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available information, we obtain a value of using one of these formulations rather than
the other one (e.g., VSS ).
Level of the available information can be changed by a partial or full relaxation of nonan-
ticipativity constraints, which assure that a present decision is independent of future
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In various real-life situations, we often deal with optimization problems. Their core is to
find a solution which is the best one from a certain point of view (e.g. the cheapest or
the most profitable one), subject to some conditions and constraints. In mathematical
formulation of the problem, these constraints define a so called feasibility set, and the
property we focus on is incorporated in an objective function. There can be more than
one objective function (e.g. our goal can be to maximize profits and minimize ecological
impact) but we will consider just one objective function problems.
The aim of a decision maker is to find a minimum or maximum (or an infimum or
supremum, respectively) of the objective function subject to given constraints, i.e. his
decisions must be feasible.
In practice, we often need to plan our future doing and then the objective function
and/or the feasibility set are to certain extent uncertain. They can be influenced by a
future development of some quantities about which a full information is not available at
the time of making the decision (e.g. development of prices, interest rates or demand). In
optimization, this uncertainty is modelled by use of random variables, most often with a
known probability distribution.
If the decision maker could postpone his decision to a time when the development of
random parameters is already known, or if he was a clairvoyant knowing the future in
advance, his resulting optimal solution could only be better than that made without this
information on future. Therefore, the information on the future random events is of a
certain value for the decision maker. This value could be interpreted as a price which is
to be paid for putting off the decision, for making a research giving this information, or
as a reward for the clairvoyant who reveals the future in advance.
Given problem can also be formulated in many ways, using various approaches. The
formulations can be more or less sophisticated and computationally demanding, and
they usually lead to various results. For any pair of approaches and relating results the
difference between the resulting optimal objective function values expresses how much
it is worth doing to solve the problem using the “better” approach than the other one.
Having this information, the decision maker can judge whether he shall undergo more
computations in order to gain more favourable result or not.
The aim of this work is to precisely define various “types” of the value of information,
to find relationships between them and to derive their estimates and properties for some
specified classes of problems. In the first part, we give a brief introduction to linear and
stochastic programming. Part two is devoted to various information value types in two-
stage programs. Some of them are generalized in the third part, where we also derive
some new information value types specific for multistage problems. All the information
value types are compared and classified in the last fourth part.
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Linear programs are the simplest problems of mathematical programming. We deal with
a problem with a linear1 objective function and with a feasibility set bounded by linear

1 We do not distinguish between linear (f(x) = ax) and affine (f(x) = ax+ b) functions.
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functions. The problem reads

min
x

n
∑

j=1

cjxj

s.t.
n
∑

j=1

aijxj ≥ bi, i = 1, . . . , m, (1.1)

xj ≥ 0, j = 1, . . . , n,

where xj , j = 1, . . . , n are decision variables; for j = 1, . . . , n, the cj represents (fixed
and real) “unit costs” of the decision xj ; aij for i = 1, . . . , m, j = 1, . . . , n and bi for
i = 1, . . . , m are given real constants which provide the constraints.
The problem (1.1) can be equivalently written in the form

min
x

c � x (1.2)

s.t. Ax ≥ b,

x ≥ 0,

where c = (c1, . . . , cn) � , x = (x1, . . . , xn) � , A = (aij) i=1,...,m
j=1,...,n

, b = (b1, . . . , bm) � and

the inequations Ax ≥ b and x ≥ 0 have the sense that (Ax)i =
∑n

j=1 aijxj ≥ bi for
i = 1, . . . , m and xj ≥ 0 for j = 1, . . . , n, respectively. The upper indices � stand for
transpositions.
Further on, any inequality of the type u ≥ v used for equally-dimensional real vectors u
and v has the sense that uj ≥ vj for all j.
Note, that any minimization problem can be easily reformulated into an equivalent max-
imization problem, since for any objective function z holds min

x
z(x) = −max

x
(−z(x)). In

this work, we will formulate all problems as the minimization ones.
Mention that we do not consider as a problem whether the constraints in a mathematical
program are of the type Ax = b or Ax ≥ b, since these two types can be transformed to
each other using so called slack variables. Also, we are not too interested in the problem
of existence of minima we operate with; in this work we assume that all the employed
minima (or maxima) exist, unless stated otherwise.

For the problem (1.2), we can construct a dual problem

max
y

b � y

s.t. A � y ≤ c,

y ≥ 0.
(1.3)

In this context, the problem (1.2) is referred to as a primal problem.
The problems (1.2) and (1.3) have some interesting properties that make them a strongly
joint pair.

The linear problems can be generalized into nonlinear ones. In the problem (1.2), the
linear objective function and linear functions providing the constraints are replaced by
nonlinear functions. Some types of dual problems can also be formulated but they are
not of any use in this work.

2
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1.3.1. Random variables

In this paragraph we will remind a definition of random variables and some related defi-
nitions. We will use the most common notions from probability theory and mathematical
statistics without definitions.
Consider an abstract set Ω (a set of elementary events) and a σ-field � of its subsets.
If Ω ≡ � k for a finite k ∈ � , then we always equip Ω with the σ-field generated by � k ,

which is the Borel σ-field B( � k ). Consider a probability measure P on (Ω, � ); the triplet
(Ω, � , P ) is called a probability space.
An � -measurable function ξ: (Ω, � , P ) → � m is called a real random vector (a scalar
real random variable for m = 1). The set of realizations of the random vector ξ is
Ξ = {ξ(ω) : ω ∈ Ω} ⊆ � m and it is called the support of the random vector ξ. It is clear
that P ({ω : ξ(ω) ∈ Ξ}) = 1 which we write as “ξ ∈ Ξ almost surely.”
For an arbitrary random variable ξ and for any Borel setB, there can be constructed its in-
verse image ξ−1(B) = {ω ∈ Ω : ξ(ω) ∈ B} and a probability measure µ(B) = P (ξ−1(B)).
This measure µ is called the induced measure (induced by ξ).
A probability distribution of any random variable ξ is unambiguously defined by ξ’s
induced measure or by its cumulative distribution function Fξ which is defined as Fξ(x) =
P ({ω ∈ Ω : ξ(ω) ≤ x}), or by its probability density, if it exists. In the case of a random
vector ξ we often talk about its probability distribution as the joint distribution of its
components (random variables) ξ1, . . . , ξm.
Expectation of a random variable ξ is defined as Eξ =

∫

Ω ξdF (ξ) =
∫

Ω ξ(ω)dP (ω). For
an extended real-valued random variable ξ we define Eξ = E[ξ+] − E[(−ξ)+], where
ξ+(ω) = max{0; ξ(ω)}, and Eξ is not defined in the case that both E[ξ+] and E[(−ξ)+]
are +∞. In this work, unless stated otherwise, whenever we operate with expectations
of random variables (e.g. Eξ) or their transformations (e.g. Eminx∈K z(x, ξ)), we tacitly
assume that the expectations exist and are finite.
Measurable functions ξ: (Ω, � , P ) → ¯� (or into ¯� m) are referred to as extended real
valued random variables (or m-dimensional vectors). In such cases, the values Fξ(+∞)
and Fξ(−∞) are defined as appropriate limits.
In this work, random variables (both scalar and vector) are denoted by letters of the
Greek alphabet, most often by ξ and ζ. Very often we denote by the same symbol ξ a
particular realization of the random variable ξ = ξ(ω) and we also often suppress its
explicit dependence on the elementary events ω ∈ Ω. We then write P (ξ ≤ x) instead of
P ({ω ∈ Ω : ξ(ω) ≤ x}) and the like.
Consider a space χ of all m-dimensional real random vectors defined on a certain prob-
ability space (Ω, � , P ). A probability functional is a mapping F:χ → � m̃ (where, most
often, m = m̃). For ξ ∈ χ the value F(ξ) depends on the probability distribution of the
random vector ξ (but it cannot depend on any realizations of ξ since no elementary events
are considered in F(ξ)). A typical example of a probability functional is an expected value
functional.

1.3.2. Stochastic problems

In stochastic programs both the objective function and the constraints can depend on
some uncertain quantities which are considered as random variables. The decision maker
has to find a minimum (or an infimum) of an objective function z = z(x, ξ), where x is an
n-dimensional vector of decision variables, ξ is a real random variable defined on a certain

3



probability space and having a support Ξ, and z: � n × Ξ → � , under a condition that
the decision variable x belongs to a feasibility set K(ξ) which depends on a particular
realization of ξ. Now z(x, ξ) is a random variable as well, so a probability functional F
is applied there such that F[z(x, ξ)] ∈ � for all x and it does not depend on a particular
realization of ξ. The most general form of the stochastic problem is then

min
x
F[z(x, ξ)]

s.t. x ∈ K(ξ).

Most often, this functional F is the expectation (denoted as E).
There are two basic assumptions that are tacitly supposed to be satisfied in this work,
unless stated otherwise. Firstly, that the distribution of the random variable ξ is known
(by the decision maker) in advance. Secondly, that the distribution of the random variable
ξ does not depend on the decision variable x. Note that the second condition is much
more realistic than the first one.

1.3.3. Time periods and stages

Real-life problems often require not only one decision, but a decision process, i.e. a se-
quence of decisions made in certain time points (e.g. management of a firm regularly
assesses on a budget, expansion, volume of production etc.).
Consider a division of the overall time interval into several (possibly infinitely many)
time periods, e.g. years. Consider a fixed t-th period. At the beginning of this period,
a first stage, so called initial decision for this period, is made (e.g. manager decides
how many warehouses have to be rented for the next year). Then the decision-maker
alternately observes random events and reacts to them in his decisions, under conditions
which are usually related to the initial decision for this period and of course subject to
some other constraints (e.g. manager decides how much goods and of which type has
to be transported into which warehouse to satisfy the demand, fully use the capacity,
minimize transportation costs etc.). This consequent decisions are called the decisions of
the second stage, third stage et cetera. Numbers of stages in particular periods can differ
(e.g. according to the number of working days in the year).
In this work we divide the problems into two basic classes, to two-stage and multistage
problems. In the two-stage problems the decision-maker makes his initial decision x,
then he observes a random event ξ, and he reacts to it in his second stage decision
y = y(ξ) = y(x, ξ). In the multistage programs, the decision-maker makes an initial de-
cision x1, then he observes the first random event ξ1, then he makes the second-stage
decision x2 = x2(ξ1) = x2(x1, ξ1), then he observes ξ2, makes the third-stage decision
x3 = x3(x1, ξ1, x2, ξ2) et cetera up to the last decision xT = xT (x1, ξ1, . . . , xT−1, ξT−1).
For a certain class of the two-stage problems, an extensive theory regarding to their
properties, searching for estimates and the related value of information is worked up. It
is more difficult (and sometimes impossible) to work up a similar theory for the multi-
stage programs. We will therefore inquire into two-stage and multistage programs in two
separate chapters, and at the end we will summarize results gained in both of them.

4
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Two-stage linear programs are one of the most simple types of stochastic problems.
Generally, the problem is to minimize (expected) costs or outcomes. The decision maker
has to decide in two stages. At first he makes first stage decision. It has to be taken
without full information on some (future) random events, which are modelled with help
of random variables represented by a random vector ξ. The decision maker only knows
the probability distribution of the random variables. This first stage decision is denoted
as x. Then the random events happen and full information on them is received, i.e. the
realization of the random variables is observed. Then a second stage decision y = y(x, ξ)
is done. It can be considered as a correction of x because of ξ.
In mathematical terms, the problem with linear objective function and linear constraints
reads

min
x
Eξz(x, ξ)

s.t. Ax = b, x ≥ 0
(2.1)

where
z(x, ξ) = c � x+Q(x, ξ) (2.2)

and
Q(x, ξ) = min

y
{q(ξ) � y : W (ξ)y = h(ξ)− T (ξ)x, y ≥ 0}.

This formulation will be used many times in this work, usually without repeating the
following specification: The first stage decision x is a real vector, x ∈ � n , the second
stage decision y is a function of x and of (the realization of) ξ, y = y(x, ξ) ∈ � m almost
surely. ξ is a random vector defined on some probability space (Ω, � , P ) with a support
Ξ ⊆ � k . The objective function z: � n×Ξ→ � as defined in (2.2), unless stated otherwise,
is always supposed to be continuous and convex2 in the variable x. The first stage costs
vector c ∈ � n is given (non-random), as well as the matrix A ∈ � l × � n and the vector
b ∈ � l in the first stage constraints. Instead of the constraint Ax = b, x ≥ 0, we will
often write x ∈ K for a convex polyhedral set K ⊆ � n . The second stage costs vector q
is a function of ξ, so it is a random vector and we suppose that q(ξ) ∈ � m for all ξ ∈ Ξ.
The so called technological matrix T = T (ξ) depends on ξ as well and for all ξ ∈ Ξ we
suppose that T (ξ) ∈ � i × � n . The matrix T provides the relationship between x and y
(which reacts to x and ξ). The matrix W = W (ξ) ∈ � i × � m is called a recourse matrix.
At last, h = h(ξ) is an i-component real random vector. Note that the dimensions are
not important, they only have to be such that the multiplication of vectors and matrices
is well defined.
The constraints x ≥ 0, y ≥ 0 have the sense xj ≥ 0 for all j = 1, . . . , n, and yj ≥ 0 for
all j = 1, . . . , m, respectively.
The second stage objective function Q(x, ξ) depends on the random variable and so we
have to compute with F[Q(x, ξ)] instead of Q(x, ξ), where F is a probability functional
such that the result F[Q(x, ξ)] does not depend on the realization of the random variable
ξ (but it depends on its distribution). The most often and perhaps most natural case of
F is the expectation E as in (2.1) but there are many other possibilities.

2 The function z is not generally convex. Sufficient conditions for convexity of z are given in the next

theorem; they are not too restrictive.

5



We always suppose that the following assumptions are satisfied:
Assumption 2.1 The two-stage linear problem has an optimal solution.
Assumption 2.2 There exists a constant L such that c � x +Q(x, ξ) ≥ L for all feasible
x and for all possible realizations of ξ.

To explain the way how the form of the two-stage problem was found, we can imagine
that the decision maker had to solve a problem

min
x

c � x

s.t. Ax = b, x ≥ 0

at first. When its optimal solution x∗ is determined, the decision maker finds out that
there is another (latent) constraint of the form

T (ξ)x = h(ξ) a.s.

which he did not consider before. The decision maker can compensate the difference
T (ξ)x− h(ξ) with help of the second stage decision y satisfying the condition

W (ξ)y = T (ξ)x− h(ξ) a.s.,

and the price for this correction is q(ξ) � y, which is added to the first stage costs c � x.
Putting this together and adding the expectation, we obtain the problem (2.1).

The kind of problems we have just introduced is called recourse problem.
When the recourse matrixW is non-random, we speak about problem with fixed recourse.
When additionally the (vector) equation Wy = u has a nonnegative solution y for every
u ∈ {T (ξ)x− h(ξ) : ξ ∈ Ξ, Ax = b, x ≥ 0} we speak about relatively complete recourse,
while the situation when the same equation Wy = u has a nonnegative solution y for
all u ∈ � i is called complete recourse. The most special situation, the simple recourse, is

characterised by W = (I1| − I2) and y =
(

y1
y2

)

, where for j = 1, 2 the Ij is an identity

matrix.

Nonlinear two-stage programs represent just a generalization of the linear ones. Again,
there are decisions to be made in the first and in the second stage, without and with
full information on some random events, respectively. The difference is that some of the
objective and recourse function or constraints are no more linear.

Theorem 2.3 Consider the problem (2.1) with complete recourse, such that the set
{x : Ax = b, x ≥ 0} is nonempty, expectation of T and h exists, W and q are non-random
and W ’s rank is i (which is number of W ’s rows), and {u : W � u ≤ q} 6= ∅.
Then the function z : z(x, ξ) = c � x +min

y
{q � y : Wy = h(ξ)− T (ξ)x, y ≥ 0} is convex in

x for any fixed ξ.
Proof. See [6]. �
2.1.1. Nonanticipativity

There is a very important feature of recourse problems (or, more generally, of multiperiod
problems): Any decision must not depend on future realizations of the random variable nor
on future decisions. It can depend only on past decisions and past realizations of random
variables, which are already known, i.e., the decisions are functions of past realizations
and past decisions only, since the decision maker cannot anticipate (presume) future
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events. In fact, there is y = y(x, ξ) but there is not x = x(ξ). This feature is called
nonanticipativity.

It is also possible to reformulate the problem with explicit constraints on nonanticipativ-
ity. These constraints make the first stage solution independent on random events, i.e.,
to be the same for all kinds of future environment. In this formulation the problem reads

min
(x(ξ),y(ξ))

Eξ[c � x(ξ) + q(ξ) � y(ξ)]

s.t. Ax(ξ) = b a.s., x(ξ) ≥ 0 a.s.
W (ξ)y(ξ) = h(ξ)− T (ξ)x(ξ) a.s.,

y(ξ) ≥ 0 a.s.,
Eξ[x(ξ)]− x(ξ) = 0 a.s.

(2.3)

or
min

(x̃,x(ξ),y(ξ))
Eξ[c � x(ξ) + q(ξ) � y(ξ)]

s.t. Ax(ξ) = b a.s., x(ξ) ≥ 0 a.s.,
W (ξ)y(ξ) = h(ξ)− T (ξ)x(ξ) a.s.,

y(ξ) ≥ 0 a.s.,
x(ξ) = x̃ a.s.,

x̃ ∈ � n .

2.1.2. Scenario representation of two-stage stochastic problems

Our situation is usually much simpler if we know that random variables included in the
problem are of discrete distributions. Then we can represent the future development via
scenarios. Each scenario represents one state of world. The resulting environment can
be the same for distinct scenarios but they differ in the history leading to the resulting
state of world. In mathematical terms, we assume that the support Ξ of ξ is finite,
Ξ = {ξs, s = 1, . . . , S}.
Stochastic two-stage problem is then

min
x

{

c � x + EξQ(x, ξ)
}

s.t. Ax = b, x ≥ 0,
(2.4)

where EξQ(x, ξ) =
∑S

s=1 P (ξ = ξ
s).Q(x, ξs) and for all s = 1, . . . , S it holds

Q(x, ξs) = min
y(ξs)

{

q(ξs) � y(ξs)
}

s.t. W (ξs)y(ξs) = h(ξs)− T (ξs)x,

y(ξs) ≥ 0.

Here every scenario ξs determinates all components of q, h, T and W, and for every
scenario ξs is found an optimal second stage solution y(ξs), while the first stage solution
is same for all scenarios.
In most of real-life situations, we are able to replace all continuous random variables by
their reasonable discrete approximations.
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In this section we will deal with linear stochastic problems of the form (2.1). We will define
some quantities connected with the recourse problem and with different approaches of
solving it. We will also define two basic information value types.

2.1.3. Here-and-now problem

We assume there that z which is given in (2.2) is such that Eξz(x, ξ) exists for all x and
also that the minimum of Eξz(., ξ) is attained for some x. We can also assume here that
c 6= 0.
When the decision maker solves the stochastic problem (2.1) (the nonanticipative one),
he finds a so called here-and-now solution. Let us denote this solution as (x∗, y∗(ξ)). The
optimal value of the objective function is then

RP = min
x
Eξz(x, ξ) (2.5)

s.t. Ax = b, x ≥ 0
i.e.,

RP = c � x∗ + Eξ[q(ξ) � y∗(ξ)].

2.1.4. Wait-and-see problem

If the decision maker waits until he has full information on the random events (or if he
is a clairvoyant knowing the future in advance) and then he solves a slightly different
problem

WS = Eξ minx
z(x, ξ)

s.t. Ax = b, x ≥ 0,
(2.6)

he gets so called wait-and-see solution (x̂(ξ), ŷ(ξ)) for all possible realizations of ξ, and
the true expectation of the optimal objective function value

WS = Eξ[c � x̂(ξ) + q(ξ) � ŷ(ξ)].

It should be already seen, that the wait-and-see solution is not worse than the recourse
problem solution, because in the wait-and-see solution even the first stage decision is the
best one for each possible realization of ξ, because x = x(ξ).

2.1.5. Expected value problem

Another related problem is called expected value problem. The decision maker replaces
all random variables by their expected values and solves a simpler deterministic linear
program:

EV = min
x

z(x,Eξ)=min
x

{

c � x +min
y

{

q(Eξ) � y :W (Eξ)y = h(Eξ)−T (Eξ)x, y ≥ 0
}

}

s.t. Ax = b, x ≥ 0.

Let (x̂(Eξ), ŷ(Eξ)) be an optimal solution of this problem. It is unpleasant that the
random variable ξ need not attain the value Eξ at all, e.g. for ξ with an alternative
distribution. Then, x̂(Eξ) may not be useful for the initial problem.
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However, we define EEV as expected costs when using x̂(Eξ) as the first stage decision
and a second stage solution which reacts optimally to x̂(Eξ) and the actual realization of
ξ:

EEV = Eξz(x̂(Eξ), ξ) = Eξ

[

c � x̂(Eξ) +Q(x̂(Eξ), ξ)
]

. (2.7)

Remark 2.4We consider the vectors q and h and the matricesW and T as functions of ξ.
It is clear that in some cases, especially for ξ discrete, these functions may not be defined
at the point Eξ. For instance, if ξ has a two-point distribution such that P (ξ = 0) =

P (ξ = 1) = 12 and the vector q = q(ξ) is defined as q(0) =

(

2
5

)

, q(1) =

(

0
−1
)

then

we cannot even guess how q(Eξ) = q(12) should be defined. In addition, in practice, it is
debatable whether we need to deal with q(Eξ) (costs which are realized with probability
0) or with expected costs Eq(ξ).
To avoid this problem we can consider only random variable ξ such that Eξ belongs to
its support, i.e. P (ξ = Eξ) > 0, and q, h,W and T continuous functions. As a very simple
case we can use q(ξ) = ξ.q̃ for a non-random vector q̃ and a scalar random variable ξ.

2.1.6. Expected value of perfect information and value of stochastic solution

Definition 2.5 Expected value of perfect information for the problem (2.1) is defined as

EVPI = RP −WS , (2.8)

where the quantities RP , WS are defined in (2.5) and (2.6), respectively.

The expected value of perfect information can be seen as costs of uncertainty in the
problem and also as the value of knowing the future in advance. If the costs for waiting
until ξ is observed or the costs for gaining information on the future development of ξ
were equal to EVPI (or larger), then there would be no gain from this waiting or from
gaining the information.

Another information value compares the results of the expected value approach and the
approach of recourse problem.
Definition 2.6 Value of stochastic solution for the problem (2.1) is defined as

VSS = EEV − RP , (2.9)

where the quantities EEV , RP are defined in (2.7) and (2.5), respectively.

This value says how much it is worth doing to solve the stochastic recourse problem rather
then the deterministic expected value problem. So VSS is a value of knowing distribution
of future outcomes and utilizing it. Nonnegativity of VSS will be shown soon.

Note that solving the wait-and-see problem is unreal, but hypothetically computationally
easy, since it is a deterministic problem. The computational demands are low also in the
case of the EV and EEV problems, while solving the here-and-now problem is much
more demanding.

Let us go back to scenario-based problem (2.4) for a while. A related problem for one
particular scenario ξs reads

min
x

z(x, ξs)=min
x

{

c � x+ min
y(ξs)

{q(ξs) � y(ξs) : W (ξs)y(ξs) = h(ξs)−T (ξs)x, y(ξs) ≥ 0}
}

s.t. x ∈ K = {x ∈ � n : Ax = b, x ≥ 0}.
(2.10)
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Denote the first stage optimal solution to the problem (2.10) as x̂(ξs) and the optimal
objective function value as z(x̂(ξs), ξs). The wait-and-see value is then

WS = Eξ

[

min
x∈K

z(x, ξ)
]

=
S
∑

s=1

P (ξ = ξs).z (x̂(ξs), ξs) .

Formulating the EV problem goes in a similar way: Define ξ̄ =
S
∑

s=1
P (ξ = ξs).ξs, the

first stage expected value problem solution x̂(ξ̄) is an optimal solution of the problem
min
x∈K

z(x, ξ̄). This optimal solution is used to compute the EEV value:

EEV = Eξz
(

x̂
(

ξ̄
)

, ξ
)

=
S
∑

s=1

P (ξ = ξs).z
(

x̂
(

ξ̄
)

, ξs
)

.

Values of EVPI and VSS are computed as in (2.8) and (2.9), respectively.

"$�#"$��� }������x�£�����/ �}�¤ � ~��£���
In this section some relations between the EV , EEV ,WS and RP values will be derived,
according to [4] and [2]. We will also show that these inequalities lead to very simple
bounds on EVPI . Much more about bounding and estimating EVPI and VSS can be
found in chapters 2.3.–2.6.

Theorem 2.7 For any two-stage stochastic problem of the form (2.1) and related values
WS and EEV defined in (2.6) and (2.7), respectively, it holds

WS ≤ RP ≤ EEV .

Proof. The proof can be found in [4]. �
In the following theorem, we use a quite strong premise of non-randomness of q, T and
W. This means that the only variable which is allowed to be random is h and so we could
separate the randomness to the right hand side of the equation delimitating the second
stage feasibility set, and also that the the objective function z is convex in ξ, which is a
very strong condition.
Theorem 2.8 For any two stage stochastic problem of the form (2.1) with non-random
vector q and non-random matrices T and W it holds

EV ≤WS .

Proof. The proof can be found in [4]. �
Remark 2.9 In our opinion, the claim EV ≤WS of this theorem is a little unexpected,
since the intuition is that the wait-and-see problem gives the “best” (i.e. the lowest)
optimal objective function value. In our opinion, this discordance with the intuition is
justified by the fact that the assumptions of the theorem define quite a special situation.
It is not difficult to find examples that give evidence that the assumption of fixed vector
q and fixed matrices T and W which implies convexity of z in ξ cannot be weaken.
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Remark 2.10 If q, T and W are deterministic, the only stochastic variable is h = h(ξ)
and we can write h = h(ξ) = ξ. Hence, the problem reads

RP = min
x

{

c � x + Emin
y

{

q � y : Wy = ξ − Tx, y ≥ 0
}

}

s.t. Ax = b, x ≥ 0

which is equivalent to

RP = min
x

{

c � x+ Emin
y
q � y
}

s.t. Ax = b, x ≥ 0,
y ∈ K(x, ξ) ∀x, ξ,

(2.11)

where K(x, ξ) = {y : Wy = ξ − Tx, y ≥ 0}.
Assume now, moreover, that W is square and regular, i.e. that the inversion W−1 exists.
Then we have

y = y(x, ξ) =W−1(ξ − Tx) =W−1ξ −W−1Tx (2.12)

which is an explicit and unambiguous dependence of y on x and ξ. This means that only
one y satisfying (2.12) exists for a given first stage decision x and realization ξ ∈ Ξ. If
this y is nonnegative then the set K(x, ξ) is a singleton; otherwise, it is an empty set. We
can therefore omit the “min

y
” in the objective function of (2.11).

Thus, assuming that W−1 exists the problem (2.11) can be written in the form

RP = min
x

c � x +
[

q � W−1Eξ − q � W−1Tx
]

(2.13)

s.t. Ax = b, x ≥ 0,
W−1(ξ − Tx) ≥ 0 ∀ξ ∈ Ξ. (2.14)

The constraint (2.14) implies that W−1(Eξ − Tx) ≥ 0 (but the reverse implication does
not hold). This further implies that for all x and ξ holds K(x, ξ) ⊆ K(x,Eξ). Keeping in
mind that the form (2.13) of the objective function is the same for the recourse problem
and for the expected value problem, we obtain that RP ≥ EV .When K(x, ξ) = K(x,Eξ)
for all x and for all ξ ∈ Ξ then RP = EV and so RP = WS = EV according to the
theorem 2.8. The other situation K(x, ξ) ⊂ K(x,Eξ) for some x would mean that K(x, ξ)
is empty for this x and for a certain ξ ∈ Ξ (since K(x,Eξ) is a singleton or an empty
set) which would mean that there exists a pair x, ξ satisfying Ax = b, x ≥ 0 and ξ ∈ Ξ
such that there does not exists any feasible second stage solution y(x, ξ) corresponding
to this pair. This is impossible to happen in the case of a relatively complete recourse.
Therefore, for a two-stage stochastic problem with non-random q, T and W such that
W−1 exists and with relatively complete recourse it holds K(x, ξ) = K(x,Eξ) ∀x, ξ and
so RP =WS = EV .

Theorem 2.11 For the problem (2.1) with non-random c, q, T and W holds

EV ≤WS ≤ RP ≤ EEV .

and so
EVPI = RP −WS ≤ RP − EV (2.15)

Proof. This follows immediately from theorems 2.7 and 2.8. �
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Remark 2.12 We can mention another approach leading to the same upper bound on
EVPI as in the equation (2.15). Let’s have RP = min

x
Eξz(x, ξ) andWS = Eξ minx

z(x, ξ)

subject to usual constraints, and suppose that z is convex in x and ξ. Now we define
ψ(ξ) = min

x
z(x, ξ) and suppose that this minimum exists for all ξ ∈ Ξ. Then ψ is convex

(by Iglehart’s lemma) and we have for any point ξ0 from ψ’s domain that

Emin
x
z(x, ξ) ≥ min

x
z(x, ξ0) +∇ψ(ξ0) � (Eξ − ξ0)

where the symbol ∇ stands for a gradient (if it exists) or a subgradient. Then

EVPI = min
x
Ez(x, ξ)− Emin

x
z(x, ξ)

≤ min
x
Ez(x, ξ)−

(

min
x
z(x, ξ0) +∇ψ(ξ0) � (Eξ − ξ0)

)

∀ξ0 ∈ Ξ.
(2.16)

This upper bound on EVPI can be constructed for all possible ξ0 and a natural question
is, for which ξ0 this bound is the tightest. As is shown in [2], the best possible bound of
the type (2.16) is obtained by choosing ξ0 = Eξ.

If we set ξ0 = Eξ in the equation (2.16), we obtain

EVPI ≤ min
x
Ez(x, ξ)−min

x
z(x,Eξ) = RP − EV . (2.17)

We now denote x(ξ0) = argmin
x

z(x, ξ0). Then for any ξ0 we have min
x
Ez(x, ξ)≤Ez(x(ξ0), ξ)

and combining this with the inequality (2.17), we obtain

EVPI ≤ Ez(x(ξ0), ξ)−min
x
z(x,Eξ),

which is a bound on EVPI that is quite easy to evaluate.

Theorem 2.13 For any stochastic program of the form (2.1) it holds
(a) EVPI ≥ 0 and VSS ≥ 0.
(b) If the vectors c, q and the matrices T,W are fixed, then EVPI ≤ EEV − EV and
VSS ≤ EEV − EV .
Proof. It is an easy consequence of theorems 2.7 and 2.8. �
Remark 2.14 Part (a) of this theorem ensures us that it is worth doing to ask a clair-
voyant about future or postpone making our decisions until realization of ξ is observed,
and also to solve the stochastic program rather than its deterministic expected value
simplification.

Remark 2.15 Theorem 2.13 allows us to bound EVPI and VSS by EEV − EV which
can be easily computed (without solving the stochastic problem). We can also see that if
EEV = EV then VSS = EVPI = 0. A sufficient (but quite extreme) condition for this
to happen is that the optimal wait-and-see solution x̂(ξ) does not depend on ξ. It means
that the optimal solution does not react to the realization of ξ and so it is redundant
to solve the recourse problem – solving the problem for one fixed ξ from the support is
enough.
No inequalities hold in general between EVPI and VSS , i.e. it is not true generally that
EVPI ≤ VSS or vice versa, as could be proven via counterexamples. Some examples
illustrating a situation where EVPI = 0 and VSS > 0, and vice versa, can be found in
[4], page 142.
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It could also seem that both VSS and EVPI are the larger, the more “randomness” is
in the problem, and the “randomness” is naturally represented by the variance var ξ.
Sometimes it is true and sometimes not. For examples, see [4], pages 144–145.
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We will introduce some interesting bounds on the values of information, as well as some
new types of the value of information. They are based on convexity of the objective
function z and on the Jensen’s inequality. We follow the results presented in [10] and [11]
and we add some new results and proofs as well.

2.3.1. Information structures

Consider a stochastic problem
min

x
Eξz(x, ξ)

s.t. x ∈ K,
(2.18)

where K ⊆ � n is a convex polyhedral set, ξ: Ω → Ξ ⊆ � is a scalar random variable
with known probability distribution and a support Ξ. Denote as F (ξ) the cumulative
distribution function of ξ. The function z:K ×Ξ→ � is convex in x and ξ and the value
z(x, ξ) has the meaning of net costs of the decision maker when he applies his decision x
and the random variable is observed to be ξ. Recourse, if any, is included in z(x, ξ).
Let us denote

Zn = min
x∈K
Eξz(x, ξ) = RP

an optimal objective function value of the recourse problem; the subscript n stands for
“no information.” Similarly,

Zp = Eξ min
x∈K

z(x, ξ) =WS

will be the optimal objective function value under perfect information, and we define

EVPI = Zn − Zp.

Definition 2.16 η is an information structure, if it consists of a discrete set Y = {yi, i ∈ I}
of signal values of a discrete signal random variable y such that when yi ∈ Y is observed
then F (ξ) changes to F (ξ|yi), and defining a partition of Ξ into pairly disjoint nonempty
subsets Ξi, i ∈ I covering Ξ, such that P (ξ ∈ Ξi|y = yi) = 1.
Definition 2.17 Information structure η2 is finer then η1 if the partition generated by
η2 is finer then that generated by η1, i.e., for every subset Ξ2i from the partition of Ξ
related to η2 there exists a subset Ξ1j from the partition of Ξ related to η

1 such that

Ξ2i ⊆ Ξ1j .
If an information structure η is available, the stochastic problem (2.18) changes into the
stochastic problem

Zη = Ey min
x∈K
Eξ|yz(x, ξ)

where

Eξ|yz(x, ξ) = Eξ[z(x, ξ)|y] =
∫ ∞

−∞
z(x, ξ)dF (ξ|y)

is the conditional expectation of ξ given y, and Ey is expectation with respect to the
possible signals of η.
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If ξ is discrete and ξ and y (relating to η) are perfectly correlated then Zη = Zp.

Theorem 2.18 Zη2 ≤ Zη1 for every objective function z and every distribution of ξ if

and only if η2 is at least as fine as η1.
Proof. See [10] for references. �
This theorem ensures us again that EVPI ≥ 0, since the perfect information structure is
finer then the no information structure.

Now we can use the partial information structures to construct some bounds on the
expected value of partial information.
Theorem 2.19 (Conditional Jensen’s inequality bounds on EVPI )
Consider a stochastic problem (2.18). Suppose that z is convex in (x, ξ) on K × Ξ and
an information structure η is available. Then

EVPI ≤ min
y∈Y
Eξz(x̄(y), ξ)− Eyz(x̄(y), ξ̄(y)),

where x̄(y) is an optimal solution to min
x∈K

z(x, ξ̄(y)) and ξ̄(y) = E[ξ|y] =
∫∞
−∞ ξdF (ξ|y).

Proof. There is

EVPI = min
x∈K
Eξz(x, ξ)− Eξ min

x∈K
z(x, ξ) = min

x∈K
Eξz(x, ξ)− EyEξ|y min

x∈K
z(x, ξ)

≤ min
x∈K
Eξz(x, ξ)− Ey min

x∈K
z(x, ξ̄(y)) by Iglehart’s lemma and Jensen’s inequality

= min
x∈K
Eξz(x, ξ)− Eyz(x̄(y), ξ̄(y)) by definition of x̄(y)

≤ min
y∈Y
Eξz(x̄(y), ξ)− Eyz(x̄(y), ξ̄(y)) by feasibility of x̄(y), y ∈ Y.

�
Remark 2.20 The convexity of z in (x, ξ) is a very strong condition. The function z as
given in (2.2) is convex in x under (quite mild) conditions of the theorem 2.3, but for
convexity of z in ξ, non-random q, T and W are necessary, so we deal with a problem
with random right hand side only.

2.3.2. Generalized Jensen and Emundson-Madansky bounds

In this paragraph we will partially follow [10] and [11]. We will again deal with the
optimization problem (2.18).

Suppose that ξ is a random variable with distribution function F (ξ) and support 〈a, b〉 ⊆ � ,
consider a function f(ξ) convex on the closed interval 〈a, b〉. Then Jensen’s inequality gives
us Ef(ξ) ≥ f(Eξ) = f(ξ̄) and we will denote f(ξ̄) = J0. We can define a function s〈a,b〉 :

s〈a,b〉(ξ) =
(

b−ξ
b−a

)

.f(a) +
(

ξ−a
b−a

)

.f(b).

Function f is convex and so f(ξ) ≤ s〈a,b〉(ξ) for all ξ ∈ 〈a, b〉 and

J0 ≤ Ef(ξ) =
∫ b

a
f(ξ)dF (ξ) ≤

∫ b

a
s〈a,b〉(ξ)dF (ξ)

=
∫ b

a

[(

b− ξ

b− a

)

.f(a) +

(

ξ − a

b− a

)

.f(b)

]

dF (ξ)

=

(

b− ξ̄

b− a

)

.f(a) +

(

ξ̄ − a

b− a

)

.f(b) = s〈a,b〉(ξ̄).
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We denote s〈a,b〉(ξ̄) =M0.
Let us generalize the idea of J0 and M0 :
For a while we can assume for simplicity
that α1 = P (ξ ∈ 〈a, ξ̄〉) = P (ξ ∈ 〈ξ̄, b〉) =
α2 =

1
2 .

Then we can define J1 = 12f(ξ̄
1)+ 12f(ξ̄

2)

where we have ξ̄1 = (α1)−1
∫ ξ̄
a ξdF (ξ) and

ξ̄2 = (α2)−1
∫ b
ξ̄ ξdF (ξ). Analogically, we

can define M1 as α1M11 + α2M
1
2 where

M11 and M
1
2 are the points found in the

same way as M0 on the intervals 〈a, ξ̄〉
and 〈ξ̄, b〉, respectively. The meaning of
these definitions is clear from the figure
2.21.

a ξ̄1 ξ̄ ξ̄2 b

M0

M1

J1

J0

f

Figure 2.21.
Then

J0 = f(Eξ) ≤ J1 =
1
2
f(ξ̄1) +

1
2
f(ξ̄2) ≤ Ef(ξ)

≤ 1
2

[

ξ̄ − ξ̄1

ξ̄ − a
.f(a) +

ξ̄1 − a

ξ̄ − a
.f(ξ̄)

]

+
1
2

[

b− ξ̄2

b− ξ̄
.f(ξ̄) +

ξ̄2 − ξ̄

b− ξ̄
.f(b)

]

=
1
2
s〈a,ξ̄〉(ξ̄

1) +
1
2
s〈ξ̄,b〉(ξ̄

2) =
1
2
M11 +

1
2
M12 =M

1 ≤ s〈a,b〉(ξ̄) =M
0.

Even more general and more precise definitions and notation are introduced in the fol-
lowing theorem.
Theorem 2.22 Suppose that 〈a, b〉 is an interval subdivided at arbitrary points d0, . . . , dn,

n ∈ � , where a = d0 < d1 < . . . < dn = b. Let f(ξ) be a continuous convex function of
a scalar random variable ξ on its support 〈a, b〉, let F be the distribution function of ξ.
Define

αi :=
∫ di

di−1

dF (t) > 0, βi :=
1
αi

∫ di

di−1

tdF (t), i = 1, . . . , n,

δi := αi

[

βi − di−1
di − di−1

]

+ αi+1

[

di+1 − βi+1

di+1 − di

]

, i = 0, . . . , n,

α0 = αn+1 = β0 = βn+1 = d−1 := 0.
Let Jn andMn denote the generalized Jensen and Emundson-Madansky (GJEM) bounds
of the n-th order, respectively, defined as:

Jn :=
n
∑

i=1

αif(βi), M
n :=

n
∑

i=0

δif(di), n = 1, 2, . . .

Then

(a) Jn ≤ Ef(ξ) ≤Mn, n = 1, 2, . . . .

(b) If the partition of 〈a, b〉 corresponding to k+1 is at least as fine as that corresponding
to k for k = 1, . . . , n− 1, then

J1 ≤ J2 ≤ . . . ≤ Jn ≤ Ef(ξ) ≤Mn ≤ . . . ≤M1.
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(c) If in addition each subinterval becomes arbitrarily small as n→ ∞, then

lim
n→∞Jn = Ef(ξ) = lim

n→∞Mn.

Proof. See [10] and a reference given there. �
These bounds can naturally be used to compute bounds on EVPI .

Theorem 2.23 Suppose that z(x, ξ) is a continuous function convex in (x, ξ) on the
convex set K × Ξ where Ξ = 〈a, b〉 is the support of ξ and K is a convex and compact
set. For n ∈ � define

Ll(z) =
l
∑

i=1

αiz(x, βi), Ul(z) =
l
∑

i=0

δiz(x, di), l = 1, . . . , n,

J l = Ll(min z) =
l
∑

i=1

αi min
x∈K

z(x, βi), M l = Ul(min z) =
l
∑

i=0

δi min
x∈K

z(x, di), l = 1, . . . , n,

where di, αi, βi, δi for i = 0, . . . , n + 1 and d−1 are defined as in theorem 2.22. Then it
holds

(a) min
x∈K

Ll(z) ≤ min
x∈K
Eξz(x, ξ) = Zn ≤ min

x∈K
Ul(z),

(b) Ll(min z) = J l ≤ Eξ min
x∈K

z(x, ξ) = Zp ≤M l = Ul(min z),

(c) max{0; min
x∈K

Ll(z)− Ul(min z)} ≤ EVPI ≤ min
x∈K

Ul(z)− Ll(min z).

(d) If the partition corresponding to l+ 1 is finer then that corresponding to l, then the
bounds for l + 1 are at least as sharp as those for l.
(e) If each subinterval becomes arbitrarily small as l → ∞, then

lim
l→∞
[min
x∈K

Ll(z)− Ul(min z)] = EVPI = lim
l→∞
[min
x∈K

Ul(z)− Ll(min z)].

Proof. Parts (a) and (b) are easy consequences of the theorem 2.22. Part (c) is a direct
consequence of (a) and (b), (d) follows from monotonicity of J l and M l in l, (e) follows
from (a)–(d) and the theorem 2.22 (c). �
This theorem can be generalized for the case of vector random variable ξ with independent
components; this generalization can be found in [10].

2.3.3. Convex negative-utility function

In general, we can incorporate a negative-utility or, say, badness function b: � → �
which expresses our opinion to varying costs z(x, ξ). The most usual situation is that b is
nondecreasing (large costs are worse than low ones) and convex (increase of small costs
by 1 unit is felt worse than same increase of large costs). If the negative-utility function
b is linear then it can be omitted.
Everything above holds true for a linear negative-utility function which can be omitted.
Now we will suppose that the negative-utility function is a convex nondecreasing function
of costs which expresses the subjective decision maker’s feeling of the overall costs and
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can therefore be considered as a counterpart of the well known utility function which
is used in maximization problems. It is natural that higher costs are felt as worse than
lower costs and that the decision maker minimizes his negative-utility (“badness”) and
therefore he minimizes costs.
The decision maker tries to minimize his negative utility function b: � → � , where
b(z(x, ξ)) is the badness of the costs z(x, ξ) and z is a continuous and convex func-
tion. It is clear that the function b brings nonlinearity into the problem, but in addition
we can consider a general convex cost function z now (not only the function z defined in
(2.2)).
The here-and-now problem now reads

min
x
Eξb[z(x, ξ)]

s.t. x ∈ K,
(2.19)

where K is a convex set. The following definition gives a relevant counterpart of the
expected value of perfect information.
Definition 2.24 Value of information Ṽ relating to the problem (2.19) is a solution of
the equation

Eξ min
x∈K

b[z(x, ξ) + Ṽ ] = min
x∈K
Eξb[z(x, ξ)]. (2.20)

Remark 2.25 If b is a linear function given as b(t) = st+ r then

Eξ min
x∈K

b[z(x, ξ) + Ṽ ] = Eξ min
x∈K
[s.z(x, ξ)] + s.Ṽ + r

and it has to be equal to

min
x∈K
Eξ[s.z(x, ξ) + r] = min

x∈K
Eξ[s.z(x, ξ)] + r

and so Ṽ = EVPI .

We will derive some bounds on the value of information Ṽ now.
Theorem 2.26 Suppose that b is convex strictly increasing on � , z is convex in (x, ξ)
on a convex set K × Ξ. Then

Ṽ ≤ b−1
[

Eξb[z(x̄, ξ)]
]

− z(x̄, ξ̄),

where x̄ is an optimal solution to min
x∈K

z(x, ξ̄), ξ̄ = Eξ, and Ṽ is defined in (2.20).

Proof. There is
min
x∈K
Eξb[z(x, ξ)] ≤ Eξb[z(x̄, ξ)] (2.21)

since x̄ ∈ K, and

Eξ min
x∈K

b[z(x, ξ)+ Ṽ ] = Eξh(ξ) where h(ξ) = min
x∈K

b[z(x, ξ) + Ṽ ]

≥ h(Eξ) by Jensen’s inequality; h is convex by Iglehart’s lemma

= min
x∈K

b[z(x, ξ̄)+ Ṽ ] = b[min
x∈K

z(x, ξ̄)+ Ṽ ] since b is strictly increasing

= b[z(x̄, ξ̄) + Ṽ ] by definition of x̄.
(2.22)
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Inequalities (2.21) and (2.22) give together:

b[z(x̄, ξ̄) + Ṽ ] ≤ Eξb[z(x̄, ξ)]

which implies that

Ṽ ≤ b−1
[

Eξb [z(x̄, ξ)]
]

− z(x̄, ξ̄).

�
Theorem 2.27 Suppose that b is convex strictly increasing on � , z is convex in (x, ξ)
on a convex set K × Ξ, an information structure η (with relating signal variable y) is
available. Then

Ṽ ≤ b−1
[

min
y∈Y
Eξb[z(x̄(y), ξ)]

]

− Ey min
x∈K

z(x, ξ̄(y)),

where x̄(y) is an optimal solution to min
x∈K

z(x, ξ̄(y)) and ξ̄(y) = E[ξ|y] =
∞
∫

−∞
ξdF (ξ|y) is

a conditional expectation of ξ given y and Ṽ is defined as a solution of (2.20).
Proof. The idea of the proof is the same as the previous one. See [10] for details. �

As is shown in [10], generalization of all of these results for a vector random variable
ξr = (ξ1, . . . , ξr) with independent components is possible. It can be used to derive an
upper bound on Ṽ which is similar to that introduced in the theorem 2.26 with Eξb[z(x̄, ξ)]
and z(x̄, ξ̄) replaced by their iterative upper and lower bounds, respectively, as introduced
in theorem 2.23. As is mentioned in the cited articles, this method does not lead to a
similar lower bound on Ṽ (unlike in a problem with a linear or negative-utility function).
We now introduce a new lower bound on Ṽ for a problem with a convex negative-utility
function.

To get a lower bound on Ṽ , we can use convexity of the negative-utility function b.
According to the equation (2.20) and thanks to convexity, for any pair p, q ∈ (0, 1) such
that p+ q = 1, we can write

min
x∈K
Eξrb[z(x, ξr)]=Eξr min

x∈K
b[z(x, ξr) + Ṽ ]

=Eξrb

[

p. min
x∈K

1
p
z(x, ξr)+ q.

1
q
Ṽ

]

≤p.Eξrb

[

min
x∈K

1
p
z(x, ξr)

]

+ q.b
[

1
q
Ṽ

]

and further operations imply that

q.b

[

1
q
Ṽ

]

≥ min
x∈K
Eξrb[z(x, ξr)]− p.Eξrb

[

min
x∈K

1
p
z(x, ξr)

]

,

Ṽ ≥ q.b−1
[

1
q
min
x∈K
Eξrb[z(x, ξr)]− p

q
Eξrb

[

min
x∈K

1
p
z(x, ξr)

]]

= (1− p).b−1
[

1
1− p

min
x∈K
Eξrb[z(x, ξr)]− p

1− p
Eξrb

[

1
p
min
x∈K

z(x, ξr)

]]

.

The function b is supposed to be strictly increasing and so b−1 is strictly increasing
as well. Hence, we can substitute min

x∈K
Eξrb[z(x, ξr)] with any its lower bound L̃ and
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Eξrb

[

1
p min

x∈K
z(x, ξr)

]

with any its upper bound Ũ(p) and the last inequality will hold a

fortiori. Hence, it holds

Ṽ ≥ (1− p).b−1
[

1
1− p

L̃− p

1− p
Ũ(p)

]

∀p ∈ (0, 1)

and so

Ṽ ≥ sup
p∈(0,1)

(1− p).b−1
[

1
1− p

L̃− p

1− p
Ũ(p)

]

.

Lower bound of the same type could naturally be used in the case of scalar random
variable ξ. Unfortunately, these bounds are quite sophisticated and we can guess that
they are generally not too sharp. They are the sharper, the less the function b differs
from a linear function.
Much simpler lower bound on V can also be found under an assumption that b is suba-
ditive, i.e., b(x + y) ≤ b(x) + b(y) for all x, y. Then we have

min
x∈K
Eξrb[z(x, ξr)] = Eξrb

[

min
x∈K

z(x, ξr) + Ṽ
]

≤ Eξrb

[

min
x∈K

z(x, ξr)
]

+ b[Ṽ ]

which implies that

Ṽ ≥ b−1
[

min
x∈K
Eξrb[z(x, ξr)]− Eξrb

[

min
x∈K

z(x, ξr)
]]

= b−1
[

min
x∈K
Eξrb[z(x, ξr)]− Eξr min

x∈K
b[z(x, ξr)]

]

(2.23)

= b−1[RP −WS ],

where the RP and WS are now related to the problems with a compound objective
function b(z).

Again, min
x∈K
Eξrb[z(x, ξr)] and Eξrb

[

min
x∈K

z(x, ξr)
]

in the expression (2.23) can be substi-

tuted with their lower and upper bounds, respectively.

Under special distributional assumptions, another lower bound on Ṽ for the case of a
vector random variable ξr was derived in [11].
Theorem 2.28 Suppose that
(1) b is convex strictly increasing on � ,
(2) x∗ = x∗(ξr) solves min

x∈K
z(x, ξr) and x̂ solves min

x∈K
Er

ξb[z(x, ξ
r)],

(3) z(x∗, ξr), z(x̂, ξr) have distributions from the same family with two parameters that
are independent functions of mean and variance, i.e. if z(x∗, ξr) ∼ G(y; a1, b1) and
z(x̂, ξr) ∼ H(z; a2, b2) then

y−a1√
b1
= z−a2√

b2
implies that G(y) = H(z) (where a1, a2 are

finite and b1, b2 are finite and positive). Then

(a) Ṽ ≥ Eξr [z(x̂, ξr)− z(x∗, ξr)]⇔ var z(x∗, ξr) ≥ var z(x̂, ξr).

(b) For any function z convex in (x, ξr) and any b convex and strictly increasing negative-
utility function, there is

var z(x∗, ξr) ≥ var z(x̂, ξr)⇒ Ṽ ≥ EVPI , (2.24)
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where Ṽ is the value of perfect information for b convex negative-utility function which
is defined a solution of (2.20), and EVPI is the expected value of perfect information for
the same two-stage stochastic problem without the negative-utility function b.
Proof.
(a) By definition, there is z(x∗, ξr) = min

x∈K
z(x, ξr) and Eξrb[z(x̂, ξr)] = min

x∈K
Eξrb[z(x, ξr)].

The function b is strictly increasing and so

Eξr min
x∈K

b[z(x, ξr) + Ṽ ] = Eξrb

[

min
x∈K

z(x, ξr) + Ṽ
]

.

The value of information Ṽ is defined by (2.20). This is equivalent to

Eξrb

[

min
x∈K

z(x, ξr)+Ṽ

]

=Eξrb
[

z(x∗, ξr)+Ṽ
]

=Eξrb [z(x̂, ξr)]

= Eξrb [z(x∗, ξr)−{z(x∗, ξr)−z(x̂, ξr)}] .

Let us denote g(ξr) = z(x∗, ξr) − Eξr{z(x∗, ξr) − z(x̂, ξr)}. Then g(ξr) and z(x̂, ξr)
have distributions belonging to the same family described by two parameters that are
independent functions of mean and variance with equal means. Then according to [8]

Eξrb[g(ξr)] ≤ Eξrb[z(x̂, ξr)]⇔ var g(ξr) ≥ var z(x̂, ξr)

for any nondecreasing function b. Then

Eξrb[z(x∗, ξr)− Eξr{z(x∗, ξr)− z(x̂, ξr)}] ≤ Eξrb[z(x̂, ξr)]⇔ var g(ξr) ≥ var z(x̂, ξr)

and Eξrb[z(x̂, ξr)] = Eξrb[z(x∗, ξr) + Ṽ ]. Hence,

−Eξr{z(x∗, ξr)− z(x̂, ξr)} ≤ Ṽ ⇔ var g(ξr) ≥ var z(x̂, ξr),
that is

Eξr{z(x̂, ξr)− z(x∗, ξr)} ≤ Ṽ ⇔ var g(ξr) ≥ var z(x̂, ξr).
It is clear that var g(ξr) = var z(x∗, ξr) and so finally

Eξr{z(x̂, ξr)− z(x∗, ξr)} ≤ Ṽ ⇔ var z(x∗, ξr) ≥ var z(x̂, ξr).

(b) We know that Eξrz(x̂, ξr) ≥ min
x∈K
Eξrz(x, ξr). Hence,

Eξr{z(x̂, ξr)− z(x∗, ξr)} = Eξrz(x̂, ξr)− Eξr min
x∈K

z(x, ξr)

≥ min
x∈K
Eξrz(x, ξr)− Eξr min

x∈K
z(x, ξr)

= RP −WS = EVPI .

(2.25)

Then thanks to (a) it holds

var z(x∗, ξr) ≥ var z(x̂, ξr)⇒ Ṽ ≥ Eξr{z(x̂, ξr)− z(x∗, ξr)}.

The last expression Eξr{z(x̂, ξr) − z(x∗, ξr)} is greater or equal to EVPI according to
(2.25).

�
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Remark 2.29 The authors of [11] stated that an equivalence holds in (2.24) but they do
not give a correct proof of the second implication

Ṽ ≥ EVPI ⇒ var z(x∗, ξr) ≥ var z(x̂, ξr).

Remark 2.30 The conditions that are required to hold for the family of distributions are
not too strange. They come from problems of portfolio mean-variance optimization. The
described family of distributions includes normal (not lognormal), uniform and two-point
equally-likely distributions.

2.3.4. Partial information

Linear negative-utility function

We have already introduced Zη = Ey min
x∈K
Eξ|yz(x, ξ) where z is defined in (2.2). Expected

value of partial information (given by the information structure) η is defined as

Vη = Zn − Zη = min
x∈K
Eξz(x, ξ)− Ey min

x∈K
Eξ|yz(x, ξ). (2.26)

If η1, η2 are two information structures then

Vη2−Vη1 = (Zn−Zη2)−(Zn−Zη1) =Zη1−Zη2 =Ey1 min
x∈K
Eξ|y1z(x, ξ)−Ey2 min

x∈K
Eξ|y2z(x, ξ).

At first, there are two quite easy but quite important inequalities:
Theorem 2.31
(a) There is Vη ≥ 0 for any information structure η.
(b) If η1, η2 are two information structures, η1 is at least as fine as η2, then Vη1 ≥ Vη2.

Proof.
(a) Vη = Zn − Zη ≥ 0 according to theorem 2.18 since η is at least as fine as the non-
information structure (denoted by the subscript n).
(b) Vη1 − Vη2 = Zη2 − Zη1 ≥ 0 because Zη2 ≥ Zη1 . �
We will develop some bounds on Vη2 − Vη1 , which is a value of adding, increasing infor-
mation or a value of better partial information.
Theorem 2.32 Suppose that z is a convex function of ξ for all fixed x ∈ K. Then

Ey1

[

Eξ|y1z(x̄(y
1), ξ)

]

−Ey2z(x̄(y
2), ξ̄(y2))≥ Vη2 − Vη1 = Zη1 − Zη2

≥Ey1z(x̄(y
1), ξ̄(y1))−Ey2

[

Eξ|y2z(x̄(y
2), ξ)

]

,

where x̄(yi) is an optimal solution to min
x∈K

z(x, ξ̄(yi)) and ξ̄(yi) = E[ξ|yi] =
∫∞
−∞ ξdF (ξ|yi),

for i = 1, 2.
Proof. For i = 1, 2 holds true:

Zηi = Eyi min
x∈K
Eξ|yiz(x, ξ) ≥ Eyi min

x∈K
z(x, ξ̄(yi)) = Eyiz(x̄(yi), ξ̄(yi))

by conditional Jensen’s inequality applied to f(ξ) = z(x, ξ) for fixed x; we assume that
this function is convex for all x ∈ K.

Also,

Zηi = Eyi

[

min
x∈K
Eξ|yiz(x, ξ)

]

≤ Eyi

[

Eξ|yiz(x̄(yi), ξ)
]
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since x̄(yi) ∈ K. Now we can use that

upper(Zη1)− lower(Zη2) ≥ Zη1 − Zη2 = Vη2 − Vη1 ≥ lower(Zη1)− upper(Zη2)

where upper(Zηi), lower(Zηi) is any upper, lower bound on Zηi, respectively. �

Convex negative-utility function

Having used a convex strictly increasing negative-utility function b, value of partial in-
formation (given by an information structure) η is Ṽη which is defined as a solution of
the equation

Ey min
x∈K
Eξ|yb[z(x, ξ) + Ṽη] = min

x∈K
Eξb[z(x, ξ)]. (2.27)

(We have added the tilde to distinguish the value of partial information for a linear and
convex negative-utility function.)

Again, there are two quite important inequalities:
Theorem 2.33 Suppose that z is a convex function of ξ for all fixed x ∈ K, and b is
convex and strictly increasing. Then
(a) for any information structure η, there is Ṽη ≥ 0.
(b) Let η1 and η2 be two information structures. If η1 is at least as fine as η2, then
Ṽη1 ≥ Ṽη2 .

Proof.
(a) For any convex function g and a random variable y, we have

Ey min
x∈K

g(x, y) ≤ min
x∈K
Eyg(x, y).

Now let us have g(x, y) = Eξ|yb[z(x, ξ)]. We then obtain that

Ey min
x∈K

[

Eξ|yb[z(x, ξ)]
]

≤ min
x∈K
Ey

[

Eξ|yb[z(x, ξ)]
]

= min
x∈K
Eξb[z(x, ξ)].

The function b is strictly increasing and Ṽη is a solution of the equation (2.27) and so
Ṽη ≥ 0.
(b) For i = 1, 2, let us denote as yi the signal random variable relative to the information
structure ηi, and z̃ = b[z]. For η1 at least as fine as η2 we know that

Z̃η1 := Ey1 min
x∈K
Eξ|y1b[z(x, ξ)] ≤ Ey2 min

x∈K
Eξ|y2b[z(x, ξ)] =: Z̃η2

and from definition of Ṽηi, i = 1, 2, it holds

Ey1 min
x∈K
Eξ|y1b[z(x, ξ)+ Ṽη1 ] = min

x∈K
Eξb[z(x, ξ)] = Ey2 min

x∈K
Eξ|y2b[z(x, ξ)+ Ṽη2]. (2.28)

Let us suppose for contradiction, that Ṽη1 < Ṽη2 , without loss of generality Ṽη1 = 0 and

Ṽη2 > 0. Then

Ey1 min
x∈K
Eξ|y1b[z(x, ξ) + Ṽη1] = Ey1 min

x∈K
Eξ|y1b[z(x, ξ)]

≤ Ey2 min
x∈K
Eξ|y2b[z(x, ξ)] < Ey2 min

x∈K
Eξ|y2b[z(x, ξ) + Ṽη2 ],
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since b is strictly increasing. So we have obtained a contradiction with (2.28). �
Remark 2.34 It is clear that for any η is Ṽη ≤ Ṽ = Ṽp.

"$��� � !�}������[�i ����r���,�
¤����
Inspired by the approach introduced in [3], we will deal with pairs and groups subproblems
and true expectations of some objective function values related to them. We will also
define a modification of VSS and finally we will derive new bounds on VSS which are
very interesting and quite computationally demanding.
Throughout this chapter, we will consider a slightly simplified version of a two stage
stochastic program with random right hand side only. The problem reads

min
x
Eξz(x, ξ) = minx

{

c � x+ Eξ min
y(ξ)

{q � y(ξ) : Wy(ξ) = ξ − Tx, y(ξ) ≥ 0}
}

s.t. Ax = b, x ≥ 0
(2.29)

under assumptions that ξ = h(ξ) is the only random variable, support of ξ is a set Ξ
which is finite with K possible realizations of ξ, i.e. Ξ = {ξ1, . . . , ξK}. The scenarios
ξ1, . . . , ξK come with probabilities p1, . . . , pK , respectively, and

∑K
k=1 p

k = 1.

Consider a reference scenario ξu (e.g. ξu = ξ̄ or ξu is the worst-case scenario), denote
pu = P (ξ = ξu); it is possible that ξu 6∈ Ξ and then pu = 0. We formulate the pairs
subproblem of ξu and ξk ∈ Ξ as

min
(x,y(ξu),y(ξk))

zP (x, ξu, ξk) = min
(x,y(ξu),y(ξk))

{

c � x+ pu.q � y(ξu) + (1− pu).q � y(ξk)
}

s.t. Ax = b, x ≥ 0,
Wy(ξu) = ξu − Tx, (2.30)

Wy(ξk) = ξk − Tx,

y ≥ 0.

Optimal solution of this problem is denoted as (x̂u,k, ŷ(ξu), ŷ(ξk)) and the optimal ob-
jective function value is zP (x̂u,k, ŷ(ξu), ŷ(ξk)).
There are two special cases:
(1) If we have ξk = ξu, then the objective function is zP (x, ξu, ξu) = z(x, ξu) and we
have a deterministic problem for the reference scenario.
(2) If ξu 6∈ Ξ then pu = 0 and we solve a deterministic problem for the scenario ξk, since
for pu = 0 is zP (x, ξu, ξk) = z(x, ξk).

Define expectation of optimized pairs subproblems with fixed reference scenario ξu (which
will be denoted as EOPSu) as

EOPSu =
1

1− pu

K
∑

k=1
ξk 6=ξu

pk. min
(x,y(ξu),y(ξk))

zP (x, ξu, ξk)

where for every k we minimize the function zP under the same constraints as in (2.30).
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Note that for ξu 6∈ Ξ there is

EOPSu =
1
1− 0 .

K
∑

k=1
ξk 6=ξu

pk.min z(x, ξk) =
∑

ξk∈Ξ
pk.min z(x, ξk) = Eξ min z(x, ξ) =WS .

Theorem 2.35 For the two stage stochastic program of the form (2.29) and for any
reference scenario ξu it holds

WS ≤ EOPSu ≤ RP .

Proof. The proof can be found in [3]. �
Let us generalize the definition of the value of stochastic solution (VSS ) for a while. Let
x̄u be an optimal solution of the deterministic problem for the reference scenario ξu

min
x

z(x, ξu) = min
x

{

c � x+ min
y(ξu)

{q � y(ξu) : Wy(ξu) = ξu − Tx, y(ξu) ≥ 0}
}

s.t. Ax = b, x ≥ 0.
Define EVRSu = Eξz(x̄

u, ξ) and

VSSu = EVRSu − RP . (2.31)

If there is ξu = ξ̄ = Eξ, then EVRSu = EEV and nothing has changed. The nonnegativity
of VSS is still kept: If x̄u is a first stage feasible solution of the here-and-now problem
then EVRSu ≥ RP , and if x̄u is infeasible then EVRSu = +∞, so still VSSu ≥ 0.
Define finally minimized expected objective function value of pairs subproblems with fixed
reference scenario (MEPSu) as

MEPSu = min
{k=1,...,K}∪{u}

Eξz(x̂
u,k, ξ),

where x̂u,k is an optimal first stage solution of the pairs subproblem of ξu and ξk.
Relationships between the new characteristics are derived in the following theorems.

Theorem 2.36 For the stochastic problem (2.29), for any reference scenario ξu, there is

RP ≤ MEPSu ≤ EVRSu.

Proof. RP ,MEPSu and EVRSu are optimal values of objective function in the problem
min

x
Eξz(x, ξ). When computing RP , we minimize over all x ∈ F1 where F1 is a set

of all feasible solutions of (2.29). When computing MEPSu, we consider as feasible all
x ∈ F2 = F1 ∩ {x̂u,1, . . . , x̂u,K , x̂u,u}, and when computing EVRSu, we have a feasibility
set F3 = F2 ∩ {x̄u} = F2 ∩ {x̂u,u}, since x̄u = x̂u,u.

The feasibility sets for RP , MEPSu and EVRSu are smaller and smaller, i.e. it holds
F3 ⊆ F2 ⊆ F1 and thus RP ≤ MEPSu ≤ EVRSu. �
We can obtain bounds on the value of stochastic solution from these new variables:
Theorem 2.37 For a stochastic program of the form (2.29), for any reference scenario
ξu, there is

0 ≤ EVRSu −MEPSu ≤ VSSu ≤ EVRSu − EOPSu ≤ EVRSu −WS .
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Proof. It follows immediately from theorems 2.35 and 2.36. �
Remark 2.38 It is obvious that a sufficient condition for EVPI = 0 is the existence of
x∗ and y∗(ξi) such that for every particular scenario ξi the pair (x∗, y∗(ξi)) is an optimal
solution of the problem min

x
z(x, ξi) (i.e. first stage decision of the wait-and-see solution

is identical for all scenarios).
To obtain a sufficient condition for VSSu = 0, consider a pairs subproblem of ξu and ξk

for k ∈ {1, . . . , K}. If (x∗, y∗(ξu)) is an optimal solution of the problem

min
x

z(x, ξu) = min
x

{

c � x +min
y

{q � y : Wy = ξu − Tx, y ≥ 0}
}

s.t. Ax = b, x ≥ 0
(2.32)

and for all k = 1, . . . , K there exists some y∗(ξk) such that (x∗ = x̂u,k, y∗(ξu), y∗(ξk))
solves the pairs subproblem of ξu and ξk, then x∗ is the first stage optimal solution of
the recourse problem (2.29). Then

EVRSu = Eξz(x̂
u,k, ξ) ∀k

= Eξz(x
∗, ξ)

and
RP = min

x
Eξz(x, ξ) = Eξz(x

∗, ξ).

Hence, EVRSu = RP and VSSu = EVRSu − RP = 0.
We have already mentioned that VSS = VSSu for ξu = Eξ, which can be used to find a
sufficient condition for VSS = 0 as a special case of VSSu = 0.
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We can generalize the idea of pairs subproblems,MEPS u and EOPSu. Using larger groups
of scenarios instead of pairs, we can obtain tighter bounds on the value of stochastic
solution.
Consider the problem (2.29), where ξ = h(ξ) is the only random variable, the support Ξ
of ξ is finite, Ξ = {ξ1, . . . , ξK} and for k = 1, . . . , K we denote pk = P (ξ = ξk). Consider
a reference scenario ξu with P (ξu) = pu. Define

EOGSu(l) =
1

(1− pu)l

K
∑

i1=1

ξi1 6=ξu

K
∑

i2≥i1

ξi2 6=ξu

. . .

K
∑

il≥il−1

ξ
il 6=ξu

pi1pi2 . . . pil .min zl(x, ξu, ξi1, . . . , ξil),

where zl(x, ξu, ξi1, . . . , ξil) = c � x + puq � y(ξu) +
∑

ih∈Ll

(1 − pu)q � y(ξih) is an objective

function of the group(l) subproblem

min
(x,y(ξu),y(ξi1),...,y(ξil))

zl(x, ξu, ξi1, . . . , ξil)

s.t. Ax = b, x ≥ 0,
Wy(ξu) = ξu − Tx, (2.33)

Wy(ξih) = ξih − Tx, h = 1, . . . , l,

y(ξu), y(ξih) ≥ 0, h = 1, . . . , l,
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where Ll is the set of distinct indices among i1, . . . , il.
In the definition of EOGSu(l) we sum up over all bags 3 with l elements chosen from the
set {ξ1, . . . , ξK} \ {ξu}. It could seem that we sum up over all nondecreasing sequences
with elements in {ξ1, . . . , ξK}\{ξu}, but it does not depend on ordering of the elements.
So we can’t assume that all the indices among i1, . . . , il are distinct since we compute
the min zl(x, ξi1, . . . , ξil) for all bags, not sets, of scenarios.
Define minimized expectation of the objective function value with fixed optimal solution
of group(l) subproblems (MEGS u(l)) with fixed reference scenario ξu: If x̂(ξu, ξi1, . . . , ξil)
is an optimal solution of the group(l) subproblem (2.33), then

MEGSu(l) = min
(i1,...,il)

Eξ[z(x̂(ξ
u, ξi1, . . . , ξil), ξ)] = min

(i1,...,il)

K
∑

k=1

pkz(x̂(ξu, ξi1, . . . , ξil), ξk).

According to the definition ofMEGSu(l) we consider every group(l) subproblem with one
fixed reference scenario ξu, find its optimal solution x̂(ξu, ξi1, . . . , ξil) and compute the
true expectation (over all scenarios) of the objective function value z(x̂(ξu, ξi1, . . . , ξil), ξ).
Finally, we minimize this over all bags with l elements.
Theorem 2.39 For the two stage stochastic program of the form (2.29) and for any fixed
ξu it holds

WS ≤EOPSu =EOGSu(1)≤ EOGSu(2)≤ . . .≤ EOGSu(K−2)≤ EOGSu(K−1)≤RP .

Proof. EOGSu(1) = EOPSu according to their definitions.
Let (x̄, ȳ(ξu), ȳ(ξi1), . . . , ȳ(ξiq)) be an optimal solution of the group(q) subproblem with
the reference scenario ξu.
Let (x∗|iq+1=j , y∗|iq+1=j(ξu), y∗|iq+1=j(ξi1), . . . , y∗|iq+1=j(ξiq)) be an optimal solution (with-
out the last component) of group(q+1) subproblem with the reference scenario ξu under
condition that iq+1 = j for j ∈ {1, . . . , K}.
Now we will define a vector of vectors:

(x̂, ŷ(ξu), ŷ(ξi1), . . . , ŷ(ξiq)) =

=
1
1−pu

K
∑

j=1

ξj 6=ξu

pj.
(

x∗|iq+1=j, y∗|iq+1=j(ξu), y∗|iq+1=j(ξi1), . . . , y∗|iq+1=j(ξiq)
)

(2.34)

in the sense that

x̂i =
1

1− pu

K
∑

j=1

ξ
ij 6=ξu

pj .x
∗|iq+1=j

i

for all components x̂i of x̂, and similarly for the other vectors ŷ(ξ
u), ŷ(ξi1), . . . , ŷ(ξiq).

Since (x̄, ȳ(ξu), ȳ(ξi1), . . . , ȳ(ξiq)) is an optimal solution of the group(q) subproblem and
(x̂, ŷ(ξu), ŷ(ξi1), . . . , ŷ(ξiq)) is feasible for the same problem, we have

3 Bag is a system of elements in which we do not care for the ordering of elements (similarly in a set) and

elements in a bag need not be distinct (unlike in a set). E.g. [1, 1, 2, 2] is the same bag as [1, 2, 1, 2] but

we cannot write it as [1, 1, 2] or [1, 2, 2] or [1, 2].
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min zl(x, ξu, ξi1, . . . , ξiq) =

= c � x̄+ puq � ȳ(ξu) +
∑

ih∈Lq

(1− pu)q � ȳ(ξih) ≤ c � x̂+ puq � ŷ(ξu) +
∑

ih∈Lq

(1− pu)q � ŷ(ξih).

Adding probabilities and nested sums, we obtain

K
∑

i1=1

ξi1 6=ξu

. . .

K
∑

iq≥iq−1

ξiq 6=ξu

pi1 . . . piq



c � x̄ + puq � ȳ(ξu) +
∑

ih∈Lq

(1− pu)q � ȳ(ξih)



 ≤

≤
K
∑

i1=1

ξi1 6=ξu

. . .

K
∑

iq≥iq−1

ξiq 6=ξu

pi1 . . . piq



c � x̂+ puq � ŷ(ξu) +
∑

ih∈Lq

(1− pu)q � ŷ(ξih)



 .

Dividing by (1− pu)q and then rewriting vectors according to equation (2.34) we obtain

EOGSu(q) =

=
1

(1− pu)q

K
∑

i1=1

ξi1 6=ξu

. . .

K
∑

iq≥iq−1

ξiq 6=ξu

pi1 . . . piq



c � x̄ + puq � ȳ(ξu) +
∑

ih∈Lq

(1− pu)q � ȳ(ξih)





≤ 1
(1− pu)q

K
∑

i1=1

ξi1 6=ξu

. . .

K
∑

iq≥iq−1

ξiq 6=ξu

pi1 . . . piq



c � x̂+ puq � ŷ(ξu) +
∑

ih∈Lq

(1− pu)q � ŷ(ξih)





=
1

(1− pu)q

K
∑

i1=1

ξi1 6=ξu

. . .

K
∑

iq≥iq−1

ξiq 6=ξu

pi1 . . . piq









c �









1
1− pu

K
∑

j=1

ξj 6=ξu

pjx∗|iq+1=j









+

+puq �









1
1− pu

K
∑

j=1

ξj 6=ξu

pjy∗|iq+1=j(ξu)









+
∑

ih∈Lq

(1− pu)q �









1
1− pu

K
∑

j=1

ξj 6=ξu

y∗|iq+1=j(ξih)

















=
1

(1− pu)q+1

K
∑

i1=1

ξi1 6=ξu

. . .

K
∑

iq≥iq−1
ξiq 6=ξu

K
∑

j=1

ξj 6=ξu

pi1 . . . piqpj
[

c � x∗|iq+1=j + puq � y∗|iq+1=j(ξu)+

+
∑

ih∈Lq+1

(1− pu)q � y∗|iq+1=j(ξih)
]

=EOGSu(q + 1).

Comments: x∗|iq+1=j , y∗|iq+1=j(ξu), y∗|iq+1=j(ξ1), . . . , y∗|iq+1=j(ξij) are relevant com-
ponents of the optimal solution of the group(q + 1) subproblem with ξiq+1 = ξj . We
have summed up over this last scenario as well, so the last (q + 1)-fold sum includes

27



all sequences of the length (q + 1) created with numbers from the set {1, . . . , K} \ {u}.
First q components of this sequences create nondecreasing sequences and the (q + 1)-th
component is added after it. But in fact we do not care about ordering of the elements
in these sequences, because according to the definition of EOGSu(q + 1) we have to sum
up over all bags of (q + 1) numbers chosen from the set {1, . . . , K} \ {u}, and we really
do so. So the last expression is really EOGSu(q + 1) according to its definition.

Also, components of any feasible solution of the whole recourse problem will form a
feasible solution of group(K − 1) subproblem. Hence, EOGSu(K − 1) ≤ RP . �
Theorem 2.40 For the stochastic program of the form (2.29) and for any fixed reference
scenario ξu it holds

RP≤MEGSu(K−1)≤MEGS u(K−2)≤ . . .≤MEGSu(2)≤MEGSu(1)=MEPSu≤EEV .

Proof. MEGSu(1) = MEPSu by definitions. For any l = 2, . . . , K, any solution con-
sidered in MEGSu(l − 1) is also considered in MEGSu(l). Hence, MEGSu(l) cannot be
worse (i.e. greater) than MEGSu(l− 1), i.e. MEGSu(l) ≤ MEGSu(l− 1). Also, any first
stage solution of group(K − 1) subproblem can be completed to the feasible solution of
the whole recourse problem and so we obtain MEGS u(K − 1) ≥ RP .
The inequality MEPSu ≤ EEV holds according to theorem 2.36 thanks to the fact that
EVRSu = EEV for reference scenario ξu = Eξ. �
Theorem 2.41 For a stochastic program of the form (2.29), for any fixed ξu, there is

0 ≤ EEV −MEPSu = EEV −MEGSu(1) ≤ EEV −MEGSu(2) ≤ . . . ≤
≤ EEV −MEGSu(K−1)≤VSS ≤ EEV −EOGSu(K−1)≤ EEV −EOGSu(K−2) ≤

. . . ≤ EEV − EOGSu(2) ≤ EEV − EOGSu(1) = EEV − EOPSu ≤ EEV −WS .

Proof. It follows immediately from theorems 2.39 and 2.40. �
However, computing MEGSu(l) and EOGSu(l) for larger groups may be more difficult
than computing the here-and-now solution. Solving the recourse problem is of equivalent
size as solving a group(K− 1) subproblem. Therefore, the bounds shown in theorem 2.41
are worth only if they bring information to the problem without being too computation-
ally demanding. For this reason, the group subproblems have not become too popular.
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This approach, slightly different from the wait-and-see approach, has been established
in [7]. It emphasises on computational efficiency and usefulness in particular real-life
applications. We will follow the approach presented in [7] and then we will generalize
it. We will also show that the original approach can be seen as incorrect from a little
different point of view.

Let us have a standard two-stage decision problem

min
x
Eξz(x, ξ) = minx

{

c � x+ Eξ miny
{q � (ξ)y : W (ξ)y = h(ξ)− T (ξ)x, y ≥ 0}

}

s.t. Ax = b, x ≥ 0
(2.35)

and suppose that the support Ξ of ξ is finite, scenarios ξ1, . . . , ξK can realize. Denote
again pk = P (ξ = ξk) for k = 1, . . . , K.
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According to [7], from an application viewpoint, the here-and-now solution is seen as
maybe a little doubtful. Any first stage wait-and-see solution x(ξs) obtained as a solution
of (2.10) is optimal for at least one scenario (the ξs), but no such optimality is guaranteed
for the here-and-now solution x∗. So an analysis of alternatives and their consequent
objective function values is suggested to be done with help of so called modified wait-
and-see solutions.
For i = 1, . . . , K we denote as x∗{i} an optimal first stage solution of the problem for the

scenario ξi

min
x

z(x, ξi) = min
x

{

c � x+min
y

{q � (ξi)y : W (ξi)y = h(ξi)− T (ξi)x, y ≥ 0}
}

s.t. Ax = b, x ≥ 0,
(2.36)

and suppose (or consider only such i) that−∞ < z(x∗{i}, ξ
k) < +∞ for k = 1, . . . , K. This

means that the second stage solution found as minimizing with the first stage decision
fixed as x∗{i} and after realization ξ

k is feasible and leads to a bounded objective function
value.
We define the modified wait-and-see value related to the i-th scenario as

MWS i = Eξz(x
∗
{i}, ξ) (2.37)

= c � x∗{i} +
K
∑

k=1

pk.min
y

{

q(ξk) � y : W (ξk)y = h(ξk)− T (ξk)x∗{i}, y ≥ 0
}

.

The wait-and-see objective function value for realization ξi is z(x∗{i}, ξ
i) and it is clear

that z(x∗{i}, ξ
i) ≤ z(x∗{k}, ξ

i) for all k = 1, . . . , K.
We have defined the optimal objective function value of the here-and-now problem as
RP = min

x
Eξz(x, ξ) and so RP ≤ MWS i for all i = 1, . . . , K. Hence, there is

U := min
{i:ξi∈Ξ}

MWS i ≥ RP ≥WS =: L (2.38)

and we can define expected value of perfect information for the modified wait-and-see
approach as

MEVPI = U − L = min
{i:ξi∈Ξ}

MWS i −WS .

It is clear that MEVPI ≥ EVPI according to the definition of U and L and so we have a
new (easily evaluable) upper bound on EVPI . An upper bound for the cost of uncertainty
for each x∗{i} is MWS i −WS , which is nonnegative.
According to [7], modified wait-and-see analysis suggested for applications is as follows:
1. Find x∗{i} for (not necessarily) all i = 1, . . . , K.

2. Compute z(x∗{i}, ξ
k), k = 1, . . . , K for all distinct x∗{i}s.

3. Compare these solutions to decide, which x∗{i}s are good, acceptable, risky or totally
bad. This step is discussed more in the next paragraph.

Let us discuss advantages of the modified wait-and-see (MWS) approach as compared to
the here-and-now approach.
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The first advantage of the modified wait-and-see approach is an easy detection of the
source of infeasibility. When infeasibility appears in a here-and-now problem, it is not
easy to find the scenarios which cause it. This situation can arise when solving a problem
with incomplete recourse. When applying the MWS analysis it is clear that if there is no
feasible solution for a scenario ξi, then any here-and-now model which includes ξi would
be problematic. It is also easy to find which constraints are violated. The “state of the
world” causing the problem is obvious, since only one state of the world is involved in
the given MWS problem.
In the suggested MWS “what-if analysis”, we compute z(x∗{i}, ξ

k) for all pairs (ξi, ξk) of

scenarios. Hence, we can see which results can be expected for which realizations ξk when
using x∗{i} as the first stage decision. This decision is naturally optimal in the case that

ξi really happens, but it may be much worse when some of the other scenarios realize.
There can exist a scenario ξj ∈ Ξ such that z(x∗{i}, ξ

j) is extremely large. Intuitively, if

the probability pj = P (ξ = ξj) is small and the decision x∗{i} gives “good results” for

the other scenarios (except for ξj), it can happen that the optimal first stage here-and-
now solution is x∗ = x∗{i}. This minimizes the expected objective function value, but it

also leads to the extremely large costs z(x∗{i}, ξ
j) with probability pj . Sometimes we do

not want to undergo such risk and we find better to choose another first stage decision,
which is not optimal for the here-and-now problem, but which is safer for all scenarios
(especially for ξj).
Via MWS approach, we can decide (before solving the here-and-now problem) which
solutions among x∗{i}, i = 1, . . . , K are good and which of them should be rejected even
though they were optimal for the here-and-now problem. Moreover, the MWS approach
generates complete probability distribution of the objective function values (costs) for
the various decision alternatives x∗{i}, i = 1, . . . , K, so we can rank the alternatives by
expected objective function values and we can see which first stage decisions would be
good for all scenarios, which would be good for most of them and risky for the others,
and which would be bad with unacceptably large probability.
For comparison, in a common scenario analysis, we compute z(x∗, ξk), k = 1, . . . , K,
for x∗ an optimal first-stage RP solution, which also leads to revealing the scenarios
that would bring too large costs. However, the scenario analysis does not offer any other
alternative if we decide to reject x∗.
Note also that computational demand for MWS i for all i is about K-times less than that
required to obtain the here-and-now solution.

2.6.1. Generalized modified wait-and-see approach

A straightforward generalization of the MWS approach leads to computing the optimal
first-stage solution of the problem for some subset of possible scenarios, while keeping
proportions of their a priori probabilities. Using larger and larger subsets we gain better
approximation of the true distribution of the random variable ξ, so a chain of inequalities
between optimal objective function values (of the problems with particular subsets of
scenarios) could be expected. However, we will show that in general no such inequalities
work.
Consider the original problem (2.35) again. The support Ξ of ξ is finite, Ξ = {ξ1, . . . , ξK}
and P (ξk) = pk for k = 1, . . . , K.
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Now, we obtain a (partial) information that one of two scenarios ξi, ξj will happen (but
we do not know which one of them). We then solve the problem for the two scenarios
only:

min
x

{

c � x +
pi

pi + pj
.min

y
{q(ξi) � y : W (ξi)y = h(ξi)− T (ξi)x, y ≥ 0}

+
pj

pi + pj
.min

y
{q(ξj) � y : W (ξj)y = h(ξj)− T (ξj)x, y ≥ 0}

}

s.t. Ax = b, x ≥ 0.
Denote x∗{i,j} an optimal first stage decision of this problem. Suppose for simplicity that

for all pairs (i, j) the value z(x∗{i,j}, ξ
k) is finite for all k = 1, . . . , K.

Let us define

MWS{i,j} = Eξz(x
∗
{i,j}, ξ)

= c � x∗{i,j} +
K
∑

k=1

pk.min
y

{

q(ξk) � y : W (ξk)y = h(ξk)− T (ξk)x∗{i,j}, y ≥ 0
}

,

i.e. MWS {i,j} denotes expected costs when x∗{i,j} is used as the first stage solution.
Define

MEVPI2 = min
{i,j}⊆{1,...,K}

i6=j

MWS {i,j} −WS .

The x∗{i,j} is feasible for the original problem (2.35) which implies that MWS {i,j} ≥ RP
for all (i, j) and so

U2 := min
{i,j}⊆{1,...,K}

i6=j

MWS{i,j} ≥ RP ≥WS =: L

which implies that

U2 − L = min
{i,j}⊆{1,...,K}

i6=j

MWS{i,j} −WS = MEVPI2 ≥ RP −WS = EVPI .

Now we can introduce the generalization for N -tuples, N < K. In the following, we will
deal with finite sets S only and we will denote as #S the number of elements of the set S.
The problem for scenarios with indices in the selected subset S ⊆ {1, . . . , K}, #S = N,
reads:

min
x







c � x +
∑

n∈S

pn
∑

l∈S p
l
min

y

{

q(ξn) � y : W (ξn)y = h(ξn)− T (ξn)x, y ≥ 0
}







s.t. Ax = b, x ≥ 0,
and the optimal first stage solution is denoted as x∗S .
We fix this x∗S as the first stage solution and we compute the actual expectation of the
optimal objective function value (i.e. expected costs):

MWSS =Eξz(x
∗
S , ξ) = c � x∗S +

K
∑

k=1

pkmin
y

{

q(ξk) � y : W (ξk)y= h(ξk)−T (ξk)x∗S , y≥ 0
}

.
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The x∗S is feasible for the original problem (2.35), and so MWSS ≥ RP for every set
S ⊆ {1, . . . , K} such that #S = N . Hence,

UN := min
S⊆{1,...,K}
#S=N

MWSS ≥ RP ≥WS =: L

which implies that

UN − L = min
S⊆{1,...,K}
#S=N

MWSS −WS = MEVPIN ≥ RP −WS = EVPI ,

where we defined
MEVPIN = min

S⊆{1,...,K}
#S=N

MWSS −WS .

For two sets S ⊆ {1, . . . , K} and Z ⊆ {1, . . . , K} such that #S = N and #Z = N + 1,
we would like to know whether any inequality works between MWS S and MWSZ , or
min
S
MWSS and min

Z
MWSZ . It is quite easy to see that no such inequality can hold true

in general. There are two (quite instructive) counterexamples.

Example 2.42 At first, the problem is solved for scenarios ξn, n ∈ S. So the decision
maker hedges against N = #S scenarios only. When solving the problem for the subset
Z, #Z = N +1, he hedges against N +1 scenarios, which seems to be better. So we can
expect MWSZ ≤ MWSS, which, however, need not be true.
As an example, suppose K = 3 (number of scenarios), #S = 1, #Z = 2, probability of
each scenario is 13 , the only randomness is in the second stage costs:

q(ξ1) =

(

1000
1
1

)

, q(ξ2) =

(

1
1000
1

)

, q(ξ3) =

(

1
1
1000

)

; c =

(

10
10
10

)

.

The form of the recourse problem is as follows:

min
x

[(

10
10
10

)

�
x +
1
3
min

y

{(

1000
1
1

)

�
y : yi ≥ 1− xi, i = 1, 2, 3

}

+

+
1
3
min

y

{(

1
1000
1

)

�
y : yi≥1−xi, i= 1, 2, 3

}

+
1
3
min

y

{(

1
1
1000

)

�
y : yi ≥ 1− xi, i= 1, 2, 3

}]

s.t. 0 ≤ xi ≤ 1, i = 1, 2, 3.
Now we will compute MWS {1} :

min
x

[(

10
10
10

)

�
x +min

y

{(

1000
1
1

)

�
y : yi ≥ 1− xi, i = 1, 2, 3

}]

s.t. 0 ≤ xi ≤ 1, i = 1, 2, 3,
which gives an optimal first stage solution x∗{1} = (1, 0, 0) � .

MWS{1}=

(

10
10
10

)

�
(

1
0
0

)

+
1
3
min

y

{(

1000
1
1

)

�
y : yi ≥ 1− x∗{1}i, i = 1, 2, 3

}

+

+
1
3
min

y

{(

1
1000
1

)

�
y : yi≥1−x∗{1}i, i= 1, 2, 3

}

+
1
3
min

y

{(

1
1
1000

)

�
y : yi≥1−x∗{1}i, i=1, 2, 3

}

= 10 +
1
3
(1 + 1) +

1
3
(1000 + 1) +

1
3
(1 + 1000) = 678.
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Thanks to the total symmetry of the problem, we have

MWS {1} = MWS{2} = MWS {3} = 678.

Now we will compute MWS {1,2} :

min
x

[(

10
10
10

)

�
x +
1
2
min

y

{(

1000
1
1

)

�
y : yi ≥ 1− xi, i = 1, 2, 3

}

+

+
1
2
min

y

{(

1
1000
1

)

�
y : yi ≥ 1− xi, i = 1, 2, 3

}]

s.t. 0 ≤ xi ≤ 1, i = 1, 2, 3
and the optimal first stage solution is x∗{1,2} = (1, 1, 0) � .

MWS{1,2}=

(

10
10
10

)

�
(

1
1
0

)

+
1
3
min

y

{(

1000
1
1

)

�
y : yi ≥ 1− x∗{1,2}i, i = 1, 2, 3

}

+

+
1
3
min

y

{(

1
1000
1

)

�
y : yi ≥1−x∗{1,2}i, i= 1, 2, 3

}

+
1
3
min

y

{(

1
1
1000

)

�
y : yi≥1−x∗{1,2}i, i= 1, 2, 3

}

=10 + 10 +
1
3
+
1
3
+
1
3
.1000 = 354.

Again, because of the symmetry of the problem, there is

MWS{1,2} = MWS{1,3} = MWS{2,3} = 354.

In this example, we obtained the expected result

min
{i}⊆{1,2,3}

MWS {i} > min
{i,j}⊆{1,2,3}

i6=j

MWS {i,j}.

Example 2.43 The result changes when the price of hedging in the first stage is so high
that the second stage recourse cannot compensate it and it is better not to hedge against
some scenarios. This situation results in MWSS ≤ MWSZ .

As an example, suppose K = 3 (number of all possible scenarios), #S = 1 and #Z = 2,
q = q(ξ) is the only random element and there is

q(ξ1) =

(−9000
1
1

)

, q(ξ2) =

(

1
−4004
1

)

, q(ξ2) =

(

1
1

−4004

)

; c =

(

1000
1000
1000

)

,

and the constraints are of the form 0 ≤ xi ≤ 2Mi for i = 1, 2, 3 (Mi large positive, e.g.
Mi = 1000000 for i = 1, 2, 3) in the first stage, and 0 ≤ yi ≤ 1

2x for i = 1, 2, 3 in the
second stage. Probability of each scenario is 13 . The recourse problem is then

min
x

[(

1000
1000
1000

)

�
x +
1
3
min
0≤y≤12x

{(−9000
1
1

)

�
y

}

+

+
1
3
min
0≤y≤12x

{(

1
−4004
1

)

�
y

}

+
1
3
min
0≤y≤12x

{(

1
1

−4004

)

�
y

}]

s.t. 0 ≤ x ≤ 2M
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forM = (M1,M2,M3) � . For simplicity of writing, we shall not write the constraints, they
are kept in the same fixed shape as above.
Now we will compute MWS {1}. The first problem reads

min
x

[(

1000
1000
1000

)

�
x +min

y

(−9000
1
1

)

�
y

]

which results in the first stage optimal solution x∗{1} = (2M1, 0, 0) � . Then

MWS {1}=

(

1000
1000
1000

)

�
(

2M1
0
0

)

+

[

1
3
min

y

(−9000
1
1

)

�
y+
1
3
min

y

(

1
−4004
1

)

�
y+
1
3
min

y

(

1
1

−4004

)

�
y

]

= 2000M1 +
1
3
(−9000M1) = −1000M1.

Now we will compute MWS {1,2} :

min
x

(

1000
1000
1000

)

�
x +
1
2
min

y

(−9000
1
1

)

�
y +
1
2
min

y

(

1
−4004
1

)

�
y. (2.39)

The first stage optimal solution is x∗{1,2} = (2M1, 2M2, 0) � .

MWS {1,2}=

(

1000
1000
1000

)

�
(

2M1
2M2
0

)

+

[

1
3
min

y

(−9000
1
1

)

�
y+
1
3
min

y

(

1
−4004
1

)

�
y+
1
3
min

y

(

1
1

−4004

)

�
y

]

=2000M1 + 2000M2 +
1
3
(−9000M1 − 4004M2) = −1000M1 + 665

1
3
M2.

(2.40)
Now we will compute MWS {1,3}. At first, we solve

min
x

[(

1000
1000
1000

)

�
x +
1
2
min

y

(−9000
1
1

)

�
y +
1
2
min

y

(

1
1

−4004

)

�
y

]

,

which results in the first stage optimal solution x∗{1,3} = (2M1, 0, 2M3) � . Then

MWS {1,3}=

(

1000
1000
1000

)

�
(

2M1
0
2M3

)

+

[

1
3
min

y

(−9000
1
1

)

�
y+
1
3
min

y

(

1
−4004
1

)

�
y+
1
3
min

y

(

1
1

−4004

)

�
y

]

= 2000M1 + 2000M3 +
1
3
(−9000M1 − 4004M3) = −1000M1 + 665

1
3
M3.

In the end, we will compute MWS {2,3} :

min
x

(

1000
1000
1000

)

�
x +
1
2
min

y

(

1
−4004
1

)

�
y +
1
2
min

y

(

1
1

−4004

)

�
y
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gives optimal first stage solution x∗{2,3} = (0, 2M2, 2M3) � . Finally,

MWS {2,3}=

(

1000
1000
1000

)

�
(

0
2M2
2M3

)

+

[

1
3
min

y

(−9000
1
1

)

�
y+
1
3
min

y

(

1
−4004
1

)

�
y+
1
3
min

y

(

1
1

−4004

)

�
y

]

=2000M2 + 2000M3 +
1
3
(−4004M2 − 4004M3) = 665

1
3
M2 + 665

1
3
M3.

To summarize our results, we obtained

MWS {1} = −1000M1, MWS{1,2} = −1000M1 + 665
1
3
M2,

MWS {1,3} = −1000M1 + 665
1
3
M3, MWS{2,3} = 665

1
3
M2 + 665

1
3
M3.

Therefore, we have

min
{i}⊆{1,2,3}

MWS{i} ≤ MWS{1} < min
{i,j}⊆{1,2,3}

i6=j

MWS{i,j}.

Let us analyse in short why the result is just this. When solving the first problem for
any couple of i, j, we have the probabilities of each scenario equal to 12 , but in computing
the second problem for the same couple of i, j, the recourse is added with weights of 13 .
So, when solving the first problem (e.g. problem (2.39)), it is worth doing to “prepare
ourselves” for the second stage (e.g., 12 .(−4004) is less then the costs needed in the first
stage), but when computing the second problem (e.g. problem (2.40)) with all three
scenarios, it is not worth doing any more (e.g., 13 .(−4004) is larger then the costs needed
in the first stage). In fact, when solving the problem for two scenarios for the first time,
the costs in the first stage are computed with different weights then in the second stage.
This distortion is caused by norming.

2.6.2. Redefinition of MWS and generalized MWS approach

It seems logical to redefine the notion of the MWSS in the sense which follows from
the discussion of the previous example. Here, when solving the problem for a subset of
scenarios, the costs in the first stage are computed with different weights then the costs
in the second stage. We can change the norming in the following way.
Firstly, we will consider a case when #S = 1. We solve the problem for one scenario ξi

at first:

min
x

{

1
pi
c � x +

pi

pi
.min

y

{

q(ξi) � y : W (ξi)y = h(ξi)− T (ξi)x, y ≥ 0
}

}

s.t. Ax = b, x ≥ 0.

Now we have normed the probability of the second stage again, but we have also normed
the first stage costs, so they are computed with weights relevant to the second stage
costs. This problem replaces now the problem (2.36). It is clear that 1pi

can be factored
out before the first minimization and so we have to solve

1
pi
.min

x

{

c � x+ pi.min
y

{

q(ξi) � y : W (ξi)y = h(ξi)− T (ξi)x, y ≥ 0
}

}

s.t. Ax = b, x ≥ 0,
(2.41)
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which is equivalent to solving

min
x

{

c � x + pi.min
y

{

q(ξi) � y : W (ξi)y = h(ξi)− T (ξi)x, y ≥ 0
}

}

s.t. Ax = b, x ≥ 0.
(2.42)

The optimal solutions of the problems (2.41) and (2.42) are identical and the optimal
objective function value is not of interest now.
Let us denote x∗{i} the optimal first stage solution of the last problem. We again define

MWS {i}=Eξz(x
∗
{i}, ξ)=c � x∗{i}+

K
∑

k=1

pk.miny

{

q(ξk) � y : W (ξk)y=h(ξk)−T (ξk)x∗{i}, y≥0
}

.

This definition is the same as that in (2.37) but we have obtained x∗{i} in a different way
than before.
Again, x∗{i} is feasible for the recourse problem (2.35) and so MWS {i} ≥ RP . Hence,

U1 := min
{i}⊆{1,...,K}

MWS {i} ≥ RP ≥WS =: L

which implies that

U1 − L = min
{i}⊆{1,...,K}

MWS {i} −WS = MEVPI1 ≥ EVPI = RP −WS ,

which defines MEVPI1.

Secondly, consider a subset S of the set {1, . . . , K}, S having N elements. We solve the
problem for scenarios from the set S at first:

min
x







1
∑

l∈S p
l
c � x+

∑

n∈S

pn
∑

l∈S p
l
min

y

{

q(ξn) � y : W (ξn)y = h(ξn)− T (ξn)x, y ≥ 0
}







s.t. Ax = b, x ≥ 0.
Optimal first stage solution of this problem is the same as an optimal first stage solution
of the problem

min
x







c � x +
∑

n∈S

pnmin
y

{

q(ξn) � y : W (ξn)y = h(ξn)− T (ξn)x, y ≥ 0
}







s.t. Ax = b, x ≥ 0,
and we denote this optimal solution as x∗S . Now we define MWSS again:

MWSS=Eξz(x
∗
S , ξ)=c � x∗S +

K
∑

k=1

pk.miny

{

q(ξk) � y : W (ξk)y=h(ξk)−T (ξk)x∗S , y≥ 0
}

.

x∗S is feasible for the recourse problem (2.35) and so MWSS ≥ RP and

UN := min
S⊆{1,...,K}
#S=N

MWSS ≥ RP ≥WS =: L
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which implies that

UN − L = min
S⊆{1,...,K}
#S=N

MWSS −WS = MEVPIN ≥ EVPI = RP −WS ,

which redefines MEVPIN .
We would like to decide whether min

S⊆{1,...,K}
#S=N

MWSS ≥ min
Z⊆{1,...,K}
#Z=N+1

MWSZ or vice versa.

Again, there are two examples showing that none of the inequalities holds in general.

Example 2.44 When solving the problem for scenarios from the smaller set S, the
decision maker hedges against N scenarios, while when solving the problem for the larger
set Z, he hedges against N + 1 scenarios, which, intuitively, should be better.
As an example, suppose the problem of K = 3 scenarios, probability of each scenario is
1
3 , #S = 1, #Z = 2, the only randomness is in the second stage costs:

q(ξ1) =

(

1000
100
1

)

, q(ξ2) =

(

1
1000
1

)

, q(ξ2) =

(

1
−3000
1

)

; c =

(

10
10
10

)

.

Recourse problem is formulated as follows:

min
x

[(

10
10
10

)

�
x+
1
3
min

y

{(

1000
100
1

)

�
y : yi = 1− xi, i = 1, 2, 3

}

+

+
1
3
min

y

{(

1
1000
1

)

�
y : yi=1−xi, i=1, 2, 3

}

+
1
3
min

y

{(

1
−3000
1

)

�
y : yi=1−xi, i=1, 2, 3

}]

s.t. 0 ≤ xi ≤ 1, i = 1, 2, 3.

To compute MWS {1}, we solve the problem

min
x

[(

10
10
10

)

�
x +
1
3
min

y

{(

1000
100
1

)

�
y : yi = 1− xi, i = 1, 2, 3

}]

s.t. 0 ≤ xi ≤ 1, i = 1, 2, 3,

whose first stage optimal solution is x∗{1} = (1, 1, 0) � .

MWS {1} =

[(

10
10
10

)

�
(

1
1
0

)

+
1
3
min

y

{(

1000
100
1

)

�
y : yi = 1− x∗{1}i, i = 1, 2, 3

}

+

+
1
3
min

y

{(

1
1000
1

)

�
y : yi = 1− x∗{1}i, i = 1, 2, 3

}

+

+
1
3
min

y

{(

1
−3000
1

)

�
y : yi = 1− x∗{1}i, i = 1, 2, 3

}]

= 10 + 10 +
1
3
+
1
3
+
1
3
= 21.
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Now we will compute MWS {2}. The problem

min
x

[(

10
10
10

)

�
x +
1
3
min

y

{(

1
1000
1

)

�
y : yi = 1− xi, i = 1, 2, 3

}]

s.t. 0 ≤ xi ≤ 1, i = 1, 2, 3,

has an optimal first stage solution x∗{2} = (0, 1, 0) � . We then have

MWS {2} =

[(

10
10
10

)

�
(

0
1
0

)

+
1
3
min

y

{(

1000
100
1

)

�
y : yi = 1− x∗{2}i, i = 1, 2, 3

}

+

+
1
3
min

y

{(

1
1000
1

)

�
y : yi = 1− x∗{2}i, i = 1, 2, 3

}

+

+
1
3
min

y

{(

1
−3000
1

)

�
y : yi = 1− x∗{2}i, i = 1, 2, 3

}]

= 10 +
1
3
(1000 + 1) +

1
3
(1 + 1) +

1
3
(1 + 1) = 345.

The first problem to be solved when computing MWS {3} reads

min
x

[(

10
10
10

)

�
x +
1
3
min

y

{(

1
−3000
1

)

�
y : yi = 1− xi, i = 1, 2, 3

}]

s.t. 0 ≤ xi ≤ 1, i = 1, 2, 3,

and its optimal first stage solution is x∗{1} = (0, 0, 0) � . Then

MWS {3} =

[(

10
10
10

)

�
(

0
0
0

)

+
1
3
min

y

{(

1000
100
1

)

�
y : yi = 1− x∗{3}i, i = 1, 2, 3

}

+

+
1
3
min

y

{(

1
1000
1

)

�
y : yi = 1− x∗{3}i, i = 1, 2, 3

}

+

+
1
3
min

y

{(

1
−3000
1

)

�
y : yi = 1− x∗{3}i, i = 1, 2, 3

}]

= 0 +
1
3
(1000 + 100 + 1) +

1
3
(1 + 1000 + 1) +

1
3
(1− 3000 + 1) = −2981

3
.

Now we will compute MWS {1,2} :

min
x

[(

10
10
10

)

�
x +
1
3
min

y

{(

1000
100
1

)

�
y : yi = 1− xi, i = 1, 2, 3

}

+

+
1
3
min

y

{(

1
1000
1

)

�
y : yi = 1− xi, i = 1, 2, 3

}]

s.t. 0 ≤ xi ≤ 1, i = 1, 2, 3,
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results in an optimal first stage solution x∗{1,2} = (1, 1, 0) � and

MWS {1,2} =

[(

10
10
10

)

�
(

1
1
0

)

+
1
3
min

y

{(

1000
100
1

)

�
y : yi = 1− x∗{1,2}i, i = 1, 2, 3

}

+

+
1
3
min

y

{(

1
1000
1

)

�
y : yi = 1− x∗{1,2}i, i = 1, 2, 3

}

+

+
1
3
min

y

{(

1
−3000
1

)

�
y : yi = 1− x∗{1,2}i, i = 1, 2, 3

}]

= 10 + 10 +
1
3
+
1
3
+
1
3
= 21.

For computing MWS {1,3}, the first problem to be solved is

min
x

[(

10
10
10

)

�
x+
1
3
min

y

{(

1000
100
1

)

�
y : yi = 1− xi, i = 1, 2, 3

}

+

+
1
3
min

y

{(

1
−3000
1

)

�
y : yi = 1− xi, i = 1, 2, 3

}]

s.t. 0 ≤ xi ≤ 1, i = 1, 2, 3,

and its optimal first stage solution is x∗{1,2} = (1, 0, 0) � .

MWS {1,3} =

[(

10
10
10

)

�
(

1
0
0

)

+
1
3
min

y

{(

1000
100
1

)

�
y : yi = 1− x∗{1,3}i, i = 1, 2, 3

}

+

+
1
3
min

y

{(

1
1000
1

)

�
y : yi = 1− x∗{1,3}i, i = 1, 2, 3

}

+

+
1
3
min

y

{(

1
−3000
1

)

�
y : yi = 1− x∗{1,3}i, i = 1, 2, 3

}]

= 10 +
1
3
(100 + 1) +

1
3
(1000 + 1) +

1
3
(−3000 + 1) = −6221

3
.

Finally, we will compute MWS {2,3} :

min
x

[(

10
10
10

)

�
x+
1
3
min

y

{(

1
1000
1

)

�
y : yi = 1− xi, i = 1, 2, 3

}

+

+
1
3
min

y

{(

1
−3000
1

)

�
y : yi = 1− xi, i = 1, 2, 3

}]

s.t. 0 ≤ xi ≤ 1, i = 1, 2, 3,
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has an optimal first stage solution x∗{2,3} = (0, 0, 0) � and

MWS {2,3} =

[(

10
10
10

)

�
(

0
0
0

)

+
1
3
min

y

{(

1000
100
1

)

�
y : yi = 1− x∗{2,3}i, i = 1, 2, 3

}

+

+
1
3
min

y

{(

1
1000
1

)

�
y : yi = 1− x∗{2,3}i, i = 1, 2, 3

}

+

+
1
3
min

y

{(

1
−3000
1

)

�
y : yi = 1− x∗{2,3}i, i = 1, 2, 3

}]

= 0 +
1
3
(1000 + 100 + 1) +

1
3
(1 + 1000 + 1) +

1
3
(1− 3000 + 1) = −2981

3
.

Let’s summarize our results. We obtained that

MWS{1} = 21, MWS {2} = 345, MWS {3} = −2981
3
,

MWS{1,2} = 21, MWS {1,3} = −6221
3
, MWS {2,3} = −2981

3
.

Thus we have the expected result

min
{i}⊆{1,2,3}

MWS {i} > min
{i,j}⊆{1,2,3}

i6=j

MWS {i,j}.

Example 2.45 It would be quite good to prove that the opposite inequality cannot work,
but there is a counterexample again.

We have a problem with K = 4 scenarios, #S = 2 and #Z = 3. Probability of each
scenario is 14 and the only randomness enters in the second stage costs:

q(ξ1)=









1000
0
1000
0
−13









, q(ξ2)=









1000
1
1000
1000
0
−13









, q(ξ3)=









0
1000
0
1000
−13









, q(ξ3)=











1
1000
1000
0
1000
−13











; c=











−2491316
−2491316
−2491316
−2491316











Constraints in the first stage are 0 ≤ xi ≤ 1 for i = 1, . . . , 4 and constraints in the second
stage are yi = xi for i = 1, . . . , 4, and y5 =

4
∑

i=1
xi. For simplicity of writing, we denote

M(x) =

{

y ∈ � 5 : yi = xi, i = 1, . . . , 4, y5 =
4
∑

i=1
xi

}

.
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The full recourse problem reads

min
x





















−2491316
−2491316
−2491316
−2491316











�

x +
1
4
min

y∈M(x)



























1000
0
1000
0
−13









�

y



















+
1
4
min

y∈M(x)



























1000
1
1000
1000
0
−13









�

y



















+

+
1
4
min

y∈M(x)



























0
1000
0
1000
−13









�

y



















+
1
4
min

y∈M(x)



































1
1000
1000
0
1000
−13













�

y



































s.t. 0 ≤ xi ≤ 1, i = 1, . . . , 4.

At first, we will compute MWS {1,3}:

min
x





















−2491316
−2491316
−2491316
−2491316











�

x +
1
4
min

y∈M(x)



























1000
0
1000
0
−13









�

y



















+
1
4
min

y∈M(x)



























0
1000
0
1000
−13









�

y





























s.t. 0 ≤ xi ≤ 1, i = 1, . . . , 4,

gives an optimal first stage solution x∗{1,3} = (0, 0, 0, 0) � which results in MWS{1,3} = 0.
Now we will compute MWS {1,2,3}. At first we solve the problem

min
x





















−2491316
−2491316
−2491316
−2491316











�

x+
1
4
min

y∈M(x)



























1000
0
1000
0
−13









�

y



















+
1
4
min

y∈M(x)



























1000
1
1000
1000
0
−13









�

y



















+
1
4
min

y∈M(x)



























0
1000
0
1000
−13









�

y





























s.t. 0 ≤ xi ≤ 1, i = 1, . . . , 4.

Its optimal first stage solution is x∗{1,3} = (0, 1, 0, 1) � and

MWS{1,2,3}= 2.
(

−24913
16

)

+
1
4

(

0− 2
3

)

+
1
4

(

1
1000

− 2
3

)

+
1
4

(

1000+1000− 2
3

)

+

+
1
4

(

1000+1000− 2
3

)

.= 499, 71.

To compute MWS {1,2,4}, we solve

min
x





















−2491316
−2491316
−2491316
−2491316











�

x+
1
4
min

y∈M(x)



























1000
0
1000
0
−13









�

y



















+
1
4
min

y∈M(x)



























1000
1
1000
1000
0
−13









�

y



















+
1
4
min

y∈M(x)





























1
1000
1000
0
1000
−13











�

y





























s.t. 0 ≤ xi ≤ 1, i = 1, . . . , 4,
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which gives an optimal first stage solution x∗{1,3} = (0, 1, 0, 1) � . Then

MWS{1,2,4}= 2.
(

−24913
16

)

+
1
4

(

0− 2
3

)

+
1
4

(

1
1000

− 2
3

)

+
1
4

(

1000+1000− 2
3

)

+

+
1
4

(

1000+1000− 2
3

)

.= 499, 71.

The problem to be solved when computing MWS {1,3,4} reads

min
x





















−2491316
−2491316
−2491316
−2491316











�

x+
1
4
min

y∈M(x)



























1000
0
1000
0
−13









�

y



















+
1
4
min

y∈M(x)



























0
1000
0
1000
−13









�

y



















+
1
4
min

y∈M(x)





























1
1000
1000
0
1000
−13











�

y





























s.t. 0 ≤ xi ≤ 1, i = 1, . . . , 4.

The first stage optimal solution is x∗{1,3} = (1, 0, 1, 0) � and

MWS{1,3,4} = 2.
(

−24913
16

)

+
1
4

(

1000 + 1000− 2
3

)

+
1
4

(

1000 + 1000− 2
3

)

+

+
1
4

(

0− 2
3

)

+
1
4

(

1
1000

− 2
3

)

.= 499, 71.

Finally, we will compute MWS {2,3,4}:

min
x





















−2491316
−2491316
−2491316
−2491316











�

x+
1
4
min

y∈M(x)



























1000
1
1000
1000
0
−13









�

y



















+
1
4
min

y∈M(x)



























0
1000
0
1000
−13









�

y



















+
1
4
min

y∈M(x)





























1
1000
1000
0
1000
−13











�

y





























s.t. 0 ≤ xi ≤ 1, i = 1, . . . , 4,

results in x∗{1,3} = (1, 0, 1, 0) � and

MWS{2,3,4} = 2.
(

−24913
16

)

+
1
4

(

1000 + 1000− 2
3

)

+
1
4

(

1000 + 1000− 2
3

)

+

+
1
4

(

0− 2
3

)

+
1
4

(

1
1000

− 2
3

)

.= 499, 71.

To summarize this, we obtained MWS {1,3}= 0 and so min
{i,j}⊆{1,...,4}

i6=j

MWS{i,j} ≤ 0, while

min
{i,j,k}⊆{1,...,4}

i6=j 6=k 6=i

MWS{i,j,k}=MWS{1,2,3}=MWS{1,2,4}=MWS{1,3,4}=MWS{2,3,4}
.=499.71.
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It is very easy to see that in fact only two scenarios are in this example, since the first
scenario is almost the same as the second scenario and the same holds true for the third
and fourth one. So this example is quite artificial and can serve just as a mathematical
counterexample showing that the relevant inequality does not hold true. The idea of this
example is that this (in fact, two-point with equal probabilities) distribution is very well
represented by a pair of scenarios {1, 3} or {1, 4} or {2, 3} or {2, 4}, but it is very distorted
when any triplet of scenarios is taken into account.

Via counterexamples, we have just shown that no chain of inequalities works between
min
S1
MWSS1, minS2

MWSS2, . . . ,minSK

MWSSK
with #S1 < #S2 < . . . < #SK . As a direct

consequence, there is either no chain of inequalities between MEVPI1, . . . ,MEVPIK .

"$���$� Ä }����!¤£� ��� �-������}�~��£���
In this section we will deal with a little more complicated problem presented in [13]. We
consider a stochastic problem with a random variable ξ, but the distribution of ξ is not
known exactly. It depends on a parameter θ ∈ Θ which is also a random variable for us.
We can obtain some information on the true value of θ by sampling. Then we can hedge
against the future development of ξ more precisely, which leads to a “better” expected
optimal objective function value. Therefore, we can derive value of sample information,
which is not value of knowing the future development of ξ, but value of knowing (more)
exactly the distribution of ξ.

Consider a two-stage stochastic recourse problem with right hand side only:

min
x
Eξz(x, ξ) = minx

{

c � x+ Eξ miny
{q � y : Tx +Wy = ξ, y ≥ 0}

}

s.t. x ∈ K,

(2.43)

where K is a closed convex polyhedron, ξ is an r-component real random vector (r ∈ � )
defined on a probability space (Ω, � , P ) with a convex support Ξ and a finite expectation.
Vector q and matrices T and W are now non-random and h = ξ.We assume an existence
of all densities which are needed in this chapter.
Deterministic equivalent to the stochastic problem (2.43) reads

min
x
Eξz(x, ξ) = minx

{

c � x+ EξQ(x, ξ)
}

s.t. x ∈ K (2.44)

where

Q(x, ξ) = min
y

{q � y : Tx+Wy = ξ, y ≥ 0} for all (x, ξ) ∈ K × Ξ.

Suppose that F (t, θ) = P (ξ ≤ t|θ) is a distribution function of ξ, depending on a pa-
rameter θ. This θ is a k-component vector of unknown parameters, θ ∈ Θ ⊆ � k . A prior
distribution function of the random variable θ is denoted as G(.) and G(.|ξ) is a posterior
distribution function of θ given ξ.
Let S be an m-component vector of sufficient statistics for the family {F (t, θ), θ ∈ Θ}.
For any given value θ̃ of θ, the independent identically distributed random variables
ξ1, . . . , ξn form a random sample of size n from the distribution F (t, θ̃), and Sn(ξ1, . . . , ξn)
is the corresponding sufficient statistics; the dimension m of S (or Sn) is fixed for all n
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and the subscript n denotes the size of the sample used for computing the value of Sn.

Denote as wn(s|θ̃) the conditional density of Sn(.) given θ = θ̃.
The posterior distribution function of θ given Sn(ξ1, . . . , ξn) = s is

Gn(u|s) = P (θ ≤ u|Sn(ξ1, . . . , ξn) = s) =

∫ u
−∞wn(s|θ)G(dθ)
∫

wn(s|t)G(dt)
.

Note that in both of these integrals we integrate over k-dimensional sets. The first one is
(−∞; u1〉 × . . .× (−∞; uk〉 and the second one is � k . In this chapter, in all the integrals
without bounds explicitly written, we integrate over the whole space of an appropriate
dimension (r or k).
Let Hn(t|s) = P (ξ ≤ t|Sn = s) =

∫

F (t, θ)Gn(dθ|s) be a predictive distribution function
of ξ given Sn(ξ1, . . . , ξn) = s. We write H0(t) = P (ξ ≤ t) in the case of no sampling.
As is shown in [5], there exists a family Γ of distributions G with the property that if
the prior (no sample) distribution G of θ belongs to Γ, then for all n ∈ � and for all
Sn(ξ1, . . . , ξn) = s, the posterior (conditional) distribution G(.|s) belongs to Γ as well.
The decision problem without observations (with prior distribution G(.) of θ) then reads

min
x∈K
Eξz0(x, ξ|G) = min

x∈K

{

c � x +
∫

Q(x, t)H0(dt)
}

= min
x∈K

{

c � x +
∫∫

Q(x, t)F (dt, θ)G(dθ)

}

.

(2.45)

The only purpose of the subscript 0 in z0 is to emphasize that we deal with a problem
with no sampling; in fact, there is z0 = z.
Denote as R(G) the optimal objective function value of the problem (2.45) and as x∗0 its
optimal solution. So there is

R(G) = min
x∈K
Eξz0(x, ξ|G) = Eξz0(x

∗
0, ξ|G)

which represents the risk (created by the uncertain future realization of ξ and by its
unknown distribution) for the case of no observations.

Suppose that the assumptions 2.1 and 2.2 are satisfied. Then a general theorem can be
formulated as a standard result of the duality theory:
Theorem 2.46 For the problem (2.44) it holds

Q(x, ξ) = max
u

{(ξ − Tx) � u : W � u ≤ q � }.
�

Theorem 2.47 Suppose that Γ is a convex set. Then R(G) is concave in G on Γ.
Proof. If G1, G2 ∈ Γ and α ∈ 〈0, 1〉 then αG1+(1−α)G2 ∈ Γ represents the compound
of the two distributions G1 and G2 with probabilities α and 1−α, respectively. Function
ẑ0: ẑ0(x,G) = Eξz0(x, ξ|G) is linear in G, since integral is a linear functional. Hence,

R(αG1+(1−α)G2) = min
x∈K

ẑ0(x, αG
1+(1−α)G2) = min

x∈K

(

αẑ0(x,G
1)+(1−α)ẑ0(x,G2)

)

≥ α min
x∈K

ẑ0(x,G
1)+(1−α) min

x∈K
ẑ0(x,G

2) = αR(G1)+(1−α)R(G2).
�
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Theorem 2.48 If the assumptions 2.1 and 2.2 hold, then the decision problem (2.45)
without observations is a convex program.
Proof. The problem reads min

x∈K
c � x + EξQ(x, ξ). The first stage part c � x is linear in x,

so it is enough to show that EξQ(x, ξ) is convex in x. Since the expectation E is a linear
functional, it is sufficient to prove that Q(x, ξ) is convex in x. According to the theorem
2.46, we have that

Q(x, ξ) = max
u

{(ξ − Tx) � u :W � u ≤ q � } = max
u∈U

fξ(u, x),

where we have denoted fξ(u, x) = (ξ−Tx) � u and U = {u : W � u ≤ q � }. U is a convex set
and fξ is linear in x for all u ∈ U. Hence, for every α ∈ (0, 1) and for every x1, x2 ∈ K it
holds

Q(αx1 + (1− α)x2, ξ) =max
u∈U

fξ(u, αx
1+(1−α)x2) =max

u∈U

(

αfξ(u, x
1)+(1−α)fξ(u, x2)

)

≤ αmax
u∈U

fξ(u, x
1) + (1− α)max

u∈U
fξ(u, x

2)

= αQ(x1, ξ) + (1− α)Q(x2, ξ). �
Given a sample (ξ1, . . . , ξn) of size n with Sn(ξ1, . . . , ξn) = s, the deterministic equivalent
of the original problem (2.43) is

min
x∈K
Eξ|szn(x, ξ|Gn(.|s)) = min

x∈K

{

c � x +
∫

Q(x, t)Hn(dt|s)
}

= min
x∈K

{

c � x +
∫∫

Q(x, t)F (dt, θ)Gn(dθ|s)
}

.

If x∗n(s) is an optimal solution of this problem, then the posterior risk is

z∗n(Gn(.|s)) := min
x∈K
Eξ|szn(x, ξ|Gn(.|s)) = Eξ|szn(x

∗
n(s), ξ|Gn(.|s)),

so x∗n(s) is a decision function (of s) for the distribution Gn(.|s) for n = 1, 2, . . .
We can formulate another linear problem, corresponding to an expected value problem
given Sn(ξ1, . . . , ξn) = s :

min
x,y

z̄n(x, y|s) = c � x + q � y

s.t. x ∈ K,

Tx+Wy = µn(s),

y ≥ 0,
where µn(s) = E(ξ|Sn = s) =

∫

tHn(dt|s) is a conditional expectation of ξ given Sn = s.

Denote the optimal objective function value of this problem as z̄∗n(s). Then the following
holds:
Theorem 2.49 Given a sample of size n, Sn(ξ1, . . . , ξn) = s, then
(a) there is z∗n(Gn(.|s)) ≥ z̄∗n(s),
(b) z∗n(Gn(.|s)) is concave in Gn on Γ.
Proof. The proof can be found in [13]. �
Remark 2.50 The inequality in (a) corresponds to inequality which can be intuitively
written as

(RP given Sn = s) ≥ (EV given Sn = s).
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Define
Rn(G) = Es[z∗n(Gn(.|s))]

the expected value (w.r.t. s) of the posterior risk given a sample of size n, such that
Sn(ξ1, . . . , ξn) = s. Then Rn(G) has the following properties:
Theorem 2.51
(a) Rn(G) is concave in G on Γ.
(b) Rn(G) is a monotonic nonincreasing function of n.
Proof. The proof can be found in [13]. �
Now we can define expected value of sample information (of sample of size n) as

EVSI n = Eξz0(x
∗
0, ξ|G)− Es[z

∗
n(Gn(.|s))] = R(G)− Rn(G). (2.46)

Theorem 2.52
(a) EVSI n is a monotonic nondecreasing and nonnegative function of the size n of a
sample.
(b) EVSI n ≤ Eξz0(x

∗
0, ξ|G)− Esz̄

∗
n(s), i.e. EVSI n ≤ R(G)− Esz̄

∗
n(s).

Proof.
(a) Follows immediately from the theorem 2.51 (b).
(b) Follows immediately from definitions and theorem 2.49 (a). �
Assume that we have the possibility to increase the sample size n up to infinity. Then we
can define the limiting posterior distribution function of θ given S∞(ξ1, ξ2, . . .) = s. It is
assumed to be a one-point distribution of the form

G∞(u) =
{

0 if u < θ
1 if u ≥ θ,

which represents full knowledge of the true value of θ. The posterior risk with a such an
infinite sampling is

R∞(G) =
∫

min
x∈K

[

c � x+
∫

Q(x, t)F (dt, θ)

]

G(dθ)

and Rn(G) ↘ R∞(G) as n → ∞, since Rn(G) is a monotonous nonincreasing function
of n. Expected value of infinite sample information is then defined as

EVSI∞ = R(G)− R∞(G)

and it is easy to see that EVSI n ↗ EVSI∞ as n→ ∞.

Note that EVSI∞ is not the value of knowing future realizations of ξ, but the value of
knowing the distribution of ξ precisely and having the possibility to solve the standard
stochastic problem.
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We will touch the problem of chance-constrained programs only in brief because they are
at the edge of the family of stochastic programs we are interested in.
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2.8.1. Value of information in chance-constrained programming

Consider a simple chance-constrained problem of the form

RP = min
x

z(x)

s.t. x ∈ K ⊆ � ,
P (x ≥ ξ) ≥ α, (2.47)

where z is a real convex function bounded on K, K is an interval, ξ is a real scalar random
variable with known distribution, and α ∈ (0; 1) is a given real constant. The meaning of
this problem is that we have to make a decision x which is greater or equal to ξ with a
given probability α. We can consider (2.47) as a partially relaxed constraint x ≥ ξ a.s.
Of course, no realization of ξ is observed in the time of making the decision.
Denote L = {x : P (x ≥ ξ) ≥ α}. We will assume that the set K ∩ L is nonempty and
closed and that min

x∈K∩L
z(x) exists (finite).

We can equivalently reformulate our problem as

RP = min
(x(ξ),x̂)

[

z(x(ξ)) + Ĩ[P (x(ξ)≥ξ)≥α](x(ξ))
]

s.t. x(ξ) ∈ K a.s.,

x(ξ) = x̂ a.s.

(2.48)

where the penalization function Ĩ is defined as

Ĩ[A(x)](x) =
{

0 when the statement A(x) is true for the argument x
+∞ otherwise.

The objective function in (2.48) is deterministic almost surely and so an expectation Eξ
is not needed.
The related wait-and-see problem is formulated analogically, only the nonanticipativity
constraints are relaxed so that the optimal solution is a function of ξ, and the expectation
Eξ is needed:

WS = Eξmin
x(ξ)

[

z(x(ξ)) + Ĩ[P (x(ξ)≥ξ)≥α](x(ξ))
]

s.t. x(ξ) ∈ K a.s.
(2.49)

Generalization for several probabilistic constraints or for joint chance-constraints or com-
bination of those is obvious. In both (2.48) and (2.49) the statement A(x) which stands
as a parameter of the penalization function Ĩ would change only.

Remark 2.53 We are aware of the unpleasant fact that Ĩ is an extended real-valued
function. We assume that −∞ < z(x) < +∞ for all x ∈ K, so the value of the
objective function z + Ĩ is bounded (when the value of Ĩ is 0) or it is +∞. It holds
{x : Ĩ[P (x≥ξ)≥α](x) = 0} = L 6= ∅ and so the minimizing function x(ξ) in (2.49) will be
such that x(ξ̃) ∈ L for all realizations ξ̃ of ξ. This assures that the expectation in (2.49)
exists.

Theorem 2.54 Consider the chance-constrained program (2.48) and its wait-and-see
modification (2.49). Define value of prefect information for the chance-constrained prob-
lem (2.48) as

EVPIC = RP −WS .
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Then EVPIC is nonnegative.

Proof. It is obvious thatWS = Eξg(ξ) for g(ξ) = min
x(ξ)∈K

[

z(x(ξ)) + Ĩ[P (x(ξ)≥ξ)≥α](x(ξ))
]

and g(ξ) ≤ RP a.s., which implies that WS ≤ RP . �
Remark 2.55 A notion of value of partial information for a special case of a chance-
constrained problem can be found in [14]. The authors, however, introduced a definition
of value of partial information which we do not consider as absolutely correct, and they
have also shown that “their” value of partial information can be negative.

2.8.2. Sample information in chance-constrained programming

In this part, we return to the problem introduced in chapter 2.7. and we employ a very
similar notation. We deal with a problem with a simple linear objective function and
probability constraints. The constraints depend on a realization of a random variable ξ
which is not known in the time of making the decision, and in addition the distribution of
this random variable is not known exactly—it is considered as a function of a parameter
θ which is seen as another random variable. Its true value can be detected by sampling to
some extent. The question is, what is the worth of information gained by the sampling.
We will deal with problems with multiple and joint probabilistic constraints. We will omit
some proofs and details; they can be found in [13].

Consider a simple problem with a linear deterministic objective function and probability
constraint of the form

min
x∈K

z(x) = c � x

s.t. P

(

ξi ≤
∑

j
aijxj

)

≤ αi, i = 1, . . . , r. (2.50)

This constraint is equivalent with

Fi

(

∑

j
aijxj , θi

)

≤ αi, i = 1, . . . , r, for any true value of θi,

where Fi(t, θi) = P (ξi ≤ t|θi). Now, θi = (θi1, . . . , θimi
) is an mi-component vector of

unknown parameters and for every i, θi has a prior (no sample) distribution function
Gi(.). We consider fixed values α1, . . . , αr.

Let (ξ1i , . . . , ξ
n
i ) be random sample of size n from the distribution Fi(., θi), θi ∈ Θi,

and consider a sufficient statistics Sn(ξ1i , . . . , ξ
n
i ) for the family Fi(., θi), θi ∈ Θi, for

i = 1, . . . , r. Denote Hi,n(t, si), i = 1, . . . , r, the posterior distribution function of ξi
given Sn(ξ1i , . . . , ξ

n
i ) = si. Again, Hi,0 = Hi,0(t) corresponds to the case of no sampling.

Naturally, we could generalize this problem for samples of various sizes n1, . . . , nr, but it
would not be too interesting while complications in writing would be great.
Denote F = (F1, . . . , Fr), let b = b(z, F1, . . . , Fr) = b(z, F ) be a badness or negative
utility function, continuous and monotonic increasing in (z, F ) ∈ � × 〈0, 1〉r. Define
minimum of expected negative-utility of costs in the case of no sampling as

Φ(G) = min
x∈K

Eθb

(

c � x, F1

(

∑

j
a1jxj , θ1

)

, . . . , Fr

(

∑

j
arjxj , θr

))

(2.51)

where G is a prior distribution function of θ = (θ1, . . . , θr). (Now, θ is a vector of vectors.)
Thanks to the negative-utility function b we can penalise violating of any probability
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constraints, putting e.g. b(c � x, F1(
∑

j a1jxj , θ1), . . . , Fr(
∑

j arjxj , θr)) = +∞ if there
exists i ∈ {1, . . . , K} such that Fi(

∑

j aijxj , θi) > αi for all x ∈ K.

We can define a problem which is analogical to (2.51) but is constructed after samples of
size n are made:

Φ (Gn(.|s)) = min
x∈K
EGn

b

(

c � x, F1

(

∑

j
a1jxj , θ1

)

, . . . , Fr

(

∑

j
arjxj , θr

))

where EGn
is a symbolical denotation for Eθ|s with s = (s1, . . . , sr), si = Sn(ξ1i , . . . , ξ

n
i ),

i = 1, . . . , r.
We can define expected value of sample information of the sample of size n for the problem
(2.51) as

EVSICn = Φ(G)− EsΦ(Gn(.|s)) (2.52)

where s = (s1, . . . , sr), si = Sn(ξ1i , . . . , ξ
n
i ), i = 1, . . . , r. (The upper index C stands for

Chance-constraint.)

Some properties analogical to those for EVSI n can be derived: EVSICn ≥ 0 for all distri-
butions G, for all n ∈ � , and it is a nondecreasing function of n ≥ 1.
For an increasing n, limit posterior distribution of θi given S∞(ξ1i , ξ

2
i , . . .) = si for

i = 1, . . . , r and s = (s1, . . . , sr), is Gi,∞(.). It is assumed to be a one-point distribu-
tion of the form

Gi,∞(ti) =
{

0 if ti < θi
1 if ti ≥ θi, i = 1, . . . , r.

Denote G∞ = (G1,∞, . . . , Gr,∞). Analogically as in (2.52), we can define EVSIC∞ such
that EVSICn ↗ EVSIC∞ for n→ ∞.

Consider a problem similar to (2.50) but now the probability constraints have to be
satisfied for all i = 1, . . . , r simultaneously:

min
x∈K

c � x

s.t. P
(

ξi ≤
∑

j
aijxj , i = 1, . . . , r

)

≤ α
(2.53)

for a given α ∈ 〈0, 1〉. Let F (t, θ) = P (ξi ≤ ti, i = 1, . . . , r|θ) be the joint distribution
function of ξ = (ξ1, . . . , ξr) depending on θ ∈ Θ.
Let again b = b(c � x, F ) be a negative-utility function continuous and monotonic increasing
in (c � x, F ) ∈ � × 〈0, 1〉. We can define negative utility of the costs in the case of no
observation as

ΦJC(G) = min
x∈K
Eθb

(

c � x, F
(

∑

j
a1jxj , . . . ,

∑

j
arjxj , θ

))

.

Having observed ξ1, . . . , ξn, we can define

EVSI JC
n = ΦJC(G)− EsΦJC(Gn(.|s)),

where Gn(.|s) is a joint posterior distribution function of θ given Sn(ξ1, . . . , ξn) = s and
where the expectation is taken w.r.t. the value s of the sufficient statistics Sn. Then
again, EVSI JC

n ≥ 0 for all distribution functions G and for all n ∈ � , and EVSI JC
n is a

monotonic nondecreasing function of n ≥ 1.
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Assume again that an infinite sampling ξ1, ξ2, . . . is available. Then we can compute the
posterior distribution function of ξ given θ (which is given by the sampling) and define
EVSI JC∞ in an obvious way. Then again EVSI JC

n ↗ EVSI JC∞ for n→ ∞.
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In some applications, the notion of a risk measure is used for a functional with some
properties. In [1], a definition and some interesting properties of coherent risk measures
are introduced. For us, risk measure will be a functional defined on some space of random
variables with values on the real line. We will show, following there partly the approach
presented in [15] and in [16], that in some cases, value of information can be used as a
risk measure. We will also compare properties of the value of information with properties
of coherent risk measures given in [1].

2.9.1. Special case with a piecewise linear objective function

Let’s have a probability space (Ω, ˜� , P ) and a random variable ξ: Ω → � which repre-
sents outcomes. We will again deal with an optimization problem related to this random
variable. The decision maker has to decide about an income x which has to be available
after the realization of the random outcome or consumption ξ is observed (but the deci-
sion is done before the realization of ξ). The goal is to get just the outcome as precisely as
possible; any possible surplus will be discounted by d ∈ (0; 1), as the surplus is less satis-
factory than consumption; any shortfall will bring additional costs so that shortfall total
costs are q per unit, q > 1 (d, q given). For any σ-field � ⊆ ˜� denote as � ( � ,Ω, � )
the space of all � -measurable functions f : Ω→ � .
In this paragraph we consider a problem with a simple special case of the objective
function:

min
x
E
(

q[ξ − x]+ − d[ξ − x]− + x
)

and we will add some constraints.

Suppose for a while that the decision maker knows the future realization of the ran-
dom variable ξ. Then he solves a deterministic optimization problem and his solution is
x = x(ξ), that is, x is a function of ξ, we have that (x(ξ))(ω) = x(ξ(ω)), x: Ω → � and
it is an ˜� -measurable mapping. Hence, the anticipative problem under full information
on the future development of ξ reads

min
x
E
(

q[ξ − x]+ − d[ξ − x]− + x
)

s.t. x ∈ � ( ˜� ,Ω, � ).

The optimal objective function value of this problem (the WS value) is denoted as V ξ

F̃
,

the optimal solution is x(ξ) = ξ a.s., i.e., x is just the value which is to be realized. The
optimal objective function value is E(q.0− d.0 + ξ) = Eξ.
Suppose now that the decision maker solves the problem under a partial (imperfect) infor-
mation on the future development of ξ. His decision variable is now a function x: Ω→ �
which is � -measurable for some σ-field � ⊆ ˜� . The larger this σ-field is, the better
informed is the decision maker. In this situation we will say that information (represented
by the σ-field) � is available. The decision problem is then

min
x
E
(

q[ξ − x]+ − d[ξ − x]− + x
)

s.t. x ∈ � ( � ,Ω, � )
(2.54)
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and the optimal objective function value is denoted as V ξ
F
.

Theorem 2.56 For two σ-fields � 1, � 2 such that � 1 ⊆ � 2, there is V ξ
F1

≥ V
ξ
F2
.

Proof. If � 1 ⊆ � 2, then x−1(A) ∈ � 1 implies that x−1(A) ∈ � 2 for every function
x and every set A ∈ B( � ). Hence, the feasibility set for V ξ

F2
is larger or equal to the

feasibility set for V ξ
F1
, and so V ξ

F1
≥ V

ξ
F2
. �

The risk contained in the random variable ξ and the incomplete information represented
by the σ-field � is the difference between the clairvoyant’s minimal costs (computed
with full information ˜� ) and the human decision-maker’s minimal costs (computed with
incomplete information � ):

R
ξ
F
= V

ξ
F

− V
ξ

F̃
= V ξ

F
− E[ξ],

which defines a risk value of perfect information Rξ
F
.

It is clear that Rξ
F

≥ 0, since V ξ
F

≥ V
ξ

F̃
.

The expected value of partial information given by the σ-field � is V ξ
F0

− V
ξ
F
, where

� 0 = {∅,Ω} is the simplest σ-field, and it is nonnegative.
Definition 2.57 Let ξ1 and ξ2 be two random outcome variables.
We say that first order stochastic dominance holds, if E[f(ξ1)] ≤ E[f(ξ2)] for all nonde-
creasing functions f for which these expected values are finite. We write ξ1 ≺FSD ξ2.

We say that second order stochastic dominance holds, if E[f(ξ1)] ≤ E[f(ξ2)] for all
nondecreasing and convex functions f for which these expected values are finite. We
write ξ1 ≺SSD ξ2.

We say that convex dominance holds, if E[f(ξ1)] ≤ E[f(ξ2)] for all convex functions f
for which these expected values are finite. We write ξ1 ≺CC ξ2.

Definition 2.58 If Gi, i = 1, . . . , k are distribution functions and pi, i = 1, . . . , k are
probabilities such that

∑k
i=1 pi = 1, then compound distribution of Gi with probabilities

pi, i = 1, . . . , k, is defined as

G(u) =
k
∑

i=1

piGi(u).

It is the distribution of the compound random variable C of random variablesW1, . . . ,Wk
with distribution functions G1, . . . , Gk, respectively, with probabilities p1, . . . , pk, defined
as

C = � (W1, . . . ,Wk; p1, . . . , pk) =







W1 if I = 1
W2 if I = 2
. . .
Wk if I = k

where I is a random variable, which is independent on W1, . . . ,Wk and which satisfies
P (I = i) = pi for i = 1, . . . , k.
Definition 2.59 The probability functional F is compound convex (concave), if it satisfies
for all Gi and pi from the preceding definition

F





k
∑

i=1

piGi



 ≤ (≥)
k
∑

i=1

piF [Gi] .
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The probability functional F is compound linear, if equality holds there.

Let us consider the simplest σ-field � 0 = {∅,Ω}. Note that x is � 0-measurable, if it is a
(real) constant. Then

V
ξ
F0
= min

x
E[z(x, ξ)]

s.t. x ∈ � ( � 0,Ω, � ),
where

z(x, ξ) = q[ξ − x]+ + x− d[ξ − x]−

= q[ξ − x]+ + d(ξ − x)− d[ξ − x]+ + x

= (q − d)[ξ − x]+ + (1− d)x+ dξ.

Function z = z(x, ξ) is nondecreasing and convex in ξ and so ξ1 ≥ ξ2 a.s. implies that
z(x, ξ1) ≥ z(x, ξ2) ∀x a.s. which further implies that min

x
Ez(x, ξ1) ≥ min

x
Ez(x, ξ2), that

is V ξ1

F
≥ V

ξ2

F
which means that higher outcomes generate higher costs.

It also holds that ξ1 ≺SSD ξ2 implies V ξ1

F0
≤ V

ξ2

F0
, ξ1 ≺FSD ξ2 implies that V ξ1

F0
≤ V

ξ2

F0

and ξ1 ≺CC ξ2 implies that V ξ1

F0
≤ V

ξ2

F0
. It can also be derived that ξ1 ≺CC ξ2 implies

that Rξ1

F0
≤ R

ξ2

F0
: The function z(x, ξ) is convex in ξ for all x and so is z(x, ξ)−ξ. Hence,

ξ1 ≺CC ξ2 implies by definition that

E[z(x, ξ1)− ξ1] ≤ E[z(x, ξ2)− ξ2] ∀x ∈ �
and so

min
x
E[z(x, ξ1)− ξ1] =min

x
E[z(x, ξ1)]−E[ξ1]≤min

x
E[z(x, ξ2)− ξ2] =min

x
E[z(x, ξ2)]−E[ξ2]

which means that Rξ1
F0

≤ R
ξ2
F0
. The same does not hold for � 6= � 0, as is stated in [16].

The reason is obvious: We know that z is a convex function of ξ for all x ∈ � , but x can
somehow depend on ξ for x ∈ � ( � ,Ω, � ) and the form of this dependence is unknown.
Then it is not sure that z is convex in ξ.

For every σ-field � ⊆ ˜� and for all b ∈ � it holds

V
ξ+b
F
= min

x
E(q[ξ + b− x]+ − d[ξ + b− x]− + x)

= min
x−b
E(q[ξ − (x− b)]+ − d[ξ − (x− b)]− + (x− b)) + b

= V ξ
F
+ b

which means that increasing outcome by a known (constant) amount b leads to an increase

of overall costs by the same amount. It can be simply seen now that Rξ
F
is translation-

invariant, i.e. Rξ+b
F
= R

ξ
F
for all b real constants.

Also, VF , RF are positively homogeneous, i.e. for any λ ≥ 0 it holds

V
λξ
F
= min

λx
Ez(λx, λξ) = min

λx
Eλ.z(x, ξ) = λmin

x
Ez(x, ξ) = λV ξ

F
,

because

z(λx, λξ) = q[λξ − λx]+ − d[λξ − λx]− + λx = λ(q[ξ − x]+ − d[ξ − x]− + x) = λz(x, ξ).
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R
(.)
F
is a linear combination of two positively homogeneous functions, so it is also positively

homogeneous.
Note that z = z(x, ξ) is convex in (x, ξ). Let ξ, ζ be two random outcome variables defined

on (Ω, ˜� , P ) (dependence is possible) and V ξ
F
= Ez(x∗1, ξ) and V

ζ
F
= Ez(x∗2, ζ). Then

for any fixed constant p ∈ (0, 1) it holds

V
pξ+(1−p)ζ
F

= min
x
Ez(x, pξ + (1− p)ζ)

≤ Ez(px∗1 + (1− p)x∗2, pξ + (1− p)ζ)

≤ E [pz(x∗1, ξ) + (1− p)z(x∗2, ζ)] since z is convex in (x, ξ)

= pV
ξ
F
+ (1− p)V ζ

F
.

So V ξ
F
is convex in ξ (and V ξ

F̃
is linear in ξ, since V ξ

F̃
= Eξ) and so Rξ

F
is also convex

in ξ. This means that combining two outcomes cannot increase risk.
Consider two random income variables ξ and ζ and let

θ =
{

ξ with probability p
ζ with probability 1− p,

where p ∈ (0, 1). Then for any σ-field � ⊆ ˜� is

Ez(x, θ) = pEz(x, ξ) + (1− p)Ez(x, ζ) ∀x ∈ � ( � ,Ω, � )
and so

min
x
Ez(x, θ) ≥ min

x
pEz(x, ξ) + min

x
(1− p)Ez(x, ζ)

which means that V θ
F

≥ pV
ξ
F
+ (1− p)V ζ

F
. Together with the obvious equality

V θ
F̃
= pV

ξ

F̃
+ (1− p)V ζ

F̃
this implies that

Rθ
F
= V θ

F
− V θ

F̃
≥
[

pV
ξ
F
+ (1− p)V ζ

F

]

−
[

pV
ξ

F̃
+ (1− p)V ζ

F̃

]

= p
[

V
ξ
F

− V
ξ

F̃

]

+ (1− p)
[

V
ζ
F

− V
ζ

F̃

]

= pR
ξ
F
+ (1− p)Rζ

F
,

i.e., R(.)
F
is compound concave.

Define
R

ξ
F1,F2

= V
ξ
F1

− V
ξ
F2

for � 1 ⊆ � 2 some σ-subfields of ˜� . Hence, Rξ
F1,F2

is a difference between the optimal
objective function values of a less (with � 1) and more (with � 2) informed decision maker
and it can be seen as a value of increasing information from � 1 to � 2. It holds

R
ξ
F1,F2

= (V ξ
F1

− V
ξ

F̃
)− (V ξ

F2
− V

ξ

F̃
) = Rξ

F1
−R

ξ
F2,

so Rξ
F1,F2

corresponds to a decrease of risk when the available information increases

from � 1 to (better) � 2. Some trivial properties can be derived: � 1 ⊆ � 2 ⊆ � 3 ⊆ ˜� ⇒
R

ξ
F1,F3

≥ R
ξ
F1,F2

, and b ∈ � ⇒ R
ξ+b
F1,F2

= R
ξ
F1,F2

, and Rξ

F ,F̃
= R

ξ
F

∀ � ⊆ ˜� .
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An extreme case is the difference between the clairvoyant and the totally uninformed
decision maker: Rξ

F0,F̃
= R

ξ
F0

− 0 = V
ξ
F0

− V
ξ

F̃
which represents an expected value of

perfect information.

It was argued that V ξ
F
, R

ξ
F
should be used as risk measures. Properties required to be

satisfied by coherent risk measures are formulated in [1], and we can compare the prop-

erties of V ξ
F
, R

ξ
F
with them. Reformulated a little in an appropriate way, the properties

of a coherent risk measure % are:
(1) Transition equivariance: %(X + α) = %(X) + α for all α ∈ � , X random variable.
This property is completely satisfied by V ξ

F
and it is not satisfied by Rξ

F
.

(2) Subaditivity: %(X1 +X2) ≤ %(X1) + %(X2) for all X1, X2 random variables.

We have proven that Rξ
F
is convex in ξ, i.e. Rpξ+(1−p)ζ

F
≤ p.R

ξ
F
+ (1 − p).Rζ

F
for all

ξ, ζ ∈ (Ω, ˜� , P ), p ∈ (0, 1). We can write X1 = 12ξ and X2 = 12ζ. Then there is

R
X1+X2
F

≤ 1
2
R

ξ
F
+
1
2
R

ζ
F
=
1
2
R
2X1
F
+
1
2
R
2X2
F

=
1
2
.2RX1

F
+
1
2
.2RX2

F
since R(·)

F
si positively homogenous

= R
X1
F
+RX2

F
.

So this property is fully satisfied by Rξ
F
. Exactly the same is true for V ξ

F
.

(3) Positive homogeneity: %(tX) = t.%(X) for all t ∈ � + and X random variable.
This is satisfied for both V ξ

F
and Rξ

F
.

(4) Monotonicity: for all X, Y ∈ (Ω, ˜� , P ) with X ≤ Y a.s. it holds %(X) ≤ %(Y ).

It is satisfied for V ξ
F
but it is not satisfied for Rξ

F
.

(5) Relevance: ∀X ∈ (Ω, ˜� , P ), X ≥ 0 a.s., X is not a constant a.s., we have %(X) > 0.
This additional property ensures us that we do not consider a trivial case.
A positive outcome must always imply positive overall costs, hence V ξ

F
> 0.We have also

proved that Rξ
F

≥ 0, but there can exist a σ-field � ⊂ ˜� such that any σ-field ˜̃� ⊇ �
gives an information sufficient for eliminating the risk Rξ

˜̃
F

to zero.

Our conclusion is that the optimal objective function value V ξ
F
of the problem (2.54) is

a coherent risk measure in the sense of [1], while Rξ
F
is not. The reasons are translation

equivariance, monotonicity and relevance not being satisfied by Rξ
F
.

Remark 2.60 In economics, the conditional value at risk (CVaR) is often used to judge

a risk brought by an uncertain investment. Relationships between Rξ
F
and CVaR are

derived in [16].

2.9.2. General objective function

Let ξ be a random outcome variable defined on some probability space (Ω, ˜� , P ), x an
amount to be available after the realization of ξ, but to be decided about before this
realization. The goal of the decision maker is to find

min
x
Fz(x, ξ),
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where F is a probability functional (in the preceding part, we had F ≡ E ), i.e. F is
a mapping from (Ω, ˜� , P ) to � ; we will assume that F is monotonic w.r.t. stochastic
dominance of the first and second order and to the concave dominance. This means that
for φ1, φ2 random variables, φ1 ≺FSD φ2 or φ1 ≺SSD φ2 or φ1 ≺CC φ2 imply that
F(φ1) ≤ F(φ2). The function z = z(x, ξ) is a measurable real-valued objective (outcome)
function of (x, ξ) which is convex and nondecreasing in ξ. Again, for a σ-field � ⊆ ˜� is
� ( � ,Ω, � ) the space of all � -measurable functions x: Ω → � . We assume that all the
employed minima exist.
The nonanticipative optimization problem (analogical to the here-and-now problem) is
then

min
x
Fz(x, ξ)

s.t. x ∈ � ( � ,Ω, � ),

where again � represents available information, � ⊆ ˜� . Let us denote the optimal
objective function value of this problem as V ξ

F
. Again, it is clear that � 1 ⊆ � 2 implies

that V ξ
F1

≥ V
ξ
F2
.

The anticipative clairvoyant’s problem reads

min
x
Fz(x, ξ)

s.t. x ∈ � ( ˜� ,Ω, � )

and its optimal objective function value is V ξ

F̃
.

The risk contained in the random variable ξ and the imperfect information � is again
R

ξ
F
= V

ξ
F

− V
ξ

F̃
and it also holds true that Rξ

F
≥ 0, since V ξ

F
≥ V

ξ

F̃
for any σ-field

� ⊆ ˜� .

The “expected” value of partial information given by the σ-field � is V ξ
F0

− V
ξ
F

≥ 0,
where � 0 = {∅,Ω} is the simplest σ-field, relating to a totally uninformed decision
maker. Now the word “expected” is not used in a mathematical sense because a general
functional F is used instead of E.

The function z is nondecreasing and convex in ξ and F is monotonic w.r.t. first order

stochastic dominance. Hence, ξ1 ≥ ξ2 a.s. implies that V ξ1

F
≥ V

ξ2

F
for all � ⊆ ˜� which

means that higher outcome generates higher total costs.

It also holds that ξ1 ≺SSD ξ2 implies V ξ1

F0
≤ V

ξ2

F0
, ξ1 ≺FSD ξ2 implies that V ξ1

F0
≤ V

ξ2

F0

and ξ1 ≺CC ξ2 implies that V ξ1

F0
≤ V

ξ2

F0
.

It is not generally true now that ξ1 ≺CC ξ2 implies Rξ1
F0

≤ R
ξ2

F0
, since Rξ

F0
= V ξ

F0
− V

ξ

F̃

where V ξ
F0
is monotonic w.r.t. convex dominance while −V ξ

F̃
is not.

Let us now assume that F is a convex functional and that z is convex in (x, ξ). Let
p ∈ (0, 1) be a real constant, let ξ, ζ be two random outcome variables (dependence is
possible) and V ξ

F
= min

x
F(z(x, ξ)) = F(z(x∗1, ξ)), V

ζ
F
= min

x
F(z(x, ζ)) = F(z(x∗2, ζ)).
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Then

V
pξ+(1−p)ζ
F

= min
x
F(z(x, pξ + (1− p)ζ))

≤ F(z(px∗1 + (1− p)x∗2, pξ + (1− p)ζ))

≤ F(pz(x∗1, ξ) + (1− p)z(x∗2, ζ)) since z is convex in (x, ξ)
≤ p.F(z(x∗1, ξ)) + (1− p).F(z(x∗2, ζ)) since F is convex

= p.V
ξ
F
+ (1− p).V ζ

F
,

so V (·)
F
is convex in ξ.

This does not hold in general for R(·)
F
since this is a difference of two convex functions.

It can also be easily derived that for F compound concave also V (.)
F
is compound concave.

If we assume that, in addition, V (·)
F̃
is compound linear, then also R(·)

F
is compound

concave.

We can again compare properties of the generalized V ξ
F
and Rξ

F
with the properties of

coherent risk measures given in [1]. The result is quite poor: The properties are generally

not satisfied by both V ξ
F
and Rξ

F
, except for the monotonicity which is satisfied for V ξ

F

only. So V ξ
F
and Rξ

F
are not coherent risk measures in this generalized case.

At the end, let us define Rξ
F1,F2

= V
ξ
F1

− V
ξ
F2
= R

ξ
F1

− R
ξ
F2
for � 1 ⊆ � 2 ⊆ ˜�

two σ-fields. Again, Rξ
F1,F2

expresses a decrease of risk when the available information
becomes � 2 instead of � 1.
It is clear that � 1 ⊆ � 2 ⊆ � 3 implies Rξ

F1,F3
≥ R

ξ
F1,F2

and Rξ

F ,F̃
= R

ξ
F
for all

� ⊆ ˜� . The translation-invariance property does not hold any more.

The extreme case is the difference between a totally uninformed decision maker and a
clairvoyant (having full information): Rξ

F0,F̃
= V

ξ
F0

− V
ξ

F̃
and this is “expected” value

of perfect information. We cannot call this value expected value of perfect information,
because we use a general probability functional F instead of expectation.

Remark 2.61 In [16] and [15] similar notions are defined for a special multiperiod prob-
lem. We will not return to them in the chapter devoted to multiperiod problems because
they are not too interesting when we focus on various types of value of information.

Remark 2.62 The authors of [17] introduced an approach to the value of information
based on optimization of convex risk measures (i.e. extended real-valued functionals;
they call them risk functions and assume their convexity, monotonicity and translation
equivariance). In their framework, the optimization problem reads

inf
x∈K

%(F (x))

where % is a risk measure and F is a function which maps the decision x to a random vari-
able ξ = F (x). After employing sophisticated tools based on dual spaces and functional
analysis theorems, the authors show that for certain spaces of decisions x and random
variables ξ = F (x) it holds

inf
x∈K

%(F (x)) ≥ %

(

inf
x∈K

F (x)

)
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where they define
(

inf
x∈K

F (x)
)

(ω) := inf
x∈K

{(F (x))(ω)} .

This allows them to define risk value of perfect information (connected with the risk
measure %) as

RVPI % = inf
x∈K

%(F (x))− %

(

inf
x∈K

F (x)
)

≥ 0

and expected value of perfect information (connected with a probability measure µ) as

EVPI µ = inf
x∈K
Eµ[F (x)]− Eµ

[

inf
x∈K

F (x)
]

.

It is finally shown that

inf
µ∈A � (%)

EVPI µ ≤ RVPI % ≤ sup
µ∈A � (%)

EVPI µ

where � P(%) is a set of all probability measures µ such that 〈µ; ξ〉 :=
∫

Ω ξ(ω)dµ(ω) ≤ %(ξ)
for all random variables ξ from the considered space.
This approach can be used to formulate a precise analogy of a so called interchangeability
theorem (commutativity of infimum and expectation in recourse problems is proven un-
der some specific conditions) introduced in [19]. It continues with dualisation of explicit
nonanticipativity constraints which leads to consideration of EVPI as an “information
price system”—the whole amount saved up by being able to find out the realization of
random variable ξ would be paid for an inquiry necessary for getting this piece of infor-
mation. This fact is derived independently in [19] and in [17] in different symbols but as
a precise parallel. For details, see the above mentioned articles.
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We often need to solve problems covering more then two time periods and more then two
decision points. Formulation of such problems is of interest in the multistage program-
ming.
Assumptions given here represent a natural generalization of the assumptions given for
the two-stage problems. Suppose that the number of time periods is T, T ≥ 2. Suppose
for simplicity that there is one decision point at the beginning of each time period. (This
need not be true in real situations, because sometimes we have to make a decision for
more then one time period, or make several decisions in one period). Again, randomness
is brought to the problem by a vector of real random variables ξ1, . . . , ξT−1. For every
t = 1, . . . , T − 1, ξt is defined on a probability space (Ωt, � t, P ). Probability distribution
of all random variables is known with distribution functions F (ξt) which are independent
of the decisions x1, . . . , xT . Realization of the component ξt is observed in the t-th time
period after making the decision xt.
The order of making decisions and observing realizations of the random variables is
x1, ξ1, x2, ξ2, . . . , ξT−1, xT . Sometimes we use for technical purposes a component ξ0 be-
fore x1; this component ξ0 may be considered as random, equal to a given constant with
probability one. We will write ξt = (ξ1, . . . , ξt) and xt = (x1, . . . , xt).
The decision process is nonanticipative, which means that a decision xt is allowed to
depend on former decisions x1, . . . , xt−1 and former realizations ξ1, . . . , ξt−1 which are
already known (observed) in the time of making the decision xt, but xt has to be inde-
pendent of any future realizations of random variables and future decisions.
Structure of the general T -stage problem is quite unfriendly and it is quite unpleasant to
deal with it. It can be written as T nested problems as follows:

RP = min
x1
Eξ1f0(x1, ξ1) = minx1

{

f10(x1) + Eξ1 [ϕ1(x1, ξ1)]
}

s.t. f1i(x1) ≤ 0, i = 1, . . . , m1, x1 ∈ X1

for ϕ1(x1, ξ1) = min
x2

{

f20(x2) + Eξ2|ξ1 [ϕ2(x1, x2, ξ1, ξ2)]
}

s.t. f2i(x1, x2, ξ1) ≤ 0, i = 1, . . . , m2, x2 ∈ X2

. . .

for ϕt−1(x1, . . . , xt−1, ξ1, . . . , ξt−1) =min
xt

{

ft0(xt) + Eξt|ξt−1 [ϕt(x1, . . . , xt, ξ1, . . . , ξt)]
}

s.t. fti(x1, . . . , xt, ξ1, . . . , ξt−1)≤0, i= 1, . . . , mt,

xt∈Xt,

. . .

for ϕT = 0,

where for all t and i are fti and ϕt real functions, Xt ⊆ � are nonempty sets and we deal
with conditional expectations. In this form, we have divided the non-random and the
random part of the objective function in each stage to create the best possible analogy
to the two-stage programs. The resulting optimal objective function value is denoted as
RP .
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We will usually write the problem in a simpler form:

min
x1∈X1

Eξ1 min
x2∈X2(x1,ξ1)

Eξ2|ξ1 . . .EξT−1|ξT−2 min
xT∈XT (xT−1,ξT−1)

z(x1, . . . , xT , ξ1, . . . , ξT−1)

for an objective function z.
Now, the feasibility sets for the second and any further minimization have to be written in
the form showing their dependence on former decisions and realizations, e.g. X2(x1, ξ1).
The form of this dependence can be clearly seen in the following linear problem.
If all the objective functions and constraints are linear, we can write the T -stage problem
as follows:

RP = min
x1

[

c �1x1+Eξ1minx2

[

c �2x2+Eξ2|ξ1minx3

[

c �3x3+ . . .+EξT−1|ξT−2min
xT

[

c �TxT

]

. . .

]]]

s.t. T1x1 = h1,

T2(ξ1)x1 +W2(ξ1)x2 = h2(ξ1) a.s.,

T3(ξ
2)x2 +W3(ξ

2)x3 = h3(ξ
2) a.s., (3.1)

. . .

TT (ξ
T−1)xT−1 +WT (ξ

T−1)xT = hT (ξ
T−1) a.s.,

l1 ≤ x1 ≤ u1,

lt(ξ
t−1) ≤ xt ≤ ut(ξ

t−1) a.s. for t = 2, . . . , T.

We can also rewrite the objective function in (3.1) as

min
x1
Eξ1 minx2

Eξ2|ξ1 minx3
. . .EξT−1|ξT−2 min

xT

z(x1, . . . , xT , ξ1, . . . , ξT−1),

where

z(x1, . . . , xT , ξ1, . . . , ξT−1) = c �1x1 + c �2x2 + . . .+ c �TxT .

In general there is ct = ct(ξt−1) for t = 2, . . . , T .
It is much easier to solve the multistage problems when the distribution of the random
variables ξ1, . . . , ξT−1 is discrete. This means that for t = 1, . . . , T − 1 the support of ξt
is Ξt = {ξ1t , . . . , ξ

St
t }, St finite. We then speak about scenario-based problems.

� �#"$� � }����£�� ��º},���r����}�� %����[~���~�%��e�  r¤�~�����~i}�Ç��`�r���7�!¤£�����
We have more possibilities of modelling a given multistage problem than we had for a
two-stage one. In the following parts, we will formulate the problem (3.1) using several
different approaches in order to be able to compare to each other their resulting optimal
objective function values.

3.2.1. Wait-and-see problem

We can formulate the wait-and-see problem in a similar way as for the two-stage programs.
In this case, the decision maker is allowed to postpone all his decisions to the end of the
last time period, that is, until he knows all the realizations of the random variables, or
he is able to reveal future realizations of all random variables at the beginning of the
first time period. Thus all decisions x1, . . . , xT are functions of ξ

T−1. The wait-and-see
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T -stage linear problem reads

WS = EξT−1 min
x1(ξT−1),...,xT (ξT−1)

{

c �1x1(ξ
T−1) + . . .+ c �TxT (ξ

T−1)
}

s.t. T1x1(ξ
T−1) = h1 a.s.,

T2(ξ1)x1(ξ
T−1) +W2(ξ1)x2(ξT−1) = h2(ξ1) a.s.,

T3(ξ
2)x2(ξ

T−1) +W3(ξ2)x3(ξT−1) = h3(ξ2) a.s.,
. . .

TT (ξ
T−1)xT−1(ξT−1) +WT (ξ

T−1)xT (ξ
T−1) = hT (ξ

T−1) a.s.,
l1 ≤ x1(ξ

T−1) ≤ u1 a.s.,

lt(ξ
t−1) ≤ xt(ξ

T−1) ≤ ut(ξ
t−1) a.s. for t = 2, . . . , T.

This decision process is anticipative, since all the decisions can depend on all realizations,
which are supposed to be known in advance.

3.2.2. Expected value problem

Now we replace the random variables ξ1, . . . , ξT−1 by their expectations ξ̄1 = Eξ1, . . . ,
ξ̄T−1 = EξT−1, respectively. We obtain a deterministic expected value problem

EV = min
x1,...,xT

z(x1, . . . , xT , ξ̄1, . . . , ξ̄T−1)

s.t. T1x1 = h1,

T2(ξ̄1)x1 +W2(ξ̄1)x2 = h2(ξ̄2),

. . .

TT (ξ̄
T−1)xT−1 +WT (ξ̄

T−1)xT = hT (ξ̄
T−1),

l1 ≤ x1 ≤ u1,

lt(ξ̄
t−1) ≤ xt ≤ ut(ξ̄

t−1), t = 2, . . . , T.

Again, this value can be quite different from the here-and-know value and there can
appear the same complication that is mentioned in remark 2.4.

Denote as x̄1, . . . , x̄T the optimal solution of the expected value problem. Similarly as in
the two-stage problem, we now keep them fixed and we compute the true expectation of
the objective function value for these decisions. The resulting value is

EEV = EξT−1z(x̄1, . . . , x̄T , ξ1, . . . , ξT−1).

3.2.3. Two-stage relaxation

Sometimes, we are not able to solve the given problem as multistage and we use its two-
stage relaxation. In principle, we relax the nonanticipativity constraints in the second and
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other stages and we obtain a two-stage problem for T time periods

TP = min
x1
EξT−1 min

x2,...,xT

z(x1, . . . , xT , ξ1, . . . , ξT−1)

s.t. T1x1 = h1,

T2(ξ1)x1 +W2(ξ1)x2 = h2(ξ1) a.s.,

T3(ξ
2)x2 +W3(ξ

2)x3 = h3(ξ
2) a.s.,

. . .

TT (ξ
T−1)xT−1 +WT (ξ

T−1)xT = hT (ξ
T−1) a.s.,

l1 ≤ x1 ≤ u1,

lt(ξ
t−1) ≤ xt ≤ ut(ξ

t−1) a.s. for t = 2, . . . , T.

3.2.4. Rolling horizon

We can use another approach to multistage problems, which is based on rolling of time
horizon. The here-and-now problem for time periods 1, . . . , T is solved first, giving an
optimal solution x∗11 , . . . , x

∗1
T . We use the component x∗11 only, wait until ξ1 is observed

to be ξs1 and then we solve the here-and-now problem for time periods 2, . . . , T with the
first stage decision fixed as x∗11 and ξ1 = ξs1, i.e. we solve the problem

min
x2
Eξ2|ξs

1
min
x3

. . .EξT−1|ξT−2,...,ξ2,ξ
s
1
min
xT

z
(

x∗11 , x2, . . . , xT , ξ
s
1, (ξ2|ξ1=ξs1), . . . , (ξT−1|ξ1=ξs1)

)

s.t. T2(ξ
s
1)x

∗1
1 +W2(ξ

s
1)x2 = h2(ξ

s
1),

T3(ξ
2|ξ1 = ξs1)x2 +W3(ξ

2|ξ1 = ξs1)x3 = h3(ξ
2|ξ1 = ξs1) a.s.,

. . .

TT (ξ
T−1|ξ1 = ξs1)xT−1 +WT (ξ

T−1|ξ1 = ξs1)xT = hT (ξ
T−1|ξ1 = ξs1) a.s.,

l2(ξ
s
1) ≤ x2 ≤ u2(ξ

s
1),

lt(ξ
t−1|ξ1 = ξs1) ≤ xt ≤ ut(ξ

t−1|ξ1 = ξs1) a.s., t = 3, . . . , T.

This problem leads to an optimal solution x∗22 , . . . , x
∗2
T . We wait until the realization of

ξ2 is known to be ξs2 and then we solve a here-and-now problem for the time periods
3, . . . , T with an objective function

z = z(x∗11 , x
∗2
2 , x3, . . . , xT , ξ

s
1, ξ

s
2, (ξ3|ξ1 = ξs1, ξ2 = ξs2), . . . , (ξT−1|ξ1 = ξs1, ξ2 = ξs2)).

This process is repeated with still shorter and shorter time horizon. The last problem
which is solved is a deterministic (and static) problem

min
xT

z
(

x∗11 , x
∗2
2 , . . . , x

∗T−1
T−1 , xT , ξ

s
1, . . . , ξ

s
T−1

)

s.t. TT (ξ
s,T−1)x∗T−1

T−1 +WT (ξ
s,T−1)xT = hT (ξ

s,T−1),

lT (ξ
s,T−1) ≤ xT ≤ uT (ξ

s,T−1),

where we denote ξs,T−1 = (ξs1, . . . , ξ
s
T−1). Then we define

RH = Eξs,T−1z(x∗11 , x
∗2
2 , . . . , x

∗T
T , ξs1, . . . , ξ

s
T−1)

61



where Eξs,T−1 is expectation taken over all possible realizations of ξT−1 and the resulting
objective function value is denoted as RH (for rolling horizon). Further on, we will not
write the random variables in the second and next steps explicitly conditionally on the
previous realizations, but we always keep it in mind when dealing with the rolling horizon
approach.

3.2.5. Dynamic formulation

Define state vectors zt ∈ Zt ⊆ � mt , for t = 1, . . . , T, where zt is a state of the system
at the beginning of the time period t. In other words, zt is the resulting state after
applying the preceding decisions made in periods up to and including the (t − 1)-th
one and after observing realizations of ξ1, . . . , ξt−1. The change from the state zt to the
state zt+1 under decision xt and realization ξt is described by so called transition function
Ft:Zt ×Xt × Ξt → Zt+1 ⊆ � mt+1 in the sense that zt+1 = Ft(zt, xt, ξt). The initial state
z1 is given.
Denote the expected costs in the t-th period as ft = ft(zt, xt) = Eξt

f̃t(zt, xt, ξt), where

f̃t(zt, xt, ξ̃t) expresses the costs in the t-th period under the realization ξ̃t of the random
variable ξt, for all ξ̃t in the support Ξt. The total costs (or their worth after applying
some negative-utility function) during the whole T -period process are expressed by an
aggregate function Φ = Φ[f1, . . . , fT ]. We will consider the most common shape of Φ
which is Φ[f1, . . . , fT ] =

∑T
t=1 ft which is a sum of costs in all periods.

The whole dynamic problem then reads

DP = min
x1,...,xT

Φ[f1(z1, x1), . . . , fT (zT , xT )]

s.t. z1 ∈ Z1, z1 is given,

zt+1 = Ft(zt, xt, ξt), t = 1, . . . , T − 1,
xt ∈ Xt, t = 1, . . . , T.

Problems formulated in this way can be solved recurrently “backwards” as T nested
problems with a parameter z denoting a state of the system.
This solution method uses Bellman’s principle: If (x∗1, . . . , x

∗
T ) is a sequence of optimal

decisions in the T -stage problem with initial state z1, transition functions F1, . . . , FT and
costs functions f1, . . . , fT then for any realization ξ̃1 of ξ1 is (x

∗
2, . . . , x

∗
T ) a sequence of op-

timal decisions in the (T − 1)-stage problem with initial state z2 = z2(ξ̃1) = F1(z1, x∗1, ξ̃1),
transition functions F2, . . . , FT and costs functions f2, . . . , fT .
Denote

ϕ1(z1; f1) = min
x1∈X1

f1(z1, x1),

and generally for t = 2, . . . , T denote

ϕt(z1; f1, . . . , ft;F1, . . . , Ft−1) = min
x1,...,xt

t
∑

τ=1

fτ (zτ , xτ )

s.t. xτ ∈ Xτ , τ = 1, . . . , t,

zτ+1 = zτ+1(ξτ ) = Fτ (zτ , xτ ), τ = 1, . . . , t− 1.
According to the Bellman’s principle, we have that

ϕt(z1; f1, . . . , ft;F1, . . . , Ft−1) =
= min

x1∈X1
{f1(z1, x1) + ϕt−1(F1(z1, x1, ξ1); f2, . . . , ft;F2, . . . , Ft−1)} .
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The new shape of the given problem is then

DP = ϕT (z1; f1, . . . , fT ;F1, . . . , FT−1)
s.t. xt ∈ Xt, t = 1, . . . , T,

z1 given,

zt+1 = zt+1(ξt) = Ft(zt, xt, ξt), t = 1, . . . , T − 1.

The problems for ϕt are problems with parameter z, which is the initial state of the system
for ϕt. This state z depends on the preceding development of the random variables. In
the backward recursion, at first the problem for ϕ1(z; fT ) is solved as a problem with
parameter z, so the decision x∗T (z) is found. This decision minimizes the costs in the
T -th period when the state of the system at the beginning of this period is z. Then the
problem for ϕ2(z; fT−1, fT ;FT−1) is solved, decision x∗T−1(z) is found as minimizing the
expected costs in the (T − 1)-th plus T -th period, when the state of the system at the
beginning of the (T −1)-th period is z and the costs in the T -th period are minimized (by
using the decision x∗T (z) for an appropriate state z). This solution process continues until
the decision in the first period x∗1(z1) (for the given state z1) is reached. Then x

∗
1(z1) is

applied, ξ1 observed as ξ̃1, so that z2 = F1(z1, x∗1(z1), ξ̃1) becomes the new state of the
system. Then x∗2(z) is evaluated at z2, x

∗
2(z2) is applied, ξ2 observed, the system transfers

into new state, etc.
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In the preceding parts, we have introduced some approaches to solving a multistage
problem: static formulation, two-stage relaxation, rolling horizon and dynamic formula-
tion. We have reformulated the wait-and-see problem and the expected value problem
introduced for two-stage problems. These various approaches result in various optimal
objective function values. The goal of this paragraph is to show inequalities between these
values similar to those presented for the two-stage problems, and consequently to define
some types of value of information.
In [9], we can find a special dynamic formulation of some of the multistage problems
described above (RP , WS and EEV ), and basic inequalities (same as the ones presented
in the next theorem) are also introduced there under some specific conditions. Some other
approaches and values of information can be formulated under various assumptions, e.g.
as in [12].

Theorem 3.1 For a T -stage stochastic problem (3.1), there is

WS ≤ RP ≤ EEV .

Proof. The proof would be the same as that for a two-stage problem, based on definition
of feasible and optimal solutions. �
Remark 3.2 The inequality EV ≤WS also holds here when the only random elements
are right hand sides h2, . . . , hT . The proof would be the same as that for a two-stage
problem.

Theorem 3.3 For a T -stage stochastic problem (3.1), there is

TP ≤ RP .
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Proof. We can write

RP = min
x1
Eξ1

[

min
x2
Eξ2|ξ1 minx3

. . .EξT−1|ξT−2 min
xT

z(x1, . . . , xT , ξ1, . . . , ξT−1)
]

= min
x1
Eξ1 [r(x1, ξ1)]

subject to constraints given in (3.1), and

TP = min
x1
Eξ1

[

Eξ2,...,ξT−1
min

x2,...xT

z(x1, . . . , xT , ξ1, . . . , ξT−1)
]

= min
x1
Eξ1 [w(x1, ξ1)]

subject to the same constraints, where we have defined the functions r = r(x1, ξ1) and
w = w(x1, ξ1) as obvious. It is clear that for all fixed (x1, ξ1) (where x1 is feasible and
ξ1 ∈ Ξ1 is a possible realization) is r(x1, ξ1) an optimal objective function value of a
(T −1)-stage here-and-now problem for stages 2, . . . , T. Similarly, w(x1, ξ1) is an optimal
objective function value of a wait-and-see problem for stages 2, . . . , T. For any fixed
(x1, ξ1), both of these (T − 1)-stage problems are solved under the same constraints and
it is clear that w(x1, ξ1) ≤ r(x1, ξ1), which implies that TP ≤ RP . �
We will show that some other inequalities hold true. They are mentioned in [18] as well,
but for one particular example only and with quite vague proofs.

Theorem 3.4 For a T -stage stochastic problem (3.1), there is

RH ≤ RP .

Proof. In the first step of the rolling horizon (RH ) approach, we solve exactly the
same problem as in the static (RP) approach. Hence, the sequence of optimal decisions
x∗11 , . . . , x

∗1
T which we obtain in the first step of the rolling horizon approach is the same

as the sequence of optimal decisions x∗1, . . . , x
∗
T obtained when solving the RP problem.

The decisions x∗tt , t = 2, . . . , T obtained in the next steps of the RH approach differ from
the decisions x∗1t = x∗t , t = 2, . . . , T, only if they lead to a better (i.e., lower) optimal
objective function value than the decisions x∗1t = x

∗
t , t = 2, . . . , T. Hence, it cannot hold

RH > RP . �

Theorem 3.5 For a T -stage stochastic problem (3.1), there is

(a) WS ≤ DP ,

(b) WS ≤ RH .

Proof. When solving the wait-and-see problem, we know all future realizations of the
random variables in advance. Hence, for any possible sequence ξ̃T−1 = (ξ̃1, . . . , ξ̃T−1)
of realizations of ξ1, . . . , ξT−1, we find a sequence of optimal decisions xWS

1 , . . . , xWS
T

depending on ξ̃T−1 and we compute the wait-and-see value as the expectation of the
resulting objective function values over all possible ξ̃s. For an arbitrary ξ̃T−1, we have

z(xWS
1 , . . . , xWS

T , ξ̃T−1) = min
x1,...,xT

z(x1, . . . , xT , ξ̃
T−1) ≤ z(x̃1, . . . , x̃T , ξ̃

T−1) (3.2)
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for any feasible decisions x̃1, . . . , x̃T .

(a) Especially, the inequality (3.2) holds for the decisions obtained as the optimal solu-
tions of the dynamic problem. Hence, Eξ1,...,ξT−1

z(xWS
1 , . . . , xWS

T , ξT−1) ≤ DP , that is,
WS ≤ DP .
(b) The inequality (3.2) also holds for x̃1 = x∗11 , . . . , x̃T = x∗TT , i.e. for the optimal
solutions gained by the rolling horizon approach. Hence, we have that WS ≤ RH . �
Remark 3.6 For a very special case of problem, inequality DP ≤ RH holds as well (see
e.g. [18]). For this to be proven, the problem solved by the dynamic approach must be
exactly the same as the one solved by the method of rolling horizon, which is not a priori
assured because of the significant difference in formulations.

The preceding theorems allow us to complete the chain of inequalities:

WS ≤ RH ≤ RP ≤ EEV .

Thanks to these inequalities, we can compare the results of different models for solving
the same multistage problem. From the differences between the results, we can derive the
value of the various approaches as compared with another ones.

Definition 3.7 Considering multistage problems and notation employed in this chapter,
we define value of stochastic solution as VSS = EEV − RP ,

value of rolling horizon as VRH = EEV − RH ,
value of perfect information as VPI = EEV −WS .

All these values are nonnegative and they give the comparison of the true expectation of
the objective function value when the optimal solutions of the expected value problem
are used, with some of the other models benefiting from better and better usage of infor-
mation, from the static stochastic model up to the clairvoyant’s wait-and-see problem.

It is clear that the VPI creates an upper bound for the expected value of perfect infor-
mation which is defined as

EVPI = RP −WS . (3.3)

However, in the multistage problems it is quite debatable which one of DP , RH and
RP should be compared to WS to define the expected value of perfect information.
In our opinion this value, according to its name, should express the difference between
expectation of the result of the clairvoyant’s problem (which is WS ) and expectation of
the best possible result of the given problem formulated as nonanticipative, which is RH
(or DP when the conditions required for DP ≤ RH are satisfied). Hence, we should define
expected value of perfect information for multistage problems as EVPIM = RH −WS (or
EVPI

M̃
as EVPI

M̃
= DP −WS ).

We can finally define value of two-stage relaxation as

VTR = RP − TP

which is also nonnegative thanks to the theorem 3.3.

� ��� ��� �� ��r�����,� ~�%��x��}�¤� ��`� �U��� �-������}�~��£���
In chapter 2.3., we have introduced GJEM bounds on value of information. We can
generalize these bounds for multistage programs.
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Similarly as in [11], we can also consider that a convex negative-utility function b applied
on the expected optimal objective function value. Then we define a value of information
Ṽ in the same way as in the two-stage case.
Consider the situation when the decision maker takes a sequence of decisions {xt} in
periods t = 1, . . . , T. After the t-th decision is taken, a random variable is observed to be
ξt, so the process is nonanticipative and the order of making decisions and observing the
random variables is x1, ξ1, . . . , ξT−1, xT . We assume that ξ1, . . . , ξT−1 are independent
and for every t the support of ξt is Ξt.

The feasibility sets K1, . . . , KT are now supposed to be fixed.
Net costs from decisions {xt, t = 1, . . . , T} and random realizations {ξt, t = 1, . . . , T − 1}
is z(x1, . . . , xT , ξ1, . . . , ξT−1) = z(xT , ξT−1).
3.4.1. Linear negative-utility function

If the negative-utility function is linear the no-information problem is of the form

RP = ZT
n = min

x1∈K1
Eξ1 minx2∈K2

. . .EξT−1|ξT−2 min
xT∈KT

z(xT , ξT−1) (3.4)

and the perfect-information problem reads

WS = ZT
p = Eξ1 . . .EξT−1

min
x1∈K1

. . . min
xT∈KT

z(xT , ξT−1).

In ZT
n and Z

T
p , the upper index T stands for the number of stages, the subscripts n or p

for no information or perfect information, respectively.
Now we can define the expected value of perfect information as

EVPI = ZT
n − ZT

p , (3.5)

which is surely equivalent with the definition in (3.3). We now derive some bounds of the
GJEM type. For simplicity, the next theorem is formulated for the case T = 2; generaliza-
tion for arbitrary finite T is possible. We also do not write explicitly the decision variable
x3 which is of no use here; we can imagine that z(x1, x2, ξ1, ξ2)=min

x3
z̃(x1, x2, x3, ξ1, ξ2)

for an original objective function z̃.
Theorem 3.8 Suppose that z = z(x2, ξ2) is a continuous function convex in (x2, ξ2),
where ξ2: Ξ2 → 〈a1, b1〉 × 〈a2, b2〉, F1, F2 are marginal distribution functions of ξ1, ξ2,
x2 ∈ K2 = K1×K2, K

2 is a compact and convex set, and l = (l1, l2) ∈ � × � . Suppose
for k = 1, 2 that 〈ak, bk〉 is subdivided at arbitrary points ak = dk

0 < dk
1 < . . . dk

lk
= bk.

Define

αk
ik
:=
∫ dk

ik

dk
ik−1

dFk(ξk), β
k
ik
:=
1

αk
ik

∫ dk
ik

dk
ik−1

ξkdFk(ξk), ik = 1, . . . , lk,

δkik
:= αk

ik

[

βk
ik
− dk

ik−1
dk
ik
− dk

ik−1

]

+ αk
ik+1

[

dk
ik+1

− βk
ik+1

dk
ik+1

− dk
ik

]

, ik = 0, . . . , lk,

αk
0 = αk

lk+1
= βk
0 = βk

lk+1
= dk

−1 := 0, k = 1, 2,

Ll1(z) =
l1
∑

i1=1

α1i1z(x1, x2, β
1
i1
, ξ2), Ll2(z) =

l2
∑

i2=1

α2i2z(x1, x2, ξ1, β
2
i2
),

Ul1(z) =
l1
∑

i1=0

δ1i1z(x1, x2, d
1
i1
, ξ2), Ul2(z) =

l2
∑

i2=0

d2i2z(x1, x2, ξ1, d
2
i2
).
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Then

(a) Ln,l := min
x1∈K1

Ll1( minx2∈K2
Ll2(z)) ≤ Z2n ≤ min

x1∈K1
Ul1( minx2∈K2

Ul2(z)) =: Un,l,

(b) Lp,l := Ll1(Ll2( min
x2∈K2

z)) ≤ Z2p ≤ Ul1(Ul2( min
x2∈K2

z)) =: Up,l,

(c) max{0;Ln,l − Up,l} ≤ EVPI ≤ Un,l − Lp,l.

(d) If l̃ ≥ l (i.e. l̃i ≥ li, i = 1, 2) and the partition corresponding to l̃ is at least as fine
as that corresponding to l then the bounds in (c) corresponding to l̃ are at least as sharp
as those corresponding to l.
(e) If each subinterval becomes arbitrarily small as l1 → ∞ and l2 → ∞ (which is
denoted as l → ∞), then

lim
l→∞
(Un,l − Lp,l) = EVPI = lim

l→∞
(Ln,l − Up,l).

Proof. The proof is based on application of theorem 2.23. For details see [11]. �
Theorem 3.9 If z is a continuous function of (xT , ξT−1) ∈ KT × ΞT−1, where ΞT−1 =
Ξ1× . . .×ΞT−1 and KT = K1× . . .×KT , Kt ⊂ � nt are convex sets for all t = 1, . . . , T,
and z is convex in ξT−1 for all fixed xT ∈ KT , then

0 ≤ EVPI ≤ EξT−1z(x̄T , ξT−1)− z(x̄T , ξ̄T−1), (3.6)

where x̄T is an optimal solution to min
xT∈KT

z(xT , ξ̄T−1) and ξ̄T−1 = EξT−1.

Proof. All minima and expectations exist and so EVPI ≥ 0. Firstly, there is
EξT−1z(x̄T , ξT−1) = Eξ1Eξ2|ξ1 . . .EξT−1|ξT−2z(x̄T , ξT−1) ≥ ZT

n , (3.7)

because x̄T is a feasible solution of the problem (3.4). Secondly,

ZT
p = EξT−1 min

xT∈KT
z(xT , ξT−1) ≥ min

xT∈KT
z(xT , ξ̄T−1) (3.8)

since min
xT∈KT

z(xT , ξT−1) is a convex function of ξT−1 and we can use Jensen’s inequality.

Using (3.7) and (3.8) in the same time, we obtain the inequality (3.6). �
3.4.2. Convex negative-utility function

Let us suppose that the decision maker solves a T -stage problem with a convex cost
function z = z(xT , ξT−1) and a convex and strictly increasing negative-utility function
b. Now the nonanticipative problem reads

min
x1∈K1

Eξ1 minx2∈K2
. . .EξT−1|ξT−2 min

xT∈KT

b[z(xT , ξT−1)]. (3.9)

Then value of perfect information Ṽ is defined as a (unique, since b is strictly increasing)
solution of the equation

EξT−1 min
xT∈KT

b[z(xT , ξT−1) + Ṽ ] = min
x1∈K1

Eξ1 minx2∈K2
. . .EξT−1|ξT−2 min

xT∈KT

b[z(xT , ξT−1)].

(3.10)
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Analogically as for two-stage problems, the left hand side of (3.10) represents the wait-
and-see problem where Ṽ is added to overall costs. This Ṽ is the value of knowing
the future in advance, or price of a research made to gain this knowledge, or price for
postponing taking the decisions until realizations of all random variables are observed.
We can generalize the theorems formulated for the two-stage case and derive bounds on
the value of information.
Theorem 3.10 Suppose that b is strictly increasing convex function on � , z = z(xT , ξT−1)
is convex in (xT , ξT−1) on the convex set KT × ΞT−1 where KT = K1 × . . .×KT ,

Kt ⊆ � nt , (xt is a nt-dimensional vector) for every t, and ΞT−1 ⊆ � T−1 , (ξt is a scalar
random variable for all t).
Then

0 ≤ Ṽ ≤ b−1
[

EξT−1b[z(x̂T , ξT−1)]
]

− z(x̂T , ξ̄T−1),

where x̂T is an optimal solution to min
xT∈KT

z(xT , ξ̄T−1) and ξ̄T−1 = EξT−1.

Proof. The proof is analogical the proof of the theorem 2.26. �
Theorem 3.11 Suppose that
(1) b is strictly increasing and convex on � and z is convex jointly in all its arguments,
(2) x∗T = x∗T (ξT−1) is an optimal solution of min

xT∈KT
z(xT , ξT−1) and

x̂T = (x̂1, x̂2(ξ1), . . . , x̂T (ξ
T−1)) solves min

x1∈K1
Eξ1 . . .EξT−1|ξT−2 min

xT∈KT

b[z(xT , ξT−1)],

ΞT−1 ⊆ � S1 × . . .× � ST−1 (i.e. ξt is an St-dimensional real random vector),
(3) z(x∗T , ξT−1) and z(x̂T , ξT−1) have distributions belonging to the same family with
two parameters that are independent functions of mean and variance, i.e. if z(x∗T , ξT−1) ∼
G(y; a1, b1) and z(x̂T , ξT−1) ∼ H(z; a2, b2), then G(y) = H(z) whenever y−a1√

b1
= z−a2√

b2
,

where a1, a2 are finite and b1, b2 are finite and positive.
Then

(a) Ṽ ≥ EξT−1

[

z(x̂T , ξT−1)− z(x∗T , ξT−1)
]

⇔ var z(x∗T , ξT−1) ≥ var z(x̂T , ξT−1),

(b) var z(x∗T , ξT−1) ≥ var z(x̂T , ξT−1)⇒ Ṽ ≥ EVPI ,
where Ṽ is the value of perfect information for the case of convex negative-utility function
b (defined by (3.10)) and EVPI is the expected value of perfect information for the case
of linear or no negative-utility function (defined by (3.5)).
Proof. The proof is exactly same as the proof of the theorem 2.28. �
Remark 3.12 We can also define a value ṼM similar to EVPIM as a solution of the
equation

EξT−1 min
xT∈KT

b[z(xT , ξT−1) + ṼM ] = z
∗
RH (3.11)

where z∗RH is the optimal objective function value gained when solving the same problem
by the method of the rolling horizon. If the badness function b is convex and increasing
then ṼM is nonnegative.
When the conditions required for the inequality DP ≤ RH to hold are satisfied, we can
similarly define Ṽ

M̃
as a solution of the equation

EξT−1 min
xT∈KT

b[z(xT , ξT−1) + Ṽ
M̃
] = z∗DP (3.12)
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where z∗DP is the optimal objective function value gained when solving the problem in
its dynamic formulation.

� ���$� � }�¤£ r�x� ����� � �,����}7~����,� }��º}����£�i� ����}��± r���
In this part we will return to the approach used in chapter 2.9., generalized for a multistage
case. We will again follow the ideas introduced in [16] and [15] to define risk processes
and to show some properties of them.

Consider a random process ξ1, . . . , ξT−1 defined on (Ω, � , P ) adopted to the filtration
{ � t, t = 1, . . . , T − 1} (which means that ξt is � t-measurable for t = 1, . . . , T − 1), and
� 0 = (∅,Ω).
Definition 3.13 A stochastic process {ξt, t = 1, . . . , T−1} adapted to { � t, t = 1, . . . , T−1}
is called a tree process, if for t = 1, . . . , T − 1 is � t the σ-field generated by ξt.
As is proven in [15], a stochastic process is a tree process if and only if for all pairs s < t,

(ξs|ξt) which is the conditional distribution of ξs given ξt, is a constant almost surely (i.e.
if we know the realization of ξ at the time t, we know all realizations of ξ up to time t).

Let z = z(x1, ξ1, . . . , ξT−1, xT ) be a measurable real-valued objective (costs) function of
xt, t = 1, . . . , T and ξt, t = 1, . . . , T − 1. The xts are decision variables and the ξts are
uncertain costs in time periods 1, . . . , T. We can again consider ξ0 for technical reasons
as a known constant almost surely. The distribution of all random variables is supposed
to be known, and the decision process is nonanticipative. We now write the arguments of
the function z in the order which reflects nonanticipativity of the process.

The multistage nonanticipative optimization problem (a problem of a common human
decision maker who does not know the future random outcomes) can be written as

V ξ1,...,ξT−1 = min
x1,...,xT

F [z(x1, ξ1, . . . , ξT−1, xT )]

s.t. xt ∈ � ( � t−1,Ω, � ), t = 1, . . . , T
(3.13)

where F is a probability functional monotonic w.r.t. the first order stochastic dominance.
Remind that for any σ-field � , � ( � ,Ω, � ) is a space of all � -measurable functions
from Ω to � . The nonanticipativity constraint then has the meaning that xt = xt(ξt−1)
can depend on the past realizations and past decisions only.
As expected, the anticipative (clairvoyant’s) problem reads

V
ξ1,...,ξT−1
C = min

x1,...,xT

F [z(x1, ξ1, . . . , ξT−1, xT )]

s.t. xt ∈ � ( � T−1,Ω, � ), t = 1, . . . , T.

The risk involved in not having the full information (i.e. in the random income and the
filtration { � t, t = 1, . . . , T − 1}) is defined as

Rξ1,...,ξT−1 = V ξ1,...,ξT−1 − V
ξ1,...,ξT−1
C .

Rξ1,...,ξT−1 is nonnegative, since the solution under full information gives an optimal
objective function value which is lower or equal to the optimal objective function value
gained by the nonanticipative solution, because the feasibility sets � ( � T−1,Ω, � ) in
the anticipative problem are larger or equal to the feasibility sets � ( � t−1,Ω, � ) in the
nonanticipative one.
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If the function z is nondecreasing in variables ξ1, . . . , ξT−1 then Rξ1,...,ξT−1 is monotonic in
ξ1, . . . , ξT−1. This means that for two outcome streams {ξ1, . . . , ξT−1} and {ζ1, . . . , ζT−1}
such that ξt ≤ ζt a.s. for all t = 1, . . . , T − 1 it holds Rξ1,...,ξT−1 ≤ Rζ1,...,ζT−1.

Consider the same tree process {ξt, t = 1, . . . , T −1}. For s < t we can view ξs as the pro-
jection of ξt to the time t, i.e, ξs = prs(ξt). For s > t we denote conditional distribution of
ξs given ξt as ξs|ξt. The future process {ξs|ξt, s = t+1, . . . , T−1} is a tree process as well.
Full conditional process given ξt is pr1(ξt), pr2(ξt), . . . , prt−1(ξt), ξt, ξt+1|ξt, . . . , ξT−1|ξt.
Denote x∗1, x

∗
2 = x∗2(ξ1), . . . , x

∗
T = x

∗
T (ξT−1) the (assume that unique) optimal solution of

the nonanticipative problem (3.13). Now we can define so called costs process: Suppose
that the value of ξt at time t is known and it is ξ̃t, the decisions x∗1, . . . , x

∗
t up to time t

were made in an optimal way; then the nonanticipative subproblem conditional at time
t is

Ut=Ut(ξ̃t)= min
xt+1,...,xT

F
[

z(x∗1, pr1(ξ̃t), . . . , prt−1(ξ̃t), x
∗
t , ξ̃t, xt+1, ξt+1|ξ̃t, . . . , xT−1, ξT−1|ξ̃t)

]

s.t. xt+1 = xt+1(ξ̃t), . . . , xT = xT (ξT−1|ξ̃t).

(We can interpret this that a non-clairvoyant human being makes decisions at the time
point t, when he already knows the realization ξt.) Now {Ut, t = 1, . . . , T − 1} create a
costs process.

Clairvoyant’s anticipative problem in the same situation reads

UCt=UCt(ξ̃t)= min
xt+1,...,xT

F
[

z(x∗1, pr1(ξ̃t), . . . , prt−1(ξ̃t), x
∗
t , ξ̃t, xt+1, ξt+1|ξ̃t, . . . , xT , ξT−1|ξ̃t)

]

s.t. xt+1 = xt+1(ξT−1|ξ̃t), . . . , xT = xT (ξT−1|ξ̃t).

(Before realization of ξt a common human decision maker solves the problem and then
he turns to be a clairvoyant.) Again, we consider {UCt, t = 1, . . . , T − 1} as a process.
In each time period, feasibility set of the clairvoyant is a subset of the feasibility set of
the common human decision maker and so UCt ≤ Ut for all t; so it makes sense to define
(VPI )-process as a process of value of perfect information (from the time t up to the end
of the horizon) as {Rt, t = 1, . . . , T − 1}, where for t = 1, . . . , T − 1 is

Rt = Ut − UCt ≥ 0.

We thus obtained a new and interesting information value type, or to be precise, a process
of information values. Although it can be defined only for the multistage problems, we
did not go too far from the results presented for the two-stage problems.
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We could see many times in this work that, in general, solving a stochastic problem in a
situation when an information about future development of included random variables is
available results in “better” optimal objective function value than solving the same prob-
lem without this information. It is also obvious that, even when the same information is
available, we can choose among several approaches to the same problem and using differ-
ent approaches, the (same) information is utilized to distinct extent. Different approaches
thus result in generally distinct optimal solutions and in distinct optimal values of the
objective function. Some inequalities were proven among the optimal objective function
values. Differences (in the mathematical sense) between these values can be interpreted
as a value of having a certain piece of information in the moment of solving the problem,
or they express how much better is one method of solving the problem (or approaching
to it) than another method (or approach) with the same level of available information.
It seems to be quite logical that “the best” approaches resulting to the lowest (for mini-
mization problems) optimal objective function value are usually of the highest computa-
tional demands.
Especially for the multiperiod stochastic problems, we have shown many ways of ap-
proaching to the available information and of utilizing the increase of information in
time. Again, knowledge of the future development of random variables included in the
problem enables us to gain better results. Some differences between optimal objective
function values resulting from different approaches to the problem are also obvious.

4.1.1. Classification of different types of value of information

In our opinion, the above mentioned types of information can be divided into two classes
and one of them can be further divided into two subclasses, as is shown in the chart:

All types of value of information
{

A
B
{

B1
B2

Below we present characterisation of the three classes and a list of information values
which we categorise into each of the classes. Although we will deal with quantities that
were already defined in previous chapters, we add their short characterisations to remind
their definitions and meanings.

Values in the group A can be identified as differences (in the mathematical sense) be-
tween distinct optimal objective function values gained when using different approaches
to a given stochastic problem with the same level of available information in all of the
approaches. To be exact, these values do not represent a value of information. Rather,
they can be interpreted as values of “better approach” to the given problem and of bet-
ter ability to take advantage of the available information. Class A contains the following
values:

Value of stochastic solution (chapter 2.1.6.) is defined as VSS = EEV − RP . The RP is
the optimal objective function value of recourse problem (the nonanticipative one), while
EEV is the true expectation of the objective function value gained when the first stage
decision x = x(ξ̄) is fixed as an optimal solution of the expected value problem, i.e. the
problem where the random elements are replaced by their expectations. High values of
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VSS signalise that it is much better to solve the (stochastic) recourse problem than the
(deterministic) expected value problem, although the former one is more computationally
demanding.

A redefinition of VSS (chap. 2.4.) is given as VSSu = EVRSu − RP , where EVRSu =
Eξz(x̄

u, ξ) with x̄u an optimal solution of a related deterministic problem with fixed
reference scenario ξu. For ξu = ξ̄ it holds that EVRSu = EEV and VSSu = VSS . The
notion of VSSu is useful for comparison to some other values related to pairs subproblems.

For multistage problems, we have defined some specific information values regarding the
approach to the problem and utilisation of the available information (chap. 3.3.).
Value of rolling horizon VRH = EEV − RH expresses how much we can save when
using the rolling horizon approach instead of solving the (deterministic) expected value
problem and using its solution in a real multistage stochastic problem.
Some other values expressing comparison of different approaches to the same multistage
problem can be defined as RP − RH or as RH − DP which can only be defined under
conditions which assure that exactly the same problem is formulated in the rolling horizon
approach and in the dynamic approach.

Class B covers all types of values which are indeed values of information. Each of them is
calculated as a difference between two optimal objective function values, from which the
first one (the greater) is the resulting optimal objective function value gained without
a piece of information and the second one (the lower) is obtained when computing the
same problem when this piece of information is available. The optimal objective function
value obtained without an information on future development of some random variables
is a function of their concrete realization, and so it is necessary to add the expected value
operator E or an other functional F. Hence, we speak about different types of expected
value of information.
The class B can be further divided into subclasses B1 and B2.

The subclass B1 covers expected values of information that has to do with future devel-
opment of random variables included in the given problem. They are represented by the
following values:
Expected value of perfect information (chap. 2.1.6.) is defined as EVPI = RP−WS , where
RP is the optimal objective function value of the recourse problem obtained when solving
it as a nonanticipative problem, andWS is the expected optimal objective function value
of the same problem solved with full information on the future development of random
variables included in the problem. High values of EVPI signalise that it could be worth
doing to find out as much as possible about the development of the random variables.
EVPI is one of the most often referred characteristics.

We have defined expected value of perfect information for chance-constrained problem
(chap. 2.8.1.) as EVPIC = RP − WS , where RP and WS are defined by (2.48) and
(2.49), respectively. The intuition about EVPIC is the same as the one about EVPI .

Having full information on the future development of all random variables leads to an
anticipative wait-and-see formulation of the (two-stage or multistage) approach. We can
then define value of perfect information (chap. 3.3.) as VPI = EEV −WS . In fact, this
information value belongs to the class B1 as well as to the class A because it compares
the result of the wait-and-see approach to the optimal objective function value gained by
the simplest and least computationally demanding EEV approach.
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Definition 2.16 gives a mathematical precision to an intuitive feeling of what is an infor-
mation structure (chap. 2.3.1.). An information structure η provides a partial (or full)
information under which a decision maker gains an optimal objective function value Zη of
the given two-stage program. This Zη is lower or equal to the optimal objective function
value Zn = RP gained without any such information. Value of partial information (given
by η) is then defined as Vη = Zn−Zη. Its properties are quite natural, they are connected
with features of conditional distributions and expectations.
Immediately, value of increasing partial information (from η1 to finer η2) is defined as
Vη1 − Vη2 .

If the “badness” given by costs z(x, ξ) is not equal to the costs, we use a negative-utility
function b (chap. 2.3.3.). The negative-utility of costs z(x, ξ) is then b[z(x, ξ)] which is
also minimized. Instead of EVPI , we define value of information Ṽ as a solution of the
equation Eξ min b[z(x, ξ)+Ṽ ] = minEξb[z(x, ξ)]. High values of Ṽ signalise that the value
of full information on the realization on ξ is high, and vice versa.

Ṽη is value of partial information (given by an information structure η) in a problem
with a strictly increasing convex negative-utility function b (chap. 2.3.4.). The notion
of Ṽη connects logically the value of partial information Vη (defined for problems with
a linear negative-utility function) and value of full information Ṽ (defined for problems
with convex negative-utility function b).

In the modified wait-and-see approach (chap. 2.6.), we set MWS i = Eξz(x
∗
i , ξ), where

x∗i is an optimal first stage solution of the related deterministic problem for one fixed
scenario ξi. Expected value of perfect information in the modified wait-and-see approach
is then defined as MEVPI = mini:ξi∈ΞMWS i−WS . It creates an upper bound on EVPI
and its value shows worth of having full information on the realization of ξ as compared to
the situation when we do not have this information and we also do not solve the problem
as a stochastic one.
MEVPIN (N = 1, . . . , K where K is the number of possible scenarios) is a generaliza-
tion of MEVPI. It is defined as MEVPIN = minS⊆{1,...,K},#S=N MWSS −WS , where
MWSS = Eξz(x

∗
S , ξ), x

∗
S is an optimal first stage decision for the subset S of the set of

all possible scenarios. MEVPIN has a similar interpretation as MEVPI.

When representing the available information via σ-fields (chap. 2.9.), we can define ex-

pected value of partial information given by a σ-field � as V ξ
F0

−V ξ
F
, where � 0 = {∅,Ω}

is the simplest σ-field. Now, V ξ
F0
is an optimal objective function value of a problem

solved under no information � 0 (so that the optimal solution x is � 0-measurable). V ξ
F

is an optimal objective function value of the same problem solved when a partial in-
formation represented by the σ-field � is available (so that the optimal solution x is
� -measurable).
An information value which is complementary to the last mentioned one is risk value of
the information represented by the σ-field � . It is defined as Rξ

F
= V

ξ
F

− V
ξ

F̃
, where ˜�

is the largest σ-field representing the full information.

A generalization of expected and risk value of perfect information (EVPI µ, RVPI %) is
outlined in a remark 2.62.

For multistage problems (chap. 3.3.), special value of perfect information for multistage
problems is defined as EVPIM = RH−WS . It compares optimal objective function values
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resulting from the (anticipative) wait-and-see approach and from the “best” nonanticipa-
tive approach which we have formulated. If the conditions assuring that exactly the same
problem is solved using the dynamic approach and the static approach (which leads to
RP) then we also define its analogy EVPI

M̃
as EVPI

M̃
= DP−WS . Of course, common

expected value of prefect information is defined for the multistage problems as well.
Analogically as in the case of two-stage problems, expected value of perfect information
EVPI can be also defined as EVPI = ZT

n − ZT
p , where the superscripts T denotes the

number of stages of the problem, and the subscripts n and p stand for no-information
structure and perfect information structure, respectively (chap. 3.4.1.).

Value of two-stage relaxation (chap. 3.3.) which is defined as VTR = RP −TP is a value
of information which allows us to relax the nonanticipativity constraints in the second
and other stages of the multistage problem in order to formulate the problem as a two-
stage one.

When we generalize the multistage problem by usage of a convex negative-utility function b
(chap. 3.4.2.), we can define value of perfect information Ṽ as a solution of the equation
(3.10), where the left side of the equation represents the WS approach with additional
costs Ṽ , and the right side represents the RP approach.
In the same situation, an analogy to EVPIM is ṼM which is defined as a solution of the
equation (3.11). The left side of the equation again represents the WS approach with
additional costs ṼM , and the right side represents the RH approach.

When we use the approach to multistage problems as in chapter 3.5., we can define

risk involved in not having full information as Rξ1,...,ξT−1 = V ξ1,...,ξT−1 − V
ξ1,...,ξT−1
C

where V ξ1,...,ξT−1 is an optimal objective function value of a nonanticipative problem

min
x1,...,xT

F[z(x1, ξ1, . . . , ξT−1, xT )], while V
ξ1,...,ξT−1
C is an optimal objective function value

of the same problem with fully anticipative constraints. The idea of this information
value is analogical to the idea of EVPI , but now E is replaced by a functional F and
nonanticipativity is expressed via measurability w.r.t. σ-fields.
For the same problem, we have defined a VPI -process {Rt, t = 1, . . . , T − 1} which is a
sequence of nonnegative elements Rt = Ut − UCt. Here, Ut and UCt is a nonanticipative
and anticipative optimal objective function value, respectively, both conditionally to the
realization of ξt in time t.

Let us focus on subclass B2 now. This subclass covers expected values of information
about a distribution of some random variables. This kind of problem is not in a focus
of the main interest in this work and it is modelled in the way that in fact it could also
belong to B1. Distribution functions of some random variables depend on an unknown
parameter which is again considered as a random variable. Having the information about a
future development of this random parameter, we know exactly the distribution functions
of the random variables in the “first level.” The distribution of these variables is not
known entirely without this information and, intuitively said, the extent of uncertainty
having its source in the “first level” variables is multiplied by the uncertainty arising from
randomness of the parameter. In scenario-based problems this increases the number of
scenarios we have to hedge against. Then, in average, the optimal solution fits worse to
all particular scenarios. It is therefore useful to know completely the distribution of all
random variables (which is usually assumed). The values belonging to the subclass B2
are as follows:

74



EVSI n is an expected value of sample information of a sample of size n (chap. 2.7.).
This information value is defined as a difference between two optimal objective function
values: at first, given problem is solved without full knowledge on the distribution of
the random variable ξ; secondly, the same problem is solved when a supportive sample
of size n from the ξ’s distribution is available. The sample gives a (partial) information
on the true distribution of ξ. Larger samples give more valuable information. When the
sample size n tends to infinity and the limiting sample provides perfect information on
the distribution of ξ, then EVSI∞ is defined as expected value of sample information of
the infinite sample.
For chance-constrained problems with the same complication (i.e., the distribution of ξ
is not fully known and some information on it can be gained by sampling), EVSI Cn and
EVSIC∞ are defined analogically, as well as EVSI JC

n and EVSI JC∞ for problems with joint
chance-constraints (chap. 2.8.2.).

4.1.2. Common features of individual types of value of information

In this work, we have defined many different types of information values. Some of them
can be seen simply as a generalization of some other ones, but another ones are totally
different. In this section, we intend to focus on common features of all of the information
values, or at least most of them.
The first (and for us, the most important) feature which we have proven for all the defined
information values is nonnegativity. This is in accordance with an intuitive feeling that
we are able to solve a given stochastic problem when (full or partial) information is
available at least as well as without this information, no matter whether we speak about
information on distribution of random variables included in the problem or information
on future development of the random variables.
An intuitive interpretability is also very useful property. Usually, it is quite clear from
definition what is the meaning of the defined information value. This is quite important
when deciding what indicates high, low or zero value of the information value. Low values
signalise that it is not worth doing to gain the information (for information value types
from class B), or that it is not worth doing to use the more sophisticated approach to
solving the problem (for information value types from class A).
The information value types which we have categorised into class A are defined as a
difference of two optimal objective function values: the greater one is gained when using
an approach which poorly utilises the available information, while the lower one results
from usage of an approach which utilises the information more effectively. This “better”
approach is usually more computationally demanding. To compute the information value,
we would have to solve the problem with help of the both of the approaches, which is not
reasonable. The information value types from classB are also defined as a difference of two
optimal objective function values: the greater one belongs to a nonanticipative problem
(the decision maker does not use any information which is not available in the time of
making the decision), while the lower one is gained when solving the anticipative problem
(we say that “the decision maker is a clairvoyant” as he uses some information which
cannot be available in the time of making the decision). To compute this information
value, we would have to solve both of the problems again. It is often quite computationally
demanding.
For the reasons given in the preceding paragraph, it is quite useful that we can often found
a lower or/and upper bounds on the information value, which do not require computation
of both the values from the definition of the given information value.
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The last property we would like to point out is that different information values are not
generally comparable. Their meanings can be very different (e.g. EVPI and VSS ) and
hardly any inequalities work between information values from different classes. Therefore,
high (or low) information value of one type usually does not imply high information value
of another type.

In general, we can conclude that the resulting optimal objective function value depends
on formulation of a given problem, which results in existence of information value types
in the class A. It also depends on information that is available in the time of making the
decision, which results in existence of information value types in the class B.
However, it is useful to keep in mind that our results were gained under certain conditions
on the structure of problems—we usually considered linear problems only, sometimes with
additional properties which were to various extent restrictive.
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Corrigendum
Correction of chapter 2.8.1. Value of information in chance-constrained
programming of the diploma thesis ”Očekávaná hodnota informace ve
stochastickém programování.”

Chapter 2.8.1. is devoted to formulation of here-and-now (RP) and wait-and-see (WS )
chance-constrained problems and also to derivation of expected value of perfect infor-
mation (EVPI ) and proof of its nonnegatvity. As there are some mistakes (mainly due
to unsuitable transcriptions), the purpose of this Annex is to correct these mistakes and
to give formulation of the RH and WS problems and EVPI in the chance-constrained
programming in a proper way. For the sake of transparency, the problems will be written
in a more detailed way and the penalization function used in the diploma thesis will be
avoided.
In spite of the incorrect transcriptions, the idea used in the diploma thesis is correct and
all the presented general conclusions are true. Also, Remark 2.55 still holds.

To explain our motivation, consider a simple problem

RP = min
x

z(x)

s.t. x ∈ K,

x ≥ ξ a.s.,

(A.1)

where z is a real convex function bounded on K, K is an interval in R and ξ is a real
scalar random variable with known distribution and support Ξ. The second contraint in
(A.1) gives us that x ≥ ξ a.s., that is P (x ≥ ξ) = 1. If we partly relax this constraint,
we obtain a chance-constrained here-and-now problem

RP = min
x

z(x)

s.t. x ∈ K,

P (x ≥ ξ) ≥ α

(A.2)

for some α ∈ 〈0; 1〉 given. Now the constraint has the meaning that x ≥ ξ ”sufficiently
often” – at least with probability α. For α = 1, problems (A.1) and (A.2) are equivalent.
Consider the chance-constrained problem (A.2), now with ξ with discrete distribution

with P (ξ = ξs) = ps, s = 1, . . . , S,
∑S

s=1 p
s = 1 and ps ≥ 0 ∀s. The problem can be

equivalently written as

RP = min
x

z(x)

s.t. x ∈ K,∑
s:x≥ξs

ps ≥ α.
(A.3)

Using the idea of explicite nonanticipativity constraints, we can rewrite (A.3) as

RP = min
x̂,xs:s=1,...,S

S∑
s=1

ps.z(xs)

s.t. xs ∈ K, s = 1, . . . , S,∑
s:xs≥ξs

ps ≥ α,

xs = x̂, s = 1, . . . , S, x̂ ∈ K.

(A.4)
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As xs = x̂ ∀s, no expectation is in fact needed there.
Related wait-and-see problem is then obtained by relaxation of the nonanticipativity
constraint and by placing the expectation in front of the minimum:

WS =

S∑
s=1

ps. min
xs:s=1,...,S

z(xs)

s.t. xs ∈ K, s = 1, . . . , S,∑
s:xs≥ξs

ps ≥ α.

(A.5)

More generally, problems (A.4) and (A.5) can be formulated for ξ random variable with
a distribution function F as

RP = min
x̂,xξ :ξ∈Ξ

z(xξ)

s.t. xξ ∈ K a.s.,∫
{ξ:xξ≥ξ}

dF (ξ) ≥ α,

xξ = x̂ a.s., x̂ ∈ K.

(A.6)

Now the decision xξ depends on ξ, but the nonanticipativity constraint makes it non-
random again. The related wait-and-see problem is then

WS = Eξ min
xξ :ξ∈Ξ

z(xξ)

s.t. xξ ∈ K a.s.,∫
{ξ:xξ≥ξ}

dF (ξ) ≥ α.

(A.7)

Theorem A.1 Consider the chance-constraint problem (A.6) and its wait-and-see mo-
dification (A.7). Define expected value of perfect information for these problems as

EVPIC = RP −WS .

Then EVPIC is nonnegative.
Proof. Let x∗ be an optimal decision of problem (A.6). Constant function xξ = x∗ a.s.
is a feasible solution of (A.7) and so the optimal solution x∗

ξ
of (A.7) (for any particular

realization of ξ) differs from x∗ only if z(x∗ξ) ≤ z(x∗). Hence, WS ≤ RP . �
It is easy to find an example for WS < RP : consider z(x) = x, K = R, α = 0, 8 and
ξ with a uniform distribution on 〈0; 1〉. Then RP = 0, 8. Function xξ = ξ is a feasible

solution of the related wait-and-see problem since
∫
{ξ:xξ≥ξ} dF (ξ) = 1 ≥ 0, 8 for this

function xξ . Hence, WS ≤ Eξ = 0, 5 < 0, 8 = RP .

Note that a formulation with help of a penalisation function (similar to the one introduced
in the diploma thesis) is not difficult and is usually very useful when solving numerically
a particlar example, not only in the chance-constraint programming.

Prague, 24.11.2006
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