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Introduction

The theme of this thesis are limits of classes of finite, or more generally finitely
generated, first-order structures. These are sometimes called by collective term
”pseudo-finite”, although that term may mean in some context structures satisfy-
ing some more conditions. In this work we study Fräıssé’s amalgamation method.
This method -informally speaking- takes a set of finitely generated structures that
are ”similar enough” and that ”combine nicely” and then constructs a countable
structure that is -in a sense- the limit of this class.

This structure (called Fräıssé limit) has many interesting properties, particu-
larly when working with relational structures. Every Fräıssé limit is homogeneous.
In the cases of relational structures the theory ofFräıssé limits is also ω-categorical
and has quantifier elimination. With this properties in mind, one can prove ω-
categoricity of a relational theory by constructing a countable model and then
proving that the class of finite substructures of this model has the properties de-
scribed in this thesis.

In contemporary model theory is Fraisse’s method used extensively in a gener-
alization invented by Hrushovski called Hrushovski’s construction . This method
has seen widespread use in geometric model theory. It was also used by Hrushovski
himself to disprove a conjecture of B.Zilber Hrushovski [1993]. This method is,
however, beyond the scope of this thesis.

Various other version of Fräıssé’s method have yielded various results in finite
model theory and combinatorics. Some of the applications can be seen in disser-
tations Bodirsky [2004] and Andrews [2010]

The first chapter of this thesis focuses on establishing the terminology and
definitions of Fräıssé’s amalgamation method. It also proves the essential theorems
that lay the groundwork for the following chapters.

The second chapter focuses on more important results that are achieved by
this method, namely the aforementioned ω-categoricity and quantifier elimination
of particular relational theories.

The third chapter consists of examples of applications of this method on differ-
ent classes of structures. It also contains an example showing that the conditions
required by the method are necessary. We also give natural examples of classes
that do not satisfy these conditions.
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1. Fräıssé’s construction

1.1 Ages

In this and the next chapter we will define properties and prove theorems that
come from the Fräıssé’s work Fräıssé [1953]. The form in which they are presented
is described in Hodges [1997].

If we are given a set of finitely generated structures, and we want to construct
their limit, we need them to be in some sense similar to each other. Fräıssé defines
3 properties that the set must satisfy for method to work.

Let us start with some informal definitions. Let L be a countable language.

• If we are given an L-structure D, the age of this structure is the class K of
all finitely generated structures that can be embedded into D.

• If a class K is an age of any L-structure D, we say that K is an Age of
some L-structure.

These definitions, although very specific, are a bit too strong for our needs. We
will not actually use the structures in class age themselves, but rather their iso-
morphism types. Therefore we will call a class an age if it is an age of some
structure up to an isomorphism. That means that the class contains structures
that are representants of isomorphism classes. Thus age is a set and we can also
talk about the size of the age .

Definition 1. If we are given an L-structure D, the age of this structure is the set
K of all ( up to isomorphism) finitely generated structures that can be embedded
into D.

If a class K is an age of an L-structure D, we say that K is an age .

A good example of an age is a set of linear orderings of finitely many elements.
This is the age of (Q, <) or the (N, <) or any infinite linear ordering for that
matter.

Suppose K is an age. We can see that it is non-empty and that it has following
important properties:

Hereditary property (HP) : If A ∈ K and B ⊆ A is a finitely generated
substructure of A, then B is isomorphic to some structure in K.

Joint embedding property (JEP) : If A,B ∈ K then there exists C ∈ K
such that A and B are both embeddable into C.

3



An example of a class that fails to satisfy (JEP) is the class of all finite fields.
However, if the class contains only finite fields of the same characteristic, we can
see that (JEP) is indeed satisfied.

We see that if a class were to be an age of some structure, (HP) and (JEP) are
a necessary conditions. The next theorem states that they are also sufficient.

Theorem 1. Suppose that K is a finite or countable class of finitely generated
L-structures that satisfies (HP) and (JEP) . Then K is an age of some countable
or finite L-structure.

Proof. We begin by listing all the elements in K as (Ai|i ∈ N). Next we define a
sequence (Bi|i ∈ N) of structures in K by induction as follows: We put B1 = A1.
If we know Bi, we construct Bi+1 by using (JEP) on structures Bi and Ai+1. We
can treat Bi+1 as a superstructure of Bi, because Bi is embeddable into it.

Therefore we can define
C =

⋃
i∈N

Bi .

Since C is a countable union of at most countable structures, it is at most countable
itself.

If we are given any finitely generated substructure X of C, it is (isomorphic to
a structure) in K. We know this, because all generators of X are in some Bi, X
is (isomorphic to) a substructure of Bi and thus is by (HP) contained by K. So
K is indeed an age of C.

Such structure C is not unique. With this construction we may arrive to
different structures, as C depends on both the exact ordering of Ai elements of K
and on the exact embeddings Bi ↪→ Bi+1. For example from the class of all the
finite orderings we can construct orderings of Q or N (or any countable ordering,
for that matter). We will discuss this in section 3.1.

In order to construct a structure that more deeply reflects the structures in K,
we need another property.

Amalgamation property (AP) IfA, B, C are structures inK, and f : A −→ B
and g : A −→ C are embeddings, then there exists a structure D in K and
embeddings t : B −→ D and s : C −→ D such that tf = sg.

For example, the class of linear orderings has (AP) : Let A be such ordering, a
substructure of both C and B (f, g are inclusions). Ordering D can be obtained
by taking C and ”inserting it” with elements of B to their appropriate places (so
that they keep their position relative to elements of A).

The amalgamation property looks very similar to (JEP) but they are not special
cases of each other. Let us see why.
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Suppose we are given a class of all finite fields. As we discussed earlier it does
not have (JEP) . It has, however, (AP) because if we are given A,B,C and f, g as
in the definition, we know that A, B, and C have the same characteristic, therefore
they can be embedded into common D.

Let us take a class L consisting of two linear orders L1 and L2, where L1 and L2

are linear orderings of 1 and 2 elements respectively. This class has (JEP) (both are
embeddable to L2) but does not have (AP) . Let L1 = {e} and L2 = {a, b}; a < b.
Now let f : A −→ B be an embedding that assigns e to a, and g : A −→ B assign
e to b. Any common extension of f and g must have at least three elements (the
image of e, at least one element to either side of e).

(AP) becomes a special case of (JEP) if there is a one more condition satisfied.

Theorem 2. Suppose K is a class of finitely generated L-structures that contains a
structure E that is embeddable into every structure in K. Then if (AP) is satisfied,
also (JEP) is satisfied.

Proof. Let B and C be structures in K. E is embeddable to both of them, so by
(AP) there exists D such that B and C are both embeddable to it.

Groups, for example, satisfy this condition with E being the trivial group.

1.2 Fräıssé’s theorem

From Category theory point of view, direct limits are very interesting objects.
How can we use the properties described above to construct similar objects?

Definition 2. Let A be a structure. We say that A is a homogeneous structure
iff any isomorphism between finitely generated substructures of A can be extended
to an automorphism of the whole A.

With this property defined we can finally formulate Fräıssé’s theorem.

Theorem 3. (Fräıssé’s theorem) Assume that L is a countable language and K
a countable or finite set of finitely generated L-structures that has (HP) , (JEP) ,
and (AP) . Then there exists at most countable homogeneous structure D, such
that K is the age of D. Such D is unique (up to an isomorphism).

We call such a structure the Fräıssé limit of K. This theorem will be proved
later.

Homogeneity is very hard to verify so we will use a weaker condition.
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Definition 3. We say that a structure D is weakly homogeneous, iff for every
two finitely generated substructures A ⊆ B ⊆ D and an embedding f : A −→ D
there exists an embedding g : B −→ D that extends f .

Theorem 4. Let C and D be at most countable, weakly homogeneous structures,
with the same age. Let C1 be a finitely generated substructure of C embedded into
D by f : C1 −→ D. Then the following statements hold:

1. There exists an isomorphism between C and D, that is an extension of f .

2. C is homogeneous.

Proof. We will find a chain (Cn|n ∈ N) of finitely generated substructures of C
such that

⋃
n∈NCn = C, and similarly a chain (Dn|n ∈ N) that

⋃
n∈NDn = D.

Since C and D have the same age we may assume that Ck are also substructures
of D and Dk are substructures of C.

We shall now produce a chain of partial isomorphisms (fn : Cn −→ Dn|n ∈ N)
such that

⋃
n∈N fn = fω is an isomorphism between C and D. We will do it by

ensuring that for every odd n = 2 − 1 the domain of fn will contain Ck+1 an for
every even n = 2k the image will contain Dk

Let f1 = f . Suppose we know f2k. It is an embedding of dom(f2k) into D. By
weak homogeneity of D it extends to an embedding of 〈dom(f2k)∪Ck+1〉C into D.
We will take this extension as f2k+1. The symbol 〈X〉S where S is a structure and
X is a set of elements in S denotes the substructure in S generated by elements
in X. Note that if X is finitely generated set then 〈X〉S is a finitely generated
structure.

Similarly, suppose we know f2k−1. Its inverse is an embedding of Im(f2k−1)
into C. So by weak homogeneity we can extend the inverse to an embedding of
〈Im(f2k−1) ∪Dk〉D −→ C. We take f2k to be inverse of this embedding.

To prove that C and D are both homogeneous, we use the first part of this
theorem with D = C.

We have thus proved the uniqueness part of Fräıssé’s theorem. Now onto the
existence.

Suppose we are given a class K that has (HP) , (JEP) and (AP) . We are
going to construct an increasing chain (Dn|n ∈ N) of structures from K that has
following property:

(*) If A ⊆ B are two structures in K, and for some i there exists an embedding
f : A −→ Di, then there is a j > i and embedding g : B −→ Dj that extends
f .

6



We will take D to be
⋃
n∈NDn. D then has the age K and is weakly homogeneous

(so by Theorem 4 it is also homogeneous).
To prove that D has the age K, we must first note the easy fact that age of D

is included in K. As for the other inclusion: suppose we have an arbitrary A ∈ K.
Then by (JEP) on A and D1 there exists a structure B ∈ K where A ⊆ B and
D1 is embeddable in B. By (*) the identity on D1 (that is also an embedding into
D1) extends to an embedding of B into Dj for some j. So by (HP) B and also A
lie in the age of D.
Weak homogeneity is also given by (*) because any embeddings f , g are also em-
beddings into D, and g is indeed an extension of f .

Now how will we construct this chain?
Suppose we are given a class K of finitely generated structures that has (HP) ,
(JEP) , and (AP) . Let P be a set of all such pairs of structures (A,B) from K
where A ⊆ B. Let π be a bijection between N × N −→ N such that π(i, j) ≥ i.
We take D1 to be any structure in K. The rest will be constructed by induction:
suppose we are given a Dk. We list all the triples (Akj, Bkj, fkj)|j ∈ N where
(Akj, Bkj) ∈ P and fkj is an embedding of A into Dk. The list is countable, be-
cause there are at most countably many (Akj, Bkj) and for every Akj there is only
a countable amount of embeddings into Dk (we can see this by considering all
possible images of generators of Akj).
Take i,j that k = π(i, j) and (Aij, Bij, fij). We use (AP) on Aij with embeddings
fij : Aij −→ Di and inclusion into Dk. Their amalgamation will be our Dk+1.
Thus we ensure that for this pair A ⊆ B and embedding f : A −→ Di there does
indeed exist Dk+1 and an embedding of B into D that extends f . So condition (*)
is indeed satisfied (because every triple (A,B, f) such as in (*) has its assigned
ij). So the existence part of Fräıssé’s theorem is proven.

Also note that every one of the three conditions is necessary:

Theorem 5. Let D be at most countable structure that is homogeneous. Then the
age K of D has (HP) , (JEP) and (AP) .

Proof. Any age has (HP) and (JEP) , so we only need to prove (AP) . Let A, B
and C be structures in K with embeddings f : A −→ B and g : A −→ C. Since
A is in the age of D, there also exists an embedding eA : A −→ D. By weak
homogeneity on f(A) ⊆ B there exists an extension of embedding eAf

−1 into an
embedding eB : B −→ D. Similarly there is an extension of eAg

−1 and that is
eC : C −→ D. We take the structure generated by eC(C) and eB(B). It is finitely
generated, so it is in K. It is also an amalgamation of A,B,C and f, g.
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2. Important results

The Fräıssé’s construction has been an invaluable tool used to produce ω-categorical
structures. In order to get even more interesting results from the Fräıssé’s con-
struction we need to set apart another property that guarantees that the finitely
generated substructures are manageable.

Definition 1. Structure A is uniformly locally finite if there exists a function
f : N→ N such that following holds: whenever B is a substructure of A with less
than n generators (n ∈ N), B has at most f(n) elements.

It is easy to see that any structure in a finite language that does not have any
function symbols is uniformly locally finite.

We say that a class of structures K is uniformly locally finite if every structure
in K is uniformly locally finite, with the same f : N→ N. With this property we
may achieve the results described below. First we will note a useful lemma.

Lemma 6. Let L = (C,F,R) be a finite language (C being the set of constants, F
being the set of function symbols and R being the set of relation symbols). Let A
be a finite L-structure generated by a n-tuple ā. Then there exists a quantifier-free
formula ψA,ā(x1, . . . , xn) such that for every L-structure B such that B |= ψA,ā(b̄)
for some tuple b̄ in B there exists an embedding of A into B.

Proof. We will construct ψA,ā(x1, . . . , xn) as follows: For every element q ∈ A we
fix a term tq(x̄) such that q = tq(ā) (this is possible, because A is generated by ā).
Note that tq need not depend on every element of ā.

First we would like to ensure that the values of these tq(x̄) are distinct. In
order to do that we construct the conjunction∧

q1,q2∈A;q1 6=q2

tq1(x̄) 6= tq2(x̄) .

Next we provide all the necessary information about how do constants, func-
tions, and relations work. For constants we add the statement∧

ck∈C

ck = tq(x̄)

where q is chosen such that in A holds that ck = q (= tq(ā)).
Similarly, we add for every function f (of arity k) the conjunction∧

q1...qk∈A

f(tq1(x̄) . . . tqk(x̄)) = tp(x̄)
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where p = tp(ā) is the element such that f(tq1(ā) . . . tqk(ā)) = tp(ā).
Finally, for every relation R (of arity k) and every tuple (q1 . . . qk) we look at

literals R(q1 · · · qn) and ¬R(q1 · · · qn). We mark the true one and move on. Then
we construct the conjunction using these marked literals∧

q1...qk∈A

(¬)R(tq1(x̄) . . . tqk(x̄))

(with negation at appropriate places).
We take ψA,ā(x1, . . . , xn) to be the conjunction of all these big conjunctions.

If B satisfies ψA,ā(b̄) for some tuple b̄ then we take the embedding to be the map
that assigns ai 7→ bi for every i. Indeed, this map is obviously an isomorphism
between A (= 〈ā〉A) and 〈b̄〉B.

Theorem 7. Let L be a language as in lemma 6. Let K be an uniformly locally
finite set of finitely generated L-structures that satisfies (HP) , (JEP) , and (AP)
. Let M be the Fräıssé’s limit of K and let T be the first order theory of M :
T = Th(M). Then the following holds:

1. T is ω-categorical.

2. T has quantifier elimination.

Proof. Without loss of generality we may assume that no two structures in K are
isomorphic to each other (so that K only contains isomorphism types). Note that
for every n there are only finitely many structures in K generated by n elements.
This follows from the finiteness of L and from the fact that K is uniformly locally
finite. Each of n-generated structures has at most f(n) elements (therefore there
is only a finite amount of functions and relations that may be the interpretations
of L).

For every structure A ∈ K and every n-tuple ā of generators we construct the
formulas ψA,ā(x1, . . . , xn) as described in lemma 6. We then take U to be the set
of all the sentences of the type

∀x̄ (ψA,ā(x̄)→ ∃y ψB,āb(x̄, y))

where A is any structure in K generated by a tuple ā and B is a structure generated
by ā and b. This set of sentences says that any structure generated by n-tuple x̄
can be extended to any n + 1-generated structure B that extends A by adding
one generator y. The Fräıssé’s limit M obviously satisfies U (because of the weak
homogeneity).

Next we take V to be the set of sentences of the form

∀x̄
∨
A,ā

ψA,ā(x̄)
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with A again being all the structures in K generated by some n-tuple ā. As noted
above the disjunction is finite. If a structure satisfies these sentences, it means
that any substructure generated by n-tuple of distinct elements ā is isomorphic
to some A in K with the same generator set ā. This means that the age of any
structure that satisfies them is exactly K. M obviously satisfies V .

We take W to be W = U ∪ V . M is a model of W . We will next prove that
any countable model D |= W is weakly homogeneous structure of the age K.

The second part follows from D |= V .
The weak homogeneity can be proven by induction on the difference of number

of generators using that D |= U . First, we note that if ā is empty, then sentences
in U say that any 1-generated structure is embeddable in D. Suppose we have
given A,B structures in K where A ⊆ B. Suppose that f : A −→ D is an
embedding. We want to extend it to the embedding g : B −→ D. Let n be the
size of gen(B) \ gen(A) where gen(A) is a set of generators of A and gen(B) is
the set of generators of B extending gen(A). gen(B) is always finite because by
uniform local finiteness the whole B is finite. If n = 1, the existence of g is given
by a formula in U - we map the extra element to the witness of y.

In an induction step we assume that there exists an embedding g′ : B′ −→ D
extending f , where B′ is a substructure of B obtained by excluding one generator.
Then similarly to the first step, there exists g : B −→ D that extends g′ and
therefore also extends f .

Now we know that D is weakly homogeneous, countable, and has the age K.
It is therefore isomorphic to M . Therefore W is ω-categorical and it axiomatizes
T = Th(M).

Now onto the quantifier elimination: Let φ(x̄) be an L-formula with non-empty
set of parameters x̄. We take X to be the set of all the tuples ā in M such that φ(ā)
holds in M . Suppose b̄ is another tuple of elements in M such that there exists
isomorphism 〈ā〉M → 〈b̄〉M that takes ā to b̄. Then this isomorphism extends to
an isomorphism of the entire M (M is homogeneous). Therefore φ(b̄) also holds.
Therefore b̄ ∈ X. And so the formula φ(x̄) is equivalent (in T ) to the formula∨

(〈ā〉M ,ā)|ā∈X

ψ〈ā〉M ,ā(x̄)

which is quantifier-free. Note that the uniform local finiteness guarantees that this
formula is finite because it ensures that there are only finitely many different (up
to an isomorphism) 〈ā〉M with a generator set ā.

If x̄ is empty, then φ is a sentence. It is therefore equivalent (in T ) to a
propositional constant > or ⊥ because T is complete.
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3. Examples

3.1 Näıve construction

This is an example showing why does the amalgamation property matter. Let us
assume that K is a set of all finite linear orderings. Following the construction
described in Theorem 1 we will construct two structures (N, <) and (Q, <).

We start with the ordering of N. Consider the Ai as in Theorem 1 to be the
ordering of i elements. Every Bi is exactly Ai with Ai being embedded into it by
an identity map and Ai−1 to be embedded onto the first i− 1 elements.

As for the ordering of Q we consider Ai-s to be same as above. The Bi will now
be a chain of orderings of 2n − 1 elements, with n being the smallest integer such
that 2n − 1 > i. When the sizes of Bi and Bi−1 are the same, the embedding of
Bi−1 onto Bi will be an identity, and the embedding of Ai will be arbitrary. In the
steps where Bi 6= Bi−1 we choose the embedding of Bi−1 onto Bi as a map to every
even element. The embedding of Ai onto Bi will be the map to every odd element.
This way no element in the final structure will be maximal or minimal and every
pair of elements will have another element between them. This structure therefore
satisfies the theory of dense linear ordering (DLO) and therefore is isomorphic to
the ordering of Q.

3.2 Dense linear ordering

Now we will show how does the weak homogeneity affect the outcome of the
construction in Section 3.1.

Let K be the class of all finite linear orderings. K has (HP) , (JEP) , and (AP)
as shown in chapter 1. K is also universally locally finite because the language
has no function symbols. K therefore has a Fräıssé limit. We will call this Fräıssé
limit (DLO) - the dense linear ordering.

Theorem 8. Let a structure Q = (Q,≤) be a countable linear ordering. Then Q
is the Fräıssé limit of K iff Q has no minimal nor maximal element and for all
x, y ∈ Q such that x ≤ y there exists z ∈ Q such that x < z < y

Q is then isomorphic to the ordering of rationals.

Proof. ”⇒ ”
We assume that Q is the Fräıssé limit of all the finite linear ordering therefore Q is
weakly homogeneous. For the sake of contradiction assume that Q has a maximal
element m. Let A be a linear ordering with only one element a. Let B be a linear
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ordering with only two elements a, b where a < b. Let f : A→ Q be an embedding
such that f(a) = m. This embedding can not be extended into any embedding of
B. This is a contradiction with G being weakly homogeneous. The non-existence
of minimal element can be proven analogically.

Let us have any two elements x, y ∈ Q such that x < y. The substructure
A = ”x < y” is a finite linear ordering. Let B be a finite linear ordering with ele-
ments x, y, z′ where x < z′ < y. A is embedded into Q by identity map therefore
there exists an embedding f of B that extends this identity. In Q there must hold
that x < f(z′) < y. f(z′) is the desired z described in 2.

”⇐ ”
Assume Q has the properties described. We want to prove that Q is weakly
homogeneous. Given two finite linear orderings A ⊂ B and an embedding f : A→
G we want to show that f extends to some embedding g : B → G. We can show
this by induction on the number of elements in B that are not in A. We only need
to focus on the case where B has only one element b that is not in A.

If b is the largest/smallest element of B then we can map it to any element
larger/smaller than any element in f(A). Such element always exists.

What if b is between two elements a, c ∈ A? We know that there exists an
element z ∈ Q between f(a) and f(c). We map b onto z.

By taking A to be the empty structure we see that any finite linear ordering
can be embedded into Q. Therefore Q has the age K and thus is (isomorphic to)
the (DLO).

3.3 Dense partial ordering

A binary relation ≺ is a partial order if it is antireflexive, transitive and anti-
symmetric. A partial ordering is any structure in the language {≺} where ≺ is a
partial order. If x ≺ y then we say that ”x is smaller than y” and ”y is bigger
than x.” There may be elements x, y such that ¬(x ≺ y) and ¬(y ≺ x). We will
call any such elements incomparable.

Let K be a class of all the finite partial orderings. K then has (HP) , (JEP)
and (AP) .

(HP) is trivial because any substructure of a partial ordering is also a partial
ordering (since ≺ does not lose its antireflexivity, transitivity, nor antisymmetry).

(JEP) follows from (AP) because a single-element structure is embeddable in
any partial ordering (Theorem 2). To show (AP) let A,B,C be partial orderings
and let f : A → B and g : A → C be embeddings. Then the amalgamation will
be the structure D with the universe A ∪ (B \ A) ∪ (C \ A). The partial order ≺
of the structure will be as follows:

12



1. If x, y ∈ A then x ≺ y if and only if it holds in A.

2. If x ∈ (B \A) and y ∈ A then x ≺ y if and only if x ≺ f(y) in B. Also y ≺ x
if and only if f(y) ≺ x in B. Analogously for x ∈ (C \ A)

3. If x ∈ (B \ A) and y ∈ (C \ A) then ¬(x ≺ y) and ¬(y ≺ x).

We will define embedding f ′ : B → D as identity on B \ A and as f−1 on Im(f).
Analogously for g′. It follows that these are embeddings and that f ′f = g′g = idA.

K is also obviously uniformly locally finite.

Theorem 9. Let W = (W,≺) be a countable partial ordering. Then the following
are equivalent:

1. W is the Fräıssé limit of K.

2. For every three finite (or possibly empty) disjunct sets A,B,C ⊂ W where

∀a ∈ A ∀b ∈ B ∀c ∈ C (a ≺ b) ∧ ¬(c ≺ a) ∧ ¬(b ≺ c)

there exists an element x such that

∀a ∈ A ∀b ∈ B ∀c ∈ C (a ≺ x ≺ b) ∧ ¬(c ≺ x) ∧ ¬(c ≺ x)

(x is between any two elements of A and B and is incomparable to C).

Proof. 1.⇒2.

Suppose we are given A,B,C as in 2. Together they form a finite partial order.
We extend this structure to a structure X by adding one element x′ for which

∀a ∈ A ∀b ∈ B ∀c ∈ C (a ≺ x′ ≺ b) ∧ ¬(c ≺ x′) ∧ ¬(c ≺ x′)

holds. X is a finite partial ordering. x′ obviously does not violate antireflexiv-
ity, transitivity nor antisymmetry. Antireflexivity is obvious. As for transitivity,
x′ has smaller elements only in A and bigger elements only in B. Any element
smaller than x′ is therefore automatically smaller than all of elements bigger than
x′. Antisymmetry is not violated either because naturally A ∩ B = ∅. By weak
homogeneity of W there exists an embedding of X that extends the embedding of
A ∪B ∪ C. We take x in the theorem to be the image of x′.

2.⇒1. We will prove the weak homogeneity. Let us have two partial orderings
U ⊆ V and an embedding f :→ W . We need to show that there exists g : V → W
extending f . We will proceed by induction on the size of V \U . It suffices to show
this only for size of 1.

13



Suppose that v is the only element in V \ U . We take A′ to be the set of all
the elements in V smaller than v, B′ to be the set of all elements of V bigger
than v, and C ′ to be the set of every element in V incomparable with v. We take
A = f(A′), B = f(B′), C = f(C ′). There exists an element x that is bigger
that every element of A, precedes every element of B, and is incomparable to any
element of C. We take g(v) = x. This is the desired extension.

Note that this construction also works for U being empty. Every finite partial
ordering is therefore embeddable to W . Any finite substructure of W is also a finite
partial ordering because antisymmetry and transitivity of ≺ is retained. Therefore
the age of W is precisely K.

From this property we can see that every finite set X has countably many
incomparable upper/lower bounds (elements bigger/smaller than every element of
X). For the sake of the argument assume that X has only finitely many incom-
parable lower bounds. If we would take Y to be the set of these bounds then the
condition would fail for B = X and C = Y .

3.4 Random Graph

A graph is any structure in a language {E} where E is a binary relation that is
non-reflexive and symmetric. We usually denote it as G = (VG, EG) where VG is
the universe of G and EG is its particular interpretation of the relation symbol E.
Any element of VG is called a vertex. If we have two vertexes x, y ∈ VG such that
EG(x, y) we say that x and y are adjacent. Such pair x, y may be called an edge.
Any substructure of a graph is called a subgraph.

Let K be a class of all finite graphs. We see that K has (HP) , (JEP) and
(AP) . (HP) is obvious since any subgraph of a finite graph is also a graph. Trivial
graph T = ({x}, ∅) can be embedded into any graph therefore by Theorem 2 we
only need to prove (AP) .

Let G0 be a graph with embeddings f : G0 → H1 and g : G0 → H2. We want
to construct the amalgamation G1 = (VG1 , EG1). Let VG1 be VH1 ∪ VH2 \ Im(g).
We define E for every two elements x, y ∈ VG1 as follows:

1. If both x, y ∈ VH1-part of VG1 or if both x, y ∈ VH2-part of VG1 then they are
adjacent if and only if they are adjacent in H1 or H2 respectively.

2. If x ∈ Im(f) and y ∈ VH2 then they are adjacent if gf−1(x) is adjacent to y
in H2.

3. If x ∈ VH1 \ Im(f) and y ∈ VH2 \ Im(g) then they are adjacent arbitrarily.
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We define k : H1 → G1 as a default injection of VH1 into VG1 . k is an embedding
because it respects the adjacency. Then we define l : H2 → G1 to be such function
that if x ∈ Im(g) then l(x) = kfg−1(x) and if x ∈ H2 \ Im(g) then l(x) = x
(default injection). This is also an embedding.

K is also uniformly locally finite with f being an identity. Therefore K satisfies
the assumptions of Fräıssé’s theorem and thus has a Fräıssé limit. We’ll denote
this Fräıssé limit as Γ and call it the random graph.

Theorem 10. Let a structure G = (VG, EG) be a countable graph. Then the
following is equivalent:

1. G is (isomorphic to) the random graph Γ

2. For every two distinct sets X, Y ⊂ VG there exists a vertex v ∈ VG such that
∀x ∈ X E(x, v) and ∀y ∈ Y ¬E(y, v)

Proof. First we prove the implication 1.⇒ 2.
If G is the random graph then it is a Fräıssé limit of a set. Therefore G is weakly
homogeneous. Suppose we are given distinct sets X, Y ⊂ VG. A = (VA, EA) where
VA = X ∪ Y and EA is the restriction of EG on VA is a graph. If we extend A
by one vertex v′ that is adjacent to all the vertexes of X and not adjacent to any
of the vertexes of Y we get a graph that we will denote as B. A is embedded
into G by the identity map. By weak homogeneity there exists an embedding of
f : B → G that keeps X and Y in their place. We take v to be f(v′).

Now onto 2.⇒ 1.
We will prove that G is weakly homogeneous. Suppose we are given two graphs
A ⊆ B and an embedding f : A → G. We want to extend it to an embedding
g : B → G. We can do this by induction on the size of VB \VA. It suffices to prove
for |VB \ VA| = 1 because induction steps will have the same proof. We take w to
be the vertex that is in VB \ VA. We take X to be the set of vertexes adjacent to
w in B and Y to be the set of vertexes not adjacent to w in B. We then apply
the property 2. on f(X) and f(Y ) to produce a vertex v. We then map w onto v
and we have the desired extension.

If we take A to be the empty structure we see that any finite graph is embed-
dable into G. G has therefore the age K and therefore is isomorphic to the random
graph.

Random graph is regularly used as an example of Fräıssé’s construction. W.
Hodges also uses it in his book Hodges [1997]. He also shows an extension of the
Theorem 8 to any finite language L that has no function symbols. The Fräıssé
limit is then called Random structure of L.
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3.5 Random triangle-free graph

Let K be the class of all graphs to which cannot be embedded a triangle (K3). We
will call them triangle-free. They can be characterised by the sentence

∀x, y, z [((x 6= y ∧ y 6= z ∧ z 6= x) ∧ E(x, y))→ (¬E(x, z) ∧ ¬E(y, z))]

K has (HP) , (JEP) and (AP) .
(HP) is trivial since if a triangle can not be embedded into a graph then it

cannot be embedded into any substructure.
(JEP) is a consequence of (AP) since a single-vertex graph can be embedded

into any graph in K.
To show (AP) we do the same construction as in section about Random graph

above except we change the condition 3. to be that if given x ∈ VH1 \ Im(f) and
y ∈ VH2 \ Im(g) then they are not adjacent.

The amalgamation is once again triangle-free. This is because there is no
triangle with all the edges inside the Im(k) nor Im(l). Since there are no edges
between their difference, there are also no triangles with some edges in one but
not the other.

K is also uniformly locally finite with f being an identity. It has a Fräıssé
limit. We will call this limit Random triangle-free graph.

Theorem 11. Let G = (VG, EG) be a countable graph. Then the following are
equivalent:

1. G is the Random triangle-free graph

2. For every two finite sets X, Y ⊂ VG where X ∩ Y = ∅ there exists a vertex
z adjacent to every vertex in X and not adjacent to any vertex of Y if and
only if no vertexes in X are adjacent to each other.

Proof. 1.⇒2.
Let X, Y be disjunct subsets of VG. There exists a graph A that is X∪Y extended
by one element z′ that is adjacent to whole X and not adjacent to any vertex of
Y . If some two elements x, y ∈ X are adjacent to each other then A has a triangle
{x, y, z′}. Therefore it is not embeddable into G. If there would be such z ∈ VG
that would be adjacent to all vertexes of X (and not adjacent to any of Y ) then
A would be embeddable into G. It is because we could take z′ to z.

On the other hand, if no two elements of X are adjacent to each other then A
is triangle-free and therefore is embeddable into G. We take z to be the image of
z′ in this embedding.
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2.⇒1.
We need to prove that if given 2. then G is weakly homogeneous and every finite
subgraph of G is triangle-free. Suppose we are given a subgraph of G. If it were to
have a triangle on vertexes {a, b, c} then the condition 2. would fail on X = {a, b}
because there would be z = c that is adjacent to whole X. Therefore any finite
graph embeddable into G is triangle-free.

Now suppose that we are given two triangle-free graphs A ⊆ B and an embed-
ding f : A→ G. We will produce the embedding f ′ : B → G that is an extension
of f . We can do this by induction on the size of VB \ VA. It suffices to show for
B having only one extra element. Let z′ be this extra element. We mark X ′ to be
the set of all the elements adjacent to z′ in B and Y to be the set of elements not
adjacent to it. We take X = f(X ′) and Y = f(Y ′). Since B is triangle-free we
know that no elements of f(X ′) are adjacent to each other. Therefore there exits
an element z ∈ VG that is adjacent to whole X and not adjacent to any of Y . f ′

is the embedding that takes z′ to z.

Note that condition 2. does not work on infinite X. We can guarantee that if
any two elements of it are adjacent then there does not exist any z that is adjacent
to whole X. However we cannot be sure that even if they are not adjacent, such
z does exist.

3.6 Prüfer group

A group is a structure G = (G, ·G, eG) in the language ·, e where · is a binary
function and e is a constant. eG is such element that ∀g ∈ G g · eG = eG · g = g
holds. ” · ” is an associative function such that ∀g ∈ G∃g′ g · g′ = eG. We will use
the following abbreviation:

g · g . . . g︸ ︷︷ ︸
k

= gk

A p-group (if p is a prime) is a 1-generated (also called cyclical) group where
there exists such n that ∀g ∈ G gp

n
= e A p-group G is a pn-group if n is the

lowest possible where the sentence as above holds.
It follows that any pn-group has exactly pn elements that can be described

as {ak|k ∈ {1, 2, . . . pn}} where a is the group’s generator. From this it follows
that any p-group is also commutative. It can also be seen that any subgroup of a
p-group is also a p-group.

Let K be the set of all the p-groups. As noted above K has (HP) . It has the
smallest structure (trivial group {e}) therefore we only need to show (by Theorem
2) that it has (AP) .
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Let A be a pn-group with embeddings f : A→ B and g : A→ C where B is a
pk-group and C is a pl-group. Without loss of generality assume k ≥ l. We define
the amalgamation D to be exactly B with f ′ : B → B(= D) to be an identity
on B. We want to show that there exists an embedding g′ : C → B such that
g′(g(a)) = f(a) ∀a ∈ A. Let a0 be the generator of A. We put g′(g(a0)) = f(a0).
Let c0 be the generator of C. There exists a r such that c0

r = g(a0). There also
exists exactly one b ∈ B such that br = f(a). This follows from the representation
of the elements as b0

l where b0 is the generator of B. We put g′(c0) = b. For every
other element in C we write it in the form c0

x and assign g′(c0
x) = bx. Thus g′ is

an embedding. It is also true that for every element a0
x ∈ A : f(a0

x) = g′g(a0
x).

Thus K has (AP) .
K is unfortunately not uniformly locally finite since there is no upper bound

on the size of a p-group while they are all generated by a single element.

K has nonetheless a Fräıssé limit. We will call this limit a Prüfer group and
denote it as Zp∞ Kaplanski [1976].

Theorem 12. Let G be the group of complex numbers that are of the type e2iπ k
pn

where k, n ∈ N with ·G being defined as the multiplication in the field C.
G is then the Prüfer group.

Proof. Let n be any natural number. A pn-group A can be embedded into G by

embedding f : A→ G that takes the generator a0 of A to the element e2iπ 1
pn which

is a generator of a pn-subgroup. Since every substructure of G is a p-group G has
the age exactly K.

Next we want to show that G is weakly homogeneous. Let A ⊆ B be p-groups.
It follows that if A is a pn-group and B is a pm-group then m ≥ n. Let a0 be a
generator of A. Let b0 ∈ B be the element for which b0

pm−n

= a0. b0 is a generator
of B. Let f : A→ G be an embedding. We define g ∈ G as g = f(a0). It is easily

seen that g = e2iπ k
pn where k

pn
is in its simplest form. We then put f ′ : B → G to

be such embedding that takes b0 to e2iπ k
pm . f ′ is an extension of f therefore G is

weakly homogeneous.

3.7 Semisimple modules

Let R be a ring. Mod − R is the class of structures called (right)R-modules in
language L = {0,+, {·r|r ∈ R}} that follows the classic module definition as
described in Wisbauer [1991]. Further we will only assume right modules. For left
modules the following is analogous. In this whole example we will use definitions
and facts about modules from Wisbauer [1991].
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A module is simple if it has no non-trivial submodules. We denote the class
of simple R-modules as Simp-R. Every simple module is 1-generated. A module
M is semisimple if there exists a set of simple modules {Mi|i ∈ I} such that

M '
⊕
i∈I

Mi

where ⊕ is the direct sum.
Let R be a countable ring. Let K be the class of all semisimple R-modules that

are a finite direct sum of simple modules (I is finite). Therefore every structure
in K is finitely generated. K has (HP) because every submodule of a semisimple
module is also semisimple. K has (JEP) because if M and N are semisimple
modules then M ⊕N is also a semisimple module.

In order to show that K has (AP) let us have M,K, and L semisimple R-

modules and let f : M → K and g : M → L be embeddings. K = Im(f)⊕ K̃ and

L = Im(g)⊕ L̃ where K̃ and L̃ are some semisimple modules. This holds because
every submodule of a semisimple module has a complement. Let us have a module
N = M ⊕ K̃ ⊕ L̃. We define f ′ : K → N as f−1 on Im(f) and as identity on K̃.

g′ will be analogously g−1 on Im(g) and identity on L̃. N with f ′ and g′ is the
desired amalgamation.

K is not necessarily weakly homogeneous. Since every simple module is iso-
morphic to R/I for some maximal ideal I they are not necessarily bounded in size.
For example with R being the ring of integers every simple module is isomorphic
to Zp for some prime p (and therefore has the size p).

If we, however, take R to be such a ring that has a finite amount of maximal
ideals (for example Artinian rings) then K is indeed weakly homogeneous. The
bounding function f is now f(k) = kn where n is the size of the largest simple
module.

Theorem 13. Let R be a ring. Let M be a Fräıssé limit of the set K of all finitely
generated semisimple modules. Then

M '
⊕

J∈Simp−R

(⊕
n∈N

J

)

Proof. We will prove that any M that has the described structure is weakly homo-
geneous of the age K. M is obviously semisimple therefore all of its substructures
are also semisimple modules. Let S be any finitely generated semisimple R-module.

S '
⊕

J∈Simp−R

(
nJ⊕
i=1

J

)
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for some sequence nJ of natural numbers (i.e. all but finitely many are zero). It
is easily seen that this is a submodule of M .

Let A ⊆ B be two finitely generated semisimple modules. Let f : A → M be
an embedding. We know that B = A ⊕ B̃ for some semisimple module B̃. We
need to find an embedding f ′ : B̃ →M whose image does not intersect the image
of f . Luckily the structure of M allows us to write it as

M ' Im(f)⊕
⊕

J∈Simp−R

(⊕
n∈N

J

)
' Im(f)⊕M

because Im(f) contains only finite amount of simple submodules of M . Since B̃
embeddable intoM we may embed it into Im(f)⊕M such that Im(f ′) ∩ Im(f) = {0}.
Therefore g that is f on A and f ′ on B̃ is the embedding of B into M that extends
f .

3.8 Classes that fail Fräıssé’s theorem

In this section we will look at some classes that do not satisfy some of the conditions
(HP) , (JEP) or (AP) .

The first example is the class of all finite connected graphs. Those are the
graphs where for every two elements x, y there exists a path between them (path
being a sequence of elements such that every two following elements are adjacent
and elements x and y are one at start and one at the end).

This class has a minimal structure (single-vertex graph) therefore if it has (AP)
then it has (JEP) . Amalgamation can be achieved by the same construction as in
section 3.4. The amalgamation is a connected graph because if we were given any
two vertexes x, y ∈ VG1 and a vertex a ∈ kf(G0) then there exists a path between
x and a and also one between a and y. Together they form a path between x and
y.

This class however does not have (HP) . Let us have a graph P2 = ({x, y, z}, E)
where E(x, y), E(y, z),¬E(x, z). This is obviously a continuous graph. The sub-
graph P ′ = ({x, z}, E ′) (where E ′ is the restriction of E) is not continuous (because
there is no path between x and z).

The second example is the class of all finite planar graphs. Those are graphs
that can be drawn on a two-dimensional Euclidean plane (proper definition can
be found in Bondy and Murty [1976]). Kuratowski’s theorem states that these
graphs can be characterised as those not containing a subgraph reducible to K5 (a
graph on 5 elements all of which are adjacent to each other) or K3,3 (a graph on
6 elements divided to two sets of three where each element is adjacent to all the
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elements in the other set). A precise statement and proof of this theorem can be
found in Bondy and Murty [1976].

This class obviously has (HP) since K5 nor K3,3 can appear in any subgraph.
It also has (JEP) because the graph produced by drawing these two graphs next
to each other is still planar.

The class however does not have (AP) . Let us have A = ({a, b, c, k}, EA)
where a, b, c are adjacent to k. Let us then have its extensions B,C where
B = {a, b, c, k, β, EB} and C = {a, b, c, k, γ, EC}. In B β is adjacent to a, b, c
and to k. In C γ is also adjacent to a, b, c but is not adjacent to k. Suppose for the
sake of argument that we have an amalgamation D and embeddings f : B → D
and g : C → D such that f = g on A. f(k) is adjacent to all of f(a), f(b), f(c).
So is f(β) and g(γ). But since f(β) is adjacent to f(k) and g(γ) is not, we know
that f(β) and g(γ) are two distinct elements. Therefore D contains a subgraph
K3,3 and therefore is not planar.
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