
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Monika Forn̊usková
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Introduction

Roulette is a casino game which is played since the 18th century. Nowadays,
there are 2 basic types of roulette - European and American. They have the
same number of red (18) and black (18) numbers. They differ in number of zeros
which are neither red nor black. The European has 1 zero and the American has
2 zeros. This thesis focuses only on the European type.

It is obvious that roulette is not a fair game. Therefore, the player knows
that he/she will eventually lose his/her money. But some strategies can be better
than others in some specific sense. Let us consider only $1 bets for purposes of
this thesis. We can regard the roulette as 37 single numbers and our question is
whether and how to diversify our asset. It is straight-forward to show that the
more numbers we bet on, the smaller the variance is. Let us assume we spread our
bet on k numbers. Xk is a random variable representing our profit/loss defined
as

Xk =

{
36−k
k
, k

37

−1, 37−k
37

.

Then the variance of Xk is

var(Xk) = E [X2
k ]− (E Xk)

2 =
1296− 35k

375
−
(
− 1

37

)2

=
1296(37− k)

1369k

If k=1, the variance is approximately 34.8. Obviously, if k=37, the variance is 0.
The main goal of this thesis is to compare 2 strategies – the Red-Black strategy

(the variance is approximately 0.99) and the Single Number strategy. On one
hand, the betting on a color represents a conservative strategy – the asset is
diversified, the variance is small, but the winning payout is also small (1 to 1).
On the other hand, the betting on a number represents a more risky strategy
– the bet is not diversified at all, but the winning payout is larger (35 to 1).
Three statistics of the cumulative profit/loss will be studied in each chapter - the
Maximum, the Last Exit Time and the Number of Visits of Zero. Comparing
these statistics will give us a more detailed view on the two strategies and it will
answer the question whether it is sensible to diversify or not.

The theoretical results are supported by Monte Carlo simulations at the end
of each chapter.
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1. Red-Black Strategy

There are 18 black numbers, 18 red numbers and 0 that is neither black nor red
in European roulette. There are 18 numbers we bet on and 19 we do not in Red-
Black strategy. Probability of winning is 18

37
and probability of losing is 19

37
. Note

that this strategy is equivalent to betting on Odd/Even and Low/High numbers.
This betting strategy leads to a discrete stochastic process Y = {Y (n), n ∈ N},

where n represents time and Y (n) is the resulting profit/loss at time n. For
purposes of this thesis, we will consider only simple $1 bets on Red or Black.
As a result, {Y (1), Y (2), Y (3), ...} is a sequence of independent and identically
distributed random variables. The random variable Y (n) has the following dis-
tribution

Y (n) =

{
+1, 1− p = 18

37

−1, p = 19
37
.

It is slightly unusual that p denotes probability of loss. This convention comes
from the theory of the Markov Chains – it is more typical to study a loss process
as it walks to +∞ rather than −∞. The expected value of Y (n) is

E [Y (n)] = 1 · 18
37

+ (−1) · 19
37

= − 1
37
.

Let us consider another random variable – the cumulative profit-loss S(n) defined
as

S(n) =
n∑
i=1

Y (n).

This variable represents how much money we made or lost at time n. S(n)
can also be recognized as a one-dimensional random walk. Since the expected
value of Y (n) is less than 0, S(n) is a random walk with a negative drift. Assume
S at time n = 0 is zero. It is clear that

S(n) = S(n− 1) + Y (n), ∀n ∈ N. (1.1)

Theorem 1 (The strong law of large numbers for i.i.d.). Let Y (1), Y (2), Y (3), · · ·
be i.i.d. random variables. Then

Y (n) −→ E [Y (1)] a.s.

if and only if E [|Y (1)|] <∞.

Proof. See Dupač and Hušková [2013] page 79.

E [|Y (1)|] = 1 · 18
37

+ 1 · 19
37

= 1. From Theorem 1 we get that S(n) = n · Y (n)
converges to −∞ almost surely for n −→∞.

We see that our game will ultimately end up negative. In particular, this
means that the Last Exit Time τ from non-negative values defined as

τ = max{n : S(n) = 0}

is finite: P(τ < ∞) = 1. Let us assume an example from Dubins and Savage
[1965]. We are at a casino with $1,000 and we desperately need $10,000 the next
day. Even though we know that our chances of losing are higher than chances
of winning, gambling is our only option. To better understand the game, some
important statistics will be described in the next few sections.
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1.1 Maximum

We would like to know the distribution of the Maximum that can be reached
while playing the Red-Black strategy. Let M be a random variable defined as

M = max
n

S(n), n ∈ N0.

Maximum is a discrete variable and, as a result of the definition of S(n),
it can reach only integer values greater or equal to zero. We need to find the
distribution of M .

In the Red-Black strategy, Y (n) can only reach 1 or −1 and from Equation 1.1
we see that S cannot ”skip” any value from Z. Saying it in more appropriate
way: if there exists n ∈ N such that S(n) = k > 0, then there exists m ∈ N such
that S(m) = k − 1. That leads us to

P(M = k) = P(M ≥ k)− P(M ≥ k + 1) =

= P(S(n) hits k eventually)− P(S(n) hits k + 1 eventually).

To find this probability, we can use several approaches. In this thesis we use
a Martingale approach and a Markov Chain approach with absorbing boundary
described in detail in the following text.

1.1.1 Martingale

Let us start with definition of martingale.

Definition 1. X = {X(n), n ∈ N0} that satisfies for any time n:
a) E (|X(n)|) <∞,
b) E [X(n+ 1)|X(1), · · · , X(n)] = X(n)
is a discrete-time martingale.

Define a random variable X(n) as

X(n) =

(
p

1− p

)S(n)
.

It is a discrete-time martingale, since

E [X(n+ 1)|S(0), · · · , S(n)] = E n

(
p

1− p

)S(n+1)

= E n

(
p

1− p

)S(n)+Y (n+1)

=

=

(
p

1− p

)S(n)
· E
(

p

1− p

)Y (n+1)

=

=

(
p

1− p

)S(n)
·

[(
p

1− p

)1

· (1− p) +

(
p

1− p

)−1
· p

]
=

=

(
p

1− p

)S(n)
· (p+ 1− p) =

=

(
p

1− p

)S(n)
= X(n).
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Theorem 2 (Optional sampling theorem). Let X = {X(n), n ∈ N} be a discrete-
time martingale and τ a stopping time with values in N∪ {∞}, both with respect
to a filtration (Fn)n∈N. Assume that one of the following three conditions holds:
a) The stopping time τ is almost surely bounded.
b) E [τ ] <∞ and there exists a constant c such that E [|X(n+ 1)−X(n)| |Fn] ≤ c
a.s. for all n ∈ N.
c) There exists a constant c such that

∣∣Xmin{n,τ}
∣∣ ≤ c a.s. for all n ∈ N.

Then X(n) is almost surely well defined random variable and E [X(τ)] = E [X(1)].

Let us define stopping time τ = min{n : S(n) = 1 or S(n) = b}. Then X(n)
is a discrete-time martingale that satisfies Theorem 2. Expected value of X(1) is

E [X(1)] =E

(
p

1− p

)S(1)
= E

(
p

1− p

)Y (1)

=

=

(
p

1− p

)1

· (1− p) +

(
p

1− p

)−1
· p = 1.

Using Theorem 2 we get

1 = E

(
p

1− p

)S(τ)
=

(
p

1− p

)1

· P[S(τ) = 1] +

(
p

1− p

)b
· P[S(τ) = b].

If we use limit b→ −∞, the second summand in the previous equation disappears
because p

1−p > 0. Thus,

1 =
p

1− p
· P[S(τ) = 1],

P[S(τ) = 1] =
1− p
p

=
18

19
.

This is the probability that the random walk S(n) will eventually reach 1; or
equivalently, the probability that M is greater than 0.

1.1.2 Markov Chain

We will use the following transformation to map the wealth process to a simple
random walk:

W (n) = k − S(n).

The process W has a fixed starting point k and drifts to +∞. The process W (n)
hitting zero at some point is equivalent to S(n) hitting k. Therefore, for solving
of our problem we only need to compute probability

α(k) =P(W (n) hits 0 eventually|W (0) = k) =

=P(S(n) hits k eventually|S(0) = 0).

Definition 2 (Discrete Markov chain). A sequence of random variables {Xn, n ∈
N0} is called discrete Markov chain with state space T if

P(Xn+1 = j|Xn = i,Xn−1 = in−1, · · · , X0 = i0) = P(Xn+1 = j|Xn = i)

for all n ∈ N0 and for all j, i, in−1, · · · , i0 ∈ T , if P(Xn = i, · · · , X0 = i0) > 0.
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From Equation 1.1, it is clear that S(n) depends only on the value of the
previous S(n− 1) and the new value of Y (n). As a result, S(n) (and also W (n))
satisfies the Markov property and we can follow the Markov Chain Theory as
explained for example in Prášková and Lachout [2012]. The most useful for us is
the computation of probabilities.

α(k) =
∞∑
j=1

α(j)p(k, j),

where p(k, j) is probability of moving from a position k to j. In the Red-Black
strategy, S(n), n ≥ 1, can only be reached from S(n)−1 with probability 1−p =
18
37

and from S(n) + 1 with probability p = 19
37

. This is very useful, because the
equation for computing α(k) reduces to

α(k) = (1− p) · α(k − 1) + p · α(k + 1). (1.2)

This is a difference equation and its solution can be found in the following
way. First, find the particular solution in the form xk and then find the general
solution that satisfies boundary conditions.

Substituting α(k) = xk (x 6= 0) to Equation 1.2 we get

xk = (1− p) · xk−1 + p · xk+1

x = 1− p+ p · x2

p · x2 − x+ 1− p = 0.

This quadratic equation has two roots

x1,2 =
1±

√
1− 4p(1− p)

2p
=

1± (1− 2p)

2p
=

{
1
1−p
p

= 18
19
.

This is the particular solution. The general solution is in the form

α(k) =
2∑
i=1

cix
k
i = c1

(
18

19

)k
+ c21

k.

Boundaries are needed to find ci. The first condition comes from S(0) = 0
and thus α(0) = 1. The second condition comes from that S(n) converges to −∞
almost surely for n −→∞, so the probability of reaching S(n) =∞ at some point
converges to zero a.s. This gives us limk→∞ α(k) = 0.

1 =α(0) = c1

(
18

19

)0

+ c2 = c1 + c2

0 = lim
k→∞

α(k) = lim
k→∞

c1

(
18

19

)k
+ c2 = c2.

From these equations we have c2 = 0 and c1 = 1 and thus the probability
α(k) is

α(k) =

(
18

19

)k
.
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Therefore,

P(M = k) = α(k)− α(k + 1) =

(
18

19

)k
−
(

18

19

)k+1

=
1

19
·
(

18

19

)k
for all k ≥ 0. The distribution of the Maximum is geometric with parameter
λ = 1

19
. We can use that to derive some facts. First of all, the expected value,

the variance and the standard deviation of geometric distribution is

E [M ] =
1− λ
λ

=
18
19
1
19

= 18, (1.3)

var[M ] =
1− λ
λ2

=
18
19
1

192

= 18 · 19 = 342, (1.4)

σ[M ] =
√

var[M ] =
√

342
.

= 18.49. (1.5)

Second of all, the probability that the Maximum is zero, or equivalently; that
we never reach a positive value, is

P(M = 0) = 1
19

.
= 0.0526316. (1.6)

More importantly the probability that we will eventually reach something positive
is

P(M ≥ 1) = 1− P(M = 0) =
18

19
.

= 0.947368.

Finally, median is 12 and 95% quantile is 55 (P(M ≤ 55) ≥ 0.95)

Figure 1.1: Distribution of the Maximum with the Expected value

1.2 Last Exit Time

Knowing that our game almost surely ends in the negative numbers, it is natural
to ask question when is the last time τ we reach zero. The Last Exit Time is
defined as

τ = max{n ≥ 0|S(n) = 0}.
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The random walk S(n) can be at zero only at even times. As in the previous
section, the main goal is to find the distribution of τ . Therefore,

P(τ = 2n)

needs to be found for all n ∈ N0.
The evolution of the random walk before the time 2n is not relevant. The last

exit time τ is at 2n only in the following situation. S(2n) = 0, next step must
be down to −1 (S(2n+ 1) = −1). After that, the random walk must stay under
−1, so it does not reach zero again. This means that maxk≥2n+1 S(k) = −1. An
illustration of that is in Figure 1.2.

Figure 1.2: Part of a random walk with τ = 2n

In the terms of the probabilities:

P(τ = 2n) = P (S(2n) = 0 & S(2n+ 1) = −1) · P( max
k≥2n+1

S(k) = −1). (1.7)

The definition of the conditional probability can be used for computing the
first factor of the equation above.

P[S(2n) = 0 & S(2n+ 1) = −1] =

= P[S(2n) = 0] · P[S(2n+ 1) = −1|S(2n) = 0] =

=

(
2n

n

)
pn(1− p)n · p =

=

(
2n

n

)
pn+1(1− p)n.

(1.8)

The second factor of Equation 1.7 can be solved the following way. The
probability that we are at -1 and will not go above it is the same as the probability
that we are at 0 and will not go above it. We only changed the starting point of
S(n) to -1. This probability was computed in Section 1.1, so Equation 1.6 can
be used.

P

(
max
k≥2n+1

S(k) = −1

)
= P

(
max
k≥0

S(k) = 0

)
= P (M = 0) =

1

19
. (1.9)

8



Putting Equation 1.8 and Equation 1.9 together into Equation 1.7, we get our
initial probability

P(τ = 2n) =
1

19
·
(

2n

n

)
pn+1(1− p)n.

Using Wolfram Mathematica,

E [τ ] =
∞∑
n=0

2n · P(τ = 2n) =
∞∑
n=0

2n

19

(
2n

n

)
pn+1(1− p)n = 1, 368, (1.10)

var[τ ] = E [τ 2]− (E[τ ])2 = 5, 617, 008− (1, 368)2 = 3, 745, 584, (1.11)

σ[τ ] =
√

var[τ ]
.

= 1935.35. (1.12)

The basic quantiles (also using Wolfram Mathematica) are: median is 622 and
95% quantile is 5, 256.

Figure 1.3: Distribution of the Last Exit Time with the Expected value

1.3 Visits of Zero

Let us assume that we would like to know how many times the process S(n)
returns to zero. This number tells us how many times the random walk crosses
the zero which is the moment when our profit and loss are balanced. The random
variable Z that counts the number of returns to zero is defined as

Z =
∞∑
n=0

χ{S(n)=0},

where χ is characteristic function.
Z reaches only values from N (P(Z ≥ 1) = 1). Again, our goal is to find the

distribution of Z

P(Z = k) = P

(
∞∑
n=0

χ{S(n)=0} = k

)

9



for positive integers k.
If Z = k, we can divide the random walk on k sections as shown in Figure 1.4

(the red dashed lines).

Figure 1.4: Example of a part of a random walk with Z = 5

The sections 1, · · · , k − 1 are same in the following sense: they begin in zero,
they end in zero and there is no intermediate value at zero. The last section
is different - it starts at zero, goes to −1 in the next step and after that never
reaches zero again. All the sections are independent of each other; consequently,
the result P(Z = k) is just a product of probabilities of each part. Let the
probability of section i be pi for i ∈ {1, · · · , k}. Then

P(Z = k) =
k∏
i=1

pi.

First of all, let us take a look on the last section and its probability pk. We
touch zero at some point and it is the last time we achieve it. Thus the following
progress of the random walk must be down to −1 and then continue under the
−1, so it never reaches 0 again. This is actually almost probability that we have
already derived in Section 1.2. We go to -1 (probability 19

37
) and stay there (with

probability 1
19

from Equation 1.9). As a result,

pk =
19

37
· 1

19
=

1

37
.

Probabilities pi are different, but they are computed the same way for all
i ∈ {1, · · · , k − 1}. Let us fix i. The random walk S(n) can be seen as a Markov
chain with 2 states - we reach zero again or we do not. The probability that we
do not is pk, the probability that we reach zero again is 1 − pk. Therefore, this
Markov Chain has a geometric distribution. Thus,

P(Z = k) =
1

37
·
(

36

37

)k−1

10



The expected value, the variation, and the standard deviation are

E [Z] =
∞∑
k=1

k · 1

37
·
(

36

37

)k−1
= 36, (1.13)

var[Z] = 1, 332, (1.14)

σ[Z]
.

= 36.5. (1.15)

The important quantiles are: median is 25 and 95% quantile is 109.

Figure 1.5: Distribution of the Number of Visits of Zero with the Expected value

1.4 Monte Carlo

In this section I will use data I got from Monte Carlo simulations. Results in the
previous sections have proper proofs. Therefore, the Monte Carlo simulations are
not necessary. This chapter only demonstrates the results. I used Monte Carlo
method to simulate N = 1, 000, 000 random walks. For i = {1, · · · , N} let Ri

be representation of random walk S(n). From each Ri I remembered the value
of the Maximum Mi, the Last Exit Time τi, and the Number of Visits of Zero
Zi. One stopping rule was used during the simulations - when the random walk
reached value -100, the simulation stopped.

Terms such as the sample mean, the sample variation etc. will be used. First
of all, their definitions will be given because they vary from author to author.

Definition 3. Let X1, · · · , Xn be a random sample of any distribution.
(a) Sample mean Xn = 1

n

∑n
i=1Xi.

(b) Sample variance S2
n = 1

n−1
∑n

i=1(Xi −Xn)2.

(c) Sample standard deviation sn =
√
S2
n.

Theorem 3. Let X1, · · · , Xn be a random sample of any distribution with the
expected value µ and with finite the variation σ2. Then

√
n
Xn − µ
Sn

D−→ N(0, 1).
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Proof. From central limit theorem (CLT) we know that

√
n
Xn − µ
σ

D−→ N(0, 1).

We also know that S2
n

P−→ σ2. Thus,

Sn
σ

P−→ 1.

Using Slutsky’s theorem

√
n
Xn − µ
Sn

=
σ

Sn

√
n
Xn − µ
σ

D−→ N(0, 1).

1.4.1 Maximum

Let Mi be the Maximum that was reached during the i-th walk. The mean of Mi

observed in this simulation was

MN
.

= 17.9886.

Note that E[M ] = 18 (from Equation 1.3). Graph of relative frequency with the
mean MN is shown in Figure 1.6.

The sample variation of the Maximum was S2
N

.
= 343.14, var[M ] = 342 from

Equation 1.4.
The sample standard deviation was sN

.
= 18.52, σ[M ]

.
= 18.49 from Equa-

tion 1.5.

Figure 1.6: Relative frequency of the Maximum with sample mean

From these results and Theorem 3 we can construct a confidence interval for
the expected value µM . For N →∞

P
[
uα

2
<
√
N(MN − µM)/SN < u1−α

2

]
→ 1− α.

12



The empirical 95% confidence interval for µM is

(17.9582, 18.0191).

Note that E[M ] = 18 (from Equation 1.3). In Figure 1.7 there are both - the
cumulative frequency of the Maximum in the sample from Monte Carlo and the
real distribution of the Maximum. The maximal value of the Maximum in the
sample was 267, P(M ≥ 267) = 1

1,859,741
.

Figure 1.7: Relative frequency of the Maximum and the distribution of the Max-
imum

1.4.2 Last Exit Time

I will proceed the same way as in the previous subsection. τi is the Last Exit
Time of the i-th walk.

The sample mean of the Last Exit Time was

τN
.

= 1, 366.23,

the E[τ ] = 1, 368 from Equation 1.10. There is a graph of the relative frequency
with the sample mean in Figure 1.8.

The sample variation was S2
N

.
= 3.8085 · 106, var[τ ] = 3, 745, 584 from Equa-

tion 1.11.
The sample standard deviation was sN

.
= 1, 951.53, σ[τ ]

.
= 1935.35 from

Equation 1.12.
From these results and Theorem 3 we can construct a confidence interval for

the expected value µτ . For N →∞

P
[
uα

2
<
√
N(τN − µτ )/SN < u1−α

2

]
→ 1− α.

The empirical 95% confidence interval for µτ is

µτ ∈ (1363.02, 1369.44).

In Figure 1.9 there are both - the cumulative frequency of the sample from Monte
Carlo and the real distribution of the Last Exit Time. The maximal Last Exit
Time of the sample was 34,433.
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Figure 1.8: Relative frequency of the Last Exit Time with sample mean

Figure 1.9: Relative frequency of the Last Exit Time and the distribution of the
Last Exit Time

1.4.3 Visits of Zero

Let Zi be the number of return times to zero of the i-th walk.
The sample mean of the Numer of Visits of Zero was

ZN
.

= 36.935,

E[Z] = 36 from Equation 1.13. There is graph of the relative frequency with
sample mean in Figure 1.10.

The sample variation was S2
N

.
= 1.7022 ∗ 106, var[Z] = 1, 332 from Equa-

tion 1.14.
The sample standard deviation was sN

.
= 1, 304.7, σ[Z]

.
= 36.5 from Equa-

tion 1.15.
From these results and Theorem 3 we can construct a confidence interval for

14



Figure 1.10: Relative frequency of the Number of Visits of Zero with sample mean

the expected value µZ . For N →∞

P
[
uα

2
<
√
N(ZN − µZ)/SN < u1−α

2

]
→ 1− α.

The empirical 95% confidence interval for µZ is

µZ ∈ (34.7889, 39.0809).

In Figure 1.11 there are both - the cumulative frequency from the data from
Monte Carlo and the real distribution of the Number of Visits of Zero.

Figure 1.11: Relative frequency of the Number of Visits of Zero and the the
distribution of Number of Visits of Zero

15



2. Single Number Strategy

The same statistics as in Chapter 1 will be described in this chapter. The differ-
ence is that we consider betting on a single number. In European roulette that
means we have one number we bet on and 36 numbers we do not. The player
bets on a single number and probabilities of winning and losing are 1

37
and 36

37
.

Comparing it to the probabilities in the Red-Black strategy, it appears that we
have smaller chances to win something. But that is true only if we consider one
single bet. Considering a process of single bets leads us to a different conclusions
as explained in the following sections.

Let us define a discrete stochastic process Y = {Y (n), n ∈ N}, where n repre-
sents time and Y (n) represents single bet at time n (profit/loss). As in the pre-
vious chapter we will consider only simple $1. Therefore, {Y (1), Y (2), Y (3), ...}
is a sequence of independent and identically distributed random variables with
the following distribution

Y (n) =

{
+35, 1− p = 1

37

−1, p = 36
37
.

Let us define S(n) as a cumulative profit/loss,

S(n) =
n∑
i=1

Y (i),

S(0) = 0.

It is clear that for all n ∈ N

S(n) = S(n− 1) + Y (n).

The expected value is E [Yn] = 35 · 1
37

+(−1) · 36
37

= − 1
37

. The stochastic process
S(n) forms a one-dimensional random walk with negative drift. The expected
value is the same as in the Red-Black strategy. Due to that we can use some
results from Chapter 1 such as

lim
n→∞

S(n) = −∞ a.s.

2.1 Maximum

As in Section 1.1 we determine the distribution of the Maximum. The random
variable Maximum M that can be reached in the single number strategy is defined
as

M = max
n

S(n), n ∈ N0.

It can reach values from N0 and for finding its distribution we need to know
probability P(M = k) for all k ∈ N0,

P(M = k) = P(max
n

S(n) = k).
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In the Single Number strategy Y (n) = +35 or − 1; consequently, Y (n) skips
numbers when going up but does not skip them when going down. Since we
know that the random walk will almost surely end up in −∞, every step up must
be eventually at some point followed by 35 steps down (not necessarily one after
another). So again, as in the Red-Black strategy, no value k can be skipped. This
leads to

P(M = k) = P(M ≥ k)− P(M ≥ k + 1) =

= P(S(n) hits k eventually)− P(S(n) hits k + 1 eventually).

We will use the following transformation to map the wealth process to a simple
random walk:

W (n) = k − S(n).

The process W has a fixed starting point k and drifts to +∞. The process W (n)
hitting zero at some point is equivalent to S(n) hitting k. Therefore, for solving
of our problem we only need to compute probability

α(k) =P(W (n) hits 0 eventually|W (0) = k) =

=P(S(n) hits k eventually|S(0) = 0).

The random variable S(n), n > 0, depends only on S(n − 1) and the new
value of Y (n), so it satisfies the Markov property. This gives us method how to
compute α(k),

α(k) =
∞∑
j=1

α(j)p(k, j),

where p(k, j) is probability of moving from a position k to j. Playing the Single
Number strategy, S(n), n ≥ 1, can be reached only from S(n)+1 with probability
36
37

and from S(n)−35 with probability 1
37

. This fact reduces the previous equation
to:

α(k) = p · α(k + 1) + (1− p) · α(k − 35). (2.1)

For solving this equation we can use the same method as in Section 1.1.
Substituting α(k) = xk (x 6= 0) in Equation 2.1 we get

xk = p · xk+1 + (1− p) · xk−35,
x35 = p · x36 + 1− p,

0 = p · x36 − x35 + 1− p.

This is a polynomial equation of 36-th degree and can be computed using

17



Wolfram Mathematica. This gives us the roots:

x1 = −0.882643− 0.078397i,

x2 = −0.882643 + 0.078397i,

x3 = −0.855197− 0.232788i,

x4 = −0.855197 + 0.232788i,

x5 = −0.801135− 0.380045i,

x6 = −0.801135 + 0.380045i,

x7 = −0.722094− 0.515652i,

x8 = −0.722094 + 0.515652i,

x9 = −0.620465− 0.635444i,

x10 = −0.620465 + 0.635444i,

x11 = −0.499321− 0.735735i,

x12 = −0.499321 + 0.735735i,

x13 = −0.362323− 0.813426i,

x14 = −0.362323 + 0.813426i,

x15 = −0.213606− 0.866101i,

x16 = −0.213606 + 0.866101i,

x17 = −0.057652− 0.892093i,

x18 = −0.057652 + 0.892093i,

x19 = +0.100855− 0.890536i,

x20 = +0.100855 + 0.890536i,

x21 = +0.257172− 0.861384i,

x22 = +0.257172 + 0.861384i,

x23 = +0.406657− 0.805403i,

x24 = +0.406657 + 0.805403i,

x25 = +0.544935− 0.724134i,

x26 = +0.544935 + 0.724134i,

x27 = +0.668081− 0.619809i,

x28 = +0.668081 + 0.619809i,

x29 = +0.772853− 0.495218i,

x30 = +0.772853 + 0.495218i,

x31 = +0.857135− 0.353398i,

x32 = +0.857135 + 0.353398i,

x33 = +0.921415− 0.196615i,

x34 = +0.921415 + 0.196615i,

x35 = +0.998443

x36 = +1.

This is the particular solution. The general solution is in the form

α(k) =
36∑
i=1

cix
k
i .
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We need boundary conditions in order to determine ci. From S(0) = 0, we
have α(0) = 1. We get another conditions from the fact that S(n) converges to
−∞ almost surely for n −→∞. Thus limk→∞ α(k) = 0. For all k ∈ {−34, ...,−1}
we know that S(n) can not skip them but it almost surely ends in −∞, so
it must reach them (a.s.) at some point. That gives us α(k) = 1 for k ∈
{−34, ...,−1}. Now we have 36 conditions and 36 unknown variables. Using
Wolfram Mathematica we get the solution:

c1 = 0.000409310− 0.000017051i,

c2 = 0.000409310 + 0.000017051i,

c3 = 0.000409633− 0.000051422i,

c4 = 0.000409633 + 0.000051422i,

c5 = 0.000410300− 0.000086612i,

c6 = 0.000410300 + 0.000086612i,

c7 = 0.000411348− 0.000123227i,

c8 = 0.000411348 + 0.000123227i,

c9 = 0.000412845− 0.000161969i,

c10 = 0.000412845 + 0.000161969i,

c11 = 0.000414893− 0.000203698i,

c12 = 0.000414893 + 0.000203698i,

c13 = 0.000417645− 0.000249512i,

c14 = 0.000417645 + 0.000249512i,

c15 = 0.000421336− 0.000300882i,

c16 = 0.000421336 + 0.000300882i,

c17 = 0.000426330− 0.000359857i,

c18 = 0.000426330 + 0.000359857i,

c19 = 0.000433208− 0.000429429i,

c20 = 0.000433208 + 0.000429429i,

c21 = 0.000442953− 0.000514183i,

c22 = 0.000442953 + 0.000514183i,

c23 = 0.000457316− 0.000621568i,

c24 = 0.000457316 + 0.000621568i,

c25 = 0.000479691− 0.000764617i,

c26 = 0.000479691 + 0.000764617i,

c27 = 0.000517423− 0.000968462i,

c28 = 0.000517423 + 0.000968462i,

c29 = 0.000589141− 0.001288803i,

c30 = 0.000589141 + 0.001288803i,

c31 = 0.000755717− 0.001879529i,
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c32 = 0.000755717 + 0.001879529i,

c33 = 0.001342830− 0.003392991i,

c34 = 0.001342830 + 0.003392991i,

c35 = 0.982496,

c36 = 0.

Now we have all xi and ci. The solution for α(k) is

α(k) =
35∑
i=1

cix
k
i .

Our initial goal was to find P(M = k),

P(M = k) = α(k)− α(k + 1) =
35∑
i=1

cix
k
i −

35∑
i=1

cix
k+1
i =

35∑
i=1

cix
k
i (1− xi).

The probability of M = 0 is

P(M = 0) = α(0)− α(1) = 1−
35∑
i=1

cixi.

But since we have computed the roots only numerically, we do not know the
proper distribution. Mathematica finds the results only with finite quantity of
numbers after the decimal point. Our conjecture is that

P(M = 0) =
1

36
.

Note that the following results are based only on numerical computations without
theoretical proof:

P(M = 0) =
1

36
.

= 0.02778, (2.2)

P(M > 0) =
35

36
.

= 0.97222, (2.3)

E [M ] = 630, (2.4)

var[M ] = 411, 793, (2.5)

σ[M ] = 641, (2.6)

the median is 434 and the 95% quantile is 1912.
The expected value of the Maximum playing Red-Black strategy is 18 and

that happens to be 35 times smaller than the expected value playing the Single
Number strategy. The variance is 1,200 times smaller.

2.2 Last Exit Time

Our next goal is to find the Last Exit Time during one simple walk. Let us start
with the definition of the Last Exit Time τ .

τ = max{n ≥ 0|S(n) = 0}.

20



Figure 2.1: Theoretical distribution of the Maximum with the Expected value

τ is a discrete random variable, it can reach only zero or positive integers. But
not all positive integers but only those that are multiple of 36 (the random walk
can reach zero only in time 36n, n ∈ N0). We would like to know the distribution
of it and that means to find the probability

P(τ = 36n) = P (max{k ≥ 0|S(k) = 0} = 36n)

for all k ∈ N0. The progress of the random walk before the time 36n is not
relevant. We only need that at the time 36n we reach 0 and never reach it again
in the future. In other words at the time 36n we are at zero, at the time 36n+ 1
we go down to −1 and from that moment our maximum is −1. In the mean of
probabilities:

P(τ = 36n) = P(S(36n) = 0 & S(36n+ 1) = −1) · P( max
k≥36n+1

S(k) = −1). (2.7)

The first factor of the product can be computed using the definition of the
conditional probability,

P[S(36n) = 0 & S(36n+ 1) = −1] =

= P[S(36n) = 0] · P[S(36n+ 1) = −1|S(36n) = 0] =

=

(
36n

n

)
p35n(1− p)n · p =

=

(
36n

n

)
p35n+1(1− p)n.

(2.8)

The second factor of Equation 2.7 can be solved the same way as in Section 1.2.
The approach is simple – the probability that we are at -1 and will not go above
is exactly the same probability that we are at 0 in the beginning and will never
go above zero. Thus, Equation 2.2 can be used,

P

(
max

k≥36n+1
S(k) = −1

)
= P

(
max
k≥0

S(k) = 0

)
= P (M = 0) =

1

36
(2.9)

21



Now we have everything we needed and using Equation 2.7, Equation 2.8, and
Equation 2.9 we get for all n ∈ N0

P(τ = 36n) =
1

36
·
(

36n

n

)
p35n+1(1− p)n.

We would like to know something more about the distribution (such as the
expected value etc.) but the

(
36n
n

)
makes it impossible to compute it exactly even

using software. Let us use the Stirling’s approximation of factorial

n! ≈
√

2πn
(n
e

)n
,

where e is the Euler’s number. Using it in our distribution(
36n

n

)
=

(36n)!

n!(35n)!
≈ 6√

70 · πn
· 3636n

3535n
=

6√
70 · πn

·

(
35

(
36

35

)36
)n

.

Thus,

P(τ = 36n) ≈ p

6
· 1√

70 · πn
·

(
35

(
36

35

)36

· p35(1− p)

)n

.

The approximation changes the real values of the probability. Note that if we
use the approximation, P(τ = 0) is not defined and P(τ −→ 0) = ∞. There is
comparison of the exact values and the approximation in the following table.

n Exact Approximation
0 0.027027 –
1 0.0100792 0.010931
2 0.00741327 0.00772642
3 0.0061339 0.00630619
4 0.00534681 0.00545923
5 0.00480038 0.0048102
10 0.00341621 0.00344481
20 0.00241645 0.00242655
50 0.00151465 0.00151718
100 0.00105162 0.00105249
1000 0.000235898 0.000235918

Using Wolfram Mathematica,

E [τ ] ≈ 46, 658.9, (2.10)

var[τ ] ≈ 4.41222 · 109, (2.11)

σ[τ ] ≈ 66, 424.5. (2.12)

Median is 583, 95% quantile is approximately 128,135.
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Figure 2.2: Theoretical distribution of the Last Exit Time

2.3 Visits of Zero

Now we would like to know how many times we visit zero. Let us define random
variable Z that has a value of Visits of Zero. It is defined as:

Z =
∞∑
n=0

χ{S(n)=0},

where χ is characteristic function. Random variable Z reaches only values from
N, which means P(Z ≥ 1) = 1. The aim of this section is to find the distribution
of Z and that means we need to find

P(Z = k) = P

(
∞∑
n=0

χ{S(n)=0} = k

)

for all positive k.
We can proceed the same way as in Section 1.3. Let us fix k ∈ N. If Z = k,

we can divide the random walk on k sections. The sections 1, · · · , k−1 are all the
same because they begin in zero, end in zero but they never reach zero between the
beginning and the end. The k-th section is different, we go to −1 and stay under
it. Let pi, i ∈ {1, · · · , k}, be the probabilities of each section. The probabilities
p1, · · · , pk−1 are equal. As we can see, all the sections are independent of each
other. Therefore,

P(Z = k) =
k∏
i=1

pi = pk

k−1∏
i=1

pi = pk(p1)
k. (2.13)

First of all, let us find pk. It can be found the similar way as in Section 1.3.
Describing it in words: we are at zero at some time 36n. Our next step must
be down to -1 (q = 36

37
) and from now on we must stay under -1 (our Maximum

is -1) and it is the same situations as this: we are at 0 and we must stay under
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it (and that is probability P(M = 0)). Note that we computed the probability
P(M = 0) only numerically. From this we get

pk =
36

37
· P(M = 0) =

36

37
· 1

36
=

1

37
. (2.14)

Secondly, we would like to know p1. We know that distribution of random
variable must sum up to 1 and using Equation 2.13 and Equation 2.14 we get

1 =
∞∑
k=1

P(Z = k) =
∞∑
k=1

pk(p1)
k−1 =

1

37

∞∑
k=1

(p1)
k−1

37 =
∞∑
k=1

(p1)
k−1 =

1

1− p1

p1 =
36

37
.

That is all we needed to find the distribution of Z. Thus,

P(Z = k) =
1

37
·
(

36

37

)k
.

It is the same distribution as in betting on color. The expected value, the
variation etc. are:

E [Z] = 36, (2.15)

var[Z] = 1, 332, (2.16)

σ[Z] = 36.5. (2.17)

The important quantiles are: median is 25 and 95% quantile is 109.

Figure 2.3: Theoretical distribution of the Number of Visits of Zero with the
Expected value
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2.4 Monte Carlo

Purpose of this section is to use data that I got from Monte Carlo method. Since
the probability P(M = 0) was found only numerically, this section is important
to support our conjecture that P(M = 0) = 1

36
. I used pseudorandom numbers

to simulate 1, 000, 000 random walks. Let Ri be each simulation of S(n). For all
Ri I remembered the value of the Maximum Mi, the Last Exit Time τi, and the
Number of Visits of Zero Zi. These data can help to verify my numerical results
in the previous sections. Again, 1 stopping rule was used. It is a boundary of the
random walk – if it reached value -2,000, the simulation stopped.

2.4.1 Maximum

Mi is the Maximum of the i-th simulation. The mean of Mi was

MN
.

= 639.175.

The graph of relative frequency of the Maximum and its sample mean is in Fig-
ure 2.4. Interesting to confirm oscillatory behavior for small values of M predicted
from the theoretical distribution of the Maximum.

Figure 2.4: Relative frequency of the Maximum with sample mean

The sample variation of the Maximum was SN
.

= 46.1 · 106 and the sample
standard deviation was sN = 6, 788.2. The numerical value of the expected value,
the variation, and the standard deviation are in Equation 2.4, Equation 2.5,
Equation 2.6.

From these results and Theorem 3 we can construct a confidence interval for
the expected value µM . For N →∞

P
[
uα

2
<
√
N(MN − µM)/SN < u1−α

2

]
→ 1− α.

The empirical 95% confidence interval for µM is

µM ∈ (628.00, 650.34).

In Figure 2.5 there are both - the relative frequency of the Maximum and the
real distribution of it..

25



Figure 2.5: Relative frequency of the Maximum and the theoretical distribution
of the Maximum

2.4.2 Last Exit Time

Let us assume τi the Last Exit Time of i-th simulation.The sample mean was

τN
.

= 46, 432.8.

Figure 2.6: Relative frequency of the Last Exit Time with sample mean

The sample variation SN
.

= 3.9851 · 1010.
The sample standard deviation sN

.
= 199, 273.18.

In Section 2.2 we derived approximations of the expected value etc. There
are the results to compare:

E [τ ] ≈ 46, 658.9,

var[τ ] ≈ 4.41222 · 109,

σ[τ ] ≈ 66, 424.5.
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The empirical 95% confidence interval for µτ is

µτ ∈ (46, 105; 46, 760.6).

Figure 2.7: Relative frequency of the Last Exit Time and the theoretical distri-
bution of the Last Exit Time

2.4.3 Visits of Zero

Let Zi be the Number of Visits of Zero of i-th walk. The sample mean was

ZN
.

= 35.239.

E[Z] = 36 from Equation 2.15. There is graph of the relative frequency with
sample mean in Figure 2.8.

Figure 2.8: Relative frequency of the Number of Visits of Zero with sample mean

The sample variation was S2
N

.
= 762, 303.1 and var[Z] = 1, 332 from Equa-

tion 2.16.

27



The sample standard deviation was sN
.

= 876.1 and σ[Z] = 36.5 from Equa-
tion 2.17.

From these results and Theorem 3 we can construct a confidence interval for
the expected value µZ . For N →∞

P
[
uα

2
<
√
N(ZN − µZ)/SN < u1−α

2

]
→ 1− α.

The empirical 95% confidence interval for µZ is

µZ ∈ (33.8; 36.674).

In Figure 2.9 there are both – the relative frequency from the data from Monte
Carlo and the real distribution of the Number of Visits of Zero.

Figure 2.9: Relative frequency of the Number of Visits of Zero and the theoretical
distribution of the Number of Visits of Zero
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Conclusion

The Red-Black strategy and the Single Number strategy have the same expected
value, but they differ in the variation. The variation is the only reason for the
differences derived in the previous chapters. Note that all results in the Single Bet
strategy were found only numerically without a proper theoretical proof. There-
fore, they are only conjectures of the real values. The Monte Carlo simulations
supported our approximate results.

The expected value of the Maximum is 18 in the Red-Black strategy and
approximately 630 in the Single Bet strategy and that is 35 times higher. The
probability that we will eventually win something is approximately 0.947 in the
Red-Black strategy and approximately 0.9722 in the Single Bet strategy. As a
result, the betting on number is a better option from this point of view.

The expected value of the Last Exit Time is 1,368 in the Red-Black strategy
and approximately 46,659 in the Single Bet strategy. Thus, the Single Bet strat-
egy can last longer around or even above zero and is a better option from this
point of view.

The expected value of the Number of Visits of Zero is the same for both
strategies (36). From this point of view the strategies are equal.

In the beginning we were talking about whether or how to diversify out asset
$1. From the previous chapters it seems that the diversification may look safer
but the more risky Single Bet strategy might have better attributes owning to the
higher variation. Therefore, the conclusion of this thesis is that the not-diversified
strategy can bring us benefits and playing roulette is better with a more risky
strategy.
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