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Introduction

Forward rate agreements (FRA) and interest rate swaps (IRS) constitute a large
part of the market of interest rate derivatives. They are used by big financial
institutions to manage their interest rate risk as well as by speculators to achieve
some profit. The main goal of this thesis is to describe and review how FRAs and
IRSs were priced and valued before and after the financial crisis of 2007/2008.

After introducing a basic interest rate theory and the nature of FRAs and
IRSs in the first two sections, we proceed with section 3, which shows how pric-
ing and valuation formula were derived before the financial crisis. This section
demonstrates how it was possible to move between a discount, spot and forward
curve when pricing and valuing the derivatives.

Section 4 revisits pricing and valuation in the aftermath of the financial crisis.
We focus on the the introduction of OIS discounting and its implications.

The final section 5 is devoted to a numerical example which compares pricing
and valuation before and after the crisis. It also discusses the implication of OIS
discounting on forward interest rates and the derivatives’ value.

To make the text more clear, the thesis avoids technical details of the deriva-
tives’ contracts. We focus on the underlying principles of the pricing and val-
uation. The reader should be able to deal with the technical details once he
understands the principles.

It should be also noted that the author wrote bachelor thesis on the same
topic in the past, [Rolák, 2013], which focuses more on the economic perspective
of the pricing and valuation. On the contrary to that thesis, in the following text
we confine our attention on the financial mathematics nature of the topic.
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1. Interest rates: definitions and
notations

This section provides basic definitions and notations necessary for working with
interest rate derivatives. We start with more general definitions and then grad-
ually transition to the interest rate setup used for our FRA and IRS pricing
purposes. These foundations of interest rates can be found for example in chap-
ter 1 [Brigo and Mercurio, 2006], from where we freely take over the basic terms
and definitions.

1.1 Spot rates and zero coupon bonds

The concept of the time value of money claims the unit of money available at the
present time to be worth more than the same amount in the future.

Definition 1. A continuously compounded yield of a risk-free investment over
an infinitesimal period of time is called the short rate. It is a stochastic process
and we shall denote it by r(t), where t ≥ 0.

Definition 2. Let B(t) represent the value of a bank account at time t ≥ 0. The
bank account’s interest is accrued continuously at r(t) available for any infinites-
imal period of time t. Assuming B(0) = 1, we can write

B(t) = exp

(∫ t

0

r(u)du

)
. (1.1)

Defintion 2 says that the future value of invested a unit amount of cash at
0 is worth at time t the amount from (1.1). The question is then how much an
investor should invest at t to achieve a unit amount of cash at T > t. The answer
provides a discount factor.

Definition 3. The discount factor D(t,T) between two time instants t and T is
the amount one would have to invest at t into the bank account to collect a unit
amount of cash at T. We shall denote it

D(t, T ) =
B(t)

B(T )
= exp

(
−
∫ T

t

r(u)du

)
.

It is important to note that since the interest rate r(t) is stochastic, D(t, T )
also becomes a random process at time t dependent on the evolution of the future
rate r(t) between t and T . The discount factor is in a close relationship with a
zero-coupon bond price.

Definition 4. A zero-coupon bond is a security promising to pay a unit amount
of cash at its maturity time T. There are no payments prior to the maturity. We
shall denote the zero-coupon bond price P(t,T). Let P(T,T)=1 for every T.
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Unlike D(t, T ) the zero-coupon bond price P (t, T ) is deterministic at time t.
It can be shown, see e.g. [Brigo and Mercurio, 2006], that P (t, T ) can be viewed
as an expectation of the random variable D(t, T ) under a certain probability
measure. We will not further focus on the stochastic nature of interest rate process
r(t) and set attention to its deterministic version. If we assume the interest rate
process to be a function of time, both the bank account and discount factor
also become deterministic functions of time. The following definition enable us
measure the time between two time instants.

Definition 5. The time difference between T − t (in years) is denoted by τ(t, T ).
The method to measure τ(t, T ) is called a day-count convention.

For example the 30/360 day-count convention assumes that months are 30
days long and years 360 days long. The time difference between dates D1 =
(d1,m1, y1) and D2 = (d2,m2, y2) in the 30/360 day-count convention is as follows

τ(D1, D2) =
max(30− d1, 0) +min(d2, 30) + 360(y2 − y1) + 30(m2 −m1 − 1)

360
.

We can now formulate the deterministic version of definition 1.

Definition 6. Let R(t,T) be the continuously-compounded spot interest rate avail-
able at time t with maturity T and P(t,T) price of the zero-coupon bond at t.
R(t,T) is such a rate at which P(t,T) continuously accrues to yield a unit of cash
at T

R(t, T ) = − lnP (t, T )

τ(t, T )
.

While r(t) constantly changes over the period, R(t, T ) is a constant for the
whole period (t, T ). This fact enable us to transition between R(t, T ) and P (t, T )
and vice versa

P (t, T ) = e−R(t,T )τ(t,T ),

eR(t,T )τ(t,T )P (t, T ) = 1. (1.2)

We can look at this transition between R(t, T ) and P (t, T ) from a different
point of view. Let us consider two investing strategies, one is to buy P (t, T ) and
hold it to maturity T , the other is to lend money for (T−t) at the spot rateR(t, T ).
Assuming the same risk profile of both investments, they should provide the same
payoff at T , i.e. (1.2) should hold. It is needed to note that this concept of
thinking is theoretical as P (t, T ) are theoretical quantities which are not directly
quoted on financial markets [Brigo and Mercurio, 2006]. We usually derive P (t, T )
from a given set of interest rates. The following definitions introduce other types
of compounding which work with discrete time and compounding frequency.

Definition 7. Let L(t,T) be the simply-compounded spot interest rate known at
time t with maturity T and P(t,T) price of the zero-coupon bond at t. L(t,T)
is such a rate at which P(t,T) is invested at t and produces a unit of cash at
maturity T

L(t, T ) =
1− P (t, T )

P (t, T )τ(t, T )
. (1.3)
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Similarly to continuous-compounding, the relationship between L(t, T ) and
P (t, T ) is clear

P (t, T )(1 + L(t, T )τ(t, T )) = 1,

P (t, T ) =
1

1 + L(t, T )τ(t, T )
.

Finally we have k-times-per-year compounding.

Definition 8. Let Y k(t, T ) be the k-times-per-year compounded spot interest rate
known at time t with maturity T and P(t,T) price of the zero-coupon bond at t.
Y k(t, T ) is such a rate at which P(t,T) is invested at t and produces a unit of
cash at maturity T. The interest is always reinvested after each k-th of the year
at Y k(t, T )

Y k(t, T ) =
k

[P (t, T )]1/(kτ(t,T ))
− k.

For k = 1, we obtain annually-compounded spot interest rate

Y (t, T ) =
1

[P (t, T )]1/(τ(t,T ))
− 1. (1.4)

Similarly to (1.2) we can write

P (t, T )

(
1 +

Y k(t, T )

k

)kτ(t,T )
= 1,

P (t, T ) =

(
1

1 + Y k(t,T )
k

)kτ(t,T )
.

It can be shown that the continuously-compounded interest rate is the limiting
case of k-times-per-year compounded interest rate

lim
k→∞

Y k(t, T ) = lim
k→∞

k

[P (t, T )]1/(kτ(t,T ))
− k,

= lim
k→∞

−kτ(t, T )([P (t, T )]1/(kτ(t,T )) − 1)

τ(t, T )[P (t, T )]1/(kτ(t,T ))
,

= − lnP (t, T )

τ(t, T )
= R(t, T ).

In the final part of this section, we define a spot curve and zero-bond curve.
The latter will be further reffered to as a discount curve.

Definition 9. The annually compounded spot curve is the graph of the function
which maps maturities T expressed in years to their respective spot rates

T 7→
{
L(t, T ) t < T ≤ t+ 1,
Y (t, T ) t+ 1 < T.
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Similarly we can build a spot curve for different compounding conventions.
For example a curve with semiannual compounding, a 6M (6-month) spot curve,
fits the following

T 7→
{
L(t, T ) t < T ≤ t+ 0.5,
Y 2(t, T ) t+ 0.5 < T.

The interbank offered rate (IBOR) is the estimated average rate at which
reference banks could obtain unsecured funds for a given period and currency from
other reference banks in the interbank money market. This interbank offer rate
is called EURIBOR, PRIBOR, LIBOR in the Euro, Prague, London interbank
money market respectively. However, as there is only a finite number of spot
rates available, one has to interpolate between these quotes. To construct the
following PRIBOR spot curve, we used linear interpolation.

1M 2M 3M 6M 9M 1Y
Maturity

0.1

0.2

0.3

0.4

Spot rates (%)

Figure 1.1: PRIBOR spot curve as of 15.4.2016.

With given spot rates, we can calculate discount factors as per (1.3), (1.4)
and construct the discount curve.

Definition 10. The discount curve is the graph of the function mapping matu-
rities T expressed in years to their respective discount factors

T 7→
{
P (t, T ) T > t,
1 T = t.

We can now construct a PRIBOR discount curve to our PRIBOR spot curve.
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0.997
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0.999

1.000

Discount factor

Figure 1.2: PRIBOR discount curve as of 15.4.2016.

1.2 Forward rates

With given spot rates, we can calculate at t the present value of a future cash-
flow occurring at T by multiplying it by P (t, T ). However, as we approach T , the
changes of spot rates will result in variability of the present value of the cash-flow.
Thus we might be interested in the expected future spot rates known as forward
rates. The forward rates can be inferred from the spot rates. An implied forward
interest rate F (t;T, S) is a rate known at t with an interest rate period starting
at T and maturing S, where t ≤ T < S. We will refer to T as the expiry. We
can calculate F (t;T, S) through the following equation

1 + L(t, S)τ(t, S) = (1 + L(t, T )τ(t, T ))(1 + F (t;T, S)τ(T, S)), (1.5)

F (t, T, S) =
1

τ(T, S)

(
1 + L(t, S)τ(t, S)

1 + L(t, T )τ(t, T )
− 1

)
. (1.6)

Similarly to (1.5), we would calculate a forward rate for k-times-per-year com-
pounding. The equality in (1.5) in other words says that investing cash at L(t, S)
should provide the same payoff as investing at L(t, T ) and then rolling the invest-
ment at F (t;T, S). This equality is discussed in more detail in Section 3.1. Since
we can calculate discount factors from spot rates, we can use discount factors to
derive forward rates.

Definition 11. The simply-compounded forward interest rate F(t;T,S) known at
time t for the expiry T and maturity S, t ≤ T < S, is defined by

F (t;T, S) =
1

τ(T, S)

(
P (t, T )

P (t, S)
− 1

)
,
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the k-times-per-year compounded forward interest rate F(t;T,S) is then

F (t;T, S) = k

[(
P (t, T )

P (t, S)

)1/(kτ(T,S))

− 1

]
.

For our purposes, we will only need to build a simply-compounded forward
curve, which we fill further refer to as a forward curve.

Definition 12. Let F(t;T,S) be a simply-compounded forward interest rate. A
simply-compounded forward curve at time t is the graph of the function mapping
expiry T expressed in years to its forward rate with tenor S-T.

T 7→ F (t;T, S) t ≤ T,

clearly F (t;T, S) = L(t, S) for T = t.
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2. Interest rate derivatives: FRA
and IRS

This chapter provides a short description of four interest rate derivatives: forward
rate agreements, fixed-for-floating interest rate swaps, basis swaps and overnight
index swaps. For more extensive description of these financial derivatives see e.g.
popular textbook [Hull, 2014].

2.1 Forward rate agreements

Forward rate agreements (FRAs) are over-the-counter derivative contracts be-
tween two parties who agree at time t to exchange interest rate payments at
the future time T > t. The FRA buyer makes an interest rate payment at T
based on a fixed rate K and a notional N negotiated at t. The other party, the
FRA seller, makes an interest payment based on a floating reference rate L(T, S)
and on the same notional N at T , where S is the maturity of the FRA contract.
τ(T, S) = S−T is then the interest rate period of the FRA contract. The interest
rate period is commonly up to one-year-long and is subject to simple compound-
ing. When we work with the interest rate derivatives in the thesis, the reference
rate is IBOR.

The FRA contract parties do not settle the whole interest rate payments but
exchange only the difference between them. If L(T, S) > K at T , then the FRA
buyer receives the interest rate payment from the FRA seller at time T

N(L(T, S)−K)τ(T, S)P (T, S). (2.1)

The direction of the payment in (2.1) is opposite if L(T, S) < K. There is no
payment at time T from either party in case of L(T, S) = K.

2.2 Fixed-for-floating interest rate swaps

Fixed-for-floating interest rate swaps are over-the-counter derivative contracts
between two parties similar in design to FRAs. FRAs can actually be viewed as
the simplest form of a fixed-for-floating interest rate swap. The buyer of such
a swap is called the fixed-rate payer and pays at times T1 = {T1,1, . . . , T1,n} the
following

NKnτ1,i,

where Kn is the swap rate, τ1,i ∈ τ1 = {τ1,1, . . . , τ1,n} and is the year fraction
between T1,i−1 and T1,i.

The swap buyer in return receives from the swap seller floating payments

NL(T2,i−1, T2,i)τ2,i

at times T2 = {T2,1, . . . , T2,m} and have in general a different year fraction τ2 =
{τ2,1, . . . , τ2,m}. The floating rate resets at times T2,0, . . . , T2,m−1. We call times
T1,0, T2,0 the start dates of the fixed and floating leg. The start dates can be the
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same as origin t of the contract or can be assigned to future time T > t. If T1 = T2,
only the difference between the payments is settled. If L(T2,i−1, T2,i) > Kn, the
fixed-rate payer receives at times T1 = T2

N(L(T2,i−1, T2,i)τ2,i −Knτ1,i). (2.2)

The direction of the payment in (2.2) is opposite when L(T2,i−1, T2,i) < Kn.

2.3 Basis swaps

The difference between basis swaps and fixed-for-floating is that both parties
exchange regular floating payments. Thus we can call the basis swap the floating-
for-floating swap. One party makes regular floating payments linked to a floating
reference rate Lx(T2,i−1, T2,i) at times T1

NLx(T1,i−1, T1,i)τ1,i,

where x is the underlying interest rate tenor, typically x ∈ {1M, 3M, 6M, 12M}.
Other notation is consistent with the one of the fixed-for-floating swaps. The
other party makes payments at T2

NLy(T2,i−1, T2,i)τ2,i,

based on a floating reference rate Ly(T2,i−1, T2,i), where y ∈ {1M, 3M, 6M, 12M}
and y 6= x. The party of the shorter tenor usually adds a basis spread bs to its
reference floating rate. This clarifies the name basis swap.

2.4 Overnight index swaps

The overnight index swap (OIS) is in design a fixed-for-floating interest rate swap
defined in 2.2. The buyer of the swap makes fixed payments

NKOIS,nτ1,i,

where KOIS,n is an OIS rate. The floating floating-rate payments are

NL(T2,i−1, T2,i)τ2,i,

where each L(T2,i−1, T2,i) is linked to the annual effective interest rate of individual
overnight interest rates, which we will further refer as ONIA1 rates, included in
the interest rate period between T2,i−1 and T2,i and is calculated as per

L(T2,i−1, T2,i)τ2,i + 1 =

ni∏
j=1

(1 + Ljδj),

L(T2,i−1, T2,i) =
1

τ2,i

[ ni∏
j=1

(1 + Ljδj)− 1

]
,

where j = 1 (j = ni) is the first (last) day of the interest rate period between
T2,i−1 and T2,i, Lj is the ONIA rate valid at the j-th day and δj is the year fraction
for which Lj is valid. For T1 = T2, the direction and the amount of the payment
is the same as in (2.2).

1OverNight index average. It becomes Euro OverNight Index Average (EONIA) in the euro
interbank market.
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3. Pricing before the crisis

The valuation of financial derivatives generally comes down to projecting expected
future derivatives payoffs and discounting them to the date of valuation. The price
of a FRA (interest rate swap) is a fixed rate (swap rate) at which we enter the
contract. The fair price is the one which secures a fair starting position for both
parties entering the contract. By fair, we mean that the value of the derivative is
equal zero for both parties at the origin t of the contract. The process of pricing
is then understood as calculating the fair price at t. The process of valuing is
then determining the value of the contract at T ≥ t.

3.1 FRA price

We will show that there is just one fair rate that provides the zero value of the
contract at time t. Such rate is an implied forward rate by the IBOR spot rates
available at t, we will further refer to IBOR spot rates as spot rates. We can derive
it through a no-arbitrage principle. By arbitrage we understand an investment
strategy with a zero initial investment at t and of a positive return with positive
probability. In the figures

ψ(t) = 0 and

P [ψ(T ) > 0] > 0,

P [ψ(T ) ≥ 0] = 1, T > t,

where ψ(t) is the value of the investment strategy at time t ≥ 0. The simply-
compounded implied forward rate can be derived by two investment strategies.
The first one is to deposit a unit of cash at t for S at rate L(t, S), whose payoff
at S is

C1(S) = 1 + L(t, S)τ(t, S).

The other strategy is to deposit a unit of cash at t for a shorter period T < S
at L(t, T ) and then reinvest the proceeds C2(T ) at T at K locked in at t

C2(T ) = 1 + L(t, T )τ(t, T ),

C2(S) = (1 + L(t, T )τ(t, T ))(1 +Kτ(T, S)).

Assuming the same risk profile of these two investment strategies, both of
them should generate the same payoff at S

C1(S) = C2(S),

1 + L(t, S)τ(t, S) = (1 + L(t, T )τ(t, T ))(1 +Kτ(T, S)).

Seperating K, we get

K =
1

τ(T, S)

(
1 + L(t, S)τ(t, S)

1 + L(t, T )τ(t, T )
− 1

)
. (3.1)

We can see that K exactly matches F (t;T, S) in (1.6). In case of no match, there
would be a possibility of an arbitrage. For example K > F (t;T, S), we would
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be able to set-up ψ(t) = 0 consisting of borrowing a unit of cash at L(t, S) and
investing the unit at L(t, T ) and entering the FRA as a fixed-rate receiver at K.
At T we would reinvest the deposit plus the accrued interest plus the FRA payoff
at L(T, S), which produces the yield of K for the period S − T . We would end
up with a positive payoff at S

C2(S)− C1(S) > 0.

The profit-driven market participants would execute the strategy which in-
volves selling the FRA. This would increase the supply of the FRA at t and in turn
drive down the FRA priceK to its respective implied forward rate F (t;T, S). Sim-
ilarly, we would show K < F (t;T, S) is not possible in an arbitrage-free market.
The same logic can be used to derive arbitrage-free k-times-per-year compounded
K.

3.2 FRA value

The fair FRA rate K is then the respective implied forward rate which secures the
zero value of the FRA contract for both parties and is free of arbitrage. However,
as the time approaches its maturity the expected spot rates change which results
in the change of the value of the FRA contract. If we bought a FRA at time
t
′
< t with the fixed rate K

′
and our bought FRA is traded on the market, the

FRA value at t is

FRA(t, T, S, τ(T, S), N,K) = N(K −K ′)τ(T, S)P (t, S), (3.2)

where K is the price of the FRA traded on the market at time t. Since the FRA
contract is a zero-sum game, the FRA buyer’s profit from (3.2) is the loss for
the FRA seller1. In case there is no market quote of our FRA, we would have to
replace K with the respective implied forward rate

FRA(t, T, S, τ(T, S), N,K) = N(F (t;T, S)−K ′)τ(T, S)P (t, S). (3.3)

The no-arbitrage argument produces an objective and fair price as well as
value of FRAs. From now on, we price and value the interest rate derivatives
with the assumption that the market is free of such arbitrage.

3.3 IRS price

The plain vanilla fixed-for-floating interest rate swap can be decomposed into
two legs: the coupon-bearing bond (the fixed leg) and the floating-rate bond (the
floating leg). The fixed leg with a swap rate Kn pays at times T1 = {T1,1, . . . , T1,n}
the following

NKnτ1,i,

1From now on, we will value the FRAs and swaps from the perspective of the fixed-rate
payer (the buyer) throughout the thesis without explicitly saying that. Since the derivative
contracts are a zero-sum game, the positive value for the fixed-rate payer is the same value but
negative for the fixed-rate receiver (the seller) and vice versa.
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where τ1,i ∈ τ1 = {τ1,1, . . . , τ1,n} and is the year fraction between T1,i−1 and T1,i.
The present value of the fixed leg is then

FIX(t, T1, τ1, N,Kn) =
n∑
i=1

NKnτ1,iP (t, T1,i).

The floating leg pays NL(T2,i−1, T2,i)τ2,i at times T2 = {T2,1, . . . , T2,m} and
has in general a different year fraction τ2 = {τ2,1, . . . , τ2,m}. The present value of
the floating leg is

FLT(t, T2, τ2, N) =
m∑
i=1

NL(T2,i−1, T2,i)τ2,iP (t, T2,i),

the interest rate L(T2,i−1, T2,i) resets at T2,0, . . . , T2,m−1. To ensure the initial zero
value of the swap at t, the following should hold

n∑
i=1

NKnτ1,iP (t, T1,i) =
m∑
i=1

NL(T2,i−1, T2,i)τ2,iP (t, T2,i). (3.4)

As we do not know the future spot rates L(T2,i−1, T2,i) for i = 1, . . . ,m, we
can estimate them with implied forward rates F (t;T2,i−1, T2,i). Then we can solve
(3.4) for Kn, we get

Kn =

m∑
i=1

F (t;T2,i−1, T2,i)τ2,iP (t, T2,i)

n∑
i=1

τ1,iP (t, T1,i)
. (3.5)

However, F (t, T2,i−1, T2,i) are not directly quoted on the market and we need
to extract them from the available quoted swap rates Kn. We will take advantage
of the relationship between forward rates and discount factors

Kn =

m∑
i=1

(
P (t,T2,i−1)

P (t,T2,i)
− 1

)
P (t, T2,i)

n∑
i=1

τ1,iP (t, T1,i)
=

1− P (t, T2,m)
n∑
i=1

τ1,iP (t, T1,i)
. (3.6)

Thus, if we can extract discount factors, we are able to calculate forward rates.
The swap rates Kn quoted on the market are said to be par, meaning that the
respective swap values are zero. Since the floating leg of the swap is worth par at
inception, it actually resets to par at every resetting date T2, the fixed leg must
have the par value at inception as well

1 = Kn

n∑
i=1

τ1,iP (t, T1,i) + P (t, T1,n),

separating P (t, T1,n), we get

P (t, T1,n) =

1−Kn

n−1∑
i=1

τ1,iP (t, T1,i)

1 + τ1,nKn

. (3.7)
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Through equation (3.7) we can recursively calculate discount factors. This
recursive process is called bootstrapping2. The bootstrapped discount factors can
be used to calculate IBOR spot rates and extend the IBOR spot curve beyond
maturities of one year. [Ametran and Bianchetti, April 2013] mention that the
IBOR spot curve is usually build and bootstrapped from the following market
instruments.

1. IBOR spot rates available at the interbank market, covering the window
from 1D up to 1Y.

2. FRA contracts, covering the window from 1M up to 2Y.

3. Short term interest rate Futures contracts3, covering the window from 3M
up to 2Y and more.

4. IRS contracts, covering the window from 2Y-3Y up to 60Y.

The previous market instruments often have underlying interest rates of dif-
ferent tenors. Let us demonstrate how to bootstrap discount factors from swap
rate quotes on a simple example.

Example 1. Let us have the following quotes of par swap rates:

Table 3.1: Swap rate quotes (% p.a.).

12M 18M 24M

1.65% 2.29% 2.81%

The payments of the floating legs are indexed to 6M LIBOR, the current quote
of 6M LIBOR is 1.4% p.a. For the sake of simplicity assume the 30/360 day-count
convention and that the payments of both legs are settled semiannually. What
are then the implied semiannually compounded discount factors of 12M, 18M and
24M LIBOR?

In our notation, we have payment settlements at T1 = T2 = {0.5, 1, 1.5, 2}
and try to calculate (P (0, 0.5), P (0, 1), P (0, 1.5), P (0, 2))T . Zero-coupon bond
price P (0, 0.5) can be calculated from the 6M LIBOR quote. We know that the
present value of the fix leg of the 12M swap is worth par, then

1 = 0.0165 · 0.5 · P (0, 0.5) + (0.0165 · 0.5 + 1) · P (0, 1),

P (0, 1) = 0.96776.

The same is true of the 12M swap:

1 = 0.0229 · 0.5 · P (0, 0.5) + 0.0229 · 0.5 · P (0, 1) + (0.0229 · 0.5 + 1) · P (0, 1.5),

2The meaning of this term should not be confused with the bootstrapping technique in
statistics.

3Futures contracts are standardized derivative contracts traded on exchanges similar in prin-
ciple to FRA. However, their pricing and valuation is different to FRA, see chapter 6 in [Hull,
2014].
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P (0, 1.5) = 0.933869.

This can be done recursively until we reach P (0, 2) = 0.893738. However, we
can notice that this recursive calculations lead to the following system of linear
equations

K0.5 + 1 0 0 0
K1 K1 + 1 0 0
K1.5 K1.5 K1.5 + 1 0
K2 K2 K2 K2 + 1



P (0, 0.5)
P (0, 1)
P (0, 1.5)
P (0, 2)

 =


1
1
1
1

 ,

where the 4x4 matrix represents the payments of the fixed legs of the respective
interest rate swaps. Even though K0.5 is not quoted, it must be equal to the 6M
LIBOR to ensure the equality of the both swap’s legs. We look for such a vector
of discount factors

(P (0, 0.5), P (0, 1), P (0, 1.5), P (0, 2))T

which secures that the fixed leg of each swap is worth par. Clearly, there exists
only one such solution given the regularity of the matrix of payments. With given
discount factors we can build the 6M IBOR spot curve.

3.4 IRS value

If we assume that both fixed payments and floating payments occur at the same
time, i.e T1 = T2, τ1 = τ2, the swap can be valued as a portfolio of FRAs

IRS(t, T1, T2, τ1, τ2, N,Kn) =
n∑
i=1

FRA(t, T1,i−1, T1,i, τ1,i, N,Kn).

In more general cases when T1 6= T2 and τ1 6= τ2, we can decompose the swap
into a portfolio of two bonds. The value from the fixed rate payer’s perspective
is

IRS(t, T1, T2, τ1, τ2, N,Kn) = FLT(t, T2, τ2, N)− FIX(t, T1, τ1, N,Kn). (3.8)

The value for the fixed rate receiver is the opposite of (3.8). If we have a
swap that is actively traded on the market, we can compare its swap rate K

′
n

negotiated in the past date t
′
< t to the quoted par swap rate Kn available at t.

If the fixed rate payer entered the new swap which matches the terms of his old
one, he would eliminate the effect of the floating leg on the swap’s value as the
floating rate payments would cancel out. His two positions in the swaps would
form an annuity, a series of equal payments at regular intervals. The present
value of the annuity at t after j past fixed payments is

A(t,K
′

n) =
n∑

i=j+1

N(Kn −K
′

n)τ1,iP (t, T1,i).

The impact of Kn−K
′
n on the swap’s value can also be interpreted as follows.

K
′
n contains the information of the forward rates prevailing at the past date when
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the swap was negotiated. However the forward rates change as a result of the
changes of spot rates. The up-to-date information of the prevailing forward rates
is reflected in Kn. Thus if Kn > K

′
n, then the prevailing implied forward rates

are higher than the ones prevailing when the swap was negotiated in the past.
This fact means that the floating leg of the swap is worth more and the swap
is ultimately more valuable for the fixed rate payer. Kn < K

′
n follows the same

logic.
Similarly to FRA valuation, in case of no swap rate quote Kn, we would

calculate the theoretical swap rate as per (3.6) and substitute unknown Kn with
it.

3.5 Model summary

We built our pricing and valuation model on the no-arbitrage argument which
inherently involved the following assumption. When we inferred the implied
forward rates from the IBOR spot rates in Section 1.2, we assumed that the
credit and liquidity risk imbedded in both the investment scenarios represented
by (1.5) is the same. [Mercurio, 2009], supports this assumption and claims that
the market generally deemed the difference between two IBOR interest rates of
the same length but with different compounding to be negligible before the crisis.
We call this assumption IBOR interest rate homogeneity.

When valuing the FRAs (interest rate swaps), we compared our FRA rate
(swap rate) with if-available its respective market quote. For example, If we
bought a FRA at time t

′
< t with the fixed rate K

′
and our bought FRA is

traded on the market, the FRA value at t is

FRA(t, T, S, τ(T, S), N,K) = N(K −K ′)τ(T, S)P (t, S), (3.9)

If we realized the opposite transaction at t, i.e. sold the FRA at K at time
t, we would created a cash flow Nτ(T, S)(K − K

′
)P (T, S) available at time T

irrespective of market conditions at T . The floating payments from our two
positions in the FRAs would cancel out. Thus we are able to create a risk-free
investment at t. If we assume that the counterparty is risk-free, the cash flow
from the investment should then be discounted at a risk-free rate. When there
is no quote of our respective FRAs, we can calculate the implied forward rates
and speculate that if there was a respective FRA rate, it would equal the implied
forward rate. Similarly to our case when the quotes were available, we would be
able to create a risk-free investment and thus the payoff from the FRAs should
be discounted at a risk-free rate. IBOR had been considered as a good proxy for
a risk-free rate before the crisis, see e.g. chapter 9 in [Hull, 2014]. It also needs
to be mentioned that the risk-free investment does not have to be set up for the
valuation purposes.

Thanks to interest rate homogeneity and discounting at risk-free IBOR rates,
pricing and valuation in the presented model was in principle convenient and
straightforward. The IBOR discount factors were used for both building an IBOR
spot curve and inferring an implied forward curve. This in turn enabled a seamless
transition between the spot rates, discount factors and forward rates - from one
set of the rates we can derive the other two. Thanks to this we call the described
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model a single-curve model. However, the new market conditions induced by the
financial crisis of 2007/2008 impaired the aforementioned assumptions and the
single-curve model has to be reviewed, which is the subject of the following sec-
tion.
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4. Pricing after the crisis

This chapter starts with a brief overview of the financial distress on financial
markets that came with the outburst of the financial crisis in 2007/2008. Later
we show that the single-curve model can no longer be used in the new market
settings.

4.1 Financial crisis and its implications

The bankruptcy of one of the major banks Lehman Brothers and financial distress
on financial markets shattered the confidence and trust in the interbank market.
Banks started to hoard cash instead of lending each other and realized that a
prime IBOR reference bank could exit the reference bank panel. Therefore IBOR
banks started to price this risk in IBOR market quotes, which in turn now reflect
the average credit and liquidity risk of the interbank money market [Bianchetti
and Carlicchi, December 2012]. This fact can be seen on the difference between
IBOR spot rates and OIS rates, which we will further refer to as the IBOR-OIS
spread.M. Bianchetti, M. Carlicchi Markets Evolution After The Credit Crunch 

 

 

Page 5 of 35 

 

Figure 1: historical series of Euribor Deposit 6M rate versus Eonia OIS 6M rate. The 
corresponding spread is shown on the right scale (Jan. 2007 – Dec. 2011 window, source: 
Bloomberg). 

 

 

Figure 2: historical series of the Deposit Lending Facility rate, of the Marginal Lending Facility rate 
and of the Eonia rate (Jan. 2007 – Dec. 2011 window, sources: European Central Bank  and 
Bloomberg). 

 

Figure 4.1: Daily quotations of 6M EURIBOR-OIS spread, the spread is displayed
on the right scale. Source: [Bianchetti and Carlicchi, December 2012].

As IBOR market quotes now involve the average credit and liquidity risk of
the interbank money market, OIS rates have become the new proxy for the risk-
free rate. These rates have two sources of risk, both of them are relatively small.
Firstly, the overnight rate involves the risk that a borrowing bank defaults, but
this risk is negligible given the short time span. The second risk is that one party
defaults on the OIS swap. [Hull, 2014] claims that the adjustment to an OIS swap
rate to reflect default possibilities of either party is generally small. Moreover, the
default risk can be and usually is minimized by posting collateral with respect to
the change of the value of the swap. Market participants started to use collateral
agreements more frequently to mitigate the credit risk. They present a bilaterally
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negotiated document governing the exchange of collateral between two derivatives
parties. According to [ISDA, June 2013], 71% of all OTC derivatives transacted
by respondent institutions were collateralized in 2012.

Another phenomenon important to our model is increased basis swap spreads.
The party in the basis swap with payments indexed to a shorter interest rate tenor
now adds a positive basis spread to the indexed interest rate. The increased
credit risk perception resulted in the segmentation of the interest rate market
into sub-areas according to the interest rate tenors. The difference between two
interest rates of the same length but with different compounding is reflected in
the basis swap spreads. Therefore the swap rates of the swaps with floating
payments indexed to different IBOR tenors contain different credit and liquidity
risk premium.M. Bianchetti, M. Carlicchi Markets Evolution After The Credit Crunch 
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Figure 6: Basis Swap spreads: Euribor 3M Vs Euribor 6M, Euribor 6M Vs Euribor 12M and Eonia 
Vs Euribor 3M (Jan. 2007 – Dec. 2011 window, source: Bloomberg). All the quotations present a 
maturity of 5Y. Notice that the daily market quotations for some Basis Swap were not even 
available before the crisis. 

 

 

Figure 7: Basis Swap spreads Eonia vs Euribor xM and Euribor xM vs yM over several maturities  
(reference date: 30/12/2011, source: Reuters). 

 

Figure 4.2: Daily quotations of 5Y basis swaps: 3M EURIBOR - 6M EURIBOR,
6M EURIBOR - 12M EURIBOR, EONIA - 3M EURIBOR. Source:[Bianchetti
and Carlicchi, December 2012].

Taking into account the new market conditions, we revisit the single-curve
model. We focus our attention on the 100% cash-collateralized forward rate
agreements and interest rate swaps. By 100% cash-collateralized, we understand
that the derivatives are priced and valued under OIS discounting. We take ad-
vantage of the fact that the FRA is a special case of the fixed-for-floating swap
and thus start with the pricing and valuation of the swaps and then transition to
the FRAs.

4.2 IRS price and value

The new risk-free curve for discounting is built from OIS rates KOIS,n. The
bootstrapping of discount factors POIS(t, T ) is done analogically to (3.7)

POIS(t, T1,n) =

1−KOIS,n

n−1∑
i=1

τ1,iPOIS(t, T1,i)

1 + τ1,nKOIS,n

.
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We can still decompose the swap into two legs. However, the floating payments
estimated by implied forward rates change under OIS discounting. Secondly, we
have to take into account the market segmentation, so when building the forward
curve of a certain interest rate tenor, we have to take swap rates with the floating
leg indexed to the same underlying interest rate tenor. The present value of the
fixed leg still equals the present value of the floating leg of the quoted swap rate

n∑
i=1

NKx,nτ1,iPOIS(t, T1,i) =
m∑
i=1

NF ∗x (t, T2,i−1, T2,i)τ2,iPOIS(t, T2,i), (4.1)

where Kx,n is the market quote of the swap rate whose the floating leg is indexed
to IBOR with tenor x, F ∗x (t;T2,i−1, T2,i) is the implied forward rate of the same
tenor x under OIS discounting, typically x ∈ {1M, 3M, 6M, 12M}. With the
bootstrapped OIS discount factors and the quoted swap rates, we can derive
respective implied forward rates

F ∗x (t;T2,m−1, T2,m) =
n∑
i=1

Kx,nτ1,iPOIS(t, T1,i)−
m−1∑
i=1

F ∗x (t;T2,i−1, T2,i)τ2,iPOIS(t, T2,i)

τ2,mPOIS(t, T2,m)
.

Then with the OIS discount factors and derived forward rates, we can calculate
the par swap rate of the collateralized interest rate swap

Kx,n =

m∑
i=1

F ∗x (t;T2,i−1, T2,i)τ2,iPOIS(t, T2,i)

n∑
i=1

τ1,iPOIS(t, T1,i)
.

The valuation of the swap follows the same logic of the single curve model. If
we value the collateralized swap under OIS discounting as a portfolio of two
bonds, we project the floating payments through F ∗x (t;T2,i−1, T2,i) instead of
F (t;T2,i−1, T2,i). If we look at the swap valuation through the annuity approach,
we can analyze the switch from IBOR to OIS discounting. The present value of
the annuity at t after j past fixed payments under IBOR discounting equals

A(t,K
′

x,n) = N(Kx,n −K
′

x,n)τ1,i

n∑
i=j+1

P (t, T1,i),

the value of the annuity under OIS discounting is then

AOIS(t,K
′

x,n) = N(Kx,n −K
′

x,n)τ1,i

n∑
i=j+1

POIS(t, T1,i).

The effect of the changed discounting can be analyzed through

AOIS(t,K
′

x,n)− A(t,K
′

x,n) = N(Kx,n −K
′

x,n)τ1,i

n∑
i=j+1

[POIS(t, T1,i)− P (t, T1,i)].

Given the positive IBOR-OIS spread, i.e. POIS(t, T1,i) − P (t, T1,i) > 0, the
discounting switch results in increasing (decreasing) the swap value if Kx,n > K

′
x,n
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(Kx,n < K
′
x,n). However, through this decomposition we lose the information of

the impact of the change of forward rates on the swap value. Thus [Hull and
White, March 2014] suggest defining the following swap values to analyze the
separate discounting and forward-rate effect when switching from IBOR to OIS
discounting

• IRSID value of the swap when IBOR discounting applied and projecting
floating payments with Fx(t;T2,i−1, T2,i),

IRSID =
m∑
i=1

NFx(t, T2,i−1, T2,i)τ2,i(t, T2,i)−
n∑
i=1

NKx,nτ1,iP (t, T1,i).

• IRSOD value of the swap when OIS discounting applied and projecting float-
ing payments with F ∗x (t;T2,i−1, T2,i),

IRSOD =
m∑
i=1

NF ∗x (t, T2,i−1, T2,i)τ2,iPOIS(t, T2,i)−
n∑
i=1

NKx,nτ1,iPOIS(t, T1,i).

• IRSIO value of the swap when OIS discounting applied and projecting float-
ing payments with Fx(t;T2,i−1, T2,i),

IRSIO =
m∑
i=1

NFx(t, T2,i−1, T2,i)τ2,iPOIS(t, T2,i)−
n∑
i=1

NKx,nτ1,iPOIS(t, T1,i).

(4.2)

The total swap’s value change from the discounting switch is IRSOD − IRSID.
The pure discounting effect is then IRSIO − IRSID. The pure forward-rate effect
is measured by IRSOD − IRSIO and is equal to

m∑
i=1

N [F ∗x (t, T2,i−1, T2,i)− Fx(t, T2,i−1, T2,i)]τ2,iPOIS(t, T2,i). (4.3)

If F ∗x (t, T2,i−1, T2,i) < Fx(t, T2,i−1, T2,i), then the forward-rate effect is negative
and decreases total swap’s value change IRSOD − IRSID and vice versa.

4.3 FRA price and value

The implied forward rate F ∗x (t;T, S) is the new fair FRA rate which secures a
zero equal starting position. A bought FRA at time t

′
with the FRA rate K

′
has

value at t > t
′

FRA(t, T, S, τ(T, S), N,K) = N(K −K ′)τ(T, S)POIS(t, S),

where K is the market quote of the FRA. If not available, we substitute it with
F ∗x (t;T, S). For example, the floating rate payer in the collateralized swap could
enter the respective collateralized FRA as the fixed rate payer to hedge its floating
payments.
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4.4 Model summary

The single-curve model ceased to be legitimate in the presence of the IBOR-OIS
spread and basis swap spreads. The latter was relatively easily solved. When
we were deriving the implied forward rates of a certain tenor from the available
market quotes of swap rates, in practice it can be also other market instruments,
we used only those swaps whose floating payments are indexed to the same interest
rate tenor.

The IBOR-OIS spread is indicative of the involved risk premium of the inter-
bank market in IBOR rates. Thus OIS rates have become the new best proxy
of the risk-free rate at which the derivatives payoffs are discounted. Another ar-
gument in favor for OIS discounting is that the cash collateral usually earns an
overnight rate and OIS rates are derived from overnight rates. If the collateral
earns the overnight rate and IBOR discounting was applied, given the positive
IBOR-OIS spread the collateral would not be equal to the derivative’s value at
its maturity. The party with positive value would be exposed to the credit risk
of the counterparty.

As opposed to the single-curve model, the new market conditions induced the
separation of the discounting curve from the forward and spot curve. Nowadays,
when deriving the implied forward rates consistent with OIS discounting, we
need the quoted IBOR swap rates1 and OIS discount factors. To calculate the
IBOR swap rates, we need the OIS discount factors and implied forward rates
consistent with OIS discounting. This in turn when valuing the collateralized
derivatives breaks the seamless transition between the spot rates, discount factors
and forward rates which we introduced in the single-curve model. It now requires
two sets of the rates to derive the remaining set. Because of this we call the post
crisis model a multi-curve model.

1We can calculate IBOR spot rates as we are used to in the single-curve model. Firstly, we
bootstrapped discount factors as per (3.7) and then translate them into IBOR spot rates.
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5. Model comparison: a
numerical example

We present the following example to compare the single-curve and multi-curve
model. Since we set up the example not to violate the interest rate homogeneity,
the model comparison breaks down to comparing IBOR and OIS discounting.
Though the example being simplified, it in principle does not differ substantially
from the ones with which market participants deal in practice.

Let us have the following market quotes of swaps whose floating leg is indexed
to 1Y EURIBOR. Both legs settle annually and have the same market standard
30/360 and the same start dates which coincide with the origin of the contract
t = 0. The next assumption is that we have OIS rates of the same maturities
with the same conditions of the settlement available.

Table 5.1: Swap rate quotes (p.a.).

1Y 3.2% 8Y 5.46%
2Y 3.4% 9Y 5.64%
3Y 3.56% 10Y 5.8%
4Y 3.82% 12Y 5.95%
5Y 4.25% 15Y 6.2%
6Y 4.9% 20Y 6.4%
7Y 5.3% 30Y 7.1%

To have a swap rate for each year, the missing swap rate quotes were acquired
through linear interpolation. For the purposes of our analysis, let us have three
sets of OIS swap rates: OIS20, OIS60 and OIS200. The sets have the OIS rates
lower 20 bps, 60 bps and 200 bps than the EURIBOR swap rates, respectively.
We can now bootstrap the OIS and EURIBOR discount factors from the OIS and
EURIBOR swap rates and build discount curves.

5 10 15 20 25
Maturity (years)

0.2

0.4

0.6

0.8

1.0

Discount factor

EURIBOR OIS20 OIS60 OIS200

Figure 5.1: EURIBOR and OIS discounting curves.

From the quoted swap rates and bootstrapped discount factors, we can infer
the 1Y EURIBOR forward curve under EURIBOR discounting (EURIBOR) and
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the 1Y EURIBOR forward curve consistent with OIS discounting (OIS20, OIS60,
OIS200).

5 10 15 20 25
Time (years)

5
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15

Forward rate (%)

EURIBOR OIS20 OIS60 OIS200

Figure 5.2: Forward curves under EURIBOR and OIS discounting.

The difference between EURIBOR and OIS forward rates becomes larger as
we move forward along the forward curve. This can be explained in the following
manner. If we value the swap as a portfolio of two bonds as per (4.1), swap rates
Kx,n as well as bootstrapped OIS discount factors POIS(t, T2,i) are given in our
case. The OIS discount factors are higher than the EURIBOR ones. To offset
this increase, the forward rates have to be lowered. Given the shape of the OIS
discount curves (Figure 5.1), the forward rates under OIS discounting at the end
of the forward curve has to be lowered the most.

We are now able to value and price a swap. To show the pure discounting
and forward-rate effect, we value swaps of different maturities each with the swap
rate 200 bps higher than its respective market quote and notional of 10 million
euros (Table 5.2). The discount curves are OIS20, OIS60 and OIS200.
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Table 5.2: Break-down of the impact of the discounting switch of swaps with
swap rates 200 bps higher than market quotes.

OIS Swap Discounting Forward-rate Total change
scenario maturity Effect Effect in swap’s value

IRSIO -IRSID IRSOD-IRSIO IRSOD-IRSID

OIS20 2Y -1 075 -39 -1 114
5Y -4 055 -1 649 -5 704
10Y -8 064 -18 664 -26 728
15Y -21 739 -35 516 -57 255
20Y -39 387 -52 790 -92 177
25Y -7 422 -127 405 -134 827
30Y 153 277 -342 604 -189 327

OIS60 2Y -3 220 -115 -3 335
5Y -11 863 -4 076 -15 939
10Y -23 035 -34 185 -57 220
15Y -49 667 -62 045 -111 713
20Y -81 068 -89 621 -170 689
25Y -39 587 -195 380 -234 967
30Y 161 225 -468 436 -307 211

OIS200 2Y -10 904 -390 -11 294
5Y -40 106 -13 129 -53 235
10Y -77 434 -93 826 -171 261
15Y -153 707 -166 755 -320 462
20Y -240 101 -238 600 -478 701
25Y -151 842 -484 325 -636 167
30Y 239 082 -1 027 320 -788 238

The absolute value of the forward-rate effect becomes bigger than the absolute
value of the discounting effect as we increase the maturity of the swap. Given
F ∗x (t, T2,i−1, T2,i) < Fx(t, T2,i−1, T2,i), the forward-rate effect is negative to the
total change which can be seen from (4.3). The forward-rate effect becomes more
negative with the increasing swap’s maturity as the difference of the forward rates
becomes larger as we move forward along the forward curve. The forward-rate
effect also measures the error if we value the swap with OIS discounting and
EURIBOR forward rates not consistent with OIS discounting.

The discounting effect increases the total change of the swap’s value up to a
certain maturity, 20Y in our case, and then starts to decrease it. The switch from
IBOR to OIS discounting in IRSIO, see (4.2), increases the total value change (it
numerically decreases the discounting effect in our case). On the contrary, the use
of F (t, T2,i−1, T2,i) instead of F ∗(t, T2,i−1, T2,i) in IRSIO decreases the total value
change (it numerically increases the discounting effect). F (t, T2,i−1, T2,i) are simi-
lar to F ∗(t, T2,i−1, T2,i) at the beginning of the forward curve, their difference grows
as we move along the forward curve. Therefore swaps of long maturities with a
higher swap rate than its respective market quote can have the discounting effect
going contradictory to the forward-rate effect. In our case, it is apparent that
F (t, T2,i−1, T2,i) becomes significantly higher than F ∗(t, T2,i−1, T2,i) at 30 years
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(Figure 5.2). Thus the 30Y swaps in all OIS scenarios have the discounting effect
going contradictory to the forward-rate effect.

Similarly, we can analyze the pure discounting and forward-rate effect of the
the same swaps but with the swap rates 200 bps lower than their respective
market quotes (Table 5.3).

Table 5.3: Break-down of the impact of the discounting switch of swaps with
swap rates 200 bps lower than market quotes.

OIS Swap Discounting Forward-rate Total change
scenario maturity Effect Effect in swap’s value

IRSIO -IRSID IRSOD-IRSIO IRSOD-IRSID

OIS20 2Y 1 153 -39 1 114
5Y 7 355 -1 649 5 704
10Y 45 392 -18 664 26 728
15Y 92 771 -35 516 57 255
20Y 144 967 -52 790 92 177
25Y 262 232 -127 405 134 827
30Y 531 931 -342 604 189 327

OIS60 2Y 3 450 -115 3 335
5Y 20 015 -4 076 15 939
10Y 91 404 -34 185 57 220
15Y 173 758 -62 045 111 713
20Y 260 310 -89 621 170 689
25Y 430 347 -195 380 234 967
30Y 775 647 -468 436 307 211

OIS200 2Y 11 684 -390 11 294
5Y 66 364 -13 129 53 235
10Y 265 087 -93 826 171 261
15Y 487 217 -166 755 320 462
20Y 717 301 -238 600 478 701
25Y 1 120 492 -484 325 636 167
30Y 1 815 558 -1 027 320 788 238

Table 5.3 shows that the swaps with swap rates lower 200 bps than the market
quotes have the same value as in the previous case but with the opposite sign.
The forward-rate effect is the same and the reasoning behind it is the same as
in the previous case. The difference is in the discounting effect which constantly
increases the total change in the swap’s value. This is down to the fact that both
the switch from IBOR to OIS discounting and the use of F (t, T2,i−1, T2,i) instead
of F ∗(t, T2,i−1, T2,i) in IRSIO increase the total value change.

Besides the swap’s maturity, we can also look at the impact of the swap
spread (the difference between the quoted par swap rate and our swap rate) on
the swap’s value when switching to OIS discounting. The following figure shows
the difference in the 10Y swap’s value between OIS and EURIBOR discounting
for different swap spreads and for various OIS discounting curves.
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Figure 5.3: The change in value of the 10Y swap of 10 million euros notional
under the discounting switch.

The discounting switch results in increasing (decreasing) the swap value if the
swap spread > 0 (swap spread < 0). The larger the swap spread, the bigger
the impact on the swap value under the discounting switch. With a given swap
spread, the higher the IBOR swap rates than the OIS rates, the bigger the change
in the value.

The value of the 10Y swap with the par swap rate is worth zero under both
IBOR and OIS discounting as we can see in Figure 5.3. Even though the par
swap is worth zero under OIS discounting, both legs of the swap are no longer
worth par (Table 5.4).

Table 5.4: Value of the 10Y par swap under IBOR and OIS discounting.

Discounting Fixed leg Floating leg

IBOR 10 000 000 10 000 000
OIS20 10 341 771 10 341 771
OIS60 10 654 508 10 654 508
OIS200 11 848 756 11 848 756

It is evident that if we value a par swap under OIS discounting, the value
of its respective legs increases compared to IBOR discounting. The bigger the
difference between IBOR swap rates and OIS rates, the more significant increase.

In our settings, the difference of the models came down to comparing valu-
ing swaps1 under OIS and EURIBOR discounting. We set the example in the
increasing term structure of swap rates (the swap rates increase with the swap’s
maturity) and a positive difference between IBOR swap rates and OIS rates.
These market conditions are typical of the era after the financial crisis. The
following points summarize the results:

• The swap with a par swap rate is still worth zero, though neither leg of the
swap resets to par.

1We can take advantage of the fact that FRA can be considered as the swap with one interest
rate period. The impact of OIS discounting on FRAs is marginal as they have maturity typically
less than two years.
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• The forward rates are lower under OIS discounting, they become lower when
the difference between IBOR swap rates and OIS rates become larger and
as we move along the forward curve.

• The switch to OIS discounting affects the value of swaps with a non-zero
swap spread, the impact increases with the maturity of the swap.
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Conclusion

The aim of this thesis was to describe how FRAs and fixed-for-floating inter-
est rates swaps were priced and valued before and after the financial crisis of
2007/2008. In order to do this, we firstly introduced the basic interest rate the-
ory in section 1, we focused on a spot, forward and discount curve in particular.
Later in section 2, we described the nature of FRAs and interest rate swaps.

We described the single-curve model for pricing and valuation that had been
used before the financial crisis in section 3. The name of the model is down to
the fact IBOR discount factors were used for both building an IBOR spot curve
and inferring implied forward curve. The formulas for pricing and valuation of
the interest rate derivatives were derived and commented. The concluding part
of the section reviewed the model and pointed out the underlying assumptions of
the model. These were interest rate homogeneity and discounting at a risk-free
rate. IBOR rates were considered as the best proxy for the risk-free rate before
the crisis.

The IBOR-OIS and basis spread as well as derivative collateralization that
reflects new market conditions during/after the financial crisis were introduce in
section 4. The IBOR-OIS spread is indicative of the embedded credit and liquidity
risk in IBOR rates. Therefore OIS rates have become the new proxy for the risk-
free rate. This induced the separation of the discount curve from the forward and
spot curve. Nowadays, when deriving the implied forward rates consistent with
OIS discounting, we need quoted IBOR swap rates and OIS discount factors. This
in turn when valuing the collateralized derivatives broke the seamless transition
between the spot rates, discount factors and forward rates. Therefore we call the
post-crisis model the multi-curve model. The basis spread invalidates interest
rate homogeneity. When we derive the implied forward rates of a certain tenor
from the available market quotes of swap rates, we now use only those swaps
whose floating payments are indexed to the same interest rate tenor.

The numerical example in section 5 compared the single-curve and multi-curve
model. We focused on the impact of the switch from IBOR to OIS discounting.
The example is set to the positive difference between IBOR swap rates and OIS
rates as it corresponds to the current market conditions. The discounting switch
results in the different forward rates under OIS and IBOR discounting. The
forward rates are lower under OIS discounting and this difference grows as we
move along the forward curve and increase the difference between IBOR swap
rates and OIS rates. Moreover, though the swap is worth zero at initiation, it
is not worth par under OIS discounting. Overall, the discounting switch affects
significantly only swaps with long maturities and with swap rates different to
their respective par swap rates.
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