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I am very grateful to Ing. Jaromı́r Horáček, DrSc., for the opportunity to be a
member of his working group and for providing information and practical advices
touching the problem of fluid-structure interaction in human vocal tract. I am
also obliged to Martin Hadrava for a great cooperation in our working group.
He was significantly concerned in the implementation of the proposed methods.
Many thanks to all my colleagues and co-workers, namely Prof. RNDr. V́ıt
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prouděńı i problému pružnosti je provedena pomoćı nespojité Galerkinovy metody
konečných prvk̊u (DGM). Svoji pozornost věnujeme testováńı DGM aplikované
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Introduction

Fluid-structure interaction (FSI) problems are solved in various aerospace, civ-
il and mechanical engineering applications for many years, see e.g. the mono-
graphs [23] and [54] and the proceedings [7] and [8], where various aspects of FSI
modeling and simulation are treated. To the best of our knowledge, mostly the
model of incompressible fluid is used and the numerical techniques for the FSI
simulation are based on the application of the finite volume method or conforming
finite elements. Recently the methods for solution of such problems have also been
quickly developed in the field of biomechanics. We are particularly interested in
biomechanics of voice, see the model of the voice production in Figure 1, where
the methods of numerical simulation of human vocal folds self-oscillation are cur-
rently in an intensive development. These self-oscillations, which originate in the
interaction of airflow coming from the human lungs with the compliant biologi-
cal tissue of the vocal folds, produce primary sound enabling voicing (phonation,
speech, singing), see e.g. [51]. One of the latest papers published by Tian et al.
[63] considers an interaction of incompressible viscous airflow described by the
Navier-Stokes equations with nonlinear elastic structure of the human vocal folds.
For large vibration amplitudes the authors are solving the problem by using the
so-called immersed boundary method for flow and finite element method for the
viscoelastic tissue with large shape changes of the biological structure modeling
the vocal folds. For further models and aspects of the numerical simulation of
vocal folds vibrations we refer to the works [1, 32, 41, 55, 56, 67, 68].

A nonlinear benchmark problem on FSI was proposed in [64], where a beam
vibrating in incompressible laminar flow is modeled as a linear elastic structure
with the geometrical nonlinearity. However, until now not many papers on FSI
deal with dynamics of a nonlinear continuum. Even very few static problems
using the model of nonlinear continuum are analyzed, see e.g. [6]. Especially,
models of biological viscoelastic tissues subjected to large deformations are still
unresolved.

In this thesis we are concerned with the numerical simulation of the inter-
action of compressible flow and a nonlinear elastic structure in 2D using the
discontinuous Galerkin method (DGM). The DGM was originally introduced in
[57] and first analysed in [50] and improved in [45]. The particular issue of non-
linear elasticity, compressible flow and the use of the DGM is the last result of
our employment in FSI problems in recent years. In [48] the problem of the lin-
ear elastic structure and viscous incompressible flow was numerically solved by
the conforming finite element methods. This is followed by the work [40], which
is concerned with FSI problem of compressible flow and linear elastic structure,
where the elasticity problem was solved by conforming finite element method in
space and by the Newmark method in time and the flow problem was solved
by the DGM in space and finite difference method of second order in time. We
continue in this work on the numerical solutions of FSI problems. Mainly, this
work closely relates to [12] using the implementation of the viscous compressible
fluid flow in time-dependent domains. However, unlike the approach in [48] and
[40], both the structure and fluid flow problem are discretized by the DGM and
the nonlinear elasticity problem is included. Furthermore, we discuss the cou-
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Figure 1: Model of the voice production in humans, measurement set-up, see [42].

pling algorithm and the technique how to deal with the large deformation of the
computational domain of the fluid flow problem.

As already mentioned, the problem is formulated in 2D. By the assumption
that the field variable is independent of the third dimension we reduce the com-
plexity of the problem. It makes the implementation simpler and even the cases
with more complicated geometries and finer mesh are computable in the con-
ditions of our research. However we keep the principle of the problem and it
should be possible to extend it in 3D. Especially nowadays by the large offer of
open-source tools for numerical simulation the development of the 3D implemen-
tation of the problem should not be so hard challenge. Except of the technical
difficulties our description of the discretization could be followed for the 3D case
as well.

Since the main interest of the thesis, the FSI problem in 2D, contains many
particular problems, we attend to them successively. We can split them in two
groups. Chapters 1–3 are devoted to the numerical simulation of the elastic struc-
ture with deformations induced by the acting force by the DGM. Both the linear
and nonlinear problems are included. In Chapter 1 we provide an introduction
to the mathematical theory of nonlinear elasticity and formulate the respective
elasticity equations. The final result is the formulation of the dynamic nonlinear
elasticity problem, even though we describe also the static case and the linear
elasticity problem. For all of them we present the use of the DGM for the dis-
cretization in space and the use of finite difference schemes for the discretization in
time. For the description of the deformation of the elastic structure the nonlinear
St. Venant-Kirchhoff and neo-Hookean model is used, see e.g. [10].

In Chapter 2 we introduce the numerical method for the simulation of sta-
tionary and nonstationary elasticity problem considering both linear and non-
linear material characteristics. We employ the discontinuous Galerkin method
(DGM) as high-order piecewise polynomial discontinuous approximation on ar-
bitrary meshes in space. For the time discretization we apply the backward
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difference formula (BDF) method based on finite-difference approximations in
time. We describe the discretization in detail according to its implementation.
Since, we developed the .NET library written in C# for the numerical solution
of the 2D dynamic linear and nonlinear elasticity problem with mixed boundary
conditions.

Chapter 3 is concluding the part of the thesis, which is devoted just to the
elasticity problem. In this chapter we present several numerical experiments
in order to demonstrate the applicability of the developed method. Particularly,
these are numerical experiments for the simulation of the deformation of an elastic
beam, which is inspired by the benchmark described by Turek and Hron, see [64].
First, we are concerned with the numerical solution of the particular elasticity
problems. Further we focus on the choice of the optional penalty coefficient and
the comparison with the standard conform finite element method. Finally, we
present the numerical experiments for the solution of the elasticity problem with
the nonhomogeneous material characteristics.

The other part of the thesis is devoted to the numerical solution of the inter-
action of the compressible viscous flow and the dynamic elasticity problem. In
Chapter 4 we deal with the viscous compressible fluid flow problem in a time-
dependent domain. We introduce the compressible Navier-Stokes equations with
appropriate initial and boundary equations. The compressible Navier-Stokes
equations are formulated in the arbitrary Lagrangian-Eulerian (ALE) form in
order to take the time-dependence of the flow domain into account. The prob-
lem is solved by the DGM using piecewise polynomial approximations of the
exact solution on a finite element mesh without the requirement of the continu-
ity on interfaces between neighboring elements. Several works (e.g. [3, 22, 29])
prove that this method is suitable for numerical approximations of nonlinear
convection-diffusion problems and compressible flow, when the solutions con-
tain discontinuities and/or internal and boundary layers. DGM was employed
in many papers for the discretization of compressible fluid flow problems, see,
e.g., [3, 4, 5, 16, 19, 20, 22, 24, 25, 29, 37, 38, 39, 46, 47]. For the time dis-
cretization we employ the backward difference formula (BDF) method or the
full space-time discontinuos Galerkin method (STDGM). The BDF method is a
suitable high order time discretization method, which is unconditionally stable.
In the later approach the DGM is employed for the discretization in space and
also in time. Using this numerical scheme we obtain high order results both in
space and in time. The algorithmization of the problem is briefly described in the
end of this chapter. It is corresponding to the C library developed by Česenek,
see [11], which was embedded in the .NET library for the numerical solution of
the elasticity problem and used for the numerical solution of the fluid-structure
interaction (FSI) problem.

Chapter 5 is devoted to the numerical solution of the FSI problem, which is
the main result of the thesis. At first we define the coupled problem of the com-
pressible viscous flow and the linear or nonlinear elasticity problem. The coupling
is realized via transmission conditions, which are implemented in the numerical
process with the aid of a strong coupling algorithm. The coupling algorithm is
described in detail and in particular we explain, how are the transmission condi-
tions fulfilled and how is derived the ALE mapping. According to the proposed
algorithmization the described method was implemented. We modified the C li-
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brary for the numerical solution of the fluid flow problem and it was coupled with
the numerical solution of the elasticity problem. The developed method can be
applied to problems of biomechanics, aerodynamics and aerospace engineering.
As already mentioned our work is particularly motivated by the simulation of
airflow in a simplified model of human airways created by the trachea, a glottal
region with vibrating vocal folds and the vocal tract channel. The applicability
and robustness with respect to low Mach number flows and a suitable nonlinear
elastic structure of the developed method are shown on the example representing
approximate human vocal folds region with a realistic model of an elastic part.
Except of the numerical simulation of vocal folds in more complicated domain,
we also present the results obtained in a simplified computational domain.

Chapter 6 is the last chapter of the thesis. It contains some technical details
of the implementation and few remaining numerical topics as mesh generation
and numerical integration.
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1. Nonlinear elasticity problem

In this chapter we provide an introduction to the mathematical theory of non-
linear elasticity and formulate the respective elasticity equations. The general
problem in nonlinear elasticity is to find the equilibrium of an elastic body sub-
jected to applied forces. The equations of nonlinear elasticity are based on the
relationship between stress and strain. Therefore first we introduce the basic con-
cepts of stress and strain and other basic quantities in the elasticity theory. Stress
is defined as the force applied to a unit area of a deformable body, while strain
is the dimensionless measure of the deformation the body has undergone. Stress
and strain are second order tensor functions of space and the constitutive law for
materials describes the complex relationship between them. Our goal is to assign
the dynamic elasticity problem and also the equations of static equilibrium of an
elastic body. The elasticity theory contains the nonlinear model of elasticity and
the classical linear model of elasticity. We attend to both of them, but partly in
different sections.

Section 1.2 is devoted to the definition, characteristics and measures of a map-
ping describing the deformation of an elastic body. Accordingly the definition of
strain tensor is included. Further we continue in the Section 1.3 with the formula-
tion of the quantities used in dynamic elasticity and finally with the formulation
of the nonlinear elastic problem. We obtain the definition of the governing elas-
ticity equations including the initial and boundary conditions. In order to solve
the nonlinear elasticity problem, we need to add in Section 1.4 the relationship
between stress and strain. One of our modelling assumptions is the hyperelastic-
ity. We define the strain-energy function, which is a function of strain only, and
from which stress is computed. Tissues for which a strain-energy function exists
are known as hyperelastic. The last Section 1.5 of this chapter is concerned with
the linear elasticity. The linear and nonlinear problem described in this chapter
needs to be solved by suitable numerical technique. In Chapter 2 we discuss the
numerical solution of the elasticity problem by the discontinuous Galerkin finite
element method (DGM).

We formulate the problem in 2D. It can be extended to the 3D theory of elas-
ticity following [10, 53]. By the assumption that the field variable is independent
of the third dimension, we reduce the complexity of the problem. However we
keep the principle of the problem. The basic concept of nonlinear elasticity is
mainly taken from the already mentioned books [10, 53]. Nevertheless just the
parts needed for the formulation of the initial-boundary-value problem have been
described. Finally let us note that we distinguish the notation used for elasticity
problems by upper index b (body).
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1.1 Preliminaries

The space of real n-vectors is denoted by Rn, with canonical basis e1, . . . , en. The
vector product of two vectors x and y is defined by the formula

x× y = ‖x‖ ‖y‖ sinθn, (1.1)

where θ is the angle between x and y in the plane containing them, ‖.‖ denotes
the magnitude of a vector, and n is the unit vector perpendicular to the plane
containing x and y in the direction given by the right-hand rule.

The space of real m× n-matrices is denoted by Mm×n and Mn := Mn×n. The
identity matrix of order n is denoted by I. Further let us define the set of all real
square matrices of order n whose determinant is positive

M
n
+ := {F ∈ M

n; detF > 0} , (1.2)

the set of all orthogonal matrices of order n

O
n :=

{

P ∈ M
n;PP T = P TP = I

}

, (1.3)

and the set of all rotations in R
n

O
n
+ := {P ∈ O

n; detF > 0} = {P ∈ O
n; detF = 1} . (1.4)

ForA ∈ Mn and B ∈ Mn we set A : B =
∑n

i,j=1AijBij = trATB, which denotes
the matrix inner product in M

n.
Let us consider the space Mn equipped with the matrix inner product A : B.

If a function f : Ω ⊂ Mn → R is differentiable at A ∈ Ω, we call its gradient the
matrix

∂f

∂A
(A) :=







∂f
∂A11

(A) . . . ∂f
∂A1n

(A)
...

. . .
...

∂f
∂An1

(A) . . . ∂f
∂Ann

(A)






∈ M

n, (1.5)

whose elements are the partial derivatives of the mapping f .
LetA = (Aij)

n
i,j=1 be a square matrix of order n. For each pair (i, j) of indices,

let A′

ij be the matrix of order (n− 1) obtained by deleting the i-th row and the
j-th column in the matrix A. The scalar

dij := (−1)i+j detA′

ij (1.6)

is called the (i, j) cofactor of the matrix A, and the matrix

CofA := (dij)
n
i,j=1 (1.7)

is called the cofactor matrix of the matrix A. It holds that I detA = A(CofA)T .
Hence, if A is invertible, then

CofA = (detA)A−T . (1.8)

In the case n = 2 one has

CofA =

(

a22 −a21
−a12 a11

)

. (1.9)
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Figure 1.1: Deformation of the body represented by the closure of a domain Ωb

at time t.

1.2 Deformation of an elastic body

Generally a body B ⊂ E is a set of points, which are called material points or
particles, occupying a region in some Euclidean space E . A configuration of B is
a C2-diffeomorphism ϕ : B → E which takes particles of B to the places they
occupy in E . We write ϕ(B) = {ϕ(x), x ∈ B} for the set of places occupied by
the particles of B. A motion of B is a one-parameter family of configurations
ϕt : B → E , where the subscript identifies the time t as parameter. In this work
let be E = R2.

Let us consider a body represented by the closure of a domain Ωb ⊂ R2 and a
time interval [0, T ], where T > 0. We identify a fixed configuration ϕ0, that the
body occupies at time t = 0. Configuration ϕ0 is called reference configuration
and we denote Ωb

0 = ϕ0(Ω
b), which is the region of R2 occupied by Ωb in this

configuration. We can write

x = ϕ0(x), x = ϕ−1
0 (x), (1.10)

where x is the place of the particle x in configuration ϕ0. We have identified
through (1.10) particle x with its place x in the configuration ϕ0 and therefore
we can make no distinction between x and x. The coordinates x1, x2 of every
point x ∈ Ωb

0 are known as Lagrangian coordinates.
The body is deformed via mapping

ϕ : Ω
b
× [0, T ] → R

2, (1.11)

which is smooth enough and injective except possibly on the boundary of the
domain Ωb. It is a mapping from Ωb

0 to the region Ωb
t = ϕt(Ω

b) of R2 occupied by
Ωb in the actual configuration. For any fixed t this mapping is called a deformation
of the reference configuration taking a material point x to a point ϕ(x, t) in space.
We write

xϕ = ϕt(x) = ϕ(x, t) (1.12)

for the place of the particle x at time t. Let us denote the coordinates of the
mapped position xϕ as (xϕ1 , x

ϕ
2 ). They are known as Eulerian coordinates. It

9



is important to distinguish between the Lagrangian coordinate system and the
Eulerian coordinate system. Because of the assumption that the reference con-
figuration is known and the deformed configuration needs to be determined, we
want to formulate the elasticity problem in Lagrangian coordinates. (The Eule-
rian approach is usually preferred in fluid dynamics.)

The deformation mapping can be expressed by the use of a displacement

function u : Ω
b

0 × [0, T ] → R2 as

ϕ(x, t) = x+ u(x, t). (1.13)

For the analysis of the deformation from reference configuration Ωb
0 to actual

configuration Ωb
t we do not require knowledge of the motion so that the time

dependence in (1.12) is not needed. We do not consider the dependence on t and
replace (1.12) by

xϕ = ϕ(x). (1.14)

By F : Ωb → M2
+,

F = ∇ϕ(x), (1.15)

we denote the deformation gradient, i.e. F is the Jacobian matrix of the defor-
mation mapping ϕ. Further,

J = detF > 0 (1.16)

denotes the Jacobian of the deformation. It should be positive, because the
orientation of line elements should not change during deformation. We say that
the deformation is orientation preserving. By δij we denote the Kronecker symbol
and set I = (δij)

2
i,j=1. If we write x = (x1, x2)

T and u(x) = (u1(x), u2(x))
T , then

the deformation gradient can be expressed as

F = (Fij)
2
i,j=1, Fij = δij +

∂ui
∂xj

, i, j = 1, 2. (1.17)

The deformation gradient F can be factorised as F = RU , where R ∈ O
2
+

representing the rotation, and U ∈ M2
+ is a tensor representing stretching. R

is an orthogonal tensor and U is a symmetric positive-definite tensor. Later we
shall introduce different elastic materials and this is usually done by the use of
the eigenvalues of U , which are strictly positive.

We say the deformation is homogeneous, if F does not depend on x. It can
be described by the affine transformation

xϕ = Fx+ c, (1.18)

where c is the translation. If, on the other hand, F depends on x, then the
deformation is called nonhomogeneous.
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1.2.1 Strain tensor

Further we shall define the elasticity strain tensor. The motivation for the defini-
tion of the strain is that we want to ignore the rotational part of the deformation.
First let us introduce the right Cauchy-Green tensor

C = F TF . (1.19)

Seeing that C = UTRTRU = UTU , C is apparently independent of rotation. If
we consider rigid deformation only, C is equal to I. This leads us to the definition
of the following measure of strain, which vanishes when the material is unstrained.
We define the Green strain tensor (or also just strain tensor) E ∈ R2×2 by

E =
1

2

(

F TF − I
)

=
1

2
(C − I) , E = (Eij)

2
i,j=1. (1.20)

The strain tensor E = E(u) can be written in terms of the displacement
function u with the aid of (1.17). We have

(

F TF
)

ij
=

2
∑

k=1

F T
ikFkj =

2
∑

k=1

FkiFkj =

2
∑

k=1

(

δki +
∂uk
∂xi

)(

δkj +
∂uk
∂xj

)

=

2
∑

k=1

(

δkiδkj + δki
∂uk
∂xj

+ δkj
∂uk
∂xi

+
∂uk
∂xi

∂uk
∂xj

)

= δij +
∂ui
∂xj

+
∂uj
∂xi

+

2
∑

k=1

∂uk
∂xi

∂uk
∂xj

,

and hence

Eij =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

+
1

2

2
∑

k=1

∂uk
∂xi

∂uk
∂xj

. (1.21)

The trace of the strain tensor E(u) can be expressed in the form

trE(u) =

2
∑

l=1

Ell =

2
∑

l=1

∂ul
∂xl

+
1

2

2
∑

l=1

2
∑

k=1

(

∂uk
∂xl

)2

.

1.2.2 Motion and velocity

Let us include again the time dependence of the deformation as expressed in
(1.12), i.e.

xϕ = ϕ(x, t). (1.22)

The velocity of the material particle vb(x, t) is defined by

vb(x, t) =
∂ϕ

∂t
(x, t) =

∂u

∂t
(x, t), (1.23)

and the acceleration ab(x, t) by

ab(x, t) =
∂2ϕ

∂t2
(x, t) =

∂2u

∂t2
(x, t). (1.24)

11



1.3 Formulation of the nonlinear elasticity prob-

lem

In Section 1.2 we obtained the definition of the deformation of an elastic body
and its measure of strain. We can now derive the equation of motion for dynamic
problems and equation of equilibrium in static problems using nonlinear elasticity.
First we introduce the mass density and applied forces in order to formulate the
equilibrium equations over the deformed body. We define the stress tensor and
formulate the Cauchy theorem. From the principle of conservation of momentum
we can derive the governing equations of nonlinear elasticity. Finally we shall
specify the initial and boundary conditions to obtain the complete problem.

1.3.1 Mass density

For any arbitrary body Ωb by m(Ωb) ≥ 0 we shall denote the mass of the body
Ωb. By the principle of conservation of mass

d

dt
m(Ωb) = 0. (1.25)

This means that m(Ωb) is independent of the configuration Ωb
t occupied by Ωb at

time t. We call ρbt mass density of the material of the body Ωb in the configuration
Ωb

t . It is a scalar field defined over Ωb
t at time t such that

m(Ωb) =

∫

Ωb
t

ρbt(x
ϕ, t) dxϕ. (1.26)

It is assumed that ρbt is smooth and non-negative. Let us denote by ρb the mass
density of Ωb in the reference configuration Ωb

0. It can be shown that the densities
ρb and ρbt are related by the local form of the principle of the conservation of mass

ρbt = J−1ρb (1.27)

and hence
detF = J = ρb/ρbt . (1.28)

1.3.2 Applied forces

We are concerned with the motion of deforming bodies and we regard to external
forces on a given body. We refer to such forces as applied forces.

We consider two types of applied forces. The applied body (volume) forces

∫

Ωb
t

ρbt(x
ϕ)bϕ(xϕ) dxϕ (1.29)

are defined through the density bϕ : Ωb
t → R2 per unit of mass in the actual

configuration. Example of a body force is gravity, in which bϕ is acceleration due
to gravity. We define also fϕ : Ωb

t → R2 by the relation

fϕ = ρbtb
ϕ. (1.30)

12



The applied surface forces
∫

Γb
Nt

gϕ(xϕ) dSϕ (1.31)

are defined by the surface traction gϕ : Γb
Nt → R

2 on an element dSϕ of a subset
Γb
Nt ⊂ ∂Ωb

t . Then gϕ is the density per unit length in the actual configuration.
Surface traction can be split into a normal and tangential component respectively,
acting like a pressure force and friction respectively.

1.3.3 Stress tensor, Cauchy theorem

Stress vector tϕ is defined as the surface force per unit area on the vector area
element.

By the fundamental principles of Euler and Cauchy it is assumed that the
stress vector tϕ at a point xϕ depends on the surface only through the unit
normal nϕ to the considered surface at xϕ. Hence we can write tϕ as tϕ(xϕ,nϕ).
For any subdomain Bϕ ⊂ Ωb

t the balance of linear momentum is written as

∫

Bϕ

ρbt(x
ϕ, t)fϕ(xϕ, t) dxϕ+

∫

∂Bϕ

tϕ(xϕ,nϕ) dSϕ =

∫

Bϕ

ρbt(x
ϕ, t)

∂

∂t
vϕ(xϕ, t) dxϕ

(1.32)
and the balance of rotational momentum

∫

Bϕ

ρbt(x
ϕ, t)xϕ × fϕ(xϕ, t) dxϕ +

∫

∂Bϕ

xϕ × tϕ(xϕ,nϕ) dSϕ (1.33)

=

∫

Bϕ

ρbt(x
ϕ, t)xϕ ×

∂

∂t
vϕ(xϕ, t) dxϕ, (1.34)

where vϕ(xϕ, t) = vb(x, t) is the velocity of the particle which occupies the place
xϕ at time t.

We now formulate the theorem about linear dependence of tϕ on the normal
vector nϕ.

Theorem 1. (Cauchy Theorem) Assume that the applied body force density

fϕ : Ω
b

t → R2 is continuous, and that the Cauchy stress vector field

tϕ : (xϕ,n) ∈ Ω
b

t × S1 → tϕ(xϕ,n) ∈ R
2

is continuously differentiable with respect to the variable xϕ ∈ Ω
b

t for each n ∈ S1

and continuous with respect to the variable n ∈ S1 for each xϕ ∈ Ω
b

t . Then
the axioms of force and moment balance imply that there exists a continuously
differentiable tensor field

σb : xϕ ∈ Ω
b

t → σb(xϕ) ∈ M
2,

such that the Cauchy stress vector satisfies the relation

tϕ(xϕ,n) = σb(xϕ)n ∀xϕ ∈ Ω
b

t , ∀n ∈ S1, (1.35)
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where for σb we have

−divϕσb(xϕ) = fϕ(xϕ) ∀xϕ ∈ Ωb
t , (1.36)

σb(xϕ) = σb(xϕ)T ∀xϕ ∈ Ωb
t , (1.37)

σb(xϕ)nϕ = gϕ(xϕ) ∀xϕ ∈ Γb
Nt. (1.38)

Here nϕ is the unit outer normal vector along Γb
Nt.

Proof. See [10].

Tensor σb is a second-order tensor independent of n called the Cauchy stress
tensor. The equation (1.36) is the equilibrium equation.

Taking into account the time-dependence from the equation of linear momen-
tum balance (1.32) using (1.35) and by the application of the divergence theorem
to the surface integral we obtain
∫

Bϕ

(

ρbt(x
ϕ, t)fϕ(xϕ, t) + divϕσϕ(xϕ, t)− ρbt(x

ϕ, t)
∂

∂t
vϕ(xϕ, t)

)

dxϕ = 0.

(1.39)
This holds for arbitrary body Bϕ. We assume ρbt , f

ϕ and ∂
∂t
vϕ are continuous

and σϕ is once continuously differentiable. Hence, it follows that

ρbt(x
ϕ, t)fϕ(xϕ, t) + divϕσϕ(xϕ, t) (1.40)

= ρbt(x
ϕ, t)

∂

∂t
vϕ(xϕ, t) ∀xϕ ∈ Ωb

t , t ∈ (0, T ), (1.41)

known as Cauchy’s first law of motion.

1.3.4 Lagrangian equation of motion

The Cauchy stress tensor is an Eulerian tensor field and it represents the force
measured per unit deformed area acting on the deformed body. Although it
is the real measure of stress, it is not the most appropriate tensor to use by the
formulation of the nonlinear elasticity problems. The problem is that we generally
do not know the area in the deformed configuration. Therefore we define also
the Piola-Kirchhoff stress tensors, which is mathematically convenient. First we
introduce the nominal stress tensor

N(x) = J(x) (F (x))−1
σb(xϕ), xϕ = ϕ(x) (1.42)

and its transpose
P =NT = JσbTF−T (1.43)

which is called first Piola-Kirchhoff stress tensor. First Piola-Kirchhoff stress
tensor P represents the force measured per unit undeformed area acting on the
deformed body. Because the first Piola-Kirchhoff stress tensor is in general not
symmetric, the second Piola-Kirchhoff stress tensor S is defined by

S(x) = F (x)−1P (x) = J(x) (F (x))−1
σb(xϕ) (F (x))−T . (1.44)

S is a Lagrangian tensor field representing the force measured per unit unde-
fromed area acting on a surface in the undeformed body. It is symmetric if (and
only if) the Cauchy stress tensor is symmetric.
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Next we transform the applied force densities from Ωb
t to Ωb. The density of

body forces f : Ωb → R2 in the reference configuration is given by

f (x) = fϕ(xϕ) detF (x), xϕ = ϕ(x), (1.45)

where fϕ is defined in Section 1.3.2. For any subdomain B ⊂ Ωb and Bϕ = ϕ(B)
it holds that

∫

B
f(x) dx =

∫

Bϕ f
ϕ(xϕ) dxϕ. Similarly we transform the traction

force from Ωb
t to Ωb. The density of traction force g : Γb

N → R2 in the reference
configuration is given by

gN(x) = g
ϕ(xϕ) |Cof(F )n(x)| , xϕ = ϕ(x),x ∈ Γb

N , (1.46)

where gϕ is defined in Section 1.3.2. For any subdomain B ⊂ Ωb and Bϕ = ϕ(B)
it holds that

∫

∂B
gN (x) dS =

∫

∂Bϕ g
ϕ(xϕ) dSϕ.

The linear momentum balance equation (1.32) may be written in terms of
integrals over any subdomain B ⊂ Ωb and its boundary ∂B. We have

∫

B

ρb(x, t)f(x, t) dx+

∫

∂B

P (x, t)n dS =

∫

B

ρb(x, t)
∂2

∂t2
ϕ(x, t) dx, (1.47)

where P is the first Piola-Kirchhoff tensor and f (x, t) = fϕ(xϕ, t), where xϕ =
ϕ(x, t). As in Section 1.3.3 we get

ρb(x, t)f(x, t) + divP (x, t) = ρb(x, t)
∂2

∂t2
ϕ(x, t) ∀x ∈ Ωb, t ∈ (0, T ), (1.48)

or we can write as an equation for the displacement u

ρb(x, t)f (x, t) + divP (x, t) = ρb(x, t)
∂2

∂t2
u(x, t) ∀x ∈ Ωb, t ∈ (0, T ). (1.49)

1.3.5 Nonlinear elasticity problem

In order to formulate the initial boundary value problem, the differential equations
for the motion need to be supplemented by boundary and initial conditions for
the displacement u(x, t).

We consider that the initial condition is given by the initial displacement u0

and initial deformation velocity vb0. In most of cases they are both set to zero,
because we are usually considering some fixed undeformed initial state of the
body.

The boundary conditions are of two different types. We usually solve problems
which involve both of them. Therefore we consider that the boundary of the
domain Ωb consists of two disjoint parts Γb

D and Γb
N , see an example in Figure

1.2.
The first boundary condition is called Dirichlet or displacement boundary con-

dition and we call Γb
D as the Dirichlet part of the boundary. On the Dirichlet part

of the boundary the current position xϕ = ϕ(x, t) is prescribed. Equivalently it
may be specified by the displacement u = xϕ − x. Hence we define the bound-
ary displacement function uD : Γb

D × [0, T ] → R2 on Γb
D. Typically we consider

that uD is zero, which means that the body is fixed on the Dirichlet part of the
boundary.
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Figure 1.2: Example of the domain Ωb with the Dirichlet part Γb
D and the Neu-

mann part Γb
N .

Other type of boundary conditions is a traction boundary condition also called
as Neumann boundary condition. Accordingly we denote the Neumann part of
the boundary as Γb

N . The Neumann boundary condition is given by the surface
traction gϕ as was defined in Section 1.3.2, which is transformed in the reference
configuration as gN defined in (1.46).

In applications to real body motion the dissipative forces are often needed to
be taken into account. Therefore to equations (1.48) we add the term

CMρ
b∂u

∂t
, (1.50)

where CM is a real constant. This term represents the dissipative structural
damping.

Definition 1. (Dynamic nonlinear elasticity) Let us consider a bounded domain
Ωb ⊂ R2, with Lipschitz boundary ∂Ωb and a time interval [0, T ] with T > 0.
We assume that the boundary of the domain Ωb consists of two disjoint parts,

namely a Dirichlet part Γb
D and a Neumann part Γb

N . Thus ∂Ω
b = Γ

b

D ∪ Γ
b

N and
Γb
D ∩ Γb

N = ∅. We define the solution of dynamic nonlinear elasticity problem as
a displacement function u : Ωb × [0, T ] → R2 such that

ρb
∂2u

∂t2
+ CMρ

b∂u

∂t
− divP = f in Ωb × [0, T ], (1.51)

u = uD in Γb
D × [0, T ], (1.52)

P · n = gN in Γb
N × [0, T ], (1.53)

u(·, 0) = u0,
∂u

∂t
(·, 0) = vb

0 in Ωb, (1.54)

where f : Ωb × [0, T ] → R2 is the density of the acting body force, gN : Γb
N ×

[0, T ] → R2 is the surface traction acting on the Neumann part of the boundary
Γb
N , uD : Γb

D × [0, T ] → R2 is the prescribed displacement on the Dirichlet part
of the boundary Γb

D, u0 : Ωb → R
2 is the initial displacement, vb

0 : Ωb → R
2 is
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the initial deformation velocity, n is the unit outer normal, ρb > 0 is the material
density and CM ≥ 0 is the damping coefficient. Finally, P : Ωb → M2 is the first
Piola-Kirchhoff stress tensor defined in Section 1.3.4 and specified by the type of
the material.

In Section 1.4 are stated the examples of various types of materials used in
the implementation. Time-independent steady-state equations can be obtained
from dynamic equations by setting all time derivatives to zero.

Definition 2. (Static nonlinear elasticity) Let us consider a domain Ωb ⊂ R2

defined as in Definition 1. We define the solution of static nonlinear elasticity
problem as a displacement function u : Ωb → R2 such that

−divP = f in Ωb, (1.55)

u = uD in Γb
D, (1.56)

P · n = gN in Γb
N , (1.57)

where f : Ωb → R2, uD : Γb
D → R2, gN : Γb

N → R2, P : Ωb → M2 and n have the
same interpretation as in Definition 1.

1.4 Hyperelastic materials

Equations (1.51)–(1.54) and (1.55)–(1.57) are completed by the use of a consti-
tutive law describing the type of the material. We assume hyperelastic materials
representing tissues for which a strain-energy function exists. Therefore, at first
we need to define the strain-energy function.

1.4.1 Energy

The energy that is stored in the deformed body is referred to as strain energy
(see [10]). We assume that the strain energy is determined by the deforma-
tion mapping of the reference configuration and therefore we use the notation
EW (ϕ(x)). We shall only deal with the so-called hyperelastic materials where
the first Piola-Kirchhoff stress tensor P has a potential W =W (F ) called stored
energy density, i.e.

P (F ) =
∂W (F )

∂F
. (1.58)

The notation ∂/∂F has been introduced in (1.5). We obtain the strain energy
of the deformed body by integrating the energy density function over the entire
reference domain Ωb:

EW (ϕ) =

∫

Ωb

W (∇ϕ(x)) dx. (1.59)

By specifying the formula for W (F ) we define the properties of the modelled
material. (For details, see [10].)

Examples of hyperelastic materials are also St. Venant-Kirchhoff material and
neo-Hookean material, which are used in our considerations and numerical simu-
lations.
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1.4.2 St. Venant-Kirchhoff material

The simplest among the nonlinear models is the St. Venant-Kirchhoff material.
For its simplicity it is popular in computations. This model is also related to the
linear elasticity model by using the nonlinear Green strain tensor E instead of
the linearized strain tensor e (see [10]). For the linear elasticity problem we refer
to Section 1.5. The energy density function is defined as

W (F ) =
λ

2
tr2(E) + µE : E, (1.60)

where λ and µ are the Lamé parameters. From (1.58) we get the first Piola-
Kirchhoff stress tensor in the form

P (F ) = FS, (1.61)

where
S = λtr(E)I + 2µE (1.62)

is the second Piola-Kirchhoff stress tensor. Writing S(u) = (Sij)
2
i,j=1, we get

Sij = λ

(

2
∑

l=1

∂ul
∂xl

+
1

2

2
∑

l=1

2
∑

k=1

(

∂uk
∂xl

)2
)

δij + µ

(

∂ui
∂xj

+
∂uj
∂xi

+

2
∑

k=1

∂uk
∂xi

∂uk
∂xj

)

.

(1.63)

1.4.3 Neo-Hookean material

As another example of the popular forms of material we take neo-Hookean ma-
terial, which is given by the energy density function

W (F ) =
µ

2

(

tr(F TF )− 3
)

− µ log(detF ) +
λ

2
log2(detF ). (1.64)

The corresponding first Piola-Kirchhoff stress tensor has the form

P (F ) = µ(F − F−T ) + λ log(detF )F−T (1.65)

or equivalently using (1.8)

P (F ) = µF + (λ log(detF )− µ)F−T = µF +
λ log(detF )− µ

detF
CofF . (1.66)

1.5 Linear elasticity

The linear elasticity model is the simplest elasticity model obtained by the as-
sumption of small deformations. By this assumption the second term in (1.21) is
neglected and the linear approximation of E(u) (linear with respect to the gradi-
ent F ) is denoted by e(u) and called the small strain tensor, or the infinitesimal
strain tensor. Then e(u) = (eij)

2
i,j=1 and

eij =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

. (1.67)
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Let us assume that the material is isotropic. In terms of the energy density
function the linear elasticity material is defined as

W (F ) =
λ

2
tr2(e) + µe : e, (1.68)

where λ and µ are the Lamé parameters. They are related to the material prop-
erties of Young’s modulus Eb and Poisson’s ratio νb, which have a physical inter-
pretation and are often used in experiments:

µ =
Eb

2(1 + νb)
, λ =

Ebνb

(1 + νb)(1− 2νb)
. (1.69)

From (1.58) we get the first Piola-Kirchhoff stress tensor in the form

P (F ) = λtr(e)I + 2µe. (1.70)

In linear elasticity, in which the displacement gradients are considered to be small
compared to unity, and the nonlinear or second-order terms of the the strain
tensor are neglected, the Cauchy and Piola–Kirchhoff tensors are identical. We
can write

σb(F ) = P (F ) = λtr(e)I + 2µe. (1.71)

Let us note that linear elasticity is not a special case of nonlinear elasticity,
but it should be considered as an approximation of model of elasticity that is valid
for small displacements. On the basis of the above considerations, we are able to
obtain partial differential equations describing the dynamic and static elasticity.

Definition 3. (Dynamic linear elasticity) Let us consider a domain Ωb ⊂ R2 and
an interval [0, T ] defined as in Definition 1. We define the solution of dynamic
linear elasticity problem as a displacement function u : Ωb × [0, T ] → R2 such
that

ρb
∂2u

∂t2
+ CMρ

b∂u

∂t
− div σb = f in Ωb × [0, T ], (1.72)

u = uD in Γb
D × [0, T ], (1.73)

σb · n = gN in Γb
N × [0, T ], (1.74)

u(·, 0) = u0,
∂u

∂t
(·, 0) = vb0 in Ωb, (1.75)

where f , uD, gN , u0, v
b
0, ρ

b, n, CM , have the same interpretation as in Definition
1 and σb is given by (1.71).

Definition 4. (Static linear elasticity) Let us consider a domain Ωb ⊂ R2 defined
as in Definition 1. We define the solution of the static linear elasticity problem
as a displacement function u : Ωb → R2 such that

−div σb = f in Ωb, (1.76)

u = uD in Γb
D, (1.77)

σb · n = gN in Γb
N , (1.78)

where f , uD, gN , ρ
b, n have the same interpretation as in Definition 2 and σb is

given by (1.71).
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In this chapter we defined the linear and nonlinear elasticity problem. In order
to solve them we need to employ a suitable numerical scheme. In the next chapter
we introduce the discontinuous Galerkin finite element method for solving these
elasticity problems.
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2. Discretization of the elasticity

problem by the DGM

Our goal is to develop a sufficiently robust, efficient and accurate numerical
method for the simulation of stationary and nonstationary elasticity problem
considering both linear and nonlinear material characteristics. We employ the
discontinuous Galerkin method (DGM) which has already become popular nu-
merical technique for the solution of the compressible Navier-Stokes equations.
In Chapter 4 the use of the DGM for the Navier-Stokes equations is described in
detail. Our very good experience with the DGM for the Navier-Stokes equations
led us to the idea to choose it also as a discretization method for the elasticity
problem. For example the DGM is successfully employed for the elasticity equa-
tions in [59, 62]. The DGM is particularly suitable for the numerical solution of
hyperbolic conservation laws with discontinuous solutions. This is the motivation
for the application of the DGM to dynamic elasticity, where such solution can
also appear in some cases. Namely, the nonlinear dynamic elasticity problem is
described by nonlinear hyperbolic systems.

In our case the DGM is used as high-order piecewise polynomial discontinuous
approximation on arbitrary meshes in space. For the time discretization we apply
the backward difference formula (BDF) method. The time discretization could
also be carried out by a discontinuous approximation in order to get the space-
time discontinuous Galerkin method. It is another technique how to construct
a method of high-order accuracy both in space and timediscontinu. The use
of this technique for the elasticity problem is briefly described in [36] and [49].
However, we use a backward difference formula method based on finite-difference
approximations in time. It is a fully implicit scheme without any restriction of
the size of the time step.

The complete discretization leads to a nonlinear algebraic system and in the
case of linear elasticity to a linear algebraic system, which should be solved by a
suitable solver. In the case of the nonlinear system we apply the iterative Newton
method. Then the final linear algebraic system can be solved by a direct solver as
Parallel Sparse Direct Solver (PARDISO) and Unsymmetric MultiFrontal method
(UMFPACK) or by the use of iterative methods as Bi-Conjugate Gradient Stabi-
lized method (BiCGStab) and Generalized Minimal Residual method (GMRES).

First in this chapter the discretization in space of the linear elasticity problem
and also of the nonlinear elasticity problem is described. Further we introduce the
discretization in time by the BDF method. In the end the derivatives of the first
Piola-Kirchhoff tensor are expressed in detail. They are needed for the solution
of the nonlinear elasticity problem by the Newton method. On the basis of the
theory of the DGM we developed a .NET library written in C# for the numerical
solution of the 2D dynamic linear and nonlinear elasticity problem with mixed
boundary conditions. The developed library supports several time discretization
techniques, built on top of the DG discretization space.
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Figure 2.1: Example of a triangulation T b
h of a domain Ωb.

2.1 Preliminaries

Here we introduce the basic concepts of the discontinuous Galerkin method as
the definition of triangulation, finite-dimensional spaces and basis functions.

2.1.1 Triangulation

Let Ωb
h be a polygonal approximation of the domain Ωb. On the closure Ω

b

h of the
domain Ωb

h we construct a triangulation T b
h formed by a finite number of closed

triangles K with mutually disjoint interiors such that

Ω
b

h =
⋃

K∈T b
h

K. (2.1)

We do not require the standard conforming properties from the finite element
method, introduced e.g. in [10]. As we see, in the finite element mesh we admit
the so-called hanging nodes. However, in the current implementation hanging
nodes are not supported. In general, the discontinuous Galerkin method can
handle with more general elements as quadrilaterals and convex or even noncon-
vex star-shaped polygons. In our further considerations we shall use the following
notation. By ∂K we denote the boundary of an element K ∈ T b

h and set

hK = diam(K), h = maxK∈T b
h
hK , (2.2)

where diam(K) is the diameter of the element K. By ρK we denote the radius
of the largest circle inscribed into K and by |K| we denote the area of K. Let
K, K ′ ∈ T b

h . We say that K and K ′ are neighbouring elements (or simply
neighbours), if the set ∂K ∩ ∂K ′ has positive onedimensional measure. We say
that Γ ⊂ K is a face of K, if it is a maximal connected open subset of either
∂K ∩ ∂K ′, where K ′ is a neighbour of K, or ∂K ∩ ∂Γb

D or ∂K ∩ ∂Γb
N . The

symbol |Γ| denotes the length of Γ. By Fh we denote the system of all faces of
all elements K ∈ T b

h . Further, we define the set of all boundary faces by

FB
h =

{

Γ ∈ Fh; Γ ⊂ ∂Ωb
h

}

, (2.3)

the set of all “Dirichlet” boundary faces by

FD
h =

{

Γ ∈ Fh; Γ ⊂ Γb
D

}

, (2.4)

the set of all “Neumann” boundary faces by

FN
h =

{

Γ ∈ Fh; Γ ⊂ Γb
N

}

, (2.5)
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and the set of all inner faces

F I
h = Fh \ F

B
h . (2.6)

Obviously, Fh = F I
h ∪ FD

h ∪ FN
h and FB

h = FD
h ∪ FN

h . For a shorter notation we
put

F ID
h = F I

h ∪ FD
h . (2.7)

For each Γ ∈ Fh we define a unit normal vector nΓ. We assume that for Γ ∈ FB
h

the normal nΓ has the same orientation as the outer normal to ∂Ωb
h. For each

face Γ ∈ F I
h the orientation of nΓ is arbitrary but fixed. For each Γ ∈ F I

h there

exist two neighbouring elements K
(L)
Γ , K

(R)
Γ ∈ T b

h such that Γ ⊂ ∂K
(L)
Γ ∩ ∂K(R)

Γ .

We use the convention that nΓ is the outer normal to ∂K
(L)
Γ and it is the inner

normal to ∂K
(R)
Γ . Moreover, if Γ ∈ FB

h , then there exists an element K
(L)
Γ ∈ T b

h

such that Γ ⊂ ∂K
(L)
Γ ∩ ∂Ωb

h.
Let us consider a system {T b

h }h∈(0,h), h > 0, of triangulations of the domain

Ωb
h. We assume that the system {T b

h }h∈(0,h) is shape regular, i.e. there exists a
cR > 0 such that

hK
ρK

≤ cR ∀K ∈ T b
h ∀h ∈ (0, h). (2.8)

Further, we define a quantity hΓ for each face Γ, which is in some way propor-
tional to the length of the face Γ. For Γ ∈ Fh the three following choices are
implemented:

mean average : hΓ =
h
K

(L)
Γ

+ h
K

(R)
Γ

2
, (2.9)

maximum : hΓ = max
(

h
K

(L)
Γ
, h

K
(R)
Γ

)

, (2.10)

edge length : hΓ = length of Γ. (2.11)

For Γ ∈ FB
h we set hΓ = h

K
(L)
Γ

in (2.9) and (2.10).

2.1.2 Broken Sobolev space

Since the DGM is based on a discontinuous approximation, the broken Sobolev
spaces are naturally appropriate for the purpose of the DGM formulation. These
spaces depend on the considered triangulation T b

h . Hence, for a triangulation T b
h

of a domain Ωb
h and for k ∈ N, we define the so-called broken Sobolev space

Hk(Ωb
h, T

b
h ) =

{

v ∈ L2(Ωb
h); v|K ∈ Hk(K) ∀K ∈ T b

h

}

, (2.12)

which consists of functions, whose restrictions on K ∈ T b
h belong to the Sobolev

space Hk(K). We do not require any type of regularity over the faces of T b
h . The

broken Sobolev space is equipped with the broken Sobolev norm:

‖v‖Hk(Ωb
h
,T b

h
) =





∑

K∈T b
h

‖v‖2Hk(K)





1/2

, v ∈ Hk(Ωb
h, T

b
h ). (2.13)
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Further, let Γ ∈ F I
h and K

(L)
Γ , K

(R)
Γ ∈ T b

h be neighbouring elements such that

Γ ⊂ ∂K
(L)
Γ ∩ ∂K

(R)
Γ . For v ∈ H1(Ωb

h, T
b
h ) we introduce the following notation:

v|
(L)
Γ = the trace of v|

K
(L)
Γ

on Γ,

v|
(R)
Γ = the trace of v|

K
(R)
Γ

on Γ,

〈v〉Γ = 1
2

(

v|
(L)
Γ + v|

(R)
Γ

)

,

[v]Γ = v|(L)Γ − v|(R)
Γ ,

(2.14)

where Γ ∈ F I
h . We say [v]Γ denotes the jump of v on Γ. It depends on the

orientation of nΓ, but the expression [v]ΓnΓ does not. Moreover, let Γ ∈ FB
h and

K
(L)
Γ ∈ T b

h , Γ ⊂ K
(L)
Γ ∩ ∂Ωb

h. Then for v ∈ HkΩb
h, T

b
h we introduce the following

notation:
v|(L)Γ = the trace of v|

K
(L)
Γ

on Γ, 〈v〉Γ = [v]Γ = v|(L)Γ . (2.15)

We omit the subscript Γ and simply write 〈·〉, [·] and n respectively, when 〈·〉Γ,
[·]Γ or nΓ appear in integrals

∫

Γ
. . . dS.

Finally we define the vector broken Sobolev space

H1(Ωb
h, T

b
h ) = H1(Ωb

h, T
b
h )×H1(Ωb

h, T
b
h ), (2.16)

and the vector average and jump as

〈v〉 = (〈v1〉 , 〈v2〉)
T , (2.17)

[v] = ([v1], [v2])
T .

2.1.3 Finite-dimensional spaces

Let p ≥ 0 be an integer. The approximate solution obtained by the DGM will be
sought in

Shp = Shp × Shp. (2.18)

By Shp we denote the space of piecewise polynomial functions on the triangulation
T b
h defined in Section 2.1.1,

Shp =
{

v ∈ L2(Ωb
h); v|K ∈ P p(K), K ∈ T b

h

}

, (2.19)

where P p(K) denotes the space of polynomial functions of degree ≤ p on the
finite element K. Obviously, Shp ⊂ Hk(Ωb

h, T
b
h ) for any k ≥ 1 and its dimension

dim Shp <∞.
Since the space Shp is finite-dimensional, we can construct its finite basis. We

have several options, but for each construction method it holds that the support
of a basis function is formed by a single element K ∈ T b

h . The natural choice
is to construct the Lagrange basis: for a given polynomial degree p ≥ 0, the
local dimension on each element is denoted by dloc and equals (p+1)(p+2)

2
. For each

element K ∈ T b
h we can construct dloc points on K, which represent the degrees

of freedom, and construct dloc local basis functions such that each basis function
equals 1 at a single point and equals 0 at the remaining points representing the
degrees of freedom. The global basis of the space Shp is then formed by the union
of local bases for each K ∈ T b

h . The advantage of the Lagrange basis is that
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the coefficients of a given function u ∈ Shp with respect to the basis are just the
function values at the points representing the degrees of freedom.

The second option is to construct the basis such that the mass matrix M =
(mij)

N
i,j=1, where

mij =

∫

Ωb
h

ξiξj dx, (2.20)

with {ξi}
N
i=1, N = cardT b

h ·dloc forming the basis, is diagonal or even unit, i.e. M =
I. The matrix of the resulting linear algebraic system of equations representing
the discrete scheme has then generally a lower condition number than in the case
of the Lagrange basis.

The third choice is the simplest: on each element K ∈ T b
h take the functions 1,

x, y, x2, xy, y2, . . . as the local basis (remembering that the basis function equals
0 outside K). This basis is called canonical and yields the fastest computation of
the matrix of the system of linear algebraic equations representing the discrete
scheme. On the other hand, the condition number is generally so high that the
canonical basis is by far the worst option out of the three approaches presented
here.

2.2 Discretization of the static elasticity prob-

lem

2.2.1 Linear elasticity

We start with the discretization of the static linear elasticity problem by the
DGM. We introduce the discretization of the problem with the aid of several
variants of the DGM. The primal formulation of the problem is defined by equa-
tions (1.76)–(1.78) in the previous chapter. The approximate solution will be
sought in the space Shp. By the use of the standard conforming finite element
method the problem is formulated in the weak form and the solution is sought
in the Sobolev space. For the derivation of the DGM we proceed in a similar
way. First we introduce a weak form of problem (1.76)–(1.78) in the sense of the
broken Sobolev spaces.

We assume that a triangulation T b
h of a domain Ωb

h with elements (triangles)
K ∈ T b

h is given and let u ∈ H2(Ωb) be a sufficiently regular solution of problem
(1.76)–(1.78). We multiply equation (1.76) by a test function v ∈ Shp, integrate
the resulting equation over a finite element K ∈ T b

h , use Green’s theorem on the
term containing σb and finally sum the resulting equations over all finite elements
K ∈ T b

h . We obtain the identity

∑

K∈T b
h

∫

K

σb(u) : ∇v dx−
∑

K∈T b
h

∫

∂K

(

σb(u) · nK

)

·v dS =
∑

K∈T b
h

∫

K

f ·v dx, (2.21)

where nK denotes the unit outer normal to ∂K. We rewrite the integrals over
∂K according to the type of the faces Γ ∈ Fh that form the boundary of the
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element K ∈ T b
h :

∑

K∈T b
h

∫

∂K

(

σb(u) · nK

)

· v dS = (2.22)

=
∑

Γ∈FD
h

∫

Γ

(

σb(u) · n
)

· v dS +
∑

Γ∈FN
h

∫

Γ

(

σb(u) · n
)

· v dS

+
∑

Γ∈FI
h

∫

Γ

(

(

σb(u(L)) · n
)

· v
(L)
Γ −

(

σb(u(R)) · n
)

· v
(R)
Γ

)

dS.

Due to the assumption that u ∈ H2(Ωb), we have

[u]Γ = [∇u]Γ = 0 ∀Γ ∈ F I
h , (2.23)

and
σb(u(L)) = σb(u(R)) =

〈

σb(u)
〉

Γ
∀Γ ∈ F I

h . (2.24)

Thus, the integrand of the last integral in (2.22) can be written in the form
(

σb(u(L)) · n
)

· v
(L)
Γ −

(

σb(u(R)) · n
)

· v
(R)
Γ =

(〈

σb(u)
〉

Γ
· n
)

· [v]Γ . (2.25)

Further, we can employ the Neumann boundary condition (1.78) so that

∑

Γ∈FN
h

∫

Γ

(

σb(u) · n
)

· v dS =
∑

Γ∈FN
h

∫

Γ

gNv dS. (2.26)

As a consequence of the symmetry of the stress tensor σb we can write

σb(u) : ∇v = σb(u) : e(v), (2.27)

where e(v) is defined as in (1.67), seeing that

σb(u) : ∇v =

2
∑

i,j=1

σb
ij(u)

∂vi
∂xj

=

=
1

2

2
∑

i,j=1

σb
ij(u)

∂vi
∂xj

+
1

2

2
∑

i,j=1

σb
ij(u)

∂vi
∂xj

=

=
1

2

2
∑

i,j=1

σb
ij(u)

∂vi
∂xj

+
1

2

2
∑

j,i=1

σb
ij(u)

∂vj
∂xi

=

=
1

2

2
∑

i,j=1

σb
ij(u)

∂vi
∂xj

+
1

2

2
∑

i,j=1

σb
ij(u)

∂vj
∂xi

=

=

2
∑

i,j=1

σb
ij(u)eij(v).

Now, (2.21), (2.22), (2.25), (2.26), and (2.27) imply that

∑

K∈T b
h

∫

K

σb(u) : e(v) dx−
∑

Γ∈FD
h

∫

Γ

(

σb(u) · n
)

· v dS (2.28)

−
∑

Γ∈FI
h

∫

Γ

(〈

σb(u)
〉

· n
)

· [v] dS =
∑

K∈T b
h

∫

K

f · v dx+
∑

Γ∈FN
h

∫

Γ

gNv dS,
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or we can write
∑

K∈T b
h

∫

K

σb(u) : e(v) dx−
∑

Γ∈FI
h
D

∫

Γ

(〈

σb(u)
〉

· n
)

· [v] dS (2.29)

=
∑

K∈T b
h

∫

K

f · v dx+
∑

Γ∈FN
h

∫

Γ

gNv dS ∀v ∈H1(Ωb
h, T

b
h ).

Relation (2.29) is the basis for the DGM discretization of problem (1.76)–(1.78).
Further, additional terms representing continuity has to be included in the formu-
lation of the DGM. Hence, we define the interior and boundary penalty bilinear
form

Jη
h(u, v) =

∑

Γ∈FI
h

∫

Γ

η[u] · [v] dS +
∑

Γ∈FD
h

∫

Γ

ηuv dS (2.30)

=
∑

Γ∈FID
h

∫

Γ

η[u] · [v] dS u, v ∈H1(Ωb
h, T

b
h ),

where η > 0 is a penalty weight. The choice of the penalty weight is generally
important for the theoretical analysis of the DGM, but also in practical compu-
tations the penalty weight needs to be estimated as we discuss later. We consider
the penalty weight η :

⋃

Γ∈FID
h

→ R in the form

η|Γ = ηΓ =
Cb

W

hΓ
, Γ ∈ F ID

h , (2.31)

where Cb
W > 0 is the penalization constant and hΓ is the quantity given by one

of the possibilities from (2.9)-(2.11). The penalty terms are defined in order to
penalize the measure of discontinuities of approximate solution. The boundary
penalty is associated with the boundary linear form

Jη
D(v) =

∑

Γ∈FD
h

∫

Γ

ηuDv dS, v ∈H1(Ωb
h, T

b
h ). (2.32)

In the standard finite element method the continuity of the approximate so-
lution on interior faces is required. In the DGM the continuity is replaced by
the interior penalty. Supplementing the boundary penalty to the discrete prob-
lem introduces the Dirichlet boundary condition in the discrete problem. In the
DGM is not necessary to construct subsets of finite element spaces formed by
functions approximating the Dirichlet boundary condition in a suitable way as in
the standard conforming finite elements. Both Dirichlet and Neumann boundary
conditions are included automatically in the formulation of the discrete problem.

Further, we introduce additional stabilization terms. We define them in such
a way, that they vanish for the exact solution. Therefore, let u ∈ H1(Ωb

h) ∩
H2(Ωb

h, T
b
h ) be a vector function which satisfies the Dirichlet boundary condition

(1.77). Then we use the identity

∑

Γ∈FID
h

∫

Γ

(〈

σb(v)
〉

· n
)

· [u] dS =
∑

Γ∈FD
h

∫

Γ

(〈

σb(v)
〉

· n
)

· uD dS (2.33)

∀v ∈H2(Ωb
h, T

b
h ),
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which is valid since [u]Γ = 0 for Γ ∈ F I
h , [u]Γ = uΓ = uD for Γ ∈ FD

h , and
〈

σb(v)
〉

Γ
= σb(v) for Γ ∈ FD

h by definition.
Including (2.29), (2.30), (2.31), and (2.33) in one formulation we obtain the

discontinuous Galerkin weak formulation. In fact we introduce three different
variants of the DGM, because we add equality (2.30) to (2.29) and sum it with
(2.33) multiplied by a parameter θ ∈ R. This way we arrive at the identity

ah(u, v) = bh(v), (2.34)

where the bilinear form ah(u, v) and the right-hand side linear form bh(v) are
defined for u, v ∈H2(Ωb

h, T
b
h ) as

ah(u, v) =
∑

K∈T b
h

∫

K

σb(u) : e(v) dx (2.35)

−
∑

Γ∈FID

∫

Γ

(〈

σb(u)
〉

· n
)

· [v] dS

− θ
∑

Γ∈FID

∫

Γ

(〈

σb(v)
〉

· n
)

· [u] dS +
∑

Γ∈FID

∫

Γ

Cb
W

hΓ
[u] · [v] dS,

bh(v) =
∑

K∈T b
h

∫

K

f · v dx+
∑

Γ∈FN

∫

Γ

gN · v dS (2.36)

− θ
∑

Γ∈FD

∫

Γ

(〈

σb(v)
〉

· n
)

· uD dS +
∑

Γ∈FD

∫

Γ

Cb
W

hΓ
uD · v dS.

Since Shp ⊂H
2(Ωb

h, T
b
h ), the forms (2.35) and (2.36) make sense for uh, vh ∈

Shp. Consequently, we define three numerical schemes.

Definition 5. A function uh ∈ Shp is called a dicontinuous approximate solution
of problem (1.76)–(1.78), if it satisifies the identity

ah(uh, vh) = bh(vh) ∀vh ∈ Shp, (2.37)

where the forms ah and bh are defined by (2.35) and (2.36), respectively.

By the choice of θ we distinguish between three variants of the DGM. Scheme
with θ = 1 is called symmetric interior penalty Galerkin (SIPG) method. Scheme
with θ = −1 is called nonsymmetric interior penalty Galerkin (NIPG) method.
Finally, scheme with θ = 0 is called incomplete interior penalty Galerkin (IIPG)
method.

The discrete problem (2.37) is equivalent to a system of linear algebraic equa-
tions, which can be solved by a suitable direct or iterative solver. Namely, the
basis of the finite-dimensional space Shp consists of functions {ξi}, i = 1, . . . , 2N ,
where N = dim Shp and

ξi =

{

(ξi, 0), i = 1, . . . , N,
(0, ξi), i = N + 1, . . . , 2N.

(2.38)

For details about the basis of the space Shp, see Section 2.1.3.
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The approximate solution uh(x) can be expressed as

uh(x) =

2N
∑

j=1

αjξj(x), (2.39)

where αi ∈ R, i = 1, . . . , 2N . Plugging this expression into (2.37) and setting
vh = ξi, i = 1, . . . , 2N , we arrive at the system of linear algebraic equations

KU = b, (2.40)

where

K = {kij}
2N
i,j=1 =

{

ah(ξj , ξi)
}2N

i,j=1
,

b = {bj}
2N
j=1 = bh(ξj),

U = {αj}
2N
j=1 .

Remark. Integrals appearing in the definitions of the forms ah and bh are evaluated
with the aid of suitable quadrature formulae. The list of the used quadrature
formulae is in Section 6.2.

Discretization of the elasticity term

Let us describe in detail the elasticity terms coming from the discretization. The
detailed description of the elasticity terms should be helpful for practical use,
because it corresponds to their effective implementation. In this section, the
approximate solution and the test function is denoted by uh and vh : Ωb

h → R2,
respectively, and the unit outer normal to an element boundary is denoted by
n = (n1, n2).

For uh = (p, 0), vh = (q, 0), where p, q : Ωb
h → R, the strain tensors can be

expressed as

e(uh) =

(

∂p
∂x1

1
2

∂p
∂x2

1
2

∂p
∂x2

0

)

, e(vh) =

(

∂q
∂x1

1
2

∂q
∂x2

1
2

∂q
∂x2

0

)

.

Thus, the stress tensor for an isotropic homogeneous material is given by

σb(uh) =

(

(λ+ 2µ) ∂p
∂x1

µ ∂p
∂x2

µ ∂p
∂x2

λ ∂p
∂x1

)

,

which results to the expressions of the elliptic terms

σb(uh) : e(vh) = (λ+ 2µ)
∂p

∂x1

∂q

∂x1
+ µ

∂p

∂x2

∂q

∂x2

and
(

σb(uh) · n
)

· vh = (λ+ 2µ)
∂p

∂x1
n1q + µ

∂p

∂x2
n2q.

For uh = (p, 0) we receive the following expression of the term appearing in the
discretization of the Dirichlet boundary condition:

(

σb(uh) · n
)

·uD = (λ+2µ)
∂p

∂x1
n1uD1+µ

∂p

∂x2
n2uD1+λ

∂p

∂x1
n2uD2+µ

∂p

∂x2
n1uD2,
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where uD = (uD1, uD2) : Γ
b
D → R

2 is the function from condition (1.77).
For uh = (0, p), and vh = (0, q), we get the following relations: the strain

tensors

e(uh) =

(

0 1
2

∂p
∂x1

1
2

∂p
∂x1

∂p
∂x2

)

, e(vh) =

(

0 1
2

∂q
∂x1

1
2

∂q
∂x1

∂q
∂x2

)

,

the stress tensor

σb(uh) =

(

λ ∂p
∂x2

µ ∂p
∂x1

µ ∂p
∂x1

(λ+ 2µ) ∂p
∂x2

)

and the elliptic terms

σb(uh) : e(vh) = (λ+ 2µ)
∂p

∂x2

∂q

∂x2
+ µ

∂p

∂x1

∂q

∂x1

and
(

σb(uh) · n
)

· vh = (λ+ 2µ)
∂p

∂x2
n2q + µ

∂p

∂x1
n1q.

Further, for uh = (0, p) we have

(

σb(uh) · n
)

·uD = (λ+2µ)
∂p

∂x2
n2uD2+µ

∂p

∂x1
n1uD2+λ

∂p

∂x2
n1uD1+µ

∂p

∂x1
n2uD1.

For uh = (p, 0), vh = (0, q), we express the elliptic terms as

σb(uh) : e(vh) = λ
∂p

∂x1

∂q

∂x2
+ µ

∂p

∂x2

∂q

∂x1

and
(

σb(uh) · n
)

· vh = λ
∂p

∂x1
n2q + µ

∂p

∂x2
n1q.

Finally, for uh = (0, p) and vh = (q, 0) we have

σb(uh) : e(vh) = λ
∂p

∂x2

∂q

∂x1
+ µ

∂p

∂x1

∂q

∂x2

and
(

σb(uh) · n
)

· vh = λ
∂p

∂x2
n1q + µ

∂p

∂x1
n2q.

2.2.2 Nonlinear elasticity

In the following, we discretize the static nonlinear elasticity problem by the DGM.
However, there are only minor changes in the procedure introduced for the linear
elasticity case. Therefore, we go just briefly through the discretizing procedure
and concern us mainly with the resulting nonlinear system. The approximate
solution will be again sought in the space Shp.

Let u ∈ H2(Ωb) be a sufficiently regular solution of the static nonlinear
elasticity problem defined in (1.55) - (1.57). We assume that a triangulation T b

h

of a domain Ωb
h is given. We multiply equation (1.55) by a test function v ∈ Shp,

integrate the resulting equation over a finite element K ∈ T b
h and use Green’s
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theorem on the term containing P . Finally we sum the resulting equations over
all finite elements K ∈ T b

h to obtain the identity

∑

K∈T b
h

∫

K

P (u) : ∇v dx−
∑

K∈T b
h

∫

∂K

(P (u) · nK) · v dS =
∑

K∈T b
h

∫

K

f · v dx, (2.41)

where nK denotes the unit outer normal to ∂K. As we can see identity (2.41) is
almost identical with (2.21). Further, we reorganize sums over element boundaries
∂K into sums over element edges Γ ∈ Fh and due to the relation analogous to
(2.22), (2.25), and (2.26) we can rewrite (2.41) in the form

∑

K∈T b
h

∫

K

P (u) : ∇v dx−
∑

Γ∈FID
h

∫

Γ

(〈P (u)〉 · n) · [v] dS (2.42)

=
∑

K∈T b
h

∫

K

f · v dx+
∑

Γ∈FN
h

∫

Γ

gN · v dS ∀v ∈H1(Ωb
h, T

b
h ).

Moreover, to this relation we add the interior and boundary penalty forms Jη
h(u, v)

and the boundary linear form Jη
D(v) defined in (2.30) and in (2.32), respectively.

We consider the penalty weight to be again in the form (2.31). In contrast to
the linear elasticity case we do not introduce any symmetry terms and we define
only one variant of the DGM denoted by IIPG in the previous section. There is
no symmetry as in the linear elasticity case, so it would not make sense to in-
troduce SIPG and NIPG variants of the DGM. The discontinuous Galerkin weak
formulation can be written as

ah(u, v) = bh(v), (2.43)

where the semilinear form ah(u, v) and the linear right-hand side functional bh(v)
are defined for u, v ∈H2(Ωb

h, T
b
h ) by

ah(u, v) =
∑

K∈T b
h

∫

K

P (u) : ∇v dx−
∑

Γ∈ΓID

∫

Γ

〈P (u)〉n · [v] dS+ (2.44)

+
∑

Γ∈ΓID

∫

Γ

Cb
W

hΓ
[u] · [v] dS,

bh(v) =
∑

K∈T b
h

∫

K

f · v dx+
∑

Γ∈ΓD

∫

Γ

Cb
W

hΓ
uD · v dS +

∑

Γ∈ΓN

∫

Γ

gN · v dS. (2.45)

Consequently, we define the numerical scheme for the solution uh ∈ Shp ⊂
H2(Ωb

h, T
b
h ).

Definition 6. A function uh ∈ Shp is called a dicontinuous approximate solution
of problem (1.76)–(1.78), if it satisifies the identity

ah(uh, vh) = bh(vh) ∀vh ∈ Shp, (2.46)

where the forms ah and bh are defined by (2.44) and (2.45), respectively.

31



The form ah(uh, vh) is linear with respect to vh, but nonlinear in uh. For this
reason, the problem (2.46) results in a system of nonlinear algebraic equations,
which needs to be solved by a suitable nonlinear algebraic solver. Consequently,
we apply the Newton method (see [15]). This method was also applied e.g., in
the works [33] and [58], where incompressible flow model and conforming finite
element discretization were used. Here we put emphasis on the DGM and there-
fore for the completeness we describe the realization of the method in detail. In
the following, we introduce the Newton method in general and we discuss the
realization of the discrete nonlinear elasticity problem in detail.

2.2.3 Newton method

Let F : RN → RN , F ∈ [C1(R)]
N
. By ∇αF we denote the Jacobian matrix of

the mapping F :

∇αF =







∂F1

∂α1
. . . ∂F1

∂αN

...
. . .

...
∂FN

∂α1
. . . ∂FN

∂αN






. (2.47)

We seek a solution α ∈ RN such that F(α) = 0. The Newton algorithm to obtain
a solution is the following: let α(0) be an initial guess of the sought solution and
let ε > 0 be a given tolerance. For i ≥ 0 iterate:

1. Evaluate the residual
r(i) = F

(

α(i)
)

. (2.48)

2. Check residual and stop iterations with α = α(i) if
∥

∥r(i)
∥

∥ ≤ ε. (2.49)

3. Compute δα from
∇αF

(

α(i)
)

δα = r(i). (2.50)

4. Update
α(i+1) := α(i) − δα. (2.51)

5. Set i = i+ 1 and go to 1.

Note that (2.50) represents a system of linear algebraic equations, which needs
to be solved by a suitable direct or iterative solver.

2.2.4 Realization of the discrete nonlinear elasticity prob-

lem

We shall now briefly discuss the application of the Newton method to our dis-
cretization of the nonlinear elasticity problem. We can express the sought ap-
proximate solution as a linear combination of basis functions in the space Shp.
Let {ξi} , i = 1, . . . , 2N , form the basis of Shp as in (2.38). Then the sought
solution uh can be expressed as

uh = uh(α) =
2N
∑

i=1

αiξi, (2.52)
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where α = (αi)
2N
i=1 is formed by the finite element coefficients.

In order to apply the Newton method as defined in Section 2.2.3, we must
differentiate the form ah(uh(α), vh) (and subsequently the tensor P ) with respect
to the coefficients α1, . . . , αN . For clarity, we shall denote the gradient with
respect to α by ∇α and the gradient with respect to x by ∇x. Clearly

∂

∂αk
uh = (ξi, 0) , 1 ≤ k ≤ N, i = k, (2.53)

∂

∂αk
uh = (0, ξi) , N < k ≤ 2N, i = k −N,

and

∇xuh =

N
∑

i=1

αi∇x (ξi, 0) +

N
∑

i=1

αi+N∇x (0, ξi) =

=

(

∑N
i=1 αi

∂ξi
∂x1
,

∑N
i=1 αi

∂ξi
∂x2

∑N
i=1 αi+N

∂ξi
∂x1
,
∑N

i=1 αi+N
∂ξi
∂x2

)

. (2.54)

The gradient of the form ah can be expressed as

∇αah(uh(α), vh) =
∑

K∈T d
h

∫

K

∇α (P (uh(α)) : ∇xvh) dx (2.55)

−
∑

Γ∈FbID
h

∫

Γ

∇α (〈P (uh(α))〉n · [vh]) dS

+
∑

Γ∈FbID
h

∫

Γ

Cb
W

hΓ
∇α ([uh(α)] · [vh]) dS.

Let P (uh(α)) = (Pij)
2
i,j=1 (here for simplicity we do not explicitly write the

dependence of Pij on uh(α)) and let vh = (v1, v2). From the relation

P (uh(α)) : ∇xvh = P11
∂v1
∂x1

+ P12
∂v1
∂x2

+ P21
∂v2
∂x1

+ P22
∂v2
∂x2

, (2.56)

it follows that

∂

∂αk
(P (uh(α)) : ∇xvh) =

∂

∂αk
P11

∂v1
∂x1

+
∂

∂αk
P12

∂v1
∂x2

(2.57)

+
∂

∂αk
P21

∂v2
∂x1

+
∂

∂αk
P22

∂v2
∂x2

,

∂

∂αk
(〈P (uh(α))〉n · [vh]) =

(

∂

∂αk
〈P11〉n1 +

∂

∂αk
〈P12〉n2

)

[v1]

+

(

∂

∂αk

〈P21〉n1 +
∂

∂αk

〈P22〉n2

)

[v2] .

Now for vh = (ξj, 0) we have

P (uh(α)) : ∇xvh = P11
∂ξj
∂x1

+ P12
∂ξj
∂x2

, (2.58)

∂

∂αk
(P (uh(α)) : ∇xvh) =

∂

∂αk
P11

∂ξj
∂x1

+
∂

∂αk
P12

∂ξj
∂x2

, (2.59)

∂

∂αk
(〈P (uh(α))〉n · [vh]) =

(

∂

∂αk
〈P11〉n1 +

∂

∂αk
〈P12〉n2

)

[ξj] , (2.60)
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while for vh = (0, ξj) we have

P (uh(α)) : ∇xvh = P21
∂ξj
∂x1

+ P22
∂ξj
∂x2

, (2.61)

∂

∂αk
(P (uh(α)) : ∇xvh) =

∂

∂αk
P21

∂ξj
∂x1

+
∂

∂αk
P22

∂ξj
∂x2

, (2.62)

∂

∂αk
(〈P (uh(α))〉n · [vh]) =

(

∂

∂αk
〈P21〉n1 +

∂

∂αk
〈P22〉n2

)

[ξj] . (2.63)

It remains to express the derivatives of the tensor P for our choice of the St. Venant-
Kirchhoff and neo-Hookean material, which can be found in Section 2.2.5 and
Section 2.2.6 respectively.

Remark. Integrals appearing in the definition of the gradient ∇αah and in the
form bh are evaluated with the aid of suitable quadrature formulae. The list of
the used quadrature formulae is in Section 6.2.

2.2.5 St. Venant-Kirchhoff material - derivatives

Let P = P (uh(α)) = (Pij)
2
i,j=1 be the first Piola-Kirchhoff tensor of the St. Venant-

Kirchhoff material as defined in (1.70). Let uh(α) = (u1, u2). From (1.17), (1.70)
and (1.63) we get

P11 = µ
∂u1
∂x2

∂u2
∂x1

(

∂u2
∂x2

+ 1

)

+
λ

2

(

∂u1
∂x1

+ 1

)

(

(

∂u2
∂x2

+ 1

)2

− 1

)

+

(

µ+
λ

2

)(

∂u1
∂x1

+ 1

)

(

∂u1
∂x2

2

+
∂u2
∂x1

2

+

(

∂u1
∂x1

+ 1

)2

− 1

)

, (2.64)

P12 = µ

(

∂u1
∂x1

+ 1

)

∂u2
∂x1

(

∂u2
∂x2

+ 1

)

+
λ

2

∂u1
∂x2

(

∂u2
∂x1

2

− 1

)

+

(

µ+
λ

2

)

∂u1
∂x2

(

∂u1
∂x2

2

+

(

∂u1
∂x1

+ 1

)2

+

(

∂u2
∂x2

+ 1

)2

− 1

)

, (2.65)

P21 = µ

(

∂u2
∂x2

+ 1

)

∂u1
∂x2

(

∂u1
∂x1

+ 1

)

+
λ

2

∂u2
∂x1

(

∂u1
∂x2

2

− 1

)

+

(

µ+
λ

2

)

∂u2
∂x1

(

∂u2
∂x1

2

+

(

∂u1
∂x1

+ 1

)2

+

(

∂u2
∂x2

+ 1

)2

− 1

)

, (2.66)

P22 = µ
∂u2
∂x1

∂u1
∂x2

(

∂u1
∂x1

+ 1

)

+
λ

2

(

∂u2
∂x2

+ 1

)

(

(

∂u1
∂x1

+ 1

)2

− 1

)

+

(

µ+
λ

2

)(

∂u2
∂x2

+ 1

)

(

∂u1
∂x2

2

+
∂u2
∂x1

2

+

(

∂u2
∂x2

+ 1

)2

− 1

)

. (2.67)
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Now let uh(α) = (u1, u2) =
∑2N

k=1 αkξk, where ξk = (ξk, 0) for 1 ≤ k ≤ N
and ξk = (0, ξk−N) for N < k ≤ 2N . The derivatives of P (uh(α)) with respect
to the coefficient αk are given as follows: For 1 ≤ k ≤ N we set i = k and we get

∂

∂αk
P11 = µ

∂ξi
∂x2

∂u2
∂x1

(

∂u2
∂x2

+ 1

)

+
λ

2

∂ξi
∂x1

(

(

∂u2
∂x2

+ 1

)2

− 1

)

+

(

µ+
λ

2

)

∂ξi
∂x1

(

∂u1
∂x2

2

+
∂u2
∂x1

2

+

(

∂u1
∂x1

+ 1

)2

− 1

)

+ 2

(

µ+
λ

2

)(

∂u1
∂x1

+ 1

)(

∂u1
∂x2

∂ξi
∂x2

+

(

∂u1
∂x1

+ 1

)

∂ξi
∂x1

)

, (2.68)

∂

∂αk
P12 = µ

∂ξi
∂x1

∂u2
∂x1

(

∂u2
∂x2

+ 1

)

+
λ

2

∂ξi
∂x2

(

∂u2
∂x1

2

− 1

)

+

(

µ+
λ

2

)

∂ξi
∂x2

(

∂u1
∂x2

2

+

(

∂u1
∂x1

+ 1

)2

+

(

∂u2
∂x2

+ 1

)2

− 1

)

+ 2

(

µ+
λ

2

)

∂u1
∂x2

(

∂u1
∂x2

∂ξi
∂x2

+

(

∂u1
∂x1

+ 1

)

∂ξi
∂x1

)

, (2.69)

∂

∂αk
P21 = µ

(

∂u2
∂x2

+ 1

)

∂ξi
∂x2

(

∂u1
∂x1

+ 1

)

+ µ

(

∂u2
∂x2

+ 1

)

∂u1
∂x2

∂ξi
∂x1

+ λ
∂u2
∂x1

∂u1
∂x2

∂ξi
∂x2

+ 2

(

µ+
λ

2

)

∂u2
∂x1

(

∂u1
∂x1

+ 1

)

∂ξi
∂x1

, (2.70)

∂

∂αk

P22 = µ
∂u2
∂x1

∂ξi
∂x2

(

∂u1
∂x1

+ 1

)

+ µ
∂u2
∂x1

∂u1
∂x2

∂ξi
∂x1

(2.71)

+ λ

(

∂u2
∂x2

+ 1

)(

∂u1
∂x1

+ 1

)

∂ξi
∂x1

+ 2

(

µ+
λ

2

)(

∂u2
∂x2

+ 1

)

∂u1
∂x2

∂ξi
∂x2

.

For N < k ≤ 2N we set i := k −N and get

∂

∂αk

P11 = µ
∂u1
∂x2

∂ξi
∂x1

(

∂u2
∂x2

+ 1

)

+ µ
∂u1
∂x2

∂u2
∂x1

∂ξi
∂x2

(2.72)

+ λ

(

∂u1
∂x1

+ 1

)(

∂u2
∂x2

+ 1

)

∂ξi
∂x2

+ 2

(

µ+
λ

2

)(

∂u1
∂x1

+ 1

)

∂u2
∂x1

∂ξi
∂x1

,

∂

∂αk
P12 = µ

(

∂u1
∂x1

+ 1

)

∂ξi
∂x1

(

∂u2
∂x2

+ 1

)

+ µ

(

∂u1
∂x1

+ 1

)

∂u2
∂x1

∂ξi
∂x2

+ λ
∂u1
∂x2

∂u2
∂x1

∂ξi
∂x1

+ 2

(

µ+
λ

2

)

∂u1
∂x2

(

∂u2
∂x2

+ 1

)

∂ξi
∂x2

, (2.73)

∂

∂αk
P21 = µ

∂ξi
∂x2

∂u1
∂x2

(

∂u1
∂x1

+ 1

)

+
λ

2

∂ξi
∂x1

(

∂u1
∂x2

2

− 1

)

+

(

µ+
λ

2

)

∂ξi
∂x1

(

∂u2
∂x1

2

+

(

∂u1
∂x1

+ 1

)2

+

(

∂u2
∂x2

+ 1

)2

− 1

)

+ 2

(

µ+
λ

2

)

∂u2
∂x1

(

∂u2
∂x1

∂ξi
∂x1

+

(

∂u2
∂x2

+ 1

)

∂ξi
∂x2

)

, (2.74)
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∂

∂αk

P22 = µ
∂ξi
∂x1

∂u1
∂x2

(

∂u1
∂x1

+ 1

)

+
λ

2

∂ξi
∂x2

(

(

∂u1
∂x1

+ 1

)2

− 1

)

+

(

µ+
λ

2

)

∂ξi
∂x2

(

∂u1
∂x2

2

+
∂u2
∂x1

2

+

(

∂u2
∂x2

+ 1

)2

− 1

)

+ 2

(

µ+
λ

2

)(

∂u2
∂x2

+ 1

)(

∂u2
∂x1

∂ξi
∂x1

+

(

∂u2
∂x2

+ 1

)

∂ξi
∂x2

)

. (2.75)

2.2.6 Neo-Hookean material - derivatives

Analogously to the case of St. Venant-Kirchhoff material let P = P (uh(α)) =
(Pij)

2
i,j=1 be the first Piola-Kirchhoff tensor of the neo-Hookean material as defined

in (1.65). Let uh(α) = (u1, u2). From (1.17), (1.8) and (1.65) we get

P11 = µ

(

1 +
∂u1
∂x1

)

+ c1

(

1 +
∂u2
∂x2

)

, (2.76)

P12 = µ
∂u1
∂x2

− c1
∂u2
∂x1

, (2.77)

P21 = µ
∂u2
∂x1

− c1
∂u1
∂x2

, (2.78)

P22 = µ

(

1 +
∂u2
∂x2

)

+ c1

(

1 +
∂u1
∂x1

)

, (2.79)

where

c1 =
λ log(detF )− µ

detF
. (2.80)

Now let uh(α) = (u1, u2) =
∑2N

k=1 αkξk, where ξk = (ξk, 0) for 1 ≤ k ≤ N and
ξk = (0, ξk−N) for N < k ≤ 2N .

Let us express at first the derivative of the determinant of F with respect to
the coefficient αk. If 1 ≤ k ≤ N and i := k, then

∂

∂αk
(detF ) =

∂ξi
∂x1

(

∂u2
∂x2

+ 1

)

−
∂ξi
∂x2

∂u2
∂x1

, (2.81)

and for N < k ≤ 2N , i := k −N :

∂

∂αk
(detF ) =

∂ξi
∂x2

(

∂u1
∂x1

+ 1

)

−
∂ξi
∂x1

∂u1
∂x2

. (2.82)

The derivatives of P (uh(α)) with respect to the coefficient αk are given as follows:
If 1 ≤ k ≤ N and i := k, then

∂

∂αk
P11 = µ

∂ξi
∂x1

+ c2
∂

∂αk
(detF )

(

1 +
∂u2
∂x2

)

, (2.83)

∂

∂αk
P12 = µ

∂ξi
∂x2

− c2
∂

∂αk
(detF )

∂u2
∂x1

, (2.84)

∂

∂αk
P21 = −c1

∂ξi
∂x2

− c2
∂

∂αk
(detF )

∂u1
∂x2

, (2.85)

∂

∂αk
P22 = c1

∂ξi
∂x1

+ c2
∂

∂αk
(detF )

(

1 +
∂u1
∂x1

)

, (2.86)
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where c1 is as in (2.80),

c2 =
λ− λ log(detF ) + µ

detF
, (2.87)

and ∂
∂αk

(detF ) is expressed in (2.81).
Finally for N < k ≤ 2N we set i = k −N and get

∂

∂αk

P11 = c1
∂ξi
∂x2

+ c2
∂

∂αk

(detF )

(

1 +
∂u2
∂x2

)

, (2.88)

∂

∂αk
P12 = −c1

∂ξi
∂x1

− c2
∂

∂αk
(detF )

∂u2
∂x1

, (2.89)

∂

∂αk
P21 = µ

∂ξi
∂x1

− c2
∂

∂αk
(detF )

∂u1
∂x2

, (2.90)

∂

∂αk
P22 = µ

∂ξi
∂x2

+ c2
∂

∂αk
(detF )

(

1 +
∂u1
∂x1

)

(2.91)

where c1 is as in (2.80), c2 as in (2.87) and ∂
∂αk

(detF ) is expressed in (2.82).

2.3 Discretization of the dynamic elasticity prob-

lem

In this section we introduce the discretization of both the dynamic linear elasticity
problem (1.72)-(1.75) and the dynamic nonlinear elasticity problem (1.51)-(1.54).
For simplicity, we shall only describe the discretization of the dynamic nonlinear
elasticity equation. The discretization of the dynamic linear elasticity equation
can be carried out analogously, because the main differences are already described
in the previous section.

Because of the time discretization of problem (1.51)-(1.54), we rewrite it as the
following problem of first-order in time for the displacement u : Ωb × [0, T ] → R2

and the deformation velocity z : Ωb × [0, T ] → R2:

ρb
∂z

∂t
+ CMρ

bz − divP = f in Ωb × [0, T ], (2.92)

∂u

∂t
− z = 0 in Ωb × [0, T ], (2.93)

u = uD in Γb
D × [0, T ], (2.94)

P · n = gN in Γb
N × [0, T ], (2.95)

u(·, 0) = u0, z(·, 0) = vb0 in Ωb. (2.96)

Let us note that the deformation velocity z is equal to the velocity vb defined in
(1.23). The reason for the use of another notation is the better distinction to the
test functions denoted by v.

First, we introduce the discretization in space of the dynamic nonlinear elas-
ticity equation, which is carried out analogously to the static elasticity prob-
lem. The time variable is left continuous. This means that we deal with the
space semidiscretization. The elasticity terms are discretized in space by interior
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penalty Galerkin technique (IIPG and for linear elasticity also NIPG and SIPG)
introduced in the previous section.

In the derivation of the space discretization by the DGM the following process
is essential. We multiply equations (2.92) and (2.93) by a test function v ∈
H2(Ωb

h, T
b
h ), integrate the resulting relations over elementsK ∈ T b

h , apply Green’s
theorem to the term containing P , add the interior and boundary penalty and in
case of linear elasticity also the stabilization terms, use boundary conditions and
sum over all elements. Moreover, we introduce the scalar product in L2(Ωb

h) =
L2(Ωb

h)× L2(Ωb
h):

(u, v)Ωb
h
=

∫

Ωb
h

u · v dx =
∑

K∈T b
h

∫

K

u · v dx, u, v ∈ L2(Ωb
h). (2.97)

We obtain the identities
(

ρb
∂z(t)

∂t
, v

)

Ωb
h

+
(

CMρ
bz(t), v

)

Ωb
h

+ ah(u(t), v) = b(v)(t) (2.98)

∀v ∈H2(Ωb
h, T

b
h ), ∀t ∈ [0, T ],

(

∂u(t)

∂t
, v

)

Ωb
h

− (z, v)Ωb
h
= 0 (2.99)

∀v ∈H2(Ωb
h, T

b
h ), ∀t ∈ [0, T ],

(u(0), v)Ωb
h
= (u0, v)Ωb

h
, (z(0), v)Ωb

h
=
(

vb0, v
)

Ωb
h

(2.100)

∀v ∈H2(Ωb
h, T

b
h ).

By u(t), z(t) we denote the functions in Ωb
h such that (u(t))(x) = u(x, t),

(z(t))(x) = z(x, t), x ∈ Ωb
h, respectively. The forms ah, bh are defined as in

(2.44) and (2.45), respectively and for the linear elasticity they are defined as in
(2.35) and (2.36), respectively.

Let Shp be the space of discontinuous piecewise polynomial functions defined
in (2.18). Since Shp ⊂ H2(Ωb

h, T
b
h ) ∩ L

∞(Ωb
h), the forms ah, bh make sense for

u := uh, v := vh ∈ Shp. Then we introduce the discontinuous Galerkin space
semidiscretization of (2.92)-(2.96).

Definition 7. We define the semidiscrete approximate solution of (2.92)-(2.96)
as a displacement function uh : Ωb

h × [0, T ] → R2 and a deformation velocity
function zh : Ωb

h × [0, T ] → R
2 satisfying the conditions

uh ∈ C1([0, T ];Shp), zh ∈ C1([0, T ];Shp), (2.101)
(

ρb
∂zh(t)

∂t
, vh

)

Ωb
h

+
(

CMρ
bzh(t), vh

)

Ωb
h

+ ah(uh(t), vh) = b(vh)(t) (2.102)

∀vh ∈ Shp, ∀t ∈ [0, T ],
(

∂uh(t)

∂t
, vh

)

Ωb
h

− (zh(t), vh)Ωb
h
= 0 (2.103)

∀vh ∈ Shp, ∀t ∈ [0, T ],

(uh(0), vh)Ωb
h
= (u0, vh)Ωb

h
, (zh(0), vh)Ωb

h
=
(

vb
0, vh

)

Ωb
h

(2.104)

∀vh ∈ Shp.
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Order of the method q Coefficients c0, . . . , cq

1 1
τm
,− 1

τm

2 2τm+τm−1

τm(τm+τm−1)
, − τm+τm−1

τmτm−1
, τm

τm−1(τm+τm−1)

3 (2τm+τm−1)(2τm+τm−1+τm−2)−τ2m
τm(τm+τm−1)(τm+τm−1+τm−2)

, − (τm+τm−1)(τm+τm−1+τm−2)
τmτm−1(τm−1+τm−2)

,
τm(τm+τm−1+τm−2)
τm−1τm−2(τm+τm−1)

, − τm(τm+τm−1)
τm−2(τm+τm−1+τm−2)(τm−1+τm−2)

Table 2.1: Coefficients of the backward difference formula of order 1, 2, and 3.

We see that the initial conditions (2.104) can be written as uh(0) = Πhpu0,
zh(0) = Πhpv

b
0, where Πhp is the operator of the L

2(Ωb
h)–projection onto the space

Shp.
In order to obtain a fully discrete problem, we apply the backward difference

formula method to the semidiscrete problem (2.102)–(2.104).

2.3.1 Backward-difference formula method

Let us consider a partition of the time interval [0, T ] formed by time instants

tm, m = 0, . . . ,M, 0 = t0 < t1 < · · · < tM = T, (2.105)

where M is a sufficiently large positive integer and define the time step

τm = tm − tm−1, m = 1, . . . ,M. (2.106)

By um and zm we denote the approximate solution at time tm, m = 0, . . . ,M ,
i.e.

um ≈ u(tm), zm ≈ z(tm). (2.107)

A general backward difference formula approximating the time derivative reads

∂u

∂t
(tm+1) ≈

q
∑

l=0

clu
m+1−l, (2.108)

where q is the order of the method and cl, l = 0, . . . , q, are the coefficients
depending on τm−l, l = 0, . . . , q − 1.

In the beginning of the computation, when m < q − 1, we use the backward
difference formula of order m + 1. The coefficients of the BDF methods of the
order 1, 2, and 3, are in Table 2.1. BDF methods of higher order degree are rarely
used in practical computations. In numerical experiments we use second order
BDF.

For simplicity we can also consider a constant time step and, hence, a uni-
form partition of the interval [0, T ]. Then tm = mτ,m = 0, . . . ,M, where τ is
the uniform time step. The coefficients of the BDF methods up to the order 6
considering uniform partition can be found in Table 2.2.
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Order of the method q Coefficients c0, . . . , cq multiplied by τ

1 1, −1
2 3/2, −2, 1/2
3 11/6, −3, 3/2, −1/3
4 25/12, −4, 3, −4/3, 1/4
5 137/60, −5, 5, −10/3, 5/4, −1/5
6 49/20, −6, 15/2, −20/3, 15/4, −6/5, 1/6

Table 2.2: Coefficients of the backward difference formula of order 1,. . . ,6, con-
sidering uniform partition with time step τ .

The BDF time discretization of system (2.102)–(2.104) implies the definition
of the fully discrete solution discretized by the BDF in time and DGM in space.

Definition 8. The BDF-DG approximate solution of problem (2.92)–(2.96) is
defined as a couple of sequences {um

h }
M
m=0, {z

m
h }

M
m=0 such that

um
h , z

m
h ∈ Shp, m = 0, . . . ,M, (2.109)

(

ρb
q
∑

l=0

clz
m+1−l
h , vh

)

Ωb
h

+
(

CMρ
bzm+1

h , vh
)

Ωb
h

+ ah(u
m+1
h , vh) = bh(vh)(tm+1)

(2.110)

∀vh ∈ Shp,
(

q
∑

l=0

clu
m+1−l
h , vh

)

Ωb
h

−
(

zm+1
h , vh

)

Ωb
h

= 0 (2.111)

∀vh ∈ Shp,
(

u0
h − u0, vh

)

Ωb
h

= 0,
(

z0h − v
b
0, vh

)

Ωb
h

= 0 (2.112)

∀vh ∈ Shp.

(2.113)

The initial values um
h , z

m
h , m = 1, . . . , q, are obtained by m-step BDF schemes.

In the case of nonlinear elasticity the BDF-DG discretization of problem
(2.92)–(2.96) leads to the solution of the nonlinear algebraic system at each time
step. Therefore the Newton method defined in Section 2.2.3 is applied at each
time step for the solution of the nonlinear discrete problem. In the case of linear
elasticity problem we obtain a linear algebraic system at each time step. Let us
describe the realization of the discrete dynamic elasticity problem in detail.
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2.3.2 Realization of the discrete dynamic elasticity prob-

lem

We transform equations (2.110) and (2.111) so that there are just the terms with
unknowns on the left hand side at each time step. Hence,
(

c0ρ
bzm+1

h , vh
)

Ωb
h

+
(

CMρ
bzm+1

h , vh
)

Ωb
h

+ ah(u
m+1
h , vh) = (2.114)

= bh(vh)(tm+1)−

(

ρb
q
∑

l=1

clz
m+1−l
h , vh

)

Ωb
h

∀vh ∈ Shp,

(

c0u
m+1
h , vh

)

Ωb
h

−
(

zm+1
h , vh

)

Ωb
h

= (2.115)

=

(

q
∑

l=1

clu
m+1−q
h , vh

)

Ωb
h

∀vh ∈ Shp.

We can express the sought approximate solution at each time step as a linear
combination of basis functions in the space Shp. Let {ξi} , i = 1, . . . , 2N , form
the basis of Shp as in (2.38). Then the sought solution couple (um

h , z
m
h ), m =

0, . . . ,M , can be expressed as

um
h = uh(α

1,m) =
2N
∑

i=1

αm
i ξi, (2.116)

zmh = zh(α
2,m) =

2N
∑

i=1

αm
2N+iξi, (2.117)

where αm =
(

α1,mT
,α2,mT

)T

= (αm
i )

4N
i=1 are the finite element coefficients. Plug-

ging these expressions into (2.114) and (2.115) and setting vh = ξi, i = 1, . . . , 2N ,
we arrive at the system of nonlinear algebraic equations

(

k(α1,m+1) + (c0 + CM)ρbMα2,m+1

c0Mα
1,m+1 −Mα2,m+1

)

− bm+1 = 0, (2.118)

where

M = {mij}
2N
i,j=1 =

{

(

ξj , ξi
)

Ωb
h

}2N

i,j=1
,

k(α1,m+1) =
{

ah
(

um+1
h (α1,m+1), ξj

)}2N

j=1
,

bm+1 =
{

bm+1
j

}4N

j=1
=

{

bh(ξj)(tm+1)− ρb
(
∑q

l=1 clz
m+1−l
h , ξj

)

Ωb
h

, j = 1, . . . , 2N,
(
∑q

l=1 clu
m+1−l
h , ξj

)

Ωb
h

, j = 2N + 1, . . . , 4N.

This nonlinear algebraic system is solved by the Newton method at each time
step. Let us note that the convergence of the Newton method is improved, if we
use the solution from the previous time step as an initial guess. In order to apply
the Newton method we must differentiate the form ah (u

m
h (α

1,m), vh) with respect
to the coefficients α. However, we proceed analogously as in Sections 2.2.4, 2.2.5,
and 2.2.6. In practical computations, integrals appearing in the definitions of
the forms ah, bh and the scalar products are evaluated with the aid of suitable
quadrature formulae. The list of the used quadrature formulae is in Section 6.2.
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In the case of linear elasticity the discretization leads to the solution of the
linear algebraic system

(

K (c0 + CM)ρbM
c0M −M

)

αm+1 = bm+1, (2.119)

at each time step, where

K = {kij}
2N
i,j=1 =

{

ah(ξj , ξi)
}2N

i,j=1
, (2.120)

and M, bm+1, and αm+1 are defined in the same way as in the nonlinear elastic-
ity case. Clearly, the system of linear equations needs to be solved by suitable
iterative or direct solver.
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3. Realization of the

discontinuous Galerkin method

applied to the elasticity problem

In the previous chapter we described in detail the discretization of the elasticity
problem, which allows us to work out a robust numerical solver. For this purpose
we developed a .NET library written in C# for the numerical solution of 2D
static and dynamic linear and nonlinear elasticity problem with mixed boundary
conditions. We briefly present this library or better the part of the library dealing
with the elasticity problem, because the whole library includes also the solvers
of other partial differential equations, namely the Laplace equation, parabolic
equations, and linear or nonlinear convection-diffusion equations. This library
was used, for example, for the realization of numerical experiments [2] concerned
with the numerical analysis of the space-time discontinuous Galerkin method for
the solution of nonstationary, nonlinear, convection-diffusion problems.

These results of numerical experiments encouraged us for the use of the same
schemes for the solution of the elasticity problems, where the proper numerical
analysis is not so complete as by these simpler but still difficult problems. For
the sake of completeness of this paragraph let us mention, that the library also
includes the wrapper for the solver of compressible viscous flow in time-dependent
domains and a program unit, which operates the fluid-structure interaction prob-
lem. The fluid and FSI solver is the subject of further chapters of this thesis.

In this chapter we deal with numerical experiments for the elasticity prob-
lems. To verify that our computational tool is enough efficient, we compare our
results with a benchmark problem. Therefore in this chapter we present results
of the solution of a benchmark introduced by Turek and Hron in [64], in order
to demonstrate that the developed method produces comparable results. This
benchmark defines both static elasticity test problem and dynamic elasticity test
problem.

There are basically several possibilities of interests of our numerical experi-
ments. The implementation offers us the linear and nonlinear elasticity solver.
Therefore, we will present the difference between the results obtained using differ-
ent material properties. Other results are presented for the St. Venant-Kirchhoff,
neo-Hookean, and linearized material separately. For them we will check the
quality of the discretization by the DGM in space and by the finite difference
method in time. In principal, the implementation allows us to use arbitrary or-
der of the space and time discretization. We set by our computations up to the
cubic polynomial approximation in space and we employ the backward-difference
formula of first and second order for the time discretization. The DGM has some
other specific characteristics as described in the previous chapter. For the lin-
ear elasticity problem we compare the symmetric, nonsymmetric and incomplete
version of the DGM. Further, we discuss the use of different parameters for the
settings of the initial and boundary penalty.
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Figure 3.1: Rigid cylinder with an elastic beam for the nonlinear elasticity bench-
mark problem.

3.1 Static elasticity test problem

First, let us describe the setup of the benchmark. We consider a 2D domain of
a cylinder with an attached elastic beam behind, see Figure 3.1. The circle has
radius r = 0.05 m and the beam has length l = 0.35 m and height h = 0.02
m. Further we define a control point A in the middle of the end of the beam as
shown in Figure 3.1. The evolution of the displacement of the point A = A(t) is
the quantity of our interest. The structural tests for the elastic beam in [64] are
denoted as CSM tests. There are two steady state problems CSM1 and CSM2
and a time dependent benchmark CSM3. The cylinder is considered as a rigid
body and the elastic beam is modelled as the St. Venant-Kirchhoff material. In
addition to [64] we consider also neo-Hookean material and the linear elasticity
model.

In the case of the static nonlinear elasticity we solve the problem defined in
Definition 2 and in the case of the static linear elasticity the problem defined
in Definition 4. The domain Ωb, defined in the previous paragraph, represents
the elastic beam. For both CSM1 and CSM2 we prescribe the acting body force
density f by the density

b = (0,−2)T [m.s−2] (3.1)

and the mass density
ρb = 103 [kg.m−3]. (3.2)

On the left part of the boundary connected to the rigid body we prescribe homo-
geneous Dirichlet boundary condition

uD = 0 on Γb
D, (3.3)

and on the rest of the boundary we prescribe the Neumann boundary condition
with no surface traction

gN = 0 on Γb
N . (3.4)

Finally, the material is characterized by Young’s modulus Eb and Poisson’s ratio
νb. For case CSM1 we set

Eb = 1.4 · 106, νb = 0.4, (3.5)

and for case CSM2
Eb = 5.6 · 106, νb = 0.4. (3.6)

The Lamé parameters are determined by relations (1.69). These parameters
characterize the considered nonlinear elasticity materials and the linear elasticity
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material as well. Hereby we defined actually six different static elasticity problems
given by the choice of CSM case and given material.

The static test problems were computed on 4 different triangular computa-
tional meshes. The computational meshes are visualized in Figure 3.2 and their
characteristics are assigned in Table 3.1. For the generation of the triangular
meshes we used the finite element grid generator Gmsh [34].

Mesh #1:

Mesh #2:

Mesh #3:

Mesh #4:

Figure 3.2: Computational meshes for elasticity benchmark problems.

number of elements ∼ h[10−3]
Mesh #1 722 7.31
Mesh #2 1348 5.17
Mesh #3 2822 3.40
Mesh #4 11787 1.75

Table 3.1: Size of the meshes for elasticity benchmark problems.
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3.1.1 Linear elasticity

First we introduce results for the simplest linear elasticity problem. The visualiza-
tion of the solution obtained for the CSM1 case considering the linear elasticity is
illustrated in Figure 3.3 and accordingly the CSM2 case in Figure 3.4. The colour
scale represents the magnitude of the displacement. We tested all three variants
of the DGM for the linear elasticity model. That is the IIPG, SIPG, and NIPG,
which were introduced in Section 2.2.1. We considered different degrees of the
polynomial approximation and for the computation we used all the computational
meshes mentioned above.

In Tables 3.2, 3.3, and 3.4, respectively, we present the comparison of the
displacement of the point A for different meshes and space polynomial degree p
using the IIPG, SIPG, and NIPG methods, respectively. Let us denote that the
displacement in the x1 direction is practically zero. It is negligible with respect
to the size of the whole body.

According to the Section 3.3, where we discuss the choice of the penalty coef-
ficient, we set the parameter Cb

W = 4 · 106 for the CSM1 case and Cb
W = 1.6 · 107

for the CSM2 case. The results show that the displacement of the point A is
approximately converging to the value (0.0,−68.00 · 10−3) in case CSM1 and
(0.0,−17.00 · 10−3) in case CSM2, respectively, considering the linear elasticity
model. Further we can observe that all variants of the DGM give similar re-
sults. For the third polynomial degree of the approximation the displacement is
varying more than expected. This can be improved by the choice of the penalty
parameter. On the other hand in view of our experience with practical use of the
DGM for elasticity problems, there is no need to use higher degree of polynomial
approximation.

Figure 3.3: Linear elasticity: Deformation of the beam in case CSM1.
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CSM1 CSM2
# elem. p u1 [×10−6] u2 [×10−3] u1 [×10−7] u2 [×10−3]
722 1 1.2375 -69.6795 3.0939 -17.4199
1348 1 0.0117 -68.3748 0.0293 -17.0937
2822 1 -0.0893 -68.1856 -0.2243 -17.0461
11787 1 -0.0203 -68.0673 -0.0508 -17.0168
722 2 -0.0697 -68.1057 -0.1744 -17.0264
1348 2 -0.0437 -68.0419 -0.1092 -17.0105
2822 2 0.0074 -68.0308 0.0186 -17.0077
11787 2 -0.0006 -68.0229 -0.0014 -17.0057
722 3 -0.0019 -68.0840 -0.0048 -17.0210
1348 3 0.0029 -68.0354 0.0098 -17.0123
2822 3 0.0004 -68.0492 0.0073 -17.0089
11787 3 0.0033 -68.0242 0.0032 -17.0061

Table 3.2: Linear Elasticity, IIPG method: Comparison of the displacement of
the point A for different meshes and space polynomial degree p. CSM1 (left) and
CSM2 (right).

CSM1 CSM2
# elem. p u1 [×10−6] u2 [×10−3] u1 [×10−7] u2 [×10−3]
722 1 1.3593 -67.4657 3.3984 -16.8664
1348 1 -1.5105 -67.2251 -3.7763 -16.8063
2822 1 0.0331 -67.6397 0.0827 -16.9099
11787 1 -0.1014 -67.9179 -0.2536 -16.9795
722 2 0.0126 -68.0612 0.0316 -17.0153
1348 2 0.0228 -68.0294 0.0571 -17.0073
2822 2 0.0230 -68.0393 0.0576 -17.0098
11787 2 -0.0044 -68.0244 -0.0111 -17.0061
722 3 -0.0772 -68.0680 -0.1931 -17.0170
1348 3 -0.1811 -68.0804 -0.4527 -17.0201
2822 3 0.5117 -68.0970 1.2792 -17.0242
11787 3 -10.024 -68.0647 -25.061 -17.0162

Table 3.3: Linear Elasticity, SIPG method: Comparison of the displacement of
the point A for different meshes and space polynomial degree p. CSM1 (left) and
CSM2 (right).
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Figure 3.4: Linear elasticity: Deformation of the beam in case CSM2.

CSM1 CSM2
# elem. p u1 [×10−6] u2 [×10−3] u1 [×10−7] u2 [×10−3]
722 1 0.7784 -69.1857 1.9461 -17.2964
1348 1 -0.0692 -68.2617 -0.1730 -17.0654
2822 1 -0.0842 -68.1317 -0.2106 -17.0329
11787 1 -0.0307 -68.0549 -0.0767 -17.0137
722 2 -0.0393 -68.1159 -0.0982 -17.0290
1348 2 -0.0452 -68.0530 -0.1130 -17.0132
2822 2 -0.0001 -68.0370 -0.0003 -17.0092
11787 2 0.0001 -68.0264 0.0003 -17.0066
722 3 -0.0013 -68.0549 -0.0033 -17.0137
1348 3 0.0014 -68.0260 0.0036 -17.0065
2822 3 0.0019 -68.0223 0.0048 -17.0056
11787 3 0.0595 -68.0122 0.1488 -17.0031

Table 3.4: Linear Elasticity, NIPG method: Comparison of the displacement of
the point A for different meshes and space polynomial degree p. CSM1 (left) and
CSM2 (right).
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3.1.2 Nonlinear elasticity

In this section we consider the static nonlinear elasticity problem. As we ex-
plained in Section 2.2, only the IIPG variant of the DGM makes sense for the
discretization of the nonlinear elasticity problem. We need to choose a penalty
coefficient similarly as for the linear elasticity problem. This parameter was cho-
sen using the same strategy as described in Section 3.3. This time we set the
parameter Cb

W = 6 ·106 for the CSM1 case and Cb
W = 2.0 ·107 for the CSM2 case.

Again we consider different degrees of the polynomial approximation and for the
computation we use meshes described in Table 3.1 and visualized in Figure 3.2.
The nonlinear algebraic problem was solved with the Newton method with given
tolerance ε = 10−8.

In Table 3.5 we present the results for the St. Venant-Kirchhoff model and
in Table 3.6 the results for the neo-Hookean model. Similarly as in the case of
linear elasticity we compare the displacement of the point A for different meshes
and space polynomial degree p. The visualization of the solution obtained for the
CSM1 case and CSM2 case considering the St. Venant-Kirchoff model and neo-
Hookean model is illustrated in Figures 3.5 and 3.8 and in Figures 3.6 and 3.9,
respectively. In all figures the colour scale represents the magnitude of the dis-
placement mapping. We can see, that the results are almost identical. On the
other hand they are different to the linear elasticity model. We show the differ-
ence between the linear elasticity model and St. Venant-Kirchoff model also in
the visualization of the deformation in Figure 3.7 and in Figure 3.10 for the case
CSM1 and CSM2, respectively. The linear elasticity model is suitable for small
deformations, where it should be roughly equal to the nonlinear elasticity model.
As we can see in case CSM2, the results are corresponding to this assumption,
whereas in case CSM1 by larger deformation the results are different. We use the
results obtained by the use of the IIPG variant of the DGM for linear elasticity.

For the St. Venant-Kirchhoff model we can compare our results with results
obtained in [64]. The reference displacement of the point A in [64] is given as
(−7.187 · 10−3,−66.10 · 10−3) in case CSM1 and (−0.469 · 10−3,−16.97 · 10−3) in
case CSM2, respectively. Our results show a good agreement with computations
in [64].
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Figure 3.5: St. Venant-Kirchhoff material: Deformation of the beam in case
CSM1.

Figure 3.6: Neo-Hookean material : Deformation of the beam in case CSM1.

Figure 3.7: Comparison of linear elastic material (red) and nonlinear St. Venant-
Kirchhoff material (blue): Deformation of the beam in case CSM1.
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Figure 3.8: St. Venant-Kirchhoff material: Deformation of the beam in case
CSM2.

Figure 3.9: Neo-Hookean material : Deformation of the beam in case CSM2.

Figure 3.10: Comparison of linear elastic material (red, but in fact not visible,
because the difference is minimal) and nonlinear St. Venant-Kirchhoff material
(blue): Deformation of the beam in case CSM2.
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CSM1 CSM2
# elem. p u1 [×10−3] u2 [×10−3] u1 [×10−3] u2 [×10−3]
ref -7.187 -66.10 -0.469 -16.97
722 1 -7.20401 -66.2164 -0.47908 -17.1700
1348 1 -7.11515 -65.7639 -0.46835 -16.9609
2822 1 -7.14785 -65.9148 -0.46850 -16.9634
11787 1 -7.17825 -66.0579 -0.46892 -16.9721
722 2 -7.19961 -66.1617 -0.46995 -16.9922
1348 2 -7.18807 -66.1028 -0.46914 -16.9761
2822 2 -7.18782 -66.1024 -0.46906 -16.9749
11787 2 -7.18749 -66.1012 -0.46900 -16.9739
722 3 -7.19784 -66.1558 -0.46972 -16.9888
1348 3 -7.19137 -66.1217 -0.46929 -16.9798
2822 3 -7.18955 -66.1122 -0.46915 -16.9769
11787 3 -7.18774 -66.1032 -0.46901 -16.9743

Table 3.5: St. Venant-Kirchhoff material: Comparison of the displacement of the
point A for different meshes and space polynomial degree p. CSM1 (left) and
CSM2 (right).

CSM1 CSM2
# elem. p u1 [×10−3] u2 [×10−3] u1 [×10−3] u2 [×10−3]
722 1 -7.17686 -66.2116 -0.47734 -17.1692
1348 1 -7.08933 -65.7710 -0.46660 -16.9610
2822 1 -7.12204 -65.9243 -0.46672 -16.9638
11787 1 -7.15143 -66.0644 -0.46711 -16.9722
722 2 -7.17255 -66.1696 -0.46810 -16.9924
1348 2 -7.16094 -66.1093 -0.46731 -16.9762
2822 2 -7.16077 -66.1090 -0.46723 -16.9750
11787 2 -7.16050 -66.1077 -0.46732 -16.9770
722 3 -7.17083 -66.1623 -0.46790 -16.9889
1348 3 -7.16435 -66.1281 -0.46746 -16.9799
2822 3 -7.16255 -66.1186 -0.46718 -16.9740
11787 3 -7.16075 -66.1097 -0.46719 -16.9744

Table 3.6: Neo-Hookean material: Comparison of the displacement of the point
A for different meshes and space polynomial degree p. CSM1 (left) and CSM2
(right).
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3.2 Dynamic elasticity test problem

The dynamic elasticity case CSM3 is set similarly to the static elasticity case
CSM1. We prescribe the homogeneous Dirichlet boundary condition on the part
of the boundary where the beam is attached to the cylinder. The volume force
acting on the body mimics the gravity. No surface forces are considered and the
damping coefficient is set to zero. The initial condition for the time-dependent
problem CSM3 is given by the reference configuration and zero initial deformation
velocity. More precisely, we set boundary conditions

uD = 0 on Γb
D × [0, T ], gN = 0 on Γb

N × [0, T ], (3.7)

initial condition
u0 = 0, vb0 = 0 in Ωb, (3.8)

acting body force

f = ρbb, b = (0,−2)T , ρb = 103 in Ωb × [0, T ], (3.9)

and damping coefficient CM = 0. Further, for CSM3 we set

Eb = 1.4 · 106, νb = 0.4 (3.10)

as for CSM1.
The CSM3 is solved only on two different unstructured triangulations Mesh #1

and Mesh #3 with 722 and 2822 elements , see Figure 3.2. The time discretization
is carried out by the first and second order BDF method with constant time step.
For all computations the constant Cb

W is set in correspondence with given Lamé
parameters as it was described in Section 3.3. According to our numerical tests,
we choose Cb

W = 6 · 106. Except of the results in Tables 3.9 and 3.10 we consider
piecewise linear approximation in space and triangulation Mesh #1.

Figures 3.11, 3.12, and 3.13, demonstrate the deformation of the beam for the
test case CSM3 for the linear elasticity, St. Venant-Kirchhoff, and neo-Hookean
material, respectively. There is no significant difference between the two nonlinear
materials. Comparison of the displacement of the point A for different materials
for BDF2 and time step 0.01 is shown in Figure 3.14. For the case of linear
elasticity material we compare the different variants of the DG discretization,
see Figure 3.15. We can see that the results are almost the same for NIPG and
IIPG. For SIPG we see slightly different solution as in static case. In all other
experiments the IIPG method is used. Further, we show the evolution of the
displacement of the point A for BDF1 and BDF2 and different time steps. The
results for linear elastic material are shown in Figures 3.16 and 3.17, the results
for St. Venant-Kirchhoff material are shown in Figures 3.18 and 3.19, and the
results for neo-Hookean material are shown in Figures 3.20 and 3.21.

According to [64] for the St. Venant-Kirchhoff material we compare the time
dependent values of the displacement of the point A, which are represented by
the mean value, amplitude and frequency. The mean value and amplitude are
computed from the last period of the oscillations by taking the maximum (max)
and minimum (min) values. Then mean = 1/2(max + min), and amplitude =
1/2(max−min). The frequency of the oscillations is computed by the fast Fouri-
er transform (FFT) and taking the lowest significant frequency present in the
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spectrum. The data denoted by “ref” represent results from [64]. In Tables 3.7
and 3.8, respectively, are the data obtained for different time steps for the method
BDF1 and BDF2, respectively. We can see that for BDF1 we need even smaller
time step to obtain satisfactory results. The space polynomial degree was set to
p = 1 and we used the triangulation Mesh #1. In Table 3.9 we compare the
results obtained by the use of different polynomial approximations in space. Fi-
nally, in Table 3.10 we compare the results obtained for different triangulations.
Our results show a very good agreement with computations from [64].
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Figure 3.11: Linear elasticity: Deformation of the beam in case CSM3.

Figure 3.12: St. Venant-Kirchhoff: Deformation of the beam in case CSM3.

Figure 3.13: Neo-Hookean: Deformation of the beam in case CSM3.
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ferent materials, IIPG variant, time step 0.01.
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method τ u1 [×10−3] u2 [×10−3]
ref −14.305± 14.305 [1.0995] −63.607± 65.160 [1.0995]
BDF1 0.04 −7.205± 0.003 [1.0720] −66.220± 0.016 [1.0720]
BDF1 0.02 −7.186± 0.175 [1.0805] −66.130± 0.789 [1.0805]
BDF1 0.01 −7.200± 1.564 [1.0875] −65.795± 7.079 [1.0875]
BDF1 0.005 −7.846± 4.702 [1.0925] −65.449± 21.353 [1.0925]

Table 3.7: CSM3: Comparison of the displacement of the point A for BDF1,
St. Venant-Kirchhoff material and different time steps τ . The values are written
in the format “mean value ± amplitude [frequency]”.

method τ u1 [×10−3] u2 [×10−3]
ref −14.305± 14.305 [1.0995] −63.607± 65.160 [1.0995]
BDF2 0.04 −10.566± 9.963 [1.0675] −64.866± 45.218 [1.0675]
BDF2 0.02 −13.477± 13.462 [1.0850] −64.133± 61.177 [1.0850]
BDF2 0.01 −14.119± 14.111 [1.0900] −63.905± 64.212 [1.0900]
BDF2 0.005 −14.454± 14.453 [1.0925] −64.384± 64.939 [1.0925]

Table 3.8: CSM3: Comparison of the displacement of the point A for BDF2,
St. Venant-Kirchhoff material and different time steps τ . The values are written
in the format “mean value ± amplitude [frequency]”.

p. degree τ u1 [×10−3] u2 [×10−3]
ref −14.305± 14.305 [1.0995] −63.607± 65.160 [1.0995]
1 0.01 −14.119± 14.111 [1.0900] −63.905± 64.212 [1.0900]
2 0.01 −14.159± 14.150 [1.0900] −63.928± 64.290 [1.0900]
3 0.01 −14.061± 14.054 [1.0925] −63.969± 64.246 [1.0925]

Table 3.9: CSM3: Comparison of the displacement of the point A for BDF2,
St. Venant-Kirchhoff material and different polynomial degrees of approximation
in space. The values are written in the format “mean value ± amplitude [frequen-
cy]”.

# elements τ u1 [×10−3] u2 [×10−3]
ref −14.305± 14.305 [1.0995] −63.607± 65.160 [1.0995]
722 0.01 −14.119± 14.111 [1.0900] −63.905± 64.212 [1.0900]
2822 0.01 −14.115± 14.108 [1.0900] −63.869± 64.139 [1.0900]

Table 3.10: CSM3: Comparison of the displacement of the point A for BDF2,
St. Venant-Kirchhoff material and different meshes. The values are written in the
format “mean value ± amplitude [frequency]”.
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3.3 Choice of the penalty coefficient

The discretization by the DGM includes one optional parameter, which estimates
the penalty weight in the interior and boundary penalty term. In Chapter 2 we

introduced the penalty weight in the form
Cb

W

hΓ
, where Cb

W > 0 is the penalization
constant and hΓ is in some way proportional to the length of the edge Γ. The
following three possibilities are implemented: mean average of diameters of the
neighbouring elements, their maximum, or the length of the edge, see (2.9)–(2.11).
Our experiments were computed on meshes, where the value of hΓ does not differ
a lot for these three possibilities. Therefore in our computations we consider just
the last one and concern more about the choice of the parameter Cb

W . From
the error analysis of the DGM for simpler problems we know that the penalty
coefficient should be large enough. On the other hand, stronger penalty causes
worse computational properties of the corresponding algebraic system.

Let us describe the following simple static linear elasticity problem with given
exact solution

u =
(

sin(2(x1 + 1)) cos(x2 + 1)2, cos(π(x1 + 1)) sin(x2 + 1)2
)T
, (3.11)

see the visualization of the deformation given by this exact solution in Figure 3.23.
We consider a unit square as a computational domain, see Fig. 3.22. The material
is characterized by Young’s modulus Eb and Poisson’s ratio νb:

Eb = 1.0 · 105, νb = 0.3. (3.12)

According to the exact solution we define the acting body force density f and on
the boundary we prescribe the Dirichlet boundary condition

uD = u on ∂Ωb. (3.13)

We solve the problem on different meshes, with different polynomial order of ap-
proximation and with different Cb

W . For every computation we estimate the error
in L2-norm and we show the dependence of the error on the choice of Cb

W . The
comparisons for the IIPG, NIPG, and SIPG, respectively, are in Figures 3.24, 3.25,
and 3.26, respectively. We can see, that we can approximately estimate the op-
timal choice Cb

W = 30000 for linear approximation. With higher polynomial
degree the approximate optimal choice can slightly vary, see Figures 3.27, and
3.28. When we modify the case and increase Eb, we can see that the approximate
optimal choice is also increasing. Let us take Eb = 1 · 105, 2 · 105, and 4 · 105,
respectively. In these cases the optimal choices are approximately Cb

W = 3 · 105,
Cb

W = 6 ·105, and Cb
W = 1 ·106, respectively, see Figure 3.29. The same thing hap-

pens, when we vary the Poisson’s ratio taking νb = 0.3, νb = 0.49, and νb = 0.499,
respectively. Then we obtain as the optimal choice approximately Cb

W = 3 · 105,
Cb

W = 6 · 106, and Cb
W = 3 · 107, respectively, see Figure 3.30. By this observation

we can say that the approximate optimal choice of the parameter Cb
W depends

on the given Lamé parameters λ and µ, see Table 3.11.
According to our results we recommend to set the parameter Cb

W as a multiple
of the Lamé parameter λ. As approximately optimal value seems to be the double
of parameter λ. We should not set Cb

W less than 2λ. We use the strategy to set
Cb

W at first as 2λ and if we are not satisfied with our solution, we increase the
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value. The choice of the penalty parameter is a drawback of DGM, but from
our experiments we can see, that the interval, which leads to sufficiently good
approximation, is large enough.

Figure 3.22: Unit square mesh.

Figure 3.23: Solution on the unit square, visualization of the deformation, dis-
placement magnitude (blue to red).
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Figure 3.24: IIPG: L2-norm error, P1 approximation.
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Figure 3.25: NIPG: L2-norm error, P1 approximation.
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Figure 3.26: SIPG: L2-norm error, P1 approximation.
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Figure 3.27: IIPG: L2-norm error, P2 approximation.
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Figure 3.28: IIPG: L2-norm error, P3 approximation.
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Eb νb λ µ ≈ Cb
W,opt

1 · 105 0.3 57692 38462 3 · 105

2 · 105 0.3 115384 76923 6 · 105

4 · 105 0.3 230769 153846 1 · 106

1 · 105 0.49 1644295 33557 6 · 106

1 · 105 0.499 16644429 33356 3 · 107

Table 3.11: Approximation of the optimal value of the penalty parameter for
different material characteristics, IIPG variant.
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3.4 Comparison of the DGM and FEM

The standard conforming finite element method (FEM) is more popular for the
solution of elasticity problems. In this section we compare the DGM and the
FEM for the dynamic elasticity problem. We use our own FEM implementation,
which is described in [31, 40, 48]. It is based on continuous piecewise linear
semidiscretization in space. The approximate solution of the structural problem
is sought in the finite-dimensional space of the continuous functions, which are
piecewise linear on every element of the triangulation T b

h . The triangulation is
constructed similarly as for the DGM, but the standard conforming properties
from the finite element method are required, see e.g. [10]. Nevertheless in all
our numerical experiments in this work we use just the triangulations fulfilling
these properties. The space semidiscretization of the problem leads to the system
of ordinary differential equations, which is equipped with the initial conditions.
By that is obtained the discrete initial value problem, which is solved by the
Newmark method [9]. For more detailed description of the discretization see
[31, 48].

For the numerical comparison of the introduced FEM method with the DGM
method we use the case CSM3, described in Section 3.2, considering the linear
elasticity model. The CSM3 is solved similarly on different unstructured triangu-
lations. We compare the obtained results with the solution obtained by the IIPG
variant of the DGM, where the time discretization was carried out by the second
order BDF method with constant time step. Further for the DGM we set the
constant Cb

W = 6 · 106 and consider the piecewise linear approximation in space.
In all experiments we use constant time step τ = 0.005.

As in Section 3.2, we compare the time dependent values of the position of
the point A, which are represented by the mean value, amplitude and frequency.
In Table 3.12 are the obtained data for different methods and triangulations.
Furthermore in Figure 3.31 we show the evolution at the point A. For the FEM
we use finer mesh, in order to compute the problem with similar number of degrees
of freedom. The results obtained by the FEM and the DGM for the particular
test case are approximately the same for similar number of degrees of freedom.

The goal of this comparison is to show, that by the DGM we get comparable
results with the FEM. Our main motivation for the choice of the DGM was that
we are using the DGM for the fluid flow problem and therefore we use the same
implementation technique also for the elasticity problem. Although we do not
compare the DGM and the FEM for wide range of test cases, we can say that the
DGM is suitable for the numerical solution of the particular case and at least as
good as the FEM. However, in the future, it will be interesting to compare our
implementation with other FEM based solvers and for different test cases.
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method # elem. # DOF u2 [×10−3]
DGM (IIPG) 722 8664 −66.298± 70.739 [1.070]
FEM 2822 3102 −65.642± 67.066 [1.090]
FEM 8472 8940 −66.771± 68.313 [1.080]

Table 3.12: CSM3: Comparison of the displacement of the point A for BDF2,
IIPG variant of the DGM and FEM with Newmark method for the linear elas-
ticity material. The values are written in the format “mean value ± amplitude
[frequency]”.
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Figure 3.31: CSM3: Comparison of the displacement of the point A for BDF2,
IIPG variant of the DGM and FEM with Newmark method for the linear elasticity
material.
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Figure 3.32: Nonhomogeneous elastic beam.

3.5 Nonhomogeneous material

In previous sections we presented numerical experiments, where the material
was considered to be homogeneous. The current implementation allows us to
formulate the problem also for the nonhomogeneous elasticity material. We still
assume, that the material is given to be linear or nonlinear in the whole domain.
In the case of nonlinear elasticity we also require the same nonlinear elasticity
model for the whole domain. This means that the material parameters are given
as functions over the domain Ωb.

Our goal in this section is to present numerical results obtained for the non-
homogeneous elasticity model without further numerical analysis. In Chapter 5
the nonhomogeneous elasticity model is used for the simulation of the simplified
model of the vocal folds. Here, we follow the problem solved in previous section,
which can be compared with results obtained for the homogeneous material. Fur-
ther, we introduce problem, which is motivated by the simulation of the vocal
folds motion.

3.5.1 Nonhomogeneous elastic beam

Let us introduce the static elasticity problem similar to CSM1 or CSM2. Contrary
to them we assume, that the Lamé parameters are given not as constants, but as
functions defined on the reference domain Ωb, so that

λ(x) =







1.0 · 106 for x1 ≤
1
3
l,

2.0 · 106 for 1
3
l < x1 ≤

2
3
l,

8.0 · 106 for 2
3
l < x1,

(3.14)

µ(x) =







0.25 · 106 for x1 ≤
1
3
l,

0.5 · 106 for 1
3
l < x1 ≤

2
3
l,

2.0 · 106 for 2
3
l < x1,

(3.15)

where l is the length of the beam. The division of the domain into three parts
is visualized in Figure 3.32. In practical computations the Lamé parameters are
evaluated as functions in quadrature points.

The boundary conditions and the applied forces are set as in Section 3.1, i.e.
the acting body force density f is prescribed by the density

b = (0,−2)T [m.s−2] (3.16)

and the mass density
ρb = 103 [kg.m−3]. (3.17)
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Figure 3.33: Static deformation of the nonhomogeneous elastic beam, neo-
Hookean material.

Figure 3.34: Static deformation of the nonhomogeneous elastic beam, St. Venant-
Kirchhoff material.

On the left part of the boundary connected with the rigid body we prescribe
homogeneous Dirichlet boundary condition

uD = 0 on Γb
D, (3.18)

and on the rest of the boundary we prescribe the Neumann boundary condition
with no surface traction

gN = 0 on Γb
N . (3.19)

The test problem was computed on Mesh #1, see Figure 3.2 and Table 3.1,
for both introduced nonlinear materials. The visualization of the solution using
the neo-Hookean material is in Figure 3.33 and using the St. Venant-Kirchhoff
material in Figure 3.34. We can see in Table 3.13, that there is a small difference
between the displacements of the point A.

material u1 [×10−3] u2 [×10−3]
St. Venant-Kirchhoff −23.378 −119.191
neo-Hookean −23.277 −119.168

Table 3.13: CSM3: Comparison of the displacement of the point A for St. Venant-
Kirchhoff and neo-Hookean material.
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3.5.2 Nonhomogeneous model of vocal folds

Finally, let us define the dynamic elasticity problem, where the elastic body is
motivated by the cut of a vocal fold. The body is divided into a few regions with
different material properties. We prescribe the surface force acting on the body
for short time and let the body vibrate further without any other influence.

The division of the domain into 4 regions with different material characteristics
is illustrated in Figure 3.35 by the Lamé parameters. The boundaries of the
subdomains are given by spline interpolations, see the .NET implementation of
the model of vocal folds in Attachment A.1. Additionally, the settings of the
material characteristics are described in Table 3.14. Further, we consider, that
material density is the same for all subdomains and we set the acting body force
density f to zero

ρb = 1040 [kg.m−3], f = 0 in Ωb × [0, T ]. (3.20)

We prescribe the initial displacement and initial velocity to be zero

u0 = 0, vb0 = 0 in Ωb. (3.21)

On the bottom, right and left straight part of the boundary we prescribe homo-
geneous Dirichlet boundary condition

uD = 0 in Γb
D × [0, T ], (3.22)

and on the curved part of the boundary we prescribe the Neumann boundary
condition in the following way

gN = −pNn in Γb
N × [0, T ], (3.23)

where pN is a pressure defined as

pN =















800 for x1 ∈ [0, 0.00875), t ∈ [0, 0.02),
−1000 for x1 ∈ [0.00875, 0.015), t ∈ [0, 0.02),

200 for x1 ∈ [0.015, 0.0175], t ∈ [0, 0.02),
0 else.

(3.24)

The visualization of the solution at time instants 0.0, 0.002, . . . , 0.018 s using the
neo-Hookean material is in Figure 3.37. (The figures are ordered in such a way
that in the first line are the patterns corresponding to the time instants t = 0.0,
0.002 s, the second line corresponds to t = 0.004, 0.006 s, etc.) We used the
same colours to distinguish the regions with different material characteristics as
in Figure 3.35. Further we show the displacement u of the point [0.01,−0.001]
in Figure 3.38 and the Fourier analysis of the displacement in the x1 and x2
directions in Figures 3.39 and 3.40, respectively. The value of the first main
frequencies is approximately 90 and 144 Hz.

70



Figure 3.35: Nonhomogeneous model of vocal folds - Lamé parameters.
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Figure 3.36: Model of vocal folds - computational mesh.
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Figure 3.37: Nonhomogeneous model of vocal folds, visualization of the deforma-
tion at time instants 0.0, 0.002, . . . , 0.018 s.
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Figure 3.39: Nonhomogeneous model of vocal folds, Fourier analysis of the dis-
placement of the point [0.01, -0.001] in the direction x1.
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Figure 3.40: Nonhomogeneous model of vocal folds, Fourier analysis of the dis-
placement of the point [0.01, -0.001] in the direction x2.
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Eb νb λ µ
12 · 103 0.4 17143 4285
8 · 103 0.4 11430 2857
1 · 103 0.495 33110 335

100 · 103 0.4 142857 35714

Table 3.14: Nonhomogeneous model of vocal folds - Lamé parameters.
See Figure 3.35 for the visualization of the corresponding subdomains, ordered
from the lower layer to the upper layer.
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4. Compressible Navier-Stokes

equations

In this chapter we shall deal with the problem of compressible viscous flow
in a bounded two-dimensional domain depending on time. This problem is de-
scribed by the system of compressible Navier-Stokes equations. The derivation
of this system can be found e.g. in [27]. We consider Newtonian fluid flow, which
means that the viscous part of the stress tensor depends linearly on the velocity
deformation tensor. Examples of Newtonian fluids are air or water, but also other
gases and many common liquids.

Contrary to the elasticity problem, the fluid flow problem is formulated in
Eulerian coordinates. However, because of the time-dependence of the computa-
tional domain, we rewrite this system with the aid of the arbitrary Lagrangian-
Eulerian (ALE) method. We use the same notation x as for the Lagrangian
coordinates. In Chapter 5, which deals with FSI problems, we pay attention
to the use of different coordinates. For the numerical solution, we apply the dis-
continuous Galerkin finite element method to the governing problem and finish
the chapter with implementation notes.

4.1 Problem formulation

Let Ωf
t = Ωf(t) ⊂ R2, t ∈ [0, T ], T > 0 be a bounded domain depending on time.

The system describing compressible flow consists of the continuity equation,
the Navier-Stokes equations and the energy equation:

∂ρ

∂t
+ div(ρv) = 0, (4.1)

∂ρvi
∂t

+ div(ρviv) =

2
∑

j=1

∂σf
ij

∂xj
, for i = 1, 2 ,

∂E

∂t
+ div(Ev) =

2
∑

i=1

∂

∂xi

(

2
∑

j=1

σf
ijvj + κ

∂θ

∂xi

)

,

where

σf
ij = −pδij + σV

ij , i, j = 1, 2 , (4.2)

σV
ij = λ divv δij + 2µ dij(v), dij(v) =

1

2

(

∂vi
∂xj

+
∂vj
∂xi

)

. (4.3)

The above system is completed by the thermodynamical relations for the perfect
gas:

p = (γ − 1)

(

E −
1

2
ρ|v|2

)

, θ =
1

cv

(

E

ρ
−

1

2
|v|2
)

. (4.4)
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We use the following notation:

ρ – fluid density,
p – pressure,
E – total energy,

v = (v1, v2) – velocity vector,
θ – absolute temperature,

cv > 0 – specific heat at constant volume,
cp > 0 – specific heat at constant pressure,

γ = cp
cv
> 1 – Poisson adiabatic constant,

µ > 0, λ = −2µ/3 – viscosity coefficients,
κ > 0 – heat conduction coefficient,
σV
ij – components of the viscous part of the stress tensor,

σf
ij – components of the stress tensor σf ,
zD – velocity of a moving wall.

Finally the resulting system (4.1) needs to be equipped with initial and boundary
conditions characterizing the behaviour of the fluid flow at initial time t = 0 and
on the boundary ∂Ωf

t of the domain Ωf
t . The initial conditions are simply given

by initial data v0, ρ0 and p0:

v(x, 0) = v0(x), (4.5)

ρ(x, 0) = ρ0(x),

p(x, 0) = p0(x).

For the choice of the boundary conditions let us assume that the boundary of
Ωf

t consists of three disjoint parts: ∂Ωf
t = ΓI ∪ ΓO ∪ ΓWt, where ΓI is the inlet,

ΓO is the outlet and ΓWt = ΓW (t) denotes impermeable walls that may move in
dependence on time. On the individual parts of the boundary we prescribe the
following conditions:

a) ρ|ΓI
= ρD, b) v|ΓI

= vD = (vD1, vD2)
T, (4.6)

c)

2
∑

i,j=1

σV
ijnivj + κ

∂θ

∂n
= 0 on ΓI ,

a)
2
∑

i=1

σV
ijni = 0, j = 1, 2, b)

∂θ

∂n
= 0 on ΓO, (4.7)

a) v = zD, b)
∂θ

∂n
= 0 on ΓWt, (4.8)

where ρD and vD are given functions.
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4.2 Dimensionless form

For the numerical solution of the compressible viscous flow it is suitable to use
the dimensionless form of the Navier-Stokes equations. According to [27] let us
introduce positive reference quantities:

L∗ - reference length,
U∗ - reference magnitude of velocity,
ρ∗ - reference density,
µ∗ - reference viscosity.

All other reference quantities can be derived from these basic ones:

L∗/U∗ - reference quantity for time,
ρ∗U∗2 - reference quantity for both pressure and total energy,
U∗2/cv - reference quantity for temperature.

With primes we denote the dimensionless quantities

x
′

i =
xi
L∗
, v

′

i =
vi
U∗
, v

′

=
v

U∗
, ρ

′

=
ρ

ρ∗
, (4.9)

p
′

=
p

ρ∗U∗2
, E

′

=
E

ρ∗U∗2
, θ

′

=
cvθ

U∗2
, t

′

=
tU∗

L∗
,

µ
′

=
µ

µ∗
, λ

′

=
λ

µ∗
.

Then system (4.1) can be written in the dimensionless form

∂ρ
′

∂t′
+ div(ρ

′

v
′

) = 0, (4.10)

∂ρ
′

v
′

i

∂t′
+ div(ρ

′

v
′

iv
′

) = −
∂p

′

∂x
′

i

+
1

Re

2
∑

j=1

∂σ
′V
ij

∂x
′

j

, for i = 1, 2 ,

∂E
′

∂t′
+ div(E

′

v
′

) = −div(p
′

v
′

) +
1

Re

(

2
∑

i=1

∂

∂x
′

i

(

2
∑

j=1

σ
′V
ij v

′

j

))

+
γ

Re Pr
∆θ

′

,

where

σ
′V
ij = λ

′

divv
′

δij + 2µ
′

d
′

ij(v
′

), (4.11)

d
′

ij(v
′

) =
1

2

(

∂v
′

i

∂x
′

j

+
∂v

′

j

∂x
′

i

)

, (4.12)

is the viscous part of the stress tensor in dimensionless form. Further,

Re =
ρ∗U∗L∗

µ∗
, (4.13)

Pr =
cpµ

∗

κ
(4.14)
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are the so-called Reynolds and Prandtl numbers. Finally we have to complete
system (4.10) with equations (4.4) in the dimensionless form

p
′

= (γ − 1)(E
′

−
1

2
ρ

′

|v
′

|2), (4.15)

θ
′

=

(

E
′

ρ′
−

1

2
|v

′

|2
)

. (4.16)

Furthermore the primes will be omitted, because system (4.10) has formally the
same form and properties as system (4.1). Then the system of governing equations
can be written in the dimensionless conservative form

∂w

∂t
+

2
∑

s=1

∂f s(w)

∂xs
=

2
∑

s=1

∂Rs(w,∇w)

∂xs
, (4.17)

where

w = (w1, . . . , w4)
T = (ρ, ρv1, ρv2, E)

T ∈ R
4, (4.18)

w = w(x, t), x ∈ Ωf
t , t ∈ (0, T ),

f s(w) = (fs1, · · · , fs4)
T = (ρvs, ρv1vs + δ1s p, ρv2vs + δ2s p, (E + p)vs)

T ,

Rs(w,∇w) = (Rs1, . . . , Rs4)
T =

1

Re

(

0, σV
s1, σ

V
s2, σ

V
s1 v1 + σV

s2 v2 +
γ

Pr

∂θ

∂xs

)T

,

σV
ij = λ divv δij + 2µ dij(v), dij(v) =

1

2

(

∂vi
∂xj

+
∂vj
∂xi

)

.

The vector-valued function w is called the state vector, functions f s are the
so-called inviscid fluxes and Rs represent viscous terms.

Let us present some properties of the inviscid and viscous fluxes f s and Rs,
which are important for introducing the linearization of the nonlinear fluxes,
which is fundamental for semi-implicit time discretization schemes. It is easy to
see that f s(αw) = α f s(w) for α > 0. This property implies that

f s(w) = As(w)w, s = 1, 2, (4.19)

where

As(w) =
Df s(w)

Dw
, s = 1, 2, (4.20)

are the Jacobi matrices of the mappings f s. The viscous terms Rs(w,∇w) can
be written in the form

Rs(w,∇w) =
2
∑

k=1

Ks,k(w)
∂w

∂xk
, s = 1, 2, (4.21)
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whereKs,k(w) ∈ R
4×4 are matrices depending on w in a nonlinear way (cf. [22]).

They can be expressed in the following form:

K1,1(w) =
1

Re











0, 0, 0, 0
−(2µ+ λ)w2

w2
1
, (2µ+ λ) 1

w1
, 0, 0

−µw3

w2
1
, 0, µ

w1
, 0

{K1,1}4,1 ,
(

2µ+ λ− γ
Pr

)

w2

w2
1
,
(

µ− γ
Pr

)

w3

w2
1
, γ

Pr w1











,

K1,2(w) =
1

Re











0, 0, 0, 0
−λw3

w2
1
, 0, λ

w1
, 0

−µw2

w2
1
, µ

w1
, 0, 0

−(λ+ µ)w2w3

w3
1
, µw3

w2
1
, λw2

w2
1
, 0











,

K2,1(w) =
1

Re











0, 0, 0, 0
−µw3

w2
1
, 0, µ

w1
, 0

−λw2

w2
1
, λ

w1
, 0, 0

−(λ+ µ)w2w3

w3
1
, λw3

w2
1
, µw2

w2
1
, 0











,

K2,2(w) =
1

Re











0, 0, 0, 0
−µw2

w2
1
, µ

w1
, 0, 0

−(2µ+ λ)w3

w2
1
, 0, (2µ+ λ) 1

w1
, 0

{K2,2}4,1 ,
(

µ− γ
Pr

)

w2

w2
1
,
(

2µ+ λ− γ
Pr

)

w3

w2
1
, γ

Pr w1











,

where

{K1,1}4,1 = −(2µ+ λ)
w2

2

w3
1

− µ
w2

3

w3
1

+
γ

Pr

(

−
w4

w2
1

+
w2

2 + w2
3

w3
1

)

,

{K2,2}4,1 = −µ
w2

2

w3
1

− (2µ+ λ)
w2

3

w3
1

+
γ

Pr

(

−
w4

w2
1

+
w2

2 + w2
3

w3
1

)

.

4.3 The Arbitrary Lagrangian-Eulerian form

Because of the dependence of the computational domain on time, we employ
the arbitrary Lagrangian-Eulerian (ALE) method, see e.g. [52]. It is based on
a regular one-to-one ALE mapping of the reference configuration Ωf

0 onto the
current configuration Ωf

t . Let us denote by X the points of the reference domain
Ωf

0 and by x the points of the domain Ωf
t . Then

At : Ω
f

0 −→ Ω
f

t , i.e. X ∈ Ω
f

0 7−→ x = x(X, t) = At(X) ∈ Ω
f

t .

We define the domain velocity z = (z1, z2) by the relations

z̃(X, t) =
∂

∂t
At(X), t ∈ [0, T ], X ∈ Ωf

0 , (4.22)

z(x, t) = z̃(A−1
t (x), t), t ∈ [0, T ], x ∈ Ωf

t ,

and the ALE derivative of a vector function w = w(x, t) defined for x ∈ Ωf
t and

t ∈ [0, T ]:
DA

Dt
w(x, t) =

∂w̃

∂t
(X, t), (4.23)
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where
w̃(X, t) = w(At(X), t), X ∈ Ωf

0 , x = At(X).

Then by the chain rule and simple manipulation we have

DAw

Dt
=
∂w

∂t
+

2
∑

s=1

∂ (zsw)

∂xs
−w divz, (4.24)

and system (4.17), describing the compressible flow, can be written in the ALE
form (see, e.g. [30]) as

DAw

Dt
+

2
∑

s=1

∂gs(w)

∂xs
+w divz =

2
∑

s=1

∂Rs(w,∇w)

∂xs
, (4.25)

where
gs(w) = f s(w)− zsw, s = 1, 2. (4.26)

Now we can summarize the formulation of the flow problem in the following
definition.

Definition 9. (ALE formulation of the compressible Navier-Stokes equations)
Let us consider a time interval [0, T ] with T > 0 and a bounded domain Ωf

t =
Ωf (t) ⊂ R

2, t ∈ [0, T ], depending on time, with Lipschitz boundary ∂Ωf
t . We

assume that the boundary of the domain Ωf
t consists of three disjoint parts:

the inlet ΓI , the outlet ΓO and the impermeable walls ΓWt that may move in
dependence on time. It holds that ∂Ωf

t = ΓI ∪ ΓO ∪ ΓWt. We define the solution
of the compressible Navier-Stokes system as a state vector w : Ωf

t × [0, T ] → R4

defined in (4.18) such that

DAw

Dt
+

2
∑

s=1

∂gs(w)

∂xs
+w divz =

2
∑

s=1

∂Rs(w,∇w)

∂xs
, (4.27)

where DAw
Dt

is the ALE derivative of the function w, defined in (4.23), gs are the
inviscid fluxes defined in (4.26), z is the domain velocity defined in (4.22) and
Rs represents the viscous terms defined in (4.18). The definition of this problem
is completed by initial conditions defined in (4.5) and by boundary conditions
defined in (4.6)–(4.8).

4.4 Space semidiscretization of the flow prob-

lem

For the space semidiscretization we use the discontinuous Galerkin method (DGM)
leading to a system of ordinary differential equations. We construct a polygonal
approximation Ωf

ht of the domain Ωf
t . By Tht we denote a partition of the closure

Ω
f

ht of the domain Ωf
ht into a finite number of closed triangles K with mutually

disjoint interiors such that

Ω
f

ht =
⋃

K∈Tht

K. (4.28)
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By Fht we denote the system of all faces of all elements K ∈ Tht. Further, we
introduce the set of all boundary faces

FB
ht =

{

Γ ∈ Fht; Γ ⊂ ∂Ωf
ht

}

, (4.29)

the set of all “Dirichlet” boundary faces

FD
ht =

{

Γ ∈ FB
ht; a Dirichlet condition is given on Γ

}

(4.30)

and the set of all inner faces F I
ht = Fht \ F

B
ht. Each Γ ∈ Fht is associated with a

unit normal vector nΓ. For Γ ∈ FB
ht the normal nΓ has the same orientation as

the outer normal to ∂Ωf
ht.

For each Γ ∈ F I
ht there exist two neighbouring elements K

(L)
Γ , K

(R)
Γ ∈ Tht such

that Γ ⊂ ∂K
(R)
Γ ∩ ∂K

(L)
Γ . We use the convention that K

(R)
Γ lies in the direction

of nΓ and K
(L)
Γ lies in the opposite direction to nΓ. If Γ ∈ FB

ht, then the element

adjacent to Γ will be denoted by K
(L)
Γ .

The approximate solution will be sought in the space of piecewise polynomial
functions

Sht = [Sht]
4, with Sht = {ψ;ψ|K ∈ Pr(K) ∀K ∈ Tht}, (4.31)

where r > 0 is an integer and Pr(K) denotes the space of all polynomials on K
of degree ≤ r. A function ψ ∈ Sht is, in general, discontinuous on interfaces
Γ ∈ F I

ht. By ψ
(L)
Γ and ψ

(R)
Γ we denote the values of ψ ∈ Sht on Γ considered

from the side of the element K
(L)
Γ and K

(R)
Γ adjacent to Γ lying in the opposite

direction to nΓ and in the direction of nΓ, respectively. Then we set

〈ψ〉Γ = (ψ
(L)
Γ +ψ

(R)
Γ )/2, [ψ]Γ = ψ

(L)
Γ −ψ

(R)
Γ . (4.32)

The discrete problem is derived in the following way: We multiply system
(4.25) by a test function ψh ∈ Sht, integrate overK ∈ Tht, apply Green’s theorem,
sum over all elementsK ∈ Tht, use the concept of the numerical flux and introduce
suitable terms mutually vanishing for a regular exact solution. Moreover, we
carry out a suitable partial linearization of nonlinear terms. Similarly as in [30]
we define the following forms.

Convection form:
Taking into account the definition of gs in (4.26) and notation (4.20), we have

Dgs(w)

Dw
=
Df s(w)

Dw
− zsI = As(w)− zsI, (4.33)

and we can write

P g(w,n) =
2
∑

s=1

Dgs(w)

Dw
ns =

2
∑

s=1

(As(w)ns − zsnsI) . (4.34)

By [27], this matrix is diagonalizable. It means that there exists a nonsingular
matrix T = T (w,n) such that

P g = TΛT
−1, Λ = diag(λ1, . . . , λ4), (4.35)
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where λi = λi(w,n), i = 1, . . . , 4, are eigenvalues of the matrix P g. Now we
define the ”positive” and ”negative” parts of the matrix P g by

P±

g = TΛ±T−1, Λ± = diag(λ±1 , . . . , λ
±

4 ), (4.36)

where λ+ = max(λ, 0), λ− = min(λ, 0). Using the above concepts for arbitrary
stateswL,wR and a unit 2D vector n, we introduce the modified Vijayasundaram
numerical flux (cf. [27] or [65]) as

Hg(wL,wR,n) = P
+
g

(wL +wR

2
,n
)

wL + P−

g

(wL +wR

2
,n
)

wR. (4.37)

In this way we get the form defined for wh,wh,ψh ∈ Sht:

b̂h(wh,wh,ψh, t) (4.38)

= −
∑

K∈Tht

∫

K

2
∑

s=1

(As(wh(x))− zs(x))I)wh(x)) ·
∂ψh(x)

∂xs
dx

+
∑

Γ∈FI
ht

∫

Γ

(

P+
g

(〈

wh

〉

,nΓ

)

w
(L)
h + P−

g

(〈

wh

〉

,nΓ

)

w
(R)
h

)

· [ψh] dS

+
∑

Γ∈FB
ht

∫

Γ

(

P+
g

(

wh,nΓ

)

w
(L)
h + P−

g

(

wh,nΓ

)

w
(R)
h

)

·ψh dS,

which is linear with respect to wh and nonlinear with respect to wh.
If Γ ∈ FB

ht, it is necessary to specify the boundary state w
(R)
hΓ appearing

in the numerical flux Hg in the definition of the inviscid form b̂h. Here we
use the approach applied in the case of inviscid flow simulation, treated in [27].
This means that on Γ we prescribe m components of w and extrapolate 4 −m
components of w, where m is the number of negative eigenvalues of the matrix
P g(w

(L)
h ,n). On the impermeable wall (with a moving part) we prescribe the

normal component of the velocity

v · n = zD · n, (4.39)

where n is the unit outer normal to ΓWt
and zD is the wall velocity. Then the

numerical flux is approximated on Γ ⊂ ΓWt
by

Hg := p (0, n1, n2, zD · n)T . (4.40)

Viscous form

The linearized viscous form is defined on the basis of the fact thatRs(wh,∇wh)
can be expressed as in (4.18). We set Θ = 1, Θ = 0 or Θ = −1 and get the so-
called symmetric (SIPG), incomplete (IIPG) or nonsymmetric version (NIPG),
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respectively, of the discretization of viscous terms. We set

âh(wh,wh,ψh, t) =
∑

K∈Tht

∫

K

2
∑

s=1

2
∑

k=1

Ks,k(wh)
∂wh

∂xk
·
∂ψh

∂xs
dx (4.41)

−
∑

Γ∈FI
ht

∫

Γ

2
∑

s=1

〈

2
∑

k=1

Ks,k(wh)
∂wh

∂xk

〉

(nΓ)s · [ψh] dS

−
∑

Γ∈FD
ht

∫

Γ

2
∑

s=1

2
∑

k=1

Ks,k(wh)
∂wh

∂xk
(nΓ)s ·ψh dS

− Θ
∑

Γ∈FI
ht

∫

Γ

2
∑

s=1

〈

2
∑

k=1

KT
s,k(wh)

∂ψh

∂xk

〉

(nΓ)s · [wh] dS

− Θ
∑

Γ∈FD
ht

∫

Γ

2
∑

s=1

2
∑

k=1

KT
s,k(wh)

∂ψh

∂xk
(nΓ)s ·wh dS.

Interior and boundary penalization and right-hand side forms

Further, we define the forms

Jh(wh,ψh, t) =
∑

Γ∈FI
ht

∫

Γ

η[wh] · [ψh] dS +
∑

Γ∈FD
ht

∫

Γ

ηwh ·ψh dS, (4.42)

ℓh(wh,ψh, t) =
∑

Γ∈FD
ht

∫

Γ

2
∑

s=1

ηwB ·ψh dS (4.43)

− Θ
∑

Γ∈FD
ht

∫

Γ

2
∑

s=1

2
∑

k=1

KT
s,k(wh)

∂ψh

∂xk
(nΓ)s ·wB dS.

Here η|Γ = CWµ/hΓ, where hΓ can be defined as in (2.9)–(2.11), and CW > 0 is a
sufficiently large constant. The boundary state wB is defined on the basis of the
Dirichlet boundary conditions (4.6), a), b), (4.8) a) and extrapolation:

wB = (ρD, ρDvD1, ρDvD2, cvρDθ
(L)
Γ +

1

2
ρD|vD|

2) on ΓI , (4.44)

wB = w
(L)
Γ on ΓO, (4.45)

wB = (ρ
(L)
Γ , ρ

(L)
Γ zD1, ρ

(L)
Γ zD2, cvρ

(L)
Γ θ

(L)
Γ +

1

2
ρ
(L)
Γ |zD|

2) on ΓWt
. (4.46)

The quantities ρ
(L)
Γ , θ

(L)
Γ , etc. are obtained by the extrapolation of ρ, θ, etc. from

from K
(L)
Γ onto Γ.

Reaction form

The reaction form reads

dh(wh,ψh, t) =
∑

K∈Tht

∫

K

(wh ·ψh) divz dx. (4.47)
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Artificial viscosity

In order to avoid spurious oscillations in the approximate solution in the
vicinity of discontinuities or steep gradients, we apply artificial viscosity forms.
They are based on the discontinuity indicator

gt(K) =

∫

∂K∩Ωf
t

[ρh]
2 dS

/

(hK |K|3/4), K ∈ Tht, (4.48)

introduced in [18]. By [ρh] we denote the jump of the function ρh (= the first
component of the vector function wh) on the boundary ∂K and |K| denotes the
area of the element K. Then we define the discrete discontinuity indicator

Gt(K) = 0 if gt(K) < 1, Gt(K) = 1 if gt(K) ≥ 1, K ∈ Tht, (4.49)

and the artificial viscosity forms (see [28])

β̂h(wh,wh,ϕh, t) = ν1
∑

K∈Tht

hKGt(K)

∫

K

∇wh · p∇ϕh dx, (4.50)

Ĵh(wh,wh,ϕh, t) = ν2
∑

Γ∈FI
ht

1

2

(

Gt(K
(L)
Γ ) +Gt(K

(R)
Γ )
)

∫

Γ

[wh]· [ϕh] dS,

with parameters ν1, ν2 = O(1).

Remark. For high-speed flows with shock waves and contact discontinuities, spu-
rious overshoots and undershoots may appear near the discontinuities. One pos-
sibility, motivated by the paper [44], is to introduce an artificial viscosity form.
However, this form is nonzero also in regions, where the exact solution is regu-
lar, and a small nonphysical entropy production appears in these regions. Our
approach based on the discrete discontinuity indicator introduces the artificial
viscosity only in a small neighbourhood of discontinuities. Therefore, the scheme
does not produce any nonphysical entropy in the regions, where the solution is
regular. Since the form β̂h is rather local, its influence is augmented by the
form Ĵh, which improves the behaviour of the method in the case, when strongly
unstructured and/or anisotropic meshes are used.

4.5 Time discretization by the BDF method

In this section the BDF method is applied analogously as in Section 2.3.1 in order
to approximate the ALE derivative of the vector function wh. As in (4.23), it
holds for x ∈ Ωf

ht and t ∈ [0, T ]:

DAwh

Dt
(x, t) =

∂w̃h

∂t
(X, t), (4.51)

where
w̃h(X, t) = wh(At(X), t), X ∈ Ωf

0 , x = At(X).

Let us construct a partition 0 = t0 < t1 < · · · < tM = T , M ∈ N, of the time
interval [0, T ] and define the time step τn = tn − tn−1, n = 1, . . . ,M . The ALE
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q = 1 q = 2 q = 3

β1 1, τm+τm−1

τm−1
, (τm+τm−1+τm−2)(τm+τm−1)

τm−1(τm−1+τm−2)

β2 − τm
τm−1

, − τm(τm+τm−1+τm−2)
τm−1τm−2

β3
τm(τm+τm−1)

τm−2(τm−1+τm−2)

Table 4.1: The values of the coefficients βl.

derivative at time tm is approximated by the backward finite difference formula
(BDF) of order q

DAwh

Dt
(x, tm) =

∂w̃h

∂t
(X, tm) ≈

q
∑

l=0

clw̃h(X, tm−l), (4.52)

with coefficients cl, l = 0, . . . , q, depending on τm−l, l = 0, . . . , q − 1.
Further we express the BDF approximation on the domain Ωf

htm
. We use the

approximations
wn

h ≈ wh(tn) ∈ Shtn , n = 0, 1, . . . ,M. (4.53)

Let us assume that wn
h, n = 0, . . . , m−1, are already known. Then we introduce

the functions
ŵn

h = wn
h ◦ Atn ◦ A−1

tm (4.54)

for n = m− 1, m− 2, . . . , which are defined in the domain Ωf
htm

. That implies

w̃h(X, tn) = wh(Atn(X), tn) = wh(Atn(A
−1
tm (x)), tn) = ŵ

n
h(x, tn), x ∈ Ωf

htm
.

(4.55)
Finally we can express the BDF approximation of order q of the ALE derivative
at time tm as

DAwh

Dt
(tm) ≈

DA
apprwh

Dt
(tm) = c0w

m
h +

q
∑

l=1

clŵ
m−l
h . (4.56)

In the beginning of the computation, when m < q, we use the BDF of order m.
(The derivation of the BDF approximation of order 2 of the ALE derivative can
be found e.g. in [11].)

In nonlinear terms we use the extrapolation for the computation of the state
wm

h :

wm
h =

q
∑

l=1

βlŵ
m−l
h , (4.57)

where βl, l = 1, . . . , q, depend on τm−l, l = 0, . . . , q− 1. If m < q, then we apply
the extrapolation of order m. The values of the coefficients cl, l = 0, . . . , q, and
βl, l = 1, . . . , q, for q = 1, 2, 3 are given in Tables 2.1 and 4.1, respectively.

By the symbol (·, ·)Ωf
htm

we shall denote the scalar product in L2(Ωf
htm

), i.e.

(wh,ψh)Ωf
htm

=

∫

Ωf
htm

wh ·ψh dx. (4.58)
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The resulting BDF-DG scheme gives us the definition of the fully discrete
solution discretized by the BDF in time and DGM in space.

Definition 10. The BDF-DG approximate solution of problem (4.1)–(4.8) is de-
fined as a sequence {wm

h }
M
m=1 such that

wm
h ∈ Shtm , m = 1, . . . ,M, (4.59)
(

DA
apprwh

Dt
(tm),ψh

)

Ωf
htm

+ b̂h(w
m
h ,w

m
h ,ψh, tm) + âh(w

m
h ,w

m
h ,ψh, tm) (4.60)

+ Jh(w
m
h ,ψh, tm) + dh(w

m
h ,ψh, tm) + β̂h(w

m
h ,w

m
h ,ϕh, tm)

+ Ĵh(w
m
h ,w

m
h ,ϕh, tm) = ℓh(w

m
B ,ϕh, tm), ∀ψh ∈ Shtm .

4.6 Full space-time DG discretization

Another technique how to construct a method of high-order accuracy both in
space and time is the space-time discontinuous Galerkin method (STDGM). We
again consider a partition 0 = t0 < t1 < . . . < tM = T of the time
interval [0, T ] and denote Im = (tm−1, tm), Im = [tm−1, tm], τm = tm − tm−1, for
m = 1, . . . ,M . We define the space Sr,q

h,τ = (Sr,q
h,τ)

4, where

Sr,q
h,τ =

{

ψ ; ψ|Im =

q
∑

i=0

ζiψi, where ψi ∈ Sht, ζi ∈ P q(Im)

}

with integers r, q ≥ 1, P q(Im) denotes the space of all polynomials in t on Im of
degree ≤ q and the space Sht is defined in (4.31). For ψ ∈ Sr,q

h,τ we introduce the
following notation:

ψ±

m = ψ(t±m) = lim
t→tm±

ψ(t), {ψ}m = ψ+
m − ψ−

m. (4.61)

The derivation of the discrete problem can be carried out similarly as above.
The difference is now that time t is considered continuous, test functions ψhτ ∈
S

r,q
h,τ are used and also the integration over Im is applied. In order to stick together

the solutions on intervals Im−1 and Im, we augment the resulting identity by the
penalty expression

(

{whτ}m−1,ψhτ (t
+
m−1)

)

Ωf
htm−1

. The initial state whτ (0−) ∈

S
p
h0 is defined as the L2(Ωf

h0)-projection of w0 onto Sp
h0, i.e.

(whτ (0−),ψh)Ωf
ht0

=
(

w0,ψh

)

Ωf
ht0

∀ψh ∈ Sp
h0. (4.62)

Similarly as in Section 4.5 we introduce a suitable linearization. We can use two
possibilities.
1) We put whτ (t) := whτ(t

−

m−1) for t ∈ Im. (This represents a simple time
extrapolation.)
2) Each component of the vector-valued function whτ |Im−1 is a polynomial in t of
degree ≤ q and we define the function whτ |Im by the prolongation using values of
the polynomial vector function whτ |Im−1 at time instants t ∈ Im. Thus, we write
whτ |Im(t) := whτ |Im−1(t) for t ∈ Im.
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Definition 11. The space-time DG (STDG) approximate solution is defined as
a function whτ satisfying (4.62) and the following conditions:

1) whτ ∈ Sr,q
h,τ , (4.63)

2)

∫

Im

(

(

DAwhτ

Dt
(t),ψhτ

)

Ωf
ht

+ âh(whτ ,whτ ,ψhτ , t)

)

dt (4.64)

+

∫

Im

(

b̂h(whτ ,whτ ,ψhτ , t) + Jh(whτ ,ψhτ , t) + dh(whτ ,ψhτ , t)
)

dt

+

∫

Im

(

β̂h(whτ ,whτ ,ψhτ , t) + Ĵh(whτ ,whτ ,ψhτ , t)
)

dt

+ ({whτ}m−1,ψhτ(tm−1+))

=

∫

Im

ℓh(whD,ψhτ , t) dt ∀ψhτ ∈ Sr,q
h,τ , m = 1, . . . ,M.

4.7 Algorithmization of the flow problem

In this section we describe the algorithmization of problems formulated in Defini-
tion 10 and 11. In order to find the approximate solution wm

h orwm
hτ , respectively,

we need to transform the problems into the system of linear algebraic equations.

4.7.1 BDF-DG scheme

First, we start with the choice of appropriate basis functions of the space Sht. By
K̂ we denote the reference element with vertices Â = (0, 0), B̂ = (1, 0), Ĉ = (0, 1).
Further, we assume that the space Sht is created by polynomials of degree r ≥ 1.
For this reason we search for basis functions of the space Pr(K̂) in the form

ψ̂j(x̂1, x̂2) =
r
∑

l=0

r−l
∑

k=0

qjkl(x̂1)
k(x̂2)

l, j = 1, . . . , dr, (4.65)

where

dr :=
(r + 1)(r + 2)

2
(4.66)

is the dimension of the space Pr(K̂) and qjkl ∈ R. Further, we need to define set

D̂ of points of element K̂:

D̂ =

{(

k

r
,
l

r

)

; k, l = 0, . . . , r, k + l ≤ r

}

. (4.67)

It is possible to show that card(D̂) = dr. Using the notation x̂n, n = 1, . . . , dr,
for elements of set D̂, there exists a basis ψ̂1, . . . ψ̂dr of the space Pr(K̂) fulfilling
the condition ψ̂j(x̂n) = δjn, for j, n = 1, . . . , dp.

For each element Kt ∈ Tht let us define the space Pr(Kt). Element Kt has
vertices AKt , BKt , CKt , for which it holds

At(A
K̂) = AKt = (aKt

1 , aKt

2 ), (4.68)

At(B
K̂) = BKt = (bKt

1 , bKt

2 ), (4.69)

At(C
K̂) = CKt = (cKt

1 , cKt

2 ). (4.70)
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Further, we consider the affine mapping FKt : K̂ → Kt with the properties

FKt(Â) = AKt , (4.71)

FKt(B̂) = BKt , (4.72)

FKt(Ĉ) = CKt . (4.73)

This is a one-to-one mapping and we can write x = FKt(x̂) = UKtx̂+V Kt . The
matrices UKt and V Kt have the form

U
Kt =

(

bKt

1 − aKt

1 cKt

1 − aKt

1

bKt

2 − aKt

2 cKt

2 − aKt

2

)

, (4.74)

V Kt =

(

aKt

1

aKt

2

)

. (4.75)

The inverse mapping can be expressed as x̂ =
(

FKt
)−1

(x) =
(

UKt
)−1 (

x− V Kt
)

,

where the inverse matrix
(

UKt
)−1

has the form

(

U
Kt
)−1

=
1

det (UKt)

(

cKt

2 − aKt

2 aKt

1 − cKt

1

aKt

2 − bKt

2 bKt

1 − aKt

1

)

. (4.76)

Here, we denote by det
(

UKt
)

the determinant of the matrix UKt. We define the

points xKt
n := FKt(x̂n), Kt ∈ Tht and seek basis functions ψKt

1 , . . . , ψKt

dr
on the

element Kt ∈ Tht fulfilling the conditions ψKt

j (xKt
n ) = δjn, j, n = 1, . . . , dr. These

basis functions are defined uniquely. Because of the linearity of the function
(FKt)−1, ψ̂j((F

Kt)−1(x)) is a polynomial of degree ≤ r. For j, n = 1, . . . , dr it
holds

ψ̂j((F
Kt)−1(xKt

n )) = ψ̂j(x̂n) = δjn = ψKt

j (xKt

n ). (4.77)

From the uniqueness it follows that ψKt

j (x) = ψ̂j((F
Kt)−1(x)), j = 1, . . . , dr.

Using the chain rule we can derive the derivatives of the basis functions ψKt

j ,
j = 1, . . . , dr :

∂ψKt

j

∂x1
(x) =

∂

∂x1
ψ̂j

(

(

FKt
)−1

(x)
)

(4.78)

=
2
∑

k=1

∂ψ̂j

∂x̂k
((FKt)−1(x))

∂((FKt)−1)k
∂x1

(x)

= (∇ψ̂j)((F
Kt)−1(x)) ·

(

(UKt)−1

(

1
0

))

.

For x̂ fulfilling x = FKt(x̂) it holds

∂ψKt

j

∂x1
(x) =

∂ψKt

j

∂x1
(FKt(x̂)) = (∇ψ̂j)(x̂) ·

(

(UKt)−1

(

1
0

))

. (4.79)

Similarly we get

∂ψKt

j

∂x2
(x) = (∇ψ̂j)(x̂) ·

(

(UKt)−1

(

0
1

))

, x = FKt(x̂). (4.80)
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Since we have defined the space P r(Kt) for all elements Kt ∈ Tht, we can
define the vector-valued basis functions

ψKt

j,d = (ψKt

j δ1d, . . . , ψ
Kt

j δ4d), d = 1, . . . , 4, j = 1, . . . , dr. (4.81)

These functions form a basis of the space Sht. From this it follows that the
number of degrees of freedom dofh of this space is dofh = 4drcard(Tht).

For the sake of simplicity we introduce set I = {0, 1, . . . , c; c ∈ N} of the
indices of elements of the triangulation Tht, such that Tht = {Ki; i ∈ I}. Then we
shall number the basis functions of the space Sht by the unique index l, where
l = 4dri+dr(d−1)+ j for i ∈ I, d ∈ {1, . . . , 4}, j ∈ {1, . . . , dr}. When we denote

ψ
l,m
h (x) := ψ

Ktm

j,d (x), the sought solution can be written in the form

wm
h =

dofh
∑

l=1

ξml ψ
l,m
h . (4.82)

Hence, by setting ψh := ψz,m
h , z = 1, . . . , dofh in (4.60), we can transform the

discrete problem defined in Definition 10 into the form

dofh
∑

l=1

ξml c0

(

ψ
l,m
h ,ψz,m

h

)

Ωf
htm

+

dofh
∑

l=1

ξml

(

dh(ψ
l,m
h ,ψz,m

h , tm) + b̂h(w
m
h ,ψ

l,m
h ,ψz,m

h , tm)

+ âh(w
m
h ,ψ

l,m
h ,ψz,m

h , tm) + Jh(ψ
l,m
h ,ψz,m

h , tm)

+ β̂h(w
m−1
h ,ψl,m

h ,ψz,m
h , tm) + Ĵh(w

m−1
h ,ψl,m

h ,ψz,m
h , tm)

)

= ℓh(w
m
B ,ψ

z,m
h , tm)−

(

q
∑

l=1

clŵ
m−l
h ,ψz,m

h

)

Ωf
htm

. (4.83)

Finally we rewrite this system into the form

Am
h Ξm

h = Lm
h , (4.84)

where

{Am
h }z,l = c0

(

ψ
l,m
h ,ψz,m

h

)

Ωf
htm

+ dh(ψ
l,m
h ,ψz,m

h , tm) + b̂h(w
m
h ,ψ

l,m
h ,ψz,m

h , tm)

+ âh(w
m
h ,ψ

l,m
h ,ψz,m

h , tm) + Jh(ψ
l,m
h ,ψz,m

h , tm)

+ β̂h(w
m−1
h ,ψl,m

h ,ψz,m
h , tm) + Ĵh(w

m−1
h ,ψl,m

h ,ψz,m
h , tm)

{Lm
h }z = ℓh(w

m
B ,ψ

z,m
h , tm)−

(

q
∑

l=1

clŵ
m−l
h ,ψz,m

h

)

Ωf
htm

,

Ξm
h = (ξm1 , . . . , ξ

m
dofh

)T .
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4.7.2 Full space-time DG method

The base functions of the space Sr,q
h,τ for the full space-time discontinuous Galerkin

method shall be constructed separately on every time level Im for m = 1, . . . ,M .
Let us consider, that space Sht is constructed in the same way as in the previous
section. Now we shall construct basis functions ζu, u = 0, . . . , q of the space
P q(tm−1, tm). The case q = 0 is simple. Further, we shall consider, that q > 0.
By the obtained numerical results the choice ζu(t) = tu is not suitable. Thus,
for the real implementation we again define the space of polynomials on the
reference interval (0, 1). We set t̂r = r

q
, r = 0, . . . , q. Then we can choose basis

functions ζ̂u(t̂) of the space P q(0, 1), which fulfill ζ̂u(t̂r) = δur for u, r = 0, . . . , q.
If we define function Gm such that t = Gm(t̂) = tm−1 + t̂τm, then functions
ζmu (t) := ζ̂u((G

m)−1(t)), u = 0, . . . , q form a basis of the space P q(tm−1, tm).
Hence, for arbitrary i ∈ I functions ψKt

j form a basis of the space P p(Ki(t)).

Then functions ψi,m
j,u (x, t) := ζmu (t)ψKt

j (x, t) for u = 0, . . . , q form a basis of
the space P q(Im, P

p(Ki(t)). Space P q(Im, P
p(Ki(t)) is a space of polynomi-

als of degree p in space and degree q in time. Finally we define ψi,m
j,u,d :=

(ψi,m
j,u δ1d, . . . , ψ

i,m
j,u δ4d) for d = 1, . . . , 4. It is obvious, that functions ψi,m

j,u,d for
i ∈ I, j = 1, . . . , dr, u = 0, . . . , q and d = 1, . . . , 4 form a basis of the space
S

p,q
h,τ

∣

∣

Im
, where

S
r,q
h,τ

∣

∣

Im
:=
{

ψhτ |Im ; ψhτ ∈ S
r,q
h,τ

}

. (4.85)

The number of degrees of freedom dofhτ of the space Sr,q
h,τ

∣

∣ Im is

dofhτ = 4(q + 1)dr card(I). (4.86)

We shall number the basis functions of the space Sr,q
h,τ

∣

∣ Im again with unique
index l, where l = 4(q + 1)dr(i − 1) + (d − 1)(q + 1)dr + udr + j . Further, we
set ψi,m

j,u,d = ψ
l,m
hτ . We proceed by solving the problem defined in Definition 11 in

sequence over the particular time levels. Therefore, let the approximate solution
on the previous time level Im−1 be known and we seek solution wm

hτ := whτ |Im
on m-th time level, which can be written in the form

wm
hτ =

dofhτ
∑

l=1

ξml ψ
l,m
hτ . (4.87)

Hence, by setting ψhτ := ψz,m
hτ , z = 1, . . . , dofhτ , in (4.64), we can transform

the discrete problem defined in Definition 11 for m = 1 into the form

dofhτ
∑

l=1

ξ1l

∫

I1

((

DAψ
l,1
hτ

Dt
,ψz,1

hτ

)

Ωf
ht1

+ dh(ψ
l,1
hτ ,ψ

z,1
hτ , t) + b̂h(whτ ,ψ

l,1
hτ ,ψ

z,1
hτ , t)

+ âh(whτ ,ψ
l,1
hτ ,ψ

z,1
hτ , t) + Jh(ψ

l,1
hτ ,ψ

z,1
hτ , t)

+ β̂h(whτ ,ψ
l,1
hτ ,ψ

z,1
hτ , t) + Ĵh(whτ ,ψ

l,1
hτ ,ψ

z,1
hτ , t)

)

dt

+

dofhτ
∑

l=1

ξ1l

(

ψ
l,1
hτ (t

+
0 ),ψ

z,1
hτ (t

+
0 )
)

Ωf
ht1

=

∫

I1

ℓh(whD,ψ
z,1
hτ , t) dt +

(

w0,ψz,1
hτ (t

+
0 )
)

Ωf
ht1

∀ψz,1
hτ ∈ Sr,q

h,τ

∣

∣

I1
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and for m > 1 into the form

dofhτ
∑

l=1

ξml

∫

Im

((

DAψ
l,m
hτ

Dt
,ψz,m

hτ

)

Ωf
htm

+ dh(ψ
l,m
hτ ,ψ

z,m
hτ , t) + b̂h(whτ ,ψ

l,m
hτ ,ψ

z,m
hτ , t)

+ âh(whτ ,ψ
l,m
hτ ,ψ

z,m
hτ , t) + Jh(ψ

l,m
hτ ,ψ

z,m
hτ , t)

+ β̂h(whτ ,ψ
l,m
hτ ,ψ

z,m
hτ , t) + Ĵh(whτ ,ψ

l,m
hτ ,ψ

z,m
hτ , t)

)

dt

+

dofhτ
∑

l=1

ξml

(

ψ
l,m
hτ (t

+
m−1),ψ

z,m
hτ (t+m−1)

)

Ωf
htm

=

∫

Im

ℓh(whD,ψ
z,m
hτ , t) dt+

(

wm−1
hτ (t−m−1),ψ

z,m
hτ (t+m−1)

)

Ωf
htm

∀ψz,m
hτ ∈ Sr,q

hτ |Im .

We can convert this system into the form

Am
hτ Ξm

hτ = Lm
hτ , (4.88)

where for m = 1

{

A1
hτ

}

z,l
=

∫

I1

((

DAψ
l,1
hτ

Dt
,ψz,1

hτ

)

Ωf
ht1

+ dh(ψ
l,1
hτ ,ψ

z,1
hτ , t) + b̂h(whτ ,ψ

l,1
hτ ,ψ

z,1
hτ , t)

+ âh(whτ ,ψ
l,1
hτ ,ψ

z,1
hτ , t) + Jh(ψ

l,1
hτ ,ψ

z,1
hτ , t)

+ β̂h(whτ ,ψ
l,1
hτ ,ψ

z,1
hτ , t) + Ĵh(whτ ,ψ

l,1
hτ ,ψ

z,1
hτ , t)

)

dt

+
(

ψ
l,1
hτ (t

+
0 ),ψ

z,1
hτ (t

+
0 )
)

Ωf
ht1

,

{

L1
hτ

}

z
=

∫

I1

ℓh(whD,ψ
z,1
hτ , t) dt +

(

w0,ψz,1
hτ (t

+
0 )
)

Ωf
ht1

,

Ξ1
hτ = (ξ11, . . . , ξ

1
dofhτ

)T

and for m > 1

{Am
hτ}z,l =

∫

Im

((

DAψ
l,m
hτ

Dt
,ψz,m

hτ

)

Ωf
htm

+ dh(ψ
l,m
hτ ,ψ

z,m
hτ , t) + b̂h(whτ ,ψ

l,m
hτ ,ψ

z,m
hτ , t)

+ âh(whτ ,ψ
l,m
hτ ,ψ

z,m
hτ , t) + Jh(ψ

l,m
hτ ,ψ

z,m
hτ , t)

+ β̂h(whτ ,ψ
l,m
hτ ,ψ

z,m
hτ , t) + Ĵh(whτ ,ψ

l,m
hτ ,ψ

z,m
hτ , t)

)

dt

+
(

ψ
l,m
hτ (t

+
m−1),ψ

z,m
hτ (t+m−1)

)

Ωf
htm

,

{Lm
hτ}z =

∫

Im

ℓh(whD,ψ
z,m
hτ , t) dt+

(

wm−1
hτ (t−m−1),ψ

z,m
hτ (t+m−1)

)

Ωf
htm

,

Ξm
hτ = (ξm1 , . . . , ξ

m
dofhτ

)T .
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Remark. In practical computations, integrals appearing in the definitions of the
forms âh, b̂h, dh, Jh, Ĵh, β̂h and also the time integrals are evaluated with the aid
of quadrature formulae, which will be introduced in Section 6.2.

The linear algebraic systems equivalent to (4.59)–(4.60) and (4.63)–(4.64) are
solved either by the direct solver UMFPACK [14] or by the GMRES method with
block diagonal preconditioning. In the last case individual blocks correspond to
all unknowns on individual elements.

Numerical experiments show that both BDF-DG and STDG techniques with
the extrapolation in nonlinear terms behave robust and stable. It has also been
demonstrated by the theoretical analysis carried out for a simplified model prob-
lem in [21] and [66].
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5. Fluid-structure interaction

In the previous chapters we introduced the problem of deformation of an elastic
body and the problem of compressible viscous fluid flow in a time-dependent
domain. Both the fluid and the elasticity problems represent a part of the fluid-
structure interaction (FSI) problem, which we introduce in this chapter. We
consider the case of a two-way coupled system, where the deformation of the
elastic body is induced by the fluid force and the domain, occupied by the fluid,
is given by the deformation of the elastic body. The flow is driven by the inlet
boundary conditions and the evolving flow acts on the surface of the elastic body.
Thus, the deformation of the elastic body is caused by the flow acting force. This
deformation changes the domain occupied by the fluid and by that, the fluid flow
is also altered. The definition of the problem implies that there exists a common
boundary of the fluid domain and the deformed structure domain. In case of the
fluid it is the moving part of the boundary ΓWt and in case of the structure it is
the Neumann part Γb

N of the boundary.
The FSI problem is defined by the definition of the fluid flow problem, by the

definition of the dynamic elasticity problem and by suitable transmission condi-
tions on the common part of the boundary. Therefore our first goal is to define
the transmission conditions and accordingly the FSI problem. Further, we need
to introduce the solution of the FSI problem. Generally, there are two strategies
how to solve the problem. The first one is to solve the complete monolithic sys-
tem including the fluid and structure problem at once. Another strategy is to
stagger the problem into separate subproblems and introduce a suitable coupling
procedure. We are concerned with the latter approach, which means that we
solve the fluid flow problem and structure problem separately. The basic idea is
that the problems are coupled at certain time instants. The time instants are
given by the choice of the time interval partition. At these time instants we re-
quire the transmission conditions to be approximately fulfilled. Therefore, the
coupling between the subsystems is influenced by the choice of the time step.
This approach is denoted loosely or weakly coupled scheme. Moreover, we also
introduce the so called strongly coupled scheme or simply strong coupling. In this
case the two subproblems are solved still separately, but in every time step we
proceed several subiterations in order to fulfill the transmission conditions more
precisely.

The monolithic approach leads usually to a large system, which costs a lot of
computational time and requires a large memory. Contrary to that the partitioned
approach is separated in two smaller problems and it also gives us a possibility to
use different suitable solvers for the subproblems. However, some of the problems,
which are strongly coupled, can lead to a large amount of subiterations. In that
case, the partitioned approach can be less efficient. We are motivated by the
problem of vocal folds, which represents a problem, where the air is accelerated
by the contracting channel and the vocal folds are considered as elastic bodies
vibrating with high frequency. In this case the densities of the fluid and solid
material are unlike. In our numerical experiments we show, that the strongly
coupled scheme is in this case sufficient, because just a few coupling subiterations
are needed.
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Figure 5.1: Diagram of the computational domain for the FSI problem with the
common boundary ΓNt.

For the solution of the fluid flow problem, the ALE mapping needs to be
estimated in every time step. Since the deformation of the computational domain
for the fluid flow is given by the deformation of the common part of the boundary,
this leads to another nontrivial subproblem. Therefore, we describe a special
procedure in order to obtain the deformation of the triangulation for the fluid
flow problem. The deformation of the domain is computed as a static linear
elasticity problem. We introduce also some ideas, which can improve the quality
of the triangulations.

This chapter is concluded by numerical experiments. We consider a simplified
2D initial-boundary value problem. The flow properties are defined according to
the characteristics of the airflow in human vocal tract. The material properties
are defined in order to model an elastic body constituting a soft tissue. We
assume both the linear and nonlinear elasticity model and finally we present
several visualizations of the obtained results.

5.1 Fluid-structure interaction problem

Let us define the FSI problem. Let Ωf
t be a bounded domain depending on time

with disjoint parts of the boundary ΓI , ΓO and ΓWt as defined in Definition 9
and Ωb be a bounded domain with two disjoint parts of the boundary Γb

D and

Γb
N as defined in Definition 1. Let Ω ⊂ R2 be a set such that Ω = Ω

b

t ∪ Ω
f

t ,
t ∈ [0, T ], T > 0, where Ωb

t = ϕt

(

Ωb
)

is the actual configuration of the elastic

body in time t and Ωf
t is the domain occupied by the fluid in time t. The

deformation mapping ϕt is defined as in (1.12). The common part of the boundary
of the fluid flow domain and the boundary of the elastic body is denoted by
ΓNt = ΓN(t), see Figure 5.1. It is given by the deformation of the Neumann part
of the boundary Γb

N , i.e. ΓNt = ϕt

(

Γb
N

)

, and it is a subset of the boundary ΓWt.
We consider the fluid flow problem as defined in Definition 9 and the structure
problem as defined in Definition 1. Let us note that for the structure problem
we use the Lagrangian coordinates system and for the fluid flow problem the
Eulerian coordinates system. We use the notation as in Chapter 1: x will denote
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the Lagrangian coordinates and xϕ the Eulerian coordinates, where ϕ is the
deformation of the elastic body. However, for simplicity we try to avoid the use
of both notations, if it is not necessary to distinguish between the Lagrangian
and the Eulerian coordinate system.

In the FSI problem the coupling of the discrete flow problem and the structural
problem is realized, analogously as in [31, 40], via the transmission condition

σbnϕ = σfnϕ on ΓNt, t ∈ [0, T ], (5.1)

where σf is the stress tensor of the fluid with components σf
ij defined in (4.2),

σb is the Cauchy stress tensor of the elastic material defined in Section 1.3.3
and nϕ is the unit outer normal to the boundary of the deformed body by the
deformation ϕ. The Cauchy stress tensor σb can be expressed according to the
Section 1.3.4 with the aid of the first Piola-Kirchhoff stress tensor as

σb = J−1PF T . (5.2)

Here J = detF > 0. The normal nϕ and the unit outer normal n to the reference
configuration Ωb are related by:

nϕ =
CofF n

|CofF n|
, (5.3)

where CofF = JF−T is the cofactor matrix of F . By (5.2) and (5.3) we can
rewrite (5.1) as

(

J−1PF T
)

CofF n = σfCofF n. (5.4)

Hence,
P · n = σfCofFn. (5.5)

In this way we obtain the surface force acting on the Neumann part of the bound-
ary in (1.53).

Further, on the interface between fluid and structure the fluid velocity is
defined by the second transmission condition

v(xϕ, t) = zD(x
ϕ, t) =

∂u(x, t)

∂t
, (5.6)

where u is the displacement of the elastic structure and xϕ = ϕ(x).
Let us conclude this section with the formulation of the FSI problem.

Definition 12. (Formulation of the FSI problem) Let Ωf
t be a bounded domain

depending on time with the disjoint parts of the boundary ΓI , ΓO and ΓWt as
defined in Definition 9 and Ωb be a bounded domain with two disjoint parts of
the boundary Γb

D and Γb
N as defined in Definition 1. Let Ω ⊂ R2 be a set such

that Ω = Ω
b

t ∪ Ω
f

t , t ∈ [0, T ], T > 0, where Ωb
t is the actual configuration of

the elastic body in time t and Ωf
t is the domain occupied by the fluid in time t.

Further let ΓNt be the common part of the boundary of the fluid flow domain
and the boundary of the elastic body, such that it is a subset of the part of the
boundary ΓWt and in the same time ΓNt = ϕt

(

Γb
N

)

. We define the solution of
the FSI problem as a couple (u,w), where u : Ωb × [0, T ] → R2 is the solution of
the dynamic elasticity problem defined in Definition 1 with

gN = σfCofFn in Γb
N × [0, T ], (5.7)
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and the state vector w : Ωf
t × [0, T ] → R

4 is the solution of the compressible fluid
flow problem defined in Definition 9 with

zD(x
ϕ, t) = zD(ϕ(x), t) =

{

∂u(x,t)
∂t

on ΓNt,

0 on ΓWt \ ΓNt, t ∈ [0, T ],
(5.8)

where gN and n have the same interpretation as in Definition 1, σf is the stress
tensor of the fluid with components σf

ij defined in (4.2), CofF is the cofactor
matrix of the deformation gradient F and zD is the velocity of the moving wall.

Remark. We also consider Definition 12 with the linear elasticity instead of the
nonlinear elasticity problem. In that case we simply set that u is the solution
of the dynamic elasticity problem defined in Definition 3. Further in condition
(5.7) we can assume that the deformation gradient should be approximately a
unit matrix, i.e. CofF ≈ I. In the following sections we discuss precisely, how
to deal with the transmission conditions in the coupling procedure.

5.2 Coupling procedure

We solve the FSI problem by a partitioned coupling mechanism, where the elas-
ticity problem and the flow problem are solved separately. For the time discretiza-
tion of both the fluid and the structure problem let us consider same partition of
the time interval [0, T ] formed by time instants

tm, m = 0, . . . ,M, 0 = t0 < t1 < · · · < tM = T, (5.9)

where M is a sufficiently large positive integer and define the time step

τm = tm − tm−1, m = 1, . . . ,M. (5.10)

In the coupling procedure we expect transmission conditions (5.7) and (5.8) to
be satisfied in time instants tm, m = 0, . . . ,M . The structure and the fluid flow
problem are discretized in the same way as we did in the previous chapters. Hence,
the boundary conditions of both problems are successively updated during the
computational process. Then for the structure problem we obtain the BDF-DG
approximate solution as defined in Definition 8, which is a couple of sequences

{um
h }

M
m=0 , {z

m
h }

M
m=0 . (5.11)

Let us note that in the definition of the approximate solution we can consider
an arbitrary nonlinear elasticity model or the linear elasticity model. In the dis-
cretization of the fluid flow we use the full space-time discretization. Hence,
we obtain the STDG approximate solution whτ as defined in Definition 11.
We denote as wm

hτ := whτ |Im the solution, which we seek in the time interval
Im = (tm−1, tm). Therefore we can say that we seek the sequence of approximate
solutions

{wm
hτ}

M
m=1 . (5.12)

Further we denote as

{Atm}
M
m=0 , {z

m
τ }

M
m=0 ,

{

Ωf
tm

}M

m=0
, (5.13)
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the sequence of the ALE mapping, the sequence of approximations of the domain
velocity and the sequence of the domains occupied by the fluid at time instants
tm, m = 0, . . . ,M .

Using the partitioned coupling mechanism for the numerical solution of the
FSI problem, the transmission conditions are satisfied just approximately. This
means that we will prescribe a coupling condition and a suitable tolerance for this
condition. In order to obtain a well coupled scheme we use a coupling procedure
containing a few subiterations. The approximate solutions obtained during the
subiterations are denoted with the index l behind the comma, i.e. um

h,l, z
m
h,l, w

m
hτ,l,

Ωf
tm,l, Atm,l, z

m
τ,l, and σ

f
ij,l.

Coupling algorithm

1. Let us assume that the approximate solution wm
hτ of the flow problem in

time interval Im = [tm−1, tm] and the displacement of the structure um
h at

time level tm are known.

2. We set um+1
h,0 := um

h , l := 1 and apply the following iterative process:

(a) Interpolate um+1
h,l−1 on the common part of the boundary of the fluid

and the structure domain in order to get a continuous function on this
interface. This will be described in detail in Section 5.3.1.

(b) The approximation Ωf
tm+1,l

of the domain Ωf
tm+1

is determined by the in-
terpolated displacement of the moving part of the fluid domain bound-
ary.

(c) Determine the ALE mapping Atm+1,l and approximate the domain ve-
locity zm+1

τ,l . This will be described in detail in Section 5.3.2.

(d) Solve the flow problem in the domain Ωf
tm+1,l

to obtain the approximate

solution wm+1
hτ,l in time interval Im+1 = [tm, tm+1].

(e) Compute components σf
ij,l of the stress tensor and the aerodynamic

force acting on the structure and transform it to the interface Γb
N .

This will be also described in detail in Section 5.3.1.

(f) Solve the elasticity problem in order to compute the displacement um+1
h,l

at time tm+1.

(g) If the variation
∣

∣um+1
h,l − um+1

h,l−1

∣

∣ (5.14)

of the displacement is larger than a prescribed tolerance, go to (a) and
set l := l + 1. We prescribe the tolerance for the absolute value and
also for the relative value of the variation

∣

∣um+1
h,l − um+1

h,l−1

∣

∣

max
{

10−5,
∣

∣um+1
h,l

∣

∣

} . (5.15)

(h) Set um+1
h := um+1

h,l , wm+1
hτ := wm+1

hτ,l , m := m+ 1 and go to 2.

The presented algorithm represents the so-called strong coupling scheme. Ne-
glecting step 2(g) yields the so-called weak coupling scheme. Figure 5.2 shows the
diagram of the algorithm.
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um
h

wm
hτ

Initialization:
um+1

h,0 := um
h , l := 1

Fluid flow domain:
Ωf

tm+1,l

ALE problem:
Atm+1,l, z

m+1
τ,l

Fluid flow problem:
wm+1

hτ,l

Structure problem:
um+1

h,l

Coupling condition:
∣

∣um+1
h,l − um+1

h,l−1

∣

∣

um+1
h := um+1

h,l

wm+1
hτ := wm+1

hτ,l

Figure 5.2: Diagram of the coupling algorithm.

Remark. (BDF-DG variant of the algorithm) The coupling algorithm could be
also modified for the BDF-DG approximate solution of the flow problem as defined
in Definition 10. In that case we consider {wm

h }
M
m=1, the BDF-DG approximate

solution of the flow problem, instead of the sequence of approximate solutions
{wm

hτ}
M
m=1.

5.3 Realization of the discrete FSI problem

In the previous section we described the coupling procedure, but some of the
steps of the iterative process need to be discussed in more detail. First of them is
the realization of the transmission conditions and the latter one is the derivation
of the ALE mapping. The realization of the transmission conditions is more or
less just a technical detail, but the derivation of the ALE mapping constitutes
a specific subproblem. Actually, we can say that numerical solution of the FSI
problem consists of three subproblems: the fluid flow problem, the structure
problem, and the derivation of the ALE mapping. In this section we show, that
for the construction of the ALE mapping and the domain velocity we can use a
solution of the static linear elasticity problem, which is also solved by the DGM.

5.3.1 Transmission conditions

Let us describe in detail, how the transmission conditions (5.7) and (5.8) are
fulfilled in the discrete problem. In the introduced discretization we consider, that
the initial triangulation Th0 of the reference domain Ωf

0 and the triangulation T b
h of

the reference domain Ωb have common edges on the common part of the boundary
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ΓN0 = Γb
N . It means, that every boundary edge Γ ⊂ ΓN0 lying on the common

part of the boundary has its adjacent element in both the fluid and the structure
triangulation. Let us denote Kf

Γ the adjacent element in the triangulation Th0

and Kb
Γ the adjacent element in the triangulation T b

h for every Γ ⊂ ΓN0. Both
problems are solved with the aid of the DGM in space. Therefore we obtain
generally a discontinuous piecewise polynomial solution, but it is continuous on
every single element.

First let us consider that we have obtained the approximate solution wm+1
hτ,l

of the flow problem as in step 2(d) of the coupling algorithm. Thus, we have
obtained the approximations of the pressure p and velocity v on every boundary
edge Γ ⊂ Γm+1

N,l and the approximation of the common boundary ΓNtm+1 given

by the deformation approximation ϕm+1
h,l = I + um+1

h,l . Using that and (4.2) we

compute σf
h,l, the approximation of the stress tensor for every boundary edge

Γ ⊂ Γm+1
N,l . The stress tensor is on Γm+1

N,l given in Eulerian coordinates, but we
express it in Lagrangian coordinates, so it holds

σ
f
h,l(x

ϕ) = σf
h,l(ϕ

m+1
h,l (x)), x ∈ Γ, Γ ⊂ Γb

N . (5.16)

In order to completely formulate the condition (5.7) we need to estimate CofF .
This can be done again using the deformation approximation ϕm+1

h,l . We show
that the procedure could also be used for the linear elasticity or we can set
CofF ≈ I respectively, as already mentioned in remark on Definition 12. By that
we explained how we proceed in step 2(e) of the coupling algorithm obtaining the
Neumann boundary condition from the approximate solution of the flow problem.
Obviously, in this case it does not matter, that the solution is discontinuous.

Further we describe in detail the procedure in step 2(a) of the coupling algo-
rithm, in which we get the approximation of the boundary ΓNt and the boundary
condition for the solution of the elasticity problem leading to the derivation of
the ALE mapping. For the solution of the fluid flow problem the deformation
of the common part of the boundary needs to be linear and continuous on ev-
ery edge of the common boundary. Therefore, we interpolate the solution of the
elasticity problem in the following way. By π we denote the continuous piecewise
linear interpolation of the discontinuous displacement of the structure um+1

h,l . In
every vertex lying on the common boundary of the reference triangulation we
set the interpolation π as an average of discontinuous solutions in all adjacent
elements. This means that for every vertex with the reference position xi of the
triangulation T b

h lying on the boundary Γb
N we set

π(um+1
h,l (xi)) =

1

Ni

∑

K∈T b
h
,xi∈K

um+1
h,l |K(xi), i = 1, . . . , NV , (5.17)

where Ni, i = 1, . . . , NV is the number of the adjacent elements, i.e. Ni =
∑

K∈T b
h
,xi∈K

1. Further we consider the interpolation to be linear on every edge

of the common boundary Γb
N . Then the continuous piecewise linear function is

uniquely determined. The interpolation function π is also used for the definition
of the Dirichlet boundary condition in the computation of the ALE mapping as
it is described in the following section.
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5.3.2 Derivation of the ALE mapping

Let us now describe the derivation of ALE mapping At. Obviously, according
to the coupling procedure described in Section 5.2, we compute the structure
deformation approximations in discrete time instants tm. Consequently, in every
time instant tm we determine the ALE mapping Atm or more precisely the ALE
mapping Atm,l for every subiteration of the coupling algorithm. We obtain the
ALE mapping by solving the static linear elasticity problem, which is defined
analogously as in Definition 4. We consider a reference domain Ωf

0 ⊂ R
2 occu-

pied by the fluid and generally for every time instant tm we seek a displacement
function um

A,l : Ω
f
0 → R2 such that

−div σm
A,l = 0 in Ωf

0 , (5.18)

um
A,l = u

m
AD,l on ∂Ωf

0 , (5.19)

where σm
A,l is a Cauchy stress tensor of an artificial linear elasticity material. It

is given as in (1.71):

σm
A,l(u

m
A,l) = λAtr(e(u

m
A,l))I + 2µAe(u

m
A,l), (5.20)

where λA and µA are the Lamé parameters. The function um
AD,l is given by the

displacement of the structure on the common boundary and as zero on the fixed
part of the boundary. Hence,

um
AD,l =

{

π(um
h,l−1) on Γb

N ,
0 else,

(5.21)

where π(um
h,l−1) is the continuous piecewise linear interpolation of the discontin-

uous displacement of the structure um
h,l−1 described in (5.17). Then, the ALE

mapping Atm,l is given by

Atm,l(X) =X + π(um
A,l(X)) ∀X ∈ Ωf

0 . (5.22)

By π we denote the continuous piecewise linear interpolation of the discontinuous
solution um

A,l, which must be applied in order to get a regular one-to-one ALE

mapping of the reference configuration Ωf
0 onto the current configuration Ωf

tm+1,l
.

We use the same notation π as for the linear interpolation of the the discontinuous
displacement of the structure, because on the boundary of the domain we set
π(um

A,l) = u
m
AD,l, i.e. π(u

m
A,l) = π(um

h,l−1) on Γb
N . Further we define π in all inner

vertices of the reference triangulation as an average of the discontinuous solution
in all adjacent elements. Hence,

π(um
A,l(X i)) =

1

Ni

∑

K∈Th0,Xi∈K

um
A,l|K(X i), i = 1, . . . , NV , (5.23)

where NV is the number of vertices of the triangulation, X i, i = 1, . . . , NV are
the reference positions of the inner vertices and Ni, i = 1, . . . , NV is the number
of the adjacent elements for every vertex, i.e. Ni =

∑

K∈Th0,Xi∈K
1. Further,

we consider the piecewise linear interpolation, linear on every element K ∈ Th0.
By this assumption and the definition in the vertices is the continuous piecewise
linear function uniquely determined.
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Moreover, for the STDGM discretization we need to define the ALE mapping
on every time interval Im. We define it using the linear interpolation in time
given by

At,l(X) =
tm − t

τm
Atm−1(X) +

t− tm−1

τm
Atm,l(X), ∀t ∈ Im,X ∈ Ωf

0 . (5.24)

Finally, we need to determine the ALE velocity z(x, t) occurring in the form
dh. In the case of the STDGM discretization ALE velocity zmτ,l(x, t) on interval
Im can be expressed as

zmτ,l(x, t) =
Atm,l(A

−1
t,l (x))−Atm−1(A

−1
t,l (x))

τm
, ∀t ∈ Im, x ∈ Ωf

t . (5.25)

In the case of the BDF-DG discretization z(x, t) is approximated as

zml (x) = c0x+

q
∑

k=1

clAtm−k
(A−1

tm,l(x)), ∀x ∈ Ωf
tm . (5.26)

Examples of the ALE mapping

In the previous section we described the static linear elasticity problem, which
we solve to determine the deformation of the computational domain. For the
complete definition of this problem we still need to estimate Lamé parameters
λA and µA. For this estimation we combine the approaches proposed in [26, 61].
Thus, in our experiments we obtain satisfactory results with the aid of non-
physical material constants. We prescribe piecewise constant Lamè parameters
by setting

λA = −cA ·
avgsize(T b

h )

|K|
, µA = −λA, (5.27)

where cA > 0 is a suitable constant, |K| is the area of an element K and
avgsize(T b

h ) is the average size of elements of the triangulation T b
h :

avgsize(T b
h ) =

1

Nh

∑

K∈T b
h

|K| , (5.28)

where Nh is the number of elements of the triangulation T b
h . In contrast to a

material with physical Lamè parameters, where λA, µA > 0, we set λA+µA = 0.
Moreover, on each element K we divide the Lamè parameters by the relative
size of the element. Finally, we choose an appropriate constant cA > 0. Our
numerical experiments suggest that smaller values of cA yield more suitable mesh
deformations.

Here, we show the comparison of the mesh deformation obtained using an
elastic material (the Lamè parameters are constant and correspond to a real
physical material) and a pseudo-elastic material. Our example relates to numer-
ical experiments for the FSI problem in the next section. Let us have a domain,
whose geometry is corresponding to the domain described in Figure 5.4. We de-
fine the Dirichlet boundary condition by the displacement function, which causes
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Figure 5.3: Detail of the narrowest part of the computational domain. Compar-
ison of the deformation of the triangulation considering the standard elasticity
model (top) and the pseudo-elasticity model (bottom).

an extension of the computational domain in its narrow part. The displacement
function is defined on the boundary as

uAD =

{
(

0, hB sgn(x2)
(

1− cos
(

2x1π
Lg

)))T

on Γb
N ,

0 else,
(5.29)

where Lg = 0.0154 and hB = 0.0008. By that we triple the gap in the narrowest
part of the channel. The problem is discretized using the piecewise linear ap-
proximation. We use the NIPG variant of the DGM. The penalization constant
is set to CA

W = 103. For the pseudo-elastic material we set cA = 10 and λA, µA as
in (5.27), and for the standard elasticity model we set λA = 35714 and µA = 8929.
In Figure 5.3 we can see the difference between the mesh deformation obtained by
the solution of the static elasticity problem using the standard elasticity model
and the described pseudo-elasticity model.
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Lh

LI LOLg

H

Figure 5.4: Geometry of the computational domain at time t = 0 and the de-
scription of its size: LI = 50.0 mm, Lg = 15.4 mm, Lh = 1.5 mm, LO = 94.6 mm,
H = 16.0 mm. The width of the channel in the narrowest part is 1.6 mm. O is
the origin of the coordinate system.

5.4 Numerical experiments for FSI

In this section we present the final results obtained by the introduced method
for the numerical solution of the FSI problem. As we have already mentioned,
our numerical experiments are motivated by the simulation of vibrations of vocal
folds, which are caused by the airflow originated in human lungs. We consider
a simplified 2D initial-boundary value problem. The flow properties are defined
according to the characteritics of the airflow in trachea and human vocal tract.
The material properties are defined in order to model an elastic body constituting
a soft tissue. The first solved case is a problem with homogeneuos elasticity model
and simplified geometry. Then, in the end of the section we present the obtained
results for the model of vocal folds, which is inspired by the experiments described
in [43, 60].

5.4.1 Cosine benchmark

We set a problem inspired by the cut of the model of the vocal tract. However
the geometry of the channel is simple and the geometry of the elastic bump can
be described by the cosine function. Figure 5.4 shows the geometry of the com-
putational domain formed by two subdomains representing the elastic structure
and the part occupied by the fluid. The common boundary of the structure and
fluid domain is described by the relation

x2 = ±
HB

2

(

1 + cos

(

2πx1
Lg

))

± hB, x1 ∈ (0.0, Lg), (5.30)

where Lg = 0.0154, HB = 0.0072 and hB = 0.0008. The other measures of the
geometry are stated in Figure 5.4. Further we add to the geometry a semicircle
subdomain with a radius 3.0 cm as an outlet. The example of the computational
domain with the mesh for the fluid flow and structure problem is in Figure 5.5.

We solve the FSI problem defined in Definition 12, but we start always with a
few iterations, in which the structure is considered to be fixed and therefore just
the fluid flow problem on a fixed domain is solved. This initial computation leads
to the development of the flow field. At first let us describe the settings for the
fluid flow problem. We prescribe the inlet boundary conditions on ΓI (left part
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Figure 5.5: Computational domain with the mesh at time t = 0.

of the boundary), the outlet boundary conditions on ΓO (the right part of the
boundary, which is a semicircle), and we prescribe the boundary conditions for
the impermeable walls that may move in dependence on time on ΓWt (the rest
of the boundary of the domain including the vertical segments of the semicircle).
Further, for the definition of the fluid flow problem the following data are used:

the magnitude of the inlet velocity vin = 4 m s−1,
the dynamic viscosity µ = 15 · 10−6 kg m−1 s−1,
the inlet air density ρin = 1.225 kg m−3,
the outlet pressure pout = 97611 Pa,
the Reynolds number Re = ρinvinH/µ = 5227,
where H = 0.016 m is the width of the channel,
the heat conduction coefficient κ = 2.428 · 10−2 kg m s−2 K−1,
the specific heat cv = 721.428 m2 s−2 K−1,
the Poisson adiabatic constant γ = 1.4.

The inlet Mach number is Min = 0.012. For the fluid solver we use the NIPG
variant of the DGM with the choice of the penalization constant Cf

W = 500 for
inner faces and Cf

W = 5000 for boundary edges, respectively (see [12]). The
stabilization parameters ν1 and ν2 from (4.50) are set to 0.1.

We start with the computation of the flow problem, where the fluid flow do-
main does not change in time. By that we obtain an initial state vector describing
the developed fluid flow in the channel for the solution of the FSI problem. Fur-
thermore we compare the results obtained by the choice of different time steps
τ , different meshes and different time discretizations. The computation of the
FSI problem is time-consuming and we want to reduce the number of degrees
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of freedom and use the largest time step without significant loss of precision of
the computation. We employ the STDGM with the polynomial approximation of
degree 2 in space and degree 1 in time, or the second order BDF with the DGM
with polynomial approximation of degree 2 in space. In order to compare the
different numerical solutions of the fluid flow problem we compute the pressure
along the x1-axis at time 4 · 10−4 s.

At first we compare the numerical simulations obtained with different time
discretization schemes applied on the same mesh with 26002 elements. In Fig-
ure 5.6 we present the comparison of the pressure along the x1-axis at time 4·10−4

s for different choices of the time step using the BDF-DGM. Then, in Figure 5.7
is the comparison of the pressure along the x1-axis at time 4 · 10−4 s for different
choices of the time step using the STDGM. We can see, that we obtain approxi-
mately same results for the time step smaller than 4.0 · 10−6 for the BDF and for
the time step smaller than 2.0 · 10−5 for the STDGM.

Further, in Figure 5.8 we compare the pressure along the x1-axis at time
4 · 10−4 s using the BDF-DGM and STDGM for different choices of the time
step. We can see, that the numerical solution for the time step 2.0 · 10−7 using
the BDF-DGM and the solution for the time step 4.0 · 10−6 using the STDGM
approximately correspond to each other.

Finally, we compare the results of the computations realized on 4 different
triangular computational meshes using the BDF-DGM with the same time step
4 · 10−7 s. In Figure 5.9 is the comparison of the pressure along the x1-axis at
time 4 · 10−4 s for computational meshes with 13804, 26002, 55412 and 171774
elements. We obtain approximately same results for all meshes. Only for the case
of the coarsest mesh we can see some discrepancy.
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Figure 5.6: Cosine benchmark: Comparison of the pressure along the x1-axis at
time 4 · 10−4 s for different choices of the time step using the BDF-DGM.
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Figure 5.7: Cosine benchmark: Comparison of the pressure along the x1-axis at
time 4 · 10−4 s for different choices of the time step using the STDGM.
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Figure 5.8: Cosine benchmark: Comparison of the pressure along the x1-axis at
time 4 · 10−4 s for different choices of the time step using the BDF-DGM and
STDGM.
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Figure 5.9: Cosine benchmark: Comparison of the pressure along the x1-axis at
time 4 · 10−4 s for different choices of the computational mesh using the BDF-
DGM.
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FSI problem

We continue with an example of the complete FSI problem. For the fluid solver
we use the same setting as for the previous fluid flow problem with the following
adjustment. We employ the STDGM with a polynomial approximation of degree
2 in space and degree 1 in time and we use a computational mesh for the fluid
flow problem, which has 26002 elements. The time step τ is set to 2 · 10−6 s.
Before the FSI problem is solved, we compute first 500 time steps with the fixed
structure.

The elastic bodies are defined as a simplified model of a vocal tract. The more
complicated geometry, motivated by a cut of vocal folds, is defined in the next
section. Here, the elastic bodies are considered as homogeneous and isotropic
with constant material density ρb = 1040 kg m−3. Material characteristics are
given by the Young modulus and the Poisson ratio with Eb = 25000 Pa and
σb = 0.4 and the structural damping coefficient CM = 0.1 s−1. We consider
the St. Venant-Kirchhoff material. Further, the initial displacement and initial
velocity is set to be zero. On the bottom, right and left straight part of the
boundary we prescribe homogeneous Dirichlet boundary condition and on the
curved part of the boundary we prescribe the Neumann boundary condition. For
the solution of the dynamic elasticity problem we employ the NIPG variant of the
DGM with the penalization constant set to Cb

W = 4 · 106. The polynomial degree
of the DGM is set to 1. For the time discretization we use the BDF method of the
order 2. The computational mesh of the structure problem has 1032 elements.

The ALE mapping is computed with the aid of the artificial static linear
elasticity system with Lamé parameters λA, µA defined in (5.27) with cA = 100.
For the solution of the static elasticity problem we employ the NIPG variant of
the DGM, where the penalization constant is set to CA

W = 3 · 103.
We use the strong coupling algorithm described in Section 5.2. The prescribed

tolerance for the absolute variation is 10−5 and for the relative variation it is
10−6. We consider 5 coupling subiterations as the maximum, but the prescribed
tolerance was usually reached after 2 or 3 coupling subiterations.

We present various visualizations of the numerical solution. In Figure 5.10
is the visualization of the distribution of density and the displacement of the
elastic body at time instants 0.0834, 0.0842, . . . , 0.089 s. Figure 5.11 shows the
magnitude of the velocity and Figure 5.12 shows the distribution of the pressure
at time instants 0.0834, 0.0842, . . . , 0.089 s. Figure 5.13 shows the magnitude of
the displacement of the elastic body at time instants 0.0866, 0.0874, 0.0882 and
0.089 s.

Figure 5.14 shows the evolution of the displacement at reference point
[0.0077,−0.0008], which is placed close to the narrowest part of the channel, and
Figure 5.15 shows the fluid average pressure fluctuation on the inlet and on the
outlet. The fluid average pressure on the inlet and on the outlet are computed as

pI(t) =
1

|ΓI |

∫

ΓI

p(x, t) dx, pO(t) =
1

|ΓO|

∫

ΓO

p(x, t) dx. (5.31)

Further, in Figure 5.16 we present the Fourier analysis of the displacement u1
and u2 at reference point [0.0077,−0.0008] and in Figure 5.17 the Fourier analysis
of the fluid average pressure fluctuation on the inlet and on the outlet. These
diagrams of the Fourier analysis are compared in Figure 5.18. We can see that
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the second eigenfrequency of the displacement matches the eigenfrequency of the
fluid average pressure fluctuation. This is a good result for the verification of the
coupling process. Let us note that in Figure 5.18 we can see that the pressure
fluctuation is not affected by the first eigenfrequency. The first eigenfrequency
corresponds mainly to the oscillations of the structure in the direction x1, which
does not lead to the closing of the channel and accordingly to it to any significant
influence on the fluid flow.

Finally, we wanted to compare the numerical simulation of the defined FSI
problem using the St. Venant-Kirchhoff material model with the use of the linear
elasticity model. In Figure 5.19 is the comparison of the evolution of the displace-
ment u1 and u2 at point [0.0077,−0.0008] using the linear elasticity model and the
nonlinear St. Venant-Kirchhoff elasticity model. In Figure 5.20 is the comparison
of the fluid average pressure fluctuation on the inlet and on the outlet using the
linear elasticity model and the nonlinear St. Venant-Kirchhoff elasticity model.
We can see, that the quantities approximately match just in the beginning of the
computation. This is expected, because in this case we deal with already large
deformations.
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Figure 5.10: Distribution of the density and the displacement of the elastic body
at time instants 0.0834, 0.0842, . . . , 0.089 s.
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Figure 5.11: The magnitude of the velocity and the displacement of the elastic
body at time instants 0.0834, 0.0842, . . . , 0.089 s.
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Figure 5.12: Distribution of the pressure and the displacement of the elastic body
at time instants 0.0834, 0.0842, . . . , 0.089 s.
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Figure 5.13: Magnitude of the displacement of the elastic body at time instants
0.0866, 0.0874, 0.0882, 0.089 s.
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Figure 5.14: Cosine benchmark: The displacement at point [0.0077, -0.0008].
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Figure 5.15: Cosine benchmark: The fluid average pressure fluctuation on the
inlet and on the outlet.
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Figure 5.16: Cosine benchmark: Fourier analysis of the displacement u1 (top)
and u2 (bottom) at point [0.0077, -0.0008].
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Figure 5.17: Cosine benchmark: Fourier analysis of the fluid average pressure
fluctuation on the inlet (top) and on the outlet (bottom).
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Figure 5.18: Cosine benchmark: Comparison of the Fourier analysis of the dis-
placement u1 (top) and u2 (bottom) at point [0.0077, -0.0008] and the fluid av-
erage pressure fluctuation on the outlet.
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Figure 5.19: Cosine benchmark: Comparison of the displacement u1 (top) and
u2 (bottom) at point [0.0077, -0.0008] using the linear elasticity model and the
nonlinear St. Venant-Kirchhoff elasticity model.
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Figure 5.20: Cosine benchmark: Comparison of the fluid average pressure fluc-
tuation on the inlet (top) and on the outlet (bottom) using the linear elasticity
model and the nonlinear St. Venant-Kirchhoff elasticity model.
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Figure 5.21: Geometry of the computational domain at time t = 0 and the
description of its size: LI = 20.0 mm, Lg = 17.5 mm, LO = 55.0 mm, HI =
25.5 mm, HO = 2.76 mm.

5.4.2 Model of vocal tract

Here, we present the obtained numerical results for the more realistic model of
vocal folds. The geometry of the domain occupied by the fluid is set according
to the experiments described in [43, 60]. The description of its size is given
in Figure 5.21. As in the previous case, we add to the geometry a semicircle
subdomain with a radius 3.0 cm as an outlet.

The boundary conditions were set similarly as for the previous model. We
prescribe the inlet boundary conditions on ΓI (left part of the boundary), the
outlet boundary conditions on ΓO (the right part of the boundary, which is a
semicircle), and we prescribe the boundary conditions for the impermeable walls
that may move in dependence on time on ΓWt (the rest of the boundary of the
domain including the vertical segments of the semicircle). The fluid flow problem
is computed on the triangulation with 17652 elements. Further for the definition
of the fluid flow problem the following data are used:

the magnitude of the inlet velocity vin = 4 m s−1,
the dynamic viscosity µ = 1.80 · 10−5 kg m−1 s−1,
the inlet density ρin = 1.225 kg m−3,
the outlet pressure pout = 97611 Pa,
the Reynolds number Re = ρinvinHI/µ = 6941.7,
the heat conduction coefficient κ = 2.428 · 10−2 kg m s−2 K−1,
the specific heat cv = 721.428 m2 s−2 K−1,
the Poisson adiabatic constant γ = 1.4.

For the fluid solver we use the STDGM with the polynomial approximation
of degree 2 in space and degree 1 in time. We employ the IIPG variant of the
DGM with the choice of the penalization constant Cf

W = 500 for inner faces and
Cf

W = 5000 for boundary edges. The stabilization parameters ν1 and ν2 from
(4.50) are set to 0.1. The time step τ is set to 1.0 · 10−6 s. For the first 1000 time
steps the fluid flow is computed with the fixed boundary and then we solve the
FSI problem.

We assume that the elastic bodies motivated by a cut of vocal folds are defined
as in Section 3.5.2, i.e. as bodies divided into a few regions with different ma-
terial properties. They are considered as isotropic bodies with constant material
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density ρb = 1040 kg m−3. The division of the domain into 4 regions with differ-
ent material characteristics is illustrated in Figure 3.35 by the Lamé parameters
and the setting of the material characteristics is described in Table 3.14. The
triangulation used for the solution of the structure problem has 5118 elements.
We consider the neo-Hookean material. Further, the initial displacement and the
initial velocity is set to be zero. On the bottom, right and left straight parts
of the boundary we prescribe homogeneous Dirichlet boundary condition and on
the curved part of the boundary we prescribe the Neumann boundary condition.
The damping coefficient CM = 1.0 s−1. For the solution of the dynamic elasticity
problem we employ the NIPG variant of the DGM, where the penalization con-
stant is set to Cb

W = 4 · 106, and the BDF method of order 2. The DGM is set to
use piecewise linear approximation in space.

The ALE mapping is determined with the aid of the static linear elasticity
problem as described in Section 5.3.2. We use the pseudo-elasticity model with
cA = 100 and λA, µA as in (5.27). For the solution of the static elasticity problem
we employ the NIPG variant of the DGM, where the penalization constant is set
to CA

W = 103.
We use the strong coupling algorithm described in Section 5.2 with the pre-

scribed tolerance 10−5 for the absolute variation and 10−6 for the relative vari-
ation. Further, we use 5 coupling subiterations as the maximum. However the
prescribed tolerance was usually reached after 2 or 3 coupling subiterations. An
example of the variations obtained during one iteration of the coupling process is
in Table 5.1.

subiteration absolute variation relative variation coupling condition
1 1.76 · 10−1 5.01 · 10−3 false
2 1.18 · 10−3 3.38 · 10−5 false
3 1.61 · 10−6 4.50 · 10−8 true

Table 5.1: Variation of the displacement obtained during one iteration of the
coupling process at time 0.05 s.

Finally, we present the visualizations of the computed quantities and the de-
formation of the elastic bodies accordingly to the domain occupied by the fluid.
Figure 5.22 shows the distribution of density and the displacement of the elas-
tic body at time instants 0.013, 0.014, . . . , 0.02 s. Figure 5.23 shows the mag-
nitude of the velocity and Figure 5.24 shows the distribution of the pressure.
Finally, Figure 5.25 shows the displacement of the elastic body at time instants
0.017, 0.018, 0.019 and 0.02 s with distinguished regions of different material char-
acteristics. Further, in Figure 5.26 we show the evolution of the displacement at
point [0.0077,−0.0008] and in Figure 5.27 the fluid average pressure fluctuation at
the inlet and at the outlet, which are computed as in (5.31). The obtained results
show the applicability of the proposed method to the interaction of compress-
ible viscous flow and a nonlinear elastic structure in 2D using the discontinuous
Galerkin method (DGM).
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Figure 5.22: Distribution of the density and the displacement of the elastic body
at time instants 0.013, 0.014, . . . , 0.02 s.

122



Figure 5.23: The magnitude of the velocity and the displacement of the elastic
body at time instants 0.013, 0.014, . . . , 0.02 s.
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Figure 5.24: Distribution of the pressure and the displacement of the elastic body
at time instants 0.013, 0.014, . . . , 0.02 s.
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Figure 5.25: The displacement of the elastic body at time instants
0.017, 0.018, 0.019 and 0.02 s. The colors distinguish the regions with different
material characteristics.
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Figure 5.26: Vocal folds model: The displacement at point [0.0077, -0.0008].
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Figure 5.27: Vocal folds model: The fluid average pressure fluctuation on the
inlet and on the outlet.
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6. Implementation notes

In this chapter some technical details of the implementation and few remaining
numerical topics as mesh generation and numerical integration are included.

6.1 Mesh generation

For the computations using the discontinuous Galerkin finite element method
the construction of a triangulation in the computational domain is needed. In
the current implementation we assume that a triangulation of a computational
domain is given and provided as a separate file. There are two basic formats
supported by the mesh generating software GMSH [34] and the anisotropic mesh
generator ANGENER [17]. The latter one is used in the C library for the fluid
flow problem in order to use the anisotropic mesh adaptation algorithm included
in ANGENER. A drawback of ANGENER is the lack of graphical user interface,
which would be useful in the creation of meshes for more complicated computa-
tional domains. This is not the case of GMSH, which is an open source software
commonly used for the generation of meshes. It allows us also to create meshes
with a common boundary for the FSI problems. As mentioned, in the current
implementation both formats are supported, but the C-library for the fluid flow is
accepting only the ANGENER format. Therefore, the computational mesh was
created by the use of GMSH and for the solution of the fluid flow problem it was
converted to the ANGENER format. In the case of the FSI problem the mesh
for the fluid flow and the mesh for the elasticity problem have to share a common
boundary and the edges on the common boundary have to belong to both the
fluid triangulation and the structure triangulation. In order to obtain such trian-
gulations, we prepare the geometry of both domains in GMSH and define there
different regions. In this way we get two triangulations satisfying the assumed
conditions.

Currently the mesh is expected to include just triangles and hanging nodes
are not supported. On the given triangulation we obtain an approximate so-
lution of the problem, where the number of the elements of the triangulation
and their size play the role in the accuracy of the solution. On the other hand,
the growth of the number of elements causes computations more complicated
and more time-consuming. In the case of fluid-structure interaction problem
we assume a common boundary of both triangulations for fluid and structure.
Therefore the edges on the common part of the boundary belong always to one
adjacent element of the triangulation T b

h of the domain Ωb
h of the structure and

to one adjacent element of the triangulation T f
h0 of the domain Ωf

h0 occupied by
the fluid.

6.2 Numerical integration

In this section we are concerned with the computation of the integrals determining
the elements of the matrices of systems (2.40), (2.50), (2.119), or (4.59), and
(4.63). Usually we are not able to compute these integrals exactly but with the
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aid of the numerical quadratures. The choice of a sufficiently accurate quadrature
is crucial in finite element methods. The list of implemented line quadrature
rules on a reference interval [−1, 1] is shown in Tables 6.1 and 6.2. The list of
implemented triangle quadrature rules on a reference triangle K̂ with vertices
[0, 0], [1, 0] and [0, 1] is shown in Tables 6.3, 6.4 and 6.5. In the second column
we indicate the maximum polynomial degree for which the quadrature is exact.
Theoretically our implementation allows arbitrary choice of the polynomial degree
of the discretization by the DGM. However, this choice is limited by the available
implemented quadrature rules. For the higher degree polynomial approximation
the computation of the respective integrals would not be exact.
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Quadrature type Polynomial degree Weights Nodes

Trapezoid 1 1 -1
1 1

Simpson 2 1/3 -1
4/3 0
1/3 1

Table 6.1: Simple quadrature rules on the reference interval [−1, 1].

Q. type P. degree Weights Nodes

Gauss 1 2 0
Gauss 3 1 -0.577350269189

1 0.577350269189

Gauss 5 5/9 −
√

3/5
8/9 0

5/9
√

3/5
Gauss 7 0.347854845137 -0.861136311594

0.652145154862 -0.339981043584
0.652145154862 0.339981043584
0.347854845137 0.861136311594

Gauss 9 0.23692688505618908751426 -0.90617984593866399279762
0.4786286704993664680413 -0.53846931010568309109632
0.56888888888888888888888 0
0.4786286704993664680413 0.53846931010568309109632
0.23692688505618908751426 0.90617984593866399279762

Table 6.2: Gauss quadrature rules on the reference interval [−1, 1] obtained
from [59].

Q. type P. degree Weights x-nodes y-nodes

Trapezoid 1 1/6 0 0
1/6 1 0
1/6 0 1

Midpoint 2 1/6 0 0.5
1/6 0.5 0
1/6 0.5 0.5

Table 6.3: Simple quadrature rules on the reference triangle K̂.
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Q. type P. degree Weights x-nodes y-nodes

Gauss 5 0.112500000000000 0.333333333333333 0.333333333333333
0.066197076394253 0.470142064105115 0.470142064105115
0.066197076394253 0.470142064105115 0.059715871789769
0.066197076394253 0.059715871789769 0.470142064105115
0.0629695902724135 0.101286507323456 0.101286507323456
0.0629695902724135 0.101286507323456 0.797426985353087
0.0629695902724135 0.797426985353087 0.101286507323456

Gauss 7 -0.074785022233835 0.333333333333333 0.333333333333333
0.087807628716602 0.260345966079038 0.260345966079038
0.087807628716602 0.479308067841923 0.260345966079038
0.087807628716602 0.260345966079038 0.479308067841923
0.0266736178044195 0.065130102902216 0.869739794195568
0.0266736178044195 0.869739794195568 0.065130102902216
0.0266736178044195 0.065130102902216 0.065130102902216
0.0385568804451285 0.638444188569809 0.312865496004875
0.0385568804451285 0.312865496004875 0.638444188569809
0.0385568804451285 0.638444188569809 0.048690315425316
0.0385568804451285 0.048690315425316 0.638444188569809
0.0385568804451285 0.312865496004875 0.048690315425316
0.0385568804451285 0.048690315425316 0.312865496004875

Table 6.4: Gauss quadrature rules on the reference triangle K̂ obtained from [11]]
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Q. type P. degree Weights x-nodes y-nodes

Gauss 1 0.5 1/3 1/3
Gauss 2 1/6 2/3 1/6

1/6 1/6 1/6
1/6 1/6 2/3

Gauss 3 -0.281250000000 1/3 1/3
0.260416666666 1/5 1/5
0.260416666666 3/5 1/5
0.260416666666 1/5 3/5

Gauss 4 0.1116907948390 0.108103018168 0.445948490915
0.1116907948390 0.445948490915 0.445948490915
0.1116907948390 0.445948490915 0.108103018168
0.0549758718276 0.816847572980 0.091576213509
0.0549758718276 0.091576213509 0.091576213509
0.0549758718276 0.091576213509 0.816847572980

Gauss 5 0.112500000000 0.333333333333 0.333333333333
0.062969590272 0.101286507323 0.101286507323
0.062969590272 0.797426985353 0.101286507323
0.062969590272 0.101286507323 0.797426985353
0.066197076394 0.470142064105 0.470142064105
0.066197076394 0.059715871789 0.470142064105
0.066197076394 0.470142064105 0.059715871789

Gauss 6 0.058393137863 0.501426509658 0.249286745170
0.058393137863 0.249286745170 0.249286745170
0.058393137863 0.249286745170 0.501426509658
0.025422453185 0.873821971016 0.063089014491
0.025422453185 0.063089014491 0.063089014491
0.025422453185 0.063089014491 0.873821971016
0.041425537809 0.053145049844 0.310352451033
0.041425537809 0.310352451033 0.053145049844
0.041425537809 0.053145049844 0.636502499123
0.041425537809 0.636502499123 0.053145049844
0.041425537809 0.636502499123 0.310352451033
0.041425537809 0.310352451033 0.636502499123

Gauss 7 -0.074785022233 0.333333333333 0.333333333333
0.087807628716 0.479308067841 0.260345966079
0.087807628716 0.260345966079 0.260345966079
0.087807628716 0.260345966079 0.479308067841
0.026673617804 0.869739794195 0.065130102902
0.026673617804 0.065130102902 0.065130102902
0.026673617804 0.065130102902 0.869739794195
0.038556880445 0.048690315425 0.312865496004
0.038556880445 0.312865496004 0.048690315425
0.038556880445 0.048690315425 0.638444188569
0.038556880445 0.638444188569 0.048690315425
0.038556880445 0.638444188569 0.312865496004
0.038556880445 0.312865496004 0.638444188569

Table 6.5: Gauss quadrature rules on the reference triangle K̂ obtained from [59]
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6.3 Description of the implementation

According to the proposed algorithmization we developed a .NET framework ap-
plication that solves partial differential equations using the discontinuous Galerkin
method (DGM). In Chapters 2 and 3 we presented the algorithmization standing
behind the library dealing with elasticity problems. This library can be used for
the numerical solution of the 2D dynamic linear and nonlinear elasticity problem
with mixed boundary conditions. Further, for the numerical simulation of the flu-
id flow problem we modified the C library developed by Česenek, see [11], which
was embedded in the .NET library for the numerical solution of the elasticity
problem and used for the numerical solution of the FSI problem. The whole .NET
framework application includes also the solvers of other partial differential equa-
tions, namely the Laplace equation, parabolic equations, and linear or nonlinear
convection-diffusion equations.

The programme is written in C#, i.e. we need .NET framework for launching
the application or its open-source equivalent Mono. The programme runs on
Windows, Linux and Mac OS X. However, if we want to use it on Linux, we may
need to compile the UMFPACK solver separately. This can be done easily, because
most of the distributions have it as a precompiled library and the only thing we
have to do is to link the shared object libumfpack.so to the libs directory in
our .NET application installation.

Before starting the programme it is necessary to create a configuration file.
Then, we can easily run the application from the command line by

DGMNET.exe config_file.xml

where as an argument we give the path to the created configuration file. In
Attachment A.2 is an example of the XML configuration used for the numerical
solution of the FSI problem.
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Conclusion

In this thesis, the new implementation of the DGM to FSI problem is described.
The FSI problem is defined by the model of compressible viscous flow coupled
with the dynamic linear or nonlinear elasticity problem in 2D. Our motivation
was to develop methods for the numerical simulation of the problem inspired by
the model of self-oscillating human vocal folds. There were two main goals of
the thesis: the application of the DGM to the linear and the nonlinear elasticity
problem and the extension of the numerical solution of the viscous compressible
fluid flow problem in a time-dependent domain.

In the first three chapters we were concerned with the numerical solution of
the elasticity problem. At first the linear and nonlinear elasticity problem was
defined. For the description of the deformation of the elastic structure we use
the nonlinear St. Venant-Kirchhoff model and neo-Hookean model. Then, we
introduced the discretization of both the linear and nonlinear static elasticity
problem by the DGM. Further, we described the discretization of the dynamic
problem by the DGM in space and by the BDF in time. On the basis of the
theory of the DGM we developed a .NET library written in C# for the numerical
solution of the 2D dynamic linear and nonlinear elasticity problem with mixed
boundary conditions.

The first part on the elasticity is concluded by the presentation of several
numerical experiments for the numerical simulation of the elasticity problem. We
presented the numerical experiments for the static and dynamic elasticity problem
considering the linear and nonlinear elasticity. Some of the numerical tests were
devoted to the choice of the parameter of the DGM defined for every edge of the
triangulation, which estimates the penalty weight in the interior and boundary
penalty term. We also compare results of the numerical tests obtained by using
the DGM and FEM with each other. Finally, we presented the applicability of
the developed method to problems with nonhomogeneous elasticity material.

In the other part of the thesis we were concerned with the numerical solution
of the fluid flow problem in a time-dependent domain and the FSI problem. The
chapter on the fluid flow problem is related to the former work presented in [11].
We consider the compressible viscous flow in time-dependent domain and the
DGM is again used for the discretization of the problem. In order to validate
the method we present the results of the numerical simulation for the fluid flow
problem on a fixed domain without any interaction.

Newly, we extended the fluid flow solver with the elastic deformation of the
computational domain and coupled it with the solution of the linear and nonlinear
elasticity problem. We introduced the scheme with the discretization in time by
the BDF method and in space by the DGM and also the full space-time DGM
scheme. The ALE mapping was introduced with the aid of an artificial static
linear elasticity problem in the domain occupied by the fluid. We formulated
the partitioned strongly coupled scheme. The results of numerical experiments
demonstrate that the DGM can be successfully applied to all three problems
involved in FSI: fluid flow, a large elastic material deformation and the ALE
mapping construction.

In the second example we have presented a more realistic problem with geom-
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etry and parameters better characterizing the properties of the tissue of human
vocal folds. The elastic structure domain was split in four subdomains with the
same material density, but with different material characteristics. Also the shape
of the computational channel was more realistic. Even if there were large deforma-
tions of the structure causing creation of the massive vortices in the flow domain,
no difficulties in the flow part were marked and the vortices were smoothly leaving
the domain.

There are some possible extensions for the future work. It is a comparison of
our compressible model with incompressible flow in FSI simulations. Moreover,
the treatment of the complete closure of the channel between the vocal folds
is important. This effect occurs during the phonation in human vocal folds and
together with the acoustic resonances of the human vocal tract causes the creation
of voice. Last but not least is the identification of the acoustic signal.
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[20] V. Doleǰśı. Discontinuous Galerkin method for the numerical simulation
of unsteady compressible flow. WSEAS Transactions on Systems, (2006)
5(5):1083–1090.
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A. Attachments

A.1 Nonhomogeneous model of vocal folds

Here, we show the .NET implementation of the model of vocal folds defined in
Section 3.5.2. The boundaries of the subdomains of the model of vocal folds are
given by spline interpolations.

public class VocalFoldsModel : LameParametersBase

{

private const double MuscleLeftEdgeX = 0.0055;

private const double MuscleRightEdgeX = 0.0133;

private const double DeepLayerLeftEdgeX = 0.00319 + EPar;

private const double DeepLayerRightEdgeX = 0.01394 - EPar;

private const double EPar = 0.0002;

private const double EPar2 = EPar * 1.41421;

private double[] EpitheliumX = {

0.0,

0.00139 + EPar,

0.00319 + EPar,

0.00468 + EPar,

0.00627 + EPar,

0.00788 + EPar,

0.00874 + EPar,

0.00991 + EPar,

0.01109,

0.01206 - EPar,

0.01257 - EPar2,

0.01290 - EPar2,

0.01330 - EPar2,

0.01394 - EPar,

0.01461 - EPar,

0.016 - EPar,

0.0175

};

private double[] EpitheliumY = {

0.00763 + EPar2,

0.00670 + EPar,

0.00542 + EPar,

0.00424 + EPar,

0.00299 + EPar,

0.00185 + EPar,

0.00132 + EPar,

0.00081 + EPar,

0.00077 + EPar2,

0.00125 + EPar,
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0.00197,

0.00305,

0.00408,

0.00550 + EPar,

0.00660 + EPar,

0.00784 + EPar,

0.0082 + EPar2

};

private readonly CubicSpline Epithelium;

private double[] DeepLayerX = {

0.00319 + EPar,

0.0055,

0.0077,

0.01,

0.0124,

0.0133,

0.01394 - EPar

};

private double[] DeepLayerY = {

0.00542 + EPar,

0.0045,

0.004,

0.004,

0.0045,

0.0051,

0.00550 + EPar

};

private readonly CubicSpline DeepLayer;

private double[] MuscleX = {

0.0055,

0.0091,

0.0113,

0.0124,

0.0133

};

private double[] MuscleY = {

0.0045,

0.00204,

0.00175,

0.003,

0.0051

};

private readonly CubicSpline MuscleLayer;

public readonly List<LameParametersTuple> Parameters;

public VocalFoldsModel2(List<LameParametersTuple> parameters)
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{

if (parameters.Count != 4)

{

throw new ArgumentException(GetType().Name

+ ": expected 4 parameter tuples!");

}

Parameters = parameters;

Epithelium = new CubicSpline(EpitheliumX, EpitheliumY);

DeepLayer = new CubicSpline(DeepLayerX, DeepLayerY);

MuscleLayer = new CubicSpline(MuscleX, MuscleY);

}

public LameParametersTuple GetLambdaMu(double x, double y)

{

if (Math.Abs(y) > Epithelium.ValueAt(x))

{

if ((x > DeepLayerLeftEdgeX)

&& (x < DeepLayerRightEdgeX)

&& Math.Abs(y) < DeepLayer.ValueAt(x))

{

if ((x > MuscleLeftEdgeX)

&& (x < MuscleRightEdgeX)

&& (Math.Abs(y) > MuscleLayer.ValueAt(x)))

{

return Parameters[1];

}

else

{

return Parameters[2];

}

}

else

{

return Parameters[0];

}

}

else

{

return Parameters[3];

}

}

}
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A.2 XML configuration file

Here, we show an example of a XML configuration file used by the .NET framework
application. It is the XML configuration used for the numerical solution of the
FSI problem.

<?xml version="1.0" encoding="utf-8"?>

<XmlConfigurationFSI

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<Version>STDGM</Version>

<FluidConfiguration>

<ProblemDataType>VOCAL_FOLDS</ProblemDataType>

<FluidForceType>COMPLETE_WITH_COFACTOR</FluidForceType>

<AmbientPressure>97611</AmbientPressure>

<ComputeDragLift>false</ComputeDragLift>

<DragLiftFluidForceType>COMPLETE</DragLiftFluidForceType>

<EdgeQuadrature>DEGREE_3</EdgeQuadrature>

<OverrideCesenekAlgebraicSolver>false

</OverrideCesenekAlgebraicSolver>

<AlgebraicSolver>UMFPACK_LIB_CSR</AlgebraicSolver>

</FluidConfiguration>

<CesenekConfiguration>

<Parallelization>

<IsEnabled>1</IsEnabled>

<ThreadCount>8</ThreadCount>

</Parallelization>

<Control>

<InitialTime>11.25</InitialTime>

<Tau>0.0005</Tau>

<TauMultiple>1</TauMultiple>

<LastMultiplied>0</LastMultiplied>

<MaxIteration>200000</MaxIteration>

<MaxSubIteration>5</MaxSubIteration>

<StartSubIteration>1</StartSubIteration>

<SaveIteration>500</SaveIteration>

<LogProfileHeightAndAngle>0</LogProfileHeightAndAngle>

</Control>

<Gmres>

<MaxIteration>20</MaxIteration>

<InnerIteration>30</InnerIteration>

<Tolerance>1E-06</Tolerance>

<Preconditioner>DIAG</Preconditioner>

</Gmres>

<PhysicalConstants>

<Gamma>1.4</Gamma>

<Viscosity>1</Viscosity>

<HeatConductivity>1</HeatConductivity>

<Reynolds>4335.6</Reynolds>
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<Prandtl>0.64</Prandtl>

<ReferenceLength>0.016</ReferenceLength>

<ReferenceProfileWidth>0.05</ReferenceProfileWidth>

<ReferenceDensity>1.225</ReferenceDensity>

<ReferenceVelocity>4</ReferenceVelocity>

<Kappa>1.4</Kappa>

</PhysicalConstants>

<Method>

<DgVariant>IIPG</DgVariant>

<Cw>500</Cw>

<Cww>5000</Cww>

<StabEl>0.01</StabEl>

<StabEd>0.01</StabEd>

<BoundaryTypes>

<Inlet>1</Inlet>

<Outlet>2</Outlet>

<Wall>4</Wall>

<Isowall>3</Isowall>

</BoundaryTypes>

<TriangulationPath>

triang/cosine_radius_27k/fluid_dimensionless.ang

</TriangulationPath>

</Method>

<Profile>

<InitialAngle>0</InitialAngle>

<InitialDimensionlessShift>0</InitialDimensionlessShift>

</Profile>

<InitialConditions>

<InitialConditionsPath>

initialCondition.txt

</InitialConditionsPath>

<InitialConditionsType>FILE</InitialConditionsType>

<ConstantConditions>

<Density>1</Density>

<VelocityX>1</VelocityX>

<VelocityY>0</VelocityY>

<Pressure>4980</Pressure>

</ConstantConditions>

</InitialConditions>

<BoundaryConditionsInlet>

<Density>1</Density>

<VelocityX>1</VelocityX>

<VelocityY>0</VelocityY>

<Pressure>4980</Pressure>

</BoundaryConditionsInlet>

<BoundaryConditionsOutlet>

<Density>1</Density>

<VelocityX>1</VelocityX>
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<VelocityY>0</VelocityY>

<Pressure>4980</Pressure>

</BoundaryConditionsOutlet>

</CesenekConfiguration>

<SolutionConfiguration>

<SaveEveryIter>100</SaveEveryIter>

<LogAveragePressure>true</LogAveragePressure>

<LogAveragePressureEachIter>true</LogAveragePressureEachIter>

<LogStateVectorVertices>false</LogStateVectorVertices>

<LogStateVectorHighOrder>false</LogStateVectorHighOrder>

<LogFlowQuantitiesVertices>false</LogFlowQuantitiesVertices>

<LogFlowQuantitiesHighOrder>false</LogFlowQuantitiesHighOrder>

<LogVtp>true</LogVtp>

<OutputFolder>log/Fluid</OutputFolder>

</SolutionConfiguration>

<AleDisplacementConfiguration>

<AleProviderType>ELASTIC_MATERIAL</AleProviderType>

<ElasticMaterialConfiguration>

<SolverConfigurationFile>

AleSolverConfiguration.xml

</SolverConfigurationFile>

<Lambda>-10</Lambda>

<Mu>10</Mu>

<InitialConditionFile>ALE_IC.csv</InitialConditionFile>

</ElasticMaterialConfiguration>

</AleDisplacementConfiguration>

<InteractionConfiguration>

<InteractionType>ELASTIC_MATERIAL</InteractionType>

<PrescribedMotionConfiguration>

<PrescribedMotionModelType>FIXED</PrescribedMotionModelType>

</PrescribedMotionConfiguration>

<ElasticMaterialConfiguration>

<SolverConfigurationFile>

ElasticitySolverConfiguration.xml

</SolverConfigurationFile>

<Lambda>17143</Lambda>

<Mu>4285</Mu>

<Rho>1040</Rho>

<DampingMass>0.1</DampingMass>

<DampingStiffness>0</DampingStiffness>

<RelaxationParameter>0.8</RelaxationParameter>

<SubiterationStopCriterionConfiguration>

<AbsoluteTolerance>1E-05</AbsoluteTolerance>

<RelativeTolerance>1E-06</RelativeTolerance>

<MaxSubiteration>5</MaxSubiteration>

</SubiterationStopCriterionConfiguration>

</ElasticMaterialConfiguration>

</InteractionConfiguration>
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<Logger>

<LogConfiguration>true</LogConfiguration>

<LogTrace>true</LogTrace>

<OutputFolder>log</OutputFolder>

</Logger>

</XmlConfigurationFSI>
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