of ry,...,r,_1 in H are among {aj,as} and az
is the only neighbor of r,, in H. Suppose first that asas ¢ E(G), i.e., the
path aqas . ..az has length at least three. If any r; is adjacent to as, we take
the largest such ¢ and note that the path r;r;...r,, is a pseudoear of type I
attached along as...as. If this is not the case, but some r; is adjacent to aq,
we take the largest such ¢ and note that the path r;r;;4...1,, is a pseudoear of
type I attached along ajas...a3. Otherwise, let h be the smallest index such

68 % Graphs with large girth

or

Figure 4.6: Demonstration of a jammed polygon — b is jammed with respect
to x.

that rmpn € Eg (clearly h < [), then p;...ppri...1, is a pseudoear of type I
attached along ajas...as. Each of these cases contradicts the assumption of
maximality of H.

If asag € E(G), the argumentation is similar, only we aim at pseudoears
of type II. If any r; is adjacent to a;, we take the largest such ¢ and note
that the path r;r;1q...r, is a pseudoear of type II attached along ajasas.
Otherwise, let h be the smallest index such that rip, € Eg (clearly h < 1),
then py...ppr1...7, is a pseudoear of type II attached along aqaqas.

Each of these cases contradicts the assumption of maximality of H.

4.1.3 Jammed polygons

Definition 50 A polygon P in a PC-representation is jammed with respect
to a point x outside P (and inside the bounding circle or on its boundary) if
any straight ray starting in x which intersects P also intersects some other
polygon of the representation.

Lemma 51 Let P = b...c be an induced path of length at least 2 in a bi-
connected PC-graph G. Then for all PC-representations of G, all polygons
representing the inner vertices of P are jammed with respect to any point x
which lies on the bounding circle and from which all polygons representing
the vertices of P are visible.

Proof. Consider a given PC-representation R of G. Let x be the point on
a bounding circle from which all polygons representing the vertices of P
are visible. Then all polygons representing the vertices of P lie around the
circle (otherwise no such point z exists) and moreover, the situation looks

4.1 PC-graphs 69

C1 b1

Figure 4.7: An illustration to the proof of Lemma 51.

as depicted in Figure 4.7, i.e., if by and c¢; are the corners of P, and P,
(resp.) closest to z, then all polygons representing P lie outside the arc
bixzc;. Consider uw € P\ {b,c}. As G is biconnected, G' = G \ {u} is
connected. Consider a shortest path @Q = b...c in G’. The representation of
G’ obtained from R by removing P, contains a representation of a path @
connecting P, and P,.

By the x-envelope of Rg (representation R restricted to ()) we mean the
set of points z € Uyeq P, such that the open segment xz does not intersect
any polygon of the representation. The z-envelope of R is a Jordan curve
going from b; to ¢;. Since P, lies outside the arc byxcy, any ray from x
intersecting P, has to intersect the z-envelope of Rg and hence also some
polygon representing a vertex from (). Thus P, is jammed with respect to x.

A sector is the arc of the bounding circle between any two consecutive
corners. Analogously, in an alternating sequence it refers to the place between
two consecutive symbols.

Observation 52 If a polygon is jammed with respect to one point in a sector,
then it is jammed with respect to all points of this sector. [

Lemma 53 If a polygon P, is jammed with respect to some point in a sector
xy in a representation R of a biconnected graph G and if G' is obtained from
G by pending a vertex u of degree one on v, then in every representation of
G’ which extends R and has at least one corner of P, in the sector xy, all
corners of P, are in the sector vy and P, must get a new corner there. #

70 & Graphs with large girth

Lemma 54 Fvery biconnected pc-prime graph with girth at least 5 has at
most 1 minimal PC-representation.

Proof. By induction on the number of pseudoears added in the construction
of the graph. The first step is obvious: C} with k& > 5, can be represented
only by bigons lying around the bounding circle, and such representation is
up to symmetries, unique.

Now consider a graph G obtained from H by adding a pseudoear or a
single vertex. Consider a minimal PC-representation of G. When we remove
polygons representing vertices of the pseudoear (or the single vertex), from
the induction hypothesis we obtain an extension of the unique minimal PC-
representation of H. We take this minimal representation R, and investigate
how to extend it into a representation of G:

1. Adding a pseudoear of type I. The pseudoear, say p1, ...px, consists of at
least two vertices adjacent to exactly two vertices a; and az in H having
(in H) distance at least 3. We need a sector, into which both P,, and
P,, can be extended (i.e., to add a corner) without adding unwanted
intersections. Such a sector is uniquely determined, as otherwise H is
not biconnected. (Indeed, if both P, and P,; can be extended into
two different sectors, let a;; and a5 be two possible new corners of P, .
The same points can be used by F,,. Thus we know that the segment
a11a12 intersects only polygons representing common neighbors of ay
and ag. Since H is Cy-free, there is at most one such common neighbor
and H is not biconnected.)

Let the unique sector be (in terms of alternating sequence) ...xy... and
let ...zajasy... be an extension of R to a representation of H (note that
exactly one of ...xajagy... and xazayy... is a valid representation of H).
We first extend the representation to

< TP2P1P3P2P4AP3 - -PkPk—1Y---

which is the only minimal way to represent the path pi..pp. If © #
a1, change the subsequence ...zpsp;... to ...xp1apaps ..., otherwise (i.e.,
when = = ay) change it to ...p;zpep;... and analogously for y and as.
It is not difficult to see that this is the unique minimal extension of R.
In the first case apply Lemma 51 to (any) zy-path in G. Since a; (or
a3) is jammed in R, it is necessary to extend it into the xy sector by
Lemma 53. In the second case again the choice is unique, otherwise
again the graph H was not biconnected.

4.1 PC-graphs 71

2. Adding a pseudoear of type II. Again we find a unique sector into which
ai,as and as can be extended. At the first sight it might appear to be
sufficient to find two sectors, one that can extend a; and as, second one
that can extend ay and ag, but in this case when representing some p;,
we split H into non-trivial blocks. Because of Lemma 51 P,, is jammed.
We behave like in the first case, only those p;’s adjacent to ay will be
interlaced by as. Each p; is necessary to intersect by as separately
and it is necessary to extend ap (because P,, is jammed, because it
is necessary to represent all p;’s around the circle and because H is
K3-free).

3. Adding a single vertex v. For each triple of its neighbors we check
whether they lie around the circle. If a is covered by b against ¢, we
may omit intersection of P, with b as it will be intersected as a side-
effect of intersecting a and ¢. Now we have set of polygons lying around
the circle that should be intersected by P,.

Now we restrict H to neighbors of v represented around the circle C'
and non-neighbors of v, set N. If I is representable, no non-neighbor
of v covers one its neighbor against another. Given one correct corner
of v and one polygon P, (for ¢ € C) there are three possibilities how
to ensure intersection of P, and P.. Either we immediately cross P.
by P, or we extend P, and cross it by P, together with some other P,
(for d € C) or we extend P, and add a corner of P, to intersect only
this polygon. For each polygon there is possible only one of these three
possibilities. In all cases, wherever we represent the new corner of P,
we can represent the new corner of P, in the same place. Also note that
in the first case, wherever we represent the new corner of P,, we can
represent the corner of P, in the same place. Assume that there are two
possibilities for representing the respective corner of P, in the second
and in the third case and two possibilities for representing P, in the first
case. Then we connect these two endpoints by a segment and we know
that this segment intersects only P, and thus divides the representation
into two blocks which contradicts the biconnectivity of H (this segment
intersects only polygons in the intersection of neighborhood of ¢ and
neighborhood of v (which is empty) and from the graph H only polygon
representing c¢. Note that the proof is invariant under choice of "the
correct” corner of P,. Thus for the algorithm we start by brute force
choosing a polygon representing fixed ¢; € C, try all possibilities for
"the correct” placement of one corner of P,. This step does not rely on
the ordering of neighbors, thus we add two symbols to the alternating
sequence at most n times in total, which is implementable in O(n®).

72 & Graphs with large girth

4.1.4 Algorithms
Algorithm 1:

Input: A biconnected graph G

Output: Decision whether G has a PC-representation.

Auxiliary variables: H — set of graphs, S — set of representations, initially
empty

Add G to set H.

while exists /' € 'H with a cutting-edge ab do
remove F' from H and replace it by the elements of the red-edged decompo-

sition of F' with respect to ab.
done
forall F € H do
if Algorithm2(F)="false’ then return 'false’

else
add the representation of F' provided by

Algorithm2(F) into S
done

forall R€ S do
for e € red_edges_of(graph_ of(R)) do

if Algorithm3(R,e)="false’ then return 'false’;
return 'true’;

The correctness of Algorithm 1 follows from Lemmas 41, 42 and Proposi-
tions 44, 46. Now we present the algorithm for finding a representation of a
pe-prime graph as the rest is either brute-force or obvious (and was described
above).

In the Algorithm 2 we call an arc of a bounding circle between two corners
of polygon as a sector.

Algorithm 2:

Input: pc-prime graph G.
Output: PC-representation or false.
Auxiliary variables: Graph H, initially empty.

while (|[V(H)| < |[V(G)]) do
find a pseudoear or a single vertex P attachable to H;
by brute force represent it;
if the representation is impossible then return false;
add P to H;

done

4.2 SEG- and PSEG-graphs 73

The algorithm for finding pseudoears (or single vertices) implements the
(constructive) proof of Lemma 49: finding a suitable representation follows
the proof of Lemma 54. Note that looking for a pseudoear or a single vertex
is (naively) possible in O(n?), and representing a pseudoear is possible in
O(n') (looking for feasible sector, trying different placements of p; and py).
Note that we are adding pseudoear (or a single vertex) only linearly many
times. Thus the algorithm is polynomial.

Algorithm 3:

Input: Alternating representation R of a graph GG and a red edge ab = e in
G (c is not a vertex of G)
Output: Decision whether G, has PC-representation.

1. By brute force try to add cabc between all consecutive pairs of symbols
into alternating representation and check whether we obtain correct
representation. If we at least once succeed, return representation;

2. return false’

The algorithm is just brute force, but polynomial. The correctness is obvious
from Observation 45.

Our algorithm works only for graphs of girth at least 5. Most of claims is
proven for Ks-free graphs, but for graphs of girth 4 we have no equivalent of
Lemma 54. Moreover, we can construct graphs of girth 4 with exponentially
many minimal representations. Such a graph is depicted in Figure 4.8. Thus
the recognition problem of K3-free PC-graphs remains open.

4.2 SEG- and PSEG-graphs

In this section meet two questions. The recognition problem for graphs with
large girth with the sandwiching problem.

Theorem 55 For all k given a graph G with girth at least k, it is NP-hard
to decide whether G is a SEG-graph. The same holds for PSEG-graphs.

Proof. We use construction similar to [33]. This time we reduce P3CON-
E3-SAT(4). For a formula ® and an appropriate planar embedding of corre-
sponding graph G(®), we construct a graph H with girth at least k such that
whenever H is a SEG-graph, ® is satisfiable while non-satisfiable ® produces
not even PSEG-graph.

74 S Graphs with large girth

a1 by
L —
bo B
as
b by
by 2 2! p,
bn—l
an—1 I~
I
ai (27
az Ap_1 ayn by

Figure 4.8: Construction of graphs with girth 4 having exponentially many
minimal PC-representations. Note that pairs a;, b; can be switched in the
representation.

We modify the graph G(®) in the following way: Each vertex correspond-
ing to a variable we replace by a circle of length max{16,k}. Each edge of
G(®) will be replaced with pair of long-enough paths containing a gadget
called cross-over. Each vertex corresponding to a clause gets replaced by a
clause gadget. The assignment to variables we obtain similarly to a section
3.1 from the orientation of the circle representing particular (variable) vertex.
The ’orientation’” of pair of paths from the vertex gadget to a clause gadget
describes whether respective occurrence in a clause is positive or negative.
By ’orientation’ of a pair of paths we mean that one path is "to the left” to
the other. This is a standard trick that appears, e.g., also in [33].

From each variable gadget (forming a cycle) vy,dy,ve,ds ..., vs,ds... for
each occurrence of this variable we place two paths. If the occurrence is
positive, then the first path starts in v;_1, the second in vy;. If the occur-
rence is negated, we change this ordering (the first path starts in vy;, the
second in vy;_1). Vertices denoted by d; are dummy vertices forcing the SEG-
representation to place the whole segment v; before (resp. after) v; when
running on the boundary of segments representing the variable gadget. For
the sake of simplicity, one path will be called the ’left” path, one the ’right’
path. As there is given ordering in which these pairs of paths must start
from the variable gadget, and as the assignment is given by the orientation
of the cycle (variable gadget), i.e., when passing around the cycle having the
interior by the left-hand-side, vertices appear in ordering vy, vo, v3 Or v3, Vg, U1

4.2 SEG- and PSEG-graphs 75

U1 l l sector U

v
1 D1 n
dqe sector S
V24 P2 D2
®
U3¢ D3 sector V
® p4
—
4 V4

Figure 4.9: Cross-over gadget and its representation starting from the vari-
able gadget. Broken line denotes sequence of arbitrarily many segments
(depending on required girth). Arrows in the representation offer two possi-
bilities where to continue.

on this circle. Thus it is necessary to ensure that respective occurrences of
the pairs of paths will appear in the correct ordering. We do so again by
placing the cross-over gadget between the first and the second and then
between the third and the fourth pair of the paths.

This cross-over allows two pairs of paths either to cross, or to touch only.
Up to now, the cross-over gadgets that were used, were independent on many
factors: In particular it was not necessary to know which path from the pair
is on the left and which on the right. Two pairs simply either crossed, or
touched only. These gadgets allowed us to solve non-planar versions of the
problem SAT-problem, but unfortunately, they were based on C'y occurrences.
Our new cross-over needs to know which path is ”on the left” and which one
is "on the right”, but this is OK when reducing P3CON3SAT(4).

The new cross-over gadget is depicted in the Figure 4.9. It is possible to
either cross two paths or touch only. For the following claim it is necessary
to say that the clause-gadget will be surrounded by a circle. Both paths
representing one occurrence of one variable are adjacent to a common vertex
of this circle surrounding the clause-gadget.

Claim 56 Cross-over is a SEG-graph. Moreover, if this gadget appears in a
graph obtained by our construction, segments x and y have to intersect inside
the second pair of paths (like shown in the Figure 4.9).

Proof. The first part (SEG-representation) is obvious from the Figure. More-
over (pseudo)segments x and y have to intersect each other. They cannot
intersect outside S, as the original graph G was 3-connected, sectors U and
V' are divided by Jordan circle. Because of neighbors of vertex represented

76 & Graphs with large girth

Figure 4.10: Clause gadget

by x, it is impossible to pass from sector U to V otherwise than we show.
Now x and y must intersect inside S as y divides sector S into left and right
sector. Without loss of generality the left sector creates another Jordan circle
that must be crossed by x and must be crossed by y.

Corollary 57 The left-right orientation of the paths does not change within
cross-over.

Remark: Note that the argumentation so far performed for both, variable-
and cross-over-gadget works also for CONV-graphs.

Now we present the clause-gadget. It is depicted in the Figure 4.10.
This gadget can be represented by (pseudo)-segments whenever at least one
variable is evaluated by true.

Lemma 58 The clause-gadget has a (pseudo)segment representation if and
only if at least one variable is evaluated to TRUEF.

Proof. We proceed using the Figure 4.11. When the top literal is true, we
represented the paths denoted by dashed lines inside the circle in the gadget.
Even if the "top” literal is false, at least one dashed line can always be
represented inside the circle. Moreover under those circumstances by any
true "bottom” literal corresponding dashed path can be represented outside
the inner cycle.

Theorem 59 For any fized k between class of SEG- and PSEG-graphs re-
stricted to graphs with girth at least k no polynomially recognizable class can
be sandwiched, unless P=NP.

4.2 SEG- and PSEG-graphs 77

Figure 4.11: Representation of the clause. On the left the top literal evalu-
ated to true, on the right the bottom two literals true.

Proof. Clear from the fact that satisfiable formulae formed a SEG-graph,
while non-satisfiable ones could not be represented even by pseudosegments.
If it was possible to sandwich some polynomially recognizable class between
SEG and PSEG, an appropriate polynomial recognition algorithm would
provide a solution of an NP-complete problem in polynomial time. [

78

Graphs with large girth

Chapter 5

Conclusion and open problems

Despite being explored for years, classes of graphs with geometrical represen-
tations provide many open problems that are hard in general graphs. The
community is interested in tractability of problems that are NP-hard in gen-
eral, as well as in even faster algorithms for already polynomially solvable
problems. Some of the interesting currently open problems are:

e Does each planar graph have an intersection representation by homo-
thetic triangles in a plane? (Kaufmann, Kratochvil, Lehmann, Sub-
ramanian in [29]) The article [29] gives several interesting results for
graph-optimization problems for this class, on the other hand it shows
that the recognition problem is NP-hard and effective algorithm finding
such a representation for planar graphs would be helpful. It is known
[7] that each planar graph is a contact graph of triangles (triangles do
not intersect, each pair shares at most one point), but triangles in the
cited article are not homothetic. In [1], it is shown that series-parallel
graphs are intersection graphs of homothetic triangles. There is also
a conjecture of Felsner and Kratochvil that each 4-connected planar
triangulation has a contact representation by homothetic triangles. A
proof of this conjecture would answer the question.

e Can the problem of maximum clique for segment graphs be solved in
polynomial time? (Kratochvil and Nesetril in [38]) This question was
asked by Kratochvil and Nesettil when they proved that this problem
can be polynomially solved when segments use only fixed number of
directions [38] (such a class is called k-DIR, segment graphs form union
of these classes). This problem and state of current knowledge is nicely
described in [2].

@ Conclusion and open problems

e Can subtree-overlap graphs be recognized (represented) in polynomial
time? This question is opened since 2000 when Gavril [18] introduced
a polynomial-time algorithm for maximum clique and independent set.
Class of subtree-overlap graphs is exactly the class of subtree-filaments
[11] and it generalizes many other intersection classes (e.g., class of
polygon-circle graphs, circle graphs, circular-arc graphs). Gavril’s al-
gorithm for maximum clique and independent set operates with a repre-
sentation. Recently we proved that the recognition problem for polygon-
circle graphs and interval-filament graphs is NP-complete, therefore
importance of this question increases, although it is expected to be
NP-complete (the converse would be surprising).

o What is the complexity of recognition of CONV- and string graphs with
girth (i.e., length of the shortest cycle) at least 52 (Kratochvil and
Pergel in [40]) For several classes (polygon-circle graphs [40], or pseu-
dodisk graphs — intersection graph of pseudodisks in a plane) it is known
that the recognition problem becomes polynomially solvable when we
are given a graph without short cycles. Therefore it was believed that
the recognition problem gets easier for graphs with high girth. On the
other hand we have shown that for segment and pseudosegment graphs
this problem remains NP-hard even for graphs of arbitrarily large girth.

o What is the complexity of recognition of cactus subtree graphs? A cac-
tus is a graph obtained from a circle by consecutively sticking circles
to a vertex of an already constructed cactus. This class obviously
generalizes class of chordal and circular-arc graphs. Conversely, it is
generalized by class of polygon-circle graphs. As we have shown that
polygon-circle graphs are hard to be recognized and as for them some
interesting polynomial-time algorithms are known [18], it is important
to ask whether cactus-subtree graphs can be recognized efficiently. This
class was mentioned by Gavril in several his texts [19, 20, 18].

e What is the complexity of recognition of bicircular-arc graphs? (Felsner,
private communication) Bicircular-arc graphs are intersection graphs
representable by convex objects consisting of convex hull of two circular
arcs (on one fixed circle). This question was posed by Stefan Felsner af-
ter polygon-circle graphs appeared to be NP-complete. This class gen-
eralizes polynomially recognizable class of trapezoid graphs [15] and is
generalized by class of polygon-circle graphs. At first this class seemed
to behave like 3-PC-graphs, whose recognition is NP-complete but af-
ter some attempts it appeared to be much weaker in some sense. This

81

problem is another attempt to find largest possible polynomially rec-
ognizable class for Gavril’s algorithms on maximum weighted clique
and maximum weighted independent set, after polygon-circle graphs
appeared to be hard (as well as graphs of interval filaments). The
number of two circular arcs is maximum possible. Our reduction [39]
with a slight modification shows hardness of the recognition problem
also for intersection graphs of objects obtained as convex hulls of three
(or more) circular-arcs (on a common circle).

Is the recognition problem in NP for class of segment graphs and for
class of intersection graphs of convex polygons? (Kratochvil and Ma-
tousek in [37]) Both classes are known to be NP-hard to recognize [33],
moreover, in [37], it was shown for segment graphs that the Cartesian
coordinates of endpoints may lead to exponentially large description.
We have extended this result even for intersection graphs of convex
polygons in a plane. For string graphs (that were considered to be
harder than segment graphs) the recognition problem was shown to be
in NP [48]. For graphs of segments and convex polygons in a plane this
problem remains open. The recognition problem is only known to be
in PSPACE [37].

Sandwiching problem: As many intersection-defined classes are being
explored, it does not suffice to decide whether one particular class can
be polynomially recognized. More efficient approach is to detect classes
between whom are the "recognition gaps”, i.e., where no polynomially
recognizable class can be sandwiched. For the first time such a gap
was introduced by Kratochvil [33]. Our reduction makes a similar gap
between PC-graphs and graphs of interval filaments [46]. Still it is
not known, for example, what is the smallest function f such that
given a PC-graph we can decide in polynomial time whether it can be
represented by (at most) k-gons (inscribed into a circle), or whether at
least f(k) + 1-gons are needed. Our result only shows that f cannot
be identity.

Are segment graphs near-perfect? Are graphs of interval filaments near-
perfect? The former is a well-known question of Paul Erdos. Interval
graphs are known to be perfect, polygon-circle graphs are known to
be near-perfect [32]. For segment graphs this problem remains open.
To anwser the near-perfectness question would be interesting also for
graphs of interval filaments and for string graphs as for these classes
this question was posed by Kratochvil. We have found an intersection-

82

& Conclusion and open problems

defined class which is not near-perfect, but the representing sets con-
sisted of two arc-connected sets in a plane.

What is the most efficient FUN-representation that can be found in
polynomial time? We have already mentioned the fact that it is hard to
find an optimum k such that a given graph is a PER,-graph. It is known
that each graph with n vertices is a PERz-graph, as a counterpart,
we cannot approximate this k& with better factor than Q(y/n) (unless
NP C ZPP). The problem is to determine better bounds and another
reasonable question is to establish an inapproximation result without
using the assumption that NP C ZPP. Note that this problem is also
well-studied, as it is exactly the poset-dimension problem.

Bibliography

1]

M. Badent, C. Binucci, E. Di Giacomo, W. Didimo, S. Felsner, F. Gior-
dano, J. Kratochvil, P. Palladino, M. Patrignani, and F. Trotta. Ho-
mothetic triangle contact representations of planar graphs. In P. Bose,
editor, CCCG, pages 233 — 236. Carleton University, Ottawa, Canada,
2007.

J. Bang-Jensen, B. Reed, M. Schacht, R. Sdmal, B. Toft, and U. Wag-
ner. Topics in Discrete Mathematics, Dedicated to Jarik Nesetril on the
Occasion of his 60th birthday, volume 26 of Algorithms and Combina-
torics, chapter On six problems posed by Jarik Nesettil, pages 613 —
627. Springer, Berlin, M. Klazar, J. Kratochvil, M. Loebl, J. Matousek,
R. Thomas and Pavel Valtr edition, 2006.

A. Bouchet. Circle graph obstructions. Journal of Combinatorial The-
ory, Series B, 60(1):107 — 144, 1994.

C. Dangelmayr and S. Felsner. Chordal graphs as intersection graphs
of pseudosegments. In M. Kaufmann and D. Wagner, editors, Graph
Drawing, volume 4372 of Lecture Notes in Computer Science, pages 208
— 219. Springer, 2007.

C. Dangelmayr and M. Pergel. On the complicacy of intersection graphs
of polygons. in preparation, 2008.

H. de Fraysseix. A characterization of circle graphs. FEur. J. Comb.,
5:223 — 238, 1984.

H. de Fraysseix, P. O. de Mendez, and P. Rosenstiehl. On triangle
contact graphs. Combinatorics, Probability €& Computing, 3:233 — 246,
1994.

G. Ehrlich, S. Even, and R. E. Tarjan. Intersection graphs of curves in
the plane. Journal of Combinatorial Theory, Ser. B, 21(1):8 — 20, 1976.

84

® BIBLIOGRAPHY

[9]

[10]

[11]

[16]

[17]

E. S. Elmallah and L. K. Stewart. Polygon graph recognition. Journal
of Algorithms, 26(1):101 — 140, 1998.

J. Enright and M. Pergel. On some subclasses of subtree-overlap graphs.
in preparation, 2008.

J. Enright and L. Stewart. Subtree filament graphs are subtree overlap
graphs. Information Procesing Letters, 104(6):228 — 232, 2007.

J. A. Enright. Subtree overlap graphs — towards recognition. Msc. thesis,
University of Alberta, 2006.

E. M. Eschen and J. P. Spinrad. An O(n) algorithm for circular-arc
graph recognition. In SODA, pages 128 — 137, 1993.

S. Even, A. Pnueli, and A. Lempel. Permutation graphs and transitive
graphs. Journal of Association for Comp. Machines, 19(3):400 — 410,
1972.

S. Felsner, R. Miiller, and L. Wernisch. Trapezoid graphs and general-
izations, geometry and algorithms. Discrete Appl. Math., 74(1):13 — 32,
1997.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou.
The complexity of coloring circular arcs and chords. SIAM Journal of
Algebraic and Discrete Methods, 1(2):216 — 227, 1980.

F. Gavril. Algorithms on circular-arc graphs. Networks, 4:357 — 369,
1974.

F. Gavril. Intersection graphs of helly families of subtrees. Discrete
Appl. Math., 66(1):45 — 56, 1996.

F. Gavril. Maximum weight independent sets and cliques in intersection
graphs of filaments. Information Processing Letters, 73(5 — 6):181 — 188,
Mar. 2000.

P. C. Gilmore and A. J. Hoffman. A characterization of comparability
graphs and of interval graphs. Canadian Journal of Mathematics, 16:539
— 548, 1964.

BIBLIOGRAPHY 85

22]

[25]

[26]

[27]

[30]

[31]

M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs (An-
nals of Discrete Mathematics, Vol 57). North-Holland Publishing Co.,
Amsterdam, The Netherlands, The Netherlands, 2004.

D. Goncalves, P. Ochem, and J. Chalopin. personal communication.
2006.

A. Gyarfas. Problems from the world surrounding perfect graphs. Zas-
tosow. Mat., 19(3 — 4):413 — 441, 1987.

R. Hedge and K. Jain. The hardness of approximating poset dimension.
Electronic Notes in Discrete Mathematics, 29:435 — 443, 2007.

T. Hiraguchi. On the dimension of orders. Sci. Rep. Kanazawa Univ.,
4(4):1 — 20, 1955.

P. Hlinény and J. Kratochvil. Representing graphs by disks and balls (a
survey of recognition-complexity results). Discrete Mathematics, 229(1
—3):101 — 124, 2001.

I. Holyer. The NP-completeness of edge-coloring. SIAM J. Comput.,
10(4):718 — 720, 1981.

M. Kaufmann, J. Kratochvil, K. A. Lehmann, and A. R. Subramanian.
Max-tolerance graphs as intersection graphs: cliques, cycles, and recog-
nition. In SODA, pages 832 — 841. ACM Press, 2006.

D. J. Kleitman and B. L. Rothschild. Asymptotic enumeration of partial
orders on a finite set. Trans. Amer. Math. Society, 205:205 — 220, 1975.

M. Koebe. On a new class of intersection graphs. In Proceedings of

the Fourth Czechoslovak Symposium on Combinatorics Prachatice, pages
141 — 143, 1990.

A. V. Kostochka and J. Kratochvil. Covering and coloring polygon-circle
graphs. Discrete Math., 163(1 — 3):299 — 305, 1997.

J. Kratochvil. String graphs. II. recognizing string graphs is NP-hard.
Journal of Combinatorial Theory, Series B, 52(1):67 — 78, 1991.

J. Kratochvil. Intersection graphs of noncrossing arc-connected sets in
the plane. In S. North, editor, Symposium on Graph Drawing, GD
'96, Berkeley, California,, September 18 — 20, 1996, pages 268 — 270.
Springer, 1997.

86

& BIBLIOGRAPHY

[35]

[36]

[37]

[38]

[39]

[45]

[46]

J. Kratochvil, A. Lubiw, and J. Nesetfil. Noncrossing subgraphs in
topological layouts. SIAM J. Discrete Math., 4(2):223 — 244, 1991.

J. Kratochvil and J. Matousek. String graphs requiring exponential
representations. J. Comb. Theory, Ser. B, 53(1):1 — 4, 1991.

J. Kratochvil and J. Matousek. Intersection graphs of segments. J.
Comb. Theory, Ser. B, 62(2):289 — 315, 1994.

J. Kratochvil and J. Nesettil. INDEPENDENT SET and CLIQUE prob-
lems in intersection defined classes of graphs. Comment. Math. Univ.
Carolin., 31:85 — 93, 1990.

J. Kratochvil and M. Pergel. Two results on intersection graphs of
polygons. In G. Liotta, editor, Graph Drawing, volume 2912 of Lecture
Notes in Computer Science, pages 59 — 70. Springer, 2003.

J. Kratochvil and M. Pergel. Geometric intersection graphs: Do short
cycles help? In G. Lin, editor, COCOON, volume 4598 of Lecture Notes
in Computer Science, pages 118 — 128. Springer, 2007.

M. Massow and P. Allen. personal communication. 2008.

J. Matousek and J. Nesetril. Invitation to Discrete Mathematics. Oxford
University Press, Oxford, U.K., 1998.

T. A. McKee and F. R. McMorris. Topics on Intersection Graphs. STAM,
1999.

J. Pach and G. Téth. Recognizing string graphs is decidable. Proceedings
9th International Symposium GD 2001, Vienna 2001, Lecture Notes in
Computer Science, 2265:247 — 260, 2002.

M. Pergel. Algoritmy na prunikovych grafech. Master’s thesis, Charles
University in Prague, Faculty of Mathematics and Physics, 2003.

M. Pergel. Recognition of polygon-circle graphs and graphs of interval
filaments is NP-complete. In A. Brandstadt, D. Kratsch, and H. Miiller,
editors, WG, volume 4769 of Lecture Notes in Computer Science, pages
238 — 247. Springer, 2007.

D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of
vertex elimination on graphs. SIAM Journal on Computing, 5(2):266 —
283, 1976.

BIBLIOGRAPHY 87

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

M. Schaefer, E. Sedgwick, and D. Stefankovi¢. Recognizing string graphs
in NP. J. Comput. Syst. Sci., 67(2):365 — 380, 2003.

M. Schaefer and D. Stefankovic. Decidability of string graphs. In ACM
Symposium on Theory of Computing, pages 241 — 246, 2001.

J. Spinrad. Recognition of circle graphs. J. Algorithms, 16(2):264 — 282,
1994.

J. P. Spinrad. http://www.vuse.vanderbilt.edu/~spin/open.html.
1995.

J. P. Spinrad. Efficient Graph Representations. American Mathematical
Society, 2003.

A. C. Tucker. An efficient test for circular-arc graphs. SIAM J. Comput.,
9(1):1 — 24, 1980.

W. Unger. On the k-colouring of circle-graphs. In R. Cori and M. Wirs-
ing, editors, STACS, volume 294 of Lecture Notes in Computer Science,
pages 61 — 72. Springer, 1988.

M. Yannakakis. The complexity of the partial order dimension problem.
SIAM J. Algebraic Discrete Methods, 3(3):351 — 358, 1982.

