
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Petr Mánek

Genetic programming in Swift
for human-competitive evolution

Department of Software and Computer Science Education

Supervisor of the bachelor thesis: RNDr. Frantǐsek Mráz, CSc.

Study programme: Computer Science

Study branch: General Computer Science

Prague 2016

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University in Prague has the right to conclude a license agreement on
the use of this work as a school work pursuant to Section 60 subsection 1 of the
Copyright Act.

In date signature of the author

i

Title: Genetic programming in Swift for human-competitive evolution

Author: Petr Mánek

Department: Department of Software and Computer Science Education

Supervisor: RNDr. Frantǐsek Mráz, CSc., Department of Software and Com-
puter Science Education

Abstract: Imitating the process of natural selection, evolutionary algorithms
have shown to be efficient search techniques for optimization and machine learn-
ing in poorly understood and irregular spaces. In this thesis, we implement a li-
brary containing essential implementation of such algorithms in recently unveiled
programming language Swift. The result is a lightweight framework compatible
with Linux-based computing clusters as well as mobile devices. Such wide range
of supported platforms allows for successful application even in situations, where
signals from various sensors have to be acquired and processed independently of
other devices. In addition, thanks to Swift’s minimalistic and functional syn-
tax, the implementation of bundled algorithms and their sample usage clearly
demonstrates fundamentals of genetic programming, making the work usable in
teaching and quick prototyping of evolutionary algorithms.

Keywords: genetic programming, artificial evolution

Název práce: Knihovna pro genetické programováńı v jazyce Swift

Autor: Petr Mánek

Katedra: Katedra softwaru a výuky informatiky

Vedoućı bakalářské práce: RNDr. Frantǐsek Mráz, CSc., Katedra softwaru a
výuky informatiky

Abstrakt: Evolučńı algoritmy napodobuj́ı biologický proces přirozeného výběru.
Osvědčily se zejména jako optimalizačńı a vyhledávaćı metody. Předmětem
této práce je návrh a implementace programátorské knihovny obsahuj́ıćı často
použ́ıvané nástroje pro tvorbu evolučńıch algoritmů v novém programovaćım
jazyce Swift. Výsledný software je kompatibilńı s linuxovými systémy i chytrými
mobilńımi telefony. Široké spektrum podporovaných technologíı umožňuje jeho
úspěšnou aplikaci v situaćıch, kdy signály muśı být zpracovány uvnitř zař́ızeńı,
které je naměřilo, nezávisle na ostatńıch výpočetńıch jednotkách. Dı́ky zjednodušené
syntaxi jazyka Swift nav́ıc zdrojový kód knihovny spolu s přiloženými ukázkami
jej́ıho použit́ı ilustruj́ı základńı principy evolučńıch algoritmů a genetického pro-
gramováńı pro využit́ı ve výuce.

Kĺıčová slova: genetické programováńı, umělá evoluce

ii

I wish to thank Bennett Foddy for granting me the permission to use his game
QWOP in my thesis. I would also like to express my gratitude to my supervisor
RNDr. Frantǐsek Mráz, CSc. for proposing and supervising this thesis. Lastly,
I would like to thank my friends and family for their support, for without them,
this work would not have been possible.

iii

Contents

1 Introduction 3

2 Background 5
2.1 Genetic Algorithms . 5
2.2 Neural Networks . 6

2.2.1 Mathematical Representation 6

3 Goals of the Thesis 8
3.1 Survey of Previous Works . 8

3.1.1 Swift Implementations . 8
3.2 Statement of Requirements . 8

4 Library Documentation 10
4.1 Chromosomes . 10

4.1.1 Data Representation Problem 10
4.1.2 Strings . 11
4.1.3 Trees . 12
4.1.4 Custom Types . 14

4.2 Population Evaluation . 16
4.2.1 Mating Pool . 16
4.2.2 Sequential and Parallel Evaluators 16
4.2.3 Cyclic Evaluators . 18

4.3 Genetic Operators . 18
4.3.1 Reproduction . 18
4.3.2 Mutation . 19
4.3.3 Crossover . 19
4.3.4 Custom Operators . 20
4.3.5 Decision Trees . 21

4.4 Selections . 22
4.4.1 Roulette Selection . 23
4.4.2 Rank Selection . 23
4.4.3 Tournament Selection . 23
4.4.4 Miscellaneous . 24
4.4.5 Custom Selections . 24

4.5 Execution . 24
4.5.1 Termination Conditions 26
4.5.2 Event Hooks . 26

4.6 Extensions . 27
4.6.1 Elitism . 27
4.6.2 Persistence . 28
4.6.3 Entropy Generators . 28

1

5 Usage Demonstration 29
5.1 MAX-ONE Problem . 29

5.1.1 Chromosome and Fitness 29
5.1.2 Algorithm . 29
5.1.3 Results . 31

5.2 Self-driving Car Simulation . 31
5.2.1 Control Program . 33
5.2.2 Chromosome and Fitness 33
5.2.3 Algorithm . 35
5.2.4 Results . 36

5.3 Artificial QWOP Player . 36
5.3.1 The QWOP Game . 37
5.3.2 Previous Work . 37
5.3.3 Interfacing Qwopper with Swift 38
5.3.4 Algorithm . 40
5.3.5 Results . 40

6 Conclusion 42

Bibliography 43

List of Figures 44

List of Listings 45

A Survey of GA Libraries 46
A.1 Libraries implemented in Java . 46
A.2 Libraries implemented in C++ 48
A.3 Libraries implemented in Python 49
A.4 Libraries implemented in C . 50
A.5 Libraries implemented in Swift . 50
A.6 Libraries compatible with the .NET Framework 51
A.7 Libraries implemented in Ruby 51
A.8 Libraries implemented in Perl . 51
A.9 Tools for MATLAB . 52

2

1. Introduction

Genetic algorithms represent a class of non-deterministic machine learning tech-
niques inspired by the processes occurring in the nature (hence the name). Orig-
inally proposed in 1950s, these techniques have proven to be efficient solutions
to some optimization and search problems, especially in cases where the domain
space is poorly understood, unpredictable or irregular.

In the mentioned cases, genetic algorithms have become attractive heuristics
for tasks which would otherwise require purely exponential solutions. Thanks
to ongoing advances in computer performance, genetic algorithms have found
various applications, facilitating their use in automatic code generation for real-
time control systems and classifiers, signal processing and NP-hard combinatorial
problem solving.

In 2014, the Apple Corporation unveiled a new programming language called
Swift [1]. This language has been since then widely adopted by software de-
velopers and computer engineers, succeeding Objective-C as the main program-
ming language used for application development on the Apple platform. Building
on proven coding paradigms, such as generics and strongly-typed objects, Swift
strives to be a modern, concise and safe alternative to popular languages like
Python or C++ while attempting to maintain comparable performance in terms
of computational speed and memory management (this has been observed exper-
imentally [2]).

The latest version of the language is called Swift 2.2. Announced at the World
Wide Developer Conference in 2015, the new Swift extended minimalistic syntax
of its predecessor to include error handling, condition assertion and instruction
deferring. It also enables developers to create frameworks, redistributable pack-
ages containing documentation and binary libraries that other developers can
include and utilize in their projects.

Since Fall 2015, Swift along with its standard library1 became an open-source
project, integrating itself into the LLVM (Low-level Virtual Machine), a widely-
used compiler compatible with thousands of devices running Linux-based oper-
ating systems. Thanks to these modifications, Swift has been lately discussed as
an attractive option for academic collaborations and community-driven projects.

The subject of this thesis is the implementation of an open-source library,
which would add the support for building genetic algorithms to Swift. Although
there have already been isolated attempts at implementing variants of genetic
algorithms in this programming language, such works have served primarily for
the purposes of demonstration. In comparison, the aim of this work is to offer an
efficient and highly extensible basis for developing applications that harness the
power of genetic algorithms and put it to use in common scenarios.

To better demonstrate the utilization of the presented library, this thesis in-
cludes several instances of examples, in which the components of the library are
applied to solve practical problems. The most notable of these examples is the
development of an artificial player capable of achieving human-competitive scores
in a popular online game.

1The Swift standard library is comprised of two main components, the Foundation module
and the libdispatch scheduling library.

3

This thesis is organized as follows.
Chapter 2 serves to define ground terms used in this document and link them

to their counterparts in the cited literature.
Chapter 3 is a brief summary of the features offered by other similar works

concluded by the statement of requirements on the library presented by this work.
Chapter 4 provides details on the object design of the presented library. It

introduces its individual components, explains their purpose and gives recom-
mendations on their usage. In addition, the chapter includes short Swift code
fragments to further illustrate some referenced programming techniques.

Chapter 5 is dedicated to practical usage demonstrations of the library as a
whole. It contains three demonstrations selected from a broader list of example
projects which are part of the library source package.

Chapter 6 contains the conclusion of this thesis. It summarizes its objectives,
states its accomplishments and concludes by suggesting potential applications of
the library in research, portable devices and teaching.

Appendix A is a survey of other GA libraries, conducted in September 2015
as a part of preliminary specification, which eventually led to the writing of this
work.

The digital version of this thesis also contains Appendix B, which contains
the library source package with implementation, unit tests, documentation and
five example projects.

4

2. Background

This chapter explains certain terms used in this thesis. It formally defines the
genetic algorithms (Section 2.1) and neural networks (Section 2.2).

2.1 Genetic Algorithms

Genetic algorithms (GA) are iterative randomized optimization methods1, which
are inspired by the biological process of natural selection. In the context of GA,
points in the domain space are represented to individuals of animal species. Every
individual carries a chromosome, which describes its location in the domain space,
thus defining its properties similarly to the way DNA defines skills and capabilities
of its carriers.

To initialize the GA, a population of individuals with random chromosomes
is generated. During single iteration of the GA, individuals in the population
compete for their right to reproduce, favoring those who maximize the value of a
fitness function which customarily maps every individual to a single decimal value
from the [0; 1] interval. At the end of the iteration, fit individuals are selected
and allowed to produce an offspring population, on which the next iteration of the
GA operates. This behavior creates an iterative loop, which can be summarized
by a diagram shown in Figure 2.1.

Generate
random

population.

Evaluate
population.

Should
terminate?

Reset
offspring.

Terminate.

Have
enough

offspring?

Choose
genetic

operator.

Evaluate
offspring.

Swap
generations.

Insert
offspring

individual.

no

no

yes

yes

Figure 2.1: Generalized decision diagram of a GA.

1In this work, genetic algorithms are equivalent to generational models defined in [3].

5

Although there are many variants of GA, each with different properties and
applications, the basic notion stays the same. Genetic algorithms iteratively eval-
uate and modify a population of chromosomes until a set termination condition
is met. This condition can for instance ascertain the fitness of the best chro-
mosome so far or simply count the number of iterations performed. Individuals
are inserted in the population at two instances throughout the execution of the
GA: first during the initialization when a random population is generated, and
second when the population is modified to prepare grounds for the next iteration.
The latter of the two is the key phase of the GA. At this point in execution, the
algorithm explores new points of the domain space by reusing points which have
already been discovered. Such process is often based on non-deterministic inputs
and can utilize the fitness of the chromosomes discovered so far as a heuristic.
Instances of this process are referred to as genetic operators.

The selection pressure is the degree to which the better individuals are favored:
the higher the selection pressure, the more the better individuals are favored. This
selection pressure drives the GA to improve the population fitness over succeeding
generations. However, if the selection pressure is too low, the convergence rate will
be slow, and the GA will unnecessarily take longer to find the optimal solution.
If the selection pressure is too high, there is an increased chance of the genetic
algorithm prematurely converging to an incorrect (suboptimal) solution [4].

2.2 Neural Networks

Neural networks are often used in conjunction with genetic algorithms for solving
challenging tasks. A neural network can, e.g., represent a complex function used
for predicting time series or for controlling complex systems. For instance, in
Section 5.2, a neural network is responsible for controlling an autonomous robot.
This section serves to describe one model of neural networks which is used later
in this thesis.

A neural network is an interconnected assembly of simple processing elements,
units or nodes, whose functionality is loosely based on an animal neuron. The
processing ability of the network is stored in the interunit connection strengths, or
weights, obtained by a process of adaptation to, or learning from a set of training
patterns [5].

A neural network is called feedforward (denoted FFNN), if its interunit con-
nections do not form a cycle. In such case, it makes sense to classify its nodes in
separate layers with respect to their topological ordering. The first layer of the
network is customarily called the input layer, whereas the last layer is called the
output layer. The remaining layers are referred to as the hidden layers. This is
illustrated in Figure 2.2.

2.2.1 Mathematical Representation

In feedforward neural networks, signals travel between connected nodes in a way
resembling the action potential of biological neural systems. Firstly, nodes of the
input layer are evaluated with real numbers. From these values, the nodes of the
second layer calculate their outputs, then the nodes of the third layer calculate
their outputs based on the outputs of the second layer, and so on. This process

6

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Input 5

Output

Figure 2.2: A feedforward neural network comprised of three layers of nodes.

propagates through the rest of the network until the output layer is reached. Since
there are no cycles in the interunit connections of the FFNN, a finite number of
steps is required to achieve such state. The outputs of the nodes located in the
output layer are considered to be the outputs of the neural network. By this
description, it is possible to think of the FFNN as a real vector function from
m-dimensional to n-dimensional space, where m,n denote the number of nodes
in the input and the output layer respectively.

The process of calculating the output of a single node with respect to its
inputs (which are in fact the outputs of the nodes of the previous layer) is quite
straightforward. The output is defined as

y = f

(
b+

n∑
i=1

wixi

)
(2.1)

where {xi}ni=1 denote the input values, {wi}ni=1 denote the interunit connection
weights, b denotes the bias parameter of the node and f denotes the activation
function. The combination of all these parameters is illustrated in Figure 2.3.

x2 w2 Σ f

Activation
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 2.3: A diagram of FFNN node evaluation with three inputs.

It is worth noting at this point that a constant number of weights can be
achieved by assigning nonexistent interunit connections zero weights. For the
purposes of implementation, it is also possible to approximate the effects of the
bias parameter by creating one additional node in every layer and configuring it
to produce constant output. The bias of every node in the layer is then simply
encoded into connection weights of such node.

7

3. Goals of the Thesis

Based on a brief overview of the features offered by existing libraries support-
ing genetic algorithms (Section 3.1), we conclude with a statement of requirements
on the presented library (Section 3.2).

3.1 Survey of Previous Works

In September 2015, prior to writing this thesis, an online survey of over 30
redistributable GA libraries was conducted. Its results are attached in Appendix
A.

In general, the survey seemed to indicate that there exist many implementa-
tions of GA in historically old programming languages and only a few that are
compatible with the new ones, such as Swift.

Due to the high number of projects, libraries written in well-established lan-
guages offered more specialized features, focusing for instance only on grammar
evolution or distributed evaluation. On the other hand, implementations in young
or still-evolving languages focused more on providing a stable runtime foundation
for GA execution.

3.1.1 Swift Implementations

In Swift, only two working implementations were discovered. The first implemen-
tation is Genetic Swift1, a single-file demonstration application of the fundamen-
tal principles of GA without any focus on customization or redistributablity in
other projects.

The other implementation was Mendel2, a small yet highly extensible frame-
work for implementing GA. Although Mendel met the semantic criteria of the
survey, one might hesitate to describe it as a robust foundation for developing
and executing GA mainly due to its minimalistic design which complies more
with the guidelines of functional than object-oriented programming.

3.2 Statement of Requirements

With the results of the survey in mind, this section states key requirements on
the GA library, which is the subject of this thesis.

1. Divide the GA into separate components in compliance with the defined
terms and the referenced literature.

2. Design an object-oriented model and state requirements and assumptions
for every of its components.

3. Provide implementation of at least one component of every type, possibly
also implementing other frequently used alternatives.

1Genetic Swift is available online: https://github.com/NikoYuwono/Genetic-Swift
2Mendel is available online: https://github.com/saniul/Mendel

8

https://github.com/NikoYuwono/Genetic-Swift
https://github.com/saniul/Mendel

4. Allow customization of components by the means of conventional object
polymorphism, Swift generics and extensions.

5. Offer documentation and unit tests of the provided implementation (where
applicable).

6. Create at least three working usage examples of practical application.

9

4. Library Documentation

This chapter contains technical documentation of individual components of the
library. To better illustrate some concepts, examples and code demonstrations
are included.

The overall architecture of the library is based on generics and object polymor-
phism. Since the library offers object definitions as well as their implementation,
it often defines Swift protocols (similar to interfaces in other programming lan-
guages) or abstract classes1, which are implemented by some of its objects. The
purpose of this approach is to offer users a selection of ready-to-use building
blocks as well as the option of customization, which is useful in certain cases.

The following sections define the object types representing chromosome data
structures (Section 4.1), population evaluators (Section 4.2), genetic operators
(Section 4.3), selection objects (Section 4.4), termination conditions and event
handlers (Section 4.5) and extensions (Section 4.6).

4.1 Chromosomes

In the context of GA, a chromosome (also known as genotype) is a piece of infor-
mation describing a solution to a problem [6]. Within the library, chromosomes
can be represented by any reference types, which conform to the ChromosomeType
protocol. This protocol requires them to

1. be immutable,2

2. be capable of randomly generating new instances of themselves.3

The upcoming sections explain why the choice of a good chromosome data
structure is important in GA design (Section 4.1.1), how to achieve common con-
figurations for string-based (Section 4.1.2) and tree-based (Section 4.1.3) chromo-
somes, how to customize them for different applications and how to define custom
data types for storing proprietary information (Section 4.1.4.

4.1.1 Data Representation Problem

When designing chromosome data structures, users first need to decide which
information should be stored within chromosomes and how should such informa-
tion be encoded into primitive types. These questions might not always be trivial
to answer and it is possible to show that unfortunate choices could potentially
impact the rate of convergence of the GA significantly. This is known as the
problem of data representation.

1In conventional programming languages, abstract classes contain unimplemented method
definitions. Since Swift does not support this paradigm, it is emulated through the mechanism
of static precondition failures.

2This is a semantical requirement implying that every chromosome modification will require
a new instance of the type to be created.

3This is achieved by requiring conformance to the Randomizable protocol.

10

It is worth noting at this point that the complexity of this problem extends far
beyond the scope of this work, and is thus not addressed. For more information
on this topic, readers are referred to [6].

4.1.2 Strings

A popular method of storing chromosomes is to encode them as strings of values
of the same type, e. g. binary or numeric. The library represents such strings in
the form of range-initialized arrays.

A range-initialized array is a generalization of a regular array. It is a generic
list structure, which is capable of holding finite amounts of ordered homogeneous
items. However, at the time of initialization, the number of elements in the array
is set to a value, which randomly selected from a given number interval. This
allows for more flexibility, since in some applications it is desirable to vary not
only the contents of the chromosome, but also its size. If this behavior is not
wanted, the array can be reconfigured to a constant length by specifying any
interval of length zero.

A simple usage of range-initialized arrays can be demonstrated on finding
solutions to the Knapsack Problem. Suppose that there are 10 things of different
sizes and values and a knapsack of a limited capacity. The objective is to select
things in order to maximize the total value of the knapsack contents, while not
exceeding its capacity. Clearly, all solutions of this problem can be described as
strings of 10 Boolean values, indicating whether items 1-10 are selected. These
values can be stored in a range-initialized array with interval [10; 10], implying
that the array has fixed size 10. The array class is declared in Listing 1.

1 class KnapsackChromosome: RangeInitializedArray {

2 typealias Element = Bool

3 static let initializationRange = 10...10

4

5 let array: [Element]

6 init(array: [Element]) {

7 self.array = array

8 }

9 }

Listing 1: Range-initialized array used to solve the Knapsack problem.

In a similar way, range-initialized arrays can store integers to encode number
sequences or floating-point decimals to describe connection weights of neural net-
works. Thanks to Swift type extensions, every instance of range-initialized array
automatically conforms to the ChromosomeType protocol and supports three ba-
sic genetic operators (for definition, see Section 4.3). Range-initialized arrays can
thus be directly used as chromosomes in the GA without any further modification.

It is worth noting at this point that strings are not designed to hold het-
erogeneous information. In spite of that, it is possible to use them for such
purpose. For instance, if a chromosome is required to contain numbers as well
as bits, it can be encoded as a binary string, portions of which would be later

11

interpreted4 as integers by the application. While this approach succeeds in its
purpose, it is strongly discouraged as it may also become a cause to various sub-
sequent problems. For example, when applying genetic operators on the chromo-
some, the bundled implementation mutates range-initialized arrays by selecting
a random element and modifying its value. In conventional situations, this is
the desired behavior. However, if the algorithm happens to select an item of the
array, which is merely a part of a greater whole (e. g. number), unfortunate
modification of such item could cause the chromosome to become undecodable.
Instead, the recommended alternative is to use custom types (see Section 4.1.4),
which not only avoid this issue, but also allow strongly-typed information to
be checked at the time of compilation, discovering any possible type conversion
errors.

4.1.3 Trees

Tree structures are commonly used in applications, which require automatic
code generation. In such applications, individuals often carry chromosomes which
contain control programs, mathematical formulas or similar information that can
be represented by tree graphs. The library allows to represent such type of data
by a collection of tree nodes.

A tree node is an abstract data structure, which can be configured to contain
information of any type. In addition, tree nodes can point to multiple other tree
nodes, linking the information they contain together, in order to form a forest.
The library recognizes two fundamental types of tree nodes:

Value Nodes (generic) The purpose of a value node is to produce a value
of some kind. While the means of producing the value may differ (e. g.
constant, function or binary operation) as well as its type, every value node
must offer a way to retrieve its value at runtime. This type of node is
represented by the generic class ValueNode<T>.

Action Nodes The purpose of an action node is to perform an action at runtime.
The action may be a command of some kind, or may call other action,
possibly requiring arguments in the form of other value nodes. This type
of node is represented by the class ActionNode.

Both types of nodes are intentionally left abstract, guiding users to define
their own node types for functions, operations and commands depending on their
applications. This procedure is very simple and can be demonstrated on a maze
robot simulation. Suppose that there is a robot, which can receive WAIT, GO, STOP,
TURN-LEFT and TURN-RIGHT instructions in order to navigate a 2-dimensional
maze. The robot is also capable of determining whether its front side is facing an
obstacle. To auto-generate a control program for such robot, its instructions can
be formalized as 5 subclasses the class ActionNode and the sensor output can be
represented by a subclass of the class ValueNode<Bool>. Such formalization is
shown in Listing 2.

4Interpretation can be performed in compliance with any known encoding, e. g. conventional
signed encoding, BCD or the Gray code (RBC).

12

1 class GoCommandNode: ActionNode {

2 override func perform(interpreter: TreeInterpreter) {

3 guard interpreter.running else { return }

4 // Tell the robot to go forward.

5 // The interpreter contains the current context.

6 }

7

8 override func propagateClone(factory: RandomTreeFactory,

9 mutateNodeId id: Int) -> ActionNode {

10 // This node contains no descendants.

11 return GoCommandNode(id: self.id, maximumDepth: self.maximumDepth)

12 }

13 }

Listing 2: Example implementation of the GO command action node.

Root:
LoopNode

Termination:
ObstacleSensorNode

Action:
SequenceNode

GoCommandNode WaitCommandNode

Figure 4.1: Example program for the maze robot simulation, which makes the
robot go forward until it encounters an obstacle.

It is conceivable that combinations of various tree nodes can be translated into
a language, which is similar to LISP in its architecture (as illustrated in Figure
4.1). To produce fundamental building blocks of such language, a tree factory
object is required. Factories create new randomized instances of tree nodes, and
can thus restrict or extend types of generated nodes depending on the application.
The library contains various bundled node types, ready to use:

Constants Constant nodes (ConstantNode<T>) contain constant values of any
type, unchanging during program execution.

Operations Operation nodes (descendants of classes UnaryOperation<T1,T2>

and BinaryOperation<T1,T2,T3>) are generic templates for functions. Ar-
guments of such functions are represented by other value node instances.

Comparisons Comparison nodes represent equality (EquationNode<T>) and
inequality predicates (ComparisonNode<T>), operating on tuples of other
value node instances.

Arithmetic and Boolean Operations For any numeric value nodes, addition,
subtraction, multiplication, division and modulation are supported. In
analogy, Boolean value nodes support negation, conjunction, disjunction,
implication and equivalence.

13

Control-flow Primitives Action nodes can be combined in sequences, loops or
simple conditional expressions. Names of the node types responsible for
this functionality are analogous to those listed above.

It is recommended that tree factories are instantiated in the global context,
or in subclasses of entropy generators (see Listing 3). Apart from controlling the
type of generated nodes, factories allow to specify upper bounds of the depth and
width of the tree, restricting the number of generated structures.

1 class RobotProgramFactory: TreeFactory {

2 /* ... */

3 }

4

5 class MyGenerator: MersenneTwister {

6 let robotProgramFactory: RobotProgramFactory

7

8 override init(seed: Int) {

9 robotProgramFactory = RobotProgramFactory(generator: self)

10 super.init(seed: seed)

11 }

12 }

Listing 3: Tree factory declared in an entropy generator subclass.

4.1.4 Custom Types

If the chromosome information is not compatible with strings or trees, or is
heterogeneous in its nature, it is recommended that a custom data type is declared
to hold it. This allows users to label, document and describe individual parts of
the chromosome, as well as to customize its behavior at important points of
evaluation.

Any reference type can become a chromosome data structure, if it conforms
to the ChromosomeType protocol (and its inherited protocols). No other proto-
col conformance is formally required. Nevertheless, it is worth noting that some
genetic operators may require chromosomes to conform to other proprietary pro-
tocols, in order to operate on them. For instance, the Mutable protocol, which is
required by the Mutation operator. For description of such protocols, see Section
4.3.

Declaration of custom types can be demonstrated on The Hamburger Restau-
rant Problem, mentioned in the introduction5 of [7]. The objective is to find a
business strategy for a chain of hamburger restaurants, which yields the biggest
profit. A strategy consists of three decisions:

Price What should be the price of the hamburger? Should it be 50 cents, 10
dollars or anywhere in between?

Drink What drink should be served with the hamburger? Water, cola or wine?

5For the purposes of this work, the example has been slightly altered.

14

Speed of service Should the restaurant provide slow, leisurely service by wait-
ers in tuxedos or fast, snappy service by waiters in white polyester uniforms?

Clearly, every strategy is a heterogeneous data structure. Although it could
be encoded into a binary string as proposed in Section 4.1.2, it is much safer and
more elegant to declare a dedicated type to hold its information. Such declaration
is shown in Listing 4.

1 class RestaurantStrategy: Randomizable {

2 let hamburgerPrice: Double

3 let drink: Drink

4 let waiterSpeed: Speed

5

6 init(generator: EntropyGenerator) {

7 // Generate random values.

8 hamburgerPrice = generator.nextInRange(min: 0.5, max: 10)

9 drink = generator.next()

10 waiterSpeed = generator.next()

11 }

12 }

Listing 4: Example declaration of custom chromosome type.

Note that in the example declaration, every property is named and strongly-
typed, clearing up any possible confusion about their purpose, and preventing
type casting issues in the future. Moreover, the custom implementation of the
randomization initializer allows users to specify clear bounds for fields, such as
the hamburger price. Thanks to Swift generics, fields of type Drink and Speed

can also be randomly initialized through the entropy generator, provided that
they do conform to the Randomizable protocol. This way, the randomization
call is propagated to all fields of the data structure.

Lastly, it is worth mentioning that types which are capable of listing all their
possible values in a set of finite cardinality can utilize the Discrete protocol.
This protocol functions as a simple time-saving shorthand for the Randomizable

protocol, since it produces random values from the discrete uniform distribution
of all values in the set. A good demonstration of this is a possible implementation
of the Drink type, which is declared as a Swift enumeration in Listing 5.

1 enum Drink: Discrete, Randomizable {

2 case Water, Wine, Cola

3 static let allValues: [Drink] = [.Water, .Wine, .Cola]

4 }

Listing 5: Declaration of a chromosome type through a discrete listing of values.

As shown by the demonstrations, declaration of custom types for heteroge-
neous chromosomes in Swift is effortless, safe and efficient. However, the reader
should not be misled into thinking it only serves for creating nicely annotated

15

vessels for information. This technique can be also used to create more complex
genotype containers with customized behavior and proprietary internal structure,
which is most notably exemplified by strings and trees, as both types are imple-
mented in this way.

4.2 Population Evaluation

In order to assess and compare the quality of chromosomes with respect to the
optimization problem at hand, a common fitness evaluation model is used. In
this model, every chromosome is assigned a value from the [0; 1] interval by a
fitness function, which is heavily dependent on the application and thus required
to be specified by the user.

The fitness function (denoted f) is encapsulated in an evaluator object, which
is active for the entire duration of evaluation. The purpose of this encapsulation
is to enable the possibility of accelerating the evaluation process by minimizing
computing overhead needed to set up and tear down other components required
to perform the evaluation itself. Since fitness functions often involve resource-
expensive simulations and randomized testing scenarios, such optimization may
be efficient in some cases.

The following sections explain the data structure which holds the evaluated
chromosomes (Section 4.2.1), the underlying base types of evaluator objects (Sec-
tion 4.2.2) and the technique of nesting evaluators in order to perform statistical
aggregation (Section 4.2.3).

4.2.1 Mating Pool

In the context of population evaluation, a mating pool represents a collection of
individuals relevant to the current iteration of the GA. The pool is divided in two
parts: the current generation and the offspring. Evaluators operate only on the
first of these two.

Apart from chromosomes, individuals in the mating pool also have an optional
field dedicated for their fitness value. When a new individual is inserted into the
population, value of this field is not present. However, individuals transitioning
between generations carry their previously set fitness with them. In a single
iteration of the GA, the fundamental purpose of an evaluator object is to ensure
that all individuals in the current generation have a non-null fitness value.

4.2.2 Sequential and Parallel Evaluators

The library supports two evaluation modes: sequential and parallel. While the
sequential mode is easier to implement but leads to slower evaluation, the parallel
mode is faster but requires the internals of the fitness function to be compatible
with multi-threaded processing, which may not always be feasible with respect
to the problem definition.

To demonstrate implementation of a simple sequential evaluator, recall the
chromosome structure, which was proposed earlier6 for the Knapsack Problem.

6The Knapsack Problem is defined in Section 4.1.2. For chromosome, see Listing 1

16

Suppose the fitness function is defined as

f(c1, c2, . . . , c10) =

{
0 if

∑10
i=1 cisi > Smax∑10

i=1 civi/
∑10

i=1 vi otherwise
(4.1)

where Smax represents the maximum capacity of the knapsack, {si}10
i=1 are sizes of

things, {vi}10
i=1 are values of things and {ci}10

i=1 are 0/1 coefficients generated from
the Boolean values of the chromosome. A simple implementation of a sequential
evaluator using this function is shown in Listing 6.

1 class KnapsackEvaluator: SequentialEvaluator<KnapsackChromosome> {

2 // These values are part of the problem instance.

3 let thingValues: [Double], thingSizes: [Double]

4 let knapsackCapacity: Double

5

6 // This value is only calculated on the first time it is needed.

7 lazy var maxValue: Double = self.thingValues.reduce(0, combine: +)

8

9 override func evaluate(chromosome: KnapsackChromosome) -> Fitness {

10 let size = zip(chromosome.array, thingSizes).reduce(0)

11 { $0 + ($1.first ? $1.second : 0) }

12 if size > knapsackCapacity { return 0 }

13

14 let value = zip(chromosome.array, thingValues).reduce(0)

15 { $0 + ($1.first ? $1.second : 0) }

16 return value / maxValue

17 }

18 }

Listing 6: Example of a sequential evaluator for the Knapsack Problem.

In the example, the evaluator is a descendant of the generic abstract class
SequentialEvaluator<T>, which is a common base class for all sequential eval-
uators. Similarly, all parallel evaluators have to be descendants of the class
ParallelEvaluator<T>, which instantiates multiple sequential evaluators op-
erating on different threads and manages internal producer-consumer queue to
facilitate parallel evaluation of chromosomes. Moreover, both types of evaluators
inherit from Evaluator<T>, an abstract class which defines the formal require-
ments on all evaluator objects.

When implementing fitness evaluator classes, it is recommended that the class
Evaluator<T> is directly subclassed only in cases, when the evaluation scheme
is incompatible the other already existing subclasses. A good example of such
scenario would be an evaluator utilizing a distributed computing cluster. How-
ever, directly subclassing Evaluator<T> only to create a custom implementation
of sequential evaluator is not advisable, since SequentialEvaluator<T> is inte-
grated into other components of the library and avoiding its use would introduce
subsequent issues.

17

4.2.3 Cyclic Evaluators

Every descendant of the class SequentialEvaluator<T> is eligible to be com-
bined with a cyclic evaluator (represented by the class CyclicEvaluator<T>).
Instances of cyclic evaluators encapsulate other evaluators, which are called mul-
tiple times in order to evaluate a single chromosome. Such sub-evaluations are
then statistically aggregated to produce a final fitness value. This procedure
mimics a commonly used technique in GA fitness evaluation, which yields more
stable and reliable fitness values, especially in randomized simulations.

Usage of cyclic evaluators is straightforward. At the instantiation time, a
cyclic evaluator receives 3 parameters: a sequential evaluator, and numbers n
and m. Upon evaluation of an individual, the sequential evaluator is called n
times, producing a vector of n fitness sub-evaluations. From this vector, m of
the highest (or the lowest) fitness values are then selected. The final fitness value
returned by the cyclic evaluator is the average calculated from the selected values.

4.3 Genetic Operators

Genetic operators are procedures, which are performed on collections of individ-
uals during the evaluation of the GA in order to transition between iterations.
When operators are applied, the entire mating pool is available to them. While
the current generation can be merely accessed for reading, the offspring genera-
tion also supports writing. Every operator can thus read an arbitrary number of
chromosomes from the current generation, and is expected to insert at least one
chromosome into the offspring generation.

The selection of chromosomes is carried out through selection objects, which
are specified as configuration parameters of individual operators. There are var-
ious types of selections, each providing the selection pressure in a different way,
thus being suitable for different classes of applications. For the description of
supported selection methods, see Section 4.4.

The library offers implementation of three common genetic operators: repro-
duction (Section 4.3.1), mutation (Section 4.3.2) and crossover (Section 4.3.3).
However, users are by no means limited to only these three. Section 4.3.4) gives
details and recommendations on creating custom operators. Lastly, the ways of
combining genetic operators into decision trees are described in Section 4.3.5.

4.3.1 Reproduction

The reproduction operator mimics the asexual reproduction of natural organ-
isms, which have survived long enough to mature. Unlike others, this operator
does not introduce any novelty into the offspring generation. Instead, its purpose
is to simply stabilize the population by carrying certain traits between genera-
tions. This in effect prevents the loss of diversity and thereby avoids premature
convergence of the GA, which may lead to a suboptimal solution.

When applied on the population, the reproduction operator copies arbitrary
number of selected chromosomes from the current generation to the next one
without any modifications. Since the selection of individuals is independent of
the operator implementation, it is technically possible to use any selection object

18

with this operator. Nevertheless, it is worth noting that only fitness-proportionate
strategies make sense in this context. A good example of such strategies is elitism,
which is more thoroughly described in Section 4.6.1.

Since individuals are immutable by definition, the operator requires their un-
derlying chromosome data structures to conform to the Reproducible protocol
in order to work properly. This protocol is a simple extension of the Copyable

protocol, which requires types to be capable of producing deep copies of their
instances.

4.3.2 Mutation

The mutation operator serves the desirable function of introducing occasional
variety into a population and restoring its lost diversity (see [7]). It is funda-
mentally similar to the reproduction operator, as it operates by copying selected
chromosomes from the current generation to the next one. However before copy-
ing, the chromosomes are modified in a non-deterministic way (i.e. mutated),
imitating random transcription errors during replication of genetic information
in the nature. The degree of mutation in the chromosomes is static and deter-
mined by the implementation. In general, mutated chromosomes can be expected
to mostly resemble their original counterparts, yet not be completely identical.

In order to be used in the GA, the mutation operator requires chromosome
data structures to conform to the Mutable protocol. Every container can thus
have its own, slightly different implementation of mutation, which should be
defined in its documentation. General guidelines for implementing mutation are:

1. Select one chromosome in the current generation.

2. Choose a “part” of the chromosome at random.

3. Copy the chromosome, substituting the chosen part for a randomly gener-
ated equivalent.

4. Insert the modified chromosome into the offspring generation.

Clearly, among various data structures the semantical definition of a “part”
may differ. For instance, in range-initialized arrays, a part is defined as an item
of the array. Since arrays are homogeneous, all their are equivalent by definition.
In contrast, a part of a tree node structure is defined as a rooted subtree. Two
subtrees are equivalent if the fundamental base classes of their root nodes match.

4.3.3 Crossover

The crossover operator emulates the act of sexual reproduction of individuals
in the nature (also known as recombination). Unlike the previous two operators,
it requires the input of exactly two chromosomes from the current generation,
which are referred to as the parent chromosomes. During the execution of the
operator, parts of the parent chromosomes are randomly chosen and exchanged,
producing two new chromosomes, which are inserted into the offspring generation.
These chromosomes carry a mixture of traits of the parent chromosomes, and can
therefore be thought of as their children.

19

Similarly to the mutation operator, in order for the crossover to be used
with chromosomes, their underlying data structure must conform to a dedicated
Swift protocol, which allows users to customize the behavior of the operator
with respect to the architecture of the data structure. The general guidelines for
implementing such customizations are:

1. Select two distinct chromosomes in the current generation.

2. Choose pairs of “parts” of the chromosomes at random.

3. Copy both chromosomes, swapping the parts in each pair.

4. Insert the modified chromosomes into the offspring generation.

Depending on the number and size of interchanged parts, multiple classes of
crossover operators7 can be defined. For arrays and range-initialized arrays, two
crossovers are implemented:

One-point crossover A single point is randomly chosen to divide both arrays
in two parts. While the first pair of parts is kept at its original position,
the second pair is swapped. This crossover is represented by the protocol
OnePointCrossoverable.

Two-point crossover In analogous way to the one-point crossover, two points
are randomly chosen to divide both arrays in three parts. The middle pair
of parts is swapped between the chromosomes, whereas the remaining two
pairs are left unmodified. This crossover is represented by the protocol
TwoPointCrossoverable.

4.3.4 Custom Operators

By creating descendants of the generic abstract class GeneticOperator<T>, users
are free to implement and experiment with any genetic operators of their own.
This section gives details and recommendations on implementing such subclasses.

The base class contains a selection object and an initializer method, which
is used to configure the selection at the time of creation. This initializer must
be called from any descendants as it is crucial to operator execution later on.
The internal logic of the operator is controlled by the abstract method apply(),
which receives a mating pool and an entropy generator object. In this method,
the operator is expected to call the selection object exactly once and provide it
with both mentioned objects as well as the number of individuals needed for its
execution. The selection then returns a list of the selected indices, which can be
used to access the objects of individuals containing chromosome data and fitness
evaluations. To further illustrate this approach, an example of a custom operator
implementation is shown in Listing 7.

It is strongly recommended that genetic operators exert no additional selec-
tion logic on top of the results returned by the selection object. Instead, such
logic is recommended to be resolved by creating custom selection objects, which
are capable of encapsulating other selection objects. If required, this technique

20

1 class MyCustomOperator<Chromosome: ChromosomeType> {

2 let parameter: Int // You can specify custom parameters.

3

4 init(_ selection: Selection<Chromosome>, parameter: Int) {

5 self.parameter = parameter

6 super.init(selection)

7 }

8

9 override func apply(generator: EntropyGenerator,

10 pool: MatingPool<Chromosome>) {

11 // Select 42 chromosomes from the current generation.

12 let selectedIndices = selection.select(generator,

13 population: pool, numberOfIndividuals: 42)

14

15 // Access the individuals.

16 for index in selectedIndices {

17 let individual = pool.individualAtIndex(index)

18

19 // Do something with the individual...

20 }

21 }

22 }

Listing 7: Example of a custom genetic operator implementation.

can be applied in the operator initializer, forcing all selections to undergo such
encapsulation, as shown in Listing 8.

In order to better work on the chromosome data structures, genetic operators
can also define custom protocols, to which such structures can conform. By usage
of Swift extensions, existing structures can be then altered to comply with any
additional requirements specified by these protocols.

4.3.5 Decision Trees

Decision trees are used to describe the sequential application of operators in the
GA. The library includes Swift syntax extensions to facilitate simple customiza-
tion of such operator sequences. Two types of nodes are supported:

Operator nodes Operator nodes correspond to instances of application of ge-
netic operators.

Chance nodes Chance nodes contain non-deterministic switches between mul-
tiple choices. Every choice specifies its probability and a decision subtree
to execute, should it be selected.

To ease their usage, decision trees are defined by custom Swift operators. In
order to concatenate tree nodes in a sequence, the three-dash arrow operator
(e.g. --->) is used. Sequences produced by this operator resemble linked lists in

7Each crossover operator has a dedicated Swift protocol.

21

1 class MyCustomSelection<Chromosome: ChromosomeType> {

2 /* ... */

3 }

4

5 class MyCustomOperator<Chromosome: ChromosomeType> {

6 override init(_ selection: Selection<Chromosome>) {

7 let encapsulated = MyCustomSelection(selection)

8 super.init(encapsulated)

9 }

10 /* ... */

11 }

Listing 8: Example of a selection object encapsulation.

their structure. The three-bar operator (e.g. |||) serves to determine choices in
chance nodes. The syntax of both operators is illustrated by Listing 9.

1 // Apply reproduction, then mutation.

2 let p1 = reproduction ---> mutation

3 // Non-deterministically select the operator.

4 let p2 = Choice(mutation, p: 0.3) ||| Choice(crossover, p: 0.7)

5 // A combination of both techniques.

6 let p3 = reproduction ---> (Choice(mutation, p: 0.3)

7 ||| Choice(crossover, p: 0.7))

Listing 9: Example of decision tree definition.

4.4 Selections

The purpose of selection objects is to separate the methods of chromosome
selection from the genetic operators. This approach allows users to easily combine
operators with selection methods without the need for unnecessary subclassing.

As input, selection objects receive three parameters from their genetic op-
erators: the current generation (together with fitness evaluations), an entropy
generator and the number of requested chromosomes. In return, selection objects
are expected to produce a list of indices of the selected chromosomes or fail with
error should the population contain insufficient number of chromosomes. When
accessing fitness evaluations, the library uses lazy-loading optimizations, in order
to prevent unnecessary sorting and data aggregation. For that reason, selection
objects are not required to specify fitness-related dependencies. Instead, addi-
tional calculations are performed on the first instance when the information is
required.

Similarly to genetic operators, the library offers the implementation of com-
mon selections: roulette selection (Section 4.4.1), rank selection (Section 4.4.2),
tournament selection (Section 4.4.3) and several others (Section 4.4.4). In addi-
tion, the library allows its users to customize the behavior of selections, possibly

22

creating their own subclasses (Section 4.4.5).

4.4.1 Roulette Selection

Roulette selection is one of the most basic fitness-proportionate selection meth-
ods used in the GA. When applied, each chromosome is assigned a normalized
probability proportional to its current fitness value. Based on the assigned proba-
bilities, a random generator then selects chromosomes from a discrete non-uniform
distribution. This process can be likened to a spin of unfair roulette wheel, where
every chromosome is allocated a sector with angle proportional to its fitness [8].

The application of this method can be shown on a simple example. Suppose
that there are four chromosomes with fitness values 0.05, 0.4, 0.8 and 0.1. In
order to generate a distribution, the roulette selection method merely normalizes
fitness values to sum up to 1. Chromosomes are therefore assigned probabilities
0.04, 0.3, 0.59 and 0.07 respectively.

In the library, roulette selection is represented by the RouletteSelection

class, which has no arguments and can be combined with any genetic operator.

4.4.2 Rank Selection

Rank selection is a modification of the roulette selection method, which is better
suited for cases with extreme differences in fitness values. In such situations, often
a small group of fit chromosomes receives the majority of the roulette wheel, caus-
ing the rest of the population to be mostly neglected, thus leading to premature
convergence of the GA.

To resolve these cases, rank selection first sorts all chromosomes by their cur-
rent fitness values. Every chromosome is then assigned a probability proportional
to its rank in the sequence (hence the name of the method). For example, if rank
selection had been used instead of roulette, the chromosomes in the example from
the previous section would be assigned ranks 1, 3, 4, 2 respectively. These ranks
would be simply normalized to probabilities 0.1, 0.3, 0.4 and 0.2.

In the library, rank selection is represented by the RankSelection class, which
has no arguments and can be combined with any genetic operator.

4.4.3 Tournament Selection

Tournament selection provides selection pressure by holding a tournament among
s competitors, with s being the tournament size (or order). The winner of the
tournament is the chromosome with the highest fitness of the s tournament com-
petitors [4].

The library contains implementation of tournament selection, where competi-
tors are chosen from the population by another selection object. By default, this
secondary selection is random. However, by changing this argument, users can
customize the behavior of the tournament selection significantly.

This selection method is represented by the TournamentSelection class,
which receives the value of parameter s and the secondary selection object upon
instantiation, and can be combined with any genetic operator.

23

4.4.4 Miscellaneous

In addition to the three methods described in previous sections, the library
contains implementation of primitive selection objects, which serve as utilities for
other selections or operators:

Random selection This method selects chromosomes at random with no re-
gards to their fitness values. It is represented by the RandomSelection

class, which has no arguments and can be combined with any genetic oper-
ator.

Best selection This method deterministically selects chromosomes in the de-
scending order of fitness values. It is represented by the BestSelection

class, which has no arguments and can be combined with any genetic oper-
ator.

Worst selection This method deterministically selects chromosomes in the as-
cending order of fitness values. It is represented by the WorstSelection

class, which has no arguments and can be combined with any genetic oper-
ator.

4.4.5 Custom Selections

To create a selection object for a custom selection method, users need to subclass
the generic class Selection<T>.

The internal logic of any selection object is contained within the implementa-
tion of the abstract function select(). This function receives an entropy genera-
tor, a population, which serves as the domain for the selection, and the requested
number of chromosomes to select. The expected output of the method is a set of
zero-based indices pointing to the requested number of selected chromosomes in
the population, which are not required to be distinct.

In the implementation of the method, users are free to assume that the fitness
evaluation of all chromosomes is available. Moreover, it possible to declare ad-
ditional parameters or secondary selection objects during instantiation. If neces-
sary, selection objects can also declare auxiliary protocols for chromosome types,
in order to better integrate with their contents. A basic implementation of a
custom selection object is shown in Listing 10.

4.5 Execution

The library provides a simple interface for definition and configuration of the
GA through the class GeneticAlgorithm<T>. In instances of this class, various
components of the library come together to form a robust runtime environment
for the execution of GA.

To configure the environment, the following parameters are required:

Population size The desired number of individuals in every generation of the
mating pool. Since the number of individuals produced by genetic operators
is not defined, the actual number of generated individuals may differ. In

24

1 class MySelection<Chromosome: ChromosomeType>: Selection<Chromosome> {

2 override init() { }

3

4 override func select(generator: EntropyGenerator,

5 population: MatingPool<Chromosome>,

6 numberOfIndividuals: Int) -> IndexSet {

7 // Always select the first 3 individuals.

8 return IndexSet([0, 1, 2])

9 }

10 }

Listing 10: Example of custom selection implementation.

such cases, the value of this parameter serves as a lower bound to the actual
value.

Decision Trees The GA allows two decision trees to be specified. For reasons of
clarity, these trees are labeled α and β. While the α-tree is executed repeat-
edly at the beginning of every iteration of the GA, the β-tree is executed
multiple times per iteration in order to populate the offspring generation.
For more information, see Section 4.3.5.

Evaluator The evaluator object is instantiated for the entire duration of the
execution of the GA. It receives requests to evaluate individuals in every
iteration. For more information, see Section 4.2.

Termination condition At the end of every iteration, the termination object is
called to determine whether the GA should continue execution or terminate.
For more information, see Section 4.5.1.

Entropy generator This object provides sequences of pseudorandom numbers
used for non-deterministic parts of the GA. For more information, see Sec-
tion 4.6.3.

Once all dependencies are initialized, the GA is ready to commence execution.
In this context, a single instance of execution is referred to as a run. Runs are
executed synchronously8 and are comprised of multiple iterations, depending on
the termination condition. Each iteration consists of the following steps:

1. Ensure that all individuals in the current generation are evaluated.

2. Execute the α-tree once.

3. Reset the offspring generation.

4. Execute the β-tree repeatedly until the offspring generation size is sufficient.

5. Replace the current generation with the offspring.

8Beware, the thread which calls the run() method is suspended until the execution finishes.

25

4.5.1 Termination Conditions

Termination objects are descendants of the class TerminationCondition<T>.
Their instances encapsulate Boolean functions, which determine whether the GA
should terminate its execution upon the end of every iteration.

Objects provided by the library can be divided into two groups: the prim-
itives and the contractions. The purpose of this division is to allow users to
formulate complex termination conditions by combining primitives with the help
of contractions. The supported primitives are:

Fitness threshold This condition terminates the execution of the GA once the
best (or average) fitness in the population exceeds a set threshold. It is
represented by the class FitnessThreshold<T>.

Maximum number of generations This condition terminates the execution
of the GA after a set number of iterations is performed. It is represented
by the class MaxNumberOfGenerations<T>.

Termination date This condition terminates the execution of the GA after a set
date and time comes to pass. It is represented by the class AfterDate<T>.

Although every of the listed primitive objects can be used as a stand-alone
termination condition, it is desirable to combine primitives using contractions.
The library supports three basic contractions based on the fundamental logical
operations. They are represented by classes NotCondition<T>, AndCondition<T>
and OrCondition<T>. To simplify their usage, the library overloads common
Swift Boolean operators !, &&, || in order to make them compatible with any
descendants of TerminationCondition<T>. This is illustrated in Listing 11.

1 // Terminate after the best fitness exceeds 0.6 or 200 generations pass.

2 let termination1: TerminationCondition<MyChromosome>

3 = FitnessThreshold(0.6) || MaxNumberOfGenerations(200)

4

5 // Terminate if the best fitness does not reach 0.2 after the first

6 // 100 generations. Otherwise, terminate after 5000 generations.

7 let termination2: TerminationCondition<MyChromosome>

8 = (!FitnessThreshold(0.2) && MaxNumberOfGenerations(100))

9 || MaxNumberOfGenerations(5000)

Listing 11: Example definitions of termination conditions.

4.5.2 Event Hooks

Although the execution of the GA is synchronous on the level of individual runs,
the library allows its users to directly respond to certain important events for
the purposes of monitoring and logging. This is achieved by the application of a
simple event-driven model.

Every event of interest declares a hook. Hooks are optional function pointers,
which can be set by the users to introduce custom logic into the evaluation scheme.

26

By default, all hooks are unset when the GA is initialized. If the DEBUG macro
is defined at the time of compilation, hooks are initialized with functions which
print log messages to the standard output. Hooks for the following events are
supported:

Run started This event occurs after the run() method is called, but before the
first population of random individuals is generated. It is represented by the
field hookRunStarted.

Run finished This event occurs after the termination condition stops the exe-
cution of the algorithm, just before the run() method returns. It is repre-
sented by the field hookRunFinished.

Generation advanced This event occurs after every iteration of the GA. At
this point, all individuals are evaluated and values such as the best or
average fitness of the generation can be accessed. It is represented by the
field hookGenerationAdvanced.

Evaluation started This event occurs after a new population of individuals is
created, but before the evaluator object is called. It is represented by the
field hookEvaluationStarted.

Individual evaluated This event occurs after a single individual in the popula-
tion was evaluated. It is represented by the field hookEvaluationFinished.

Evaluation finished This event occurs after all individuals in the population
were evaluated. It is represented by the field hookEvaluationFinished.

4.6 Extensions

In this section, several important extension functions of the library are described.
These extensions are useful in practical applications as they mainly serve auxiliary
purposes, easing the operation of the code, which interacts with the library and
its components.

The following sections are dedicated to explaining how to enable elitism (Sec-
tion 4.6.1), save chromosomes into persistent storage (Section 4.6.2) and how to
customize the random generation algorithm used in the GA (Section 4.6.3).

4.6.1 Elitism

In practical applications, it is desirable to ensure that the quality of the solutions
produced by the GA does not decrease over consecutive iterations. If the quality
is defined as the highest fitness value of the individuals in the current generation,
such effect can be simply achieved by copying the fittest individual from the
current generation to the offspring generation before transitioning to the next
iteration of the GA. This approach is known as elitism.

The library provides a dedicated implementation of elitism represented by the
class Elitism<T>, which is a simple restriction of the reproduction operator to
the best individuals of the generation. For the best results, it is recommended
that the class is directly referenced in the α-tree of a genetic algorithm instance.

27

4.6.2 Persistence

To allow continued operation of the GA, the library supports serialization and
deserialization of object values. This consequently allows users to persist the
state of the GA, terminate their application and restart its execution later on at
the same point. Data is serialized into the JavaScript Object Notation format
(JSON), which is abstracted by the SwiftyJSON framework, one of the depen-
dencies of the library.

In the code, every type that supports persistence is declared to conform to the
PersistentType protocol, which requires it to provide additional encoding and
decoding procedures. For user convenience, the majority of types provided by the
library already conforms to this protocol. Only those types which are dependent
on user subclassing often offer two protocols (or base classes), so that users can
ultimately decide whether to support object persistence in accordance with their
needs.

A good example of this division can be found in range-initialized arrays.
In addition to the protocol RangeInitializedArray<T>, a persistent protocol
PersistentRangeInitializedArray<T> is declared. The first protocol is a par-
ent object to the latter. The only difference is that in the persistent version, type
T is required to conform to PersistentType. In return, the entire persistent ver-
sion of the range-initialized array also conforms to PersistentType, delegating
serialization calls to its elements.

4.6.3 Entropy Generators

Entropy generators are objects used to introduce non-deterministic behavior
into the GA. In their essence, they represent a generalization of the conventional
pseudo-random number generators (PRNG), extending the range of types pro-
duced beyond decimal numbers.

All entropy generators must conform to the EntropyGenerator protocol,
which requires types to be capable of generating pseudo-random floating-point
decimals in the [0; 1] interval. Any type can be randomly generated in a simi-
lar way, provided that it conforms to the Randomizable protocol. The library
provides such extensions for many Swift primitive types including Int, Double,
Float, Bool and enumerations, which can opt into this mechanism by conforming
to the Discrete protocol as shown in Listing 5.

The library offers abstractions of random generation mechanisms provided by
the standard library, most notably the arc4random() function (represented by
ArcGenerator) and the drand48() function (represented by DrandGenerator).
In addition, an implementation of the Mersenne Twister PRNG has been ported
from an existing Python implementation (represented by MersenneTwister).

28

5. Usage Demonstration

This chapter describes three selected demonstrations of the application of the
library on practical problems with increasing difficulty: the MAX-ONE problem
(Section 5.1), a self-driving car simulation (Section 5.2) and an artificial QWOP
game player (Section 5.3).

All of the presented examples (and two additional ones) are included in the
attached library distribution package. To ensure that the mentioned results can
be replicated, all instances of genetic algorithms use seeded entropy generators.

5.1 MAX-ONE Problem

The first example is a very trivial problem. It is defined as follows: Given all bit
strings of length between 10 and 55 characters, find the string which maximizes
the number of ones. Although the optimal solution is clearly a string of 55 ones,
the simplicity of the problem is ideally suited for a demonstration of the individual
components of the library.

The following sections contain a definition of the chromosome data structure
and the fitness function for the MAX-ONE problem (Section 5.1.1), a declaration
of the GA itself (Section 5.1.2) and the results of the algorithm (Section 5.1.3).

5.1.1 Chromosome and Fitness

In this case, the domain space is a finite set. Its points can be characterized as
range-initialized arrays of Boolean values with the initialization interval [10; 55],
which is declared analogically to the array used in solving the Knapsack Prob-
lem (see Listing 1). Since range-initialized arrays already support basic genetic
operators, they can be used as chromosomes in the GA.

To evaluate and compare the quality of chromosomes, a fitness function is
required. For the purposes of this simple example, the fitness function can be
defined as

f(s1, s2, . . . , sn) =
1

55

n∑
i=1

si (5.1)

where {si}ni=1 are the bits and n ∈ [10; 55] is the length of the chromosome. A
simple implementation of a sequential evaluator using this function is shown in
Listing 12.

5.1.2 Algorithm

With both the chromosome data structure and the fitness function defined, the
only remaining step is to declare and configure the instance of the GA before a
run can be started.

To clearly explain the syntax of the GeneticAlgorithm<T> class initializer,
the algorithm shown in Listing 13 has the following properties:

• The number of individuals in every generation is 200.

29

1 class MaxOneEvaluator: SequentialEvaluator<MaxOneChromosome> {

2 override func evaluateChromosome(chromosome: MaxOneChromosome)

3 -> Fitness {

4 let numberOfOnes = chromosome.array.reduce(0) {

5 $0 + ($1 ? 1 : 0)

6 }

7 return Fitness(numberOfOnes) / Fitness(55)

8 }

9 }

Listing 12: Example of a sequential evaluator for the MAX-ONE Problem.

1 let elitism = Elitism<MaxOneChromosome>()

2 let reproduction = Reproduction<MaxOneChromosome>(RandomSelection())

3 let mutation = Mutation<MaxOneChromosome>(RouletteSelection())

4 let crossover = OnePointCrossover<MaxOneChromosome>

5 (TournamentSelection(order: 5))

6

7 let alg = GeneticAlgorithm<MaxOneChromosome>(

8 generator: MersenneTwister(seed: 4242),

9 populationSize: 200,

10 executeEveryGeneration: elitism,

11 executeInLoop: (Choice(reproduction, p: 0.5)

12 ||| Choice(mutation, p: 0.3) ||| Choice(crossover, p: 0.2)),

13 evaluator: MaxOneEvaluator(),

14 termination: (MaxNumberOfGenerations(1000) || FitnessThreshold(1))

15)

16

17 // Execute the algorithm.

18 alg.run()

19 print(alg.population.bestIndividual!.chromosome)

Listing 13: Example of the GA definition for the MAX-ONE Problem.

• Elitism is used to preserve the best chromosome.

• The algorithm terminates after 1000 iterations or after the highest fitness
value reaches 1.0.

• The β-tree contains a single chance node:

– With the probability 0.5, apply the reproduction operator on a random
individual.

– With the probability 0.3, apply the mutation operator on an individual
selected by the roulette selection.

– With the probability 0.2, apply the one-point crossover operator on
the winners of two randomized tournaments, each containing five con-
testants.

30

5.1.3 Results

When executed, the presented algorithm performs 270 iterations before reaching
the best fitness value 1.0 and yielding the optimal solution consisting of 55 ones.
On the experimental computer1, the evaluation of the algorithm took approxi-
mately 1.55 seconds.

To further increase its speed, it is possible to utilize parallelization of fitness
evaluation as described in Section 4.2.2. By substituting the line no. 13 of List-
ing 13 with ParallelEvaluator() { _ in MaxOneEvaluator() }, the library
creates a separate evaluator instance for every CPU core, instead of sharing a
single instance among all cores.

After this modification, the number of performed iterations remains the same,
however, the total execution time decreases to 1.46 seconds. Note even though
the experimental computer has 8 core CPU, such a small decrease in evaluation
time is acceptable due to the fact that the only parallelized part of the algorithm
is the evaluation of the fitness function, which in this particular case does not
represent a significant portion of the processing time. The convergence of fitness
values is plotted in Figure 5.1.

20 40 60 80 100 120 140 160 180 200 220 240 260
0

0.2

0.4

0.6

0.8

1

Generation

F
it

n
es

s

Best fitness
Average fitness

Figure 5.1: Fitness convergence chart of the GA from Listing 13.

5.2 Self-driving Car Simulation

The second example can be considered slightly more complex and closer to prac-
tical applications than the MAX-ONE Problem. Suppose that there is a robot car
capable of navigating in a simulated two-dimensional environment (illustrated by
Figure 5.2) which contains a closed curve resembling a race track. The objective

1The experimental computer was Apple Mac mini (model Late 2012) with Intel Core i7
CPU (2.3 GHz) and 8 GB RAM (1600 MHz DDR3).

31

is to find a way to steer the car, so that it discovers the track and follows its con-
tour. In real-world applications, this objective would be an analogy to keeping a
car or a car-like drone within the bounds of a marked road.

Figure 5.2: Illustration of the self-driving car simulation environment.

The simulated car is controlled by two parameters: the steering and the ac-
celeration. Modelled after physical driving control systems like the steering wheel
and the accelerator pedal, changes in these parameters cannot influence the head-
ing and the velocity of the car directly. Instead, the control parameters affect
car’s heading and velocity gradually with respect to the time, behaving more like
their first derivatives.

An event loop operates in the simulated environment, evaluating all variables
periodically with a sufficient2 frequency. This event loop is responsible for peri-
odically altering the position of the car with respect to its instantaneous velocity
and recalculating the instantaneous velocity with respect to the latest value of the
acceleration control parameter. A similar process serves to adjust the heading of
the car. However, while the acceleration is a continuous decimal parameter with
values chosen within a fixed interval, the steering parameter is fundamentally
different, being a discrete choice from the following values:

Hard left Alter heading by +1
2
π radians with respect to the driver’s viewport.

Left Alter heading by +1
4
π radians with respect to the driver’s viewport.

Neutral Maintain current heading.

Right Alter heading by −1
4
π radians with respect to the driver’s viewport.

Hard right Alter heading by −1
2
π radians with respect to the driver’s viewport.

To recognize the race track in the environment, the robotic car is equipped
with a set of simulated real-time detectors, which are positioned in a way to ap-
proximate the viewport of a real car driver. There are three detectors located in
front of the car, one under the car and one behind it. All detectors are capable of

2For the experiments, the frequency of the event loop has been set to 40 Hz.

32

producing Boolean values, signifying whether the track is located on their exact
position at the time of measurement. This configuration approximates threshold-
ing techniques frequently used in detectors of real self-driving car prototypes.

In all simulations, the environment has square shape with the side equal to 10
kilometers. If at any point throughout the simulation the center of the car leaves
the bounds of the environment, the simulation terminates. The simulation also
ends if set maximum duration is exceeded. The simulated properties of the car
(such as dimensions, maximum acceleration, etc.) mimic3 those of Audi R8 5.2
V10 FSI Quattro (model 2010).

The race track is non-deterministically generated at the beginning of the sim-
ulation. First, 30 to 50 points are chosen within the environment at random.
These points are in fact selected from a slightly smaller padded rectangle within
the environment bounds in order to prevent the generated track from acciden-
tally leading the car to the edges of the environment. In the next step, the convex
hull of the selected set of points is calculated by the Melkman Algorithm [9]. The
points of the convex hull are transformed to a Bézier curve by simple interpolation
utilizing cubic Catmull-Rom splines [10]. Lastly, the thickness of the track curve
is increased to 5 meters in order to improve tolerance in subsequent hit-testing.

In the following sections, the control program of the car (Section 5.2.1), the
chromosome data structure and the fitness function (Section 5.2.2) are defined.
The GA is described in Section 5.2.3 and its results are discussed in Section 5.2.4.

5.2.1 Control Program

The control program of the car is a dedicated real-time software, which periodi-
cally interacts with the event loop of the environment in order to determine the
values of control parameters based on the outputs of the on-board detectors.

To demonstrate how the presented library can be used in conjunction with
other Swift components, it was decided that the car is to be controlled by a
three-layer feedforward neural network with common sigmoid activation function
(for definition, see Section 2.2). The input layer of the network is comprised of
5 nodes corresponding to binary read-outs of the on-board detectors, the hidden
layer contains 10 nodes and the output layer contains 2 nodes which correspond
to the control parameters of the car.

While the acceleration parameter is directly equal4 to the output of its re-
spective node, the steering parameter uses thresholds to determine the change in
heading.

5.2.2 Chromosome and Fitness

It is possible to encode the neural network described in the previous section as
a real vector from d-dimensional space, where d denotes the number of interunit
connections and the components of the vector correspond to weight coefficients of

3The simulation limits the acceleration and the instantaneous velocity of the car to match
the capabilities of its real-world equivalent. However, it is worth noting that the restrictions
are exerted unrealistically by clamping numerical values.

4The acceleration parameter is artificially limited to better approximate physical limitations
of the car.

33

such connections. By assuming that all connections between nodes from consec-
utive layers exist (substituting the weight 0 for non-existing connections), a fixed
length of the vector can be ensured. The neural network can thus be character-
ized by a range-initialized array of real numbers with the initialization interval
[d; d]. Accounting for 5, 10 and 2 nodes in the input, hidden and output layer,
respectively. Along with the bias parameters, d = 6 · 10 + 11 · 2 = 82.

To evaluate and compare the quality of control programs, a simple simulated
test is performed. Prior to the test, a random race track is generated and posi-
tioned within the environment. The car is placed in the center of the simulation
with random heading and velocity. Since the race track is a closed curve, the
car’s initial straight-line trajectory intersects it in at least one point. The control
program of the car is expected not to interfere significantly with the steering of
the car up to this point. However, after reaching it, the control program should
take action to prevent the car from leaving the track.

The described test scenario is executed multiple times, in each instance with
different random initial conditions. Throughout every test, various parameters of
the car are monitored and recorded by the event loop of the simulation. Every
test is terminated if one of two conditions is satisfied:

1. the center point of the car leaves the bounds of the environment, or

2. the maximum duration of the simulation (1 hour) is exceeded.

A crucial parameter for the calculation of fitness values is the total distance
driven over the race track (denoted d̂). Upon initialization, the distance is set to
zero. In every iteration of the event loop, the traveled distance ∆d is calculated
from the instantaneous velocity and the event loop frequency. If the detector
located in the middle of the car reports contact with the race track, the calculated
distance ∆d is added to d̂, otherwise d̂ remains unchanged. Clearly, d̂ has only
nonnegative values. For the purposes of the simulation, d̂ has an upper bound in
the distance traveled at the highest allowed velocity for the maximum duration
of the simulation, which is dmax = 199, 980 m. At this point, the fitness function
can be defined. The fitness function of the control program is evaluated as

f(d̂1, d̂2, . . . , d̂5) =
1

5 · dmax

5∑
i=1

d̂i (5.2)

where d̂1, d̂2, . . . , d̂5 denote the total distances driven over the race track calculated
in tests 1 through 5 respectively. All distances are specified in meters.

Clearly, the presented fitness function favors control programs which manage
to keep the car on the track more than programs which do not follow it very well
or veer off it eventually. In addition, since the function operates on distances,
control programs are motivated to discover the race track as quickly as possible
and to maximize the distance traveled over it. An implementation of a sequential
evaluator using this function is illustrated in Listing 14.

In the evaluator, the control program along with the neural network itself5 is
encapsulated in an instance of the NetDriver type, which is conformant to the

5The implementation of the FFNN was provided by the Swift AI open-source project, which
is available online: https://github.com/collinhundley/Swift-AI

34

https://github.com/collinhundley/Swift-AI

1 class CarEvaluator: SequentialEvaluator<CarChromosome> {

2 let sim = CarSimulation()

3 let maxDistance = Double(55.55 * 3600)

4 override func evaluateChromosome(chromosome: CarChromosome)

5 -> Fitness {

6 sim.reset()

7 sim.controlProgram = NetDriver(net: chromosome.toFFNN())

8 var sumDistance = Double(0)

9 for _ in 1...5 {

10 sim.randomizeCurve()

11 sim.randomizeCar()

12 let outcome = sim.run(maxDuration: 3600)

13 sumDistance += outcome.distanceTraveledOnTrack

14 }

15 return Fitness(sumDistance) / Fitness(5 * maxDistance)

16 }

17 }

Listing 14: Implementation of the self-driving car evaluator.

CarDriver protocol that formalizes requirements on automated car controllers
(not necessarily only those operating with neural networks). Since the evaluator
is fully self-contained, it enables parallelization by ParallelEvaluator<T> which
was shown in the last example. To visualize the simulation, the CarSimulation

initializer can be called in the verbose, which automatically generates a MATLAB
script capable of displaying animated plot of the car’s position in time.

5.2.3 Algorithm

The GA declaration is analogous to that used in the MAX-ONE Problem (see
Listing 13). The GA has been configured with the following properties:

• The number of individuals in every generation is 200.

• Elitism is used to preserve the best chromosome.

• The algorithm terminates after 100 iterations are performed or after the
highest fitness value reaches 1.0.

• The β-tree contains a single chance node:

– With the probability 0.8, apply the reproduction operator on a random
individual.

– With the probability 0.1, apply the mutation operator on an individual
selected by the roulette selection.

– With the probability 0.1, apply the one-point crossover operator on
the winners of two randomized tournaments, each containing five con-
testants.

35

5.2.4 Results

When executed, the presented algorithm performs 100 iterations, reaching the
best fitness value 0.973. Unlike the MAX-ONE algorithm, the convergence rate of
the execution is quite high, possibly hinting at suboptimal solution. On the exper-
imental computer6, the evaluation of the algorithm took approximately 4.2 hours
with the parallelization enabled. The convergence of fitness values is plotted in
Figure 5.3.

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Generation

F
it

n
es

s

Best fitness
Average fitness

Figure 5.3: Fitness convergence chart of the self-driving car GA.

5.3 Artificial QWOP Player

The third and final usage demonstration of the presented library is closely related
to genetic programming techniques shown in [11].

In the cited literature, researchers describe their attempts at training artificial
programs in playing an online computer game, achieving scores comparable to or
exceeding those of human players. This section is dedicated to replicating parts
of their results.

In the following sections, the QWOP game is described in detail (Section 5.3.1)
as well as the previous works related to it (Section 5.3.2). Section 5.3.3 gives
details on the technical caveats of interfacing an existing Java application with
the GA programmed in Swift. Lastly, the GA is defined (Section 5.3.4) and its
results are discussed (Section 5.3.5).

6The experimental computer was Apple Mac mini (model Late 2012) with Intel Core i7
CPU (2.3 GHz) and 8 GB RAM (1600 MHz DDR3).

36

5.3.1 The QWOP Game

QWOP (shown in Figure 5.4) is a popular online game, available for free at
Foddy.net [12]. In the game, the player controls movements of an Olympic athlete
during a sprint race. The objective is to reach the longest possible distance,
terminating at the 100-meter mark. If at any point throughout the race, the
head or any of the hands of the athlete come into contact with the ground, the
athlete loses his balance, falls and the game is over. The control scheme of QWOP
is very simple. By pressing keys Q, W, O, P on the keyboard (hence the name of
the game), the player controls movements of different muscle groups within the
athlete’s body. Keys Q and W move forward the left and the right thighs and
keys O and P move backward the left and the right calves respectively.

Figure 5.4: The QWOP online game (source [12]).

In spite of the simplicity of the game goals and its straightforward control
scheme, QWOP is well-known for its notorious difficulty. This is mainly due to
its “ragdoll physics” engine, which heavily oversimplifies the mechanics of the
simulated runner to the point where certain behaviors might seem unintuitive or
even unpredictable [13]. The biggest challenge of the game can be described as
to devise a repeatable strategy to achieve and maintain precise synchronization
of key presses, receiving only limited sensory feedback from the game.

5.3.2 Previous Work

QWOP has been previously mentioned in several publications, mostly in rela-
tion to machine learning. The challenge of the game has been subject of study
primarily because of its appearent similarity to the problem of evolving bipedal
gaits in physical robots and other cybernetic applications.

To describe QWOP strategies, the authors of [11] have used string encodings.
Since one of these encodings is used7 in this demonstration, its definition is in-
cluded in this section. The encoded strings represent sequences of instructions

7The used encoding is the Encoding 1, which was originally proposed by [14].

37

to the player without any regards to the state of the game. The encoding uses
symbols “q,Q,w,W,o,O,p,P,+”. A capital letter represents pressing the corre-
sponding key on the keyboard, a lowercase letter represents a key release. The
“+” symbol stands for a delay in which the current state of inputs is maintained
for 150 milliseconds [11].

Upon interpretation, the encoded string is read from the left to the right,
executing one instruction at a time. When the end of the string is reached, the
interpretation starts again from the beginning. An example of a strategy encoded
in this way is shown in Listing 15.

QO+qPW+wpo+QPW+wO+qp+P+Q+++qp+QPW+wo+qp+POQ+q+W+Qp+qwo

Listing 15: Example encoded QWOP game strategy, which translates to “Press
Q and O, hold them for 150 ms, release Q, press P and W, hold for 150 ms,
release W, P and O, wait...” [11]

To consistently interpret QWOP strategies encoded into strings, the authors
of [11] have used automated Java program called the Qwopper, which has been
originally developed by [14]. The application is comprised of three components:

Strategy interpreter The interpreter is responsible for creating artificial user
inputs for the QWOP game in compliance with a given strategy string.

Control interface The control interface is a user application, which serves users
to configure and test the interpreter.

GA engine By default, Qwopper includes its own implementation of the GA,
which has been used to produce strings by means of genetic programming.

Apart from simulating user inputs, the interpreter component of Qwopper
includes a basic OCR algorithm (illustrated in Figure 5.5), which is capable of
determining the current state of the game (running or paused) and reading the
distance traveled by the athlete. Combining this information with the duration
of the run, Qwopper can periodically estimate the instantaneous velocity of the
runner achieved by a given strategy.

It is worth noting at this point that Qwopper already has all necessary com-
ponents to generate, evaluate and recombine QWOP strategy strings on its own.
However, for the purpose of demonstration of the GA provided by the presented
library, its functions are reduced to only serve as a strategy string evaluation tool.

5.3.3 Interfacing Qwopper with Swift

The encoding defined in the previous section can be simply used in a chromosome
data structure. By the use of Swift enumerations and the conformance to the
Discrete protocol (for usage example, see Listing 5), QWOP game strategies
can be stored in a range-initialized array with the initialization interval [1; 200].

To efficiently evaluate different game strategies, it is imperative that the
Qwopper application is capable of communicating with the GA implemented in
Swift. For that reason, the main interface of Qwopper has been altered to serve

38

Figure 5.5: Illustration of the OCR process used by the Qwopper software [14].

this purpose. Upon execution, the modified version of Qwopper receives three
shell parameters:

Strategy string The strategy to evaluate. For example, see Listing 15.

Number of attempts How many times should the runs be repeated.

Maximum duration The maximum duration of a single run in milliseconds.

After parsing the input, the application finds an open game window and
attempts to play the game, following the instructions in the strategy string. When
the athlete falls or the set maximum duration is exceeded, the application prints
information about the run to the standard output and starts another run (or
terminates). The monitored information includes:

Result A Boolean flag signifying whether the athlete has fallen in the run.

Duration Duration of the run in milliseconds.

Distance Distance achieved by the athlete in meters.

In the evaluation of the GA, the execution of Qwopper is represented by a
QwopEvaluator object, which is a subclass of the SequentialEvaluator<T> type.
This object is responsible for executing the application with correct parameters
and reading its outputs, from which the value of the fitness function is calculated.
The fitness function of a QWOP strategy is defined as

f(d1, d2, . . . , dn) =
1

n · dmax

n∑
i=1

di (5.3)

where d1, d2, . . . , dn denote the distances run by the athlete in n individual at-
tempts at executing the strategy by Qwopper. The value dmax = 100 is the
maximum achievable distance of a single run. All distances are specified in me-
ters. Since multiple active instances of Qwopper could interfere with each other,
instances of the QwopEvaluator type do not support parallelization of fitness
evaluation shown in the previous demonstrations.

39

5.3.4 Algorithm

Due to the time-consuming nature of fitness evaluation and the lack of paral-
lelization options, the GA for the QWOP runner training has been configured
with the following parameters:

• The number of individuals in every generation is 80.

• Elitism is used to preserve the best chromosome.

• The algorithm terminates after 18 hours of execution or after the highest
fitness value reaches 0.8.

• In the evaluation of a single strategy, Qwopper attempts 1 run with the
maximum duration of 30 seconds.

• The β-tree contains a single chance node:

– With the probability 0.5, apply the reproduction operator on a random
individual.

– With the probability 0.3, apply the mutation operator on an individual
selected by the roulette selection.

– With the probability 0.2, apply the one-point crossover operator on
the winners of two randomized tournaments, each containing five con-
testants.

5.3.5 Results

When executed, the presented algorithm performs 38 iterations, reaching the
best fitness value 0.224. On the experimental computer8, the evaluation of the
algorithm took approximately 18 hours. The convergence of fitness values is
plotted in Figure 5.6.

The best strategy of the last generation (shown in Listing 16) was capable of
controlling the athlete successfully, finishing the 100-meter race in approximately
152 seconds. This result is comparable with those presented in [11], where the
authors state that one of the best-evolved gaits which used the same encoding
achieved the same distance in “about 2 minutes.”

oQqpqQWWPqQqWoOwqOqoPpQOwPWo+oowOqWqwWqwOp+qoPOwpoWWOQwowqW+WOP+qqwpo+Qq

wpqPwp

Listing 16: The best discovered QWOP game strategy (fitness 0.224).

8The experimental computer was Apple Mac mini (model Late 2012) with Intel Core i7
CPU (2.3 GHz) and 8 GB RAM (1600 MHz DDR3).

40

5 10 15 20 25 30 35

0.1

0.2

0.3

0.4

Generation

F
it

n
es

s

Best fitness
Average fitness

Figure 5.6: Fitness convergence chart of the QWOP GA.

41

6. Conclusion

This thesis has managed to satisfy all of the goals set forth in Section 3.2.
It has proposed and implemented a genetic programming library in Swift and
successfully applied it to three sample problems. One of the mentioned problems
was a human-competitive task, which was solved with results comparable to [11].

The library itself consists of multiple components, which can be used sep-
arately or in conjunction to facilitate easy implementation of efficient genetic
algorithms operating on various data structures. The presented library is not
dependent on any platform-specific components, and is thus fully portable to any
operating system capable of supporting1 the Swift standard runtime environment.

To demonstrate the practical usage of the library and its effortless integration
with already existing third-party components, five example projects have been
prepared (including those described in Chapter 5) and bundled in its distribution
package with the library’s documentation and unit tests. The mentioned package
is available online2 or as a digital attachment to this thesis for free public use
regulated by the standard MIT license agreement.

Thanks to Swift’s compatibility with iOS, the library has various applications
in portable and wearable devices, for instance in the field of signal processing and
gesture recognition. In addition, the minimalistic syntax of Swift source codes
allows students to easily examine the implementation within the source package,
learning about genetic algorithms in general. The library also supports usage
within Swift playground environments, which enable quick prototyping of source
codes with instantaneous visualization feedback from the compiler, making it
useful in teaching.

Lastly, the presented library has been designed to have modular architecture.
It is the author’s intention that its components are open to further extensions by
its users.

1At the time of writing this work, Swift runtime environment was supported on Apple Mac
OS X, iOS and certain Linux distributions (Ubuntu, Debian, Gentoo, CentOS).

2The library website is: https://github.com/petrmanek/Revolver

42

https://github.com/petrmanek/Revolver

Bibliography

[1] The Swift Programming Language. https://swift.org/documentation/

TheSwiftProgrammingLanguage(Swift2.2).epub, 2016. [Online; accessed
11-March-2016].

[2] Schmieder A. Swift, C++ Performance. http://www.primatelabs.com/

blog/2014/12/swift-performance/, 2014. [Online; accessed 11-March-
2016].

[3] John H. Holland. Adaptation in Natural and Artificial Systems. MIT Press,
Cambridge, MA, USA, 1992.

[4] Brad L. Miller, Brad L. Miller, David E. Goldberg, and David E. Goldberg.
Genetic algorithms, tournament selection, and the effects of noise. Complex
Systems, 9:193–212, 1995.

[5] Kevin Gurney. An Introduction to Neural Networks. CRC Press, 1997.

[6] Lance D. Chambers. Practical Handbook of Genetic Algorithms: Complex
Coding Systems, Volume III. CRC Press, 1998.

[7] John R. Koza. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[8] Kim-Fung Man, Kit Sang TANG, and Sam Kwong. Genetic Algorithms:
Concepts and Designs (Advanced Textbooks in Control and Signal Process-
ing). Springer, 2001.

[9] Avraham A. Melkman. On-line construction of the convex hull of a simple
polyline. Inf. Process. Lett., 25(1):11–12, April 1987.

[10] Edwin Catmull and Raphael Rom. A class of local interpolating splines.
Computer aided geometric design, 74:317–326, 1974.

[11] Steven Ray, Vahl Scott Gordon, and Laurent Vaucher. Evolving QWOP
gaits. In GECCO ’14 Proceedings of the 2014 conference on Genetic and
evolutionary computation, pages 823–830, Vancouver, 2014.

[12] Foddy B. QWOP. http://www.foddy.net/Athletics.html, 2016. [Online;
accessed 11-March-2016].

[13] G. Brodman and R. Voldstad. QWOP Learning, Department of Computer
Science CS 229 class project. http://cs229.stanford.edu/projects2012.
html, 2012. [Online; accessed 11-March-2016].

[14] L. Vaucher. Genetically engineered QWOP (part 1). http://slowfrog.

blogspot.com/2011/03/genetically-engineered-qwop-part-1.html,
2011. [Online; accessed 11-March-2016].

43

https://swift.org/documentation/TheSwiftProgrammingLanguage(Swift2.2).epub
https://swift.org/documentation/TheSwiftProgrammingLanguage(Swift2.2).epub
http://www.primatelabs.com/blog/2014/12/swift-performance/
http://www.primatelabs.com/blog/2014/12/swift-performance/
http://www.foddy.net/Athletics.html
http://cs229.stanford.edu/projects2012.html
http://cs229.stanford.edu/projects2012.html
http://slowfrog.blogspot.com/2011/03/genetically-engineered-qwop-part-1.html
http://slowfrog.blogspot.com/2011/03/genetically-engineered-qwop-part-1.html

List of Figures

2.1 Generalized decision diagram of a GA. 5
2.2 A feedforward neural network. 7
2.3 A diagram of FFNN node evaluation. 7

4.1 Example program for the maze robot simulation. 13

5.1 MAX-ONE genetic algorithm fitness convergence chart. 31
5.2 Illustration of the self-driving car simulation environment. 32
5.3 Fitness convergence chart of the self-driving car GA. 36
5.4 The QWOP online game. 37
5.5 OCR process used by the Qwopper software. 39
5.6 Fitness convergence chart of the QWOP GA. 41

44

List of Listings

1 Range-initialized array used to solve the Knapsack problem. . . . 11
2 Example implementation of the GO command action node. 13
3 Tree factory declared in an entropy generator subclass. 14
4 Example declaration of custom chromosome type. 15
5 Declaration of a chromosome type through a discrete listing of values. 15
6 Example of a sequential evaluator for the Knapsack Problem. . . . 17
7 Example of a custom genetic operator implementation. 21
8 Example of a selection object encapsulation. 22
9 Example of decision tree definition. 22
10 Example of custom selection implementation. 25
11 Example definitions of termination conditions. 26
12 Example of a sequential evaluator for the MAX-ONE Problem. . . 30
13 Example of the GA definition for the MAX-ONE Problem. 30
14 Implementation of the self-driving car evaluator. 35
15 Example encoded QWOP game strategy. 38
16 The best discovered QWOP game strategy. 40

45

A. Survey of GA Libraries

This appendix contains results of a survey conducted in September 2015 prior
to writing this thesis. It lists machine learning libraries implementing GA (or
equivalents) grouped by the programming language or platform.

For every library, the project name and URL of the main website are listed.
Where applicable, the name of the author or the organization is included along
with the approximate date of the latest activity in the source repository (or latest
binary release should the repository be unavailable). Note that all mentioned
dates relate to September 2015, not the date of publication of this work.

The surveyed libraries were implemented in Java (Section A.1), C++ (Sec-
tion A.2), Python (Section A.3), C (Section A.4), Swift (Section A.5), .NET (Sec-
tion A.6), Ruby (Section A.7), Perl (Section A.8) and MATLAB (Section A.9).

A.1 Libraries implemented in Java

ECJ: A Java-based Evolutionary Computation Research
System

Author George Mason University, Department of Computer Science

Website http://cs.gmu.edu/eclab/projects/ecj/

Latest development activity within last 2 months

JEF: Java Evolution Framework

Author Brno University of Technology, Signal Processing Laboratory

Website http://spl.utko.feec.vutbr.cz/en/component/content/article/

28-projects/258-

Latest development activity at least 3 years ago (server unavailable to date)

TinyGP: A Contest to Design the Smallest Possible GP
System

Author University of Essex

Website http://cswww.essex.ac.uk/staff/sml/gecco/TinyGP.html

Latest development activity contest closed 11 years ago

46

http://cs.gmu.edu/eclab/projects/ecj/
http://spl.utko.feec.vutbr.cz/en/component/content/article/28-projects/258-
http://spl.utko.feec.vutbr.cz/en/component/content/article/28-projects/258-
http://cswww.essex.ac.uk/staff/sml/gecco/TinyGP.html

GenPro: Genetic Programming Made Simple

Author not applicable (open-source project)

Website https://code.google.com/p/genpro/wiki/GenPro

Latest development activity 6 years ago

JAGA: A Java API for Genetic Algorithms

Author not applicable (open-source project)

Website http://www.jaga.org/

Latest development activity 2 years ago

DGPF: Distributed Genetic Programming Framework

Author University of Kassel

Website http://dgpf.sourceforge.net/

Latest development activity within last 2 months

JGAP: Java Genetic Algorithms Package

Author not applicable (open-source project)

Website http://jgap.sourceforge.net/

Latest development activity within last 2 months

N-genes

Author not applicable (open-source project)

Website https://github.com/paradigmatic/N-genes-2

Latest development activity 4 years ago

Java GALib

Author Jeff S. Smith

Website http://www.softtechdesign.com/GA/EvolvingABetterSolution-GA.

html

Latest development activity 2 years ago

47

https://code.google.com/p/genpro/wiki/GenPro
http://www.jaga.org/
http://dgpf.sourceforge.net/
http://jgap.sourceforge.net/
https://github.com/paradigmatic/N-genes-2
http://www.softtechdesign.com/GA/EvolvingABetterSolution-GA.html
http://www.softtechdesign.com/GA/EvolvingABetterSolution-GA.html

JGProg: Groovy Java Genetic Programming

Author not applicable (open-source project)

Website http://jgprog.sourceforge.net/

Latest development activity 2 years ago

GEVA: Grammatical Evolution in Java

Author U. C. Dublin, School of Computer Science and Informatics

Website http://ncra.ucd.ie/Site/GEVA.html

Latest development activity 1 year ago

jGE: Java Grammatical Evolution

Author Bangor University

Website http://pages.bangor.ac.uk/eep201/jge

Latest development activity 3 years ago (server unavailable to date)

JCLEC: Java Class Library for Evolutionary Computation

Author not applicable (open-source project)

Website http://jclec.sourceforge.net/

Latest development activity 1 year ago

A.2 Libraries implemented in C++

Open BEAGLE

Author not applicable (open-source project)

Website http://chgagne.github.io/beagle/

Latest development activity within last 2 months

Evolving Objects

Author not applicable (open-source project)

Website http://eodev.sourceforge.net/

Latest development activity 2 years ago

48

http://jgprog.sourceforge.net/
http://ncra.ucd.ie/Site/GEVA.html
http://pages.bangor.ac.uk/eep201/jge
http://jclec.sourceforge.net/
http://chgagne.github.io/beagle/
http://eodev.sourceforge.net/

GPC++: Genetic Programming C++ Class Library

Author U. C. London, Department of Computer Science

Website http://www0.cs.ucl.ac.uk/staff/W.Langdon/ftp/weinbenner/gp.

html

Latest development activity 18 years ago

PMDGP: Poor Man’s Distributed Genetic Programming

Author not applicable (open-source project)

Website http://pmdgp.sourceforge.net/

Latest development activity 2 years ago

GAlib: A C++ Library of Genetic Algorithm Components

Author Massachusetts Institute of Technology

Website http://lancet.mit.edu/ga/

Latest development activity 8 years ago

LAGEP: Layered Architecture Genetic Programming

Author National Chiao Tung University, Department of Computer Science

Website http://www.cis.nctu.edu.tw/gis91815/lagep/lagep.html

Latest development activity at least 4 years old (server unavailable to date)

ECF: Evolutionary Computation Framework

Author University of Zagreb

Website http://gp.zemris.fer.hr/ecf/

Latest development activity 1 year ago

A.3 Libraries implemented in Python

DEAP: Distributed Evolutionary Algorithms in Python

Author not applicable (open-source project)

Website http://deap.readthedocs.org/

Latest development activity within last 2 months

49

http://www0.cs.ucl.ac.uk/staff/W.Langdon/ftp/weinbenner/gp.html
http://www0.cs.ucl.ac.uk/staff/W.Langdon/ftp/weinbenner/gp.html
http://pmdgp.sourceforge.net/
http://lancet.mit.edu/ga/
http://www.cis.nctu.edu.tw/gis91815/lagep/lagep.html
http://gp.zemris.fer.hr/ecf/
http://deap.readthedocs.org/

pySTEP: Python Strongly Typed Genetic Programming

Author not applicable (open-source project)

Website http://pystep.sourceforge.net/

Latest development activity 2 years ago

Pyevolve

Author not applicable (open-source project)

Website http://pyevolve.sourceforge.net/

Latest development activity 2 years ago

PYRO: Python Robotics

Author not applicable (open-source project)

Website http://pyrorobotics.com/?page=PyroModuleEvolutionaryAlgorithms

Latest development activity 2 years ago

A.4 Libraries implemented in C

lil-gp: Genetic Programming System

Author Michigan State University

Website http://garage.cse.msu.edu/software/lil-gp/

Latest development activity 17 years ago

A.5 Libraries implemented in Swift

Genetic-Swift

Author Niko Yuwono

Website https://github.com/NAYOSO/Genetic-Swift

Latest development activity 1 year ago

50

http://pystep.sourceforge.net/
http://pyevolve.sourceforge.net/
http://pyrorobotics.com/?page=PyroModuleEvolutionaryAlgorithms
http://garage.cse.msu.edu/software/lil-gp/
https://github.com/NAYOSO/Genetic-Swift

Mendel

Author Saniul Ahmed

Website https://github.com/saniul/Mendel

Latest development activity within last 2 months

A.6 Libraries compatible with the .NET Frame-

work

GPE: Genetic Programming Engine

Author not applicable (open-source project)

Website http://gpe.sourceforge.net/

Latest development activity 10 years ago

Ant: Teamwork in Genetic Programming

Author Michael LaLena

Website http://www.lalena.com/ai/ant/

Latest development activity not applicable (unknown)

A.7 Libraries implemented in Ruby

DRP: Directed Ruby Programming

Author not applicable (unknown)

Website http://drp.rubyforge.org/

Latest development activity not applicable (unknown)

A.8 Libraries implemented in Perl

51

https://github.com/saniul/Mendel
http://gpe.sourceforge.net/
http://www.lalena.com/ai/ant/
http://drp.rubyforge.org/

PerlGP: The Open Source Perl Genetic Programming Sys-
tem

Author Bob MacCallum

Website http://perlgp.org/

Latest development activity 3 years ago

A.9 Tools for MATLAB

GPLAB: A Genetic Programming Toolbox for MATLAB

Author Sara Silva

Website http://gplab.sourceforge.net/

Latest development activity within last 2 months

GPTIPS: Genetic Programming and Symbolic Data Min-
ing Platform

Author Dominic Searcon

Website https://sites.google.com/site/gptips4matlab/

Latest development activity within last 2 months

52

http://perlgp.org/
http://gplab.sourceforge.net/
https://sites.google.com/site/gptips4matlab/

	Introduction
	Background
	Genetic Algorithms
	Neural Networks
	Mathematical Representation

	Goals of the Thesis
	Survey of Previous Works
	Swift Implementations

	Statement of Requirements

	Library Documentation
	Chromosomes
	Data Representation Problem
	Strings
	Trees
	Custom Types

	Population Evaluation
	Mating Pool
	Sequential and Parallel Evaluators
	Cyclic Evaluators

	Genetic Operators
	Reproduction
	Mutation
	Crossover
	Custom Operators
	Decision Trees

	Selections
	Roulette Selection
	Rank Selection
	Tournament Selection
	Miscellaneous
	Custom Selections

	Execution
	Termination Conditions
	Event Hooks

	Extensions
	Elitism
	Persistence
	Entropy Generators

	Usage Demonstration
	MAX-ONE Problem
	Chromosome and Fitness
	Algorithm
	Results

	Self-driving Car Simulation
	Control Program
	Chromosome and Fitness
	Algorithm
	Results

	Artificial QWOP Player
	The QWOP Game
	Previous Work
	Interfacing Qwopper with Swift
	Algorithm
	Results

	Conclusion
	Bibliography
	List of Figures
	List of Listings
	Survey of GA Libraries
	Libraries implemented in Java
	Libraries implemented in C++
	Libraries implemented in Python
	Libraries implemented in C
	Libraries implemented in Swift
	Libraries compatible with the .NET Framework
	Libraries implemented in Ruby
	Libraries implemented in Perl
	Tools for MATLAB

