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Abstract

The use of statistical methods inmachine translationin recent years has led to
great improvements in these methods, and also the quantitative evaluation of re-
sults shows that they outperform rule-based systems in the field of unlimited tex-
tual domains.

Nevertheless, statistical methods often produce errors that are in contradiction
to the simplest linguistic knowledge, such as missing verbs, invalid word order,
the incorrect choice of functional words, or constructionsthat violate constraints
of agreement. Though translation models that transform a string of words in one
language into a string of words in another language, together with language mod-
els based on surfacen-grams work well in local contexts, they are not capable
of handling grammatical rules with a larger scope. On the other hand,parsing
algorithmsthat give the syntactic structure of the sentences with relatively high
precision exist for many languages. The aim of this work is toexplore possibilities
of making use of syntactical information—in our case the dependency structure
used by the annotation scheme of thePrague Dependency Treebank—in ma-
chine translation.

We will describe two approaches to this problem. The first oneis an imple-
mentation of aCzech-English machine translation systemcombining thestatisti-
cal parserwith rule-based transferandgeneration, the second one is a proposal of
a newstatisticalmethod fortree-to-tree transductions, that would be able to han-
dle structural transformations in a larger context, and that could be also combined
with explicit linguistic rules. We will show the appropriateness of the newly pro-
posed method on the task of learning tree transformations byfinding alignments
between nodes of the corresponding trees.

The third goal of this work was to prepare the necessary data for experiments
in structural machine translation. The existing algorithms for statistical machine
translation require large amounts of unannotatedparallel texts, while the parsing
algorithms need syntactically annotated data, known astreebanks. Intuitively, the
statistical methods for machine translation, that make useof syntactic information,
require aparallel treebankto learn the transformations of the sentence structures.

As theannotation schemesare usually language-specific, such as in the case
of Czech and English, it is necessary to find out if it is possible to have a common
annotation scheme for both languages. And to find out if both existing annota-
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tion schemes are compatible, so that we can automatically convert them into the
common one. We observe the most important differences between the annota-
tion schemes of thePrague Dependency Treebankand thePenn Treebank, and
describe a newly created parallel treebank – thePrague Czech-English Depen-
dency Treebank.
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for almost 10 years, to Jiřı́ Havelka, for his important contribution to the experi-
ments with the Czech-English MT, and to all colleagues at theInstitute, who were
a wonderful team, and upon whose results this work builds.

Finally, I would like to thank to my parents for giving me support during the
work, and most importantly to my wife Kamila and our childrenKlára and Cyril,
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Chapter 1

Introduction

Machine translation is a very broad research field. It can be categorized according
to many different criteria, such as the combination of source and target languages,
similarity of the languages, the domain of translated texts, the amount of possible
or required human interaction, or the technology used in thetranslation system.
The aim of this work is to contribute to the research on Czech-English machine
translation in the field of fully automatic translation in the free textual domain.
In the following text, I will concentrate on the possibilities of combining statisti-
cal methods with linguistic rules, and on using syntactic information in machine
translation.

This chapter is introductory. Firstly, we offer a short overview of the machine
translation discipline from a historical perspective, then we describe the main ap-
proaches and methodologies used in the field. Finally, we spend more time in-
troducing the most important statistical methods, and discussing their advantages
and disadvantages for using them in Czech-English machine translation.

In Chapter 2, we describe the process of creating thePrague Czech-English
Dependency Treebank. We start with two different annotation schemes – of the
Prague Dependency Treebankand thePenn Treebank, compare them, and dis-
cuss the possibility of defining a common annotation scheme.We also describe
automatic procedures for converting the Penn Treebank annotation into the depen-
dency style.

Chapter 3 describes the implementation of a Czech-English machine transla-
tion. The system is a combination of a statistical parser anda rule-based transfer
and generation system.

Most of the commonly used statistical models for translation are based on
transformation of a string of words in one language into a string of words in an-
other language, with language models that are usually builtupon surfacen-grams.
These methods have a major disadvantage in that they are incapable of handling
grammatical rules with a larger scope. In Chapter 4, we present detailed mathe-
matics of a new statistical model of tree-to-tree transducer, which was designed to
capture the linguistic information present in the dependency tree.

Chapter 5 then describes two implementations: the first one for modeling
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transformations between the two layers – analytical and tectogrammatical – of an-
notation of Czech, the second one for transferring Czech tectogrammatical trees
into English analytical ones.

In Chapter 6 we conclude our experience in Czech-English machine transla-
tion, and propose further directions in this topic.

1.1 A Short History of Machine Translation

Although the first ideas about mechanizing the process of translation can be traced
back to the seventeenth century, the real development of theresearch field started
in 1950s after the first computers were built. In 1947, WarrenWeaver proposed the
use of computers for translating natural languages. In 1954, IBM in collaboration
with Georgetown University gave the first public demo of a machine translation
(MT) system translating from Russian to English. The systemused 250 words in
a vocabulary and 6 grammatical rules, nevertheless, it was considered promising
and attracted massive funding of the MT research field for thefollowing decade.

In 1950s, the activities in the MT had concentrated on translation between
Russian and English, and the support and demand came especially from the mil-
itary. The main motivation was information gathering and screening of large
amounts of scientific texts and technical documentation fora relatively small num-
ber of experts, who could tolerate the low quality of the output. The precision of
the translation was not essential, since the purpose of translating the documents
was to get the idea of the content in order to preselect relevant documents for
human translator.

A typical MT system was built around a translation dictionary, the entries
usually had one or more possible translations. The translation program used a
word-to-word replacement in the first step (without using any deeper syntacti-
cal analysis), then applied a set of rules for word order changes. As the system
developed, the size of the dictionary grew, and as did the system of (usually ad
hoc written) rules. Later the systems were inspired by contemporary approaches
in formal linguistics (cf. Noam Chomsky published his Syntactic Structures in
1957), these were mostly generative-transformational grammars.

In spite of all the efforts and high expectations, there was no major break-
through reached, and the patience of the US funding agencieswas at its end. In
1966, the Automatic Language Processing Advisory Committee (ALPAC), an or-
ganization set up to evaluate the prospects of MT, considered MT as slower, less
accurate and twice as expensive as human translation and concluded that “there
is no immediate or predictable prospect of useful machine translation”. Instead
of supporting further experiments with MT systems, the ALPAC recommended
funding of basic research in the field of natural language technologies.
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The research in the field of MT in the USA stopped for about one decade, but
it did, however, continue in Canada and Europe. The demands for MT systems
came from the industrial sector and also there were more languages of interest as
trade became multinational. The first commercially successful systems appeared.
For example, the Meteo system for translating weather reports from English to
French was developed at Montreal University at 1976, and theSystran, the most
successful MT system so far, was installed in 1976 to translate documents of the
Commission of the European Communities. A new market for cheaper MT sys-
tems appeared after microcomputers became available for personal use and after
the using of word processor became the dominant way of writing texts.

The prevailing techniques at that time were rule-based. Thetranslation pro-
cess used morphological, syntactic, and semantic analysisinto an interlingua-like
representation, and a vice-versa sequence of tasks for generation of the target
text. The theoretical description of natural language had advanced since 1950
and the designer of a research system could choose from a number of competing
formalisms.

At the beginning of the 1990s, the increasing performance ofcomputers al-
lowed for the use of statistical methods and large corpora. Candide, a fully sta-
tistical system for MT was developed in IBM at the end of 1980s, and the results
were published in 1991 [Berger et al., 1994]. The system was purely statistical,
without using any linguistic knowledge, the statistical translation models were
trained on a corpus of more that one million parallel sentences containing English
and French transcriptions of speeches from the Canadian parliament. Another
method invented at that time was an example-based approach using a large paral-
lel corpus of previously translated sentences [Nagao, 1984]. Apart from research
systems, many practical systems were developed to assist professional translators,
such as electronic dictionaries, or translation memory.

1.2 Classification of Translation Systems

The ideal machine translation system would produce translations of a high quality
for any sort of text, and without any human interaction. Nevertheless, this goal
is not achievable in practice. As there are many different translation tasks, there
are also various types of MT systems that suit them. An MT system can be cate-
gorized according to several characteristics, such as the domain of the translated
texts, the amount of user-interaction required for producing output, or the quality
of translations. There are also several types of approachesused for constructing
the MT system. In the following, we will try to describe the general paradigms.
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1.2.1 Domain of Translated Text

One of the most important factors is the domain of the translated texts. We can
consider translation of web pages as an example of a task withanunconstrained
domain. The difficulties we have to face are obvious. First of all, the dictionary.
Since the vocabulary is unlimited and the language is permanently evolving, there
will always be unknown – “out-of-vocabulary” words or meanings that will not be
translated by the system, and since the words may have more meanings, for some
words it will not be possible to disambiguate the correct one. Another problem
is the impossibility to cover all (un)grammatical structures that may occur in the
unlimited domain. Last but not least, the meaning of the sentence may depend
on an outer context so that real world knowledge may be necessary to properly
understand and translate the sentence.

The task simplifies as the domain narrows. For example, when translating sci-
entific texts or technical documentation from one domain, the above mentioned
problems become easier. Since most of the authors of the texts tend to use a lim-
ited set of common words and terms specific to a domain, the vocabulary can
be covered more successfully by a common translation dictionary and a dictio-
nary specific to the domain. Another advantage is that terminology is mostly
constructed to be unambiguous within the domain. Also the sentences are al-
ways grammatical, and the number of used grammatical constructions is smaller,
for example, sentences in 2nd person almost never occur in scientific texts. For
example, the English-Czech system APAČ (Automatický překladač angličtina –
čeština) was designed to translate abstracts of scientific articles from the field of
metallurgy [Hajič, 1987].

1.2.2 User Interaction Based on Translation Purpose

As mentioned above, MT systems can produce translations of agood quality only
in highly constrained situations. Otherwise, a varying amount of user’s interaction
is necessary – based on the reason for using the MT system and the desired level
of quality.

We can recognize two basic strategies of interaction.Human-aided machine
translation(HAMT), where the translation process is performed by the machine,
and the human interaction consists in pre-edition of the input, post-edition of the
output, or interaction in the middle of the translation process.Machine-aided hu-
man translation(MAHT), where the human translates with help of tools running
on the machine, such as translation memory (a database of previous translations),
automatic revisions of terminology, etc.

The choice of the method of interaction always depends on thepurpose of the
translation. If the reason is toscreendocuments, the quality of the output is not
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so important in this case, the main goal of the MT system is to provide translation
to the reader (or a screening algorithm), who probably does not know the source
language. The screening can be done with no costs. Relevant documents are then
sent to a professional human translator, who will probably not make any use of the
automatic translation result. The need for screening is still present, indeed there
are several working systems: SYSTRAN (for the main language-pairs), ATLAS
II (Japanese – English), or CAT (for accessing Japanese Databases in English).

MAHT systems are suitable if a professional translator wants to use an MT
system for producing adraft versionof the translation and postedit it into the fi-
nal version. In order to reduce the translation costs (the time that is spent on the
translation), the MT system has to produce a high-quality draft, so that the costs of
corrections are lower than writing the translation from scratch. A tool commonly
used for this task is calledtranslation memory. It is a database of source sentences
and their translations. When a new sentence has to be translated, the system tries
to find the most similar example in the database. If successful, the tool offers the
previously used translation of the example. There are several factors that increase
the efficiency of using a translation memory: If the translated text is a modifica-
tion of a previously translated document, such as in case of documentations for
subsequent versions of the same product, if the translationmemory is large, or
if it is shared among several translators. The translation memory is usually ca-
pable of handling small mismatches, such as numbers of versions or changes of
proper names, but it cannot handle changes in grammatical structure. Another
feature offered by translation memory is terminology assistance. The system uses
a terminological lexicon and checks that terms are translated consistently. Some
systems are capable of finding new candidates for terminology and offer them to
the translator.

Translation companies usually divide the work among several translators in
order to finish the contract as soon as possible. Translationtools have to support
parallel processing of the translation: versioning of the document, merging con-
current modifications, sharing the translation memory and terminological lexicon
among translators, who may work either on-line or off-line,and also tracking the
progress of the parallelized translation job.

1.2.3 Main Methodologies

MT systems can be either designed as bilingual (for a fixed pair of languages), or
multilingual (for more language-pairs). Bilingual systems can be either unidirec-
tional (translating only in one direction), or bidirectional.

Figure 1.1 (often referred to as Vauquois’ triangle [Vauquois, 1975]) shows the
three main processes taking part in translation: analysis,transfer, and generation.
Although the boundaries between them are not always sharp, it is a useful map for
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Figure 1.1: Vauquois’ triangle

describing the architecture of an MT system. There are threebasic approaches to
MT: direct translation, interlingua, and transfer approach.

Thedirect translationmethod is the historically oldest approach. The core part
of the system is a bilingual translation dictionary and a program for analyzing sen-
tences of the source language and generating sentences in the target language. The
system is designed to be fully specific to the selected sourceand target languages.
The main advantage of the direct approach is that the source language has to be
analyzed only to such a depth, which is sufficient for generating the target lan-
guage. Thus for close languages, this can be relatively shallow. For example, the
systemČEŚILKO [Hajič et al., 2003] translates from Czech to Slovak using only
morphological analysis.

The interlinguaapproach is based on the assumption that the source language
sentences can be converted into interlingua – a certain kindof syntactico-semantic
representation, which is common to more languages, and thattranslations into tar-
get languages can be generated from this representation. This approach is more
suitable for multilingual translation systems. The translation runs in two steps:
analysis and synthesis. The main advantage of the interlingual representation is
that once the sentence is analyzed into a common representation, it can be gener-
ated into all other languages, and the modules for analyzinginput can be specific
to a particular source language, as well as modules for generating output can be
specific to the target language. On the other hand, it is very difficult to design
the interlingua, the resulting representation is specific to a selected combination
of languages, and adding a new language always increases thecomplexity of the
common representation.
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The transfer approach is a trade-off between the direct translation and the
interlingua approach. The translation runs in three steps:analysis, transfer, and
synthesis. Apart from the interlingua approach, input sentences are analyzed into
a representation, which is still specific to the source language, and also the output
sentences are synthesized from a representation specific tothe target language.
The analytical and synthetical steps respectively handle monolingual ambiguities
within the source and target languages. The transfer step resolves ambiguities
between the two languages, typically lexical issues.

1.3 Statistical Modeling in Machine Translation

1.3.1 IBM Models

At the beginning of 1990s, the computers became powerful enough to handle
statistical models of machine translation. The models weredescribed in [Brown
et al., 1993], and the first results from French to English translation experiment
were published in [Berger et al., 1994].

The first assumption of the statistical approach is that an English sentencee
can be translated as any string of French wordsf with a probabilityP (f | e), and
that the probability can be approximated by a statistical model and learned from a
corpus of sentence-pairs.

The second assumption enables using the noisy-channel approach. We assume
(however wrongly) that a French native speaker first formulates the sentence as a
string of English wordse and then, in a noisy-channel, converts it into a string of
French wordsf . Given the stringf , the MT system tries to reconstruct the original
English sentencee by taking sucĥe, for which theP (e | f) is the highest. Using
the Bayes’ theorem, we get

P (e | f) =
P (e)P (f | e)

P (f)
. (1.1)

Since thef is fixed, we look for the English translation as for

ê = arg max
e

P (e)P (f | e). (1.2)

The Equation (1.2) combines the translation modelP (f | e) with a language
modelP (e). In a figurative sense, it is similar to a human translator, who first tries
to understand the French sentence, and then looks for a suitable English expres-
sion. The main advantage of this approach compared to modeling the translation
directly asP (e | f) is that the translation model is designed to translate well,but
not to judge the well-formedness of sentences. In another words, it is trained to
concentrate its probability on such French translations that have a correct number
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of correct words on roughly correct positions, but it is not even able to distin-
guish grammatical sentences from ungrammatical ones, moreover, it often prefers
ill-formed sentences with repeating good words. That is whythe language model
has to be used for pruning ungrammatical hypotheses. Another reason is the train-
ing data. The translation model needs to learn from bilingual training data that are
very expensive, and it is not possible to obtain more than a few million sentence-
pairs, for some languages even less. On the other hand, the (n-gram) language
model is trained on monolingual data, which is relatively cheap and available in
high volumes. Thus the combination of a translation model and a language models
can learn from much more data that a single model for direct translation.

Now we are going to describe the details of the translation models. When
modeling such a complex process as the translation between two languages, it is
useful to name all operations that have to be performed when transforming the
source language into a target one. The “story” of the translation is then divided
into several steps, each performing transformations of thesame type. The whole
probabilistic model is then expressed as a product of modelsof these partial steps.

Figure 1.2 tells one of the possible stories of translating an English sentence
“Mary did not slap the green witch”into Spanish. In the first step, the translator
had to decide for each word, how many words would be necessaryto translate it.
WordsMary, not, the, green, andwitch, would be translated each as one word,slap
would be translated using three words (so it was rewritten astriple slap), while the
word did would not be translated at all (it was omitted). In the secondstep, the
translator decided how many new words yet have to be added into the translation.
In the third step, the translation dictionary was used to replace English words for
Spanish ones. Finally, the translator determines the final word order of the Spanish
sentence“Mary no daba una bofetada a la bruja verde”. The transformations
in steps 1 – 4 are calledfertility, insertion, translation, andalignment. In the
following we will will describe their probabilities in terms of math.

Lete be an English sentence consisting ofl wordse1, . . . , el andf be a French1

sentence consisting ofm wordsf1, . . . , fm. Intuitively, the alignment between
English and French words could be denoted by edges: each French word would
be connected with those English words, from which it ’was born’. Since there
may bel ∗m different edges, there are2lm possible alignments2, we must impose
reasonable restrictions on this. LetA ≡ α1, . . . , αm, such as0 ≤ αi ≤ l be the
alignment between French and English words. The interpretation of αi > 0 is that

1In the context of statistical translation models, the source sentence (in terms of the noisy-
channel) is called English and markede, and the foreign sentence (the output of the noisy-channel)
is usually marked asf (and sometimes even calledFrench). Thus the mathematics remains consis-
tent even if the pair of languages is different from the English – French pair. Statistical translation
models are usually designed to be language-pair-independent

2For most of the sentences it is more than the estimated numberof particles in the Universe.
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a French wordfi was generated from an English wordeαi
. If αi = 0, the French

word does not originate in any English word, because it was inserted into the
sentence during translation. In another words, each Frenchword has exactly one
connection – either with an English word, or with a zero node indicating insertion.

In [Berger et al., 1994] they introduce a hierarchy of 5 models from the sim-
plest to the most complex one.Model 1 expressed by Equation 1.3, estimates
the probability of translating English sentencee as Frenchf with using a fixed
alignmenta as

P (f , a | e) =
ε

(l + 1)m

m
∏

j=1

t(fj | eaj
), (1.3)

where ε is a constant approximating the probability of choosing thelength of
the French sentenceP (m | e), and thet(fj | eaj

) is a translation probability –
the probability of translation English wordeaj

as the Frenchfj . The probability
P (f | e) can be then estimated as a sum over all possible alignments

P (f | e) =
l

∑

a1=0

· · ·
l

∑

am=0

ε

(l + 1)m

m
∏

j=1

t(fj | eaj
). (1.4)

Model 1 is a very rough approximation, since it is only based on a table of word-
to-word translation probabilities. If we look at our “story” of translation from
Figure 1.2, we see that all other processes are almost ignored, since fertility and
insertion are modeled by a single constantε, and all possible word orders are
considered equal.

Model 2 goes into more detail by modeling thealignment probabilityof the
French word on positionj coming from an English word on positioni, and ap-
proximates it assuming that it depends only on the lengths ofEnglish and French
sentencesl andm, and the positions in these sentencesi andj. The alignment
probability is represented by a tablea(i | j, m, l), such that for each triplej, m, l
holds.

l
∑

i=0

a(i | j, m, l) = 1. (1.5)

The form of Model 2 is

P (f | e) =
l

∑

a1=0

· · ·
l

∑

am=0

ε

(l + 1)m

m
∏

j=1

t(fj | eaj
).a(aj | j, m, l). (1.6)

Model 3 usesfertility–a probability of usingφi French words for translating
ei, a set oftranslation probabilitiest(f | ei), and a set ofdistortion probabilities
d(j | i, m, l). Parametersp0 and p1 are used for modeling the insertions of e
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English source: Mary did not slap the green witch

(1) fertility: n(φi | ei)

Mary not slap slap slap the green witch

(2) insertion:pφ0

Mary not slap slap slap NULL the green witch

(3) translation:t(fj | eaj
)

Mary no daba una bofetada a la verde bruja

(4) word order:a(j | aj , l, m)

Mary no daba una bofetada a la bruja verdeSpanish sentence

Figure 1.2: A model of a process translating an English sentence“Mary did not
slap the green witch.”as a Spanish sentence“Mary no daba una bofetada a la
bruja verde.”

new word, they are non-negative and sum to 1. Fertilitiesφi are functions of the
alignmentA. The formula for the model 3 is

P (f | e) =

l
∑

a1=0

· · ·
l

∑

am=0

(

m − φ0

φ0

)

pm−2φ0

0 pφ0

1

×
l

∏

i=1

φi!n (φi | ei)

×
m
∏

j=1

t(fj | eaj
)d(j | aj, m, l).

(1.7)

Models 4and5 improve the previously sketched approach by a finer modeling
of distortions, trying to better describe the movements of larger groups of words.

The parameters of the models have to be trained from a parallel corpus.
The above mentioned models became a common ground for statistical model-

ing in machine translation. Apart from many partial improvements of the above
mentioned models, further research in the field has not brought any substantially
different approach.

The same approach was used in [Al-Onaizan et al., 1999] for building a Czech-
English machine translation system. Since the translationmodels are designed
as language independent, the general concept works for Czech-English language
pair as well. On the other hand, there are typical imperfections caused by specific
features of Czech. Firstly, Czech is more distant from English than French. Fur-
themore, Czech is a highly inflective language, most of its grammatical functions
are expressed by specific suffixes. There are words that can appear in more than10
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different forms. This makes data sparseness even worse. Czech can choose word
order almost freely, as syntactic and semantic roles are expressed by surface cases,
not by the word order and prepositional phrases as it is in English. This is why
the distortion tables and fertilities do not work as well as in English-French case.
Czech is also a pro-drop language, which means that the subject of the sentence
is often not present. In [Al-Onaizan et al., 1999] they used many tricks to adapt
the statistical model to the specifics of Czech, mostly during the pre-processing
phase. Czech words arelemmatized(all forms of one word replaced by a common
representative), and special tokens are inserted to Czech according to the morpho-
logical information that was lost due to lemmatization. Thus the Czech becomes
more similar to English. For example, to compensate for the pro-drop feature, if
there is no nominal phrase in nominative, thesb-tokenis inserted. To simulate
prepositional phrases as in English, theof-tokenis inserted before each nominal
phrase in genitive, and many other.

1.3.2 Stochastic Inversion Transduction Grammars

Stochastic inversion transduction grammars(ITG) were firstly published in [Wu,
1997]. They were used for bracketing parallel texts—findingcorresponding gram-
matical structures—of the English-Chinese corpus of transcriptions from Hong-
Kong’s parliament. Apart from the IBM models, this approachwas syntactically
motivated, trying to extract syntactic relations between two relatively distant lan-
guages – English and Chinese. The main assumption of this approach is that even
if the two corresponding sentences in two languages have different grammatical
structures, the syntactic roles can be still mapped one-to-one. ITG is capable of
synchronous generation of the two sentences.

A simple transduction grammar (TG) (Lewis and Stearns, 1968) is a context-
free grammar (CFG) that generates two output streams in two languages. It can
be constructed as CFG, but in addition, its terminal symbolshave to be marked by
one of the languages. Thus the ruleA → Bx1y2Cz1 generates terminalsx andz
of the languageL1 on stream1, and terminalz of the languageL2 on stream2. The
same rule can be also written using a convenience notation asA → Bx/yCz/ε.

It is obvious, that simple transduction grammars can only generate sentence-
pairs that share the same grammatical structure, the differences can only appear
in the number of terminals. A small extension of the formalism can significantly
enlarge the set of generated sentence-pairs, while still staying in the subset of
context-free grammars. Aninversion transduction grammar can be constructed
from a TG by allowing two possibleorientations of the production rules:straight
and inverted. The straight orientation of the rule generates the right-hand-side
constituents in left-to-right ordering in both languages,while the inverted orien-
tation generates theL2 output in right-to-left ordering. The inverted orientation
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S→ NP VP

VP → RB VP

VP → VV PP

NP→ Mary/Marie

RB → did/n’a not/pas

VV → slap/donne NN

NN → ε/uneε/gifle

PP→ ε/à NP

NP→ the/la NN

NN → 〈green/verte witch/sorcière〉

Figure 1.3: An example of an inversion transduction grammargenerating
sentence-pair “Mary did not slap the green witch”and “Marie n’a pas donne
une gifleà la sorcìere verte”.

is marked by operator〈〉 around the right-hand-side of the rule. Figure 1.3 con-
tains an example of an inversion transduction grammar and Figure 1.4 contains a
parse-tree for a sample sentence-pair.

It can be shown that for every ITGG, there exists a grammarG′ in normal
form . It means that every production rule ofG′ has one of these forms:

S→ ε/ε

A → x/y

A → x/ε

A → ε/y

A → BC

A → 〈BC〉

A stochastic inversion transduction grammar(SITG) is a transduction gram-
mar in normal form, and there is a probability assigned to each rule, such that for
each nonterminal the sum of probabilities of all the rules, that rewrite this nonter-
minal is1. The translation model assigns a probability of synchronous generation
of a sentence pair(e, f) as a sum of probabilities of all derivations of(e, f). The
probabilities of particular rules are obtained by EM from the parallel corpus.
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Figure 1.4: An example of an inversion transduction grammarparse-tree for a pair
of sentences “Mary did not slap the green witch”and “Marie n’a pas donne une
gifle à la sorcìere verte”.

Unlike the IBM approach, the translation process is not modeled as a noisy-
channel, instead it is based on a synchronous generation of both languages. The
motivation for combining the translation model with a language model is not
mathematical, but there are obvious practical reasons for it, such as the sparse-
ness of the bilingual training data, and the advantage of using a huge amount of
monolingual data.

The decoding algorithm and the results of a machine translation system based
on SITGs were published in [Wu and Wong, 1998]. Some commercial systems
using this approach were introduced recently, offering speech-to-speech English-
Chinese translation of short phrases, and running on small devices, such as PDAs.

The main advantage of this approach is that the operation of inversion allows
for learning grammatically different language-pairs, such as English and Chinese.
The grammars suit languages that both use, howbeit different, fixed word order-
ing. English is a SVO language, while Chinese is SOV. The SITGapproach was
not yet tested on Czech-English language pair, but we may assume that the oper-
ation of inversion would not bring a significant advantage, since Czech is a free
word order language.
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original sequence reordered sequenceP (reord| orig)

NP VP
NP VP . . .
VP NP . . .

VBD RB VP

VBD RB VP . . .
VBD VP RB . . .
VP VBD RB . . .
RB VBD VP . . .
RB VP VBD . . .
VP RB VBD . . .

VB NP
VB NP . . .
NP VB . . .

DT JJ NN

DT JJ NN . . .
DT NN JJ . . .
NN DT JJ . . .
JJ DT NN . . .
JJ NN DT . . .
NN JJ DT . . .

. . . . . . . . .

Table 1.1:r-table

1.3.3 A Syntax-based Statistical Translation

A syntax-based statistical translation model [Yamada and Knight, 2001] was in-
troduced in 2001, and a decoder [Yamada and Knight, 2002] in 2002. The model
was tested on translations from Chinese to English. The translation system uses
a noisy-channel approach and combines the English to Chinese translation prob-
ability with an English language model. Unlike the IBM approach, which models
channel operations transforming strings of words (fertilities, insertions, deletions,
word-to-word translations, and distortions), the syntax-based model describes the
transformation of an English parse-tree into a Chinese string of words. The trans-
formation has three steps: reordering of tree constituents, insertion of new con-
stituents, and translation of the English lexical information into Chinese.

An example of an English-Spanish translation process is in Figure 1.5. The
first, reordering step, is between trees (a) and (b). Two child sequences are re-
ordered: the VP sequence VBD-RB-VP into RB-VBD-VP, and the NP sequence
DT-JJ-NN into DT-NN-JJ, other sequences of child nodes do not change. A non-
terminal withn child nodes hasn! possible reorderings. The probability of re-
ordering depends only on the sequence of the child nodes (noton the parent node,
etc.). The probabilities are stored in the so-calledr-table, see Table 1.1.
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(a) S

NP

Mary

VP

VBD

did

RB

not

VP

VB

slap

NP

DT

the

JJ

green

NN

witch

(b) S

NP

Mary

VP

RB

not

VBD

did

VP

VB

slap

NP

DT

the

NN

witch

JJ

green

(c) S

NP

Mary

VP

RB

not

VBD

did

VP

una VB

slap a

NP

DT

the

NN

witch

JJ

green

(d) S

NP

Mary

VP

RB

no

VBD

daba

VP

una VB

bofetada a

NP

DT

la

NN

bruja

JJ

verde

Figure 1.5: An example of (a) a parse tree for the sentence “Mary did not slap the
green witch”, (b) reordered according to target word order, (c) after insertions of
words from a target language, (d) translated into a target language.
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parent TOP S S VP VP VP VP VP NP NP NP. . .
node S NP VP RB VBDVP VB NP DT NN JJ . . .

P (node) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
P (left) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
P (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

word una a . . .
P (word) . . . . . . . . .

Table 1.2:n-tables

The next,insertionstep is displayed between trees (b) and (c) on Figure 1.5,
where the Spanish wordunawas inserted as a left child of VP, anda was inserted
as a right child of VB. In this step, each non-terminal of the reordered tree can
either stay the same, or a new word from the target language can be inserted either
to the left or right. The insertion probabilities depend on the no-terminal node,
its parent, and the inserted target word. The insertion probabilities are modeled
so-calledn − table, which has two parts. The first part models the probability
of inserting to the left or right, or no change for each possible pair of node and
its parent. The second part models the insertion probabilities for particular target
words.

The last,translationstep is similar to that of IBM models, it uses co-called
t-table to model word-to-word translation probabilities. An English word can be
also translated as NULL, which corresponds to the deletion of the word.

The formal description of the model is as follows: Let the English parse treeE
consist of non-terminalsε1, . . . , εn and let the output foreign sentencef be a string
of wordsf1, . . . , fm. Let R, N, andT be the operations of reordering, insertion
and translation. Ifεi is non-terminal, the operationθi = 〈νi, ρi, τi〉 reorganizes
child nodes ofεi, inserts nodes to the left or right ofεi or leaves it the same. Ifεi

is terminal, the operationθi translates using a foreign word (or NULL).
The translation model assigns a probability of translatingthe English parse

treeE as a foreign string of wordsf

P (f | E) =
∑

θ:Str(θ(ε))=f

P (θ | E)

=
∑

θ:Str(θ(ε))=f

n
∏

i=1

n(νi | N (εi))r(ρi | R(εi))t(τi | T (εi)),

(1.8)

whereN , R, andT reduceεi to features significant for insertion, reordering and
translation.

In [Yamada and Knight, 2001] they use the model for English-Chinese data.
The model requires English data to be in a form of parse trees,and the Chinese
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part as a plain text. They use Collins’ parser [Collins et al., 1999] to automatically
parse the English part. The the EM algorithm is used to obtainparameters of the
model.

1.4 Conclusion

We are interested in Czech-English machine translation. One way how to build a
translation system, is to collect language-pair-specific rules and put them into the
framework that interprets them, another possibility is to use a statistical approach
and let the computer learn the rules from data. We understandrules as unavoid-
able for achieving a good quality of translation, on the other hand, we are aware
of the fact that they are expensive, and also that a huge amount of rules is barely
manageable. We believe that a good strategy in building machine translation sys-
tem is to start with a statistical approach, and to fine-tune it using linguistic rules.
Hence the design of the model must allow incorporating manual rules.

We have overviewed the major statistical approaches to machine translation
above. Although all of them are not specific to any language pair, they are more
suitable for languages with a constrained word order. Specific features of Czech,
such as inflectiveness, free word order, and pro-drop, have to be handled in a pre-
processing steps. What we are missing from the model is some kind of “native”
support for these phenomena. The goal of this work is to take part in bridging the
gap.
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Chapter 2

A Parallel Treebank

The research in the field of dependency-based machine translation assumes exper-
iments with a parallel corpus of structurally annotated sentences. The statistical
models we introduce in Chapters 4 and 5 need large amounts of structurally an-
notated data to learn the transformational patterns, as well as an author of a rule-
based translation system wants to observe these phenomena on a representative
corpus of examples in order to write the system of rules covering as much of these
transformations as possible.

The Prague Czech-English Dependency Treebank(PCEDT) is a project
of creating a Czech-English syntactically annotated parallel corpus motivated by
needs of these experiments.

Since Czech is a language with relatively high degree of word-order freedom,
and its sentences contain certain syntactic phenomena, such as discontinuous con-
stituents (non-projective constructions), which cannot be straightforwardly han-
dled using the annotation scheme of the Penn Treebank [Marcus et al., 1993,Lin-
guistic Data Consortium, 1999], based on phrase-structuretrees, we decided to
adopt for the PCEDT the dependency-based annotation schemeof the Prague De-
pendency Treebank – PDT [Linguistic Data Consortium, 2001]. The PDT is anno-
tated on three levels: morphological layer (lowest), analytic layer (middle) – sur-
face syntactic annotation, and tectogrammatical layer (highest) – level of linguistic
meaning. Dependency trees, representing the sentence structure as concentrated
around the verb and its valency, are used for the analytical and tectogrammatical
levels, as proposed by Functional Generative Description [Sgall et al., 1986].

In Section 2.1, we describe the process of translating the Penn Treebank into
Czech. The Section 2.2 describes the automatic process of parsing of Czech into
analytical representation and its automatic conversion into tectogrammatical rep-
resentation. The following Section 2.3 sketches the general procedure for trans-
forming phrase topology of the Penn Treebank into dependency structure and de-
scribes the specific conversions into analytical and tectogrammatical representa-
tions. Section 2.5 briefly discusses some of the problems of annotation from the
point of view of mutual compatibility of annotation schemes. Section 2.6 gives an
overview of additional resources included in the PCEDT.
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2.1 English to Czech Translation of the Penn Treebank

There were two possible strategies how to build The Prague Czech-English De-
pendency Treebank (PCEDT): either the parallel annotationof already existing
parallel texts, or the translation and annotation of an existing syntactically anno-
tated corpus. The choice of the Penn Treebank as the source corpus was also
pragmatically motivated: firstly, it is a widely recognizedand used linguistic re-
source, and secondly, the translators were native speakersof Czech, capable of
high quality translation into their native language.

The translators were asked to translate each English sentence as a single Czech
sentence and to avoid unnecessary stylistic changes of translated sentences. The
translations are being revised on two levels, linguistic and factual. About half
of the Penn Treebank has been translated so far (currently 21,628 sentences), the
project aims at translating the whole Wall Street Journal part of the Penn Treebank.

For the purpose of quantitative evaluation methods, such asNIST or BLEU,
for measuring performance of translation systems, we selected a test set of 515
sentences and had them retranslated from Czech into Englishby 4 different trans-
lator offices, two of them from the Czech Republic and two of them from the
U.S.A.

2.2 Czech Data Processing

2.2.1 Morphological Tagging and Lemmatization

The Czech translations of the Penn Treebank were automatically tokenized and
morphologically tagged, each word form was assigned a basicform – lemmaby
Hajič and Hladká [Hajič and Hladká, 1998] tagging tools.

Analytical Parsing

The analytical parsing of Czech runs in two steps: the statistical dependency
parser, which creates the structure of a dependency tree, and a classifier assign-
ing analytical functors. We carried out two parallel experiments with two parsers
available for Czech, parser I [Hajič et al., 1998] and parser II [Charniak, 1999].
In the second step, we used a module for automatic analyticalfunctor assign-
ment [Žabokrtský et al., 2002].

Conversion into Tectogrammatical Representation

During the tectogrammatical parsing of Czech, the analytical tree structure is con-
verted into the tectogrammatical one. These automatic transformations are based
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on linguistic rules [Böhmová, 2001]. Subsequently, tectogrammatical functors are
assigned by the C4.5 classifier [Žabokrtský et al., 2002].

2.3 Analytical Representation of English

2.3.1 Automatic Conversion of the Penn Treebank into Analytical
Representation

The transformation algorithm from phrase-structure topology into dependency
one, similar to transformations described by [Xia and Palmer, 2001], works as
follows:

• Terminal nodes of the phrase are converted to nodes of the dependency tree.

• Dependencies between nodes are established recursively: The root node
of the dependency tree transformed from the head constituent of a phrase
becomes the governing node. The root nodes of the dependencytrees trans-
formed from the right and left siblings of the head constituent are attached
as the left and right children (dependent nodes) of the governing node, re-
spectively.

• Nodes representing traces are removed and their children are reattached to
the parent of the trace.

2.3.2 Preprocessing of the Penn Treebank

Several preprocessing steps preceded the transformation into both analytical and
tectogrammatical representations.

Marking of Heads in English

The concept of the head of a phrase is important during the transformation de-
scribed above. For marking head constituents in each phrase, we used Jason Eis-
ner’s scripts ( [Eisner, 2001]).

Lemmatization of English

Czech is an inflective language, rich in morphology, therefore lemmatization (as-
signing base forms) is indispensable in almost any linguistic application. Mostly
for reasons of symmetry with Czech data and compatibility with the dependency
annotation scheme, the English part was also automaticallylemmatized.
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We have learned the correspondence between pairs of word form and mor-
phological tag on one side and lemma on the other side from a large corpus of
English text [Linguistic Data Consortium, 1995] (365M words, 13M sentences)
automatically tagged by MXPOST tagger [Ratnaparkhi, 1996]and lemmatized
by themorphatool [Minnen et al., 2001]. The Penn Treebank POS tags were
assigned manually, and this information makes an automaticlemmatization pro-
cedure more reliable.

Lemmatization procedure makes two attempts to find a lemma:

• first, it tries to find a triple with a matching word form and its(manually
assigned) POS;

• if it fails, it makes a second attempt with the word form converted to lower-
case.

If it fails in both attempts, then it chooses the given word form as the lemma.
For technical reasons, a unique identifier is assigned to each token in this step.
Figure 2.1 contains an example of a lemmatized sentence withmarked heads.

wsj_1700.mrg:5::
(S (NP˜-SBJ (DT @the the)

(@NN @aim aim))
(@VP (MD @would would)

(@VP˜ (@VB @be be)
(S˜-PRD (NP˜-SBJ-1 (@-NONE- @ * * ))

(@VP (TO @to to)
(@VP˜ (@VB @end end)

(NP˜ (@NP (DT @the the)
(NN @guerrilla guerrilla)
(@NN @war war))

(PP (@IN @for for)
(NP˜ (@NP (@NN @control control))

(PP (@IN @of of)
(NP˜ (@NPR (@NNP @Cambodia Cambodia)))))))

(PP-MNR (@IN @by by)
(S˜-NOM (NP˜-SBJ (@-NONE- @ * -1 * -1))

(@VP (@VBG @allowing allow)
(NP˜ (DT @the the)

(@NPR (NNP @Khmer Khmer)
(@NNP @Rouge Rouge)))

(NP˜ (@NP (DT @a a)
(JJ @small small)
(@NN @share share))

(PP (@IN @of of)
(NP˜ (@NN @power power))))))))))))

(. @. .))

Figure 2.1: Example of a lemmatized sentence with marked heads: “The aim
would be to end the guerrilla war for control of Cambodia by allowing the Khmer
Rouge a small share of power.”. Terminal nodes consist of a sequence of part-of-
speech, word form, lemma, and a unique id. The names of the head constituent
names start with @. (In the noun phraseKhmer Rougethe wordRougewas
marked as the head by mistake.)
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Unique Identification

For technical reasons, a unique identifier is assigned to each sentence and to each
token of the Penn Treebank.

2.3.3 English Analytical Dependency Trees

Sent. #1
AuxS

an
Atr

earthquake
Sb

struck
Pred

Northern
Atr

California
Obj

,
AuxX

killing
Adv

more
Atr

than
AuxP

50
Atr

people
Obj

.
AuxK

Figure 2.2: Analytical tree for the sentence “An earthquake struck Northern Cal-
ifornia, killing more than 50 people.”

This section describes the automatic process of convertingthe Penn Treebank
annotation into analytical representation.

Thestructural transformation works as described above. Because the han-
dling of coordination in PDT is different from the Penn Treebank annotation style
and the output of Jason Eisner’s head assigning scripts, in the case of a phrase con-
taining a coordinating conjunction (CC), we consider the rightmostCC as the head.
The treatment of apposition is a more difficult task, since there is no explicit an-
notation of this phenomenon in the Penn Treebank; constituents of a noun phrase
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earthquake
ACT

strike
PRED

northern
RSTR

California
PAT

&Cor;
ACT

kill
COMPL

more
CPR

50
RSTR

people
PAT

Figure 2.3: Tectogrammatical tree for the sentence “An earthquake struck North-
ern California, killing more than 50 people.”

enclosed in commas or other delimiters (and not containingCC) are considered to
be in apposition and the rightmost delimiter becomes the head.

The information from both the phrase tree and the dependencytree is used for
theassignment of analytical functions:

• The Penn Treebank function tag to analytical function mapping: some func-
tion tags of a phrase tree correspond to analytic functions in an analytical
tree and can be mapped to them:

SBJ → Sb,

{DTV, LGS, BNF, TPC, CLR} → Obj,

{ADV, DIR, EXT, LOC, MNR, PRP, TMP, PUT} → Adv.

• Assignment of analytical functions using local context of anode: for as-
signing analytical functions to the remaining nodes, we userules looking at
the current node, its parent and grandparent, taking into account POS and
the phrase marker of the constituent in the original phrase tree headed by
the node. For example, the rule

mPOS = DT|mAF = Atr
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assigns the analytical functionAtr to every determiner, the rule

mPOS = MD|pPOS = VB|mAF = AuxV

assigns the function tagAuxV to a modal verb headed by a verb, etc. The
attributemPOS representing the POS of a node is obligatory for every rule.
The rules are examined primarily in the order of the longest prefix of the
POS of the given node and secondarily in the order as they are listed in the
rule file. The ordering of rules is important, since the first matching rule
found assigns the analytical function and the search is finished.

Specifics of the PDT and the Penn Treebankannotation schemes, mainly
the markup of coordinations, appositions, and prepositional phrases are handled
separately:

• Coordinations and appositions: the analytical function that was originally
assigned to the head of a coordination or apposition is propagated to its
child nodes by attaching the suffixCo or Ap to them, and the head node
gets the analytical functionCoord or Apos, respectively.

• Prepositional phrases: the analytical function originally assigned to the
preposition node is propagated to its child and the preposition node is la-
beledAuxP.

• Sentences in the PDT annotation style always contain a root node labeled
AuxS, which, as the only one in the dependency tree, does not correspond to
any terminal of the phrase tree; the root node is inserted above the original
root. While in the Penn Treebank the final punctuation is a constituent of
the sentence phrase, in the analytical tree it is moved underthe technical
sentence root node.

Compare the phrase structure and the analytical representation of a sample
sentence from the Penn Treebank in Figures 2.4 and 2.2.

2.4 English Tectogrammatical Dependency Trees

2.4.1 Automatic Conversion of Penn Treebank into Tectogrammatical
Representation

The transformation of the Penn Treebank phrase trees into tectogrammatical rep-
resentation consists of astructural transformation , and an assignment of atecto-
grammatical functor and a set ofgrammatemesto each node.
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An
DT

NP-SBJ-1

earthquake
NN

struck
VBD

Northern
JJ

NP

California
NNP

VP

,
,

*-1
-NONE-

NP-SBJ

S

S-ADV

killing
VBG

more
JJR

VP

QP

than
IN

50
CD

NP

people
NNS

.

.

Figure 2.4: Penn Treebank annotation of the sentence “An earthquake struck
Northern California, killing more than 50 people.”

Sent. #1

zemětřesení
Sb

zasáhlo
Pred

severní
Atr

Kalifornii
Obj

a
Coord

usmrtilo
Pred

více
Adv

než
AuxC

50
Adv

lidí
Atr

.
AuxK

Figure 2.5: Analytical tree for the Czech translation “Zem̌eťreseńı zaśahlo severńı
Kalifornii a usmrtilo v́ıce něz 50 lid́ı.”
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_ _
zemětřesení
ACT
earthquake

zasáhnout
PRED CO
strike

severní
RSTR
northern

Kalifornie
PAT
California

a
CONJ
and

usmrtit
PRED CO
kill

více
EXT
more_than

50
CPR
50

člověk
PAT
man

Figure 2.6: Tectogrammatical tree for the Czech translation “Zem̌eťreseńı zaśahlo
severńı Kalifornii a usmrtilo v́ıce něz 50 lid́ı.”

Such
JJ

NP-SBJ-1

loans
NNS

remain
VBP

classified
JJ

ADJP-PRD

as
IN

PP

ADJP

non-accruing
JJ

VP

,
,

*-1
-NONE-

NP-SBJ

costing
VBG

S

the
DT

NP

bank
NN

S-ADV

VP

$
$

QP

10
CD

million
CD

NP

*U*
-NONE-

.

.

Figure 2.7: Penn Treebank annotation of the sentence “Such loans remain classi-
fied as non-accruing, costing the bank$10 million.”
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At the beginning of the structural transformation, the initial dependency tree
is created by a general transformation procedure as described above. However,
functional (synsemantic) words, such as prepositions, punctuation marks, deter-
miners, subordinating conjunctions, certain particles, auxiliary and modal verbs
are handled differently. They are marked as “hidden” and information about them
is stored in special attributes of their governing nodes (ifthey were to head a
phrase, the head of the other constituent became the governing node in the depen-
dency tree).

The well-formedness of a tectogrammatical tree structure requires the valency
frames to be complete: apart from nodes that are realized on surface, there are sev-
eral types of “restored” nodes representing the non-realized members of valency
frames (cf. pro-drop property of Czech and verbal condensations using gerunds
and infinitives both in Czech and English). For a partial reconstruction of such
nodes, we can use traces, which allow us to establish coreferential links, or re-
store general participants in the valency frames.

For the assignment of tectogrammatical functors, we can userules taking into
consideration POS tags (e.g.PRP → APP), function tags (JJ → RSTR, JJR → CPR,
etc.) and lemma (“not”→ RHEM, “both” → RSTR).

Grammateme Assignment – morphological grammatemes (e.g. tense, degree
of comparison) are assigned to each node of the tectogrammatical tree. The as-
signment of the morphological attributes is based on the Penn Treebank tags and
reflects basic morphological properties of the language. Atthe moment, there
are no automatic tools for the assignment of syntactic grammatemes, which are
designed to capture detailed information about deep syntactic structure.

The whole procedure is described in detail in [Kučerová and Žabokrtský,
2002].

In order to gain a “gold standard” annotation, 1,257 sentences have been anno-
tated manually (the 515 sentences from the test set are amongthem). These data
are assigned morphological grammatemes (the full set of values) and syntactic
grammatemes, and the nodes are reordered according to topic-focus articulation
(information structure).

The quality of the automatic transformation procedure described above, based
on comparison with manually annotated trees, is about 6% of wrongly aimed de-
pendencies and 18% of wrongly assigned functors.

See Figure 2.3 for the manually annotated tectogrammaticalrepresentation of
the sample sentence.
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2.5 Problems of Dependency Annotation of English

The manual annotation of 1,257 English sentences on tectogrammatical level was,
to our knowledge, the first attempt of its kind, and was based especially on the in-
structions for tectogrammatical annotation of Czech. During the process of anno-
tation, we have experienced both phenomena that do not occurin Czech and those
phenomena, whose counterparts in Czech occur rarely, and therefore the guide-
lines for tectogrammatical annotation of Czech do not handle them thoroughly.
To mention just a few, among the former belongs the annotation of articles, cer-
tain aspects of the system of verbal tenses, and phrasal verbs. A specimen of a
roughly corresponding phenomenon occurring both in Czech and English is the
gerund. It is a very common means of condensation in English,but its counter-
part in Czech (usually called transgressive) has fallen outof use and is nowadays
considered rather obsolete.

The guidelines for Czech require the transgressive to be annotated with the
functorCOMPL. The reason why it is highly problematic to apply them straight-
forwardly also to the annotation of English, is that the English gerund has a much
wider range of functions than the Czech transgressive. The gerund can be seen
as a means of condensing subordinated clauses with in principle adverbial mean-
ing (as it is analyzed in the phrase-structure annotation ofthe Penn Treebank).
Since the range of functors with adverbial meaning is much more fine-grained,
we deem it inappropriate to mark the gerund clauses in such a simple way on the
tectogrammatical level.

From the point of view of machine translation, the gerund constructions pose
considerable difficulties because of the many syntactic constructions suitable as
their translations corresponding to their varied syntactic functions.

We present two examples illustrating the issues mentioned above. Each ex-
ample consists of three figures, the first one presenting the Penn Treebank an-
notation of a (in the second case simplified) sentence from the Penn Treebank,
the second one giving its tentative tectogrammatical representation (according to
the guidelines for Czech applied to English), and the third one containing the
tectogrammatical representation of its translation into Czech (cf. Figures 2.4, 2.3,
2.6, and Figures 2.7, 2.8, 2.9). Note that in neither of the two examples the Czech
transgressive is used as the translation of the English gerund; a coordination struc-
ture is used instead.

On the other hand, we have also experienced phenomena in English whose
Penn Treebank style of annotation is insufficient for a successful conversion into
dependency representation.

For example, the usage of constructions with nominal premodification is very
frequent in English, and the annotation of such noun phrasesis often flat, grouping
together several constituents without reflecting finer syntactic and semantic rela-
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such
RSTR

loan
ACT

remain
PRED

&Cor;
ACT

classify
PAT

non-accruing
CPR

&Cor;
ACT

cost
COMPL

bank
ADDR

$
PAT

10
RSTR

million
RSTR

Figure 2.8: Tectogrammatical tree for the sentence “Such loans remain classified
as non-accruing, costing the bank$10 million.”

_ _

&Gen;
ACT

obdobný
RSTR
such

úvěr
PAT
loan

nadále
THL
still

klasifikovat
PRED CO
clasify

&Neg;
RHEM

vynášející
EFF
accruing

&Comma;
CONJ

což
ACT
which

banka
PAT
bank

stát
PRED CO
cost

10
RSTR
10

milión
EXT
million

dolar
MAT
dollar

Figure 2.9: Tectogrammatical tree for the Czech translation “Obdobńe úvěry jsou
nad́ale klasifikov́any jako nevyńašej́ıćı, cǒz banku st́alo 10 million̊u dolarů.”
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tions among them. See Figure 2.10 for an example of such a nounphrase. In fact,
the possible syntactic and especially semantic relations between the members of
the noun phrase can be highly ambiguous, but when translating such a noun phrase
into Czech, we usually are not able to preserve the ambiguityand are forced to
resolve it by choosing the realization of one of the readings(cf. Figure 2.11).

Sometimes we even may be forced to insert new words explicitly expressing
the semantic relations within the nominal group. An exampleof an English noun
phrase and the tectogrammatical representation of its Czech translation with an
inserted word “podnikajı́cı́” (‘operating’) can be found in Figures 2.12 and 2.13.

JJ

common

ADJP

CC

and

VBN

preferred

NP

NN

stock

NN

purchase

NNS

rights

Figure 2.10: Penn Treebank annotation of the noun phrase “common and preferred
stock purchase rights”.

2.6 Other Resources Included in PCEDT

2.6.1 Reader’s Digest Parallel Corpus

Reader’s Digest parallel corpus contains raw text in 53,000aligned segments in
450 articles from the Reader’s Digest, years 1993–1996. TheCzech part is a free
translation of the English version. The final selection of data has been done man-
ually, excluding articles whose translations significantly differ (in length, culture-
specific facts, etc.). Parallel segments on sentential level have been aligned by
Dan Melamed’s aligning tool [Melamed, 1996]. The topology is 1–1 (81%), 0–1
or 1–0 (2%), 1–2 or 2–1 (15%), 2–2 (1%), and others (1%).
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_ _

právo

PAT

right

nákup

PAT

purchase

obyčejný

RSTR

common

akcie

PAT CO

stock

a

CONJ

and

prioritní

RSTR

preferred

akcie

PAT CO

stock

Figure 2.11: Tectogrammatical tree for the Czech translation “právo na ńakup
oby̌cejńych a prioritńıch akcíı”.

DT

a

NNP

San

NNP

Francisco

NN

food

NNS

products

CC

and

NP

NN

building

NNS

materials

NN

marketing

CC

and

NN

distribution

NN

company

Figure 2.12: Penn Treebank annotation of the noun phrase “a San Francisco food
products and building materials marketing and distribution company”.
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_ _

_ _

sanfranciský

RSTR

San_Francisco

marketingový

RSTR CO

marketing

a

CONJ

and

distribuční

RSTR CO

distribution

společnost

ACT

company

podnikající

RSTR

operating

potravina

LOC CO

food_product

a

CONJ

and

stavební

RSTR

building

materiál

LOC CO

material

Figure 2.13: Tectogrammatical tree for the Czech translation “sanfrancisḱa mar-
ketingov́a a distribǔcńı spolěcnost podnikajı́ćı v potravińach a stavebńıch ma-
teriálech”.

2.6.2 Dictionaries

The PCEDT comprises also a translation dictionary compiledfrom three different
Czech-English manual dictionaries: two of them were downloaded form the Web
and one was extracted from Czech and English EuroWordNets. Entry-translation
pairs were filtered and weighed taking into account the reliability of the source
dictionary, the frequencies of the translations in Czech and English monolingual
corpora, and the correspondence of the Czech and English POStags. Furthermore,
by training GIZA++ [Och and Ney, 2003] translation model on the training part
of the PCEDT extended by the manual dictionaries, we obtained a probabilistic
Czech-English dictionary, more sensitive to the domain of financial news specific
for the Wall Street Journal.

The resulting Czech-English probabilistic dictionary contains 46,150 entry-
translation pairs in its lemmatized version and 496,673 pairs of word forms in
the version where for each entry-translation pair all the corresponding word form
pairs have been generated.

2.6.3 Tools

The following tools are a part of the PCEDT distribution:
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• SMT Quick Run is a package of scripts and instructions for building sta-
tistical machine translation system from the PCEDT or any other parallel
corpus. The system uses models GIZA++ and ISI ReWrite decoder [Ger-
mann et al., 2001].

• TrEd is a graphical editor and viewer of tree structures. Its modular archi-
tecture allows easy handling of diverse annotation schemes, it has been used
as the principal annotation environment for the PDT and PCEDT.

• Netgraph is a multi-platform client-server application for browsing, query-
ing and viewing analytical and tectogrammatical dependency trees, either
over the Internet or locally.

2.7 Conclusion

Building a large-scale parallel treebank is a demanding challenge. We have cre-
ated a parallel corpus for a pair of languages with a relatively different typology,
Czech and English, and made an attempt to bridge between two linguistic theories
commonly used for their description.

We are convinced that the PCEDT will be useful for further experiments in
Czech-English machine translation. A certain disproportion between the English
part converted from a manual annotation and the Czech part automatically parsed
from plain text corresponds to the real situation in Czech-English machine transla-
tion, where modules for transfer and generation have to adapt to errors caused by
automatic analysis of the input language. Several input options for Czech (plain
text, analytical and tectogrammatical representations–both automatic and man-
ual) and a test set for quantitative evaluation can be used invarious experimental
settings, allowing to identify insufficiencies in analysis, transfer, and generation.



Chapter 3

Rule-based machine translation system
using tectogrammatical representation

In this chapter, we describe an attempt to develop a full machine translation based
on tectogrammatical dependency trees. The system is designed to translate a broad
domain of Wall Street Journal newspaper texts from Czech to English. The ap-
proach combines statistical methods for analyzing the source language and pro-
ducing its tectogrammatical representation, and a set of rules for lexical transfer
and generation into English. Results of the system were published in [̌Cmejrek
et al., 2003a].

The system works as follows. The Czech sentence is analyzed into its tecto-
grammatical representation using the same sequence of steps as already described
in Section 2.2. The lexical transfer step using a translation dictionary prepared
as listed in Section 3.1 then transforms the Czech tectogrammatical trees into
so-calledCzenglishtrees as explained in Section 3.2. Section 3.3 describes the
rule-based generation of the English output. An example of resulting translations
is detailed in Section 3.4, and the BLEU evaluation of these results can be found
in Section 3.5.

3.1 Czech-English Word-to-Word Translation Dictionaries

When constructing the translation dictionary for the MT system, we have followed
two main criteria: first, the dictionary should cover as muchvocabulary as pos-
sible, and second, possible translation alternatives haveto be organized in such a
way that translations specific to a given domain of text have higher priority than
other translations. We have used several sources of dictionaries that were avail-
able on the Internet, merged them and compiled a translationdictionary sensitive
to the domain of Wall Street Journal.

3.1.1 Manual Dictionary Sources

There were three different sources of Czech-English manualdictionaries avail-
able, two of them were downloaded from the Web (WinGED, GNU/FDL), and
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one was extracted from the Czech and English EuroWordNet. See dictionary pa-
rameters in Table 3.1.

3.1.2 Dictionary Filtering

For a subsequent use of these dictionaries in a simple Czech-English transfer of
tectogrammatical trees (see Section 3.2), a relatively large number of possible
translations for each entry1 had to be filtered out. The aim of the filtering is to
exclude synonyms from the translation list, i.e. to choose asingle representative
per meaning.

First, all dictionaries are converted into a unified XML format and merged pre-
serving information about the source dictionary. Figure 3.1 contains an example
of the format.

This merged dictionary, consisting of entry/translation pairs (Czech entries
and English translations in our case), is enriched with the following information:

• The word occurence frequency, as obtained from a large English monolin-
gual corpus [Linguistic Data Consortium, 1995], is added toall translations
of each entry. (See description of the corpus in Section 2.3.2).

• The Czech POS tag and stem are added to each entry using the Czech mor-
phological analyzer [Hajič and Hladká, 1998].

• The English POS tag is added to each translation. If there is more than one
English POS tag obtained from the English morphological analyzer [Rat-
naparkhi, 1996], the English POS tag is “disambiguated” according to the
Czech POS in the corresponding entry/translation pair.

Then, the selection of the relevant translations for each entry is done based
on the sum of the weights of the source dictionaries (see dictionary weights in
Table 3.1), the frequencies from English monolingual corpora, and the correspon-
dence of the Czech and English POS tags.

3.1.3 Scoring Translations Using GIZA++

To make the dictionary more sensitive to a given domain, which is financial news
in our case, we used a parallel corpus consisting of the training part of the English-
Czech WSJ parallel corpus, extended by the parallel corpus of entry/translation
pairs from the manual dictionary. We then created a probabilistic Czech-English
dictionary by running a GIZA++ training (translation models 1–4, see [Och and

1For example, the WinGED dictionary has 2.44 translations per entry in average; excluding
1-1 entry/translation pairs, this number jumps to 4.51 translations/entry.
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<TransDictionary src_lang="Cz" tgt_lang="En">

<Entry literal="vyber">
<WordSet>

<Word index="1">
<Form>vyber</Form>
<Lemma>vyber</Lemma>
<Tag>N</Tag>

</Word>
</WordSet>

<Translations>
<Translation literal="choice">

<WordSet>
<Word index="1">

<Form>choice</Form>
<Tag>N</Tag>

</Word>
</WordSet>
<Sources>

<Source src="EWN"/>
<Source src="GNU/FDL"/>
<Source src="GIZA++"/>

</Sources>
<Counts>

<Count src="WSJtrn">1189</Count>
</Counts>
<Probs>

<Prob src="GIZA++">0.404815</Prob>
</Probs>
<Selections>

<Selection src="DictSelect"/>
<Selection src="GIZA++Select"/>
<Selection src="FinalSelect"/>

</Selections>
</Translation>
<Translation literal="selection">

<WordSet>
<Word index="1">

<Form>selection</Form>
<Tag>N</Tag>

</Word>
</WordSet>
<Sources>

...

Figure 3.1: Sample of the XML format of merged Czech-Englishmanual dictio-
naries.
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dictionary #entries #transl weight

EuroWordNet 12,052 48,525 3
GNU/FDL 12,428 17,462 2.5
WinGED 16,296 39,769 2
merged 33,028 87,955 —

Table 3.1: Dictionary parameters and weights

Ney, 2000]) on this corpus. As a result, the entry/translation pairs seen in the
parallel corpus of WSJ become more probable. For entry/translation pairs not
seen in the parallel text, the probability distribution among translations is uniform.
The translation is “GIZA++ selected” if its probability is higher than a threshold,
which is in our case set to 0.10.

The final selection contains translations selected by both the dictionary and
GIZA++ selectors. In addition, translations not covered bythe original dictionary
can be included into the final selection, if they were both newly discovered in the
parallel corpus by GIZA++ training, and their probability is significant (higher
than the most probable translation so far, in our case).

The translations from this final selection are then used in the transfer. See a
sample of the dictionary in Figure 3.2.

3.2 Lexical Transfer

In lexical transfer, tectogrammatical trees automatically created from Czech input
text are transferred into “English” tectogrammatical trees. The transfer procedure
itself is a lexical replacement of the tectogrammatical base form attribute of au-
tosemantic nodes (trlemma) by its English equivalent found in the Czech-English
probabilistic dictionary.

Because of multiple translation possibilities, the outputstructure is a forest of
“Czenglish” tectogrammatical trees represented in a packed-tree format [Langk-
ilde, 2000]. Figure 3.3 contains an example of the “Czenglish” tectogrammatical
packed-tree.

For practical reasons such as time efficiency, the first experiments used just
a simplified implementation of the transfer, taking into account only the most
probable translation. Also, 1–2 translations were handledas 1–1, i.e. two words
for one trlemma attribute. Later experiments developed allhypotheses stored in
the packed tree and rescored them using ann-gram language model.

You may see an example of a Czech tectogrammatical tree afterthe lexical
transfer step (Figure 3.5), and compare it to the original English sentence in Fig-
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<e>zes ı́lit<t>V

[FSG]<tr>increase<trt>V<prob>0.327524
[FSG]<tr>reinforce<trt>V<prob>0.280199
[FSG]<tr>amplify<trt>V<prob>0.280198
[G]<tr>re-enforce<trt>V<prob>0.0560397
[G]<tr>reenforce<trt>V<prob>0.0560397

<e>v ýb ěr<t>N

[FSG]<tr>choice<trt>N<prob>0.404815
[FSG]<tr>selection<trt>N<prob>0.328721
[G]<tr>option<trt>N<prob>0.0579416
[G]<tr>digest<trt>N<prob>0.0547869
[G]<tr>compilation<trt>N<prob>0.0547869
[]<tr>alternative<trt>N<prob>0.0519888
[]<tr>sample<trt>N<prob>0.0469601

<e>selekce<t>N

[FSG]<tr>selection<trt>N<prob>0.542169
[FSG]<tr>choice<trt>N<prob>0.457831

Figure 3.2: Sample of the Czech-English probabilistic dictionary used for the
transfer. [S]: dictionary weight selection, [G]: GIZA++ selection, [F]: final selec-
tion.
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Algorithm 3.1 Translation equivalent replacement algorithm (for 1-1 and1-2
entry-translation mapping).

1. for each Czech tectogrammatical tree (TGTree)do
2. Start at the root
3. In the dictionary, find translation equivalents for ”trlemma” of this node
4. if there is only one translation
5. Add the appropriate TN-tags to this node, continue with step14
6. else
7. Change the current node into ORnode
8. for each child of the current node
9. Create a new IDnode,
10. Set the parent of the child to this IDnode
11. Create new WORDnode for each translation variant,

set parents of the new nodes to the ORnode.
If there is a multi-word translation, choose the head of the translation
as the WORDnode and create nodes for other dependent nodes.

12. for each IDnode created in step 8
13. set multiple parents to all WORDnodes created in step 11
14. Backtrack to the next node in TGTree and continue with step 3

ure 3.4.

3.3 Rule-based Text Generation from English
Tectogrammatical Representation

When generating English text from the tectogrammatical representation, two kinds
of operations (although often interfering) have to be performed: lexical insertions
and transformations modifying word order.

Since only autosemantic (lexical) words are represented inthe tectogramma-
tical structure of the sentence, a successful generation ofEnglish plain-text output
needs the insertion of synsemantic (functional) words (such as prepositions, aux-
iliary verbs, and articles). Unlike in Czech, where different semantic roles are
expressed by different cases, English uses both prepositions and word order to
convey this information.

In our implementation, the generation process consists of the following six
consecutive groups of generation tasks:

1. determining contextual boundness,

2. reordering of constituents,
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Original: Kaufman & Broad, a home building company, declined to identify the
institutional investors.
Czech: Kaufman & Broad, firma specializujı́cı́ se na bytovou výstavbu, odmı́tla
institucionálnı́ investory jmenovat.
R1: Kaufman & Broad, a company specializing in housing development, refused
to give the names of their corporate investors.
R2: Kaufman & Broad, a firm specializing in apartment building, refused to list
institutional investors.
R3: Kaufman & Broad, a firm specializing in housing construction, refused to
name the institutional investors.
R4: Residential construction company Kaufman & Broad refused to name the
institutional investors.

Figure 3.4: A sample English sentence from WSJ, its Czech translation, and four
reference retranslations.

3. generating verb forms,

4. inserting prepositions and articles,

5. generating morphological forms,

6. LM rescoring of multiple hypotheses.

In each of these task, the whole tectogrammatical tree is traversed while task
rules are applied. Considering the nature of the selected data, i.e. WSJ financial
news, our system is limited to declarative sentences only.

Determination of Contextual Boundness

Since neither the automatically created nor the manually annotated tectogramma-
tical trees capture any topic–focus articulation (information structure), we use the
fact that Czech is a language with a relatively high degree ofword order freedom
and uses mainly the left to right ordering to express the information structure.
In written text, given information (contextually bound) tends to be placed at the
beginning of the sentence, while new information (contextually non-bound) is ex-
pressed towards the end of the sentence. The degree of communicative dynamism
increases from left to right, and the boundary between the contextually bound
nodes on the left-hand side and the contextually non-bound nodes on the right-
hand side is the verb. We consider information structure to be recursive in the
dependency tree, and use it both for the reordering of constituents in the English
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counterpart of the Czech sentence, and for determining the definiteness of noun
phrases in English.

Reordering of Constituents

Unlike Czech, English is a language with a quite rigid SVO word order, therefore,
according to the sentence modality, verb complements and adjuncts have to be
rearranged to conform to the constraints of English grammar. In the basic case of
a simple declarative sentence, we first place the contextually bound adjuncts, then
the subject, the verb, the verb complements (such as direct and indirect objects),
and finally contextually non-bound adjuncts, always preserving the relative order
of constituents in each group. The functors in a tectogrammatical tree denote the
semantic role of nodes. So we can use the contextual boundness/non-boundness
of ACTor (deep subject), PATient (deep object), or ADDRessee, and realize the
most contextually bound node as the surface subject.

Generation of Verb Forms

According to the semantic role selected as the subject of theverb, the active or
passive voice of the verb is chosen. Categories such as tenseand mood are taken
over from the information stored in the Czech tectogrammatical node. The person
is determined by agreement with the subject. Auxiliary verbs needed to create a
complex verb form are inserted as separate children nodes ofthe lexical verb.

Insertion of Prepositions and Articles

Establishing the correspondence between tectogrammatical functors and auxiliary
words is a complex task. In some cases, there is one predominant surface realiza-
tion of the functor, but, unfortunately, in other cases, there are several possible
surface realizations, none of them significantly dominant (mostly in cases of spa-
tial and temporal adjuncts). For deciding on the appropriate surface realization
of a preposition, both the original Czech preposition and the English lexical word
being generated should be taken into account.

The task of generating articles in English is non-trivial and challenging due to
the absence of articles in Czech. The first hint about what article should be used
is the contextual boundness/non-boundness of a noun phrase. The definite article
is inserted when the noun phrase is either contextually bound, postmodified, or
is premodified by a superlative adjective or an ordinal numeral. Otherwise, the
indefinite article is used.

An article may be prevented from being inserted altogether in case of un-
countable or proper nouns, or when the noun phrase is predetermined by some



3.3. Rule-based Generation 57

MT system BLEU –
devtest

BLEU –
evaltest

DBMT with parser I 0.1857 0.1634
DBMT with parser II 0.1916 0.1705
DBMT on manually annotated trees 0.1974 0.1704

DBMT with parser II, LM rescoring 0.1921 0.1705
DBMT on manually annotated trees, LM rescoring0.1968 0.1731

GIZA++ & ReWrite – plain text 0.0971 0.0590
GIZA++ & ReWrite – lemmatized 0.2222 0.2017
MAGENTA WS’02 0.0640 0.0420

Avg. BLEU score of human retranslations — 0.5560

Table 3.2: BLEU score of different MT systems

other means (such as possessive or demonstrative pronouns).

Generating Morphological Forms

When generating the surface word form, we are searching through the table of
triples [word form, morphological tag, lemma] (see Section2.3.2) for the word
form corresponding to the given lemma and morphological tag. Should we fail to
find it, we generate the form using simple rules, e.g. attaching suffix for plural,
etc. Also, the appropriate form of the indefinite article is selected according to the
immediately following word.

LM Rescoring of Multiple Hypotheses

We also built a system that develops multiple translation hypotheses at the same
time, and rescores them by a language model. We have experimented with mul-
tiple variants of insertions of preposition and articles, but did not allow variants
of lexical nodes. The language model used for the rescoring was the trigram
LM with Good-Turing discounting and Katz back-off for smoothing. These were
trained with the SRILM language modeling toolkit [Stolcke, 2002] on the52 mil-
lion words selected from the monolingual North American News Text Corpus of
the Wall Street Journal from years 1995 and 1996 [LinguisticData Consortium,
1995].2

2The Penn Treebank data are from other years.
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3.4 An Example

Figure 3.6 illustrates the whole process of translating a sample Czech sentence
to English, starting from its manually annotated tectogrammatical representation
(Figure 3.5). The first line contains lemmas of the autosemantic words of the sam-
ple sentence from Figure 3.4. The next line, labeled 0, showstheir word-to-word
translations. The remaining lines correspond to the generation steps described in
Section 3.3.

The order of nodes is used to determine their contextual boundness (line 1,
contextually non-bound nodes are in italics). In line 2, theconstituents are re-
ordered according to contextual boundness and their tectogrammatical functors.
The form of the complex verb is handled in step 3. On the next time, prepositions
and articles are inserted. However, not every functor’s realization can be recon-
structed easily, as can be seen in the case of the missing preposition “in”. It is also
hard to decide whether a particular word was used in an uncountable sense (see the
wrongly inserted indefinite article). The last line contains the final morphological
realization of the sentence.

3.5 Evaluation of Results

We evaluated our translations with IBM’s BLEU evaluation metric [Papineni et al.,
2001], using the same evaluation method and reference retranslations that were
used for evaluation at the HLT Workshop 2002 at CLSP [Hajič et al., 2002]. We
used four reference retranslations of 490 sentences selected from the WSJ sections
22, 23, and 24, which were themselves used as the fifth reference. The evaluation
method used is to hold out each reference in turn and evaluateit against the re-
maining four, then averaging the five BLEU scores.

Table 3.2 shows final results of our system compared with GIZA++ and MA-
GENTA’s results.

The DBMT with parser I and parser II experiments represent a fully automated
translation, while the DBMT experiment on manually annotated trees uses Czech
tectogrammatical trees prepared by human annotators.

We can see that the experiments with rescoring using a language model did
not bring any convincing improvement. In the case of manually annotated trees,
the BLEU score was even worse. Since the lexical variabilitywas allowed only on
positions of prepositions and articles, it shows that the lexical information about
the original Czech preposition is very important for a successful generation of the
English preposition. Nevertheless, experiments with LM rescoring of multiple
hypotheses should be evaluated also for multiple variants of semantic words.

For the purposes of comparison, the GIZA++ statistical machine translation
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toolkit with the ReWrite decoder was customized to translate from Czech to En-
glish, and two experiments with different configurations were performed. The
first one takes Czech plain text as input, the second one translates from lemma-
tized Czech. In addition, the word-to-word dictionary described in Section 2.6.2
was added to the training data (every entry-translation pair as one sentence pair).
The language model was trained on a large monolingual corpusfrom Wall Street
Journal containing about 52M words. This corpus was selected from the corpus
mentioned in Section 2.3.2.

All systems were evaluated against the same set of references.
Both our experiments show a considerable improvement over MAGENTA’s

performance, they also score better than GIZA++/ReWrite trained on word forms.
We were still outperformed by GIZA++/ReWrite trained on lemmas and making
use of a large language model.

3.6 Conclusion

This chapter describes a complete translation system from Czech plain text to
English plain text. It integrates the latest results in analytical and tectogrammatical
parsing of Czech, experiments with existing word-to-word dictionaries combined
with those automatically obtained from a parallel corpus, lexical transfer, and
simple rule-based generation from the tectogrammatical representation.

In spite of certain known shortcomings of state-of-the-artparsers of Czech, we
are convinced that the most significant improvement of our system can be achieved
by further refining and broadening the coverage of structural transformations and
lexical insertions. We consider allowing multiple translation possibilities even
for lexical words and using additional sources of information relevant for surface
realization of tectogrammatical functors.



Chapter 4

Tree-to-Tree Transducer

The idea of aSynchronous Tree Substitution Grammarwas first sketched in [Hajič
et al., 2002] and [Eisner, 2003]. A rule of such a grammar has the form of a pair of
so-calledlittle treeswith aligned frontier nodesthat constrain both the positions,
where other little trees can attach, and their type. The tree-to-tree transformation
process covers the source tree by the source little trees from the rule-set, the output
tree is then being constructed from the corresponding target little trees.

This chapter defines the theory of such synchronous tree substitution gram-
mars and elaborates on the mathematical details that were not published yet. It
starts with the monolingual case, then extends it into the synchronous case. We
also present algorithms for training the models on a corpus of parallel trees, and
the decoding algorithm necessary for producing translation.

We are aware of that the new theory is quite complicated. In order to help
the reader to understand the new concepts, we start with the Section 4.1 giving an
informal overview of the theory, jumping into the middle of the problem and trying
to explain it using a “common sense”. We hope that this figurative explanation
makes the reading of the following pages easier.

4.1 Informal Motivation

Figure 4.1 contains an example of a tectogrammatical tree for a sample Czech
sentence and an analytical tree for its English equivalent.The Figure 4.2 then
contains both trees split into chunks. The chunk is usually formed by twolittle
treeswith filled (black) and empty (white) nodes.

The filled nodes are calledinternal, the empty nodes are calledfrontier nodes.
The frontier nodes are connected by bows. The bows can be called alignment,
matching, or mapping, and it always means the same thing.

The chunk of both trees with aligned frontier nodes is arule of the Syn-
chronous Tree Substitution Grammar.

The meaning of the first rule in Figure 4.2 is that the Czechinformovat ne-
správňe is translated as the Englishwere misinformed. The alignment between
the frontier nodePAT of the Czech tree and the frontier nodeSb of the English

61
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tree means that the frontier (white) nodes must be filled at the same time by one
rule. In this example, it is the rulevedeńı ↔ executives. If a frontier node is not
aligned, it means that it is not translated in the other tree.

If we follow the vertical alignment of frontier nodes and roots of the little trees
below them, we get the whole “parse tree”—in another words wecan find a rule
that will be “plugged” into the aligned pair of frontier nodes.

The last but not least, the frontier nodes are labeled with syntactical func-
tions1, we call it frontier state. TheProbabilistic Synchronous Tree Substitution
Grammarmodels the probability that a rule will be plugged into a given pair of
matching frontier nodes with a given frontier state.

The idea of tree-to-tree transductions is so general that itcan be applied to
transformations between any two types of trees. In Czech to English machine
translation, configurations transferring from Czech treesto English trees can op-
erate either on the same analytical or tectogrammatical level, or they can go diag-
onally, e.g. from the Czech tectogrammatical trees to the English analytical trees.
We can transform the trees in “Czenglish” tectogrammaticalrepresentation to the
English analytical one. The tree-to-tree transductions could also be used for the
“parsing” step from the analytical to the tectogrammaticalrepresentation.

4.2 Tree-to-Tree Mappings

Our goal is to describe the transformations of sentence structures that we may
observe during the process of translation between two languages. Comparing the
tectogrammatical tree for a sample Czech sentence “Podle jeho ńazoru bylo vedeńı
UAL o financov́ańı původńı transakce nesprávňe informov́ano.”, with the analyt-
ical tree for its English translation “According to his opinion UAL’s executives
were misinformed about the financing of the original transaction.” in Figure 4.1,
we can find the corresponding groups of nodes (chunks) and list some of the mis-
matches that we observe:

1. The 2–1 match between thePRED (predicate) of the Czech sentencein-
formovat nespŕavňeand its English counterpartmisinformed,

2. the elision (a 1–0 match) of the generatedACT (actor) of the Czech sen-
tence,

3. the three 1–1 matches (on ↔ his; původńı ↔ original; vedeńı ↔ execu-
tives),

1But we could consider any reasonable labeling.



4.2. Tree-to-Tree Mappings 63

4. the CzechCRIT (criterium) názorexpressed by the EnglishAdv (adver-
bial) phraseaccording to ... opinioncan be either classified as a 1–3 match,
or we can say that the tectogrammatical functorCRIT forms the English
Adv subtreeAccording toand that the lemmanázormatches 1–1 withopin-
ion,

5. theEFF (effect) financov́ańı can be taken either as in a 1–3 match with
AuxP about the financing, or we can think that the functorEFF generates
theAdv nodeaboutand the lemmafinancov́ańı generatesthe financing,

6. thePAT (patient)transakcegeneratesAuxP of the ... transactionor, in
two steps, the functorPAT gives birth toAuxP of, the lemmatransakce
translates tothe transaction, and there is a 1–2 matchtransakce↔ the trans-
action.

Such an informal description of observed transformations mixes lexical, func-
tional, and structural information present in this tree-pair. In the following, we
will have to proceed through several steps towards formal rules that capture all
three types of information.

We can split the tree pair into corresponding chunks and number them as in
Figure 4.2. A translation rule is represented by a pair of corresponding chunks.
Filled nodes carry the lexical information; the other nodesare marked by their
syntactical functions and can be substituted by other chunks with the same syn-
tactical function2. Finally, the dashed bows between unfilled nodes indicate that
the substitutions at these two nodes must proceed synchronously.

For example, the rule13 formalizes our observation from item 1, i.e. that
the part of the Czech tectogrammatical treeinformovat nespŕavňe, preceded by
some subtrees ofACT , CRIT , PAT , andEFF , will be translated by the part
of the English analytical treewere misinformed, preceded by some subtrees of
Adv andSb, and followed by someAuxP . Rule1 also specifies that the three
pairs of subtrees ofCRIT andAdv, PAT andSb, andEFF andAuxP will be
substituted at the same time, or in other words, that these pairs of subtrees will be
translations of one another. Finally, theACT node will not have any counterpart
in the English tree.

Rule2 corresponds to the observation 2, i.e. the generated actor is not trans-
lated into English. This rule maps the Czech chunk to a special null chunk on the
English side.

The informal observation mentioned in item 4 is expressed byrules3 and4.
Rule 3 says that functorCRIT should be translated asaccording to, and rule

2The label with the syntactical function refers to both the unfilled node and the substituting
chunk below it.

3See numbers above the root node of each chunk in the Figure 4.2.
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4 dictates the synchronous translation of the actual lexicalinformationnázor↔
opinion. 4

4.3 A Probabilistic Synchronous Tree Substitution Grammar

In this section, we describe the details of the probabilistic model of the transduc-
tion, the method of parameter estimation, and the decoding algorithm.

In our formal description of the Synchronous Tree Substitution Grammar, we
stick to the symbolic markup used in [Hajič et al., 2002, Eisner, 2003] where
possible.

We start with the definition of the non-synchronous Tree Substitution Gram-
mar, and then extend to the synchronous case. As an example, we will use again
the same tree pair from Figure 4.1, as in the previous section.

4.3.1 Non-synchronous Tree Substitution Grammar (TSG)

TheTree Substitution Grammar (TSG) is defined as follows:

1. LetQ be the set ofstates5, and letStart ∈ Q be the name reserved for the
initial state.

2. Let L be the set oflabels on the nodes (words) and edges (grammatical
roles).

3. Letτ be the set oflittle trees t defined as tuples〈V, V i, E, l, q, s〉, where

• V is a set ofnodes,

• V i ⊆ V is a subset ofinternal nodesand its complementV f = V −V i

is a set offrontier nodes,

• E ⊆ V i×V is a set of directed edges that can start from internal nodes
only. The graph〈V, E〉 must form a directed and acyclic tree.6

• The functions : V f → Q assigns afrontier state to each frontier
node.

4One could object that there is no mechanism that would prevent from using rule4 first (sub-
stituting atCRIT andAdv frontier nodes of rule1), so that using rule3 would not be possible
any more, and the resulting sentence (missing the wordsAccording to) would be ungrammatical.
This can be fixed by extending the set of syntactical functions, e.g. the unfilled Czech and English
nodes of rule3 could have labelsCRIT ′ andAdv′, respectively. An alternative way of fixing this
problem is to consider one larger ruleCRIT názor↔ Adv According to ... opinion.

5In our example we use the grammatical roles from the PDT
6We can see that the tree representing the whole sentence complies with the definition of the

little tree with the empty set ofV f .
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Figure 4.1: The tree pair for the tectogrammatical representation of the Czech
sentence “Podle jeho ńazoru bylo vedeńı UAL o financov́ańı původńı transakce
nespŕavňe informov́ano.” and the analytical representation of the corresponding
English translation “According to his opinion UAL’s executives were misinformed
about the financing of the original transaction.”
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ě

1

m
is

in
fo

rm
ed

A
d

v
S

b
w

er
e

A
u

xP
2

&
G

en
;

3

C
R

IT

3

A
cc

o
rd

in
g to

A
d

v
4

n
áz

o
r

A
P

P

4

o
p

in
io

n

A
tr

o
n

h
is

ve
d

en
ı́

R
S

T
R

ex
ec

u
tiv

es

A
u

xP

E
F

F
ab

o
u

t

A
d

v

fin
an

co
vá
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Figure 4.2: Aligned chunks of the tree structure for the tectogrammatical repre-
sentation of the Czech sentence “Podle jeho ńazoru bylo vedeńı UAL o financov́ańı
původńı transakce nesprávňe informov́ano.” and the analytical representation of
the corresponding English translation “According to his opinion UAL’s executives
were misinformed about the financing of the original transaction”.
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• Let r ∈ V be theroot node of the tree, and let theroot state q be
assigned to the root.7

• Let l : (V i ∪ E) → L be a function assigning a label to each internal
node or edge.

4. Finally, the Tree Substitution Grammar (TSG) is defined as the tuple〈Q, L, τ〉.

For convenience, we will use the shorthandt.q for the root state, and other
shortcuts for all other properties oft ∈ τ using the same analogy.

Let d ∈ V f be a frontier node oft, andt′ be a little tree such thatt.s(d) = t′.q
– in other words, the frontier state ofd matches the root state oft′. We may define
the operation ofsubstituting t atd with t′. The result of this operation is defined
as little tree:

SUBST (t, d, t′) =〈t.V ∪ t′.V − {d},

t.V i ∪ t′.V i,

t.E∗ ∪ t′.E,

t.l ∪ t′.l,

t.q,

t.s ∪ t′s − {〈d, t′.q〉}〉.

(4.1)

We obtaint.E∗ from t.E, by “redirecting” the edge originally pointing tod to the
root of t′.

The process ofderivation from the initial stateStart in theTSG is described
by Algorithm 4.1:

Algorithm 4.1 The derivation process inTSG.

1. Start with any little treet ∈ TSG, such thatt.q = Start.
2. while t.V f 6= ∅
3. selectd ∈ t.V f

4. selectt′ such thatt.s(d) = t′.q

5. t := SUBST (t, d, t′)

Line 4 of the algorithm hinted us to model the probability distribution over all
possible little trees with root stateq. Then the treet′ would be chosen with the
probabilityp(t′ | q).

7If the rootr is a frontier node, we can considers such thats(r) 6= q.
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Thus the probability of the derivationqt0 . . . tk starting fromt0 and usingk
substitutions with little treest1, . . . , tk can be computed as:

p(q, t0, . . . , tk) = p(t0|q) ∗
k

∏

i=1

p(t′i | t′i.q) (4.2)

The probabilisticTSG does not requiret.s(d) to be the same ast′.q.

4.3.2 Inside-outside Algorithm forTSG

The probabilitiesp(t | q) can be automatically obtained from a treebank using the
EM algorithm. By analogy with the measures and quantities used for the training
of probabilistic context-free grammars [Jelinek, 1985], we will define inside and
outside probabilities, expected counts, and state the re-estimation formula.

We say that “the treet′ fits noded” if there is some derivation, in whicht′

substitutest at d and the result of the derivation isT . Note that the root state
of t′ can be any ofQ, since the nodes of the resulting treeT do not imply any
restrictions on states used during the derivation. Thus theiteration over all little
treest′ fitting d includes variants for allq ∈ Q.

The probability that the grammarTSG generates the treeT from the state
Start is the sum of probabilities of all possible derivations, andcan be computed
as theinside probability βT.r(Start) by the induction in Algorithm 4.2:

Algorithm 4.2 The inductive algorithm for computing inside probabilities.
1. for each nodec of T in bottom-up order
2. for eachq ∈ Q, let βc(q) = 0
3. for each little treet that fitsc, in asafe order
4. incrementβc(t.q) by p(t | t.q) ·

∏

d∈t.V f βd(t.s(d))

The natural-language definition of the inside probabilityβc(t.q) is the prob-
ability of generating the whole subtree ofT rooted at nodec with the root state
q. The Algorithm 4.2 is an example of the well-known chart-parsing approach. It
starts with the leaf nodes, their inside probabilitiesp(t | t.q) are retrieved from the
probabilistic model. Then the algorithm traverses the treein bottom-up ordering
and collects inside probabilities for the nodes higher up inthe tree.

Line 3 must iterate the little trees in asafe order. The little trees with frontier
root nodes can be selected only after all other little trees with the internal root
node have been evaluated.

Theoutside probabilitiesαt.r(q) can be computed by the Algorithm 4.3:
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Algorithm 4.3 The inductive algorithm for computing outside probabilities.
1. for each little treet that fitsT.r

2. for eachq ∈ Q

3. if q = Start let αt.r(q) = 1
4. elseαt.r(q) = 0
5. for each nodec of T , in top-down order
6. for each little treet that fitsc

7. for eachd ∈ t.V f

8. for eacht′ that fitsd

9. incrementαd(t
′.q) by p(t′ | t.s(d)) · αt.r(t.q) ·

∏

d′∈t.V f−d βd′(t.s(d
′.))

The natural definition of the outside probabilityαd(t.q) is the probability of
starting with the root stateT.q, generating all parts of the treeT outside of the
subtree rooted atc, and generating any subtree rooted atc with the root statet.q

Theexpected countC(q, t) of a little treet used in the derivation ofT can be
computed by Algorithm 4.4:

Algorithm 4.4 The algorithm for computing expected counts.
1. Initialize C( , ) = 0
2. for each nodec of T

3. for each little treet that fitsc

4. IncrementC(q, t) by p(t | q) · αt.r(q) ·
∏

d∈t.V f βd(t.s(d))

And finally, the re-estimation formula 4.3 forp(t | q):

p(t | q) =
C(q, t)

∑

t′ C(q, t′)
(4.3)

In each iteration, the EM algorithm first computes the insideprobabilities,
the outside probabilities, the expected counts, and finallyuses the re-estimation
formula to obtain the new values ofp(t | q). Iterations are repeated until the
p(t | q) converges.

4.3.3 Synchronous Tree Substitution Grammar

We can extend theTSG to model the synchronous generation of a tree pairT =
(T1, T2). For this we will join twoTSGs, TSG1 = 〈Q1, L1, τ1〉 andTSG2 =
〈Q2, L2, τ2〉, such thatTSG1 generatesT1 andTSG2 generatesT2, with some
restrictions on the operation of substitution.
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The synchronous tree substitution grammar(STSG) is a tuple〈Q, L, τ〉,
where

1. Q is a set ofsynchronous root states, Start being as before a special initial
state.8

2. L = L1 × L2.

3. τ = τ1 × τ2 is a set oflittle tree pairs . The little tree pairt is a tuple
〈t1, t2, q, m, s〉, where the little treesti = 〈Vi, V

f
i , Ei, li〉 have a common

synchronous root stateq.

The alignment of frontier nodesm is calledmatching, and is defined as a
1-to-1 correspondence (pairing) between subsets ofV f

1 andV f
2 , such that

unmatched frontier nodes are mapped tonull. For 1-0 or 0-1 mappings, we
use the concept of anull tree that has empty sets of internal and frontier
nodes9. The functions : m → Q assigns common frontier states to pairs of
aligned frontier nodes.

The operationSUBST (t, d, t′) of substituting t atd with t′ for aligned node
pairsd = (d1, d2) is defined such thatd ∈ m andt.s(d) = t′.q. The result of this
substitution is a little tree pair

SUBST (t, d, t′) =〈SUBST (t1, d1, t
′
1),

SUBST (t2, d2, t
′
2),

q,

t.m ∪ t′.m − (d1, d2),

t.s ∪ t′.s − (d1, d2, t
′.q)〉.

(4.4)

The process ofderivation from the initial stateStart in STSG is described by
Algorithm 4.5:

Algorithm 4.5 The derivation process inSTSG.
1. Start with any little tree pairt ∈ TSG, such thatt.q = Start.
2. while t.m 6= ∅
3. selectd ∈ t.m

4. selectt′ such thatt.s(d) = t′.q

5. t := SUBST (t, d, t′)

8For convenience, we may think ofQ = Q1 × Q2, but generally, theQ can be any set of
synchronous root states.

9Note that the concept of thenull little tree is compliant with the rest of the definitions, except
from the root of thenull tree, and the root state of the little tree pair containingnull tree. We
leave this up to our intuition.
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The formula 4.2 for computing the probability of the derivation can be used
for the synchronous case as well.

4.3.4 Inside-outside Algorithm forSTSG

In order to train the probabilitiesp(t | q) of theSTSG, we have to rework the
Algorithms 4.2, 4.3, and 4.4 for the inside and outside probabilities, and expected
counts, as well as the re-estimation Formula 4.3.

The definition of fitting has to be updated for the synchronouscase: We say
thatt′ fits node paird, if t′i fits di for i = 1, 2.

The Algorithm 4.6 computes theinside probability βT.r(Start), in other
words, the probability that theSTSG generates a tree pairT from the initial
symbolStart.

Algorithm 4.6 The inductive algorithm for computing inside probabilities for
STSG.
1. for each nodec1 of T1, in bottom-up order
2. for each nodec2 of T2, in bottom-up order
3. for eachq ∈ Q, let βc1,c2(q) = 0
4. for each little treet1 that fitsc1

5. for each little treet2 that fitsc2

6. for each probable matchingm of frontier nodes oft1 andt2
7. constructt from q, t1, t2, andm

8. incrementβc(q) by p(t | t.q) ·
∏

d∈m βd(t.s(d))

Lines 4 and 5 must iterate little trees fitting a node pairc in asafe order. First,
we have to evaluate the pairs with thenull little tree, then the little tree pairs with
internal root nodes, and finally the little tree pairs with a frontier root nodes.

The Algorithm 4.7 computes theoutside probability αt.r(q):
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Algorithm 4.7 The inductive algorithm for computing outside probabilities for
STSG.
1. for each nodec1 of T1, in top-down order
2. for each nodec2 of T2, in top-down order
3. for eachq ∈ Q

4. if q = Start let αc(q) = 1
5. elseαc(q) = 0
6. for each little treet1 that fitsc1

7. for each little treet2 that fitsc2

8. for each probable matchingm of frontier nodest1 andt2
9. constructt from q, t1, t2, andm

10. for each pair of matching frontier nodesf ∈ m

11. incrementαf (t.s(f)) by p(t | q) · αt.r(q) ·
∏

d∈m−{f} βd(t.s(d))

The expected countsC(q, t) are computed using the Algorithm 4.8:

Algorithm 4.8 The algorithm for computing expected counts forSTSG.
1. Initialize C( , ) = 0
2. for each nodec1 of T1

3. for each nodec2 of T2

4. for each little treet1 that fitsc1

5. for each little treet2 that fitsc2

6. for each probable matchingm of frontier nodest1 andt2
7. constructt from q, t1, t2, andm

8. IncrementC(q, t) by p(t | q) · αt.r(q) ·
∏

d∈m βd(t.s(d))

Finally, the probabilities are re-estimated using Formula4.3, but this time the
tree pairst andt′ iterate through all possiblet1, t2, andm.

4.3.5 Decoding Algorithm forSTSG

Once we have trained the probabilitiesp(t | q) on a parallel treebank, we can use
them for decoding. For a treeT1, we want to find its translationT2. The decoding
process tries to cover theT1 by the left sides of rules, and take the resulting tree
on the right side as the result. In other words, find the most probable synchronous
derivation that generatesT1 on the left hand side, and take the treeT2 generated
on the right hand side.

The most probable derivation is computed by a chart-parsingAlgorithm 4.9.
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Algorithm 4.9 The decoding algorithm forSTSG.
1. for each nodec1 = null, and thenc1 ∈ T1.V in bottom-up order
2. for eachg ∈ Q let βc1(q) = −∞
3. for each little treet1 that fitsc1 in asafeorder
4. while t=proposeNewRule() //we have to try all possiblet2, q,m, s

5. find maxp(t | t.q) ·
∏

d∈m βd1
(t.s(d)) and store thet andβc1(q) in the chart

As opposed to computing the inside probabilities, we do not have to fit nodes
of T2, and therefore no restrictions are put on the choice oft2. That is also why
the inside probabilities are indexed byc1 only.

4.4 Conclusion

We have presented the details of the probabilistic Synchronous Tree Substitution
Grammars, a new method for learning tree-to-tree transformations between non-
isomorphic trees. The level of details published here is—toour knowledge—the
first of its kind.

In the following Chapter 5 we will try to show that the presented method is
appropriate, and that it is possible to implement a model that learns alignment
between trees representing the sentence structure.
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Chapter 5

Implementations of the Tree-to-Tree
Transducer

As written above, theSTSGs can be used to model transformations of tress of
any type. One always has to define the conversion algorithm between the current
tree format and the “computational” format of the tree: i.e.the set of states of the
frontier and root nodes, and node labels.

As is usual, the ubiquitous limitations, such as speed, memory, and data sparse-
ness are the main criteria for the implementation. To fit intomemory and in order
to perform in reasonable time, the allowed shapes of the rules have to berestricted,
as well as the rule set has to bepruned. On the other hand,unseenrules have to
be modeled using aback-off scheme.

The actual implementation of mapping, rule restrictions, pruning, and back-off
scheme are always highly specific to a given matter of modeledtrees. In this sec-
tion, we describe our attempts to use the framework for threetasks: extraction of
mappings between tectogrammatical and analytical representation of Czech, and
for training the transfer from Czech tectogrammatical or analytical tree structures
into English analytical tree structures.
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Figure 5.1: The tree pair for the tectogrammatical and analytical representations
of the Czech sentence: “Agentura AOT se ŕazem ocitla p̌red bankrotem.”

75



76

5.1 Creating the Set of Rules

The Figure 5.1 contains an example of the tectogrammatical and analytical repre-
sentations of the Czech sentence: “Agentura AOT se ŕazem ocitla p̌red bankrotem”.
Both trees were converted into the computational format, the differences from the
PDT original are the following: The technical root nodes andnodes of the fi-
nal punctuations were removed. The function labels are attached to nodes, not to
edges. The corresponding nodes are connected by dashed lines (based on the PDT
annotation), and finally – all nodes are numbered by postfix ordering.

TheSTSG describing the transformations between the tectogrammatical and
the analytical structures can be constructed as follows:

1. The set of frontier states will include all combinations of tectogrammatical
and analytical functors, and the initial stateQ = {Start} ∪ {TF × AF}.

2. The set of labels will contain all pairs of tectogrammatical and analytical
lemmas used in PDT (node labels), as well as pairs of functors(edge labels):
L = {TL × AL} ∪ {TF × AF}.

3. The set of rules is constructed by going through all tree-pairs in the corpus,
all their nodes where a little tree can be rooted, all combinations of possible
shapes of the little tree-pairs, and all possible matchingsof their frontier
nodes:

(a) A little tree rooted in some nodec of the dependency tree is con-
structed as follows: Any continuous subtree rooted atc can be taken
as the set of internal nodesV i, or V i can be empty. The set of frontier
nodesV f contains all children of internal nodes, such that the children
themselves are not among internal nodes,V f ∩ V i = ∅.

(b) In case of the empty set of internal nodes,c is the only frontier node.
The functions assigns a pair of tectogrammatical and analytical func-
tions from the edges incoming into the pair of frontier or root nodes1,
and the labelingl assigns lemmas to nodes and syntactical functions
to edges.

(c) The matchingm of frontier nodes is chosen freely, or we can also im-
pose various constraints taking into consideration the original annota-

1Note that this setup does not allow derivations with “renaming” frontier states mentioned in
Footnote 4 in Chapter 4. To allow this, we have to consider allvariants of frontier and root states
s andq. This is technically impossible in the general case, but still doable for some specific cases,
e.g. if one of the little trees consists of just one frontier noder, we can assign a root stateq
different from the frontier state ofr.
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tion of PDT, for example that matches present in the PDT annotation
must be preserved in the rule.

4. Because all derivations have to begin with theStart state, we have to add
special rules with the root stateStart. The rules have a form of a pair of
little trees, each consisting of one frontier node. The frontier state can be
any combination of syntactical functions that can possiblyoccur in the root
of the PDT trees.

5. Due to speed and memory limitations, we exclude trees withnodes having
more than6 children from the training corpus.

6. Also the size of the little trees we substitute with, will be limited to a maxi-
mum of2 internal nodes. Note that the sample rules given in the Figure 4.2
are still compliant with these constraints.

5.2 Finding a Back-off Scheme

There are two reasons why we always have to find suitable back-off schemes: the
lack of generalization, and memory limitations. Even afterapplying the above-
mentioned restrictions on the rules, the data is still sparse.

To better explain the seriousness of the problem we face, letus imagine that
even the simplest shape of the synchronous rule – consistingof one internal node
on both sides – is equivalent to thet-table with entry-translation pairs used by IBM
models. In this case, the size of the dictionary is still reasonable but the OOV
(out-of-vocabulary) rate is an issue. Moreover, we have to train on structurally
annotated data, which is harder to find than a parallel corpusof plain text, and
thus we are limited to roughly 20,000 sentence pairs contained.

When we consider more complex synchronous rules, the memorylimitations
become crucial and the data sparseness severe.

On one hand, if we want to make use of the syntactic structure,we have to
consider larger little trees with more nodes, but on the other hand, it is very hard
to find a more complex synchronous rule that repeats more thanonce in training
data of about20, 000 tree-pairs. And it implies a problem during the decoding:
when a new tectogrammatical tree is being transformed into an analytical one, the
most of the hypothesized more complex synchronous rules would be seen for the
first time, and thus scored as unknown rules. Such a model would not generalize
at all.

Memory and time limitations are also a serious problem. As the Table 5.1
shows, the average number of observed little trees per one “big” tree is around
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Tectogrammatical treesAnalytical trees

Avg. nodes per sentence 11.4 13.0
Avg. rules per node 3.9 3.9
Avg. rules per sentence 44.7 50.9
Total sentences 10,000 10,000
Total nodes 114,174 129,771
Total rules 446,696 509,084

Table 5.1: Non-synchronous rules statistics on Prague Dependency Treebank

50. The number of combinations of both sides grows with the square of the sen-
tence length. This number has to be multiplied by possible alignments of frontier
nodes.2 This leads to tens of millions rules observed on a corpus of10, 000 sen-
tence pairs.3 If we represent one rule using100 bytes on average, we see that a
model with 10 million rules would use 1 GB of memory.

In the following, we will try to find experimentally, what parts of information
can be omitted from the rules. We are looking for such back-off models that can
fit in memory, generalize observed phenomena and still capture the syntactical
relations between tree components. We feel that finding a good back-off scheme is
crucial to make the tree-to-tree models work, and that it hasto be done iteratively,
in many experiments.

Intuition tells us to divide the problem into parts, and thento model these
parts separately. Roughly speaking, a synchronous rule consists of two (non-
synchronous) little trees and a mapping of their frontier nodes. Firstly we will
focus on single little trees and analyze the histograms of tree structures for various
back-off models. Later, we will discuss how to aggregate pairs of little trees and
how to model mappings between their frontier nodes in order to model the whole
synchronous rules.

5.2.1 Single Little Trees Back-off

We understand a single little tree as an object carrying three types of informa-
tion: the structure, the frontier states, and the lexical information. Each of these
tree types can be represented using a certain level of detail. In the following, we
will experiment with various representations of single little trees. Table 5.2 shows
counts of unique non-synchronous rules in tectogrammatical and analytical lay-

2It is hard to estimate the average numbers, but the experiments showed that there are300
million rule observations for10, 000 sentence pairs. Most of them can be filtered by pruning.

3For comparison, the translation table used in GIZA models trained on20, 000 sentence pairs
has around100, 000 entry-translation pairs.
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ers of PDT. Figure 5.3 shows the histogram of single little trees occurring in the
analytical part of the PDT.

Let us consider these levels of details:

• The structure

1. The structure of the little tree can be fully represented.Since the little
trees are projective, a linearized form using bracketing can represent
them.

2. In the next step, the brackets can be removed from the representation
and the little tree becomes ann-gram of nodes in the original word
order. However, it can be shown that if the number of internalnodes
is already limited to2, and if the little trees are projective, this repre-
sentation is equivalent to the full representation.

3. The next step is to ignore the word order and to represent the little tree
as a bag of nodes.

• The frontier state

1. The frontier states are fully represented by tectogrammatical or ana-
lytical functors.

2. In order to reduce the number of functors, it is useful to merge similar
functors into a smaller number of classes. On the other hand,when
fine-tuning the system, we may split some functors into more variants
in order to model some syntactical phenomena better, e.g. topropagate
number from the morphological tag into the frontier state inorder to
model agreement.

• The lexical information

1. The full lexical information can be represented either bythe word form
(or by the lemma and the morphological tag).

2. In order to reduce the number of variations, the word form can be re-
placed by its lemma, or by its morphological tag. It would be also pos-
sible to use syntactic-semantic classes of words [Brown et al., 1992]
instead of word forms.

3. Further on, the number of recognized positions in the morphological
tag can be reduced to the most basic ones, such as part of speech.

4. Finally, the lexical information can be ignored at all – all words are
mapped to one class. For tectogrammatical little trees, we should keep
a special class for generated nodes.
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We look for a back-off model that uses some of the previously mentioned
approximations. Let us try the following combinations:

• The representation of theFULL MODEL contains full information about
the rule: the tree structure, the lemma for each internal node, and the func-
tors for each frontier node.

FULL MODEL

ocitnout

Pred

Sb
se

Adv AuxP

The rule can be also represented in a linearized form4 :
Pred → Sb seAdv ocitnout AuxP .

We can see that the number of full little trees is in linear correlation to the
number of sentences.

• The first and natural proposal is to ignore the lexical information of the little
trees, and to work only with the structure and functions. Therepresentation
of w/o LEXICAL model contains the tree structure, the functors for each
frontier node, but the lemmas for internal nodes are stripped off.

Pred

Sb Adv AuxP

The rule can be linearized, the lexical nodes are replaced byplaceholders:4

Pred → Sb Adv AuxP

• Thew/o LEXICAL A back-off model ignores the structure and lexical in-
formation of internal nodes:
Pred → Sb Adv AuxP

There are no placeholders for internal nodes.

• The modelMORPHOLOGY is a half-way between keeping and ignoring
the lexical information of the internal nodes.

4Due to the limitation restricting the number of internal nodes to2, the linearization does not
loose any structural information.
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V

Pred

Sb
P

Adv AuxP

• Another proposal is symmetric to the previous ones: in the representation
of thew/o FUNCTIONS model, we store the tree structure and lemmas for
internal nodes, and omit the functors of frontier nodes.

ocitnout

Pred

se

The rule can be linearized, the frontier nodes are represented by placehold-
ers4 :
Pred → se ocitnout

• The w/o FUNCTIONS A back-off model ignores the structure and func-
tional markup of the rule, and represents a little tree only by its lexical
information present in its internal nodes, i.e. byn-grams. There are no
placeholders for frontier nodes:
Pred → se ocitnout

• The representation of the back-off modelSTRUCTURE combines the pre-
vious two approaches: it contains only the tree structure, lemmas and func-
tors are omitted.

Pred

When analyzing the Table 5.2, we may see that representations containing the
lexical information, i.e. models FULL MODEL, W/O FUNCTIONS, and W/O
FUNCTIONS A, grow in the number of unique rules almost linearly with the size
of the training data. It means that within the range of the training data in thousands
of sentence-pairs the OOV problem cannot be significantly improved by adding
more data. The curves of the back-off models, which do not contain the full lexical
information give us certain hope (though a little one) that the growth would slow
down with more data. At least, the absolute numbers of uniquerules are lower, as
the Table 5.2 shows.
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#sentences 1,000 5,000 10,000 15,000 20,000 30,000
AR TR AR TR AR TR AR TR AR TR AR TR

FULL MODEL 12,717 12,018 54,099 51,163 109,326 103,937 164,158 157,369 213,628 208,233 308,656 304,718
W/O LEXICAL 4,957 5,891 16,461 20,515 29,066 37,359 40,714 53,633 50,009 68,704 66,428 94,674
W/O LEXICAL A 3,553 4,440 11,131 14,591 19,270 26,388 26,686 37,092 32,433 46,627 42,551 63,443
MORPHOLOGY 7,884 7,007 28,742 25,079 52,800 45,777 75,807 66,009 94,951 84,929 129,819 117,631
W/O FUNCTIONS 12,087 11,465 50,588 47,624 102,099 96,452 152,480 144,921 197,448 190,258 283,149 275,246
W/O FUNCTIONS A 10,970 10,366 43,298 40,632 85,910 81,329 126,729 120,592 161,822 156,134 228,491 222,679
STRUCTURE 1,894 2,117 3,860 4,319 5,432 5,897 6,415 7,062 7,024 7,941 7,973 9,051
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5.2.2 Modeling Synchronous Rules

In order to model synchronous rules describing the transformations between Czech
tectogrammatical and analytical trees, we have to aggregate a pair of single little
trees and to definemappingbetween their frontier nodes. The mapping usually
strongly depends on the content of both little trees, since it defines the pair of
frontier nodes at which we substitute by a corresponding subtrees. For example,
we can see that the probability of whether an analytical frontier nodeSb is aligned
either with a tectogrammaticalACT or PAT depends on whether the voice of the
governing node is active or passive.

Also the possible representations of the mapping is applicable only for such a
back-off models that represent frontier nodes, and their ordering.

We can consider an exact representation that can be obtainedif we number
the frontier nodes of the left little tree from left to right from 1 to m, and the
frontier nodes of the right little tree from1 to n. For numbersx andy, where
1 ≤ x ≤ m and1 ≤ y ≤ n, the symbol (x–0) means deletion, (0–y) means
insertion, and (x–y) means synchronous substitution at frontier nodesx andy.
This representation is applicable to back-off modelsFULL MODEL , w/o LEXI-
CAL , w/o FUNCTIONS, STRUCTURE, w/o FUNCTIONS B, w/o LEXICAL
A, andw/o LEXICAL B .

If we rewrite the probability of a synchronous rule as:

p(t | q) = p(t1, t2 | q)p(m | t1, t2, q) (5.1)

wherem can be any mapping of frontier nodest1 andt2, we can experiment with
various approximations and ignore some parts of information present int1, t2, and
q. For example, we can ignore the root stateq and the ordering of frontier nodes,
and model the probability of mapping asp(ACT − Sb) · p(TWHEN − Adv) ·
p(AuxP − LOC).

5.2.3 Using a Translation Dictionary

TheSTSG as defined in Chapter 4 does not contain any parameters related to the
size of the little trees nor the number of derivation steps, nor any penalizations
of insertions and deletions. A practical implementation ofa training algorithm
that has to deal with data sparseness, prune the rules with low probabilities, and
use back-off models ignoring most of the lexical information, easily runs into
difficulties. To overcome this drawback, we had to add a heuristic scoring function
to the probabilistic model. Let us have a closer look at the problem:

• As the first, there is a problem resulting from the fact that the models taking
into account lexical information cannot be used for their memory require-
ments and data sparseness. This would cause problems duringthe decoding,
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since the scoring of hypotheses would not reflect lexical criteria. Intuitively,
some additional rescoring based on translation dictionaryseems necessary
to bring back the lexical criteria to the model.

• As the second, it is obvious that a rule consisting of smallerlittle trees has
a higher chance to occur more frequently than a larger rule. This is also the
case of rules with frontier nodes aligned tonull. A practical implementa-
tion of the training algorithm tends to prefer small rules torules containing
larger little trees. It also prefers rules with insertions and deletions to rules
with mutually aligned frontier nodes. On the other hand, themotivation for
STSG was to capture syntactic phenomena, it means to have larger rules on
both sides with aligned frontier nodes. The lexical scoringfunction should
favor larger little trees and suppress deletions.

We have experimented with two variants of scoring function,both of them
were based on a translation dictionary:

1. The scoring function is computed as follows: The lexical information5 from
internal nodesV i

t1
andV i

t2
is respectively collected into “French”f and “En-

glish” e sentences, and they are rescored by

score =
l

∑

a1=0

· · ·
l

∑

am=0

pl,m

m
∏

j=1

t(fj | eaj
). (5.2)

Since the number of internal nodes is restricted to≤ 2, the Equation 5.2 is a
simplified version of IBM model 1 from Equation 1.4. The parameterpl,m

gives us the way to introduce compensations for various numbers of internal
nodes on both sides.

2. The second version is simpler. We sum the probabilities ofall entry-translation
pairs

score =
∑

i=0,...,l

∑

j=0,...,m

t(fj|ei) (5.3)

This version does not have any parameter for balancing different rule sizes
as in the previous case. The sum of probabilities already favorises larger
rules.

5Here we mean the full lexical information, not the back-off representation.
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5.3 Pruning the Rules

It is obvious, that most of the observed rules do not have any linguistic sense, and
that we are interested only in a little fraction of them.

For the reasons of efficiency and memory limitations, the large pruning of the
huge space of possible rules is necessary, but still we must be able to consider
rules, which are capable of doing the structural transformation.

The current implementation is restricted to trees with nodes having max. 6
child nodes, and we deal with rules consisting of a pair of little trees with has 0–2
internal nodes each.

5.3.1 Using PDT Links

We may use the fact that the tectogrammatical and the analytical nodes are in the
PDT linked together. We can design a heuristic pruning method based on the links
between the nodes, so that we do not have to evaluate every combination of little
trees on both sides.

Here is a list of rules we have experimented with:

• Discard rules, where an internal node of one little tree is PDT-aligned with
a node outside of the other little tree.

• Discard rules, where an internal node is PDT-aligned with a frontier node.
This rule should not be applied neither to hidden nor generated nodes.

• If there is a PDT-alignment between two frontier nodes of therule, then
discard all rules that do not align these two nodes.

• Discard rules that “do not make any progress”, such as rules consisting of
one frontier node on both sides.6

5.3.2 Threshold for Expected Counts

Another possible pruning criterion islow ∆ – a simple threshold for the increment
of the expected count. When the Algorithm 4.8 computes the expected counts of
synchronous rules, the new rule is added into the model (line8 of the algorithm)
only if its increment of the expected count is higher thanlow ∆.

6This a reasonable restriction of the grammar similar to excluding CFG rules of typeA → A.
Since we do not allow renaming the frontier state, we do not have problem with rulesA → B that
could bring in cycles.
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5.3.3 Lazy Pruning

When the size (number of rules) of the whole model exceeds thethresholdmax model size ,
the global pruning can be triggered in order to reduce the model size to some re-
quired limit. The pruning throws away the least probable rules.

5.3.4 Pruning by Non-synchronous Rules

It is possible to count all non-synchronous little trees in the training data (It was
possible to keep all of them in memory), and to impose anonsynch threshold
for the frequency of the non-synchronous little trees. Thenthe training algorithm
evaluates only synchronous rules that consist of non-synchronous trees with fre-
quency higher than the threshold.

5.4 Computational Aspects

Memory and speed are the crucial limitations. The success ofthe statistical model
depends on the number of rules that fit into memory and on the time spent for
accessing the rules. Here we describe some optimizations wehave implemented.

5.4.1 Representation of the Synchronous Rules

It is necessary to use a memory-efficient representation of rules. The synchronous
rules are stored in a serialized form similar to examples in 5.2. Each back-off rep-
resentation of the same rule has different serialization. The serializations are keys
for accessing the probabilityp(t | q). The model is stored in a form of TreeMap
structure (TRIE), which allows for efficient memory usage and fast insertions.

5.4.2 Synchronous Rule Iterators

When iterating the rules observed in the sentence pair, we use a representation of
rules, which is optimized for speed. There are two functionalities that have the
strongest influence on performance:

1. findNextRule() – a method for finding the next synchronous rule. The
method iterates the tree-pair in both prefix or postfix ordering, traversing
through all possible combinations of little trees and alignments of their fron-
tier nodes.

2. getSerialization() – a method for serializing the current synchronous
rule (both little trees and alignment of frontier nodes).
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When profiling and optimizing the computation, we found out that most of the
processor’s time is spent on string operations due to serializations of synchronous
rules. Since the right hand side of the synchronous rule iterates through the whole
variety of non-synchronous little trees all over again for each possible left hand
side (as the inner of the two nested loops), we have decided tocache the serial-
izations of the little trees for each sentence pair. This technique speeded up the
computation 5 times.

5.5 Training

The training of the tree-to-tree transducer model is an iterative procedure. There
are two models used in each iteration: Thescoring modelis used for computing
inside and outside probabilities, and expected counts, andthenew modelis used
for storing and incrementing the expected counts. After thewhole traversal of
the training portion of the data, the expected counts are used to re-estimate the
probabilities.

One iteration of EM algorithm visits all sentence pairs fromthe training cor-
pus. Upon entering each sentence pair, each tree is labeled by indexes in postfix
order. Then thechart is created to store the data needed by algorithms 4.6, 4.7,
and 4.8 – inside, outside probabilities, optionally also the Viterbi probability and
the Viterbi rule. The chart is a2-dimensional array, the data for a given pair of
nodes is stored on position defined by the postfix indexes of both nodes.7 The
probabilities are stored as logarithms.

5.6 Transformations between the Tectogrammatical and
Analytical Representations in PDT

The transformations between the two layers of structural annotation of the Prague
Dependency Treebank seem to be one of the easier tasks for theSTSG: the trees
are annotated manually on both analytical and tectogrammatical levels, so the
data are as clean as possible. Also the annotation process, where the analytical
trees are sequentially modified into the tectogrammatical ones, gives us the reason
to believe that the structures are more similar than if they were created by two
independent annotation processes, and that they are even more similar than if they
originated in two sources, such as in translation task. Moreover, the nodes of the
tectogrammatical trees contain links to the analytical nodes they come from, and

7If we allow “renaming” frontier states, then the chart becomes a3 dimensional array – one
additional dimension for the frontier/root state.
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this information can be also used for pruning the rules, and for initial estimation
of rule probabilities.

The probabilistic translation dictionaryt(f |e) maps tectogrammatical lemmas
to analytical ones and was created from the PDT as relative counts of all pairs of
tectogrammatical and analytical nodes.

The resulting tree-to-tree alignments presented in Appendix A.1 were obtained
by the following sequence of steps:

1. Czech tectogrammatical-to-analytical “translation” dictionary was created
by traversing the whole PDT and using links between tectogrammatical and
analytical nodes.

2. A set of non-synchronous rules occurring more than once inthe training
data was collected for the purposes of pruning.

3. An initial iteration was run with scoring model with uniform probabilities.
These probabilities were rescored by the heuristics 5.3 based on the “trans-
lation” dictionary.

4. A simple smoothing of back-off models was applied. The back-off models
were tested on100 sentence pairs from held-out data for a set ofΛ parame-
ters, and the winningΛ was used in the second iteration.

5. The second iteration was run with the model trained in the initial iteration.
Viterbi alignments were traced during the computation of inside probabili-
ties.

The following setup has been used:

• The size of the training data was20, 000 sentence pairs. After applying the
restrictions for the maximum number of children per node, the training data
shrunk to13, 910 sentence pairs.

• The following back-off schemes were used:LINEARIZED , MORPHOL-
OGY, W/O LEXICAL , andSTRUCTURE.

• The MORPHOLOGY back-off model used a reduction of the full posi-
tional morphological tag to three positions. The reductionwent as follows:

– The tag was initially set to--- .

– The first position of the tag was always copied from the original tag.
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– If the word was noun or adjective, the case and number were respec-
tively copied to positions 2 and 3. If the word was verb, the person
and number were copied.

• The pruning by the PDT links was not applied.

• Due to the pruning by non-synchronous rules the model could fit into mem-
ory for the whole training data, thus the lazy pruning was notapplied.

One iteration took approximately 12 hours.

5.7 Transfer between Czech Tectogrammatical and English
Analytical Representations in PCEDT

Training alignments between the Czech tectogrammatical and English analytical
representations is a great challenge, since theSTSG has to model two processes:
the transfer between the two languages and the transition from deeper level of
representation to a shallower one.

The experiments were carried out on the PCEDT corpus. Resulting tree-to-tree
alignments were obtained by almost the same method as described in Section 5.6,
the differences were the following:

• The training data were the first20, 000 sentence pairs from the training sec-
tion of the PCEDT. After applying the restrictions for the maximum number
of children per node, the training data shrunk to13, 002 sentence pairs.

• A parallel corpus of plain text was extracted from the PCEDT:the Czech
part contained tectogrammatical lemmas prepended with thefirst position
of the morphological tag, i.e. the POS; the English part contained analytical
lemmas prepended by the first position of the analytical morphological tag.

• A probabilistic dictionaryt(f |e) was trained on these data using GIZA++
[Och and Ney, 2000]. Figure 5.4 contains a sample from this dictionary.

• The following back-off schemes were used:LINEARIZED , MORPHOL-
OGY, W/O LEXICAL , andSTRUCTURE.
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Czech entry English translationt(e | c)

V–chodit N–Tigers 0.0487005
V–chodit N–nomination 0.0807828
V–chodit R–forth 0.121751
V–chodit V–refer 0.207133
V–chodit V–shuttle 0.243414
V–chodit V–walk 0.298218
V–chodit se N–stereo 1
V–chovatse V–act 0.310038
V–chovatse V–behave 0.299106
V–chovatse V–live 0.140955
V–chovatse V–perform 0.113101
V–chovatse V–treat 0.136801
V–chrlit V–spew 1

Figure 5.4: An example of the Czech – English probabilistic dictionary.

5.8 Transfer between Czech and English Analytical
Representations in PCEDT

Experiments training alignments between the Czech and English analytical repre-
sentations were carried out to compare the behavior of theSTSG implementation
on a different type of data. On one hand, the transfer is done on the same levels
of representation, and we may expect that there is a certain group of constructions
common to both languages, which uses the same tree structure, on the other hand,
the layers are relatively shallow, so there will be also the other group of construc-
tions using very different tree structures. It will be interesting to compare the
resulting alignments with those extracted in experiment described in Section 5.7.

• The experiments were carried out on the same portion of PCEDTas in Sec-
tion 5.7. The training set of20, 000 sentence pairs shrunk to14, 530 after
applying the restrictions for the maximum number of children per node.

• A parallel corpus of plain text for GIZA++ extraction of the translation dic-
tionary consisted of analytical lemmas. The Czech lemmas were prepended
with three positions copied by the same way as described in Section 5.6, the
English lemmas were prepended only with the first position ofthe morpho-
logical tag.

• It is interesting that the computation process did not fit in memory when
the same back-off and pruning schemes as in Sections 5.6 and 5.7 were
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Czech
tecto-
gramma-
tical trees

Czech ana-
lytical trees

English
analytical
trees

Avg. nodes per sentence14.9 19.1 19.9
Avg. rules per node 3.9 3.9 3.9
Avg. rules per sentence 58.5 75.5128 78.79
Total sentences 10,000 10,000 10,000
Total nodes 148,835 191,282 199,475
Total rules 585,340 755,128 787,900

Table 5.2: Non-synchronous rules statistics on Prague Czech-English Dependency
Treebank

used. The process allocated about three times as much memoryas in the
tectogrammatical-to-analytical experiment. The explanation is that train-
ing on analytical tree pairs generates about tree times morerule observa-
tions than observing tectogrammatical-to-analytical pairs, e.g. the same (the
first) sentence pair generated536, 983 rules for the analytical trees, but only
214, 451 rules for the tectogrammatical-to-analytical pair.

To explain this disproportion, it may be useful to compare Tables 5.1 and 5.2.
They show that the data in PDT are different from those in PCEDT. The
PCEDT sentences are longer on average, and also the ratio of tectogramma-
tical nodes to analytical ones is78% in PCEDT, while in PDT it is88%. The
number of non-synchronous tree pairs grows with the square of sentence
lengths, and yet it must be multiplied by the possible alignments to get the
number of synchronous rules. That is why the model grows so rapidly.

Thus only theW/O LEXICAL , andSTRUCTURE models could be used.

5.9 Evaluation of Results

The results of the alignment method were evaluated manually. The resulting
Viterbi alignments for the first20 tree pairs were examined. The training algo-
rithm automatically records the Viterbi alignment in the form of the LATEXsources
that can be compiled and visually evaluated in GSview. Examples of the Viterbi
alignments are in Appendix A.

One of the conclusions from the experiments we have carried out is that the
data is extremely sparse. We realized that the highest sum ofinside probabilities
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of the held-out data is forΛ, which multiplies the simplest modelSTRUCTURE
by 0.95, while the other models do not influence the score almost at all.

Another experience we have gained is about the absolute importance of the
lexical rescoring. If the lexical rescoring is turned off, the method does not work
at all, the system aligns trees usingm-0 and0-n rules.

We can also say that the limitation to≤ 2 internal nodes is not so severe, and
that most of the tree pairs can be correctly aligned within these restrictions.

5.9.1 Evaluation of Czech Tectogrammatical-to-Analytical Alignments

The task of finding alignments between tectogrammatical andanalytical repre-
sentations for the same Czech sentence works well, and almost all alignments are
correct. Nevertheless, there are some transformations that cannot be handled by
theSTSG, such as in Figure A.2: The nodes for wordtém̌ěr are misaligned, be-
cause there is no mechanism inSTSG that would model this transformation. Due
to the restricted number of internal nodes, the nodestém̌ěr andbýt cannot be in the
same synchronous rule. Nor any kind of “late binding” is possible. If we consider
a rule that has a frontier node on position of the tectogrammatical tém̌ěr, then it
must be aligned either with some frontier node of the analytical little tree, or with
null.

5.9.2 Evaluation of Czech-English Alignments

Figure A.3 contains a pair of the tectogrammatical tree for the Czech sentence
“Asociace uvedla,̌ze doḿaćı popt́avka v źařı́ stoupla o 8,8 %.”and an analytical
tree for the English sentence“The association said domestic demand grew 8.8%
in September.”. We can see that the Czech tree has7 nodes, while the English
one has10, three nodes were added:the, 8.8, andin. There is also one structural
change: the CzechLOCation zářı́ depends on theACTor, while the English
adverbial phrasein Septemberdepends on thePredicate. Figure A.4 presents the
Viterbi alignment. We can see that rules on lines 3, 4, and 6 handle insertions of
these extra nodes, while the rule on line 2 handles the changeof the tree structure.
Table A.2 contains the computational chart. The first two columns identify the
node pair in which the synchronous rule is rooted. The following three columns
contain in sequence the inside probability, the outside probability, and the Viterbi
probability. The last column is occupied by the Viterbi rule.

Although the results seem to be very promising, the space forimprovements is
still huge, e.g. Figure A.6 contains Viterbi alignment for sentence pair“Poptávka
trvale stouṕa za podpory prospotřebitelsḱe vládńı politiky, řekl mluv̌ćı asociace.”
and “Demand has been growing consistently under the encouragement of pro-
consumption government policies, an association spokesman said.”. The3rd syn-
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chronous rule rooted at nodes7 and 12 represents wrong alignment, since the
internal structurestoupatis wrongly mapped tobe grow, as well as the5th rule
insertsconsistently, and the7th rule mapstrvale to have. Better solution would
be either to maptrvale to consistently, and to inserthave. When inspecting the
reasons that caused this mismatch, we found that the entry-translation pairtrvale-
consistentlywas not found in the translation dictionary. Here is our interpretation
of what happened: The relation of leaf nodes was3 (nodes 1, 2, and 6) to5 (nodes
1, 2, 3, 4, 11). Since the Viterbi probabilities of synchronous substitution at (1 -
1) and at(6 - 11) gave a good score (see the chart in Table A.5) the Viterbi align-
ment had to solve4 nodes, which were lexically unmatched:trvale, consistently,
have, andbe. It “had to pay” deletion of one of the nodeshave, beor consistently
anyway, and to align the remaining2 nodes either as internal – within the same
rule – or as one substitution by1-1 synchronous rule. Since there were no other
clues, it wrongly selectedconsistentlyfor deletion.

If we had a better lexical rescoring that would prefer the deletion of be and
have(e.g. using some fertility table), then the problem could have been fixed.
Also a better modeling of the mapping of frontier nodes that would for example
prefer the pairTHL-Adv would help.

For comparison, the alignment between the analytical treesfor the same sen-
tence pair on Figure A.10 is correct.8 The reason is that the ratio of leaves is4 (1,
2, 7, 8) to5 (1, 2, 3, 4, 11), and that there are4 pairs of frontier nodes with good
Viterbi scores. Thus there is no need to delete nodebeby (0-1) rule, it can be done
automatically. The Viterbi alignment decided to aligntrvalewith consistentlybe-
cause of the back-off modelw/o LEXICAL , which contains rule (Adv → )(Adv
→ ).

Since the purpose of these experiments was to show that the model of syn-
chronous tree-to-tree transductions can be implemented, we consider this method
of evaluation appropriate. On the other hand, we are very much aware of the
importance of a quantitative evaluation and we discuss its possibilities in Sec-
tion 5.10.

5.10 Proposed Further Directions of Research

The idea ofSTSG is unexplored, these experiments have shown promising re-
sults, but they still have to be considered preliminary. Oneof the reasons is that
the implementation of theSTSG computational framework is very basic, and
that many other experiments still have to be carried out. Another reason is that
this approach was not yet applied to some practical problem.In this section we

8We made sure that there is no pairtrvale - consistentlyin the translation dictionary as in the
previous case of the TR - AR alignment.
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list both—possible ways that could improve this method, anda list of areas where
usingSTSG could help.

5.10.1 Preprocessing the Input

When inspecting the Viterbi alignments, we have realized that many of the wrong
alignments were caused by anerror in the translation dictionary. Most of these
errors come from the input that was not normalized enough, such as numbers,
symbols, or proper names. We believe that most of these errors can be fixed by an
improvedpreprocessing of the input, normalizationandcanonicalization.

Another problem is thepunctuation. As the first, punctuation increases the
number of child nodes, and most of the tree pairs were excluded from the training
data just because of the punctuation. Moreover, punctuation also increases the
data sparseness.9 Therefore some special handling of punctuation is unavoidable.

5.10.2 Quantitative Evaluation of Results

One of the drawbacks of the evaluation based on Viterbi alignments is that it is
very difficult to implement any quantitative evaluation method. Nevertheless, we
can see two ways to achieve this.

One possibility is to manually annotate the data (add links between nodes)
and to impose a heuristic scoring function that would evaluate the matching little
trees.10 The drawback of this approach is that it is hard to define the border be-
tween the good rules and bad rules. Imposing a scoring function without having
in mind could easily result in misleading interpretations of results.

Another way is to apply theSTSG approach on some existing problem and
the evaluation metrics for that problem. For example to implement a new MT
system, or improve some part of it, and to use BLEU score.

5.10.3 Improving the Back-off Scheme

The data is so sparse that even the most generalized back-offmodel STRUC-
TURE does not stop growing after30, 000 sentence pairs, as Figure 5.2 shows. It
is necessary to develop new methods approximating probabilities of unseen rules
based on similarity with known rules. These methods can be either statistical or
heuristic.

9For example, two clauses separated by dash form one rule, andthe same two clauses separated
by colon form a different rule

10Again, here we could reuse the links between tectogrammatical and analytical nodes in the
PDT.
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5.10.4 Filtering out Low-confidence Matches

Since the shape of little trees that we take into consideration is limited, it may
happen very often that the correct alignment does not exist because the structure
of both trees is so different. Table A.5 shows that wrong matches have consid-
erably lower Viterbi score. It would be useful (and hopefully not very difficult)
to implement a confidence scoring method based on Viterbi probabilities in the
chart. The confidence score could be used to detect that the aligning procedure
experiences problems on a given tree pair, or on a given subtree. These pairs of
trees or their subtrees could be excluded from the training.

The pairs of trees or subtrees where the alignment fails could be the hint for
extending the set of allowed shapes of little trees.

5.10.5 Integration of Manually Defined Rules

This approach also opens a space for combining manually defined rules with the
statistically extracted ones. These manually defined ruleswill have the same form
as the synchronous rules. It is possible either to store theminto the scoring model
and to use them during the training process, or to use them during the decoding.

Since the number of the manually defined rules will be is reasonable, it is not
necessary to apply the restrictions used for the statistically extracted rules. The
manual rules can have more internal nodes and thus they can handle more complex
structural changes.

5.10.6 Training on Plain Text

The experiments described above use PCEDT as training data.The Czech trees
are created fully automatically from the plain text, but theEnglish part is converted
from the structurally annotated Penn Treebank.

The next step would be to use a statistical parser of English,create the En-
glish analytical trees automatically, and to train the alignment on plain text. This
would open a perspective for training on more data, such as onthe Czech-English
Reader’s Digest Corpus and Prague Tribune.

5.10.7 Decoding

The main motivation of the research inSTSGs was to build an MT system. The
Algorithm 4.9 describes the decoder, which is the heart of such a system. Line 4
of the decoding algorithm is crucial. It supposes a mechanism which proposes
hypothesesof synchronous rules.

Let’s think of the functionality of such a proposer. It has tooffer all possible
rules such that the left little tree ist1. The easiest part of the task is to offer hy-
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potheses that have already been seen. They can be derived from the probabilistic
model model. But this does not suffice at all, since the data issparse and the good
rule will be most probably unknown. Moreover, as we know fromthe experi-
ments with alignment, it is not realistic to keep rules with full lexical information
in the model because of the memory limitations. Thus we have to come up with a
mechanism that overgenerates the list of possible rules based on some heuristics.

5.10.8 Aligning Templates

The technique ofaligning templatesmodel was introduced by [Och, 2002], it is
also referenced asphrase-basedmodel, e.g. in [Koehn et al., 2003]. Apart from
the standard IBM models that allow1-n mappings only, the aligning templates
allow for m-n mappings. In another words, they try to find phrasal translations –
subsequences of possibly more than one word in both sentences. Most often used
approach starts with modeling the1-m translations in both directions. The result-
ing alignments are then combined, using various methods based on intersection
and union of both unidirectional mappings.

We see one of the possible advantages of using the tree-to-tree mappings in
improving the training phase of aligning templates.

The method of aligning templates is based on modeling transformations of
strings of words. The integration of tree-to-tree mappingswould require parsing
of both input streams, and we believe that the knowledge of the sentence structure
and its alignment would improve the quality of the extractedaligning templates.

5.11 Conclusion

The goal of the experiments described in this chapter was to show that it is possible
to implement and train statistical model ofSTSG. Three experiments with ex-
tracting alignment have been implemented: Czech tectogrammatical-to-analytical
alignment, Czech tectogrammatical to English analytical alignment, and Czech-
English analytical alignment. All of these experiments have shown promising
results, since most of the alignments are correct. On the other hand, the results
still have to be considered preliminary. A method of quantitative evaluation is
missing, but we have discussed the possible implementations of it. The space for
improvements is huge, several ways of further research weresuggested as well as
a candidates where the application of the new approach couldgain some improve-
ment.



98



Chapter 6

Conclusions

Let us briefly summarize the most important contributions ofthis work to the body
of research in the field of machine translation.

• We have implemented, and—to our knowledge—for the first timepublished
the mathematical details of a new method for learning non-isomorphic tree-
to-tree transformations based on probabilistic Synchronous Tree Substitu-
tion Grammars [Eisner, 2003,Hajič et al., 2002].

• We have applied this new method in three configurations: on Czech tecto-
grammatical-to-analytical tree pairs, Czech tectogrammatical to English an-
alytical tree pairs, and on Czech-English analytical tree pairs.

• We have presented tree-to-tree alignments resulting from all these three im-
plementations. Although the results are still preliminary, they can be con-
sidered very promising and there is a hope that they could improve some
existing methods, such as the approach of aligning templates [Och, 2002]
used for decoding.

• We propose several directions of further research in order to improve the
method, as well as towards the implementation of the decoder, which is
necessary for a full-scale machine translation system based on the presented
new method.

• In order to make these experiments possible, it was necessary to build a
large parallel corpus of Czech and English trees. The authorhas made sig-
nificant contribution to thePrague Czech-English Dependency Treebank,
especially on conversions of Penn Treebank format into analytical represen-
tation, and the integration of existing techniques of the automatic analysis
of Czech for building the Czech part of the PCEDT.

• A baseline rule-based system for Czech-English machine translation. The
system uses a statistical parser and rule-based conversions to obtain the
Czech tectogrammatical representation of the sentence, then applies a set
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of rules performing the transfer and the generation into thesurface English
sentence.

• Almost all partial results except Chapters 4 and 5 have been published at
well recognized conferences abroad. For example, the work related to the
PCEDT corpus was published as [Čmejrek et al., 2004a,̌Cmejrek et al.,
2005,Cuřı́n et al., 2004a], the and the rule-based MT system has been pub-
lished as [̌Cmejrek et al., 2003a].

We hope that the ideas sketched in this work will be further developed and
bring some improvement in the field of machine translation.



Appendix A

Examples of Tree-to-Tree Alignments

A.1 Tree-to-Tree Alignment between Tectogrammatical and
Analytical Representations of Czech

Results of the automatic alignment between Czech tectogrammatical and analyti-
cal trees are presented here. For each sentence pair the presentation contains the
original tree pair, the Viterbi alignment, and the computational chart.
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RHEM

1
–Pdesı́tka

DIR1

11

–Xtři
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Pred

16

R–z-1
AuxP

12

N2Pdesı́tka
Adv

11

C2Ptři‘3
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Figure A.1: A pair of tectogrammatical and analytical treesfor Czech sentence“Z
tém̌ěr tř ı́ deśıtek smluv upravujı́ćıch vztahy mezi ob̌ema subjekty celnı́ho soust́at́ı
jsou okam̌zitě vypov̌editelńe všechny”.
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Figure A.2: Viterbi alignment of little trees for a pair of tectogrammatical and ana-
lytical trees for the Czech sentence“Z t ém̌ěr tř ı́ deśıtek smluv upravujı́ćıch vztahy
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nodes inside outside Viterbi rule
2 0 -1.7665 -18.421 -4.539 (RSTR→(I–Xtři ))(NullSyntFunc→(FNullSyntFunc ))()
2 1 -4.539 -11.897 -4.539 (RSTR→(I–Xtři ))(AuxZ→(ID–téměř ))()
2 2 -3.265 -9.750 -3.2659 (RSTR→(I–Xt ři ))(Atr →((ID–t éměř )IC2Pt ři‘3 ))()
2 3 -4.539 -44.255 -4.539 (RSTR→(I–Xtři ))(Atr→(IC7Poba‘2 ))()
2 4 -4.539 -50.82 -4.539 (RSTR→(I–Xtři ))(Atr→(IA2Scelnı́ ))()
2 5 -5.919 -47.032 -5.919 (RSTR→(I–Xtři ))(Atr→((IA2Scelnı́ )IN2Ssoustátı́ ))()
2 6 -15.638 -36.595 -16.737 (RSTR→(FRSTR ))(Atr→((IC7Poba‘2 )IN7Psubjekt (FAtr )))((1-1))
6 1 -9.212 -41.872 -9.212 (APP→((I–Scelnı́ )I–Ssoustátı́ ))(AuxZ→(ID–téměř ))()
6 2 -10.80 -40.702 -10.811 (APP→((I–Scelnı́ )I–Ssoustátı́ ))(Atr→((ID–téměř )IC2Ptři‘3 ))()
6 3 -10.812 -19.528 -10.814 (APP→((I–Scelnı́ )I–Ssoustátı́ ))(Atr→(IC7Poba‘2 ))()
6 4 -2.2163 -15.904 -2.216 (APP→((I–Scelnı́ )I–Ssoustátı́ ))(Atr→(IA2Scelnı́ ))()
6 5 -0.9114 -12.388 -1.1750 (APP→((I–Scelnı́ )I–Ssoust́atı́ ))(Atr →((IA2Scelnı́ )IN2Ssoust́atı́ ))()
6 6 -9.81 -11.858 -11.811 (APP→((FRSTR )I–Ssoustátı́ ))(Atr→((FAtr )IN7Psubjekt ((FAtr )IN2Ssoustátı́ )))((0-1)(1-2))
6 7 -14.897 -11.87 -17.41 (APP→(FAPP ))(AuxP→(IR–mezi-1 ((FAtr )IN7Psubjekt (FAtr ))))((0-1)(1-2))
7 2 -13.76 -37.17 -15.263 (ACT→((I–Xoba )I–Psubjekt (FAPP )))(Atr→((FAuxZ )IC2Ptři‘3 ))((1-1))
7 3 -12.218 -16.518 -15.003 (ACT→((I–Xoba )I–Psubjekt (FAPP )))(Atr→(IC7Poba‘2 ))((1-0))
7 4 -8.257 -21.17 -8.266 (ACT→((I–Xoba )I–Psubjekt (FAPP )))(Atr→(FAtr ))((1-1))
7 5 -4.184 -15.824 -7.042 (ACT→((FRSTR )I–Psubjekt ((FRSTR )I–Ssoustátı́ )))(Atr→((FAtr )IN2Ssoustátı́ ))((2-1)(1-0))
7 6 -3.735 -9.334 -4.460 (ACT→((I–Xoba )I–Psubjekt (FAPP )))(Atr→((IC7Poba‘2 )IN7Psubjekt (FAtr )))((1-1))
7 7 -7.1518 -8.62 -7.734 (ACT→((FRSTR )I–Psubjekt (FAPP )))(AuxP→(IR–mezi-1 ((FAtr )IN7Psubjekt (FAtr ))))((2-2)(1-1))
7 8 -10.531 -8.059 -11.264 (ACT→(FACT ))(Obj→(IN4Pvztah (IR–mezi-1 (FAtr ))))((1-1))
8 4 -7.414 -32.505 -9.827 (PAT→(I–Pvztah (I—Rcp )(FACT )))(Atr→(FAtr ))((1-1))
8 5 -5.072 -23.8 -8.603 (PAT→(I–Pvztah (I—Rcp )(FACT )))(Atr→(FAtr ))((1-1))
8 6 -3.963 -15.234 -6.021 (PAT→(I–Pvztah (I—Rcp )(FACT )))(Atr→(FAtr ))((1-1))
8 7 -4.73 -10.49 -6.016 (PAT→(I–Pvztah (I—Rcp )(FACT )))(AuxP→(IR–mezi-1 (FAtr )))((1-1))
8 8 -4.476 -8.713 -5.800 (PAT→(I–Pvztah (I—Rcp )(FACT )))(Obj →(IN4Pvztah (IR–mezi-1 (FAtr ))))((1-1))
8 9 -7.918 -10.579 -9.078 (PAT→(I–Pvztah (I—Rcp )(FACT )))(Atr→(IA2Pupravujı́cı́ (IN4Pvztah (FAuxP ))))((1-1))
8 10 -11.91 -12.299 -12.825 (PAT→(I–Pvztah (I—Rcp )(FACT )))(Atr→(IN2Psmlouva (IA2Pupravujı́cı́ (FObj ))))((1-1))
9 4 -11.631 -34.58 -14.464 (RSTR→(I–Pupravujı́cı́ (I–Pvztah (FPAT )(FACT ))))(Atr→(FAtr ))((2-1)(1-0))
9 5 -7.591 -27.139 -13.240 (RSTR→(I–Pupravujı́cı́ (I–Pvztah (FPAT )(FACT ))))(Atr→(FAtr ))((2-1)(1-0))
9 6 -6.641 -17.350 -10.658 (RSTR→(I–Pupravujı́cı́ (I–Pvztah (FPAT )(FACT ))))(Atr→(FAtr ))((2-1)(1-0))
9 7 -6.966 -14.246 -10.556 (RSTR→(I–Pupravujı́cı́ (I–Pvztah (FPAT )(FACT ))))(AuxP→(IR–mezi-1 (FAtr )))((2-1)(1-0))
9 8 -5.316 -10.581 -8.850 (RSTR→(I–Pupravujı́cı́ (I–Pvztah (FPAT )(FACT ))))(Obj→(IN4Pvztah (IR–mezi-1 (FAtr ))))((2-1)(1-0))
9 9 -5.361 -9.23 -7.411 (RSTR→(I–Pupravujı́cı́ (FPAT )))(Atr →(IA2Pupravujı́cı́ (FObj )))((1-1))
9 10 -6.079 -8.10 -7.41 (RSTR→(I–Pupravujı́cı́ (FPAT )))(Atr→(IN2Psmlouva (IA2Pupravujı́cı́ (FObj ))))((1-1))
9 11 -23.0 -7.819 -24.750 (RSTR→(I–Pupravujı́cı́ (I–Pvztah (FPAT )(FACT ))))(Adv→((FAtr )IN2Pdesı́tka (IN2Psmlouva (FAtr ))))((2-2)(1-1))
9 12 -19.573 -8.280 -23.107 (RSTR→(FRSTR ))(AuxP→(IR–z-1 ((FAtr )IN2Pdesı́tka (FAtr ))))((0-1)(1-2))
9 13 -14.613 -54.17 -23.062 (RSTR→(I–Pupravujı́cı́ (I–Pvztah (FPAT )(FACT ))))(Adv→(FAdv ))((2-1)(1-0))
9 14 -14.614 -52.70 -23.062 (RSTR→(I–Pupravujı́cı́ (I–Pvztah (FPAT )(FACT ))))(Pnom→(FPnom ))((2-1)(1-0))
9 15 -14.602 -53.95 -22.878 (RSTR→(I–Pupravujı́cı́ (I–Pvztah (FPAT )(FACT ))))(Sb→(FSb ))((2-0)(1-1))
11 7 -10.550 -34.29 -14.359 (DIR1→((I–Xtři )I–Pdesı́tka (FMAT )))(AuxP→(IR–mezi-1 (FAtr )))((1-1))
11 8 -9.706 -26.785 -14.220 (DIR1→((I–Xtři )I–Pdesı́tka (FMAT )))(Obj→(FObj ))((1-1))
11 9 -8.912 -23.523 -11.696 (DIR1→((I–Xtři )I–Pdesı́tka (FMAT )))(Atr→(FAtr ))((1-1))
11 10 -8.034 -15.968 -11.389 (DIR1→((I–Xtři )I–Pdesı́tka (FMAT )))(Atr→(FAtr ))((1-1))
11 11 -9.342 -4.637 -12.309 (DIR1→((FRSTR )I–Pdesı́tka (I–Psmlouva (FRSTR ))))(Adv→((FAtr )IN2Pdesı́tka (IN2Psmlouva (FAtr ))))((2-2)(1-1))
11 12 -10.419 -2.98 -12.516 (DIR1→((FRSTR )I–Pdesı́tka (FMAT )))(AuxP→(IR–z-1 ((FAtr )IN2Pdesı́tka (FAtr ))))((2-2)(1-1))
11 13 -14.7 -48.86 -26.790 (DIR1→((I–Xtři )I–Pdesı́tka (FMAT )))(Adv→(FAdv ))((1-1))
11 14 -14.462 -47.6 -25.58 (DIR1→((I–Xtři )I–Pdesı́tka (FMAT )))(Pnom→(FPnom ))((1-1))
12 8 -23.918 -40.609 -28.43 (TWHEN→(FTWHEN ))(Obj→(IN4Pvztah (IR–mezi-1 (FAtr ))))((1-1))
12 9 -30.912 -39.9 -37.86 (TWHEN→(I–Xokamžitě ))(Atr→(IA2Pupravujı́cı́ (IN4Pvztah (FAuxP ))))((0-1))
12 10 -33.12 -29.79 -39.25 (TWHEN→(I–Xokamžitě ))(Atr→(IN2Psmlouva (IA2Pupravujı́cı́ (FObj ))))((0-1))
12 11 -48.19 -21.68 -59.50 (TWHEN→(I–Xokamžitě ))(Adv→((FAtr )IN2Pdesı́tka (IN2Psmlouva (FAtr ))))((0-2)(0-1))
12 12 -44.89 -16.804 -54.947 (TWHEN→(FTWHEN ))(AuxP→(IR–z-1 ((FAtr )IN2Pdesı́tka (FAtr ))))((0-1)(1-2))
12 13 -0.001 -13.059 -0.001 (TWHEN→(I–Xokamžit ě ))(Adv→(ID–okamžitě ))()
12 14 -10.815 -15.717 -10.816 (TWHEN→(I–Xokamžitě ))(Pnom→(IA1Svypověditelný ))()
12 15 -10.814 -17.01 -10.816 (TWHEN→(I–Xokamžitě ))(Sb→(IP–všechen ))()
12 16 -57.81 -24.61 -71.23 (TWHEN→(FTWHEN ))(Pred→((FAuxP )IV3Pbýt (FAdv )(IA1Svypověditelný )(FSb )))((0-3)(0-1)(1-2))
13 9 -30.707 -38.37 -37.86 (PAT→(I–Pvypověditelný ))(Atr→(IA2Pupravujı́cı́ (IN4Pvztah (FAuxP ))))((0-1))
13 10 -32.91 -28.25 -39.25 (PAT→(I–Pvypověditelný ))(Atr→(IN2Psmlouva (IA2Pupravujı́cı́ (FObj ))))((0-1))
13 11 -47.85 -20.14 -59.50 (PAT→(I–Pvypověditelný ))(Adv→((FAtr )IN2Pdesı́tka (IN2Psmlouva (FAtr ))))((0-2)(0-1))
13 12 -44.5 -15.262 -54.947 (PAT→(FPAT ))(AuxP→(IR–z-1 ((FAtr )IN2Pdesı́tka (FAtr ))))((0-1)(1-2))
13 13 -10.815 -15.717 -10.816 (PAT→(I–Pvypověditelný ))(Adv→(ID–okamžitě ))()
13 14 -1.6103 -11.863 -1.6103 (PAT→(I–Pvypověditelný ))(Pnom→(IA1Svypověditelný ))()
13 15 -10.670 -15.408 -10.673 (PAT→(I–Pvypověditelný ))(Sb→(IP–všechen ))()
13 16 -58.033 -24.02 -72.84 (PAT→(FPAT ))(Pred→((FAuxP )IV3Pbýt (ID–okamžitě )(FPnom )(FSb )))((0-3)(0-1)(1-2))
14 11 -47.52 -20.68 -59.50 (ACT→(I–Pvšechen ))(Adv→((FAtr )IN2Pdesı́tka (IN2Psmlouva (FAtr ))))((0-2)(0-1))
14 12 -44.222 -16.49 -54.947 (ACT→(FACT ))(AuxP→(IR–z-1 ((FAtr )IN2Pdesı́tka (FAtr ))))((0-1)(1-2))
14 13 -10.599 -17.018 -10.600 (ACT→(I–Pvšechen ))(Adv→(ID–okamžitě ))()
14 14 -10.815 -15.40 -10.816 (ACT→(I–Pvšechen ))(Pnom→(IA1Svypověditelný ))()
14 15 -0.3096 -12.781 -0.30968 (ACT→(I–Pvšechen ))(Sb→(IP–všechen ))()
14 16 -57.30 -24.433 -71.7 (ACT→(FACT ))(Pred→((FAuxP )IV3Pbýt (FAdv )(IA1Svypověditelný )(FSb )))((0-2)(0-1)(1-3))
15 0 -28.132 -62.59 -54.34 (PRED→((FRHEM )(FDIR1 )I–Xbýt (FTWHEN )(I–Pvypověditelný )(FACT )))(NullSyntFunc→(FNullSyntFunc ))((4-0)(3-0)(2-0)(1-0))
15 1 -29.658 -65.66 -50.66 (PRED→((FRHEM )(FDIR1 )I–Xbýt (FTWHEN )(I–Pvypověditelný )(FACT )))(AuxZ→(FAuxZ ))((4-0)(3-0)(2-0)(1-1))
15 13 -24.611 -56.44 -45.13 (PRED→((FRHEM )(FDIR1 )I–Xbýt (FTWHEN )(I–Pvypověditelný )(FACT )))(Adv→(FAdv ))((4-0)(3-1)(2-0)(1-0))
15 14 -25.57 -56.03 -46.51 (PRED→((FRHEM )(FDIR1 )I–Xbýt (FTWHEN )(FPAT )(I–Pvšechen )))(Pnom→(FPnom ))((4-1)(3-0)(2-0)(1-0))
15 15 -24.736 -56.61 -45.21 (PRED→((FRHEM )(FDIR1 )I–Xbýt (FTWHEN )(I–Pvypověditelný )(FACT )))(Sb→(FSb ))((4-1)(3-0)(2-0)(1-0))
15 16 -12.97 0.0 -17.20 (PRED→((I–Xt éměř )(FDIR1 )I–Xbýt (FTWHEN )(FPAT )(FACT )))(Pred →((IR–z-1 (FAdv ))IV3Pbýt (FAdv )(FPnom )(FSb )))((4-3)(3-2)(2-

1)(1-4))

Table A.1: Computational chart with Viterbi probabilitiesfor a pair of tecto-
grammatical and analytical trees for the Czech sentence“Z t ém̌ěr tř ı́ deśıtek sm-
luv upravuj́ıćıch vztahy mezi ob̌ema subjekty celnı́ho soust́at́ı jsou okam̌zitě vy-
pov̌editelńe všechny”.



104

A.2 Tree-to-Tree Alignment between Czech Tectogrammatical
and English Analytical Representations

Results of the automatic alignment between Czech tectogrammatical and English
analytical trees are presented here. The tree structures are results of an automatic
annotation procedures, thus may contain errors. For each sentence pair the presen-
tation contains the original tree pair, the Viterbi alignment and the computational
chart.
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Figure A.3: A tree pair for Czech sentence“Asociace uvedla,̌ze doḿaćı popt́avka
v źařı́ stoupla o 8,8 %.” and English sentence“The association said domestic
demand grew 8.8% in September.”
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nodes inside outside Viterbi rule
0 1 -7.482 -5.011 -9.428 (NullSyntFunc→(FNullSyntFunc ))(Atr→(ID–the ))()
0 2 -7.557 -5.399 -9.504 (NullSyntFunc→(FNullSyntFunc ))(Sb→((ID–the )IN–association ))()
0 3 -7.467 -14.225 -9.413 (NullSyntFunc→(FNullSyntFunc ))(Atr→(IJ–domestic ))()
0 4 -7.733 -13.948 -9.679 (NullSyntFunc→(FNullSyntFunc ))(Sb→((IJ–domestic )IN–demand ))()
0 5 -7.413 -17.15 -9.359 (NullSyntFunc→(FNullSyntFunc ))(Atr→(IC–8.8 ))()
0 6 -8.662 -13.847 -10.60 (NullSyntFunc→(FNullSyntFunc ))(Adv→((IC–8.8 )IN–% ))()
0 7 -7.545 -12.203 -9.49 (NullSyntFunc→(FNullSyntFunc ))(Adv→(IN–September ))()
0 8 -7.513 -7.409 -9.459 (NullSyntFunc→(FNullSyntFunc ))(AuxP→(II–in (IN–September )))()
0 9 -31.989 -25.478 -39.316 (NullSyntFunc→(FNullSyntFunc ))(Obj→((FSb )IV–grow ((FAtr )IN–% )(FAuxP )))((0-3)(0-2)(0-1))
0 10 -41.61 -33.99 -50.069 (NullSyntFunc→(FNullSyntFunc ))(Pred→((FSb )IV–say ((FSb )IV–grow (FAdv )(FAuxP ))))((0-4)(0-3)(0-2)(0-1))
1 0 -7.129 -12.185 -9.432 (ACT→(IN–asociace ))(NullSyntFunc→(FNullSyntFunc ))()
1 1 -10.709 -5.400 -10.710 (ACT→(IN–asociace ))(Atr→(ID–the ))()
1 2 -2.704 -5.198 -2.704 (ACT→(IN–asociace ))(Sb→((ID–the )IN–association ))()
1 3 -10.733 -29.64 -10.733 (ACT→(IN–asociace ))(Atr→(IJ–domestic ))()
1 4 -10.812 -18.90 -10.812 (ACT→(IN–asociace ))(Sb→((IJ–domestic )IN–demand ))()
1 5 -10.7 -31.239 -10.734 (ACT→(IN–asociace ))(Atr→(IC–8.8 ))()
1 6 -9.315 -20.459 -9.316 (ACT→(IN–asociace ))(Adv→((IC–8.8 )IN–% ))()
1 7 -10.801 -23.024 -10.802 (ACT→(IN–asociace ))(Adv→(IN–September ))()
1 8 -9.57 -12.283 -9.578 (ACT→(IN–asociace ))(AuxP→(II–in (IN–September )))()
1 9 -37.2 -24.403 -39.006 (ACT→(FACT ))(Obj→(((FAtr )IN–demand )IV–grow (FAdv )(FAuxP )))((0-3)(0-2)(1-1))
1 10 -43.262 -32.49 -43.27 (ACT→(FACT ))(Pred→((FSb )IV–say ((FSb )IV–grow (FAdv )(FAuxP ))))((0-4)(0-3)(0-2)(1-1))
2 0 -7.000 -13.423 -9.303 (RSTR→(IA–domácı́ ))(NullSyntFunc→(FNullSyntFunc ))()
2 1 -9.430 -30.07 -9.430 (RSTR→(IA–domácı́ ))(Atr→(ID–the ))()
2 2 -9.428 -24.818 -9.428 (RSTR→(IA–domácı́ ))(Sb→((ID–the )IN–association ))()
2 3 -0.7243 -7.261 -0.7243 (RSTR→(IA–domácı́ ))(Atr→(IJ–domestic ))()
2 4 -0.7385 -9.522 -0.7385 (RSTR→(IA–domácı́ ))(Sb→((IJ–domestic )IN–demand ))()
2 5 -9.43 -19.427 -9.430 (RSTR→(IA–domácı́ ))(Atr→(IC–8.8 ))()
2 6 -9.87 -16.098 -9.874 (RSTR→(IA–domácı́ ))(Adv→((IC–8.8 )IN–% ))()
2 7 -10.80 -20.509 -10.80 (RSTR→(IA–domácı́ ))(Adv→(IN–September ))()
2 8 -9.205 -15.897 -9.205 (RSTR→(IA–domácı́ ))(AuxP→(II–in (IN–September )))()
2 9 -28.370 -22.387 -30.37 (RSTR→(FRSTR ))(Obj→((FSb )IV–grow ((FAtr )IN–% )(FAuxP )))((0-3)(0-2)(1-1))
2 10 -39.047 -32.38 -41.12 (RSTR→(FRSTR ))(Pred→((FSb )IV–say ((FSb )IV–grow (FAdv )(FAuxP ))))((0-4)(0-3)(0-1)(1-2))
3 0 -6.9072 -13.149 -9.209 (LOC→(IN–zářı́ ))(NullSyntFunc→(FNullSyntFunc ))()
3 1 -9.43 -30.074 -9.43 (LOC→(IN–zářı́ ))(Atr→(ID–the ))()
3 2 -10.8 -24.573 -10.814 (LOC→(IN–zářı́ ))(Sb→((ID–the )IN–association ))()
3 3 -9.430 -13.995 -9.430 (LOC→(IN–zářı́ ))(Atr→(IJ–domestic ))()
3 4 -10.813 -18.019 -10.814 (LOC→(IN–zářı́ ))(Sb→((IJ–domestic )IN–demand ))()
3 5 -9.430 -19.39 -9.43 (LOC→(IN–zářı́ ))(Atr→(IC–8.8 ))()
3 6 -10.813 -16.06 -10.814 (LOC→(IN–zářı́ ))(Adv→((IC–8.8 )IN–% ))()
3 7 -1.7230 -10.50 -1.7230 (LOC→(IN–zářı́ ))(Adv→(IN–September ))()
3 8 -0.7648 -7.136 -0.7648 (LOC→(IN–zářı́ ))(AuxP→(II–in (IN–September )))()
3 9 -27.852 -22.387 -30.62 (LOC→(FLOC ))(Obj→((FSb )IV–grow ((FAtr )IN–% )(FAuxP )))((0-3)(0-1)(1-2))
3 10 -38.07 -32.384 -41.374 (LOC→(FLOC ))(Pred→((FSb )IV–say ((FSb )IV–grow (FAdv )(FAuxP ))))((0-3)(0-2)(0-1)(1-4))
4 0 -14.774 -19.844 -20.027 (ACT→((IA–domácı́ )IN–poptávka (FLOC )))(NullSyntFunc→(FNullSyntFunc ))((1-0))
4 1 -16.992 -30.071 -20.02 (ACT→((IA–domácı́ )IN–poptávka (FLOC )))(Atr→(ID–the ))((1-0))
4 2 -16.942 -19.266 -20.02 (ACT→((IA–domácı́ )IN–poptávka (FLOC )))(Sb→((ID–the )IN–association ))((1-0))
4 3 -8.955 -17.282 -11.33 (ACT→((IA–domácı́ )IN–poptávka (FLOC )))(Atr→(IJ–domestic ))((1-0))
4 4 -2.4574 -12.45 -2.464 (ACT→((FRSTR )IN–poptávka (IN–zářı́ )))(Sb→((FAtr )IN–demand ))((1-1))
4 5 -16.992 -24.1 -20.02 (ACT→((IA–domácı́ )IN–poptávka (FLOC )))(Atr→(IC–8.8 ))((1-0))
4 6 -16.956 -20.69 -20.02 (ACT→((IA–domácı́ )IN–poptávka (FLOC )))(Adv→((IC–8.8 )IN–% ))((1-0))
4 7 -9.213 -17.502 -11.552 (ACT→((FRSTR )IN–poptávka (IN–zářı́ )))(Adv→(IN–September ))((1-0))
4 8 -9.082 -12.676 -11.507 (ACT→((FRSTR )IN–poptávka (IN–zářı́ )))(AuxP→(II–in (IN–September )))((1-0))
4 9 -12.448 -11.571 -13.837 (ACT→((FRSTR )IN–poptávka (FLOC )))(Obj→(((FAtr )IN–demand )IV–grow (FAdv )(FAuxP )))((0-1)(2-2)(1-3))
4 10 -29.341 -21.602 -32.430 (ACT→((FRSTR )IN–poptávka (FLOC )))(Pred→((FSb )IV–say ((FSb )IV–grow (FAdv )(FAuxP ))))((0-3)(0-1)(2-4)(1-2))
5 0 -7.124 -15.55 -9.427 (RSTR→(IC–8,8 ))(NullSyntFunc→(FNullSyntFunc ))()
5 1 -9.430 -21.35 -9.430 (RSTR→(IC–8,8 ))(Atr→(ID–the ))()
5 2 -9.428 -20.34 -9.428 (RSTR→(IC–8,8 ))(Sb→((ID–the )IN–association ))()
5 3 -9.430 -16.600 -9.430 (RSTR→(IC–8,8 ))(Atr→(IJ–domestic ))()
5 4 -9.428 -18.759 -9.428 (RSTR→(IC–8,8 ))(Sb→((IJ–domestic )IN–demand ))()
5 5 -0.21480 -10.741 -0.21480 (RSTR→(IC–8,8 ))(Atr→(IC–8.8 ))()
5 6 -0.5326 -7.402 -0.5326 (RSTR→(IC–8,8 ))(Adv→((IC–8.8 )IN–% ))()
5 7 -10.809 -19.853 -10.810 (RSTR→(IC–8,8 ))(Adv→(IN–September ))()
5 8 -9.42 -15.367 -9.428 (RSTR→(IC–8,8 ))(AuxP→(II–in (IN–September )))()
5 9 -25.73 -19.251 -30.171 (RSTR→(FRSTR ))(Obj→((FSb )IV–grow ((FAtr )IN–% )(FAuxP )))((0-2)(0-1)(1-3))
5 10 -35.164 -32.64 -39.993 (RSTR→(FRSTR ))(Pred→((FSb )IV–say ((FSb )IV–grow (FAdv )(FAuxP ))))((0-4)(0-2)(0-1)(1-3))
6 0 -23.286 -28.194 -30.845 (???→((FACT )IV–stoupnout (IC–8,8 )))(NullSyntFunc→(FNullSyntFunc ))((1-0))
6 1 -25.48 -33.336 -30.842 (???→((FACT )IV–stoupnout (IC–8,8 )))(Atr→(FAtr ))((1-1))
6 2 -25.381 -25.15 -30.839 (???→((FACT )IV–stoupnout (IC–8,8 )))(Sb→((FAtr )IN–association ))((1-1))
6 3 -19.766 -30.66 -22.15 (???→((FACT )IV–stoupnout (IC–8,8 )))(Atr→(FAtr ))((1-1))
6 4 -13.233 -20.64 -13.281 (???→((FACT )IV–stoupnout (IC–8,8 )))(Sb→(FSb ))((1-1))
6 5 -16.384 -29.733 -21.63 (???→((FACT )IV–stoupnout (IC–8,8 )))(Atr→(IC–8.8 ))((1-0))
6 6 -16.384 -19.718 -21.638 (???→((FACT )IV–stoupnout (IC–8,8 )))(Adv→((IC–8.8 )IN–% ))((1-0))
6 7 -20.025 -30.881 -22.370 (???→((FACT )IV–stoupnout (IC–8,8 )))(Adv→(FAdv ))((1-1))
6 8 -19.2 -20.863 -22.325 (???→((FACT )IV–stoupnout (IC–8,8 )))(AuxP→(FAuxP ))((1-1))
6 9 -3.6251 -4.263 -3.7231 (???→(((FRSTR )IN–poptávka (FLOC ))IV–stoupnout (FRSTR )))(Obj→(((FAtr )IN–demand )IV–grow (FAdv )(FAuxP )))((3-2)(2-3)(1-1))
6 10 -14.721 -10.81 -16.516 (???→(((FRSTR )IN–poptávka (FLOC ))IV–stoupnout (FRSTR )))(Pred→((FSb )IV–say ((FSb )IV–grow (FAdv )(FAuxP ))))((0-1)(3-4)(

2)(1-3))
7 0 -31.797 -42.07 -41.663 (PRED→((IN–asociace )IV–uvést (F??? )))(NullSyntFunc→(FNullSyntFunc ))((1-0))
7 1 -33.99 -42.74 -41.66 (PRED→((IN–asociace )IV–uvést (F??? )))(Atr→(FAtr ))((1-1))
7 2 -25.887 -34.726 -33.549 (PRED→((IN–asociace )IV–uvést (F??? )))(Sb→((FAtr )IN–association ))((1-1))
7 3 -30.523 -44.245 -32.97 (PRED→((IN–asociace )IV–uvést (F??? )))(Atr→(FAtr ))((1-1))
7 4 -24.01 -34.55 -24.099 (PRED→((IN–asociace )IV–uvést (F??? )))(Sb→(FSb ))((1-1))
7 5 -27.196 -43.31 -32.455 (PRED→((IN–asociace )IV–uvést (F??? )))(Atr→(FAtr ))((1-1))
7 6 -26.503 -33.62 -32.45 (PRED→((IN–asociace )IV–uvést (F??? )))(Adv→((FAtr )IN–% ))((1-1))
7 7 -30.774 -44.46 -33.18 (PRED→((IN–asociace )IV–uvést (F??? )))(Adv→(FAdv ))((1-1))
7 8 -29.663 -34.771 -33.14 (PRED→((IN–asociace )IV–uvést (F??? )))(AuxP→(FAuxP ))((1-1))
7 9 -14.327 -17.644 -14.540 (PRED→((IN–asociace )IV–uvést (F??? )))(Obj→(FObj ))((1-1))
7 10 -7.8876 0.0 -8.002 (PRED→((FACT )IV–uv ést (F??? )))(Pred→((FSb )IV–say (FObj )))((2-2)(1-1))

Table A.2: Computational chart with Viterbi probabilitiesfor sentence pair“Aso-
ciace uvedla,̌ze doḿaćı popt́avka v źařı́ stoupla o 8,8 %.”and“The association
said domestic demand grew 8.8% in September.”
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Figure A.5: A tree pair for Czech sentence“Poptávka trvale stouṕa za pod-
pory prospoťrebitelsḱe vládńı politiky, řekl mluv̌ćı asociace.” and English sen-
tence“Demand has been growing consistently under the encouragement of pro-
consumption government policies, an association spokesman said.”
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0 1 -7.8105 -44.37 -10.113 (NullSyntFunc→(FNullSyntFunc ))(Sb→(IN–demand ))()
0 2 -7.129 -38.25 -9.432 (NullSyntFunc→(FNullSyntFunc ))(AuxV→(IV–have ))()
0 3 -7.133 -38.22 -9.436 (NullSyntFunc→(FNullSyntFunc ))(Atr→(IV–be ))()
0 4 -6.9695 -38.27 -9.272 (NullSyntFunc→(FNullSyntFunc ))(Adv→(IR–consistently ))()
0 5 -7.125 -37.96 -9.428 (NullSyntFunc→(FNullSyntFunc ))(Atr→(ID–the ))()
0 6 -7.002 -45.093 -9.305 (NullSyntFunc→(FNullSyntFunc ))(Atr→(IN–pro-consumption ))()
0 16 -15.481 -48.23 -20.12 (NullSyntFunc→(FNullSyntFunc ))(Sb→((ID–an )(FAtr )IN–spokesman ))((0-1))
0 17 -96.0 -51.42 -119.57 (NullSyntFunc→(FNullSyntFunc ))(Pred→((FObj )(I,–, )(FSb )IV–say ))((0-2)(0-1))
1 0 -6.599 -49.253 -9.432 (ACT→(IN–poptávka ))(NullSyntFunc→(FNullSyntFunc ))()
1 1 -1.7390 -43.2 -1.7390 (ACT→(IN–poptávka ))(Sb→(IN–demand ))()
1 2 -9.440 -43.79 -9.44 (ACT→(IN–poptávka ))(AuxV→(IV–have ))()
1 3 -10.734 -43.76 -10.734 (ACT→(IN–poptávka ))(Atr→(IV–be ))()
1 4 -10.80 -43.83 -10.802 (ACT→(IN–poptávka ))(Adv→(IR–consistently ))()
1 17 -108.32 -45.888 -110.4 (ACT→(FACT ))(Pred→((FObj )(I,–, )(FSb )IV–say ))((0-2)(1-1))
2 0 -6.595 -44.82 -9.429 (THL→(ID–trvale ))(NullSyntFunc→(FNullSyntFunc ))()
2 1 -10.81 -43.34 -10.816 (THL→(ID–trvale ))(Sb→(IN–demand ))()
2 2 -9.207 -38.0 -9.207 (THL →(ID–trvale ))(AuxV →(IV–have ))()
2 3 -9.432 -38.0 -9.433 (THL→(ID–trvale ))(Atr→(IV–be ))()
2 4 -10.816 -38.12 -10.816 (THL→(ID–trvale ))(Adv→(IR–consistently ))()
2 5 -9.432 -45.77 -9.433 (THL→(ID–trvale ))(Atr→(ID–the ))()
3 3 -9.430 -66.31 -9.430 (RSTR→(IA–prospotřebitelský ))(Atr→(IV–be ))()
3 4 -10.810 -66.45 -10.810 (RSTR→(IA–prospotřebitelský ))(Adv→(IR–consistently ))()
3 5 -9.430 -53.17 -9.430 (RSTR→(IA–prospotřebitelský ))(Atr→(ID–the ))()
3 6 -0.20037 -44.47 -0.20037 (RSTR→(IA–prospotřebitelský ))(Atr →(IN–pro-consumption ))()
3 7 -9.406 -51.14 -9.406 (RSTR→(IA–prospotřebitelský ))(Atr→(IN–government ))()
3 8 -9.553 -51.83 -10.915 (RSTR→(IA–prospotřebitelský ))(Atr→((IN–pro-consumption )(FAtr )IN–policy ))((0-1))
3 9 -18.94 -44.20 -20.32 (RSTR→(FRSTR ))(AuxP→(II–of ((FAtr )(FAtr )IN–policy )))((0-2)(1-1))
4 4 -10.810 -66.45 -10.810 (RSTR→(IA–vládnı́ ))(Adv→(IR–consistently ))()
4 5 -9.430 -53.07 -9.430 (RSTR→(IA–vládnı́ ))(Atr→(ID–the ))()
4 6 -9.406 -51.143 -9.406 (RSTR→(IA–vládnı́ ))(Atr→(IN–pro-consumption ))()
4 7 -0.5395 -44.13 -0.5395 (RSTR→(IA–vl ádnı́ ))(Atr→(IN–government ))()
4 8 -9.664 -51.83 -11.254 (RSTR→(IA–vládnı́ ))(Atr→((FAtr )(IN–government )IN–policy ))((0-1))
4 9 -19.01 -44.20 -20.662 (RSTR→(FRSTR ))(AuxP→(II–of ((FAtr )(FAtr )IN–policy )))((0-1)(1-2))
4 10 -28.284 -38.019 -31.480 (RSTR→(FRSTR ))(Adv→((ID–the )IN–encouragement (FAuxP )))((1-1))
5 6 -8.028 -59.54 -10.913 (APP→((IA–prospotřebitelský )(FRSTR )IN–politika ))(Atr→(IN–pro-consumption ))((1-0))
5 7 -8.3 -57.66 -11.252 (APP→((FRSTR )(IA–vládnı́ )IN–politika ))(Atr→(IN–government ))((1-0))
5 8 -0.6765 -50.70 -1.4428 (APP→((FRSTR )(IA–vládnı́ )IN–politika ))(Atr→((FAtr )(IN–government )IN–policy ))((1-1))
5 9 -2.660 -42.636 -2.661 (APP→((FRSTR )(FRSTR )IN–politika ))(AuxP→(II–of ((FAtr )(FAtr )IN–policy )))((2-2)(1-1))
5 10 -13.474 -34.65 -13.479 (APP→(FAPP ))(Adv→((ID–the )IN–encouragement (FAuxP )))((1-1))
5 11 -21.248 -27.218 -22.90 (APP→(FAPP ))(AuxP→(II–under ((FAtr )IN–encouragement (FAuxP ))))((0-1)(1-2))
6 7 -17.5 -60.31 -20.66 (COND→(IN–podpora ((FRSTR )(FRSTR )IN–politika )))(Atr→(FAtr ))((2-1)(1-0))
6 8 -2.656 -50.877 -2.661 (COND→(IN–podpora ((FRSTR )(FRSTR )IN–politika )))(Atr→((FAtr )(FAtr )IN–policy ))((2-2)(1-1))
6 9 -2.661 -42.78 -2.6616 (COND→(IN–podpora ((FRSTR )(FRSTR )IN–politika )))(AuxP→(II–of ((FAtr )(FAtr )IN–policy )))((2-2)(1-1))
6 10 -12.781 -33.074 -13.47 (COND→(IN–podpora (FAPP )))(Adv→((ID–the )IN–encouragement (FAuxP )))((1-1))
6 11 -20.214 -25.248 -22.689 (COND→(FCOND ))(AuxP→(II–under (FAdv )))((1-1))
6 12 -52.22 -19.28 -60.778 (COND→(IN–podpora (FAPP )))(Obj→((FSb )(IV–have )(FAtr )IV–grow (FAdv )(FAuxP )))((0-3)(0-2)(0-1)(1-

4))
6 13 -23.30 -67.7 -29.421 (COND→(IN–podpora ((FRSTR )(FRSTR )IN–politika )))(AuxX→(I,–, ))((2-0)(1-0))
6 14 -23.302 -82.80 -29.421 (COND→(IN–podpora ((FRSTR )(FRSTR )IN–politika )))(Atr→(ID–an ))((2-0)(1-0))
7 8 -19.373 -63.821 -22.90 (PAT→((IN–poptávka )(FTHL )IV–stoupat (FCOND )))(Atr→(FAtr ))((2-1)(1-0))
7 9 -18.68 -55.141 -22.90 (PAT→((IN–poptávka )(FTHL )IV–stoupat (FCOND )))(AuxP→(II–of (FAtr )))((2-1)(1-0))
7 10 -11.796 -46.003 -14.711 (PAT→((FACT )(ID–trvale )IV–stoupat (FCOND )))(Adv→((ID–the )IN–encouragement (FAuxP )))((2-1)(1-0))
7 11 -15.805 -37.404 -15.989 (PAT→((FACT )(ID–trvale )IV–stoupat (FCOND )))(AuxP→(II–under ((FAtr )IN–encouragement (FAuxP

))))((2-2)(1-1))
7 12 -39.471 -6.256 -47.264 (PAT→((FACT )(FTHL )IV–stoupat (FCOND )))(Obj →((FSb )(FAuxV )(IV–be )IV–grow (FAdv )(FAuxP )))((0-

3)(3-4)(2-2)(1-1))
7 13 -36.66 -75.02 -49.668 (PAT→((IN–poptávka )(FTHL )IV–stoupat (FCOND )))(AuxX→(I,–, ))((2-0)(1-0))
7 14 -36.69 -80.21 -49.668 (PAT→((IN–poptávka )(FTHL )IV–stoupat (FCOND )))(Atr→(ID–an ))((2-0)(1-0))
7 15 -36.69 -82.84 -49.668 (PAT→((IN–poptávka )(FTHL )IV–stoupat (FCOND )))(Atr→(IN–association ))((2-0)(1-0))
8 12 -71.85 -39.84 -88.6 (PAT→(IN–asociace ))(Obj→((IN–demand )(FAuxV )(FAtr )IV–grow (FAdv )(FAuxP )))((0-4)(0-3)(0-2)(0-1))
8 13 -10.813 -54.552 -10.814 (PAT→(IN–asociace ))(AuxX→(I,–, ))()
8 14 -10.815 -43.05 -10.816 (PAT→(IN–asociace ))(Atr→(ID–an ))()
8 15 -2.707 -43.053 -2.7073 (PAT→(IN–asociace ))(Atr→(IN–association ))()
8 16 -10.025 -41.130 -12.135 (PAT→(IN–asociace ))(Sb→((FAtr )(IN–association )IN–spokesman ))((0-1))
8 17 -92.80 -44.7 -111.5 (PAT→(FPAT ))(Pred→((FObj )(I,–, )(FSb )IV–say ))((0-1)(1-2))
9 0 -7.983 -56.43 -10.817 (ACT→(IN–mluvčı́ (IN–asociace )))(NullSyntFunc→(FNullSyntFunc ))()
9 13 -10.638 -55.02 -10.639 (ACT→(IN–mluvčı́ (IN–asociace )))(AuxX→(I,–, ))()
9 14 -10.511 -51.903 -10.512 (ACT→(IN–mluvčı́ (IN–asociace )))(Atr→(ID–an ))()
9 15 -2.4056 -51.90 -2.405 (ACT→(IN–mluvčı́ (IN–asociace )))(Atr→(IN–association ))()
9 16 -4.602 -41.13 -4.631 (ACT→(IN–mluvčı́ (FPAT )))(Sb→((ID–an )(FAtr )IN–spokesman ))((1-1))
9 17 -86.39 -43.981 -104.08 (ACT→(FACT ))(Pred→((FObj )(I,–, )(FSb )IV–say ))((0-1)(1-2))
10 0 -48.714 -95.70 -69.92 (PRED→(((FACT )(FTHL )IV–stoupat (FCOND ))IV–řı́ci (FACT )))(NullSyntFunc→(FNullSyntFunc ))((4-0)(3-

0)(2-0)(1-0))
10 1 -46.516 -89.47 -62.07 (PRED→((FPAT )IV–řı́ci (IN–mluvčı́ (FPAT ))))(Sb→(FSb ))((2-0)(1-1))
10 13 -51.38 -94.39 -69.74 (PRED→(((FACT )(FTHL )IV–stoupat (FCOND ))IV–řı́ci (FACT )))(AuxX→(FAuxX ))((4-0)(3-0)(2-0)(1-1))
10 14 -51.39 -91.74 -69.61 (PRED→(((FACT )(FTHL )IV–stoupat (FCOND ))IV–řı́ci (FACT )))(Atr→(FAtr ))((4-0)(3-0)(2-0)(1-1))
10 15 -46.097 -91.74 -61.5 (PRED→(((FACT )(FTHL )IV–stoupat (FCOND ))IV–řı́ci (FACT )))(Atr→(FAtr ))((4-0)(3-0)(2-0)(1-1))
10 16 -38.53 -80.96 -54.29 (PRED→((FPAT )IV–řı́ci (IN–mluvčı́ (FPAT ))))(Sb→((FAtr )(FAtr )IN–spokesman ))((2-2)(1-1))
10 17 -45.728 0.0 -53.55 (PRED→((FPAT )IV– řı́ci (FACT )))(Pred→((FObj )(I,–, )(FSb )IV–say ))((2-2)(1-1))

Table A.3: Computational chart with Viterbi probabilitiesfor sentence pair
“Poptávka trvale stouṕa za podpory prospotřebitelsḱe vládńı politiky, řekl mluv̌ćı
asociace.”and“Demand has been growing consistently under the encouragement
of pro-consumption government policies, an association spokesman said.”
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A.3 Tree-to-Tree Alignment between Analytical
Representations of Czech and English

Results of the automatic alignment between Czech and English analytical trees
are presented here. The tree structures are results of an automatic annotation pro-
cedures, thus may contain errors. For each sentence pair thepresentation contains
the original tree pair, the Viterbi alignment and the computational chart.
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Figure A.7: A tree pair for Czech sentence“Asociace uvedla,̌ze doḿaćı popt́avka
v źařı́ stoupla o 8,8 %.” and English sentence“The association said domestic
demand grew 8.8% in September.”
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4

I–in

AuxP
8

N–September
7

A1Sdomácı́

Atr
3

J–domestic

Atr
3

R–o-1

AuxP
9

C–8,8
8

AuxG
7

N–%

Adv
6

C–8.8
5

Z–& percnt;

AuxG
7

NullSyntFunc

NullSyntFunc
0

Figure A.8: Viterbi alignment of little trees for sentence pair “Asociace uvedla,
že doḿaćı popt́avka v źařı́ stoupla o 8,8 %.”and“The association said domestic
demand grew 8.8% in September.”
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0 1 -6.947 -21.671 -9.43 (NullSyntFunc→(FNullSyntFunc ))(Atr→(ID–the ))()
0 2 -8.301 -23.347 -10.787 (NullSyntFunc→(FNullSyntFunc ))(Sb→((ID–the )IN–association ))()
0 8 -7.627 -21.597 -10.112 (NullSyntFunc→(FNullSyntFunc ))(AuxP→(II–in (IN–September )))()
0 9 -31.390 -37.38 -41.02 (NullSyntFunc→(FNullSyntFunc ))(Obj→((FSb )IV–grow ((FAtr )IN–% )(FAuxP )))((0-3)(0-2)(0-1))
0 10 -42.3 -51.668 -53.329 (NullSyntFunc→(FNullSyntFunc ))(Pred→((FSb )IV–say ((FSb )IV–grow (FAdv )(FAuxP ))))((0-4)(0-3)(0-

2)(0-1))
1 0 -7.137 -21.850 -9.440 (Sb→(IN1Sasociace ))(NullSyntFunc→(FNullSyntFunc ))()
1 1 -9.793 -19.725 -9.793 (Sb→(IN1Sasociace ))(Atr→(ID–the ))()
1 2 -2.266 -19.743 -2.2663 (Sb→(IN1Sasociace ))(Sb→((ID–the )IN–association ))()
1 3 -10.815 -55.79 -10.815 (Sb→(IN1Sasociace ))(Atr→(IJ–domestic ))()
1 4 -10.814 -44.97 -10.814 (Sb→(IN1Sasociace ))(Sb→((IJ–domestic )IN–demand ))()
1 5 -10.815 -53.73 -10.815 (Sb→(IN1Sasociace ))(Atr→(IC–8.8 ))()
1 6 -10.81 -42.921 -10.814 (Sb→(IN1Sasociace ))(Adv→((IC–8.8 )IN–% ))()
1 7 -10.816 -54.8 -10.816 (Sb→(IN1Sasociace ))(Adv→(IN–September ))()
1 8 -10.814 -44.04 -10.814 (Sb→(IN1Sasociace ))(AuxP→(II–in (IN–September )))()
1 9 -39.04 -37.644 -41.02 (Sb→(IN1Sasociace ))(Obj→((FSb )IV–grow ((FAtr )IN–% )(FAuxP )))((0-3)(0-2)(0-1))
1 10 -44.806 -49.99 -44.80 (Sb→(FSb ))(Pred→((FSb )IV–say ((FSb )IV–grow (FAdv )(FAuxP ))))((0-4)(0-3)(0-2)(1-1))
2 0 -6.906 -15.12 -9.209 (AuxX→(IZ–, ))(NullSyntFunc→(FNullSyntFunc ))()
2 1 -9.207 -19.974 -9.207 (AuxX→(IZ–, ))(Atr→(ID–the ))()
2 2 -10.76 -19.99 -10.768 (AuxX→(IZ–, ))(Sb→((ID–the )IN–association ))()
3 0 -7.382 -25.28 -9.685 (Atr→(IA1Sdomácı́ ))(NullSyntFunc→(FNullSyntFunc ))()
3 1 -9.513 -53.59 -9.513 (Atr→(IA1Sdomácı́ ))(Atr→(ID–the ))()
3 2 -10.805 -42.86 -10.805 (Atr→(IA1Sdomácı́ ))(Sb→((ID–the )IN–association ))()
3 3 -0.3364 -21.768 -0.3364 (Atr →(IA1Sdomácı́ ))(Atr→(IJ–domestic ))()
3 4 -1.6303 -22.764 -1.630 (Atr→(IA1Sdomácı́ ))(Sb→((IJ–domestic )IN–demand ))()
3 5 -9.513 -32.75 -9.513 (Atr→(IA1Sdomácı́ ))(Atr→(IC–8.8 ))()
3 6 -10.489 -30.60 -10.490 (Atr→(IA1Sdomácı́ ))(Adv→((IC–8.8 )IN–% ))()
3 7 -10.815 -30.802 -10.815 (Atr→(IA1Sdomácı́ ))(Adv→(IN–September ))()
5 3 -9.438 -23.028 -9.439 (AuxP→(IR–v-1 (IN6Szářı́ )))(Atr→(IJ–domestic ))()
5 4 -9.51 -31.475 -9.514 (AuxP→(IR–v-1 (IN6Szářı́ )))(Sb→((IJ–domestic )IN–demand ))()
5 5 -9.448 -33.374 -9.448 (AuxP→(IR–v-1 (IN6Szářı́ )))(Atr→(IC–8.8 ))()
5 6 -10.80 -30.085 -10.810 (AuxP→(IR–v-1 (IN6Szářı́ )))(Adv→((IC–8.8 )IN–% ))()
5 7 -1.615 -24.2 -1.6155 (AuxP→(IR–v-1 (IN6Szářı́ )))(Adv→(IN–September ))()
5 8 -1.071 -20.959 -1.1625 (AuxP→(IR–v-1 (IN6Szářı́ )))(AuxP→(II–in (IN–September )))()
5 9 -22.171 -40.82 -25.398 (AuxP→(IR–v-1 (FAtr )))(Obj→((FSb )IV–grow (FAdv )(II–in (FAdv ))))((0-2)(0-1)(1-3))
5 10 -38.81 -51.644 -44.37 (AuxP→(FAuxP ))(Pred→((FSb )IV–say ((FSb )IV–grow (FAdv )(FAuxP ))))((0-3)(0-2)(0-1)(1-4))
6 8 -10.595 -21.557 -11.98 (Sb→((IA1Sdomácı́ )IN1Spoptávka (FAuxP )))(AuxP→(FAuxP ))((1-1))
6 9 -11.71 -30.044 -14.13 (Sb→((FAtr )IN1Spoptávka (FAuxP )))(Obj→(((FAtr )IN–demand )IV–grow (FAdv )(FAuxP )))((0-1)(2-2)(1-3))
6 10 -29.66 -40.86 -34.38 (Sb→(FSb ))(Pred→(((FAtr )IN–association )IV–say (FObj )))((0-2)(1-1))
7 0 -6.906 -15.275 -9.209 (AuxG→(IZ–& percnt; ))(NullSyntFunc →(FNullSyntFunc ))()
7 1 -9.430 -42.781 -9.431 (AuxG→(IZ–& percnt; ))(Atr→(ID–the ))()
7 2 -10.813 -43.45 -10.814 (AuxG→(IZ–& percnt; ))(Sb→((ID–the )IN–association ))()
7 3 -9.207 -34.24 -9.207 (AuxG→(IZ–& percnt; ))(Atr→(IJ–domestic ))()
7 4 -10.813 -35.17 -10.814 (AuxG→(IZ–& percnt; ))(Sb→((IJ–domestic )IN–demand ))()
7 5 -9.430 -24.50 -9.431 (AuxG→(IZ–& percnt; ))(Atr→(IC–8.8 ))()
7 6 -0.01035 -24.54 -0.010485 (AuxG→(IZ–& percnt; ))(Adv→((IC–8.8 )IN–% ))()
9 5 -8.373 -17.002 -10.730 (AuxP→(IR–o-1 (IC–8,8 (FAuxG ))))(Atr→(IC–8.8 ))((1-0))
9 6 -8.316 -13.727 -10.797 (AuxP→(IR–o-1 (IC–8,8 (FAuxG ))))(Adv→((IC–8.8 )IN–% ))((1-0))
9 7 -17.50 -25.54 -20.02 (AuxP→(IR–o-1 (IC–8,8 (FAuxG ))))(Adv→(IN–September ))((1-0))
9 8 -17.447 -22.99 -20.019 (AuxP→(IR–o-1 (IC–8,8 (FAuxG ))))(AuxP→(II–in (IN–September )))((1-0))
9 9 -20.27 -35.26 -25.632 (AuxP→(IR–o-1 (IC–8,8 (FAuxG ))))(Obj→(((FAtr )IN–demand )IV–grow (FAdv )(FAuxP )))((0-3)(0-2)(1-1))
9 10 -30.854 -43.897 -37.78 (AuxP→(IR–o-1 (IC–8,8 (FAuxG ))))(Pred→((FSb )IV–say ((FSb )IV–grow (FAdv )(FAuxP ))))((0-4)(0-2)(0-

1)(1-3))
10 5 -26.765 -29.817 -31.374 (Adv→((FSb )IVXWstoupnout (IR–o-1 (FAdv ))))(Atr→(FAtr ))((2-1)(1-0))
10 6 -26.253 -21.008 -31.371 (Adv→((FSb )IVXWstoupnout (IR–o-1 (FAdv ))))(Adv→((FAtr )IN–% ))((2-1)(1-0))
10 7 -31.66 -30.116 -34.060 (Adv→((FSb )IVXWstoupnout (IR–o-1 (FAdv ))))(Adv→(FAdv ))((2-0)(1-1))
10 8 -29.746 -22.2 -33.607 (Adv→((FSb )IVXWstoupnout (IR–o-1 (FAdv ))))(AuxP→(FAuxP ))((2-0)(1-1))
10 9 -11.283 -10.72 -13.954 (Adv→(((FAtr )IN1Spopt ávka (FAuxP ))IVXWstoupnout (FAuxP )))(Obj →(((FAtr )IN–demand )IV–grow

(FAdv )(FAuxP )))((3-2)(2-3)(1-1))
10 10 -23.070 -21.59 -27.956 (Adv→(((FAtr )IN1Spoptávka (FAuxP ))IVXWstoupnout (FAuxP )))(Pred→((FSb )IV–say ((FSb )IV–grow

(FAdv )(FAuxP ))))((0-1)(3-4)(2-2)(1-3))
11 0 -40.962 -28.130 -52.48 (AuxC→((IZ–, )IJ–že (FAdv )))(NullSyntFunc→(FNullSyntFunc ))((1-0))
11 1 -36.577 -32.65 -45.80 (AuxC→((IZ–, )IJ–že (FAdv )))(Atr→(ID–the ))((1-0))
11 2 -36.577 -25.866 -45.80 (AuxC→((IZ–, )IJ–že (FAdv )))(Sb→((ID–the )IN–association ))((1-0))
11 3 -38.62 -30.12 -43.311 (AuxC→((IZ–, )IJ–že (FAdv )))(Atr→(FAtr ))((1-1))
12 6 -46.14 -35.05 -51.53 (Pred→((IN1Sasociace )IVXWuvést (FAuxC )))(Adv→(FAdv ))((1-1))
12 7 -51.013 -44.80 -54.222 (Pred→((IN1Sasociace )IVXWuvést (FAuxC )))(Adv→(FAdv ))((1-1))
12 8 -49.851 -35.75 -54.21 (Pred→((IN1Sasociace )IVXWuvést (FAuxC )))(AuxP→(II–in (FAdv )))((1-1))
12 9 -32.53 -17.535 -35.23 (Pred→((IN1Sasociace )IVXWuvést (FAuxC )))(Obj→(FObj ))((1-1))
12 10 -22.007 0.0 -27.005 (Pred→((FSb )IVXWuv ést ((FAuxX )IJ–že (FAdv ))))(Pred→((FSb )IV–say (FObj )))((3-2)(2-0)(1-1))

Table A.4: Computational chart with Viterbi probabilitiesfor sentence pair“Aso-
ciace uvedla,̌ze doḿaćı popt́avka v źařı́ stoupla o 8,8 %.”and“The association
said domestic demand grew 8.8% in September.”
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Figure A.9: A tree pair for Czech sentence“Poptávka trvale stouṕa za pod-
pory prospoťrebitelsḱe vládńı politiky, řekl mluv̌ćı asociace.” and English sen-
tence“Demand has been growing consistently under the encouragement of pro-
consumption government policies, an association spokesman said.”
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Figure A.10: Viterbi alignment of little trees for sentencepair “Poptávka trvale
stouṕa za podpory prospotřebitelsḱe vládńı politiky, řekl mluv̌ćı asociace.” and
English sentence“Demand has been growing consistently under the encourage-
ment of pro-consumption government policies, an association spokesman said.”
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0 1 -6.732 -43.78 -9.217 (NullSyntFunc→(FNullSyntFunc ))(Sb→(IN–demand ))()
0 2 -6.947 -37.10 -9.432 (NullSyntFunc→(FNullSyntFunc ))(AuxV→(IV–have ))()
0 3 -6.947 -36.863 -9.4 (NullSyntFunc→(FNullSyntFunc ))(Atr→(IV–be ))()
0 4 -6.724 -37.200 -9.209 (NullSyntFunc→(FNullSyntFunc ))(Adv→(IR–consistently ))()
0 5 -6.947 -35.78 -9.43 (NullSyntFunc→(FNullSyntFunc ))(Atr →(ID–the ))()
0 6 -6.848 -42.92 -9.333 (NullSyntFunc→(FNullSyntFunc ))(Atr→(IN–pro-consumption ))()
0 7 -6.848 -42.434 -9.333 (NullSyntFunc→(FNullSyntFunc ))(Atr→(IN–government ))()
0 17 -93.3 -58.88 -119.38 (NullSyntFunc→(FNullSyntFunc ))(Pred→((FObj )(I,–, )(FSb )IV–say ))((0-2)(0-1))
1 0 -6.607 -47.39 -9.440 (Sb→(IN1Spoptávka ))(NullSyntFunc→(FNullSyntFunc ))()
1 1 -1.7701 -41.20 -1.7701 (Sb→(IN1Spoptávka ))(Sb→(IN–demand ))()
1 2 -9.916 -41.30 -9.916 (Sb→(IN1Spoptávka ))(AuxV→(IV–have ))()
1 3 -10.815 -41.09 -10.815 (Sb→(IN1Spoptávka ))(Atr→(IV–be ))()
2 2 -9.45 -35.19 -9.45 (Adv→(ID–trvale ))(AuxV→(IV–have ))()
2 3 -10.816 -35.17 -10.816 (Adv→(ID–trvale ))(Atr→(IV–be ))()
2 4 -9.207 -35.31 -9.207 (Adv→(ID–trvale ))(Adv→(IR–consistently ))()
2 5 -10.816 -60.683 -10.816 (Adv→(ID–trvale ))(Atr→(ID–the ))()
2 6 -3.2746 -74.58 -3.2746 (Adv→(ID–trvale ))(Atr→(IN–pro-consumption ))()
2 7 -10.81 -74.58 -10.816 (Adv→(ID–trvale ))(Atr→(IN–government ))()
3 3 -9.51 -74.11 -9.513 (Atr→(IA2Sprospotřebitelský ))(Atr→(IV–be ))()
3 4 -10.815 -74.37 -10.815 (Atr→(IA2Sprospotřebitelský ))(Adv→(IR–consistently ))()
3 5 -9.51 -53.20 -9.513 (Atr→(IA2Sprospotřebitelský ))(Atr→(ID–the ))()
3 6 -0.3073 -42.239 -0.3073 (Atr →(IA2Sprospotřebitelský ))(Atr →(IN–pro-consumption ))()
3 7 -9.513 -46.61 -9.513 (Atr→(IA2Sprospotřebitelský ))(Atr→(IN–government ))()
3 8 -9.599 -50.45 -10.943 (Atr→(IA2Sprospotřebitelský ))(Atr→((IN–pro-consumption )(FAtr )IN–policy ))((0-1))
3 9 -19.06 -44.325 -20.458 (Atr→(FAtr ))(AuxP→(II–of ((FAtr )(FAtr )IN–policy )))((0-2)(1-1))
4 4 -10.815 -74.37 -10.815 (Atr→(IA2Svládnı́ ))(Adv→(IR–consistently ))()
4 5 -9.513 -52.96 -9.513 (Atr→(IA2Svládnı́ ))(Atr→(ID–the ))()
4 6 -5.30 -48.53 -5.304 (Atr→(IA2Svládnı́ ))(Atr→(IN–pro-consumption ))()
4 7 -0.7889 -41.758 -0.788 (Atr →(IA2Svládnı́ ))(Atr→(IN–government ))()
4 8 -9.838 -50.42 -11.42 (Atr→(IA2Svládnı́ ))(Atr→((FAtr )(IN–government )IN–policy ))((0-1))
4 9 -19.258 -44.32 -20.940 (Atr→(FAtr ))(AuxP→(II–of ((FAtr )(FAtr )IN–policy )))((0-1)(1-2))
4 10 -28.47 -43.814 -31.67 (Atr→(FAtr ))(Adv→((FAtr )IN–encouragement (II–of (FAtr ))))((0-1)(1-2))
5 6 -8.388 -56.6 -11.125 (Atr→((FAtr )(IA2Svládnı́ )IN2Spolitika ))(Atr→(FAtr ))((1-1))
5 7 -8.876 -53.94 -11.606 (Atr→((IA2Sprospotřebitelský )(FAtr )IN2Spolitika ))(Atr→(FAtr ))((1-1))
5 8 -0.8113 -48.05 -1.5279 (Atr→((FAtr )(IA2Svládnı́ )IN2Spolitika ))(Atr→((FAtr )(IN–government )IN–policy ))((1-1))
5 9 -2.856 -40.37 -2.8586 (Atr →((FAtr )(FAtr )IN2Spolitika ))(AuxP →(II–of ((FAtr )(FAtr )IN–policy )))((2-2)(1-1))
5 10 -13.671 -33.55 -13.67 (Atr→(FAtr ))(Adv→((ID–the )IN–encouragement (FAuxP )))((1-1))
5 11 -21.448 -34.901 -23.10 (Atr→(FAtr ))(AuxP→(II–under ((FAtr )IN–encouragement (FAuxP ))))((0-1)(1-2))
5 12 -53.78 -29.839 -61.78 (Atr→(FAtr ))(Obj→((FSb )(FAuxV )(IV–be )IV–grow (FAdv )(FAuxP )))((0-3)(0-2)(0-1)(1-4))
7 8 -11.476 -49.34 -12.345 (AuxP→(IR–za-1 (IN2Spodpora (FAtr ))))(Atr→(FAtr ))((1-1))
7 9 -10.324 -41.43 -11.269 (AuxP→(IR–za-1 (IN2Spodpora (FAtr ))))(AuxP→(II–of (FAtr )))((1-1))
7 10 -12.96 -31.631 -13.66 (AuxP→(IR–za-1 (IN2Spodpora (FAtr ))))(Adv→((ID–the )IN–encouragement (FAuxP )))((1-1))
7 11 -19.089 -24.119 -21.803 (AuxP→(IR–za-1 (IN2Spodpora (FAtr ))))(AuxP→(II–under ((FAtr )IN–encouragement (FAuxP ))))((0-1)(1-2))
7 12 -50.06 -19.02 -60.478 (AuxP→(IR–za-1 (FAdv )))(Obj→((FSb )(FAuxV )(FAtr )IV–grow (FAdv )(II–under (FAdv ))))((0-4)(0-3)(0-

2)(0-1)(1-5))
7 13 -24.891 -69.21 -31.069 (AuxP→(IR–za-1 (IN2Spodpora (FAtr ))))(AuxX→(FAuxX ))((1-1))
7 17 -76.89 -38.01 -91.44 (AuxP→(FAuxP ))(Pred→((FObj )(I,–, )(FSb )IV–say ))((0-2)(1-1))
8 0 -6.376 -41.70 -9.209 (AuxX→(IZ–, ))(NullSyntFunc→(FNullSyntFunc ))()
8 1 -9.439 -41.725 -9.43 (AuxX→(IZ–, ))(Sb→(IN–demand ))()
8 2 -9.225 -35.24 -9.225 (AuxX→(IZ–, ))(AuxV→(IV–have ))()
8 3 -9.430 -35.19 -9.430 (AuxX→(IZ–, ))(Atr→(IV–be ))()
8 4 -9.265 -35.38 -9.266 (AuxX→(IZ–, ))(Adv→(IR–consistently ))()
8 5 -9.20 -60.673 -9.207 (AuxX→(IZ–, ))(Atr→(ID–the ))()
8 6 -9.43 -74.68 -9.430 (AuxX→(IZ–, ))(Atr→(IN–pro-consumption ))()
9 10 -32.04 -43.691 -40.466 (Obj→((FSb )(FAdv )IV3Sstoupat (IR–za-1 (FAdv ))(FAuxX )))(Adv→((FAtr )IN–encouragement (II–of (FAtr

))))((4-2)(3-1)(2-0)(1-0))
9 11 -33.79 -35.51 -40.23 (Obj→((FSb )(FAdv )IV3Sstoupat (IR–za-1 (FAdv ))(FAuxX )))(AuxP→(II–under ((FAtr )IN–encouragement

(FAuxP ))))((4-2)(3-1)(2-0)(1-0))
9 12 -37.704 -5.595 -44.97 (Obj→((FSb )(FAdv )IV3Sstoupat (FAuxP )(FAuxX )))(Obj→((FSb )(FAuxV )(IV–be )IV–grow (FAdv )(FAuxP

)))((4-2)(3-4)(2-3)(1-1))
9 13 -37.08 -71.93 -51.839 (Obj→((IN1Spoptávka )(FAdv )IV3Sstoupat (FAuxP )(FAuxX )))(AuxX→(FAuxX ))((3-1)(2-0)(1-0))
9 14 -42.62 -77.43 -55.77 (Obj→((IN1Spoptávka )(FAdv )IV3Sstoupat (FAuxP )(FAuxX )))(Atr→(FAtr ))((3-0)(2-1)(1-0))
9 15 -44.636 -80.93 -60.39 (Obj→((IN1Spoptávka )(FAdv )IV3Sstoupat (FAuxP )(FAuxX )))(Atr→(FAtr ))((3-0)(2-1)(1-0))
10 12 -69.47 -44.6 -88.40 (Atr→(IN2Sasociace ))(Obj→((FSb )(FAuxV )(IV–be )IV–grow (FAdv )(FAuxP )))((0-4)(0-3)(0-2)(0-1))
10 13 -9.433 -52.62 -9.433 (Atr→(IN2Sasociace ))(AuxX→(I,–, ))()
10 14 -9.513 -41.541 -9.513 (Atr→(IN2Sasociace ))(Atr→(ID–an ))()
10 15 -1.727 -41.583 -1.7273 (Atr →(IN2Sasociace ))(Atr→(IN–association ))()
10 16 -10.071 -39.7 -12.462 (Atr→(IN2Sasociace ))(Sb→((FAtr )(IN–association )IN–spokesman ))((0-1))
10 17 -90.28 -52.73 -111.69 (Atr→(FAtr ))(Pred→((FObj )(I,–, )(FSb )IV–say ))((0-1)(1-2))
11 0 -7.978 -54.73 -10.812 (Sb→(IN1Smluvčı́ (IN2Sasociace )))(NullSyntFunc→(FNullSyntFunc ))()
11 13 -10.119 -53.28 -10.1 (Sb→(IN1Smluvčı́ (IN2Sasociace )))(AuxX→(I,–, ))()
11 14 -10.790 -50.48 -10.793 (Sb→(IN1Smluvčı́ (IN2Sasociace )))(Atr→(ID–an ))()
11 15 -3.0090 -50.49 -3.0091 (Sb→(IN1Smluvčı́ (IN2Sasociace )))(Atr→(IN–association ))()
11 16 -3.5656 -39.73 -3.578 (Sb→(IN1Smluvčı́ (FAtr )))(Sb→((ID–an )(FAtr )IN–spokesman ))((1-1))
11 17 -82. -51.80 -102.80 (Sb→(FSb ))(Pred→((FObj )(I,–, )(FSb )IV–say ))((0-1)(1-2))
12 0 -56.15 -93.21 -80.81 (Pred→(((FSb )(FAdv )IV3Sstoupat (FAuxP )(FAuxX ))IVXSřı́ci (FSb )))(NullSyntFunc→(FNullSyntFunc

))((5-0)(4-0)(3-0)(2-0)(1-0))
12 1 -53.83 -87.91 -72.06 (Pred→((FObj )IVXSřı́ci (IN1Smluvčı́ (FAtr ))))(Sb→(FSb ))((2-0)(1-1))
12 14 -57.76 -89.46 -76.03 (Pred→(((FSb )(FAdv )IV3Sstoupat (FAuxP )(FAuxX ))IVXSřı́ci (FSb )))(Atr→(FAtr ))((5-0)(4-1)(3-0)(2-0)(1-

0))
12 15 -53.92 -89.47 -73.01 (Pred→(((FSb )(FAdv )IV3Sstoupat (FAuxP )(FAuxX ))IVXSřı́ci (FSb )))(Atr→(FAtr ))((5-0)(4-0)(3-0)(2-0)(1-

1))
12 16 -45.031 -78.71 -59.340 (Pred→((FObj )IVXSřı́ci (IN1Smluvčı́ (FAtr ))))(Sb→((FAtr )(FAtr )IN–spokesman ))((2-2)(1-1))
12 17 -43.29 0.0 -50.58 (Pred→((FObj )IVXS řı́ci (FSb )))(Pred→((FObj )(I,–, )(FSb )IV–say ))((2-2)(1-1))

Table A.5: Computational chart with Viterbi probabilitiesfor sentence pair
“Poptávka trvale stouṕa za podpory prospotřebitelsḱe vládńı politiky, řekl mluv̌ćı
asociace.” and English sentence“Demand has been growing consistently un-
der the encouragement of pro-consumption government policies, an association
spokesman said.”
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Appendix B

Implementation details

The framework for experiments with dependency tree structure has been imple-
mented in Java and is available as a library. This appendix briefly summarizes the
most important features of the framework.

B.1 A Java Framework for Tree Transformations

The Java framework supports operations with many types of trees: analytical,
tectogrammatical, phrase structures of Penn Treebank, packed-tree representaion
of tectogrammatical trees, Collins’ trees1, andCharniak’s trees.2

B.1.1 Installation

The framework can be installed from the CVS located at UFAL tothe current
directory...myDir using:

...myDir>cvs -d/home/CVSROOT/cmejrek checkout CETGTran slation

And built using:
...myDir>cd CETGTranslation

...myDir/CETGTranslation>ant jar

The resulting jar is then created as:
...myDir/CETGTranslation/dist/CETGTranslation.jar

B.1.2 Basic Tree Operations

Basic tree operations are: loading and serialization of trees from and to thecsts
format, accessing child nodes, as well as iterations in various orderings, such as
prefix, postfix, breadth-first, ordepth-first. This functionality is accessible through
theNodeInterface.java.

1Resulting from the Collins’ parser
2Resulting from the Charniak’s parser.
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B.1.3 Implementation of PDT-Specific Trees

PDT-specific features are accessible through the followinginterfaces.

Analytical Trees

The functionality specific to the analytical trees is accessible through theARN-
odeInterface.java. The interface enables manipulation with values specific tothe
analytical representation, such asform, lemma, morphological tag, afun, word
order (r), word order of the parent node(g), etc.

Tectogrammatical Trees

The functionality specific to the tectogrammatical trees isaccessible through the
TRNodeInterface.java. The interface enables manipulation with tectogrammatical
attributes, such astrlemma, functor, tectogrammatical morphoogical tag, topic-
focus articulation, deep word order, etc.

Packed Tectogrammatical Trees

The functionality specific to the packed-tree representation used for transferring
tectogrammatical trees is accessible through theTransferNodeInterface.java. The
packed-tree representation anables to store variants of the treestructures.

B.2 Penn Treebank Trees

The functionality specific to Penn Treebank trees is accessible throughWSJN-
odeInterface.java. The inteface enables manipulation with specific features of the
phrase-structure used in Penn Treebank, such asform, lemma, WSJ POS tag, or
nonterminal.

B.2.1 Custom Tree-Convertors

Many convertors from various formats into PDT style of annotation have been
implemented.

Penn Treebank to Analytical Trees

ClassWSJToATSTreeConverter.javaimplements a convertor from the Penn Tree-
bank style of annotation into analytical trees.
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Integration of Charniak’s Parser

ClassConvertEugeneCharniakTreeToCSTS,javaconverts the output format of the
Charniak’s parset o Czech into the analytical representation.

Integration of Collins’ Parser

ClassCollinsTreeToATSTreeConverter.javaconverts output format of the Collins’
parser for Czech into analytical representation.

B.2.2 DBMT system: Rule-based MT

The rule-based MT system described in Chapter 3 is implemented in class
RANLP03GenerationFromTGTTransfer.java.

B.2.3 Implementation of Tree-to-Tree Transducer

The framework for STSG modeling has been implemented as classTTTengine.java.
The engine can be run with the following parameters:

• -I CETGTPathPrefix
Prefix to the working directory, where all model files and other working file
will be stored.

• -properties propertyfile

• -f list of files
List of pairs of files with parallel trees. The files should contain the output
of thensgmlsparser run oncsts trees.

• -l log file
The name of the main log file.

• -d debugLevel
Debug level of the mai logger.

• -L logger name logfile log level
Enables to define different files and levels of logging for different types of
logging. Known loggers are:latexLT for LATEXlogs of synchronous rules,
andmodelSimple for textual representation of the probabilistic model of
the STSG.

• -D dictionary
Probabilistic translation dictionary to be imported.
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• -modelFN modelPrefix
Prefix of the model file.

• -iteration iteration
Number of the current iteration.

• -startFromSentence first sentence

• -sentences last sentence

• -countNonSynchronous
Turns on counting the non-synchronous rules.

• -observeSynchronous
Turns on observing synchronous rules. This is the training part.

• -createTrDict
Creates translation dictionary from the PDT links between analytical and
tectogrammatical nodes.

• -bm backoffModel lambda
Setsλ for the selected backoff model.

• -sumInsideProbs
Turns on computing the sum of inside probabilities (for evaluating different
Λ).

• -saveNewModel
The resulting trained model will be saved.

• -prepareGIZATrainingData
Prepares the parallel corpus of plain text for GIZA++ training.

• -generateLatex
Turns on additional logging of little trees into LATEX.y

• -traceViterbi
Turns on tracing Viterbi alignments during the computationof inside prob-
abilities.
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se svým počı́tačem.Softwarov́e noviny, XII(5):26–37.
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[Cuřı́n et al., 2004b] Cuřı́n, J.,̌Cmejrek, M., Havelka, J., and Kuboň, V. (2004b).
Building parallel bilingual syntactically annontated corpus. InProceedings
of The First International Joint Conference on Natural Language Processing,
pages 141–146, Hainan Island, China.
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[Hajič et al., 2002] Hajič, J.,̌Cmejrek, M., Dorr, B., Ding, Y., Eisner, J., Gildea,
D., Koo, T., Parton, K., Penn, G., Radev, D., and Rambow, O. (2002). Natural
Language Generation in the Context of Machine Translation.Technical report.
NLP WS’02 Final Report.

[Jelinek, 1985] Jelinek, F. (1985). Markov Source Modelingof Text Genera-
tion. In Impact of Processing Techniques on Communications, pages 569—
598. NATO Advanced Study Institute.

[Koehn et al., 2003] Koehn, P., Och, F. J., and Marcu, D. (2003). Statisti-
cal Phrase-Based Translation. InHLT-NAACL, pages 127–133, Edmonton,
Canada.
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