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FACULTY OF MATHEMATICS AND PHYSICS

CHARLES UNIVERSITY IN PRAGUE

DEPARTMENT OF THEORETICAL COMPUTER SCIENCE AND MATHEMATICAL LOGIC

M2: GEOMETRY, TOPOLOGY, GLOBAL ANALYSIS AND GENERAL STRUCTURES



CONTENTS

Preface iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

I Basic Notions and Known Results 1

1. Quasiorders and partial orders . . . . . . . . . . . . . . . . . . . 1

1.8 Fragmentations . . . . . . . . . . . . . . . . . . . . . . . . 3

1.14 Todorcevic’s partial order - (part 1) . . . . . . . . . . . . . 4

2. Topological spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 Sequential modification . . . . . . . . . . . . . . . . . . . 7

2.6 Power set P(X) with compact and sequential topology . . 7

2.16 Extremal property of compact Hausdorff topology . . . . . 9

2.18 Polish spaces . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.20 Isomorphism theorem . . . . . . . . . . . . . . . . . . . . 10

2.21 Extending Polish topology . . . . . . . . . . . . . . . . . . 10

2.23 Semicontinuous functions . . . . . . . . . . . . . . . . . . 11

3. Boolean algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Distributivity . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.6 Construction of complete Boolean algebras . . . . . . . . 14

3.9 Fundamental examples of Boolean algebras . . . . . . . . 15

3.10 Complete Boolean algebras are injective . . . . . . . . . . 16

3.13 Generators of Boolean algebras and independent subsets . 16

3.17 Regular subalgebras . . . . . . . . . . . . . . . . . . . . . 17

3.24 Universality of the σ-field Borel(2ω) . . . . . . . . . . . . . 19

3.33 Sequences in Boolean algebras . . . . . . . . . . . . . . . 21

4. Submeasures on Boolean algebra . . . . . . . . . . . . . . . . . . 23

4.12 Kelley’s fragmentation . . . . . . . . . . . . . . . . . . . . 26

II Generic extensions 27

1. Basic concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.13 Adding new reals . . . . . . . . . . . . . . . . . . . . . . . 31

2. Almost disjoint refinement . . . . . . . . . . . . . . . . . . . . . . 34

2.15 Almost disjoint refinement of groundmodel reals . . . . . 37

III Exhaustive functions 40

1. Definitions and basic facts . . . . . . . . . . . . . . . . . . . . . . 40

2. Classes of Boolean algebras . . . . . . . . . . . . . . . . . . . . . 43

2.3 Inclusion diagram . . . . . . . . . . . . . . . . . . . . . . 45

2.13 Productivity . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3. Additional facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Todorcevic’s partial order - (part 2) . . . . . . . . . . . . . 53

4.7 Localisation forcing . . . . . . . . . . . . . . . . . . . . . . 56

i



CONTENTS ii

5. Relations given by monotone functions . . . . . . . . . . . . . . . 58

IV Lattices of Submeasures and Supermeasures 61

1. General setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2. Pavement construction of submeasures . . . . . . . . . . . . . . . 61

2.7 Variations of Popov Example . . . . . . . . . . . . . . . . . 64

3. Minimal submeasures . . . . . . . . . . . . . . . . . . . . . . . . 68

4. Pathological submeasures . . . . . . . . . . . . . . . . . . . . . . 72

5. Duality of 2-additive functions . . . . . . . . . . . . . . . . . . . . 76

6. Fremlin - Kupka operator . . . . . . . . . . . . . . . . . . . . . . 81

7. Homogenisation of submeasures . . . . . . . . . . . . . . . . . . 86

V Continuous submeasures 90

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2. Convergent structures on Boolean algebras . . . . . . . . . . . . . 92

3. Examples of zero-convergence . . . . . . . . . . . . . . . . . . . . 93

3.11 Order sequential zero-convergence . . . . . . . . . . . . . 95

4. Sequential topology on Boolean algebras . . . . . . . . . . . . . 96

4.11 Semicontinuity of monotone functions . . . . . . . . . . . 99

5. Discrete versus continuous exhaustive submeasures . . . . . . . . 100

6. When Z is a zero-convergence structure . . . . . . . . . . . . . . 102

7. The Decomposition Theorem . . . . . . . . . . . . . . . . . . . . 107

8. Weakly distributive Boolean algebras . . . . . . . . . . . . . . . . 110

9. Algebraic characterisation of Maharam algebra . . . . . . . . . . 112

9.1 Set - structures derived from convergence ones . . . . . . 112

10. Regular ideals on Bω . . . . . . . . . . . . . . . . . . . . . . . . . 116

10.11 The behaviour of Bω/Z(B). . . . . . . . . . . . . . . . . . 118

References 121

Index 125



PREFACE

The main motivation of this work was a long years open problem III.1.11 of

D. Maharam [Mah47] inspired by J. von Neumann question [Mau81]. When fin-

ishing this thesis the problem was solved by M. Talagrand [Tal06] in a negative

way. Even that the solution of Maharam Problem is not included here it is an ex-

cellent ending of the long story and this thesis maps several areas of mathematics

that were discovered on the way to the solution.

The notation used here is quite standard; as a main reference book we use

the Handbook of Boolean algebras [Mon89]. The proofs are ended by ¤ and

examples by △. When referring to some theorem or definition we always use the

reference including the number of a chapter i.e. ‘theorem V.7.4’; despite the fact

we do not use the chapter number in labels.

The work is divided into five chapters. The first chapter serves as a quick

guide to the basic techniques used further.

I. THE BASICS

There are almost no proofs in this chapter except those where we want to illus-

trate some techniques. One can find here basic definitions and known facts and

nontrivial poset consisting of convergent sequences I.1.14, which we use later.

Somewhat new is the following observation I.3.20

Theorem. Let B be a subalgebra of C. Then there is an ideal I on C
such that canonical homomorphism

i : B −→ C/I
b 7−→ [b]I ,

is a regular embedding of B into C/I.

with the direct description of the minimal ideal satisfying the theorem

I = {u ∈ C : ∃ max. disjoint family X ⊂ B such that u ∧ x = 0 for any x ∈ X}.

Also this result is used further in the text.

II. ALMOST DISJOINT REFINEMENT

First part of this chapter serves as a very brief introduction to, not only, generic

extensions of ZFC models and to the method of forcing. As in the first chapter

when we give proofs it is only to illustrate needed techniques.

The only reason why this material forms a separate chapter is the part about

the Almost disjoint refinements. Where we answered the question raised by

L. Soukup:
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Does the family ([ω]ω)V has an almost disjoint refinement in generic

extension, which adds a new real?

in affirmative. Remind that a family S ⊂ [ω]ω has an almost disjoint refinement if

there is an almost disjoint family A such that for any X ∈ S there is A ∈ A such

that A ⊂∗ X.

In fact our answer is not restricted to generic extensions only:

Theorem. In any ZFC extension M of V adding a new real there is an

almost disjoint refinement for ([ω]ω)V.

III. EXHAUSTIVE FUNCTIONS

In this chapter we formulate basic properties of (uniformly) exhaustive functions

on Boolean algebra, where

(i) A real function f : P → R is called exhaustive if for each disjoint sequence

〈an : n ∈ ω〉 ∈ Pω, limn→∞ f(an) = 0.

(ii) f : P → R is called uniformly exhaustive if for each positive ε > 0 there

is a k ∈ ω such that for every disjoint sequence 〈an : n ∈ ω〉 ∈ Pω

|{n ∈ ω : |f(an)| ≥ ε}| ≤ k.

Further we made the basic classification of Boolean algebras. First using the

fragmentation properties:

A Boolean algebra B is called

(i) σ-centered if B+ =
⋃

n∈ω

Pn, each Pn being centered;

(ii) σ-linked if B+ =
⋃

n∈ω

Pn, each Pn being linked;

(iii) σ-bounded cc if B+ =
⋃

n∈ω

Pn, each Pn being (n+1)-cc;

(iv) σ-finite cc if B+ =
⋃

n∈ω

Pn, each Pn being ω-cc,

Second, using the existence of a function with special properties:

(v) XBA stands for the class of algebras carrying a strictly positive exhaustive

functional,

(vi) UpmBA stands for the class of algebras carrying a strictly positive super-

measure,

(vii) EBA stands for the class of algebras carrying a strictly positive exhaustive

submeasure,
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(viii) MBA stands for the class of measure algebras (i.e. algebras carrying a

strictly positive finitely additive measure),

We show the basic interrelationship among these classes:

Theorem. Boolean algebra B carries a strictly positive exhaustive func-

tion if and only if B is a σ-finite cc.

Theorem. The following properties are equivalent.

(i) B carries a strictly positive supermeasure;

(ii) B carries a strictly positive uniformly exhaustive function;

(iii) B satisfies the σ-bounded cc.

Theorem. Any σ-centered algebra B carries a strictly positive measure.

and describe the inclusion diagram concerning these classes, finally we give some

examples which serves as an illustration that defined classes are generally dis-

tinct.

A separate part of this chapter concerns productivity of σ-finite and σ-bound-

ed algebras. To our knowledge, these are new results:

Theorem. Let I be an arbitrary index set and let {Bi : i ∈ I} be an

arbitrary family of Boolean algebras satisfying the σ-finite cc (resp. σ-

bounded cc). Then the free product

B =
⊗

i∈I
Bi

satisfies the σ-finite cc (resp. σ-bounded cc) as well.

We conclude the chapter with an introduction of the following relations on

Boolean algebras: Let f be a monotone function on Boolean algebra B such that

f(0) = 0. Let ε > 0, for a, b ∈ B define

b <f,ε a if and only if b ≤ a & f(a − b) ≥ ε.

and show that one can decide the (uniform) exhaustivity of a function f by the

(height, or) foundation of a relation <f,ε.

Theorem. Let f be a monotone function on Boolean algebra B and

f(0) = 0. Then

(i) the relation <f,ε is well founded on B for any ε > 0 if and only if f

is an exhaustive function on B,

(ii) the height of the relation <f,ε is finite for any ε > 0 if and only if f

is a uniformly exhaustive function on B.

This contribute to the characteristics of (uniformly) exhaustive functions and

touches the topics that are discussed in the next chapter.
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IV. ALGEBRAIC PROPERTIES

This chapter is far from uniform, rather it is a collection of separate observa-

tions and facts with stress to the lattice structure of Sub(B); all submeasures on

Boolean algebra B.

We start with the description of a pavement construction of a submeasures

A pavement for a Boolean algebra B is a subset D ⊆ B together with a mapping

w : D → [0,∞) such that for some finite D0 ⊆ D, 1 =
∨

D0. Having pavement

(D, w) on B one can define a submeasure µw on B as follows

µw(a) = inf{
∑

d∈F

w(d) : F ∈ [D]<ω a ≤ ∨F}.

This construction is used in a modified Popov’s example to construct exhaus-

tive subpathological function and pathological submeasure, where:

Nonnegative bounded function on Boolean algebra is called subpathological if

There is no nontrivial submeasure below f, i.e. µf is identical zero.

Submeasure ϕ on Boolean algebra B is pathological if ϕ(1) > 0 and there is

no nontrivial measure below ϕ, i.e.

{ψ ∈ Meas(B) : ψ ≤ ϕ} = {0̄}.

We continue with the structure description of a lattice Sub(B) and charac-

terise minimal submeasures:

A submeasure ϕ ∈ Sub(B) is minimal if and only if it is a 2−additive

function, i.e. a function f : B → R satisfying

(i) (∀a ∈ B) f(a) + f(−a) = f(1), respectively

(ii) for any partition a1, a2, a3 of unity f(a1) + f(a2) + f(a3) = f(1).

We define envelope submeasures, i.e. submeasures that are supremum of mea-

sures in Sub(B) lattice and introduce the touching lemma:

Theorem. Let ϕ be an envelope on B then for any a ∈ B there is a

measure m ≤ ϕ on B such that ϕ(a) = m(a).

and distinguish minimal and envelope submeasures:

Theorem. Every minimal submeasure is either a measure or is not even

a supremum of measures below; i.e: is not an envelope.

In the second part of this chapter we introduce the intersection number tech-

nique and give proofs to the famous J. L. Kelly and N. J. Kalton - J. W. Roberts

theorems. This technique is used to Fremlin - Kupka operator to generalise and

extend the results of D. H. Fremlin and J. Kupka.

This chapter is concluded with the notion of algebraic homogenisation of

submeasures.
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V. TOPOLOGICAL PROPERTIES

In the last chapter we focus on topological characterisation of Maharam algebras.

This chapter is based on [BGJ98], [BFH99] and [BJP05] and brings among others

a consistent solution to the von Neumann’s problem.

VON NEUMANN’S PROBLEM

First let us remind the notion of Measure algebra: Consider the quotient algebra

M of Borel sets in the interval [0, 1] modulo null sets, i.e. sets of Lebesgue

measure 0. M is an atomless σ-algebra, and carries a (σ-additive strictly positive)

measure, a numerical function m with the following properties

m(0) = 0, m(a) > 0 for a 6= 0, and m(1) = 1

m(
∨

n∈ω

an) =
∑

n∈ω

m(an) whenever an are pairwise disjoint.

An atomless σ-algebra that carries a measure is called Measure algebra.

The main motivation of the following is combinatorial characterisation of a

Measure algebra. It is an easy observation that Measure algebra satisfies the

countable chain condition (ccc); i.e. all the antichains are countable. But of

course there are ccc algebras that do not carry a measure. Hence we have to

look for some other property.

To characterise measure algebras, von Neumann formulated the following

weak distributivity law:

if an
0 ≤ an

1 ≤ . . . for n = 1, 2, . . . , then
∧

n

∨

k

an
k =

∨

f:ω→ω

∧

n

an
f(n).

The Measure algebra satisfies this form of distributivity.

The problem of von Neumann from The Scottish Book [Mau81] (Problem

163) asks whether every weakly distributive complete ccc Boolean algebra car-

ries a countably additive measure.

That was an observation of Maharam that in order to prove ccc and weak dis-

tributivity one does not need a measure on B, but an ostensibly weaker property:

A function m on B is a continuous submeasure if

m(0) = 0, m(a) > 0 for a 6= 0, and m(1) = 1,

m(a) ≤ m(b) if a ≤ b,

m(a ∨ b) ≤ m(a) + m(b),

lim
n

m(an) = 0 for every decreasing sequence an with
∧

n

an = 0.

We call a continuous submeasure a Maharam submeasure, and complete Boolean

algebra B a Maharam algebra if it carries a Maharam submeasure. Every measure

is Maharam submeasure.
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Theorem. (D. Maharam) A Maharam algebra satisfies ccc and is weakly distribu-

tive.

Von Neumann’s problem can be divided into two distinctly different ques-

tions. Weak distributivity is a consequence of a property possibly weaker than

measurability, namely the existence of a continuous strictly positive submea-

sure (a Maharam submeasure); the Control Measure Problem of [Mah47] asks

whether every complete Boolean algebra that carries a continuous submeasure

must also carry a measure.

The second question is the following modified von Neumann problem: does

every weakly distributive ccc complete Boolean algebra carry a strictly positive

Maharam submeasure? This statement is not provable in ZFC, as the algebra

associated with a Souslin tree is a counterexample. In chapter V, or in[BJP05] it

is shown that it is consistent that the modified von Neumann problem holds.

Michel Talagrand announced the solution of the Control Measure Problem. In

[Tal06] he constructs a submeasure on the Cantor algebra that is exhaustive but

not uniformly exhaustive (and therefore not equivalent to a measure).

The interested reader can found a lot about the history of von Neumann prob-

lem in the B. Balcar and T. Jech survey article [BJ06].

ORDER SEQUENTIAL TOPOLOGY

We start with the description of algebraic convergence on Boolean algebra.

Let B be a Boolean σ-algebra. An infinite sequence {an}n converges to a,

limn an = a, if lim supn an = lim infn an = a, where lim supn an =
∧

n

∨
k≥n ak,

lim infn an =
∨

n

∧
k≥n ak. Equivalently, we define limn an = 0 whenever there

exists a decreasing sequence bn with
∧

n bn = 0 such that an ≤ bn for all n.

Then we let limn an = a if limn(an △ a) = 0.
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Algebraic convergence satisfies basic properties of convergence and is com-

patible with Boolean operations:

(a) If an = a for all n then lim
n

an = a.

(b) If {an}n converges to a and π is a permutation of ω then

{aπ(n) }n also converges to a.

(c) lim
n

an = 0 if and only if lim sup
n

an = 0,

(d) if the an are pairwise disjoint then lim
n

an = 0,

(e) lim sup
n

(an ∨ bn) = lim sup
n

an ∨ lim sup
n

bn,

(f) if lim
n

an = a and lim
n

bn = b then lim
n

−an = −a,

lim
n

(an ∨ bn) = a ∨ b and lim
n

(an ∧ bn) = a ∧ b.

Having algebraic convergence one can simply extend it to a sequential topol-

ogy on Boolean algebra:

A set F ⊆ B is closed if lim an ∈ F whenever {an}n is a sequence in F. Let τs

denote the topology on B so obtained; it is the sequential topology on B. The

space (B, τs) is T1 (every singleton is closed). The closure cl(A) of a set A ⊆ B
is generally obtained by taking limits of convergent sequences and iterating this

ω1 times. Maharam pointed out that the iteration is not necessary if B is ccc and

weakly distributive: in this case cl(A) is the set of all limits of sequences of A.

THE DECOMPOSITION THEOREM

D. Maharam [Mah47] characterised algebras that carry a continuous submeasure

as those on which the sequential topology τs is metrizable. In [BGJ98] this is

improved to the condition that B is ccc and (B, τs) is a Hausdorff space.

The Decomposition theorem shows that there are basically only two possibili-

ties. First, the Boolean algebra with order sequential topology is Hausdorff hence

Metrizable space. Second, if not Hausdorff then the order sequential topology

goes wild, since every nonempty open set is dense.

Theorem. Let B be a complete ccc Boolean algebra. Then there are disjoint ele-

ments d, m ∈ B such that d ∨ m = 1 and

(i) In the space (B ↾ d, τs) the closure of every nonempty open set is the whole

space.

(ii) The Boolean algebra B ↾ m carries a strictly positive Maharam submeasure,

i.e. the τs topology is metrizable.

The Decomposition Theorem is a useful tool when translating combinatorial

properties into topological ones. It appeared that the well known topological

property characterises Maharam algebras.

Let us say that B has the Gδ-property if a singleton {0} is a Gδ-set in (B, τs).
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Theorem. Let B be a complete Boolean algebra. Then B carries a strictly positive

Maharam submeasure if and only if

(i) B is weakly distributive, and

(ii) B has the Gδ property.

This theorem is core for consistency proof of the von Neumann - Maharam

problem. In [BJP05] it is shown than under the P-Ideal Dichotomy (PID) in

every ccc weakly distributive Boolean algebra the singleton {0} is a Gδ set in

order sequential topology, hence every ccc weakly distributive Boolean algebra

is Maharam.

In June 2004 Stevo Todorcevic improved those results to the following purely

combinatorial characterisation of Maharam algebras.

Theorem. (S. Todorcevic [Tod04]) A complete Boolean algebra B is a Maharam

algebra if and only if

(i) B is weakly distributive, and

(ii) B satisfies the σ-finite chain condition.

WEAK DISTRIBUTIVITY

In [BGJ98] there is the following topological equivalent to weak distributivity.

Theorem. Let B be a ccc Boolean algebra. B is weakly distributive if and only if

the topological space (B, τs) is Fréchet.

Remind that a topological space X is Fréchet if for every set A ⊂ X, every

point in the closure of A is the limit of some sequence in A.

The Decomposition theorem allows us to formulate another topological equiv-

alent to weak distributivity in the form of the following Baire-like theorem.

Theorem. Let B be a ccc Boolean algebra. B is weakly distributive if and only if

for each {Un}, where Un is downward closed and cl(Un) = B for any n ∈ ω the

intersection
⋂

n Un is algebraically dense, i.e. for each b ∈ B+ there is u ∈ ⋂
n Un

such that u ≤ b.

INDEPENDENT REALS

Another well known topological property, a sequential compactness (every se-

quence has a convergent subsequence) has also an interesting translation to al-

gebraic properties.

Clearly when we have a sequence {an} ⊂ B such that

∨

i∈I

ai = 1 and
∧

i∈I

ai = 0. (1)

for each infinite I ⊂ ω, then by the definition of sequential topology (B, τs)

cannot by sequentially compact.
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On the other hand once having such a sequence then forcing with B adds an

independent (splitting) real. The sequence {an} is a name for independent real.

Remind that B adds an independent real if there exists some X ⊂ ω in V [G],

the generic extension by B, such that neither X nor its complement has an infinite

subset Y such that Y ∈ V .

If algebra B adds an independent real f, then {ḟ(n)} is the desired sequence

satisfying (1), where ḟ : ω → B is a Boolean name for f.

Theorem. Let B be a complete ccc Boolean algebra. B does not add independent

reals if and only if (B, τs) is sequentially compact.
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Tomáš Pazák

Institute of Information Theory and Automation
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I. BASIC NOTIONS AND KNOWN RESULTS

We start with a summary of basic notions and known results concerning pre-

orders, partial orders, Boolean algebras, and submeasures. We also give a char-

acterisation of complete ccc weakly distributive Boolean algebras.

1. QUASIORDERS AND PARTIAL ORDERS

Let (P,≤), P 6= ∅, be a preorder, x, y ∈ P. Elements x,y are disjoint or incompat-

ible, x ⊥ y, if there is no z ∈ P so that z ≤ x and z ≤ y. Otherwise x and y are

compatible, denoted by x ‖ y. Let us now summarise some basic notions.

1.1 Definition. A set X ⊆ P is called

(i) disjoint or a disjoint family if for distinct x,y ∈ X, x ⊥ y;

(ii) dense if (∀x ∈ P)(∃y ∈ X)(y ≤ x);

(iii) open dense if it is dense and downward closed , i.e., (∀y ∈ X)((←, y] ⊆ X),

where (←, y] = {x ∈ P : x ≤ y};

(iv) predense if (∀x ∈ P)(∃y ∈ X)(x ‖ y);

(v) linked if (∀x, y ∈ X)(x ‖ y);

(vi) centered if for any finite subfamily {x1, ..., xn} ⊆ X there is a z ∈ P such that

z ≤ xi for i = 1, ..., n;

(vii) κ-cc, κ a cardinal number, if there is no disjoint family Y ⊆ X of cardinality

κ; in particular, ω-cc means that any disjoint subfamily of X is finite;

(viii) κ-closed if for any α < κ and any descending sequence {xξ : ξ < α} of

elements of X, there is a z ∈ X below all of the xξ’s.

1.2 Definition. A preorder (P,≤) is called

(i) atomless if (∀x ∈ P)(∃y1, y2 ∈ P)(y1, y2 ≤ x & y1 ⊥ y2);

(ii) separative if x ≤ y if and only if ⊥(x) ⊇ ⊥(y), for any x, y ∈ P, where

⊥(x) = {z ∈ P : z ⊥ x};

(iii) ccc if P is ω1-cc;

(iv) σ-closed if P is ω1-closed.

1.3 Fact. P is separative if and only if for any x, y ∈ P, x  y, there is a z ∈ P so

that z ≤ x and z ⊥ y.
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For any preorder (P,≤), one can define a relation ¹ on P by

x ¹ y ⇔ ⊥(x) ⊇ ⊥(y).

Then ¹ is a preordering of P which

(a) extends the original preorder ≤,

(b) is separative,

(c) preserves disjointness, i.e. x⊥y in ≤ implies x⊥y in ¹.

Moreover, conditions (a),(b), and (c) uniquely determine the relation ¹. Tak-

ing the quotient (P/ ∼,¹), where x ∼ y means x ¹ y & y ¹ x (i.e. ⊥(x) = ⊥(y)),

one obtains a separative partial order called the separative quotient of (P,≤).

1.4 Definition. Let (P,≤) be a preorder and D a family of dense subsets of P.

A filter F on P is called D-generic if (∀D ∈ D)D ∩ F 6= ∅. Martin’s number of P

is m(P) = min{|D| : D is a family of dense subsets of P such that there is no D −

generic filter on P}. If P is not atomless, we set m(P) = ∞. Point density of P is

pd(P) = min{|F | : F is a family of filters on P such that P =
⋃F }.

Notice that for a preorder P, its Martin’s number and the point density are the

same as for its separative quotient, respectively.

1.5 Definition. A partial order P has

(i) Knaster property (in short property K) if any uncountable set X ⊆ P has a

linked uncountable subset;

(ii) precaliber ℵ1 if any uncountable set X ⊆ P has a centered uncountable

subset.

Notice, that every partial order with property K satisfies ccc. In general,

ccc is not productive, i.e. the product of two ccc posets need not itself be ccc.

Nevertheless, any product of P with property K and a ccc poset Q, P × Q, is ccc.

Moreover, one well-known equivalent of Martin’s axiom MAω1
states that

1.6 Theorem. (K. Kunen F. Rowbottom) Under MAω1
every ccc poset has the

precaliber ℵ1. Moreover if the poset P has size at most ℵ1 then it is σ-centered.

The proof of this theorem can be found in [Wei84]. There is an open problem

concerning this topic due to S. Todorcevic.

1.7 Problem. [Tod00a] Is MAω1
equivalent with ‘every ccc poset has property K’?
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1.8 FRAGMENTATIONS

By a fragmentation of a structure we mean an expression of the structure as a

union of parts that have some designated property. The following are examples

of well-used fragmentations.

1.9 Definition. A poset P is called

(i) σ-centered if P =
⋃

n∈ω

Pn, each Pn being centered;

(ii) σ-linked if P =
⋃

n∈ω

Pn, each Pn being linked;

(iii) σ-bounded cc if P =
⋃

n∈ω

Pn, each Pn being (n+1)-cc;

(iv) σ-finite cc if P =
⋃

n∈ω

Pn, each Pn being ω-cc.

1.10 Problem. (Horn, Tarski problem [HT48]) It is still an open problem whether

classes of posets satisfying (iii) and (iv) respectively, are distinct; i.e. whether every

σ-finite cc poset is σ-bounded cc.

1.11 EXAMPLE. Let I be a non-empty set. Consider the partial order

Fn(I, ω) = {p ∈ Kω : K ∈ [I]<ω},

ordered by the inverse inclusion. Let X =
∏

i∈I ω be a topological product of

countable discrete spaces. For p ∈ Fn(I, ω), denote by [p] the basic open subset

of the product, [p] = {f ∈ X : p ⊆ f}. Clearly, this gives an embedding of Fn(I, ω)

into Open+(X); that is all nonempty open subsets of X ordered by inclusion. Note

that {[p] : p ∈ Fn(I, ω)} is a base of the topology on X. △

1.12 Fact. For partial orders Fn(I, ω) or (Open+(X),⊆), the following conditions

are equivalent:

(i) to be σ-centered,

(ii) to be σ-linked,

(iii) |I| ≤ 2ω.

This follows immediately from a special case of Hewitt, Marczewski, Pondi-

czéry theorem, which says that a product of at most 2ω separable spaces is sep-

arable and from the fact that any separative σ-linked poset has size at most 2ω,

for more details see (III.2.6).

1.13 Fact. Fn(I, ω) and therefore (Open+(X),⊆), is σ-bounded cc for arbitrary

index set I.

Proof. Proof For each n, m put

Pm,n = {p ∈ Fn(I, ω) : |p| = m & rng (p) ⊆ n}.

Since any maximal disjoint family of members of Pm,n is of size at most nm,

{Pm,n : m, n ∈ ω} is a countable fragmentation witnessing σ-boundedness cc.
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1.14 TODORCEVIC ’S PARTIAL ORDER - (PART 1)

Here we describe a class of separative posets that satisfy ccc, the construction is

inspired by the interesting example of Borel partial order introduced by S. Todor-

cevic [Tod84].

Let X be a metrizable space without isolated points. We define partial order

T(X) = (P,≤) by the following. Let P be the family of all infinite compact subsets

of X, which have only finitely many accumulation points, i.e.

P = {A : A ∈ [X]ω, A compact and the derivation A ′ is finite},

with ordering given by

A ≤ B if and only if A ⊇ B & A ′ ∩ B = B ′.

Note that elements of T(X) are in fact disjoint unions of convergent sequences

together with their limit points.

1.15 Lemma. T(X) is separative partial order.

Proof. Assume A, B ∈ P and A 6≤ B. i.e., either B \ A 6= ∅ or (B ⊆ A and

A ′ ∩ B ) B ′). In the first case, there is a y ∈ B \ A such that y /∈ B ′. Since X

has no isolated point one can take some one-to-one sequence 〈yn : n ∈ ω〉 with

lim yn = y and set C = A ∪ {yn : n ∈ ω} ∪ {y}. Then C ∈ P, C ≤ A and C ⊥ B.

In the second case, there is an x ∈ A ′ ∩ (B \ B ′) and this means A ⊥ B.

1.16 EXAMPLE. For rational numbers Q, Todorcevic’s partial order T(Q) is σ-

centered ordering. For arbitrary nonempty finite subset F of Q, the subset X =

{A ∈ T(Q) : A ′ = F} is a centered family. △

1.17 Theorem. Let X be a separable metric space without isolated points. T(X) is

a separative partial order satisfying ccc.

Moreover, if the space X is Polish without isolated points, then the partial order

T(X) is Borel.

Proof. (i) T(X) satisfies ccc. Consider an uncountable family 〈Aα : α ∈ ω1〉 of

elements from P. Shrinking, if necessary, we can assume that all derivatives A ′
α

have the same size, say n ∈ ω. Applying the ∆-system lemma we can assume

that the family 〈A ′
α : α ∈ ω1〉 is a ∆-system with a kernel K. When K = A ′

α, then

〈Aα : α ∈ ω1〉 is a centered family and we are done.

So assume that A∗
α = A ′

α \ K 6= ∅. Then the A∗
α’s are pairwise disjoint sets

of the same size k = n − |K|. Since the Aα’s are countable sets, we can assume

(after another shrinking), that for any β ∈ ω1, A∗
β is disjoint with

⋃
α<βAα. We

have Aα ∩ A ′
β = K ⊆ A ′

α for any α < β < ω1.

We are looking for α, β ∈ ω1 such that α < β and Aβ ∩ A ′
α ⊆ A ′

β, for this is

equivalent to compatibility of Aα and Aβ.

Assume that such a pair does not exist. It means that for any α < β, A∗
α ∩

(Aβ \ A ′
β) 6= ∅. We fix arbitrary linear ordering of X. The set A∗

α with the

inherited ordering may be viewed as a point in Xk. The space Xk is hereditary
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separable, hence the space {A∗
α : α ∈ ω1} is separable and has a countable base,

so there is some ξ ∈ ω1 and a point 〈p1, p2, . . . , pk〉 = A∗
ξ such that for each

open neighbourhood U of it, the set {α ∈ ω1 : A∗
α ∈ U} is uncountable. Choose a

decreasing sequence of open balls Bn ⊆ Xk such that
⋂

n∈ω Bn = {〈p1, p2, . . . , pn〉}
and denote Jn = {α ∈ ω1 : A∗

α ∈ Bn}.

Pick an increasing sequence of ordinals αn ∈ Jn. Consider Aγ for some γ ≥
supn{αn, ξ}. Since Aγ ∩ A∗

αn
6= ∅ for each n ∈ ω, there is some i, 1 ≤ i ≤ k such

that pi ∈ A ′
γ, therefore pi ∈ A∗

γ. But pi ∈ A∗
ξ and A∗

γ are pairwise disjoint, a

contradiction.

We proved that for some α < β, Aα and Aβ must be compatible.

(ii) Let us verify now that T(X) is Borel. It suffices to show that the underlying

set P is Borel and that the relation ≤ and the induced relation ⊥ are Borel sets in

some Polish space.

Consider a space K(X) of all compact subsets of X with the Vietoris topology.

A basis for this topology consists of all sets

B(V, U1, . . . , Un) = {A ∈ K(X) : A ⊆ V &A ∩ U1 6= ∅& . . . &A ∩ Un 6= ∅}

for V, U1, . . . , Un open sets in X. The hyperspace K(X) is separable and com-

pletely metrizable (e.g. by Hausdorff metric), so it is a Polish space [Kec95].

Let the symbol B(q, ε) denote an open ball in X with the centre q and radius

ε. We shall proceed in four small steps.

(a) For any m ∈ ω, the set

{A ∈ K(X) : |A| ≥ m}

is open in K(X). Indeed, it equals

⋃
{B(X, U1, . . . , Um) : U1, . . . , Um pairwise disjoint nonempty open sets}.

Therefore Kinf(X) = {A ∈ K(X) : A is infinite} is a Gδ-set in K(X), i.e. a Π0
2 set.

(b) Analogously, the set {A ∈ K(X) : |A∩U| ≥ m} is open in K(X), whenever U is

a nonempty open set in X and m is a non-negative integer.

(c) Using the fact that every infinite compact set has a nonempty derivative, we

can verify that the set Dk = {A ∈ K(X) : |A ′| ≥ k} equals

⋃

n>0

⋃

〈q1,...,qk〉∈Yk

ρ(qi−qj)>2/n

⋂

m∈ω

{A : |B(q1, 1/n) ∩ A| ≥ m & . . . & |B(qk, 1/n) ∩ A| ≥ m},

where Y is a countable dense subset of X. Thus it is a Σ0
3 set. Consequently, the

set

P = Kinf(X) ∩
⋃

k∈ω

(K(X) \ Dk)

is a Σ0
4 set in K(X).
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(d) The relation ≤ is Borel. First, the inclusion is a closed relation, i.e., the set

Inc = {〈A, B〉 : A, B ∈ K(X)&A ⊇ B} is closed in K(X) × K(X).

Second, the inequality A ′ ∩ B ) B ′ means that there is a point x ∈ A ′ which

is isolated in B, x ∈ A ′ ∩ (B \ B ′), so we need to consider the set H = {〈A, B〉 ∈
P × P : A ′ ∩ (B \ B ′) 6= ∅}. Observe that a set

S =
⋃

n>0

⋃

q∈Y

⋂

m∈ω

{〈A, B〉 ∈ K(X)2 : |B(q, 1/n) ∩ A| ≥ m & |B(q, 1/n) ∩ B| = 1}

is a Π0
4 set in K(X)2.

We can verify that H = (P×P)∩S and ≤= Inc∩((P×P)\S) and ⊥= H∪H−1.

From that we see that the relations ≤ and ⊥ are Borel sets in K(X)2.

1.18 Remark. What we do not know is whether for X, Y Polish spaces without

isolated points are Boolean algebras RO(T(X)) and RO(T(Y)) isomorphic?

2. TOPOLOGICAL SPACES

A topological space (X, τ) is for us a non-empty set X endowed with some topol-

ogy. We a priori do not assume any separation axioms. Recall that a sequence

〈xn : n ∈ ω〉 in a topological space converges to a point x (i.e. lim xn = x) if for

any open neighbourhood U of x almost all xn’s belongs to U, i.e. {n ∈ ω : xn 6∈ U}

is finite. If the space is Hausdorff then every sequence converges to at most one

point.

2.1 EXAMPLE. Let X be an infinite set with the topology τ consisting of cofinite

subsets of X. Then (X, τ) is T1, compact topological space and any one-to-one

sequence has all points of the space as its limit. △

If A ⊂ X is a closed subset of a space X then every limit of a sequence of points

from A belongs to A.

2.2 Definition. A space (X, τ) is called

(i) sequential if a subset A is closed whenever it contains all its limit points,

i.e. limits of all the τ convergent sequences of elements of A, and

(ii) Fréchet if for every set A ⊂ X, every point in its closure is the limit of some

sequence of points from A.

It is clear that any Fréchet space is sequential and any metrizable space is

Fréchet.

2.3 Lemma. Let X be a sequential and let Y be an arbitrary topological space. A

mapping f : X → Y is continuous if and only if for any sequence 〈xn : n ∈ ω〉
converging to x in the space X the sequence 〈f(xn) : n ∈ ω〉 converges to f(x) in Y.

So for sequential topological spaces, continuous mappings and sequentially

continuous mappings coincide.
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2.4 Fact. (i) The class of sequential spaces is closed under disjoint sums and quo-

tient; it is not generally closed under subspaces neither products.

(ii) The class of Fréchet spaces is closed under disjoint sums, quotients and also to

subspaces, it is not closed under the products.

The category of sequential topological spaces is correflexive in the category

of all topological spaces.

2.5 SEQUENTIAL MODIFICATION

For any topological space (X, τ) there is a sequential space (X, τs) with the same

underlying set and with the sequential topology τs ⊃ τ called sequential modifi-

cation.

The topology τs is the strongest among topologies τ ′ on X for which the iden-

tity idX : (X, τ) → (X, τ ′) is sequentially continuous.

A subset A ⊂ X is closed in (X, τs) if and only if the limit a = lim an ∈ A of

every τ-convergent sequence 〈an ∈ A : n ∈ ω〉 belongs to A.

It should be clear that τs ⊃ τ and (X, τs) is a sequential space. When starting

space (X, τ) is sequential then τ = τs.

2.6 POWER SET P(X) WITH COMPACT AND SEQUENTIAL TOPOLOGY

Let X be a non-empty set. On the power set P(X) we have a compact Hausdorff

topology when we identify subsets of X with their characteristic functions, i.e.

elements of
∏

x∈X{0, 1}X endowed with the product topology of discrete space

{0, 1}. We call such topology the compact topology and denote it τc. A sequence

of functions 〈fn : n ∈ ω〉 ⊂ 2X converges to f ∈ 2X in τc topology if and only if it

converges pointwise. Equivalently in set-theoretical setting a sequence of subsets

〈Yn : n ∈ ω〉 of X converges to a set Y if and only if

Y =
⋂

k∈ω

⋃

n≥k

Yn =
⋃

k∈ω

⋂

n≥k

Yn.

Now look at the sequential modification τs of the compact topology τc on 2κ,

where κ = |X|. If κ ≤ ω, then the space (2κ, τc) is metrizable and thus τs = τc.

2.7 Fact. For any κ the subspace [κ]≤ω of (P(X), τc) is sequential, even Fréchet.

Proof. Let A ⊂ 2κ be a family of functions with at most countable support, i.e.

(∀g ∈ A) |g−1({1})| ≤ ω. Let f ∈ 2κ be of the same type and f ∈ clτc
(A) \ A. We

look for a sequence 〈gn : n ∈ ω〉 ⊂ A such that gn’s converges to f coordinate-

wise. Take a non-empty at most countable set a0 ⊂ κ such that f−1[{1}] ⊂ a0.

Let {a0(n) : n ∈ ω} be non-decreasing cover of a0 consisting of finite subsets.

Consider a neighbourhood [f ↾ a0(0)] of f and pick an element g0 ∈ A from this

neighbourhood. Put a1 = g−1[{1}]\a0 and let {a1(n) : n ≥ 1} be a non-decreasing

cover of a1 consisting of finite subsets. Now consider a neighbourhood [f ↾ a0(1)∪
a1(1)] of f and pick g1 ∈ A. Then a2 = g−1[{1}] \ (a0 ∪ a1) with some cover

{a2(n) : n ≥ 2} determines [f ↾ a0(2) ∪ a1(2) ∪ a2(2)] and one can obtain g3 ∈ A

and continue in similar fashion. The sequence 〈gn : n ∈ ω〉 is as desired.
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2.8 Corollary. For any infinite κ topology τc and τs coincides on the subset [κ]≤ω.

2.9 Theorem. For any cardinal number κ > 0 the space (2κ, τc) is the Čech-Stone

compactification of ([κ]≤ω, τc).

Proof. The set I = [κ]≤ω = {f ∈ 2κ : f−1[{1}]| ≤ ω} is a dense subset of 2κ, because

[κ]<ω is dense. It is sufficient to show that any continuous mapping f : I → [0, 1]

can be continuously extended to the whole 2κ. This follows from the following

special case of the Mazur theorem.

2.10 Theorem. (S. Mazur) Assume f : [κ]≤ω → [0, 1] is continuous. Then there is at

most countable set M ⊂ κ such that (∀x, y ∈ [κ]≤ω) (x∩M = y∩M → f(x) = f(y)).

Proof. Assume κ > ω, otherwise the assertion is trivial, and consider the oppo-

site.

By recursion for α < ω1 we can choose Mα ∈ [κ]≤ω and xα, yα ∈ [κ]≤ω such

that

(i) if α < β then Mα ⊂ Mβ and xα, yα ⊂ Mα+1 and

(ii) xα ∩ Mα = yα ∩ Mα and f(xα) 6= f(yα).

The interval [0, 1] has a countable base so there are disjoint closed intervals I1 =

[a, b] and I2 = [c, d] and uncountable set I ⊂ ω1 such that f(xα) ∈ I1, f(yα) ∈ I2

for each α ∈ I.

Let α0, α1, α2, . . . be first ω many ordinal numbers from I. Put β = supn αn

and M =
⋃

n∈ω Mαn
. P(M) is closed subspace of [κ]≤ω, thus f ↾ P(M) is contin-

uous. (P(M), τc) is Cantor discontinuum, the sequence 〈xαn
: n ∈ ω〉 has a con-

vergent subsequence, say xαi
→ x. But necessarily the subsequences 〈yαi

: i ∈ ω〉
also converges to x. From sequential continuity we obtain that f(xαi

) → f(x) ∈ I1

and f(yαi
) → f(x) ∈ I2, a contradiction.

To finish the proof of Theorem I.2.9, fix M ⊂ [κ]≤ω satisfying Theorem I.2.10.

It is sufficient to put g(Y) = f(Y∩M) for any Y ⊂ κ. The function g : P(κ) → [0, 1]

extends f and is continuous, as follows from the definition of g and continuity of

f.

The next assertion is due to V. Trnková [Trn69] and W. Główczyński [Głó91].

2.11 Theorem. For κ uncountable, the space (2κ, τs) is not regular, therefore τs )
τc.

Proof. It is sufficient to prove theorem for κ = ω1, for (P(ω1), τs) is closed sub-

space of (P(κ), τs), for κ ≥ ω1. Let U be the set of all X ⊂ ω1 whose complement

is uncountable. U is an open neighbourhood of ∅ in topology τs, we shortly de-

note this fact by U ∈ N0. This is because any τc limit of a sequence of subsets of

ω1 with at most countable complement has at most countable complement.

Consider Ulam matrix {Aα,n : n ∈ ω, α ∈ ω1} [BŠ00], i.e.

Aα,n∩ Aα,m = ∅, for m 6= n,
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Aα,n∩ Aβ,n = ∅, for α 6= β,

⋃
n∈ω Aα,n = ω1 \ α, for all α < ω1.

Let V ∈ N0. As for every α < ω1 the sequence 〈⋃n≥k Aα,n : k ∈ ω〉 converges to

∅ in τc topology, it converges to ∅ also in τs topology. For each α there exists some

kα such that Xα =
⋃

n≥kα
Aα,n is in V . There exists some k ∈ ω and uncountable

set W ⊂ ω1 such that kα = k for all α ∈ W.

Put C = {α ∈ ω1 : α limit ordinal and
⋃

(α∩W) = α}. C is closed unbounded

subset of ω1. We claim that ω1 \ α ∈ cl(V) for every α ∈ C.

Let α0 < α1 < . . . be a sequence in W such that α = limn αn. Then limn Xαn
=

ω1 \ α in τc topology, therefor X ∈ cl(V) = ω1 − α. We proved that there is no

V ∈ N0 such that cl(V) ⊂ U.

2.12 EXAMPLE. Let F be a σ-subfield of P(ω1) generated by all countable subsets

of ω1. Then (F, τs) is regular space and (F, τs) 6= (F, τc).

Proof. Put F0 = [ω1]
≤ω and F1 = {A ⊂ ω1 : |ω1 − A| ≤ ω}. Then F0 and F1

are disjoint and F = F0 ∪ F1. (F0, τc) as a subspace of compact Hausdorff space

(P(ω1), τc) is a regular space. The operation ‘complement’ is homeomorphism

of P(ω1) in both topologies τc, τs. By Corollary I.2.8, τc, τs coincides on F0 and

F1. The space (F, τs) is regular. The set F0 is clopen proper subset in (F, τs), but is

dense in (F, τc), therefore τs ) τc on F.

△

2.13 Definition. A topological space X is sequentially compact if any sequence

contains a convergent subsequence.

2.14 Lemma. [Trn69] A space (2κ, τc) is sequentially compact if and only if κ < s,

where s is the splitting number.

The proof of the following is straightforward.

2.15 Proposition. Let X be a sequential T1 space. Then X is sequentially compact if

and only if it is countably compact; i.e. any countable open cover of X has a finite

subcover.

2.16 EXTREMAL PROPERTY OF COMPACT HAUSDORFF TOPOLOGY

Let (X, τ) be a compact Hausdorff space. If τ ′ is a stronger topology on X, i.e.

τ ′ ) τ, then τ ′ is not compact.

If τ ′ is weaker then τ, i.e. τ ′ ( τ, then τ ′ is not Hausdorff.

2.17 Corollary. Suppose (X, τ) is a Hausdorff space, τ ′ ⊇ τ stronger topology and

A ⊆ X is a compact set is the space (X, τ ′). Then A is also compact in (X, τ) and

topologies τ ′ and τ coincides on A.
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2.18 POLISH SPACES

A topological space (X, τ) is called Polish if it is separable and completely metriz-

able. Hence Polish space has a countable base of open sets and moreover its size

is either 2ω or at most countable.

Baire space N =
∏

n∈ω ω consisting from infinite sequences of natural num-

bers and Cantor discontinuum C =
∏

n∈ω{0, 1} are basic examples of zero-dimen-

sional Polish spaces. The following characterisation of a Polish space without

isolated point can be found in Kechris book [Kec95].

2.19 Theorem. Polish space X is continuous one-to-one image of a Baire space N
if and only if X has no isolated point.

Borel(τ) denotes σ-field of Borel subsets of the space (X, τ). It is the least

σ-field containing all open sets.

A mapping f : X → Y is called Borel measurable or simply Borel if for any open

set U ⊂ Y the set f−1[U] is Borel in X.

2.20 ISOMORPHISM THEOREM

Polish spaces X and Y are Borel isomorphic if and only if |X| = |Y|.

It means that for two uncountable Polish spaces X, Y there is a bijection f :

X → Y such that for any A ⊂ X f[A] ∈ Borel(Y) if and only if A ∈ Borel(X).

If X is Polish space and |X| ≤ ω, then Borel(X) = P(X). Hence any bijection

among countable spaces is Borel isomorphism. The proof of 2.19 is in [Kec95].

Isomorphism theorem says that different uncountable spaces determine uni-

que σ-field of sets, namely Borel(2ω). This field plays an important rôle in math-

ematics and we will meet it in the future text.

2.21 EXTENDING POLISH TOPOLOGY

Let (X, τ) be a Polish space. Fix at most countably many Borel sets An ∈ Borel(τ).

Then there is a topology τ1 on X stronger then τ such that

(i) (X, τ1) is Polish space,

(ii) Borel(τ1) = Borel(τ),

(iii) all An’s are clopen sets in topology τ1.

Proof. We will proceed in three steps:

1) If ∅ 6= U ⊂ X is open, then U and X \ U are Gδ sets. Therefore both with

subspace topology are Polish. Then τ1 = {A ⊂ X : A ∩ U open & A ∩ (X \

U) open in X \ U} is Polish topology extending τ with U clopen.

2) Let τn ⊃ τ, n ∈ ω be Polish topologies with Borel(τn) = Borel(τ) for every

n ∈ ω. Then topology τ∞ generated by
⋃

{τn : n ∈ ω} is also Polish topology on

X and τ∞ ⊂ Borel(τ).
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∏
n∈ω(X, τn) is Polish as a product of Polish spaces. A mapping

id : X →
∏

n∈ω

(X, τn),

where id(x) = 〈x, x, x, . . . 〉 embeds the set X onto closed subset. Topology on X

given by this embedding is Polish and moreover it is just topology generated by⋃
{τn : n ∈ ω} = τ∞. So (X, τ∞) is Polish.

3) Put S = {A ⊂ X : ∃τ ′ Polish, τ ′ ⊃ τ, A is clopen in (X, τ ′), τ ′ ⊂ Borel(τ)}.

The family S contains open sets by 1). Trivially S is closed to a complements.

Consider a sequence An ∈ S, n ∈ ω. Let τn ⊃ τ be Polish such that An is clopen

in τn, τn ⊂ Borel(τ). By 2)
⋃

An is open in τ∞. Now apply 1) to τ∞ and we get

that
⋃

An ∈ S. Hence we proved that Borel(τ) ⊂ S and this also completes the

proof of the theorem.

2.22 Corollary. Let (X, τ) be a Polish space.

(i) There is a Polish topology τ1 ⊃ τ, such that τ1 ⊂ Borel(τ) and (X, τ1) is

zero-dimensional space.

(ii) If f : (X, τ) → Y is Borel mapping of X into second countable space Y; i.e.

Y has a countable base. Then there is a Polish topology τ2 ⊃ τ such that

τ2 ⊂ Borel(τ) and the mapping f : (X, τ2) → Y is continuous.

Proof. (i) Let B be a countable base of τ-topology. First note that if U is open in

τ then by the step 1) of the previous proof there is a topology τ1 such that U is

clopen in τ1 and B∪ {U}∪ {X \U} is a subbase of τ1. Hence applying I.2.21 to the

base B we obtain the desired topology τ1 with clopen base.

(ii) Simply apply I.2.21 to the set {f−1[B] : B ∈ B(Y)}, where B(Y) is a count-

able base of Y.

2.23 SEMICONTINUOUS FUNCTIONS

Let X be a topological space. Natural and useful generalisation of continuous

functions are lower and upper semicontinuous functions. A function f : X → R
is lower semicontinuous if f−1(r,→) is an open set, for each r ∈ R. It is upper

semicontinuous if f−1(←, r) is an open set for each r ∈ R.

A function f is lower (upper) semicontinuous in the point x ∈ X if for every

real number r satisfying f(x) > r (f(x) < r) there is an open neighbourhood

U ⊂ X of x such that f(y) > r (f(y) < r) for every y ∈ U.

So f is lower (upper) semicontinuous if and only if for every real number

r ∈ R the set {x ∈ X : f(x) ≤ r} (the set {x ∈ X : f(x) ≥ r}) is closed and f is

continuous if and only if it is both, lower and upper semicontinuous.

2.24 EXAMPLE. A canonical example of lower (upper) semicontinuous function

is the characteristic function χU of an open (closed) set U ⊆ X. △
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2.25 Fact. If f and g are lower (upper) semicontinuous then min{f, g}, max{f, g}, f+

g are lower (upper) semicontinuous. The same holds for f · g provided that f and g

are nonnegative.

2.26 Theorem. Let X be metrizable space and let f : X → (−∞,∞] be bounded

from below. Then f is lower semicontinuous if and only if there is an increasing

sequence f0 ≤ f1 ≤ f2 ≤ . . . of continuous functions from X to R such that

f(x) = sup
n∈ω

fn(x).

Proof. If f is the supremum of an increasing sequence of continuous functions,

then ∀a ∈ R the set f−1(a,∞] =
⋃

n∈ω f−1
n (a,∞) is open.

For the converse, when f is not identically ∞, consider compatible metric d

on X and put

fn(x) = inf {f(y) + n · d(x, y) : y ∈ X}.

This sequence is as required.

When f is identically ∞, put fn ≡ n.

2.27 EXAMPLE. A subset A ⊆ X is Fσ (
∑0

2) set if and only if there is lower

semicontinuous function f : X → [0,+∞] such that A = {x ∈ X : f(x) < ∞}.

Proof. Since A =
⋃

n∈ω f−1[0, n] it is clearly a Fσ set.

Conversely, let A =
⋃

n∈ω Fn, where each Fn is closed set and Fn ⊆ Fn+1.

Consider the function f : X → [0,∞] given by f(x) = 0 on F0, f(x) = n on

Fn \ Fn−1 and f(x) = ∞ on X \ A. The function f is lower semicontinuous and

x ∈ A if and only if f(x) < ∞.

△

3. BOOLEAN ALGEBRAS

Let B = 〈B, ∧,∨,−, 0, 1〉 be a Boolean algebra. We always assume that 0 6= 1.

The canonical ordering ≤ on B is related to the Boolean operations via

x ≤ y if and only if x ∧ y = x.

Thus, the canonical ordering restricted to the non-zero elements of the algebra,

denoted by B+, is a separative partial order.

The properties of elements, subsets, and the whole partial order defined in

I.1.1, I.1.2, and I.1.9 are said to hold for the algebra B if they hold for the partial

order (B+,≤). Of course, 0 is considered disjoint with all elements of B+, there-

fore for any x, y ∈ B, x ⊥ y means x ∧ y = 0 and x ‖ y means x ∧ y 6= 0. We

allow that a dense subset of B may contain 0 as its element.

For any a ∈ B+, B ↾ a denotes the factor of algebra B determined by the

element a, i.e. B ↾ a = {x ∈ B : x ≤ a} with appropriate restriction of Boolean

operations. St(B) denotes the Stone space of an algebra B.

Our primary reference for Boolean algebras is Volume 1 of Handbook of

Boolean Algebras [Kop89].
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3.1 Definition. Symmetric difference, defined by a△b = (a−b) ∨ (b−a), is a

derived operation on B that is associative and commutative. Moreover, the struc-

ture (B,△) is an Abelian group with 0 as the neutral element. Since a△a = 0,

each a ∈ B is also the opposite element to itself. Notice that for any ideal I on B,

(I,△) is a subgroup of (B,△).

3.2 DISTRIBUTIVITY

A partition of unity, or a partition, is a disjoint family P ⊆ B+ such that
∨

P = 1.

Let κ, τ, λ be cardinal numbers. We say that an algebra B is (κ, τ, λ) distributive

if for any family {Pα : α ∈ κ} of partitions of unity, where each Pα has the size at

most τ, there is a dense set Q with the property that every q ∈ Q is compatible

with less than λ elements of each Pα.

(κ, ·, λ) distributivity means that there are no restrictions to the size of parti-

tions Pα’s.

Note that an algebra B is (κ, ·, 2) distributive if and only if any κ-many parti-

tions of unity have a common refinement if and only if the intersection ∩α<κDα

of κ-many open dense sets Dα is again dense set.

Cardinal invariants h and s concerning families of infinite subsets of nat-

ural numbers are characterised through distributivity properties of the algebra

P(ω)/fin as follows:

3.3 Definition.

h = min {κ : P(ω)/fin is not (κ, ·, 2) distributive },

s = min {κ : P(ω)/fin is not (κ, 2, 2) distributive}.

Important notion for us is a weak distributivity. Boolean algebra B is weakly

distributive if it is (ω, ω, ω) distributive. When B is σ-complete then B is weakly

distributive if and only if for any matrix {a(n, k) ∈ B : n, k ∈ ω} such that each

row is nondecreasing sequence, we have

∧

n∈ω

∨

k∈ω

a(n, k) =
∨

f∈ωω

∧

n∈ω

a(n, f(n)).

The canonical example of a ccc, weakly distributive Boolean algebra is a mea-

sure algebra, i.e. a complete Boolean algebra that carries a strictly positive σ-

additive measure. The weak distributivity has many equivalent formulations, let

us here state one of the most frequent:

A complete Boolean algebra B is weakly distributive if and only if for each

system of nondecreasing sequences 〈am
n : n ∈ ω〉 րm 1

∨

f∈ωω

∧

n∈ω

af(n)
n = 1.
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3.4 Remark. A Souslin line is a complete ccc dense linear order that does not

have a countable dense subset (a counterexample to Souslin’s problem).

A Souslin tree is an ω1-tree with no uncountable chains or antichains. A

Souslin algebra is an atomless complete ccc Boolean algebra that satisfies the

(ω, ω, 2) distributive law.

A Souslin line, a Souslin tree and a Souslin algebra can be constructed from

each other (see [Kur35], [Mil43] or [Jec02] for details). Thus the existence of a

ccc, atomless (ω, ω, 2) distributive Boolean algebra is equivalent to the existence

of a Souslin tree.

Notice that the Martin’s number (see I.1.4) of an atomless algebra B is the

minimal cardinality of a family of nowhere dense sets covering the Stone space of

B, while m(B) = ∞ if B has an atom. A Boolean algebra B is (κ, ·, ω)-distributive

if and only if any union of κ nowhere dense subsets of the space St(B) is nowhere

dense.

3.5 Lemma. Boolean algebra B is weakly distributive if and only if the ideal of

nowhere dense sets in the Stone space St(B) is a σ-ideal.

Furthermore, the point density of B, pd(B), is exactly the topological density

of the Stone space of B, thus

pd(B) = min{|F | : F is a family of ultrafilters on B with
⋃

F = B+}.

It follows that B is σ-centered if and only if pd(B) ≤ ω if and only if St(B) is a

separable space.

3.6 CONSTRUCTION OF COMPLETE BOOLEAN ALGEBRAS

In the following we reveal two natural sources of Boolean algebras. One source

are topological spaces.

Let X be a non-empty topological space. For Y ⊆ X, the regularization of Y is

r(Y) = int(cl(Y)). A set U ⊆ X is a regular open set if r(U) = U.

3.7 Fact. For any non-empty topological space X, the family of all regular open sets

of X, denoted by RO(X), ordered by the inclusion, is a complete Boolean algebra.

Boolean operations on RO(X) are then determined as follows:

(i) 0 = ∅, 1 = X,

(ii) U ∧ V = U ∩ V ,

(iii) U ∨ V = r(U ∪ V),

(iv) −U = r(X−U),

(v)
∧

i∈I

Ui = r
(⋂

i∈I

Ui

)
.



I. BASIC NOTIONS 15

The second natural source for constructing Boolean algebras are partial orders

or more generally preorders.

3.8 Fact. Any preorder (P,≤) determines a unique (up to isomorphism) complete

Boolean algebra denoted by RO(P,≤).

Proof. For (P,≤) we have the relation ⊥ of disjointness. Denote

A⊥ = {x ∈ P : (∀ a ∈ A) x ⊥ a}

for A ⊂ P. So A⊥ is the set of all elements disjoint with every element from A. If

A ⊂ P then A ⊂ (A⊥)⊥ and ((A⊥)⊥)⊥ = A⊥.

Put RO(P) = {A ⊂ P : (A⊥)⊥ = A}. Then RO(P) ordered by inclusion is

a complete Boolean algebra. Boolean operations are A ∧ B = A ∩ B, A ∨ B =

(A ∪ B)⊥⊥ and −A = A⊥.

The preceding construction is closely related with the description from I.3.7.

More precisely, let family {(←, x] : x ∈ P} form a subbase for a topology τ on the

set P. Then RO(P,≤) is exactly the complete Boolean algebra RO(P, τ). In this

setting the regular open sets A ∈ RO(P) are exactly those where A⊥⊥ = A.

The mapping φ : P → RO(P, τ) defined by φ(x) = rτ((←, x]) for x ∈ P is

order-preserving, preserves disjointness, and the image φ[P] is a dense subset of

RO(P, τ). Notice that φ is an embedding if and only if for every x ∈ P the set

(←, x] is regular open in the topology τ, which is equivalent with the fact that

(P,≤) is a separative partial order.

3.9 FUNDAMENTAL EXAMPLES OF BOOLEAN ALGEBRAS

(i) {0, 1} is the simplest algebra. The countable product
∏

n∈ω{0, 1} is naturally

isomorphic to P(ω), the algebra of all subsets of the set of natural numbers.

The group (P(ω),△) is isomorphic to the product
∏

n∈ωZ2, where the group Z2

is the usual Z with the operation addition modulo 2.

(ii) Let us consider 2ω =
∏

n∈ω{0, 1} as a topological space that is a product of

topological spaces {0, 1} with the discrete topology. Then 2ω is the well-known

Cantor space.

By Cantor algebra we mean the Boolean algebra of all clopen subsets of the

Cantor space. The Cantor algebra A is isomorphic to Free(ω), the free algebra

with countably many free generators. It is atomless and countable. In fact, these

two properties uniquely characterise the Cantor algebra.

(iii) Let Borel(2ω), or simply Borel, denote the σ-algebra of all Borel subsets of

the Cantor space. Then A, the Cantor algebra, is a subalgebra and σ-completely

generates Borel. There are three fundamental σ-additive ideals on Borel corre-

sponding to different notions of ‘being small’:

(a) Topological smallness, meager sets.

M = {X ∈ Borel : X is meager} is a σ-ideal and the quotient C = Borel/M
is a complete Boolean algebra, well known as the Cohen algebra. It is iso-

morphic to the regular completion of Cantor algebra A, so C ≃ Comp(A).
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(b) Measure-theoretic smallness, negligible sets.

N = {x ∈ Borel : µ(X) = 0}, where µ is a Haar measure on the space 2ω,

is a σ-ideal and the quotient M = Borel/N is a complete Boolean algebra

well known as the Measure algebra.

(c) Set-theoretic smallness, to be at most countable.

The quotient Borel/countable sets is just a σ-complete algebra and its com-

pletion, S, is known as the Sacks algebra.

All algebras C, M, and S are atomless, include the Cantor algebra A as a sub-

algebra and are completely generated by A. Therefore, in any generic extension

via those algebras, there are new reals (i.e. new subsets of ω). C and M satisfy

ccc, while S is (2ω)+-cc.

Measure algebra is weakly distributive and Sacks algebra is (ω, ·, ω) distribu-

tive △

3.10 COMPLETE BOOLEAN ALGEBRAS ARE INJECTIVE

Here we point out some important properties of complete Boolean algebras. The

following important theorem is due to R. Sikorski.

3.11 Theorem. (R. Sikorski [Sik64]) Let B be a complete Boolean algebra. Let A1

be a subalgebra of an algebra A and f : A1 → B a homomorphism. Then f can be

extended to a homomorphism f : A → B.

For proof of the theorem, see [Kop89], Theorem 5.9, page 70.

3.12 Corollary. Let A be a subalgebra of a complete Boolean algebra B. Then there

is a subalgebra C of B such that A ⊆ C ⊆ B, A is dense in C and C is a regular

completion of A.

3.13 GENERATORS OF BOOLEAN ALGEBRAS AND INDEPENDENT SUBSETS

Let us now recall the notion of generators and of independent subsets of a

Boolean algebras.

3.14 Definition. We say that family 〈xi : i ∈ I〉 ⊂ B is independent if for each

finite I1, I2 ∈ [I]<ω, I1 ∩ I2 = ∅
∧

i∈I1

xi ∧
∧

i∈I2

−xi 6= ∅.

Note that if 〈ui : i ∈ I〉 is an independent family, then every ui 6= 0 and for

i 6= j, ui 6= uj. So we can speak of {ui : i ∈ I} as of an independent set.

3.15 Definition. For a complete Boolean algebra B, g(B) = min{|X| : X ⊆ B is a

set of complete generators of B}.

For a σ-complete Boolean algebra B,

gω(B) = min{|X| : X ⊂ B is a set of σ-complete generators of B }.
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3.16 Theorem. (R. McKenzie) Let B be an infinite complete Boolean algebra. Then

there is an independent subset X of B of size g(B) that completely generates B.

For proof, see [Kop89], page 205.

3.17 REGULAR SUBALGEBRAS

A subalgebra B of algebra C is called regular if for any X ⊂ B for which there

is a supremum
∨

B
X of X in B, the same element is a supremum of X in C, i.e.∨

B
X =

∨
C

X.

An embedding i : B → C is regular if the image i[B] is a regular subalgebra of

algebra C.

3.18 Proposition. For a subalgebra B ⊂ C the following are equivalent

(i) B is a regular subalgebra of C,

(ii) every maximal disjoint family in B is maximal in C,

(iii) every predense set in B is predense in C,

(iv) for each c ∈ C+ there is a ‘pseudoprojection’ bc ∈ B; i.e. for every a ≤ bc,

a ∈ B
a ∧ c 6= 0,

(v) for every generic (cf. II.1.6) filter F on C, F ∩ B is a generic filter on B.

Proof. The proof of implications (i) ↔ (ii) ↔ (iii) ↔ (v) and (vi)→ (ii) are

straight forward.

To show (ii)→ (vi) let c ∈ C+. Take arbitrary maximal disjoint family Bc from

the set {b ∈ B : b ∧ c = 0}. From (ii) it follows that Bc is not maximal in B,

hence there is some bc disjoint with Bc and we are done.

3.19 EXAMPLE. Let C be a complete algebra, B ⊂ C subalgebra. Then B is a reg-

ular subalgebra of C if and only if 〈B〉, the complete subalgebra of C completely

generated by the set B, is completion of B, equivalently B is dense in 〈B〉. △

3.20 Theorem. Let B be a subalgebra of C. Then there is an ideal I on C such that

canonical homomorphism

i : B −→ C/I
b 7−→ [b]I ,

is a regular embedding of B into C/I.

Proof. Define a set I ⊂ C:

I = {u ∈ C : ∃ max. disjoint family X ⊂ B such that u ∧ x = 0 for any x ∈ X}.

A set I is downward closed. Let u, v ∈ I. Take maximal disjoint families X and

Y that guarantees that u respectively v belongs to I. Then z = {x ∧ y 6= 0 : x ∈
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X & y ∈ Y} is a maximal disjoint family of elements from B and u ∨ v is disjoint

with any element of z. Therefore u ∨ v ∈ I hence I is an ideal.

No b ∈ B+ belongs to I, so the mapping i : B → C/I is an embedding. Let

{ci : i ∈ I} be a maximal disjoint family in i[B]. Then {[ci] : i ∈ I} is a maximal

disjoint family in C/I. Assume that [u] is disjoint with every [ci] in C/I, i.e.

ci ∧ u ∈ I and hence there is a maximal disjoint set Xi ⊂ B ↾ ci such that u is

disjoint with any element of Xi. Disjoint set
⋃

{Xi : i ∈ I} is maximal in B and so

u ∈ I, i.e. [u] = 0 ∈ C/I.

It is clear, that the ideal I cannot intersect with subalgebra B, i.e. I ∩ B = ∅.

In fact this simple property is the principal one.

3.21 Proposition. Let B be a subalgebra of C and let J be a maximal ideal such

that B ∩ J = {0}. Then canonical embedding

i : B −→ C/J ,

is a regular one. In this case i[B] is even dense in C/J .

Proof. Suppose that i[B] is not dense in C/J . Then there is some c ∈ C, c 6∈ J
such that for any b ∈ B+ b 6≤J c. Since J is maximal and c 6∈ J there is some

j ∈ J such that there is b ∈ B+ so that b ≤ c ∨ j i.e. b ≤J c; a contradiction.

3.22 Remark. The ideal I from lemma I.3.20 is the crucial one, because any

maximal ideal J which do not intersect B has to contain I. Moreover let

K = {J : J is an ideal on C maximal with respect to J ∩ B+ = ∅}
then ⋂

K = I,

and ⋃
K = {c ∈ C : 6 ∃b ∈ B+ b ≤ c}.

Proof. Suppose that I − J 6= ∅ and a ∈ I − J . Since J is maximal then there is

some j ∈ J for which there is some b ∈ B+ so that b ≤ j ∨ a. Since a ∈ I, there

is a maximal antichain M in B such that for each m ∈ M m ∧ a = 0.

Now b ∈ B have to intersect with some m ∈ M, so 0 6= m ∧ b ≤ j ∨ a, but

m and a are disjoint hence m ∧ b ≤ j, which is in contradiction with assumption

that J does not intersect with B.

Clearly
⋂K ⊃ I. Take arbitrary c ∈ C+ \ I, hence the set {b ∈ B : b ≤ −c}

is not dense in B because otherwise c ∈ I. It means that there is some b0 ∈ B so

that

∀b ∈ B+ (b ≤ −c) → b − b0 6= 0.

That is b0∧−c 6∈ B and one can take a maximal ideal J containing this element,

which shows that c 6∈ ⋂K; and we are done.

3.23 Proposition. If B is a complete algebra and B is a subalgebra of C, then B
is a retract of C, i.e. there is a homomorphism f : C → B such that f ◦ f = idB.

Therefore B ≈ C/Ker(f).

Proof. Using the Sikorski theorem I.3.11 the identity mapping idB : B → B can

be extended to a homomorphism f : C → B.
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3.24 UNIVERSALITY OF THE σ-FIELD Borel(2ω)

We have the Stone duality between the category of Boolean algebras and the

category of compact Hausdorff spaces. Specially we know that every Boolean

algebra is isomorphic to a field of sets.

It is well known that in the category of Boolean algebras there are free objects,

free Boolean algebras that can be distinguished by the size of free generators.

3.25 Definition. Let κ be a cardinal number. Boolean algebra B is free Boolean

algebra with κ (free) generators if there is a subset X ⊂ B of size κ, such that

(i) X is a set of generators of B,

(ii) for any Boolean algebra C and any mapping f : X → C there is an unique

extension f ⊃ f to a Boolean homomorphism f : B → C.

3.26 Fact. For every cardinal κ there is the unique free Boolean algebra with κ free

generators, denoted by Fr(κ).

For an infinite cardinal κ the free algebra Fr(κ) is isomorphic to the A(κ) i.e.

the algebra of clopen subsets of the generalised Cantor space 2κ. If κ is finite

then the free algebra is P(2κ).

Now consider the category of σ-complete Boolean algebras together with σ-

complete homomorphisms. Also in this category there are free objects, i.e. free

σ-complete algebras of any number of (σ-free) generators. They can be easily

described as a σ-fields of sets due to Rasiowa - Sikorski theorem (or equivalently

to the Baire category theorem for Stone spaces).

3.27 Theorem. For cardinal κ, consider the Cantor space 2κ. The algebra of subsets

of 2κ which is σ-generated by clopen sets i.e: Baire (2κ) is free σ-complete Boolean

algebra with κ many σ-free generators.

Immediate consequence of this theorem is the Loomis - Sikorski theorem on

a σ-representability.

3.28 Theorem. Every σ-complete Boolean algebra B is a σ-representable i.e: there

is a σ-complete epimorphism from a σ-field of sets onto B, i.e. B is isomorphic to

the quotient of a σ-field of sets F and a σ-ideal I ⊂ F,

B ∼= F/I.

Proof. Let X be the set of σ-generators of the algebra B, κ = |X|. A one-to-one

mapping f : κ → X can be extended to σ-homomorphism h : Baire(2κ) → B,

where h(〈α, 0〉) = f(α). Homomorphism h is onto B and the kernel h−1{0} is a

σ-ideal in Baire(2κ), hence

B ∼= Baire(2κ)/h−1{0}.
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3.29 Remark. Although for any uncountable κ there are free algebras in the

category of κ-complete algebras, they are not explicitly nicely describable. They

are not κ-fields of sets, since κ-representability implies some type of distributivity,

see [Sik64]

We use the universality of the σ-field Borel(2ω) in two directions.

(i) As the Cantor space 2ω has a countable base, Baire(2ω) = Borel(2ω). There-

fore for any σ-complete algebra B with countably many σ-complete gener-

ators, i.e. gω(B) = ω, there is a σ-ideal I on 2ω with a base consisting

of Borel sets such that B ∼= Borel(2ω)/I. Many classical forcing notions

are representable this way and there are more or less natural σ-ideals of

Borel sets with interesting forcing properties of partial orders of the type

(Borel − I,⊆) or equivalently Borel/I [Zap04].

(ii) Standard Borel spaces are isomorphic [Kec95]; i.e. any two uncountable

Polish spaces are Borel isomorphic. So instead of the Cantor space one can

consider any uncountable Polish space and σ-ideal with Borel base on it .

3.30 EXAMPLE. Let N = ωω be the Baire space, Kσ an σ-ideal on N generated

by compact sets. Note that A ⊂ ωω belongs to Kσ if and only if it is bounded

with respect to the ordering ≤∗ of eventual domination. Since any closed subset

F ⊂ N can be uniquely decomposed F = S ∪ P, where S ∈ Kσ and P is the set

of all branches of some superperfect tree, Borel(N )/Kσ ordered by inclusion is

equivalent to the Miller forcing. Recall that superperfect tree is a tree consisting

of some finite sequences of natural numbers ∅ 6= T ⊂ <ωω, such that every s ∈ T

has an extension t ⊇ s with infinitely many distinct immediate extensions in T .

△

One can characterise when the Borel(2ω)/I is weakly distributive via ‘the

continuous reading of names’; see also [Zak05].

3.31 Theorem. (J. Zapletal [Zap04]) Let I be a σ-ideal on a Polish space X. The

Boolean algebra Borel(X)/I is weakly distributive if and only if for each Borel set

B ∈ I+ and for each Borel function f : B → N there is a compact set K ⊂ B, K ∈ I+

such that f ↾ K is continuous mapping.

Proof. We will benefit from paragraph I.2.21. Note that by the isomorphism

theorem I.2.20 we can consider Borel(2ω) instead of Borel(X).

Suppose now that the algebra Borel(X)/I is weakly distributive. Take arbi-

trary Borel set B ∈ I+ and Borel function f : B → N and modify the start-

ing topology (X, τ) so that the modification τ ′ ⊃ τ is zero-dimensional and

the sets B and f−1(U) are clopen for each U, a member of base of the topol-

ogy on N (cf. I.2.21). Note that Borel(X, τ) = Borel(X, τ ′). Consider the

family C ′
n = {C clopen : diam (C) < 1

n
}, where we take diameters in com-

plete metric that generates τ ′. Polish spaces are saparable, hence one can pick

Cn = {Cn
i ∈ C ′

n : i ∈ ω} a disjoint covering of the Borel set B for each n ∈ ω.

Since Borel(X)/I is weakly distributive and I is σ-ideal there is a set K ∈ I+
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such that |{i : K ∩ Cn
i 6= ∅}| < ω for each n ∈ ω. Hence the set clK is closed and

totally bounded, i.e. compact in the topology τ ′. Note that clK ⊂ B because B

is clopen in τ ′ topology. Both τ, τ ′ are Hausdorff topologies, topology τ ′ extends

the topology τ and so identity mapping id : (X, τ ′) → (X, τ) is continuous. Con-

tinuous image of compact set is compact and so clK is compact also in τ topology.

By I.2.17 topologies τ and τ ′ have to coincide on a compact set clK and by our

assumption the function f ↾ K is continuous.

For the opposite direction let Ank ∈ Borel(X)/I be a matrix with disjoint rows.

Since I is a σ-ideal one can pick up Borel representatives {ank : n ∈ ω, k ∈ ω}

again with disjoint rows. Now pick up arbitrary Borel set B ∈ I+ and define a

function f : B → N so that f(x)(n) = k if and only if x ∈ ank. Function f is

clearly Borel. By the assumption of compact reading of names we get a compact

set K ∈ I+ so that K ⊂ B and f ↾ K is continuous. Continuous image of a compact

set is again compact and compact sets in N are bounded. Let g : ω → ω be such

that f[K] ≤ g, i.e.

K ⊂
⋂

n∈ω

⋃

i≤g(n)

ani

and so Borel(X)/I is weakly distributive.

3.32 Remark. Note that weak distributivity of Borel(2ω)/I does not generally

imply the weak distributivity of its completion. This holds if Borel(2ω)/I is

(ω, ·, ω1) distributive, which follows for example when the forcing Borel(2ω)/I
is proper.

3.33 SEQUENCES IN BOOLEAN ALGEBRAS

In order to describe a suitable topology on Boolean algebras which correspond

with Boolean operations we start with the description of convergent sequences.

3.34 Definition. Let B be a σ-complete Boolean algebra, for a sequence 〈xn : n ∈
ω〉 in B, we define limes superior and limes inferior as usual, i.e.

lim xn =
∧

k∈ω

∨

n≥k

xn and lim xn =
∨

k∈ω

∧

n≥k

xn.

We say that a sequence 〈xn : n ∈ ω〉 has x ∈ B as a limit if lim xn = lim xn = x,

and write lim xn = x.

We start the investigations of basic properties with the Vladimirov’s equality

which puts together lim, lim and the operation of symmetric difference.

3.35 Lemma. (D. A. Vladimirov [Vla69]) Let B be a σ-complete Boolean algebra,

then

(i) For arbitrary sequence 〈an : n ∈ ω〉

limnan − limnan = limn(an △ an+1).
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(ii) Let 〈an : n ∈ ω〉, 〈bn : n ∈ ω〉 be sequences, then

limnan ∨ limnbn = limn(an ∨ bn).

Proof. (i) In order to prove the desired equality

∧

k

∨

n≥k

an −
∨

k

∧

n≥k

an =
∧

k

∨

n≥k

an △ an+1

we show both inequalities.

(≥) This inequality is quite trivial. Clearly
∧

k

∨
n≥k an ≥ ∧

k

∨
n≥k an △ an+1 and

whenever p ≤ ∧
n≥k an then p ⊥ ∨

n≥k an △ an+1. Hence

∧

k

∨

n≥k

an −
∨

k

∧

n≥k

an ≥
∧

k

∨

n≥k

an △ an+1.

(≤) We show that

∀k ∈ ω
∨

n≥k

an ≤
∨

n≥k

an △ an+1 ∨
∨

l

∧

n≥l

an,

using the ‘density argument’ and show that:

∀k ∈ ω ∀p ≤
∨

n≥k

an ∃0 6= r ≤ p
(
r ≤

∨

n≥k

an △ an+1 or r ≤
∨

l

∧

n≥l

an

)
.

Let p 6= 0 then either there exists m ≥ k such that p ∧ (am △ am+1) 6= 0,

which proves the density argument, or there is no such m ≥ k. Then because

p ≤ ∨
n≥k an there is some n0 such that p ∧ an0

6= 0. Let r = p ∧ an0
. We know

that r ∧ an0
△ an0+1 = 0 and so r ≤ an0+1, similarly r ≤ an0+k for each k ∈ ω.

Finally we have r ≤ ∧
n≥n0

an and so r ≤ ∨
k

∧
n≥k an.

(ii) The inequality (≤) is clear. To show the remaining inequality we start with

∨

n≥k

an ∨ bn =
∨

n≥k

an ∨
∨

n≥k

bn.

We denote ck =
∨

n≥k an and dk =
∨

n≥k bn. Now

limn(an ∨ bn) =
∧

k∈ω

ck ∨ dk =
∧

j∈ω

∧

k∈ω

ck ∨ dj.

The latter equality hold because sequences ck and dk are descending and we are

done: ∧

j∈ω

( ∧

k∈ω

ck ∨ dj

)
=

∧

j∈ω

limnan ∨ dj = limnan ∨ limnbn.

3.36 Corollary. A sequence 〈an : n ∈ ω〉 in Boolean algebra converges if and only

if limn(an △ an+1) = 0.
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The following assertion seems to be folklore.

3.37 Theorem. Let B be a complete weakly distributive ccc Boolean algebra and

let A ⊆ B be a subalgebra which completely generates B. Then {
∧

B X : X ∈ [A]ω} is

a dense subset of B.

Proof. Let us consider limits of all convergent sequences of elements from A, i.e.,

C = {x ∈ B : (∃ 〈an : n ∈ ω〉 ∈ Aω) lim an = x}.

Since B is weakly distributive and satisfies ccc, the set C is already closed

under taking limits of convergent sequences, see for example [BGJ98]. This

means that C ⊇ A and C is closed under countable joins and meets, therefore

C = B.

Take x ∈ B+. There is a sequence 〈an : n ∈ ω〉 ∈ Aω such that

liman =
∧

k∈ω

∨

n≥k

an = x.

For given k, consider a disjoint sequence 〈ak,n : k ≤ n < ω〉, where ak,n =

an −
∨

{ai : k ≤ i < n}. Then ak,n ∈ A and
∨

n≥k an =
∨

n≥k ak,n. Using

weak distributivity of B, there is a finite set Ik ⊆ ω \ k for every k, such that

y =
∧

k∈ω

∨
n∈Ik

ak,n 6= 0. Since y ≤ x and
∨

{ak,n : n ∈ Ik} ∈ A, we are

done.

4. SUBMEASURES ON BOOLEAN ALGEBRA

We consider only real-valued functions on an algebra B. By a measure we usually

mean a finitely additive measure.

4.1 Definition. A submeasure on a Boolean algebra B is a function µ : B → R+

with the properties

(i) µ(0) = 0,

(ii) µ(a) ≤ µ(b) whenever a ≤ b (monotone),

(iii) µ(a ∨ b) ≤ µ(a) + µ(b) (subadditive).

A submeasure µ on B is

(iv) exhaustive if lim µ(an) = 0 for every sequence {an : n ∈ ω} of disjoint

elements,

(v) strictly positive if µ(a) = 0 only if a = 0,

(vi) a (finitely additive) measure if for any disjoint a and b, µ(a ∨ b) = µ(a) +

µ(b).
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A submeasure µ on a σ-complete B is called

(vii) Maharam or continuous if for any descending sequence 〈an : n ∈ ω〉 with∧

n∈ω

an = 0, lim
n→∞

µ(an) = 0.

(viii) σ - subadditive if for any 〈an : n ∈ ω〉 ⊂ B

µ(
∨

n∈ω

an) ≤
∑

n∈ω

µ(an).

The norm of µ is the number µ(1).

For any submeasure µ on B, Null(µ) = {a ∈ B : µ(a) = 0} is an ideal on B. If

µ has a positive norm, i.e. µ ≡Á 0, then the quotient B/Null(µ) carries a strictly

positive submeasure µ, where µ[a] = µ(a) for each a ∈ B.

We will see that a submeasure µ on a σ-complete Boolean algebra B is Ma-

haram if and only if µ as a function from B to R is continuous with respect to the

sequential topology on B. Moreover, a measure is continuous if and only if it is

σ-additive. We supply this definitions by following immediate conclusions.

At first it is clear that exhaustivity does not depend on zero elements.

4.2 Fact. Let µ be a non-zero submeasure. Then µ on B/Null(µ) is an exhaustive

submeasure if and only if µ is exhaustive.

When focusing on strictly positive submeasures, exhaustivity limit the chain

condition property.

4.3 Fact. If an algebra B carries a strictly positive exhaustive submeasure, then B
satisfy ccc.

Submeasure is a generalisation of a measure. The stand-alone definition of a

submeasure is way too much trivial. Notice that every Boolean algebra carries a

submeasure: Simply put µ(0) = 0 and µ(a) = 1 for any a 6= 0. Such submeasure

is not exhaustive. Measure satisfies even more restrictive exhaustivity condition.

4.4 Definition. A submeasure µ : B → R+ is called uniformly exhaustive if for

each positive ε > 0 there is a k ∈ ω such that for every disjoint sequence 〈an :

n ∈ ω〉 ∈ Bω |{n ∈ ω : |µ(an)| ≥ ε}| ≤ k.

4.5 Fact. Any measure is a (uniformly) exhaustive submeasure.

The definition of continuous submeasure was clearly motivated by the σ-

additivity of a measure. Hence one cannot be surprised by the following fact.

4.6 Lemma. Every Maharam submeasure is σ - subadditive.

If a Boolean algebra B carries a strictly positive σ-additive measure, then B is

weakly distributive and ccc. The same hold for Maharam algebras.
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4.7 Lemma. If a Boolean algebra B carries a strictly positive Maharam submeasure,

then B satisfies ccc and is weakly distributive.

We focus on different properties of submeasures further in this text. For more

details on submeasures see also [Fre03].

4.8 Definition. Pseudometric and metric induced by a submeasures. Assume that

µ is a submeasure on a Boolean algebra B. Set ρµ(a, b) = µ(a△b) for any a, b ∈
B. Then ρµ is generally a pseudometric on the set B. Moreover, the Boolean

operations ∧, ∨, − are uniformly continuous. We say that the pseudometric ρµ

is induced by µ.

If µ is a strictly positive, then ρµ is a metric. In this case one can apply the

well-known construction to obtain a metric completion of the space (B, ρµ).

Denote by (C, ρµ) the metric completion of (B, ρµ). Then B is a topologically

dense subspace of C. Since the Boolean operations on B are uniformly continu-

ous, they can be uniquely extended to operations on C. The axioms of Boolean

algebra must therefore hold for these operations and thus C is a Boolean algebra

with B being its subalgebra. Similarly, a submeasure µ on B can be uniquely

extended to a submeasure µ on C. Moreover ρµ = ρµ, i.e. the metric on C is in-

duced by the submeasure µ. This method is used to construct some useful super

algebras of B.

In general, an algebra constructed in such way does not have to be neces-

sarily a strictly larger super algebra. To see that, consider a submeasure ν on B
identically equal 1 on B+. The induced metric ρν is a {0, 1}-discrete metric on B
and thus (B, ρµ) itself is a complete metric space.

The exhaustivity of submeasures plays an important role, as indicates the

following fact.

4.9 Fact. In the metric space (B, ρµ), every decreasing sequence 〈an : n ∈ ω〉 ∈ Bω

is a Cauchy sequence if and only if µ is an exhaustive submeasure.

For the proof see (III.1.2).

4.10 Theorem. Let B be a Boolean algebra and µ a strictly positive exhaustive

submeasure on B with the induced metric ρ. The metric completion C of the metric

space (B, ρ) has a structure of a Boolean algebra such that B is a subalgebra of C
and there is a unique extension of µ to a strictly positive Maharam submeasure µ

on C moreover C is a complete Boolean algebra.

For a detailed proof of the Theorem I.4.10, see [Fre03].

When µ is a strictly positive measure, then µ is a strictly positive σ-additive

measure.

4.11 Theorem. (W. Orlicz) The space (B, ρµ) is complete pseudometric space if and

only if µ is σ-subadditive submeasure.

We will deal further with (uniformly) exhaustive and Maharam submeasures

in the following chapters. One of the crucial motivation for studying various
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properties of a submeasures is to find a border line between a submeasure and a

measure. Further in the text we show that an algebra carrying uniformly exhaus-

tive Maharam submeasure has to carry a measure.

Let us conclude this chapter with a similar result, which puts together frag-

mentation properties with measurability of a Boolean algebra

4.12 KELLEY’S FRAGMENTATION

4.13 Definition. Kelley’s fragmentation of a partial ordered set (P,≤) is a frag-

mentation P =
⋃

{Pn : n ∈ ω}, where each Pn has the following property:

for any positive integer k and 〈x1, x2, . . . , xk〉 ∈ Pn there is a subset I ⊆
{1, 2, . . . , k}, |I| ≥ k/(n + 1), such that 〈xi : i ∈ I〉 is a centered family.

Notice that when 〈Pn : n ∈ ω〉 is a Kelley’s fragmentation of (P,≤), then

putting Qn2+2n =
⋃

i≤n P̂n, where P̂i is an upward closure of Pi, we obtain again

a Kelley’s fragmentation {Qn2+2n : n ∈ ω} of (P,≤).

4.14 Theorem. (J. L. Kelley, [Kel59]) A Boolean algebra B carries a strictly positive

measure if and only if there is a dense subset P ⊆ B+ having a Kelley’s fragmenta-

tion.

Quite recently, F. Galvin and K. Prikry [GP01] showed that Kelley’s theorem

holds true with a fragmentation where repetitions are avoided, i.e., 〈x1, x2, . . . , xk〉
can be replaced by {x1, x2, . . . , xk}. We will further investigate this topic in chapter

IV.



II. GENERIC EXTENSIONS

In this chapter we touch on extensions of transitive models of ZFC presented in

the spirit of the Prague Set-theoretical seminar. We sketch generic extensions

and we introduce adding new reals. We conclude the chapter with the fact that

whenever a new real is added then all infinite groundmodel reals have almost

disjoint refinement.

1. BASIC CONCEPT

We deal with transitive models of set theory ZFC and their extensions. We admit

models to be proper classes. The presentation is in the spirit of Vopěnka’s Prague

set-theoretical seminar [VH72].

1.1 Definition. A model N is called an extension of a model M if M and N have

the same class of ordinal numbers and M ⊆ N. In this case, M is called a ground

model and N its extension.

Note that if N is an extension of M, it means that N is a transitive class and a

model of ZFC with the same ordinals as in M and the extension N ‘knows’ about

M i.e. X ∩ M ∈ N for any X ∈ N.

1.2 Theorem. (P. Vopěnka, B. Balcar) [VB67] Any extension is uniquely deter-

mined by new sets of ordinals. More precisely, when N1 and N2 are extensions of

M, and

{x ∈ N1 : x ⊆ On} = {y ∈ N2 : y ⊆ On},

then N1 = N2. Also, the inclusion

{x ∈ N1 : x ⊆ On} ⊆ {y ∈ N2 : y ⊆ On}

is equivalent to N1 ⊆ N2 for extensions N1, N2 of M.

For proof of the Theorem see [Jec02, Theorem 13.28]. Notice that the Axiom

of choice is crucial for the Theorem.

1.3 Definition. An extension W of a ground model V is called generic, if there is

a set σ ∈ W such that

(i) σ ⊆ V , or equivalently, σ is a part of a set b from V , i.e., σ ⊆ b ∈ V and

(ii) for any ρ ∈ W, ρ ⊆ V , there is a relation r ∈ V (depending on ρ) such that

ρ = r ′′σ.

Such a set σ is called a generic set for an extension W over V . This set de-

termines all parts of the ground model, which belong as a set to the extension,

through the relations from the ground model.
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Note that for any ρ ∈ W, ρ ⊆ V , there is a set b ∈ V with ρ ⊆ b. Using

AC, there is a one-to-one mapping into some ordinal number f : b −→ α, f ∈ V .

Therefore ρ1 = f ′′ρ ⊆ α and ρ = f−1 ′′ρ1.

Trivially, a composition of relations from V is again a relation from V . Hence,

if W is a generic extension, then there is a generic set σ for W which is a subset

of some ordinal number. Also, any set σ ⊆ V , σ ∈ W, is a generic set for W over

V if and only if every part of ordinals, which is a set in W, is determined by σ

through a relation from V .

From this we have transitivity of generic extensions.

1.4 Proposition. Let V ⊆ W ⊆ Z be transitive models of ZFC. If W is a generic

extension of V and Z is a generic extension of W, then Z is a generic extension of V .

Proof. There is an ordinal α and σ1 ⊆ α, σ1 generic for W over V and an ordinal

β and σ2 ⊆ β, σ2 generic for Z over W. Let γ be an ordinal and ρ ⊆ γ, ρ ∈ Z

be arbitrary. Then there is some τ ∈ W, τ ⊆ β × γ such that τ ′′σ2 = ρ. We have

τ ∈ W, τ ⊆ V , so there must be r ∈ V , r ⊆ α × (β × γ) with τ = r ′′σ1. Put

r = {〈〈x, y〉, z〉 : 〈x, 〈y, z〉〉 ∈ r}.

Then r ′′(σ1×σ2) = ρ and r ∈ V . Also, σ1×σ2 ⊆ V , σ1×σ2 ∈ Z. Thus σ1×σ2

is a generic set for Z over V .

1.5 Fact. Whenever we have a generic set σ ⊂ a ∈ V then there is a uniquely

determined extension M ⊃ V containing σ; M is a model of ZFC and it is a minimal

model extending V and containing σ.

1.6 Definition. Canonical form of generic set. Let (a,≤) be a preorder in V . We

say that a set G ⊂ a is a generic filter over V if for any f, g ∈ G there is b ∈ G

such that b ≤ f and b ≤ g and if h ≥ g then h ∈ G (i.e. G is a filter) and for an

arbitrary dense set D ⊆ a from the groundmodel V the intersection G ∩ D is not

empty.

Note that if preorder is atomless then no generic filter belongs to the ground

model.

1.7 Definition. We call sets σ, ρ ⊆ V similar if there are relations r, s ∈ V such

that r ′′σ = ρ and s ′′ρ = σ.

The following theorem gives us a powerful tool: whenever we work with a

generic set over a transitive model V of ZFC we can suppose that the generic set

is in a canonical form, namely in the form of a generic ultrafilter over V on some

complete atomless Boolean algebra B ∈ V .

1.8 Theorem. (B. Balcar, P. Vopěnka [BŠ00]) Let V be a transitive model of ZF

and let σ ⊂ a ∈ V be a generic over V for some generic extension. Then there is a

preorder ≤ on a in V such that σ is a generic filter on (a,≤) over V .

A forcing notion is a synonym for a partially ordered set (P,≤), a preordering

is also acceptable. From the paragraph I.3.6 we know that algebra RO(P) is the

canonical complete Boolean algebra associated with P. RO(P) together with a
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mapping φ : P → RO(P) is a completition of P, i.e. φ[P] is dense in RO(P). Now

we can formulate the addition to theorem II.1.8 as follows:

G = {a ∈ RO(P) : ∃x ∈ σ φ(x) ≤ a}

is a generic filter on Boolean algebra RO(P) over V which is similar to σ. There-

fore G and σ determine the same generic extension.

Generic extension of a groundmodel V is hence given by some generic filter

G over a Boolean algebra, we denote the extension as V [G].

1.9 Remark. Note that a generic filter G on a complete Boolean algebra B over

groundmodel V is exactly a maximal filter on B, which is set complete, i.e.
∧

a ∈
G, for any a ⊂ G such that a ∈ V .

When describing generic extension using Boolean algebras one can use ‘Bool-

ean valued names’ instead of relations. Consider G a generic filter on a complete

Boolean algebra B. We know that sets from the extension V [G] are reachable via

relations from groundmodel V . Namely let r ′′G ∈ V [G], where r ∈ V is a relation.

One can describe each such set via a groundmodel function f : rng(r) → B, called

a Boolean name:

f : rng(r) −→ B

x 7−→
∨

{b ∈ B : 〈b, x〉 ∈ r}.

It is now clear, that f−1 ′′G = r ′′G. The main advantage is that whenever we want

to deal with a ‘new’ subset a of a groundmodel set A; i.e. A ∈ V, a ∈ V [G] and

a ⊂ A in, we will use its Boolean name usually denoted by a dot:

ȧ : A → B, ȧ ∈ V.

Let ȧ be such a Boolean name, then its meaning is given by a generic object

G as follows

ȧG = {x ∈ A : ȧ(x) ∈ G} ⊂ A.

We saw that generic extensions are somewhat easier to describe than exten-

sions in general and moreover have some nice properties. One of important

properties of generic extensions is the fact that they are closed under ‘intermod-

els’.

1.10 Theorem. Let V [G] be a generic extension of the groundmodel V , where G is

a generic filter on a complete Boolean algebra B. Whenever N is an extension of V ,

such that V ⊂ N ⊂ V [G], then N is a generic extension of V determined by some

complete subalgebra C ⊂ B, C ∈ V and N = V [C ∩ G].

Proof. The class N is a model of ZFC. Therefore PN(B) ∈ N and by the Axiom of

Choice there is an ordinal α and a relation ρ ⊂ α × B, ρ ∈ N such that for any

τ ⊂ B, τ ∈ N, τ 6= ∅ there is ξ < α such that ρ ′′(ξ) = τ. Now ρ ⊂ V , ρ ∈ V [G]

hence there is a mapping f : α × B → B, f ∈ V such that f−1[G] = ρ.
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Put a = rng(f). Then a∩G and ρ are similar. Let C be a complete subalgebra

of B completely generated in V by the set a.

Now working in N we are able by recursion to extend the set a ∩ G ∈ N

uniquely to get a set complete ultrafilter on C, and verify that G1 = C ∩ G.

V [G1] = N because any set σ ∈ N, σ ⊂ V is similar to ρ(ξ) for some ξ ⊂
α.

On the other hand every generic extension can be decomposed into ‘two step’

extension:

Let C be a complete subalgebra of B, C, B ∈ V . Let G be a generic filter on C
over V . Then

Ĝ = {b ∈ B : (∃c ∈ G) c ≤ b}

is filter on B in V [G].

Î is a dual ideal, i.e.

Î = {b ∈ B : (∃c ∈ C) b ≤ c & − c ∈ G}

Note that Ĝ, Î, respectively are closed under meets, joins, respectively over

arbitrary set from V:

To prove this consider projection p : B → C given by p(b) =
∨

{c ∈ C : c ≤ b}.

Now if X ⊂ Ĝ, X ∈ V , then p[X] ∈ V and p[X] ⊂ G and it follows from genericity

of G that
∧

p[X] ∈ G, hence
∧

X ∈ Ĝ.

We can show that B/Î is a complete Boolean algebra in V [G]. This is equiva-

lent to the fact that preordering ≤G on B defined by

b1 ≤G b2 if and only if b1 − b2 ∈ Î

is complete in V [G].

1.11 Claim. B/Î is a complete Boolean algebra in V [G].

Proof. Let f : B → C be a Boolean C-name for a subset of B, f ∈ V . Put

c =
∨

b∈B

f(b) ∧ b, then c ∈ B.

We have to check that c is the supremum in (B,≤G) of the set σ = {b : f(b) ∈
G}, or equivalently [c] =

∨
{[b] : b ∈ σ} in B/Î.

At first, for b ∈ σ, i.e. f(b) ∈ G we have that b ≤G f(b)∧b and f(b)∧b ≤G b,

so [b] = [f(b) ∧ b] for all b ∈ σ. Since f(b) ∧ b ≤ c, c is an upper bound for σ.

Now assume d ∈ B is an upper bound for σ, then whenever f(b) ∈ G then

f(b) ∧ b ≤G d and so (f(b) ∧ b) − d ∈ Î. On the other hand if f(b) 6∈ G then

f(b) ∧ b ∈ Î and so (f(b) ∧ b) − d ∈ Î.

Finally,
∨

b∈B
(f(b) ∧ b − d) ∈ Î and so c =

∨
b∈B

(f(b) ∧ b ≤G d.

Let C be a complete subalgebra of B. Now assume that F ⊂ B is a generic

filter on B over V .

Consider G = F ∩ C, G is a generic filter on C over V .



II. GENERIC EXTENSIONS 31

1.12 Claim. F is a generic filter on (B,≤G) over V [G], equivalently F/G = {[b] :

b ∈ F} is a generic filter on B/Î over V [G], i.e.

V [F] = V [G][F/G].

Proof. Certainly F is a filter on (B,≤G). For a genericity of F suffices to show that

for any Boolean C-name f : B → C such that if σ = {b : f(b) ∈ G} and σ ∩ F = ∅,

then sup(σ) =
∨

b∈B
f(b) ∧ b = c 6∈ F.

But if b 6∈ σ then f(b) 6∈ F and if b ∈ σ then b 6∈ F. So c 6∈ F because F is a set

complete filter.

1.13 ADDING NEW REALS

Now we describe what we mean by a name for a real (here we identify reals with

subsets of ω). Name ḟ for a real is a Boolean valued function ḟ : ω → B. One

can see it as a generalisation of characteristic functions. The set of all names i.e.

Bω is also a Boolean algebra with Boolean operations defined coordinatewise.

Let G ⊂ B be a generic filter. Then the meaning of a name ḟ is the following

subset of ω

ḟG = {n ∈ ω : ḟ(n) ∈ G}.

If B is complete, then Bω is also complete Boolean algebra and these are the

names for all reals in the generic extension, namely

(
P(ω)

)V[G]
= {fG : f ∈ Bω}.

We say that a forcing notion (P,≤) adds a new real if for any generic filter on

(P,≤)

(P(ω))V 6= (P(ω))V[G].

Equivalently, (P,≤) adds a new real if there is a Boolean name r : ω → RO(P)

such that for each p ∈ P there is n ∈ ω such that

p ‖ r(n) & p ‖ −r(n).

We summarise here a classification of a newly added reals, at first we show

an example of Cohen real, i.e. the real added via the Cohen forcing.

1.14 EXAMPLE. We say that a forcing P adds a Cohen real if the Cantor algebra

A can be regularly embedded into RO(P).

It is equivalent with existence of a Boolean name c : ω → RO(P) with the

property that for every set D dense in the partial order (
⋃

n∈ω
n{0, 1},⊇)

∨

f∈D

∧

i∈dom(f)

f(i)c(i) = 1,

where Boolean operations are in RO(P) and 0c(i) = c(i), 1c(i) = −c(i). △

Let us remind some well-known notions concerning the interrelationship of

functions and subsets of ω in the extension and the ground model.
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1.15 Definition. Let M denote an extension of V .

(i) X ⊆ ω in the extension is said to be an independent (or splitting) real over

V if for all Y ∈ [ω]ω ∩ V both X ∩ Y and Y − X are infinite.

(ii) A function f ∈ M, f ∈ ωω, is a dominating real over V if for all g ∈ ωω ∩ V

for all but finitely many n ∈ ω, g(n) ≤ f(n).

(iii) M is an ωω-bounding extension of V if every f ∈ M, f ∈ ωω is bounded by

a g ∈ ωω ∩ V , i.e. f(n) ≤ g(n) for any n.

(iv) A function h ∈ ωω in the extension is said to be an unbounded real over V

if for all f ∈ ωω ∩ V the set {n ∈ ω : h(n) > f(n)} is infinite.

1.16 Definition. We say that the Cantor algebra A is almost regularly embedded

into a Boolean algebra B if there is A ′, a subalgebra of B, so that

(i) A ′ is isomorphic to the Cantor algebra A, and

(ii) there is a set {xn : n ∈ ω} of generators of A ′ such that for any infinite

subset X of ω,
∨

B
{xn : n ∈ X} = 1 and

∧
B
{xn : n ∈ X} = 0.

1.17 Definition. We call a sequence 〈xn : n ∈ ω〉 ∈ Bω splitting if for every

b ∈ B+ xn ∧ b 6= 0 and b − xn 6= 0 for all but finitely many n.

The following theorem summarize several conditions for adding independent

reals.

1.18 Theorem. For any Boolean algebra B the following are equivalent.

(i) Cantor algebra is almost regularly embedded in algebra B,

(ii) there is a sequence {xn : n ∈ ω} in B such that for any infinite subset X of ω,∨
B{xn : n ∈ X} = 1 and

∧
B{xn : n ∈ X} = 0,

(iii) there is a splitting sequence in B,

(iv) there is a splitting sequence in B which form an independent family cf. I.3.14,

(v) there is f ∈ Bω such that for every generic G on B fG is an splitting real in

V [G].

Proof. (i) → (ii) is clear from the definitions.

(ii) → (iii) Arguing by contradiction, we establish that the sequence 〈xn : n ∈ ω〉
satisfying (ii) is splitting: let b ∈ B+ be an element not split by the sequence, then

one of the sets {n ∈ ω : xn ≤ −b} and {n ∈ ω : xn ≥ b} is infinite, contradicting

(ii).

(iii) → (iv) Let {xn : n ∈ ω} be a splitting sequence. We define y0 = x0. Since

{xn : n ∈ ω} is splitting, there exists n1 ∈ ω such that ∀m ≥ n1 xm splits ǫx0, for

ǫ ∈ {−1, 1} and we put y1 = xn1
. By induction we construct a splitting sequence

〈yn : n ∈ ω〉 since it is subsequence of 〈xn : n ∈ ω〉. By the construction∧
n∈K ǫyn 6= 0 for any finite K so the sequence 〈yn : n ∈ ω〉 is independent.
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(iv) → (i) We define A as a Boolean algebra generated by the splitting sequence

〈yn : n ∈ ω〉. This algebra is countable and atomless, since atoms can not be

split so is isomorphic to Cantor algebra.

(iii) → (v) The function f(n) = xn, where 〈xn : n ∈ ω〉 is a splitting sequence, is

an independent real for any generic G on B. Fix some G and assume that there

is an infinite set a ⊆ ω in V that is not split by fG. We can assume that the set

a∩fG is finite and so a\fg is cofinite, hence both belong to groundmodel V . Now

the element v =
∧

n∈a∩fG
xn ∧

∧
n∈a\fG

−xn belongs to G and so v ∈ B+ but is not

split by any element of 〈xn : n ∈ ω〉.
(v) → (iii) We show that the sequence 〈f(n) : n ∈ ω〉 is splitting, where f ∈ Bω

is an independent real for any generic G on B. Let b ∈ B+ be an element that

is not split. It means that one of the following sets b0 = {n ∈ ω : −b ≥ f(n)},

b1 = {n ∈ ω : b ≤ f(n)} is infinite. We chose G so that it contains b. Then

b0 ∩ fG = ∅ or b1 ∩ fG = b1 contradicting the fact that f is an independent real,

since both b0 and b1 belong to V .

The easy reformulation of the condition (ii) of the theorem II.1.18 allows us

to formulate combinatorial condition to forcing or Boolean algebra to not to add

independent reals.

1.19 Corollary. Complete Boolean algebra B as a forcing notion does not add inde-

pendent reals if

∀〈an : n ∈ ω〉 ∈ Bω ∃X ∈ [ω]ω
∧

Y∈[X]ω

(
limn∈Y an − limn∈Y an

)
= 0.

In chapter V we show the following topological condition for not adding in-

dependent reals.

1.20 Theorem. Let B be a complete ccc Boolean algebra. Then B does not add inde-

pendent reals if and only if the sequential topology on B is countably (sequentially)

compact (I.2.15).

1.21 EXAMPLE. (i) Cohen forcing adds Cohen real, which is a splitting real,

(ii) Random forcing is ωω-bounding forcing which adds independent reals,

(iii) Sacks forcing is ωω-bounding which is not adding splitting reals and is

(2ω)+ − cc,

(iv) Miller forcing is (2ω)+ − cc and adds unbounded reals and no splitting real

hence it adds no dominating real [Mil84],

(v) Laver forcing adds dominating real and no Cohen real,

(vi) Hechler forcing (σ-centered) adds a dominating real and also Cohen real,

(vii) Mathias forcing adds a dominating real and no Cohen real.

△
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2. ALMOST DISJOINT REFINEMENT

At first we should mention that we will mainly focus on the almost disjoint fami-

lies on ω rather then on an arbitrary set. Let us remind definitions.

2.1 Definition. The family A ⊂ [ω]ω is an almost disjoint family or simply AD

family if any two A, B ∈ A, A 6= B are almost disjoint, i.e A ∩ B is finite. We will

indicate this fact by A ∩ B =∗ ∅.

If the family A is maximal with respect to this property, we will talk about a

maximal almost disjoint family or MAD family.

In the following A ⊂∗ B will denote the fact that A \ B is finite.

Please note that in fact AD family is any disjoint family in the Boolean algebra

P(ω)/fin and MAD family is nothing else than a decomposition of unity in the

same algebra.

We say that a family S ⊂ [ω]ω has an almost disjoint refinement (ADR) if

there is an almost disjoint family {AX : X ∈ S} such that AX ∈ [X]ω for every X ∈
S. Instead of this ‘indexed’ refinement we use the following simpler definition

and we show that these two are equivalent. We will use any of this equivalents

without further mentioning.

2.2 Definition. Family S ⊂ [ω]ω has an ADR if there is an almost disjoint family

A such that for any X ∈ S there is A ∈ A such that A ⊂∗ X

2.3 Fact. For a family S ⊂ [ω]ω the following are equivalent:

(i) There is an almost disjoint family {AX : X ∈ S} such that AX ∈ [X]ω for every

X ∈ S.

(ii) a family S has ADR, i.e. there is an almost disjoint family A such that for any

X ∈ S there is A ∈ A such that A ⊂∗ X,

(iii) there is an almost disjoint family A such that for any X ∈ S

|{A ∈ A : |X ∩ A| = ω}| = 2ω.

Proof. (i) → (ii) This implication is trivial since the disjoint family from (i) satis-

fies also (ii).

(ii) → (iii) Let A be an almost disjoint family as in (ii). In [ω]ω there is an

maximal almost disjoint family 〈BA
i : i ∈ 2ω〉 of a size 2ω below any A ∈ A.

Hence 〈BA
i : i ∈ 2ω, A ∈ A〉 satisfies (iii).

(iii) → (i) First enumerate S = {Xα : α ∈ 2ω} and for any X ∈ S denote AX =

{A ∈ A : |X∩A| = ω}, |AX| = 2ω. Now proceed by induction and for each Xα ∈ S
choose some Aα ∈ AXα

−
⋃

{Aβ : β < α}. Clearly the family {Aα ∩ Xα : α ∈ 2ω}

gives an almost disjoint refinement for S.

The strongest property concerning the existence of an almost disjoint refine-

ment for some family of subsets of ω is the following refinement principle by

countable set RPC (see [BS89a] for details). The RPC is formulated using the tall

ideal, we will see later that AD families and tall ideals are closely related.
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2.4 Definition. An ideal I on ω is a tall ideal if

∀X ∈ [ω]ω ∃Y ∈ [X]ω Y ∈ I.

2.5 Definition. Refinement principle by countable sets (RPC):

For every tall ideal I, the set P(ω) − I has an almost disjoint refinement.

2.6 Remark. This principle follows from Martin’s Axiom and holds true in many

generic extensions. Till now it is not known whether RPC is a ZFC statement.

Let us recall an useful cardinal invariant a:

2.7 Definition.

a = min {|A| : A is an infinite MAD family }.

2.8 Proposition. If a = 2ω then RPC holds true.

Proof. Let I be a tall ideal. Enumerate I+ = {Xα : α < 2ω}. We pick up an almost

disjoint refinement for I+. Since I is tall ideal, one can find some I0 ⊂ X0, I0 ∈ I.

Suppose we already picked {Iα : α < γ} for some γ < 2ω. The family

A = {Xγ ∩ Iα : α < γ}

is not a MAD family, since a = 2ω hence there is some infinite X ⊂ ω almost

disjoint with A. The ideal I is tall, hence there is some Iγ ⊂ X. The family

{Iα : α < 2ω} is a desired almost disjoint refinement for I+.

As we already mentioned, there is a close relation between an AD family and

a tall ideal. Let A be an AD family. Then one can define an ideal

IA = {X ⊂ ω : |A ∈ A : |X ∩ A| = ω| < ω}

2.9 Fact. Let A be an AD family. Then IA is a tall ideal. IA is nontrivial ideal

whenever A is an infinite AD family.

We denote I+ all positive sets with respect to an ideal I, i.e. I+ = P(ω) − I.

In the following we will use the main techniques that are used in [BS89a], let

us restate them here. We start with the introduction of the Base Tree of P(ω)/fin.

Base Tree is a special kind of a dense subset of P(ω)/fin:

2.10 Theorem. (B. Balcar, J. Pelant and P. Simon [BPS80]) There is a Base Tree

(T,⊃∗) for [ω]ω, i.e.

(i) (T,⊇∗) ⊂ [ω]ω is a tree,

(ii) let B ∈ T then the family of immediate successors of B in T is a maximal

almost disjoint family below B of a full size; i.e. 2ω.

(iii) for each A ∈ [ω]ω there is B ∈ T such that B ⊂∗ A,

(iv) the hight of T is h; (for definition of h see I.3.3).
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One reason for which we are interested in dense subfamilies of P(ω) is be-

cause one can reconstruct the whole P(ω) from its dense part.

2.11 Proposition. Let V and M be models of ZFC and let H ⊂ V be a dense set in

[ω]ω ∩ V . If H ⊂ M then

PV(ω) ⊂ PM(ω),

moreover if H is dense in [ω]ω ∩ M in M, then PV(ω) = PM(ω).

Proof. We identify ω with the countable set A = { n{0, 1} : n ∈ ω}. One can also

identify P(ω) with the set of characteristic functions 2ω. Let H be a dense set of

([A]ω)V.

Now let X ∈ PV(ω), we take its characteristic function χ : ω → {0, 1}. χ

determines infinite subset Xχ = {χ ↾ n : n ∈ ω} ⊂ A. H is dense, hence there is

infinite h ∈ H such that h ⊂ Xχ. Since h ∈ M, one can easily reconstruct χ ∈ M

as

χ =
⋃

h.

So in M there is a characteristic function of the set X and we are done. The

moreover part is now obvious.

We will also use following general combinatorial facts, see [BV80]. For proofs

of theorems II.2.10 and II.2.12 see also [BS89a], or [BŠ00].

2.12 Theorem. (B. Balcar, P. Vojtáš [BV80])

(i) Let 〈In : n ∈ ω〉 be a decomposition of ω into finite sets. Then the family

S = {X ∈ [ω]ω : limsup |X ∩ In| = ∞} has ADR.

(ii) Let 〈Sn ∈ [ω]ω〉 be a disjoint family. Then the family S = {X ∈ [ω]ω : {n :

|X ∩ Sn| = ω} is infinite} has ADR.

2.13 Definition. AD family A is called completely separable if for each X ∈ I+
A

there is some A ∈ A such that A ⊂∗ X.

The existence of completely separable AD in ZFC can be found in [BS89a].

The existence of completely separable MAD in ZFC is still open. One reformula-

tion of RPC (which appeared in [BS89a]) uses refinement by completely separa-

ble AD and a special kind of Base Tree:

2.14 Theorem. The following are equivalent:

(i) RPC

(ii) for each infinite MAD family A, I+
A has ADR by a completely separable AD

family,

(iii) there is a Base Tree T such that any MAD family A ⊂ T is completely separable.
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2.15 ALMOST DISJOINT REFINEMENT OF GROUNDMODEL REALS

Lajos Soukup pose on the Set Theory Workshop (November 17 - November 19,

2005, Vienna) the following question:

Does the family ([ω]ω)V has an almost disjoint refinement in generic exten-

sion, which adds a new real?

We shall consider a little more general situation, when we take into account

arbitrary ZFC extension M of V . Clearly, to have a chance for the refinement, the

extension M have to add a new real, i.e.

(P(ω))V ( (P(ω))M.

So from now on we will consider, that the extension M adds new reals and we

ask about the existence (of course in M) of the mapping

ϕ : ([ω]ω)V → [ω]ω

such that for each x 6= y, x, y ∈ ([ω]ω)V

(i) ϕ(x) ⊂ x and

(ii) ϕ(x) ∩ ϕ(y) =∗ ∅.

The following theorem gives an affirmative answer to L. Soukup’s question.

2.16 Theorem. In any ZFC extension M of V adding a new real there is an almost

disjoint refinement for ([ω]ω)V.

Proof. The proof of the theorem uses Base Tree techniques and the following

observation:

2.17 Lemma. There is an infinite σ ⊂ ω, σ ∈ M such that for each X ∈ [ω]ω ∩ V

there is Y ∈ [X]ω ∩ V which miss σ, i.e. Y ∩ σ = ∅.

Proof. Instead of ω one can consider a countable set

A =
⋃

{ n{0, 1} : n ∈ ω}.

Let χ be a characteristic function of a new real. Define σ = {χ ↾ n : n ∈ ω}, note

that σ is set of compatible functions. Then σ has desired properties:

Let X ⊂ A, X ∈ V be infinite. From Ramsey theorem it follows that X contains

either infinite subset Y of compatible functions or it contains infinite subset Y of

pairwise disjoint functions. In the latter case clearly |Y ∩ σ| ≤ 1. Now suppose

that Y is set of compatible functions and Y ∩ σ is infinite. Then
⋃

Y = χ, but⋃
Y ∈ V and χ 6∈ V , a contradiction. Hence Y ∩ σ =∗ ∅ and we are done.

2.18 Corollary. In any ZFC extension M of V adding a new real there is σ ⊂ ω,

σ ∈ M such that σ does not contain infinite groundmodel set.

2.19 Corollary. In any ZFC extension M of V adding a new real (P(ω)/fin)V is

not a regular subalgebra of P(ω)/fin, i.e. there is a MAD family in (P(ω)/fin)V

which is no longer MAD in M; cf. (I.3.18)(iv).
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The following lemma concludes the PROOF OF THE THEOREM II.2.16.

2.20 Lemma. Whenever an extension M of V destroys some MAD, then the family

([ω]ω)V has an ADR in M.

Proof. Let (T,⊇∗) ⊂ [ω]ω be a Base Tree for [ω]ω∩V , T ∈ V; see (II.2.10) and let

A ∈ V be a destructible MAD family with its ‘destructor’ σ ∈ [ω]ω, σ ∈ M. We

denote Tα the α-level of the tree T .

By recursion we construct a Base Tree T ∗ ∈ V for [ω]ω ∩ V . We start with the

root t ∈ T0 of the tree T an let it untouched. The set t is an infinite subset of ω

so there is a bijection b : t → ω in V . So b−1[A] is a destructible MAD family on

t with the destructor b−1(σ) ∈ M. There is a common refinement of the MAD

families b−1[A] and T1. This common refinement will be next level T ∗
1 of the tree

T ∗.

Let T ∗
α level be constructed. For every t ∈ T ∗

α we pick some bijection bt : t →
ω. The T ∗

α+1 level will be the common refinement of Tα+1 and maximal almost

disjoint family

{b−1
t [A] : t ∈ T ∗

α, A ∈ A}.

On the limit stages γ < h. We take T ∗
γ common refinement of the T ∗

α for each

α ≤ γ. Such a refinement exists; cf. definition of h (I.3.3).

The just constructed tree T ∗ ∈ V is clearly a Base Tree for ([ω]ω)V. Moreover

for each t ∈ T ∗ we have a subset b−1
t (σ) ∈ M. Note that each b−1

t (σ) is almost

disjoint with every s ∈ T ∗
β for each β > α. Hence for for each t 6= s, b−1

s (σ) is

almost disjoint with b−1
t (σ) and

{b−1
t (σ) : t ∈ T ∗}

is an almost disjoint refinement of ([ω]ω)V, and we are done.

¤

Now we define a family, that seems to be the crucial one, when talking about

adding new reals and almost disjoint refinement. In a special case when there

are no independent reals in the extension this family form an ideal.

2.21 Definition. Let H be the family of subsets of ω which do not contain infinite

sets from groundmodel

H = {σ ∈ M : σ ⊂ ω & ¬ ∃ a ∈ ([ω]ω)V a ⊂ σ}.

2.22 Theorem. The following hold in M.

(i) H is an open dense subset of ([ω]ω,⊆).

(ii) H is an ideal if and only if M does not add independent reals.

Proof. First note that if M adds a new real χ ⊂ ω, χ 6∈ V , then H contains infinite

set. It is easy to see, that σ given by lemma II.2.17 is an infinite set belonging to

H.

To prove (i), let A ∈ ([ω]ω)V, then there is a bijection f in V between ω and

A and there is a subset σ ⊂ ω in M which does not contain infinite groundmodel
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set so f[σ] ∈ H is subset of A. Generally if A ∈ [ω]ω, then A ∈ H or there is some

A ′ ∈ ([ω]ω)V, A ′ ⊂ A and we can use the same reasoning.

(ii) Suppose that M adds an independent real σ. Clearly σ ∈ H and −σ ∈ H,

hence H is not an ideal.

On the other hand if H is not an ideal, then there are a, b ∈ H such that there

is X ∈ ([ω]ω)V and X ⊂ a ∪ b. Again we can identify X and ω in groundmodel

and then X ∩ a is an independent real in M.

2.23 Remark. We know that (P(ω)/fin)V is not a regular subalgebra of the al-

gebra P(ω)/fin. From the paragraph I.3.17 we know that there is some maximal

ideal J so that the canonical homomorphism

i : (P(ω)/fin)V −→ (P(ω)/fin)/J

is a regular embedding; cf. I.3.21. In case that H is an ideal, then it is the

greatest ideal with this property and vice versa: If there exist the greatest ideal

not intersecting with (P(ω)/fin)V then M does not add independent reals; cf.

I.3.22.

EXAMPLES AND SPECIAL CASES

We know that when adding new reals, there is an almost disjoint refinement for

groundmodel reals. In the following we will discuss some examples and possibly

show a direct proof for this fact for the sake of clarity. Please, keep in mind that

in this section extension M of the groundmodel V is always supposed to add new

reals.

We start with a trivial one, when continuum is collapsed.

2.24 Proposition. If |(P(ω)) ∩ V | < 2ω in M then the family ([ω]ω)V has ADR.

Proof. This is direct application of well known Balcar-Vojtáš Theorem, see [Kop89,

Theorem 3.14].

When M adds an unbounded real than the existence of ADR can be seen via

the following shortcut.

2.25 Proposition. If there is an unbounded real in M then the family ([ω]ω)V has

ADR.

Proof. Let σ : ω → ω be an unbounded real in M. We can assume that σ is

strictly increasing and σ(0) = 0.

Put In = [σ(n), σ(n + 1)). {In : n ∈ ω} is a partition of ω into intervals. It is

sufficient to show that [ω]ω ∩ V satisfies condition (i) from Theorem II.2.12.

Suppose not, i.e. there is X ∈ ([ω]ω)V and 0 < k ∈ ω such that |X ∩
[σ(n), σ(n + 1))| < k for all n ∈ ω. Let 〈xn : n ∈ ω〉 be an enumeration of

X. Then a function h : ω → ω defined by h(n) = xn·k belongs to V and σ ≤ h, a

contradiction.

2.26 Remark. Note that if M adds a Cohen real then assumptions of the theorem

are satisfied. Especially, the fact that ADR holds when adding a Cohen real is well

known, with a different proof cf. S. H. Hechler [Hec78].



III. EXHAUSTIVE FUNCTIONS

In this chapter we describe the inclusion diagram for several natural classes of ccc

Boolean algebras. These classes are determined by the existence of suitable real

functions. We introduce here a notion of exhaustive and uniformly exhaustive

function. We also show that classes determined by the existence of a function are

closely related with the fragmentation properties; defined in the previous section

(I.1.9). Namely we show that a given fragmentation property of a Boolean alge-

bra B or a partial order P is in fact equivalent to the existence of a real function

of a certain type over B or P. With such an equivalence at hand we engage the

productivity of fragmentation properties.

We conclude this chapter by several examples illustrating that some implica-

tions from inclusion diagram are irreversible.

1. DEFINITIONS AND BASIC FACTS

Let (P,≤) be a partial order and f, g : P → R then we set f ≤ g if for each p ∈ P

f(p) ≤ g(p).

1.1 Definition. Exhaustive and uniformly exhaustive functions.

(i) A real function f : P → R is called exhaustive if for each disjoint sequence

〈an : n ∈ ω〉 ∈ Pω, limn→∞ f(an) = 0.

(ii) f : P → R is called uniformly exhaustive if for each positive ε > 0 there

is a k ∈ ω such that for every disjoint sequence 〈an : n ∈ ω〉 ∈ Pω

|{n ∈ ω : |f(an)| ≥ ε}| ≤ k.

Note that f is exhaustive if and only if for each positive ε > 0 and for each

disjoint sequence 〈an : n ∈ ω〉 ∈ Pω there is a k ∈ ω such that |{n ∈ ω : |f(an)| ≥
ε}| ≤ k; i.e. uniformly exhaustive functions are exhaustive.

For a Boolean algebra B and f : B → R we define (uniform) exhaustivity in

the same way. Note that for an exhaustive function f : B → R the value f(0) is

equal to 0 since the sequence 〈0 : n ∈ ω〉 is disjoint.

1.2 Fact. (i) A function f : P → R is exhaustive if and only if |f| is exhaustive if

and only if the function min(1, |f|) is exhaustive.

(ii) The family of all exhaustive functions forms a linear space over R.

(iii) If f, g : P → R, |f| ≤ |g| and g is an exhaustive function then f is also an

exhaustive function.

(iv) A monotone function f : B → R is exhaustive if and only if for any sequence

〈an : n ∈ ω〉 and for any ε > 0 there is natural number k such that

(∀ p > k) f(
∨

n≤p

an −
∨

n≤k

an) < ε
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Proof. (i), (ii), (iii) is clear from the definition.

(iv) Suppose that f is a monotone exhaustive function and there is a se-

quence 〈an : n ∈ ω〉 such that for any k ∈ ω there is k∗ > k such that

f(
∨

n≤k∗ an −
∨

n≤k an) ≥ ε. Put b0 =
∨

i≤0∗ ai, b1 = (
∨

i≤(0∗)∗ ai) − b0, gen-

erally bn =
∨

i≤0(n+1)∗ ai −
∨

i<n bi. Clearly the sequence 〈bn : n ∈ ω〉 is disjoint

and for each n ∈ ω, f(bn) ≥ ε, which contradicts the exhaustivity.

On the other hand if 〈an : n ∈ ω〉 is a disjoint sequence and ε > 0 than

there is by the assumption k ∈ ω such that f(ap) < ε for each p > k; since f is

monotone. Hence limn f(an) = 0.

In (i), (ii) and (iii) the exhaustivity can by replaced by uniform exhaustivity.

So, we can restrict ourselves to non-negative, bounded, (uniformly) exhaustive

functions. Next lemma shows that even more is possible.

1.3 Lemma. Let f : P → R be a bounded, non-negative exhaustive (resp. uniformly

exhaustive) function. Then there is a function h : P → R such that h ≥ f and h is

monotone and exhaustive (resp. uniformly exhaustive).

Proof. For each p ∈ P, let h(p) = sup {f(a) : a ≤ p}. Clearly, h ≥ f and h is

monotone. Suppose that h is not exhaustive. Then, for some ε > 0, there is

a disjoint sequence 〈an : n ∈ ω〉 such that (∀n)h(an) ≥ ε. For each n, take

bn ≤ an such that f(bn) ≥ ε/2. Then 〈bn : n < ω〉 contradicts the exhaustivity

of f. In case of uniform exhaustivity one can use the same argument.

1.4 Lemma. (i) Let B be a Boolean algebra, P dense in B and let f : P → R
be a monotone, bounded, and (uniformly) exhaustive function. Then there is

g : B → R such that g ⊃ f and g is a monotone and exhaustive function.

(ii) Let B be a subalgebra of Boolean algebra C, then every monotone (uniformly)

exhaustive function f on B can be extended to monotone (uniformly) exhaus-

tive function on C.

Proof. (i) For a ∈ B put g(a) = sup {f(b) : b ≤ a & b ∈ P}.

(ii) We proceed in the same way as in (i), for a ∈ C put g(a) = sup {f(b) : b ≤
a & b ∈ B}, with g(a) = 0, in case that there are no b ≤ a such that b ∈ B. Note

that monotone functions on subalgebra are automatically bounded by f(1).

Next definition summarises additional natural properties of functions on Bool-

ean algebras. These properties are motivated by properties of measures and

submeasures.

1.5 Definition. A function f : B → R is called

(i) non-negative if f(x) ≥ 0 for all x ∈ B,

(ii) strictly positive if f(x) > 0 for all x 6= 0,

(iii) monotone if f(x) ≤ f(y) for x ≤ y,
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(iv) subadditive if a ⊥ b then f(a ∨ b) ≤ f(a) + f(b),

(v) superadditive if a ⊥ b then f(a ∨ b) ≥ f(a) + f(b),

(vi) additive if a ⊥ b → f(a ∨ b) = f(a) + f(b),

(vii) submeasure if f is monotone, subadditive and f(0) = 0,

(viii) supermeasure if f is non-negative and superadditive,

(ix) measure if f is non-negative and additive.

(x) normalised if f(1) = 1.

We denote the collection of null sets of a function f by

Null(f) = {a ∈ B : f(a) = 0}.

Note that a function f is a measure if it is a submeasure and supermeasure

simultaneously. If f is a supermeasure then f(0) = 0 since f(0) ≥ 2f(0). Every

supermeasure is monotone and every submeasure is non-negative.

For a submeasure f, the null sets Null(f) form an ideal on B. For a supermea-

sure f, Null(f) is, in general, only downward closed set.

To denote measures, submeasures and supermeasures we use Greek letters

λ, µ, ν and so on. Note that an identically zero function is a measure (a trivial

measure).

1.6 EXAMPLE. For any Boolean algebra B there are simple examples of submea-

sure, supermeasure and measure on B.

(i) Submeasure. Let µ(0) = 0 and µ(a) = 1 for all a ∈ B+.

(ii) Supermeasure. Let ν(a) = 0 for a < 1 and ν(1) = 1.

(iii) Measure. Let U be an ultrafilter on B and put ϑ(a) = 0 for a 6∈ U and

ϑ(a) = 1 for a ∈ U (ϑ is a characteristic function of U).

(iv) Exhaustive submeasure. It follows from the definition I.4.1, that every Ma-

haram submeasure is exhaustive. Also note that every measure is uniformly

exhaustive. △

1.7 Fact. Every supermeasure ν on B is uniformly exhaustive.

Proof. For ε > 0 consider a set U = {x ∈ B : ν(x) ≥ ε}. Then any disjoint set

X ⊆ U has size at most ν(1)/ε since ν(1) ≥ ν(
∨

X) ≥ ∑
x∈X ν(x) ≥ ε|X|.

Let us recall the definition of a cone in a real vector space.

1.8 Definition. Let V be a vector space over R, a subset K ⊂ V is called a cone if

(i) (∀x ∈ K) (∀0 ≤ r ∈ R) rx ∈ K,

(ii) (∀x, y ∈ K) x + y ∈ K.
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Monotone functions on Boolean algebra B are bounded (f(0) ≤ f(x) ≤ f(1)),

specially note that any submeasure (supermeasure) is a bounded function. In the

following we deal only with bounded functions on B and we shall denote them

Fn(B), usually this vector space is denoted by l∞(B).

1.9 Definition. Let B be a Boolean algebra, we denote Fn(B) the set of all

bounded functions on B and Fn+(B) the subset of all nonnegative bounded func-

tions. Similarly we denote Sub(B) the set of all submeasures on B and Upm(B)

the set of all supermeasures on B.

1.10 Fact. Let B be a Boolean algebra, then

(i) Fn(B) is a real vector space and Fn+(B) ⊂ Fn(B) forms a cone,

(ii) the set of all exhaustive submeasures on B is a cone in real vector space Fn(B),

(iii) Upm(B) is a cone in Fn(B).

As we already seen (III.1.7) every supermeasure is an uniformly exhaustive

function. On the other hand later we show (IV.2.9) that on every infinite atomless

Boolean algebra B there is an exhaustive function which is not uniformly exhaus-

tive. The question whether any exhaustive submeasure is uniformly exhaustive

is one of the equivalent of so called Maharam’s problem, which was solved quite

recently by M. Talagrand [Tal06].

1.11 Maharam’s problem. Is every exhaustive submeasure uniformly exhaustive?

The problem was solved in negative; i.e M. Talagrand found a Boolean algebra

which carries strictly positive exhaustive submeasure but no uniformly strictly

positive exhaustive submeasure.

2. CLASSES OF BOOLEAN ALGEBRAS

Now we give a classification of Boolean algebras based on the existence of a

strictly positive functions of a special kind. We start with the definition of used

symbols:

2.1 Definition. Classes of Boolean algebras.

(i) ccc stands for the class of ccc Boolean algebras, similarly σ-centered stands

for the class of σ-centered algebras and σ-linked stands for the class of σ-

linked algebras,

(ii) K stands for the class of algebras with the Knaster property (for a definition

see I.1.5),

(iii) XBA stands for the class of algebras carrying a strictly positive exhaustive

functional,

(iv) UpmBA stands for the class of algebras carrying a strictly positive super-

measure,
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(v) EBA stands for the class of algebras carrying a strictly positive exhaustive

submeasure,

(vi) MBA stands for the class of measure algebras (i.e. algebras carrying a

strictly positive finitely additive measure),

Those classes of Boolean algebras are closed under taking subalgebras, count-

able products and, mainly, under taking regular completions.

Later (III.2.14, III.2.15) we will focus on closedness of these classes under

the free product. It is well known that the class ccc for example is not generally

closed under the free product.

2.2 Proposition. Each of the classes defined above is closed under

(i) subalgebras,

(ii) countable products and

(iii) taking regular completion.

Proof. Let C denote an arbitrary class from the diagram.

(i) C is defined using an existence of a fragmentation or a functional. Both cases

can be restricted to any subalgebra A ⊆ B. Hence C is closed under taking

subalgebras.

(ii) Let 〈Bn : n ∈ ω〉 be a countable sequence of algebras Bn ∈ C. We show that a

product B =
∏

Bn ∈ C. Elements x of the product B are sequences 〈xn : n ∈ ω〉
with xn ∈ Bn. We distinguish three cases: C defined by a functional, C defined

by a fragmentation and C defined by a ccc like property.

Suppose C is defined by a functional. For n ∈ ω take a functional fn on Bn wit-

nessing Bn ∈ C such that fn(1Bn
) ≤ 1/2n+1. For x ∈ B put f(x) =

∑
n∈ω fn(xn).

Then f : B → R is a strictly positive function on B witnessing B ∈ C.

Suppose C is defined using fragmentation (the case of σ-linked and σ-centered

Boolean algebras). For each Bn take a fragmentation {Vm
n : m ∈ ω}. Put Vm

n =

{x ∈ B : x(n) ∈ Vm
n }. Then {Vm

n : n ∈ ω, m ∈ ω} is a desired fragmentation of B.

For the last case, suppose C = K (the case of C = ccc is easy). Let X ⊆ B be

uncountable. There is n ∈ ω and an uncountable Y ⊆ X such that y(n) 6= 0n for

all y ∈ Y. Hence there is a linked uncountable Y′ ⊆ Y ({y(n) : y ∈ Y′} is linked in

Bn).

(iii) We complete the proof by showing that C is closed under taking regular

completion. Let B ∈ C and B be the regular completion of B. The case of the ccc,

K, σ-centered and σ-linked classes is clear. For C = XBA use III.1.4. The same

argument works for UpmBA.

Let C = EBA or C = MBA. Let µ be a strictly positive exhaustive submeasure,

resp. measure on B. By Theorem I.4.10 there is a complete Boolean algebra A
containing B as a subalgebra and a function µ on A extending µ. Hence A ∈ C.

Sikorski extension theorem (see I.3.11) gives an injective homomorphism ϕ :

B → A such that ϕ ↾ B is the identity. Since C is closed under subalgebras then

B ∈ C.
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2.3 INCLUSION DIAGRAM

For the illustration of the interplay of various properties, we put them in the

following diagram. The diagram shows inclusions between classes. An arrow →
stands for ⊂. In the rest of this paragraph we prove the indicated inclusions and

in the paragraph 4. we give some examples of Boolean algebras which illustrates

the irreversibility of arrows.

2.4 Remark. (i) Under MAω1
the class of ccc algebras coincides with the class

of Boolean algebras satisfying the Knaster property (I.1.6).

(ii) Later in this chapter we show that the question of whether classes XBA and

UpmBA differ is equivalent to the Horn, Tarski problem; see proposition

I.1.10.

(iii) We conjecture that EBA ⊂ UpmBA (our conjecture is denoted by a dotted

line in the diagram). See more arguments in III.3.1.

2.5 Remark. The negative solution of Maharam problem III.1.11 shows us that

the classes EBA and MBA differs.



III. EXHAUSTIVE FUNCTIONS 46

In our approach to prove the inclusions from the diagram we start with the

most obvious ones.

The σ-centered and σ-linked Boolean algebras are limited in size. This is not

the case for the remaining considered classes since the measure algebra can be

of arbitrary size (e.g. algebra for adding κ ≥ ℵ0 Random reals).

2.6 Proposition. (i) An algebra B is σ−centered if and only if it can be embedded

into power set algebra P(ω).

(ii) If an algebra B is σ−linked then (B,≤, 0, 1) can be embedded into the algebra

(P(ω),⊂, ∅, ω) as an ordering; hence its size is at most 2ω.

Proof. (i) Let B be a σ−centered Boolean algebra. Let {Pn : n ∈ ω} be the

appropriate fragmentation; i.e: B =
⋃

n∈ω Pn. Without loss of generality we may

assume, that Pn’s are ultrafilters. Then the mapping

ϕ : B −→ P(ω)

b 7−→ {n ∈ ω : b ∈ Pn}

is clearly the desired homomorphic embedding. On the other hand if Boolean

algebra B is embedded in P(ω), then it is clearly σ−centered.

(ii) For σ−linked Boolean algebra B one can use the same embedding; assuming

maximal linked sets
⋃

n∈ω Pn = B+. The embedding is no longer a homomor-

phism of algebras, but it is easy to check, that it preserves the ordering.

The classes defined using the existence of a particular function are closely

related with the fragmentation properties of Boolean algebras.

2.7 Theorem. Boolean algebra B carries a strictly positive exhaustive function if

and only if B is a σ-finite cc.

Proof. Let f be a strictly positive exhaustive functional on B. Put Vn = {x ∈ B :

f(x) ≥ 1/n}, for n ∈ ω. Then {Vn : n ∈ ω} is a fragmentation of B and each Vn

satisfies ω-cc, and therefore B satisfies σ-finite cc.

In the opposite direction, let {Vn : n ∈ ω} be a fragmentation of B witnessing

that B is σ-finite cc. We can assume that each Vn is upward closed and each

Vn+1 ⊃ Vn. Put f(a) = sup{1/(n+1) : a ∈ Vn} for a ∈ B+ and set f(0) = 0. Then

f is a strictly positive exhaustive functional on B.

The following observation is a simple reformulation of the previous theorem

and we will meet a similar structure later, when dealing with topology on Boolean

algebras.

2.8 Corollary. Boolean algebra B carries a strictly positive exhaustive function if

and only if there is a sequence 〈Un ⊂ B : n ∈ ω〉 such that

(i) B = U0 ⊃ U1 ⊃ . . . Un . . .

(ii)
⋂

Un = {0},

(iii) for any disjoint sequence d ∈ Bω and for any k ∈ ω d ⊂∗ Uk.
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As the existence of strictly positive exhaustive function is bound with the

existence of σ-finite cc fragmentation the uniformly exhaustive function is bound

with the existence of σ-bounded cc fragmentation.

2.9 Theorem. The following properties are equivalent.

(i) B carries a strictly positive supermeasure;

(ii) B carries a strictly positive uniformly exhaustive function;

(iii) B satisfies the σ-bounded cc.

Proof. The implication (i)→(ii) follows from the fact that every supermeasure is

an uniformly exhaustive function.

(ii)↔(iii). A uniformly exhaustive strictly positive function f on B gives a

fragmentation Vn = {x ∈ B : f(x) ≥ 1/(n+1)}, for n ∈ ω. Each Vn is mn-cc for

some mn ∈ ω.

Conversely, if we have a fragmentation {Vn : n ∈ ω} witnessing that B is

the σ-bounded cc, we can assume that Vn ⊆ Vn+1, Vn is upward closed, and⋃
n∈ω Vn = B+. Then f defined by f(0) = 0 and f(a) = sup {1/(n+1) : a ∈ Vn}

for a 6= 0, is a strictly positive monotone uniformly exhaustive function.

(ii)→(i). We can assume by the previous that there is a strictly positive mono-

tone uniformly exhaustive normalised functional f on B. In the following we shall

describe a construction of a supermeasure on B.

For positive n put Xn = {x ∈ B : 1/n ≤ f(x) < 1/(n−1)} (1/0 = ∞). Denote

by kn the maximal size of disjoint subsets of Xn. kn ∈ ω, since f is uniformly

exhaustive. For x ∈ Xn, put φ(x) = 1/kn·2n and φ(0) = 0. Then a functional µ on

B, where µ(a) = sup {
∑m

i=1 φ(xi) : {x1, ..., xm} disjoint finite set of elements xi ≤
a}, is a strictly positive supermeasure and φ ≤ µ, µ(1) ≤ 1.

2.10 Remark. It is easily seen that if Boolean algebra B carries a strictly positive

measure, then it is σ-bounded cc. It was shown by H. Gaifman [Gai64] that the

converse is false; for stronger example see III.4.12.

2.11 Remark. From the preceding theorems we see that the Horn - Tarski prob-

lem is equivalent to the question whether the classes UpmBA and XBA differ.

To conclude the proof of the arrows in the diagram it remains to show the

following:

2.12 Proposition. (i) Every algebra carrying a strictly positive exhaustive func-

tional has the Knaster property.

(ii) Any σ-centered algebra B carries a strictly positive measure.

Proof. (i) Let X ⊆ B, |X| = ω1. There is an n ∈ ω such that Yn = {x ∈ X : f(x) ≥
1/(n+1)} is uncountable. Apply the partition relation ω1→(ω1, ω)2 (Special case

of Erdős, Dushnik and Miller theorem, see [BŠ00].) to the disjointness relation

restricted to the set Yn, i.e. {x, y} ∈ [Yn]2 is coloured blue if x ⊥ y, otherwise it

is coloured red. There is no blue infinite homogeneous subset. Thus there must
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exist an uncountable part of Yn that is homogeneous in colour red, that is, it must

be linked. This proves that B has the Knaster property.

(ii) Let B+ =
⋃

{Fn : n ∈ ω}, each Fn an ultrafilter on B. Take a sequence of

positive reals 〈an : n ∈ ω〉 such that the series
∑

an converges. Set µ(x) =∑
{an : x ∈ Fn} for each x ∈ B. Then µ is a strictly positive measure on B.

2.13 PRODUCTIVITY

Now we turn our attention back to the free product. It is known (see [Gal80])

that ccc is not productive, i.e. it is not necessarily preserved by a free prod-

uct. However, with an additional assumption that one of the algebras satisfy the

so-called Knaster property (I.1.5), the ccc is preserved by the product of two al-

gebras. To our knowledge, the productiveness of the σ-finite cc and σ-bounded

cc have not been shown. Using the interplay between exhaustive functionals on

a Boolean algebra, we prove that both, the σ-finite cc and the σ-bounded cc are

in fact productive.

2.14 Theorem. Let I be an arbitrary index set and let {Bi : i ∈ I} be an arbitrary

family of Boolean algebras satisfying the σ-finite cc. Then the free product

B =
⊗

i∈I
Bi

satisfies the σ-finite cc as well.

Proof. Let P = {
∏

i∈J(Bi − {0, 1}) : ∅ 6= J ⊆ I, J finite}. We introduce a partial

order on P by defining p ≤ q if and only if dom(p) ⊇ dom(q) and for every

i ∈ dom(q), p(i) ≤ q(i) in the algebra Bi. The set P̂ = {p̂ : p ∈ P}, where

p̂ =
∧

i∈dom(p) p(i) is dense in B and p̂ < q̂ if and only if p < q.

Since each Bi satisfies the σ-finite cc, according to Theorem III.2.7 it carries

a strictly positive exhaustive functional fi. Thus, we define a real functional f on

P by setting f(p) = min
{

min{fi(p(i)) : i ∈ dom(p)}, 1
|dom(p)|

}
for each p ∈ P. f

is thus a strictly positive functional.

f is an exhaustive functional: if not, then there must be ε > 0 and a disjoint

family D = {pα ∈ P : f(p) ≥ ε}, α ∈ A of an infinite size. For each α ∈ A,

|dom(pα)| ≤ 1
ε
, and so there exists a ∆-system D1 ⊆ {dom(pα) : α ∈ A} of

an infinite size with a non-empty kernel J, i.e. for each p, q ∈ D2 = {r ∈ D :

dom(r) ∈ D1} the intersection of domains is the kernel dom(p) ∩ dom(q) = J.

Now each pair of elements p, q from D2 is assigned as a colour the least i ∈ J

so that p(i) and q(i) are disjoint in Bi. Applying the infinite Ramsey theorem

ω → ω2
|J|, there exists an infinite D3 ⊆ D2 and a colour j ∈ J so that D3 is

homogeneous in j, i.e. for any p, q ∈ D3, p(j)∧q(j) = 0. Since fj(p(j)) ≥ f(p) ≥ ε

for every p ∈ D3, we obtained an infinite disjoint family of elements of Bj where

fj exceeds ε, contradicting the fact that fj is exhaustive.

Extending f from P to f̂ from P̂ by defining f̂(p̂) = f(p) we obtain a strictly

positive exhaustive functional that can be then extended to a strictly positive

exhaustive functional on B. By Theorem III.2.7 we conclude that B satisfies the

σ-finite cc.
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2.15 Theorem. Let I be an arbitrary index set and let {Bi : i ∈ I} be an arbitrary

family of Boolean algebras satisfying the σ-bounded cc. Then the free product

B =
⊗

i∈I
Bi

satisfies the σ-bounded cc as well.

Proof. Since each Bi is σ-bounded, it carries a strictly positive uniformly exhaus-

tive functional fi. Moreover each Bi admits a ⊆-increasing fragmentation Bi,k,

k ∈ ω, so that every disjoint family {x ∈ Bi,k : fi(x) ≥ 1
k
} has a size < k+1.

We define P and f, as in the proof of the previous theorem. We define a ⊆-

increasing fragmentation of P: q ∈ Pk if and only if q ∈ P and f(q) ≥ 1/k. Note

that if p ∈ Pk, then |dom(p)| ≤ k and that p(i) ∈ Bi,k for any i ∈ dom(p).

We are trying to find a bounding function g for the fragmentation {Pk : k ∈ ω}.

Define

g(k) = min{c : r(
r(c, k)−1(

j

k

) + 1, k) ≥ k+1}

where r(m, n) = the minimal c so that c → (m)2
n; we are using the finite Ramsey

theorem here, cf. [BŠ00]. We will show that g is a bounding function.

Fix a k and let us begin with assuming that we have a disjoint family D ⊆ Pk

of size d ≥ g(k). Without loss of generality we can assume that |dom(p)| = k

for any p ∈ D (by appropriately defining the values of p outside of dom(p), if

necessary). From the definition of Pk it follows that for any p ∈ D, f(p) ≥ 1
k
.

There exists a family D1 ⊆ D of size d1 ≥ r(d, k) ≥ r(g(k), k) and 1 ≤ j ≤ k

so that for any p, q ∈ D1, |dom(p) ∩ dom(q)| = j.

To see that colour each pair {p, q} ⊆ D by a colour i = |dom(p) ∩ dom(q)|.

Since we are using k colours and since d ≥ g(k), we can obtain a D1 ⊆ D,

homogeneous in colour j of size d1 ≥ r(d, k).

There exists a ∆-system D2 ⊆ D1 of size d2 = d1−1

(j
k)

+1 with a kernel J of size j.

To see that fix a t ∈ D1. Let 〈Ai : 1 ≤ i ≤
(

j

k

)
〉 be an enumeration of all subsets

of dom(t) of size j. Assign each p ∈ D1−{t} a colour i if dom(p) ∩ dom(t) = Ai.

By pigeon-hole principle there is a family E ⊆ D1−{t} of size d2 = d1−1

(j
k)

and a

colour i so that for any p, q ∈ E, dom(p) ∩ dom(q) = Ai. Set D2 = E ∪ {t}. Now

D2 forms a ∆-system of size d2 = d1−1

(j
k)

+1 with the non-empty kernel J = Ai.

There exists a family D3 ⊆ D2 of size d3 ≥ r(d2, k) and i ∈ J so that for any

p, q ∈ D3, p(i) ∩ q(i) = 0 in Bi.

To see that colour each pair p, q ∈ D2 by a colour i the least integer such that

p(i) ∩ q(i) = 0. D3 is a subset of D2 homogeneous in some colour i.

Let us estimate the size of d3:

d3 ≥ r(d2, k) ≥ r(
d1−1(

j

k

) +1, k) ≥ r(
r(d, k)−1(

j

k

) +1, k) ≥

≥ r(
r(g(k)d, k)−1(

j

k

) + 1, k) ≥ k+1.
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Thus, we obtained {p(i) : p ∈ D3}, a disjoint family of elements of Bi of size

≥ k+1 so that fi(p(i)) ≥ f(p) ≥ 1
k
, therefore a disjoint family of elements of Bi,k

of size ≥ k+1, a contradiction. Therefore, for any disjoint family D of elements

of Pk, |D| < g(k). It follows that P is σ-bounded, and hence B is σ-bounded as

well.

3. ADDITIONAL FACTS

The question whether EBA ⊂ UpmBA or equivalently whether every Boolean

algebra carrying exhaustive strictly positive submeasure is σ-bounded cc is still

open. The following lemma gives us a partial answer to this question in very

special case of countably completely generated Boolean algebra and Maharam

submeasure.

3.1 Lemma. Let µ be a strictly positive Maharam submeasure on a complete Boolean

algebra B with a countable set of complete generators. Then B is σ−linked, hence

σ-bounded cc algebra.

Proof. Denote D ⊂ B a countable subalgebra that completely generates B. Since

B is ccc and weakly distributive, the set

S = {
∧

〈dn : n ∈ ω〉 : 〈dn〉 ∈ Dω and dn is decreasing},

is dense in B.

For d ∈ D+ and rational q ∈ Q, 0 < q < 1/2µ(d) is the set V(d, q) = {b ∈ B :

µ(d − b) < q} linked. It remains to show that B+ =
⋃

{V(d, q) : d ∈ D+ and 0 <

q < 1/2µ(d)}. Let b ∈ B+ be arbitrary; there is c ∈ S+ such that c ≤ b and

c =
∧

dn for some 〈dn〉 ∈ Dω. From continuity of µ we can pick n0 ∈ ω such

that µ(dn0
− c) < r < 1/2µ(c) ≤ 1/2µ(dn0

). Clearly b ∈ V(dn0
, r).

σ-boundedness of Boolean algebra is not enough to guarantee the existence of

a strictly positive Maharam submeasure; cf. III.4.12. One of the greatest achieve-

ments concerning this topic is the famous Kalton, Roberts theorem [KR83]. We

state the theorem here without proof; we provide the proof later on (IV.6.11).

3.2 Theorem. (N. J. Kalton, J. W. Roberts [KR83]) Let B be a Boolean algebra

and ν be a strictly positive, uniformly exhaustive submeasure on B. Then B carries

a strictly positive measure µ ≤ ν.

A very natural question is whether any Boolean algebra that carries simulta-

neously a strictly positive exhaustive submeasure and a supermeasure has to be

measurable. The solution of Maharam problem answer the question generally

in the negative. Algebra constructed by M. Talagrand [Tal06] does not carry a

measure, but has a countable set of complete generators, hence it is σ-linked.

In a special case when a supermeasure dominates a submeasure the answer is

affirmative.
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3.3 Proposition. Let µ ≤ ν be a submeasure and a supermeasure on a Boolean

algebra B, respectively. Then there is m : B → R a measure on B such that µ ≤
m ≤ ν.

Proof. The proof is based on compactness argument. Denote

S =
∏

a∈B

[µ(a), ν(a)]

topological product of closed non-empty intervals. S is non-empty compact

space. Consider finite subalgebra C ⊂ B.

Claim: A set

MC = {f ∈ S : f ↾ C is a measure on C}

is a non-empty closed subset of S.

C is finite, denote {ai : i ≤ n} the set of its atoms and choose f(ai) ∈
[µ(ai), ν(ai)] at will. Now one can extend f to a measure on C with µ ≤ f ≤ ν

on C because

µ(
∨

i∈I

ai) ≤
∑

i∈I

µ(ai) ≤
∑

i∈I

f(ai) = f(
∨

i∈I

ai) ≤
∑

i∈I

ν(ai) ≤ ν(
∨

i∈I

ai).

Measure f on C can be now extended to a function f ∈ S arbitrary, hence MC is

non-empty.

Assume f ∈ S \ MC then there is an open neighbourhood in S disjoint with

MC, so MC is closed which proves the Claim.

A family of all finite subalgebras is upward directed. Therefore

{MC : C ⊂ B, C is finite subalgebra of B }

is a centered family of non-empty closed sets in a compact space and therefore

have a non-empty intersection. Any function λ ∈ ⋂
MC is a desired measure.

It follows from the definition I.4.1 that every Maharam submeasure is exhaus-

tive. On the other hand the existence of a strictly positive exhaustive submea-

sure implies the existence of a Maharam submeasure whenever the underlying

Boolean algebra is weakly distributive, more precisely

3.4 Theorem. Let B be a complete, ccc, weakly distributive Boolean algebra and

let f : B → R be a strictly positive monotone function. Then there is strictly positive

monotone lower semicontinuous function g ≤ f.

Moreover

(i) if f is an exhaustive submeasure, then g is Maharam submeasure,

(ii) if f is finitely additive measure, then g is σ-additive (i.e. continuous) measure.
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Proof. We define function g : B → R as g(a) = inf {limn f(a ∧ cn) : cn ր 1}.

Thus g is monotone and we show that g is a strictly positive function. Assume on

contrary, that there is a ∈ B+ such that g(a) = 0 i.e. for any m ∈ ω there is an

increasing 〈cm
n : n ∈ ω〉 such that limn(a∧cm

n ) ≤ 1/m. We use weak distributivity

of B and strict positivity of f to find b ∈ B such that f(b) > 0 and for any m there

is some nm ∈ ω so that a ∧ cm
n ≥ b for n > nm. Hence lim f(a ∧ cm

n ) ≥ f(b) > 0;

which is a contradiction.

To show that g is lower semicontinuous (I.2.23) it is enough to prove that

lim g(an) = g(a) for arbitrary increasing sequence 〈an : n ∈ ω〉 ր a. Suppose

for contradiction that g(an) < g(a) − ε. For each an there is some cn
m ր 1 such

that

lim
m

f(an ∧ cn
m) < g(a) − ε. (III.1)

Now we use the ‘diagonal property’; the equivalent (V.8.4) of weak distribu-

tivity for ccc Boolean algebras and find the diagonal 〈mn : n ∈ ω〉 such that

limn cn
mn

= 1. The sequence

c ′
k =

∧

n≥k

cn
mn

is increasing with limk c ′
k = 1. We modify the sequence as follows

ck =
(

ak ∧ c ′
k

)
∨ (−a).

Claim: ck ր 1.

Clearly ck is increasing. Let b ∈ B+ be arbitrary. If b ∧ (−a) 6= 0 we are done,

if b ≤ a then since ak ր a there is some n ∈ ω such that an ∧ b 6= 0. The

sequence c ′
k ր 1 hence there is some m ∈ ω such that an ∧ b ∧ c ′

m 6= 0.

Now take k = max {m, n} and

b ∧ ck = b ∧ (ak ∧ c ′
k) ∨ (−a) 6= 0,

which completes the claim.

By the definition of function g we have the following

g(a) ≤ lim
k

f(a ∧ ck), but

f(a ∧ ck) = f(ak ∧ ck) ≤ f(ck
mk

∧ ak)
eq.(III.1)

≤ g(a) − ε.

Hence g(a) ≤ g(a) − ε which is a contradiction.

(i) Now we show that if f is a submeasure then g is a submeasure. Suppose

that g is not monotone i.e. there are a ≤ b and some positive ε > 0 such that

g(a) > g(b) + ε. Then one can find an increasing sequence cn ր 1 such that

g(b) ≤ limn f(b∧cn) ≤ g(b)+ε. Clearly, since f is monotone f(a∧cn) ≤ f(b∧cn)

hence limn f(a ∧ cn) ≤ g(b) + ε < g(a), a contradiction. Once we know g is

monotone, to prove subadditivity it is sufficient to consider disjoint a, b ∈ B. It

is also clear that g(a) = inf{limn f(a ∧ cn) : cn ր a}. Now choose arbitrary ε > 0

and find increasing an ր a and bn ր b such that limn f(a∧an) ≤ g(a)+ε/2 and



III. EXHAUSTIVE FUNCTIONS 53

limn f(b∧bn) ≤ g(b)+ε/2. We get that f(a∧an)+f(b∧bn) ≥ f((a∨b)∧(an∨bn))

so g(a) + g(b) ≥ g(a ∨ b) and hence g is subadditive.

We already showed that g is strictly positive, hence a nontrivial submeasure.

What remains, is to show that g is continuous. Let an ց 0 be a decreasing

sequence, our aim is to show that limn g(an) = 0. Suppose on contrary that

g(an) > δ > 0 for each n ∈ ω. Fix n0, the sequence 〈(an0
− am)〉 is increasing

with limit an0
. Since g is lower semicontinuous lim g(an0

− am) = g(an0
) > δ

and there is n1 such that

g((an0
− an1

) = d0) >
δ

2
.

We proceed by induction and construct an infinite disjoint sequence dn such

that f(dn) ≥ g(dn) > δ/2 which contradicts the fact that f is an exhaustive

submeasure and we are done.

(ii) To show that g is a measure when f is a measure is similar to the argu-

mentation for submeasures. Since g is continuous if f is submeasure, it is also

continuous when f is measure. Which in fact means that g is σ-additive mea-

sure.

Recently (June 2004), the following theorem was shown by S. Todorcevic

[Tod04]. Note that every Maharam submeasure is exhaustive, hence one implica-

tion is obvious. We give the different proof of this combinatorial characterisation

of Maharam algebras in V.9.14.

3.5 Theorem. Let B be a complete, weakly distributive Boolean algebra, then B is

σ-finite cc if and only if B carries a strictly positive Maharam submeasure.

4. EXAMPLES

In this part we show two examples to illustrate that the remaining arrows in

the inclusion diagram cannot be reversed. Namely, we show that there is a ccc

Boolean algebra which is not σ-finite cc and moreover under the assumption

b = ℵ1 it does not have even the Knaster property.

To cope with lower part of diagram we introduce the Localisation forcing.

The completion of this partial order stands as an example of a σ-linked Boolean

algebra not carrying a strictly positive exhaustive submeasure. This illustrates

the irreversibility of arrows in the lower part of the inclusion diagram.

4.1 TODORCEVIC ’S PARTIAL ORDER - (PART 2)

In I.1.14 we defined a Todorcevic’s partial order T(X) of countable, compact

subsets of X, where X is a Polish space (i.e. separable, completely metrizable

space) without isolated points. We show that the ccc Boolean algebra RO(T(X))

determined by Todorcevic’s partial order carries no strictly positive exhaustive

function; i.e: having no σ-finite cc fragmentation. It was already shown by

Todorcevic [Tod84] that T(R) is not σ-linked.

On the other hand it is easy to check that the partial order T(Q) is σ-centered.
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4.2 Theorem. Let X be a Polish space without isolated points. Then there is no

strictly positive exhaustive functional on T(X), thus there exists a ccc Boolean alge-

bra having no σ-finite cc fragmentation.

Proof. Consider the separative ordering T(X) = (P,≤). We know that it satisfies

ccc from I.1.17. Our aim is to show that it is not σ-finite cc, thus the algebra

RO(T(X)) does not carry a strictly positive exhaustive functional by III.2.7.

Assume the opposite, let {Pn : n ∈ ω} be a σ-finite cc fragmentation of T(X).

Heading toward a contradiction, we look for an A ∈ P, in fact, it will be a

convergent sequence, such that A /∈ Pn for any n ∈ ω. We will construct a

sequence of open balls Bn with diam(Bn) ≤ 1/n and finite sets An in X such that

Bn+1 ⊂ Bn, An ⊂ Bn \ Bn+1 for all n ∈ ω and a Cauchy sequence 〈cn : n ∈ ω〉.
Choose B1 arbitrarily. Induction step: Assume that an interval Bn is known.

Denote by Dn a maximal pairwise incompatible family of elements A ∈ Pn with

the property that the derived set of A meets the ball Bn, i.e., A ′ ∩ Bn 6= ∅. The

family Dn is finite, since it is a subset of Pn, so the set An = Bn∩⋃
{A ′ : A ∈ Dn}

is also finite. Choose Bn+1 such that diam(Bn+1) ≤ 1/(n + 1), cl(Bn+1) ⊂ Bn and

An ∩ Bn+1 = ∅ and some cn ∈ Bn \ (Bn+1 ∪ An).

Put c = lim cn and A =
⋃

n∈ω An ∪ {cn : n ∈ ω} ∪ {c}. Since
⋃

n∈ω Pn = P and

A ∈ P, there must be some n ∈ ω with A ∈ Pn. Since c ∈ Bn and c ∈ A ′, the set

A is incompatible with all elements from Dn, which contradicts the maximality

of Dn.

We know that under MAω1
every ccc forcing has the Knaster property. It was

also shown by Todorcevic [Tod84] that T does not have the Knaster property

under the assumption that b = ℵ1.

4.3 Theorem. (S. Todorcevic [Tod84]) [b = ℵ1] T(R) does not have the Knaster

property.

Proof. We start with a system of functions A = {aα ∈ ωω : α ∈ ω1} witnessing

that b = ℵ1. Suppose that each aα is increasing and let A be ordered by ≤∗ i.e:

if α < β then aα ≤∗ aβ.

Let

{eα : α −→ ω : α ∈ ω1},

be such that each eα is one-to-one function and for α < β we get eα =∗ eβ ↾ α;

c.f: construction of Aronszajn tree [BŠ00].

In this setting we can interpret aα’s as irrational numbers and our aim is to

find and fix an appropriate convergent sequence to ℵ1-many aα’s.

Define for b ∈ A the set

H(b) = {a ≤∗ b : eb(a) < b(△ (a, b))},

where △ (a, b) is the least natural number in which the functions a and b are

distinct.

Clearly, whenever the set H(b) is infinite then it is a convergent sequence

with the limit point b. If H(b) is infinite then the set {eb(a) : a ∈ H(b)} is also
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infinite since eb : b −→ ω is one-to-one function. Hence for arbitrary t ∈ ω

there is a ∈ H(b) such that eb(a) > b(t), that is by the definition of H(b), that

△ (a, b) > t; i.e: a approximates b up to length t. It is obvious that the set H(b)

has no other cluster point. In the following sequence of facts we show that there

is ℵ1 many b’s in A with infinite H(b).

Let F ⊂ A be an arbitrary cofinal subset. Since F ⊂ ωω, there is D ⊂ F

countable and dense in F. Having D countable and F cofinal, there is an upper

bound c ∈ F of the set D, i.e: d ≤∗ c for every d ∈ D.

4.4 Fact. There is m ∈ ω and s ∈ mω and cofinal F0 ⊂ F ∩ [s] such that for every

f ∈ F0 c(n) < f(n) for any n > m.

Proof. For any g ∈ F such that g ≥∗ c there is mg ∈ ω such that g(n) > c(n)

for any n > mg. There are only countably many distinct short functions g ↾ mg.

Hence for some g ∈ F the set [g ↾ mg]∩ F is cofinal. Put s = g ↾ mg, m = mg and

F0 = [g ↾ mg] ∩ F.

What we get is the fact that for any f ∈ F0 the function ef ↾ D =∗ ec ↾ D

(recall that D ≤∗ c). Since there are only countably many of finite modifications

of ec ↾ D, there is a cofinal F1 ⊂ F0 such that for any f, g ∈ F1 ef ↾ D = eg ↾ D.

That is the value ef(d) does not depend on the choice of f ∈ F1, but depends only

on d ∈ D.

4.5 Fact. There is a finite function t extending s and a cofinal F2 ⊂ F1 ∩ [t] such

that the set {f(|t|) : f ∈ F2} is infinite.

Proof. Suppose otherwise that for any t extending s is the set {f(|t|) : f ∈ F1}

finite. Then for an arbitrary n > |s|, the set {f(n) : f ∈ F1} is only finite; which is

in contradiction to the fact that F1 is cofinal.

4.6 Fact. For any natural k there is a function f ∈ F2 such that |H(f)| > k.

Proof. The set D is dense in F2, we can find k many distinct di ∈ D (i < k)

such that each di extends t. Recall that values ef(di) does not depend on the

particular choice of f ∈ F2. Since the set {f(|t|) : f ∈ F2} is infinite, there is some

f ∈ F2 such that

f(|t|) > max
i<k

ef(di).

Clearly, di ∈ H(f):

(a) di ≤∗ ci ≤∗ f for any i < k.

(b) △ (f, di) ≥ |t| since each di extends t, hence ef(di) < f(|t|) ≤ f(△ (f, di));

recall that f is an increasing function.

We just proved that in any cofinal F ⊂ A we are able to find a function f ∈ F

such that H(f) is of an arbitrary size. Suppose that there are no functions with

infinite H(f) then for some n ∈ ω the set {f ∈ F2 : |H(f)| ≤ n} has to be cofinal, a

contradiction. Moreover, since F \ {f} is cofinal we get uncountably many f’s with

infinite H(f) and from the construction we know that H(f) ∩ D 6= ∅.
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Proof. END OF PROOF OF THEOREM III.4.3

By the previous discussion there is a cofinal F ⊂ A such that H(f) is infinite

for any f ∈ F. We claim that the set {H(f)∪ {f} ∈ T : f ∈ F} is uncountable without

uncountable linked subset.

Let F be an uncountable subset of F, then F is cofinal. There is some countable

dense D ⊂ F and an upper bound c ∈ F for D. Choose arbitrary a ∈ F such

that a ≥∗ c and distinct from c. By the assumption the set H(a) is infinite and it

follows that it meets the set D. Let b ∈ H(a)∩D then H(a)∪{a} and H(b)∪{b} are

two disjoint sequences. Hence the set {H(f) ∪ {f} ∈ T : f ∈ F} has no uncountable

linked subset.

4.7 LOCALISATION FORCING

Here we describe an example of a Boolean algebra B that carries a strictly positive

supermeasure, in fact B is σ-linked, but carries no strictly positive exhaustive

submeasure. This complete Boolean algebra is, in the context of the forcing

notion, known as the localisation forcing.

4.8 Definition. The localisation forcing (Loc,≤) is the partial order

Loc = {f : ω → [ω]<ω : (∃k ∈ ω)(∀n ∈ ω)|f(n)| ≤ min(n, k)}

ordered by the reverse inclusion, i.e. f ≤ g if and only if f(n) ⊇ g(n) for all

n ∈ ω.

4.9 Fact. (Loc,≤) is separative.

Proof. Assume that f  g, i.e. there are natural numbers n0 > 0 and x ∈
g(n0)−f(n0). Take h such that h(n) = f(n) for n 6= n0 and h(n0) = f(n0) ∪ X

for some X ⊆ ω where x /∈ X and |h(n0)| = n0. Then h ≤ f and is disjoint with

g.

4.10 Lemma. (Loc,≤) is σ-linked.

Proof. For k ∈ ω, put Lk = {f ∈ Loc : k is minimal such that (∀n ∈ ω)|f(n)| ≤
min(n, k)}. Let Sk = {h : 2k → [ω]<ω : (∀i < 2k)|h(i)| ≤ min(i, k)}.

For h ∈ Sk, put Lk,h = {f ∈ Lk : f ↾ 2k = h}. We get Lk =
⋃

h∈Sk
Lk,h and Lk,h

is 2-linked for every h ∈ Sk. Hence Loc =
⋃

k∈ω Lk is σ-linked.

4.11 Remark. One can easily modify the above proof to show that (Loc,≤) is

σ-k-linked for any k ≥ 2.

4.12 Theorem. The Boolean algebra B = RO(Loc,≤) carries a strictly positive

supermeasure and no strictly positive exhaustive submeasure.

Clearly, since Loc is σ-linked, it is σ-bounded hence by the previous B carries

a strictly positive supermeasure. The remaining part of the proof will be given in

a few propositions using the auxiliary notion of the localisation property.
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4.13 Definition. We say that a Boolean algebra B satisfies the localisation prop-

erty if there is a matrix {an,k : n, k ∈ ω} ⊆ B such that

(1) (∀n > 0){an,k : k ∈ ω} is (n + 1)-disjoint, i.e.

(∀X ∈ [ω]≥n+1)
∧

k∈X

an,k = 0, and

(2) (∀f : ω → ω) lim inf an,f(n) =
∨

k∈ω

∧
n≥k an,f(n) = 1.

4.14 Proposition. Let B be a Boolean algebra that carries a strictly positive ex-

haustive submeasure. Then B does not satisfy the localisation property. Moreover,

for any matrix {an,k : n, k ∈ ω} satisfying (1) of the above definition, there is an

f : ω → ω such that lim inf an,f(n) = 0.

4.15 Lemma. Let µ be an exhaustive submeasure on B. For a given n > 0 let

d = 〈dk : k ∈ ω〉 ∈ Bω be an (n+1)-disjoint sequence. Then lim
k→∞

µ(dk) = 0.

Proof. Since µ is the exhaustive submeasure on B it is sufficient to show that

d ≤ f1 ∨ ... ∨ fn in Bω for some disjoint sequences f1,...,fn ∈ Bω. We proceed

by the induction: if n = 1 then d is disjoint sequence and we are done. Let us

assume that n > 1. We put f(m) = d(m) −
∨

i<md(i), for all m ∈ ω. Clearly, f

is a disjoint sequence and g = d − f is an n-disjoint sequence: By the definition,

g(m) = d(m) ∧
∨

i<md(i), in particular g(0) = 0. Let x1 < x2 < · · · < xn,

we show that
∧n

j=1 g(xj) = 0. If x1 = 0 we are done, assume that x1 ≥ 1 then∧n

j=1 g(xj) =
∧n

j=1 d(xj) ∧
∨

i<xj
d(i) =

∨
i<x1

d(i) ∧
∧n

j=1 d(xj). The last element

is equal to 0 since by our assumption the sequence d is (n + 1)-disjoint.

Proof. OF PROPOSITION III.4.14

Let µ be a strictly positive exhaustive submeasure on B. Let {an,k : n, k ∈ ω}

be a matrix satisfying (1) of definition III.4.13. We shall define a function f :

ω → ω.

For n > 0, using the lemma, we can find k ∈ ω with µ(an,k) < 1
n

and put

f(n) = k.

Hence, for every n, µ(an,f(n) ) < 1
n

, so lim inf an,f(n) = 0.

4.16 Lemma. The Boolean algebra B = RO(Loc,≤) satisfies the localisation prop-

erty.

Proof. Put a0,k = 1 for every k ∈ ω. For n > 0, k ∈ ω put an,k =
∨

B
{f ∈ Loc :

k ∈ f(n)}. We show that the matrix {an,k : n, k ∈ ω} witnesses the localisation

property of B.

Suppose that (1) fails for {an,k : n, k ∈ ω}, i.e. there is n ∈ ω and mutually

distinct k1, . . . , kn+1 ∈ ω such that an,k1
∧ · · ·∧ an,kn+1

6= 0. It follows that there

are f, f1, . . . , fn+1 ∈ Loc such that ki ∈ fi(n) and f ≤ fi, for i = 1, . . . , n + 1.

Hence {k1, . . . , kn+1} ⊆ f(n). But |f(n)| ≤ n - a contradiction.

For (2), let ϕ : ω → ω be an arbitrary function. We show that lim inf an,ϕ(n) =∨
k

∧
n≥k an,ϕ(n) = 1. Let f ∈ Loc be arbitrary. We find g ∈ Loc and k ∈ ω such

that g ≤ f and g ≤ ∧
n≥k+1 an,ϕ(n) .
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Indeed, there must be k ∈ ω such that f ∈ Lk. Define g : ω → [ω]<ω by

putting g(n) = f(n) for n ≤ k and g(n) = f(n) ∪ {ϕ(n)} for n > k. Clearly,

g ∈ Loc, g ≤ f and g ≤ ∧
n≥k+1 an,ϕ(n).

THIS COMPLETES THE PROOF OF THEOREM III.4.12 ¤

4.17 Remark. Whether or not a Boolean algebra carries a strictly positive ex-

haustive submeasure is not significant with respect to adding a dominating real in

generic extensions. The localisation forcing adds a dominating real. On the other

hand, there are Boolean algebras, e.g. Hechler’s forcing, that are σ-centered and

therefore carry a strictly positive measure, also adding a dominating real.

5. RELATIONS GIVEN BY MONOTONE FUNCTIONS

We conclude this chapter with the introduction of well founded relation. One

can distinguish uniformly exhaustive function by the height of this relation.

5.1 Definition. Let f be a monotone real function on Boolean algebra B such

that f(0) = 0. Let ε > 0, for a, b ∈ B define

b <f,ε a if and only if b ≤ a & f(a − b) ≥ ε.

For any positive ε > 0 there is the largest downward closed subset of B on

which the relation <f,ε is well founded.

5.2 Definition. Denote K0 = {a ∈ B : f(a) < ε} the set of <f,ε minimal elements

and Kα = {a ∈ B : {b < a : f(a − b) ≥ ε} ⊂ ⋃
{Kβ : β < α}}.

There is ᾱ ∈ On such that Kᾱ = Kᾱ+1. Denote Ker(f, ε) = Kᾱ, well founded

kernel of the relation <f,ε and let τf,ε : Kerf,ε → On be the type function. When-

ever <f,ε is well founded on B we define its height as τf,ε(1).

5.3 EXAMPLE. Let B = P(ω) and define function f by the following:

f(x) =





0 if x = 0 = ∅
1
2

otherwise

1 if x = 1 = ω

If ε ≤ 1
2

then K0 = {0}, K1 = {x ∈ B : x is an atom of B}, generally Kn = {x ⊂ ω :

|x| ≤ n}. Clearly the height of the well founded kernel is ω i.e. Kerf,ε =
⋃

{Kn :

n ∈ ω}. Hence there is no infinite set in the well founded kernel.

On the other hand if 1
2

< ε < 1 then K0 = P(ω) \ {ω} and K1 = P(ω). Hence

the relation <f,ε is well founded on B and the height of the relation is 1. △

5.4 Lemma. Let f ∈ Mon0(B). Then

(i) the relation <f,ε is well founded on B for any ε > 0 if and only if f is an

exhaustive function on B,
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(ii) the height of the relation <f,ε is finite for any ε > 0 if and only if f is a

uniformly exhaustive function on B.

Proof. (i) If the function f is not exhaustive, then there is a positive ε > 0 and

a disjoint sequence 〈an : n ∈ ω〉 such that f(an) > ε. Hence the sequence

bn = 1 − ∨{ai : i < n} forms an infinite <f,ε-descending chain and vice versa.

(ii) Let us assume that f is uniformly exhaustive, then for any ε > 0 the max-

imal length of <f,ε-descending chain is equal to the constant given by uniform

exhaustivity. Hence every <f,ε-increasing chains in B is bounded, i.e. the height

of the relation <f,ε is finite.

Now let the height be finite for any ε > 0 and assume that f is not uniformly

exhaustive. Then there is a witness ε̄ > 0 such that there is a disjoint sequence

〈an : n ∈ ω〉 such that for any k ∈ ω |{n ∈ ω : f(an) > ε̄}| ≥ k i.e. τf,ε(1) > k for

any k ∈ ω, hence infinite.

5.5 EXAMPLE. If f is an uniformly exhaustive monotone function then the height

of <f,ε relation is finite. One can ask a natural question if the height for exhaus-

tive function is ω or if it can be larger. The answer is that the height of the

<f,ε relation can be arbitrary for exhaustive function f. This example is due to

E. Thümmel.

We proceed in two steps:

(i) If for some Boolean algebra B and some monotone exhaustive function f the

height τε,f(1) = α then there is Boolean algebra B ′ and exhaustive function f ′

such that τε,f′(1) > α.

Put B ′ = B × {0, 1} and

f ′(b, i) =

{
f(b) if i = 0

max{f(b), ε} if i = 1.

Now τε,f′(1B, 0) = τε,f(1) = α but (1B, 1) >ε (1B, 0). So τε,f′(1) ≥ α + 1, and

we are done. Note that f ′ has the same norm as f.

(ii) If there is {(Bα, fα) : α ∈ A}, fα is exhaustive normalized function on Bα

such that τε,fα
(1) = α then there is Boolean algebra B and exhaustive normalized

function f such that

τε,f(1) ≥ sup
A

α.

Let B be a free product of Bα’s; B = ⊕α∈ABα. We have to define suitable f on

B. We start with the dense subset P = {b+ ∈ B : (∃F ∈ [A]<ω) (∀α ∈ F) (∃bα ∈
Bα \ {0α, 1α}) b =

∧
α∈Fbα} and put

f∗(b) = min
α∈F

(fα(bα),
1

|F|
), and f∗(1α) = 1, for each α ∈ A.

f∗ is monotone function on P. Finally we define f for b ∈ B

f(b) = sup{f(c) : c ∈ P and c ≤ b}.
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Such defined f is exhaustive (easy use of ∆-system lemma), f ↾ Bα = fα and

Bα ⊂ B, it follows that τε,fα
(1) ≤ τε,f(1) for each α ∈ A. Hence

τε,f(1) ≥ sup
A

α.

△

Following easy fact will lead us to the topic we will focus on in the next

chapter.

5.6 Fact. Let f be a monotone exhaustive function on Boolean algebra B. If ξ < ζ

then τξ,f(1) ≥ τζ,f(1) for each u ∈ B.

Now the following definition makes sense: Let f be an exhaustive function on

Boolean algebra B, then for any u ∈ B let

νf(u) =

{
sup{ ε ∈ (0, 1] : τε,f(u) + 1 > ω }

0 if there is no such ε.
(III.2)

Thus defined νf is an exhaustive function on B (see IV.6.8, IV.6.4) and hence ν

itself can be viewed as an operator on monotone exhaustive functions on Boolean

algebra

ν : f 7−→ νf.

From the previous (III.5.4) it follows that νf ≡ 0 if and only if f is uniformly ex-

haustive. In the following chapter we will discus this (Fremlin - Kupka) operator

(see IV.6.1) in more general setting.



IV. LATTICES OF SUBMEASURES AND SUPERMEASURES

In the previous we introduced Sub(B), a set of all submeasures (III.1.9) on a

given Boolean algebra B, as a subset of a vector space. We know that Sub(B)

forms a cone in Fn(B), a real vector space of all bounded functions on B (III.1.10).

1. GENERAL SETTING

Here we focus on its lattice structure. We will mention here the topology on the

set Sub(B), which is naturally given as the topology of pointwise convergence or

equivalently as a subspace of product
∏

a∈B
R. We start with the definition of the

ordering ≤ on Fn(B)

f ≤ g if and only if f(a) ≤ g(a) for all a ∈ B.

The structure Fn(B) with ordering ≤ forms a conditionally complete lattice.

1.1 Theorem. Sub(B), partially ordered by ≤, is a conditionally complete lattice,

i.e. every bounded family of submeasures has the least upper bound in Sub(B).

Proof. For S ⊆ Sub(B) put

ψ(a) = sup{ϕ(a) : ϕ ∈ S}, for every a ∈ B.

Since the family S is bounded, ψ is a real function. Obviously, ψ is a submeasure.

For an arbitrary non-empty family of submeasures S ⊆ Sub(B), we get the

greatest lower bound by putting

ψ = sup{χ ∈ Sub(B) : (∀ϕ ∈ S) χ ≤ ϕ}.

It is easy to see that for two submeasures ϕ, ψ ∈ Sub(B) the infimum ϕ ∧ ψ is

given by the formula (ϕ ∧ ψ)(a) = inf{ϕ(x ∧ a) + ψ(a − x) : x ∈ B}, for each

a ∈ B.

If both ϕ and ψ are measures on B then ϕ ∧ ψ is a measure, too. Hence

(Meas(B),≤) is a lower sublattice of (Sub(B),≤).

Note that generally Sub(B) is not a sublattice of Fn(B).

2. PAVEMENT CONSTRUCTION OF SUBMEASURES

Pavement construction of submeasures is a general method for constructing sub-

measures. Specially any function f ∈ Fn(B) determines some submeasure on

Boolean algebra B, namely

µf = sup{ν : ν ∈ Sub(B) & ν ≤ f}.
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This construction of submeasures can be viewed as an operator. Since every

submeasure is a nonnegative function, we can restrict ourselves to Fn+(B) ⊂
Fn(B), a set of all nonnegative bounded functions on a Boolean algebra B.

D : Fn+(B) −→ Sub(B) (IV.1)

f 7−→ µf.

2.1 Proposition. Let B be a Boolean algebra and let f ∈ Fn+(B). Then for each

a ∈ B
µf(a) = inf {

∑

b∈K

f(b) : K ∈ [B]<ω & a ≤
∨

K}.

Proof. Let us denote the function on the right side of the equation by ν, i.e for

each a ∈ B
ν(a) = inf {

∑

b∈K

f(b) : K ∈ [B]<ω & a ≤
∨

K}.

Our aim is now to show, that ν = µf. Clearly ν is a submeasure and ν ≤ f.

Suppose, that ϕ ≤ µf is a submeasure on B. We claim that ϕ ≤ ν.

Suppose opposite, i.e. that there is some a ∈ B for which ϕ(a) > ν(a). For

arbitrary small ε > 0 there is a finite K ⊂ B cover
∨

K ≥ a for which

∑

k∈K

f(k) < ν(a) + ε.

Since we suppose that a submeasure ϕ ≤ f, we get a contradiction

∑

k∈K

ϕ(k) ≤
∑

k∈K

f(k) < ϕ(a).

Note that in the preceding lemma there were no need for global function on

Boolean algebra B, the only need was to cover the unite element 1 ∈ B. We can

generalise this construction in the following way. This method gives the name to

the construction.

2.2 Definition. A pavement for a Boolean algebra B is a subset D ⊆ B together

with a mapping w : D → [0,∞) such that for some finite D0 ⊆ D, 1 =
∨

D0.

(Usually it is considered that 1 ∈ D.)

Having pavement (D, w) on B one can define µw similarly as previously

µw(a) = inf{
∑

d∈F

w(d) : F ∈ [D]<ω a ≤ ∨F}.

2.3 EXAMPLE. Let B be a subalgebra of a Boolean algebra C and ν be a submea-

sure on B. Then ν is a pavement for algebra C and µν is an extension of ν to a

submeasure on C. Moreover the norm of µν equals to the norm of ν. △
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Let us remark, that not necessarily the submeasure µf is different from iden-

tical zero even if f ∈ Fn+(B) is strictly positive. This leads us to the following

definition.

2.4 Definition. Nonnegative bounded function on Boolean algebra is called sub-

pathological if µf is identical zero. In another words, there is no nontrivial sub-

measure below f.

The subpathological functions on a Boolean algebra B can be simply charac-

terised.

2.5 Lemma. A function f ∈ Fn+(B) is subpathological if and only if for any ε > 0,

there is a finite 〈ai : i ∈ I〉 covering of unity; i.e:
∨

I ai = 1, for which
∑

i∈I

f(ai) < ε.

Proof. This characterisation of subpathological functions is an immediate corol-

lary of the proposition IV.2.1.

Now we are ready to show, that from a topological point of view the set of

subpathological functions is very large.

2.6 Theorem. The set of all subpathological functions on an atomless Boolean alge-

bra B is Gδ dense set in the space (Fn+, τp), where τp is inherited from the product

topology.

Proof. For any ε > 0 and for any finite partition P we put

O(P, ε) = {f ∈ Fn+(B) :
∑

p∈P

f(p) < ε}.

Clearly each O(P, ε) is an open set. Since one can express all subpathological

functions on B as ⋂

k∈ω

⋃

P

O(P,
1

k
),

where P is finite partition of unity, it remains to show that the set

Uk =
⋃

P

O(P,
1

k
)

is dense for each k ∈ ω.

Let f ∈ Fn+(B), fix a0, . . . , an−1 ∈ B Since B is atomless there is a finite

partition of unity P such that for each p ∈ P, p 6= ai, for each i ∈ n. Now define

function

g(a) =





f(a) if a ∈ {a0, . . . , an−1}
1

k |P|+1
if a ∈ P

f(1) otherwise.

Clearly g ∈ Uk and g lies in a chosen neighbourhood of f, given by a0, . . . , an−1.

This, together with Baire category theorem completes the proof.

Thus functions which determine some nontrivial submeasure form Fσ meager

set.
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2.7 VARIATIONS OF POPOV EXAMPLE

In this example we use similar method to construct an exhaustive subpatholog-

ical function and a pathological submeasure on a Cantor algebra, both strictly

positive; the construction was motivated by work of V. A. Popov [Pop76].

(I) EXHAUSTIVE SUBPATHOLOGICAL FUNCTION

For a natural number n ≥ 2 consider Boolean algebra An = P(n) and a nor-

malised submeasure µn on An such that

µn(a) =





0 if a = 0

1 if a = 1
1
2

otherwise.

Let

X =
∏

n≥2

n (IV.2)

be a topological product of discrete spaces. The algebra of clopen subsets of the

space X is the Cantor algebra A i.e. countable atomless Boolean algebra.

Moreover A is isomorphic to the free product ⊗〈An : n ≥ 2〉. We have a

natural embedding An →֒ A.

We look for a function ϕ on A that extends µn for all n ≥ 2, i.e.

ϕ ↾ An = µn.

Put D = {R : R is a relation, with dom(R) ⊂ ω−{0, 1} finite and such that (∀i ∈
dom(R)) R(i) ( i}. Each R ∈ D determines an element of A, namely R̄ = {f ∈ X :

(∀i ∈ dom(R)) f(i) ∈ R(i)}. Together with mapping w,

w(R̄) =
1

|dom(R)| + 1
,

we have a pavement. Note that ∅ ∈ D, ∅̄ = X and w(∅̄) = 1.

Define a function ϕ on A by

ϕ(A) = sup{w(R̄) : A ⊃ R̄, R ∈ D}.

2.8 Claim. The function ϕ is exhaustive, normalised, monotone such that

(∀R ∈ D) ϕ(R̄) = w(R̄), (∀n ≥ 2) ϕ ↾ An = µn

and moreover, it is subpathological and not uniformly exhaustive.

Proof. Clearly ϕ is normalised and monotone. Whenever S, R ∈ D S̄ ⊂ R̄, then

|dom(S)| ≥ |dom(R)|, hence (∀R ∈ D) ϕ(R̄) = w(R̄).

Now let x ( n then ϕ(R̄x) = 1/2, where the relation Rx = {〈n, i〉 : i ∈ x},

Rx ∈ D. Hence (∀n ≥ 2) ϕ ↾ An = µn.
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(i) ϕ is not uniformly exhaustive, because for given n ≥ 2 the set {〈i〉 : i < n},

where 〈i〉 = {f ∈ X : f(n) = i}, is partition of unity into n pieces and each of them

has the ϕ value equal to 1/2.

(ii) ϕ is an exhaustive function. Assume not. Then for some ε > 0 there is a

sequence 〈Ri : i ∈ ω〉, Ri ∈ D, with R̄i ∩ R̄j = ∅, whenever i 6= J, such that

w(R̄i) ≥ ε for any i ∈ ω. The latter condition says that size of dom(Ri) is

bounded, so we can assume, that all domains are of the same size, say k. Now

apply a ∆-system technology to the family 〈dom(Ri) : i ∈ ω〉 and we obtain an

infinite set I ⊂ ω, and a nonempty set a ⊂ ω, a kernel of a ∆-system 〈dom(Ri) :

i ∈ I〉. Since the sets R̄i are pairwise disjoint we obtain infinitely many different

subsets of the finite set
⋃

{{j} × j : j ∈ a}, which is impossible.

(iii) ϕ is subpathological. Take k ≥ 2 and I ⊂ ω, |I| = k. Consider a clopen

partition {X0, X1}

X0 = {f ∈ X :
∑

i∈I

f(i) is odd},

X1 = {f ∈ X :
∑

i∈I

f(i) is even}

Then ϕ(Xj) ≤ 1/(k + 1). For any R ∈ D with |dom(R)| < k, R̄ ∩ Xj 6= ∅ for each

j ∈ {0, 1}. By the lemma IV.2.5 ϕ is subpathological.

2.9 Remark. On every infinite atomless Boolean algebra B there is a normalised

function ϕ̄ ∈ Fn(B), which is exhaustive but not uniformly exhaustive:

One can embed Cantor algebra A →֒ B and extend ϕ to ϕ̄ on B in the follow-

ing way

ϕ̄(b) = sup {ϕ(a) : a ∈ A, a ≤ b}, for each b ∈ B.

(II) PATHOLOGICAL SUBMEASURE

In the previous construction we used pavement D and weight function w to

obtain an exhaustive subpathological function. In the following we will use this

pavement together with the weight function in the pavement construction to

obtain a pathological submeasure.

2.10 Definition. The submeasure given by pavement construction from the pave-

ment D and weight w defined in the previous example is called The Popov sub-

measure.

2.11 Claim. The Popov submeasure µ extends the weight function w, so it is nor-

malised and µ is strictly positive.

Proof. Fix R ∈ D and put d = |dom(R)|, hence w(R̄) = 1
d+1

. Consider a covering

of R̄:

R̄ ⊂
⋃

{R̄i : 1 ≤ i ≤ p}, Ri ∈ D.

In order to prove that the Popov submeasure extends the weight function it is

enough to show that w(R̄) ≤ ∑
w(R̄i).
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Because we are looking for the smallest possible covering of R̄, one can as-

sume that dom(Ri) ⊃ dom(R), |dom(Ri)| ≥ d + 1 and that the ordering satisfies

|dom(Ri)| ≤ |dom(Rj)|, for every 1 ≤ i ≤ j ≤ p.

(i) Assume that for each 1 ≤ i ≤ p

|dom(Ri)| − d ≥ i.

If this holds one can choose distinct numbers {ni : 1 ≤ i ≤ p} such that ni ∈
dom(Ri) − dom(R) and xi ∈ ni such that 〈ni, xi〉 6∈ Ri. Then the finite function

f = {〈ni, xi〉 : 1 ≤ i ≤ p} determines a nonempty clopen set [f] in the space X (cf.

IV.2 on page 64) which is not covered by
⋃

{R̄i : 1 ≤ i ≤ p}; a contradiction.

(ii) Assume that there is a i0, for which dom(Ri0)−d < i0. Then |dom(Ri)| < i0+d

for every 1 ≤ i ≤ i0 and

i0∑

i=1

w(R̄i) =

i0∑

i=1

1

|dom(Ri0)| + 1
≥ i0

|dom(Ri0)| + 1
>

i0

i0 + d
≥ 1

d + 1
.

Which completes the proof.

2.12 Definition. We say that submeasure ϕ on Boolean algebra B is pathological

if ‖ϕ‖> 0 and there is no nontrivial measure below ϕ, i.e.

{ψ ∈ Meas(B) : ψ ≤ ϕ} = {0̄}.

2.13 Lemma. The Popov submeasure µ is pathological but non exhaustive submea-

sure.

Proof. (i) Suppose that ρ ≤ µ is a measure. Notice that for every n ≥ 2 the set

{〈n, i〉 : i ∈ n} is a disjoint partition of X into n pieces. Note that in our setting

〈n, i〉 = {f ∈ X : f(n) = i}, usually denoted by [〈n, i〉]. Since ρ is a measure one

can find a sequence 〈xn ∈ n : n ≥ 2〉 such that

lim
n→∞

ρ(〈n, xn〉) = 0.

Now choose arbitrary ε > 0; we show that ||ρ|| < ε. Fix some k > 2/ε. One can

find a subsequence 〈xni
: i ∈ k〉 ⊂ 〈xn ∈ n : n ≥ 2〉 such that

k∑

i=1

ρ(〈ni, xni
〉) <

ε

2
.

Having this we define a relation R such that dom(R) = {ni : 1 ≤ i ≤ k} and

R(ni) = ni \ {xi}. Clearly ρ(R̄) ≤ µ(R̄) = w(R̄) = 1
k+1

< ε
2
. Hence

||ρ|| = ρ(X) = ρ(R̄∪〈n1, x1〉)∪· · ·∪〈nk, xk〉) ≤ ρ(R̄)+

k∑

i=1

ρ(〈ni, xni
〉) <

ε

2
+

ε

2
= ε.

Which shows that the Popov submeasure is pathological.
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(ii) It remains to show that the Popov submeasure is not exhaustive. We show

that there is an atomless subalgebra B ⊂ A = Clop(X) such that µ(u) ≥ 1/2 for

each u ∈ B.

Fix a sequence 〈Ij : j ∈ ω〉 of finite subsets of ω such that |Ij| ≥ 2 and

max(Ij) < min(Ij+1), for each j ∈ ω.

For any n ∈ ω and for any ϕ ∈ n2 define

Bϕ = {f ∈ X : ∀j < n
∑

i∈Ij

f(i) ≡mod(2) ϕ(j)}.

Clearly B∅ = X. It is sufficient to show that for any n ∈ ω and for any ϕ ∈ n2

µ(Bϕ) ≥ 1

2
,

announced subalgebra B is then generated by {Bϕ : ϕ ∈ <ω2}.

Fix arbitrary ∅ 6= ϕ ∈ <ω2. Let Bϕ be covered by
⋃

{R̄i : 1 ≤ i ≤ p}. As in

previous lemma we will assume that |dom(Ri)| ≤ |dom(Ri+1)| and we distinguish

two cases.

(a) Assume that there is some i0 ≤ p such that |dom(Ri0)| < 2i0. Then

p∑

i=1

1

|dom(Ri)| + 1
≥

i0∑

i=1

1

|dom(Ri)| + 1
≥ i0

2i0
=

1

2
.

Hence µ(Bϕ) ≥ 1
2
.

(b) Assume that 2i ≤ |dom(Ri)| for every 1 ≤ i ≤ p. In this case we show that

R̄i’s do not cover the set Bϕ. Choose Di ∈ [dom(Ri)]
2 pairwise disjoint and take

a function g :
⋃p

i=1 Di → ω such that g(k) ∈ k \ Ri(k) for each 1 ≤ i ≤ p and for

any k ∈ Di. Then any f ∈ X such that for each i there is some k ∈ Di such that

f(k) = g(k), is not covered by R̄i’s. Our aim is now to find such f within the set

Bϕ.

Since the function g is given on Di’s only one can simply extend g to attain

appropriate sum on Ij if the whole Ij is not covered by Di’s. Even if Ij is covered

but there is some Di = {d1
i , d

2
i} ⊂ Ij one can modify one of the value (f(d1

i)) to

attain appropriate sum and keep the other (f(d2
i) = g(d2

i)) to satisfy the condition

for f to be not covered by R̄i’s.

It appears for a set Ij to be in a critical situation if it is covered by Di’s and

|Di ∩ Ij| ≤ 1, for some 1 ≤ i ≤ p. In this case we choose one such i and for

d1
i ∈ Di ∩ Ij modify the value g(d1

i) to attain the desirable sum. Now we have

to keep the value g(d2
i) which is no longer in Ij, say it belongs to Ik. Assuming

that in the worst possible case the set Ik is also in a critical situation we have to

modify some other value in Ik. By our assumption that |Ii| ≥ 2 we have a plenty

of room to do that. One can continue in this fashion to take care of all Ij’s and

obtain a partial function f. Every extension of f belongs to Bϕ and it follows

from the construction that it is not covered by any R̄i; a contradiction with the

fact that the collection of R̄i’s was covering the set Bϕ.

△
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3. MINIMAL SUBMEASURES

3.1 Definition. A submeasure ϕ ∈ Sub(B) is called minimal if there is no sub-

measure ψ ≤ ϕ with ‖ψ‖=‖ϕ‖ and ψ(a) < ϕ(a) for some a ∈ B.

We show that the minimality of ϕ on every factor of B characterises ϕ to be

a measure on B.

3.2 Proposition. Let ϕ ∈ Sub(B). Then ϕ is a measure on B if and only if the

submeasure ϕ ↾ (B ↾ a) is minimal for all a ∈ B+. In particular, every measure is a

minimal submeasure.

3.3 Definition. Two, respectively, three - additive function on a Boolean algebra

B is a function f : B → R satisfying

(i) (∀a ∈ B) f(a) + f(−a) = f(1), respectively

(ii) for any partition a1, a2, a3 of unity f(a1) + f(a2) + f(a3) = f(1).

3.4 Fact. 3−additive functions on B are exactly additive functions, i.e: for any

disjoint elements a, b of B f(a) + f(b) = f(a ∨ b).

The proof of Proposition IV.3.2 follows immediately from the next lemma

from which it is clear, that 2−additivity and minimality of submeasures are syn-

onymous.

3.5 Lemma. Let B be a Boolean algebra

(i) A submeasure ϕ ∈ Sub(B) is minimal if and only if it is a 2−additive.

(ii) A function f : B → R is minimal submeasure if and only if it is 2−additive,

monotone function on Boolean algebra B, for which

f(a1)+f(a2)+f(a3) ≥ f(1), for each a1, a2, a3 ∈ B covering of unity
∨

i∈{1,2,3}

ai = 1.

Proof. Clearly, the 2−additive submeasure is minimal.

(i) Suppose now that ϕ is minimal. Without loss of generality, we can assume

that ϕ is normalised.

To get a contradiction, suppose there is an a ∈ B such that ϕ(a)+ϕ(−a) > 1.

Let ψ be the submeasure given by the formula

ψ(x) =





0 x = 0,

ϕ(a) x ≤ a,

1 − ϕ(a) x ≤ −a and x 6= 0,

1 otherwise.

Then 1 − ϕ(a) = ψ(−a) < ϕ(−a) and ‖ ψ ‖=‖ ϕ ‖= 1. Our aim is now to

show that ‖ϕ∧ψ‖= 1 which contradicts minimality of ϕ. Since the submeasure

ψ has only four possible values it is easy to check that

(ϕ ∧ ψ)(1) = inf {ϕ(x) + ψ(−x) : x ∈ B} = 1.
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(ii) It remains to show that the monotone, 2−additive function f ∈ Fn(B) satis-

fying the condition

f(a1)+f(a2)+f(a3) ≥ f(1), for each a1, a2, a3 ∈ B covering of unity
∨

i∈{1,2,3}

ai = 1

is a submeasure.

Since f is monotone and 2 − additive

f(0) + f(1) = f(1) and so f(0) = 0,

hence f is nonnegative. It remains to show that for each a ⊥ b

f(a) + f(b) ≥ f(a ∨ b).

Assumption on f yields that f(a) + f(b) + f(−(a ∨ b)) ≥ f(1) and since f is

2−additive we get f(a∨b)+ f(−(a∨b)) = f(1). Which completes the proof.

3.6 EXAMPLE. Let I be an ideal on B. Put

ϕ∗
I(a) =





0 a ∈ I
1

2
a 6∈ I & − a 6∈ I

1 −a ∈ I

and ϕ+
I (a) =

{
0 a ∈ I

1 a 6∈ I.

Then both ϕ∗
I and ϕ+

I are normalised submeasures on B. Submeasure ϕ∗
I is

minimal for any ideal I on B, whereas ϕ+
I is minimal if and only if I is a prime

ideal on B (and hence ϕ+
I = ϕ∗

I).

For two ideals I, J ⊆ B, I 6= J, the submeasures ϕ∗
I and ϕ∗

J are not comparable

in the lattice ordering ≤ of Sub(B).

We will show that for I 6= J

ϕ∗
I ∧ ϕ∗

J =
1

2
ϕ+

〈I∪J〉.

Recall that ϕ∗
I ∧ ϕ∗

J(a) = inf{ϕ∗
I(a ∧ x) + ϕ∗

J(a − x) : x ∈ B}. We distinguish

two cases. First, let a ∈ 〈I ∪ J〉. Then there is x ∈ B such that a ∧ x ∈ I and

a − x ∈ J. Hence ϕ∗
I ∧ ϕ∗

J(a) = 0 = ϕ+
〈I∪J〉(a).

Second, let a 6∈ 〈I ∪ J〉. Since I 6= J there is x ∈ I \ J (or, symmetrically,

x ∈ J \ I). Hence 0 < ϕ∗
I ∧ ϕ∗

J(a) ≤ 1
2

= 1
2
ϕ+

〈I∪J〉(a). Note that ϕ∗
I ∧ ϕ∗

J admits

only values 0, 1
2
, 1. We are done.

This example also shows that the infimum in the lattice of submeasures of

2−additive submeasures is not necessarily a 2−additive submeasure. In another

words the infimum of two minimal submeasures is not necessarily minimal. This

is different from the case of 3−additive submeasures, i.e. measures. △

We proved that Sub(B) is a conditionally complete lattice, i.e. any bounded

S ⊆ Sub(B) has the least upper bound and any non-empty T ⊆ Sub(B) has the

greatest lower bound. One can find useful the fact that for a chain T ⊆ Sub(B),

i.e. T is linearly ordered by ≤, we get the infimum ψ by putting, for all a ∈ B,
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ψ(a) = inf {ϕ(a) : ϕ ∈ T }.

We check that ψ is a submeasure. Let a, b ∈ B. Our aim is to prove that

ψ(a ∨ b) ≤ ψ(a) + ψ(b). Since T ⊆ Sub(B) we have for all ϕ ∈ T

ϕ(a ∨ b) ≤ ϕ(a) + ϕ(b).

Thus ψ(a ∨ b) ≤ ϕ(a) + ϕ(b). Fix now an arbitrary ϕ0 ∈ T . For all ϕ ∈ T
such that ϕ ≤ ϕ0 we get

ψ(a ∨ b) ≤ ϕ0(a) + ϕ(b).

Since T is linearly ordered we have for all ϕ ∈ T that ϕ(b) ≤ ϕ0(b) =⇒
ϕ ≤ ϕ0 and therefore

ψ(a ∨ b) ≤ ϕ0(a) + ψ(b).

Since ϕ0 was chosen arbitrary we get that ψ is subadditive.

Using the fact that every decreasing chain of submeasures has a lower bound

in Sub(B), namely its infimum in the lattice Fn(B) is a submeasure again, we can

apply Zorn’s principle of minimality to prove the following fact.

3.7 Fact. For an arbitrary submeasure ϕ ∈ Sub(B) there is ψ ∈ Sub(B) such that

(i) ψ ≤ ϕ,

(ii) ‖ψ‖=‖ϕ‖ and

(iii) ψ is minimal (≡ 2−additive).

3.8 EXAMPLE. Let ϕ ∈ Sub(B) be a normalised submeasure. Then there is a

minimal submeasure ψ ∈ Sub(B) below ϕ with ϕ(1) = ψ(1) and moreover

ψ(a) = ϕ(a) for all a ∈ B with ϕ(a) ≤ 1
2
, especially Null(ϕ) = Null(ψ).

Simply put

ψ(a) =





ϕ(a) ϕ(a) ≤ 1
2
,

1 − ϕ(−a) ϕ(−a) < 1
2
,

1
2

ϕ(a) ≥ 1
2

& ϕ(−a) ≥ 1
2
.

△

3.9 Theorem. An additive function is exhaustive if and only if it is uniformly ex-

haustive.

Proof. Let f : B → R be an additive and exhaustive function. First we claim, that

f is bounded.

Assume not. We construct by the induction a sequence b0 = 1 > b1 > . . . ,

such that
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(i) supa≤bn
|f(a)| = ∞, and

(ii) |f(bn−1 − bn)| > n.

Having bn for n ∈ ω, the sequence 〈an = bn−1 − bn : n ∈ ω〉 contradicts the

exhaustivity of f.

Suppose that we have bi, for i ≤ n. Since supa≤bn
|f(a)| = ∞, there is some

cn < bn such that

|f(cn)| > |f(bn)| + n.

The assumption of additivity of f yields that

supa≤cn
|f(a)| = ∞, or

supa≤(bn−cn) |f(a)| = ∞.

If the latter supremum is infinite, we put bn+1 = bn − cn and we are done. If

the former supremum is infinite we put bn+1 = cn and it remains to show, that

|f(bn − cn)| > n. But it is clear since by additivity of f we have f(bn − cn) =

f(bn) − f(cn) and so |f(bn − cn)| = |f(bn) − f(cn)| ≥ |f(cn)| − |f(bn)| > n.

Now we are ready to show, that f is uniformly exhaustive. We know −K ≤
f(x) ≤ K, for each x ∈ B. Assume that f is not uniformly exhaustive, than there

is some positive ε > 0 such that for any k ∈ ω one can find k many disjoint

elements 〈ai : i ≤ k〉 with |f(ai)| > ε.

Take k > 2K/ε. One of the set

{i < k : f(ai) > ε}, or

{i < k : −f(ai) > ε}

have to be of size at least K/ε. Since f is an additive function, we get a contra-

diction with its boundedness.

The previous theorem was motivated by the following Jordan decomposition

theorem.

3.10 Proposition. An additive function f on B is bounded if and only if f = µ − ν

where µ and ν are measures on B.

Proof. We put

µ(a) = sup{f(b) : b ≤ a}, for each a ∈ B.

Let us note, that µ is nonnegative since the additivity of f yields that f(0) = 0.

We check that µ is a measure. Let a ⊥ b. Our aim is to show that µ(a ∨ b) =

µ(a) + µ(b). By the definition of µ(a ∨ b) for any ε > 0 there is some c ≤ a ∨ b

such that f(c) ≥ 0 and f(c) ≥ µ(a ∨ b) − ε. The additivity of f yields that

µ(a∨b)−ε ≤ f(c) = f(a∧c)+f(b∧c) ≤ µ(a)+µ(b), so µ(a∨b) ≤ µ(a)+µ(b).

The opposite inequality can be shown in the same way.

To complete the proof we put ν = µ−f. The function ν is clearly nonnegative

and as a difference of two additive functions it is also additive, hence ν is a

measure on B and we are done.
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3.11 EXAMPLE. In this example we show additive function that is not exhaus-

tive.

Consider an infinite field S of subsets of a set X. The set W = {h : X →
Q : rng(h) is finite and (∀q ∈ Q) h−1{q} ∈ S} is a vector space over Q. Let

D = {dn : n ∈ ω} be an infinite disjoint family of non empty sets from S. Charac-

teristic functions χn of dn are independent vectors, thus there is a base B of the

vector space W which extends {χn : n ∈ ω}. Any mapping ψ : B → R is uniquely

extendable to a linear function Lψ on W. If lim ψ(χn) is not equal 0, then func-

tional f on S defined by f(b) = Lψ(χb) =
∑

i∈I αiψ(ei), where χb =
∑

i∈I αiei

and ei ∈ B is an additive non exhaustive functional. △

Let mSub(B) denote the class of all minimal submeasures on a Boolean alge-

bra B. We shall deal now with three classes — submeasures, minimal submea-

sures and measures. One can easily see that

Sub(B) ⊃ mSub(B) ⊃ Meas(B).

In this section we show that Sub(B) is the complete closure of mSub(B) in

terms of lattice, i.e. we can get every submeasure as a supremum of a cer-

tain set of minimal submeasures. We show that there are minimal submeasures

‘unreachable’ by measures.

3.12 Proposition. Every submeasure µ on a Boolean algebra B is the supremum of

a set of minimal submeasures. Moreover, for any a ∈ B there is ν ∈ mSub(B) such

that ν ≤ µ and µ(a) = ν(a).

Proof. Let a 6= 0, we can find for a submeasure µ1 = µ ↾ (B ↾ a) a minimal

submeasure ν1 on B ↾ a such that ν1 ≤ µ1 and ν1(a) = µ(a) by fact IV.3.7.

Extend ν1 to a desired submeasure ν by putting

ν(x) = ν1(x ∧ a).

Clearly, ν(a) = µ(a) and ν ≤ µ. We check the 2-additivity of ν on B. Let

x ∈ B. Then ν(1) = ν1(a) = ν1(a ∧ x) + ν1(a − x) = ν(x) + ν(−x).

4. PATHOLOGICAL SUBMEASURES

We showed that, in terms of lattices, minimal submeasures are dense in Sub(B).

This is not the case of measures (even in mSub(B)). Nevertheless, the closure of

measures in Sub(B) defines a subclass of ‘nice’, nonpathological submeasures.

4.1 Definition. A submeasure ϕ ∈ Sub(B) is called an envelope if one can gain

ϕ as a supremum of measures, i.e.

ϕ = sup {µ ∈ Sub(B) : µ ≤ ϕ and µ is a measure }.
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4.2 EXAMPLE. Let ϕ be the largest normalised submeasure on B, i.e. ϕ(0) = 0

and ϕ(a) = 1 for a ∈ B+. Then ϕ = sup {ϕ+
I : I is a maximal ideal on B} is an

envelope submeasure. △

4.3 Proposition. Let ϕ be an envelope on B then for any a ∈ B there is a measure

m ≤ ϕ on B such that ϕ(a) = m(a).

Proof. Let

ϕ = sup{µ ∈ Sub(B) : µ ≤ ϕ and µ is a measure }

be an envelope submeasure. It suffices to show the proposition for a = 1.

First note that the space

X = {f : B → R+ : 0 ≤ f ≤ ϕ}

with pointwise topology is compact. Similarly the subspace M ⊂ X of measures

is compact. As we know that ϕ(1) = sup{µ(1) : µ ∈ M}, the set Mn = {µ ∈ M :

µ(1) ≥ ϕ(1) − 1/n} is nonempty. The set Mn are all closed and form centered

family in a compact space, hence the intersection
⋂

n∈ω Mn is nonempty. Clearly

µ(1) = ϕ(1) for any µ ∈ ⋂
n∈ω Mn, which completes the proof.

4.4 Definition. Submeasure is strongly subadditive if

µ(A ∪ B) ≤ µ(A) + µ(B) − µ(A ∩ B).

Note that for measures this inequality is obvious. Later in this chapter we

show the following theorem.

4.5 Theorem. Each strongly subadditive submeasure is an envelope submeasure.

Proof. Our aim is to use proposition IV.4.3 together with Theorem IV.5.5. It

follows that it is enough to show that for each strongly subadditive submeasure

µ the following inequality holds

∀ā = 〈ai : i ∈ n〉 ∈ Bn
∑

i∈n

µ(ai) ≥ cal(ā).

First we generalize the notion of caliber

4.6 Definition. Let ā = 〈ai : i ∈ n〉 ∈ Bn and b ∈ B, then

cal(ā, b) = min
B↾b

χā.

4.7 EXAMPLE. Consider the Boolean algebra with four atoms; i.e. B = P(At),

where |At| = 4. We define the submeasure ϕ on this algebra so that ϕ will be an

envelop but not strongly subadditive submeasure.

ϕ(a) = 1/2 for a ∈ At,

ϕ(a ∨ b) = 1/2 for a 6= b ∈ At

ϕ(a ∨ b ∨ c) = 3/4 for different a, b, c ∈ At

ϕ(1) = 1.

It is obvious that ϕ is an envelope submeasure and for A = {a, b} and B = {b, c}

the strong submeasure inequality is not fulfilled. △
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4.8 Fact. Every minimal submeasure is either a measure or is not even a supremum

of measures below; i.e: is not an envelope.

Proof. Let ϕ be a minimal submeasure. If ϕ is an envelope then by (IV.4.3) there

is a measure ψ ≤ ϕ such that ϕ(1) = ψ(1). Since ϕ is minimal we get ϕ = ψ.

Hence ϕ is a measure.

4.9 EXAMPLE. There is a minimal submeasure which is not supremum of mea-

sures on B provided |B| ≥ 5. Take a submeasure ϕ∗
I for the ideal I = {0}; from the

example IV.3.6. Take any three pairwise disjoint elements a1, a2, a3 ∈ B+. Then

ϕ∗
I(a1) = ϕ∗

I(a2) = ϕ∗
I(a3) = 1

2
and so ϕ∗

I is not a measure. Since ϕ∗
I is minimal

and satisfies criterion from above it is not an envelope.

Now we deal with pathological submeasures. We will show that on an atom-

less Boolean algebra there are (in topological sense) many pathological submea-

sures. On the other hand, there are no pathological submeasures on a finite

Boolean algebra.

Indeed, let B be finite and ν be a submeasure on B with ν(1) > 0. Take the

weight measure µ given by

µ(y) =
1

|At(B)|
min{ν(x) > 0 : x ∈ At(B)},

for y ∈ At(B) such that ν(y) > 0 and µ(y) = 0 for atoms with ν(y) = 0. Thus

µ is defined on At(B) and can be uniquely extended to the whole algebra and

µ ≤ ν. △

The next lemma shows that there are still finite Boolean algebras with ‘almost

pathological’ submeasures.

4.10 Lemma. For any ε > 0 there is a finite set X 6= ∅ and normalised submeasure

ν on P(X) such that for any measure m ≤ ν on P(X), we have m(X) ≤ ε.

Proof. Fix an integer n > 0 and let X = [2n]n, the set of all n-element subsets

of 2n. For i < 2n let Ai = {x ∈ X : i ∈ x} and put ν(Ai) = 1
n+1

. Extend ν to a

normalised submeasure on a powerset algebra P(X) by a pavement construction,

using the family {Ai : i < 2n} together with ν. In fact ν is extended to the whole

P(X) in the following way. For nonempty family C ⊂ X take a set a ⊂ 2n of

minimal size such that x ∩ a 6= ∅ for each x ∈ C. Note that |a| ≤ n + 1. Then let

ν(C) =
|a|

n+1
, especially note that ν(X) = 1.

Let m ≤ ν be a measure on P(X). We show that m(X) < 2
n+1

.

∑

i<2n

m(Ai) =
∑

x∈X

n · m({x}) = n
∑

x∈X

m({x}) = n · m(X).

Since m ≤ ν we get ∑

i<2n

m(Ai) ≤
2n

n + 1

and hence m(X) ≤ 2
n+1

.
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We are about to show that every atomless Boolean algebra carries many

pathological submeasures. Namely, the set of all pathological submeasures on

an atomless algebra B is a residual subset of the compact space Sub1(B) of all

normalised submeasures on B; compare with IV.2.6

4.11 Theorem. (J. P. R. Christensen [Chr76]) Let B be an atomless Boolean alge-

bra. Then the set of all pathological submeasures on B is dense Gδ in Sub1(B).

Proof. Let k be a positive integer. Put

Fk = {ν ∈ Sub1(B) : (∃µ ∈ Meas(B)) µ ≤ ν and µ(1) ≥ 1

k
}.

Clearly,
⋃

Fk is the set of all normalised submeasures on B which are not

pathological. We show that Fk is a closed nowhere dense set in Sub1(B) for every

k > 0.

We start with checking the closedness of Fk. Let (I,≤) be an upward directed

index set and 〈νi : i ∈ I〉 be a net in Fk converging to a submeasure ν. Our aim is

to show that ν ∈ Fk.

For each i ∈ I we can take a measure µi ≤ νi with µ(1) ≥ 1
k

witnessing νi to

be in Fk. Since Mk = {µ ∈ Meas(B) : 1
k
≤ µ(1) ≤ 1} is a compact set there is a

cluster point µ of 〈µi : i ∈ I〉 such that for each neighbourhood U of measure µ

and for each i ∈ I there is j ≥ i such that µj ∈ U

We show that µ ≤ ν. Suppose otherwise that there is a ∈ B such that µ(a) >

ν(a). Choose ε > 0 such that µ(a) − ε > ν(a) + ε. Since 〈νi : i ∈ I〉 is convergent

net, there is a j ∈ I such that |νi(a) − ν(a)| < ε for each i ≥ j. µ is a cluster

point, hence it follows that there is i ≥ j such that |µi(a) − µ(a)| < ε, hence

νi(a) < µi(a) − ε, a contradiction.

Hence µ ≤ ν and µ witnesses ν to be in Fk. Fk is then closed and its comple-

ment Uk = {ν ∈ Sub1(B) : (∀µ ∈ Meas(B)) µ ≤ ν =⇒ µ(1) < 1
k
} is open. We

are done if we show that Uk is dense in Sub1(B) for every k > 0.

Let ν ∈ Sub1(B) and a0, . . . , an−1 ∈ B. Take a finite partition P of 1 refining

{a0, . . . , an−1}. For every p ∈ P pick up a finite subalgebra Ap of B ↾ p and

submeasure νp on Ap with νp(p) = ν(p) such that for every measure ϕ ≤ νp on

Ap

ϕ(p) <
1

k
· 1

|P |
(use lemma IV.4.10).

We now consider D =
⋃

p∈P Ap ∪ {a0} ∪ · · · ∪ {an−1} ∪ {1} as a pavement

together with weight w defined by the following

w(a) =





νp(a) if a ∈ Ap

ν(a) if a ∈ {a0, . . . , an−1}

1 if a = 1.

Since ν and νp, for each p ∈ P are submeasures and moreover νp(p) = ν(p),

it is clear that for any finite cover D0 ∈ [D]<ω of unity
∑

d∈D0

w(d) ≥ ν(1) = 1.



IV. LATTICES OF SUBMEASURES 76

Hence νw is normalised submeasure, for which νw ↾ Ap ≤ νp, for each p ∈ P

and so νw ∈ Uk. It is also easy to see, that νw(ai) = ν(ai), because for each finite

cover D0 ∈ [D]<ω of ai

∑

d∈D0

w(d) ≥ w(ai) = ν(ai).

Which completes the proof.

We have already shown that we can find a minimal submeasure with the same

norm below any submeasure on any algebra B. We now consider a more general

setting. Let S ⊆ B be an arbitrary subset of B and f : S → [0, 1] be a function.

We ask whether there is a minimal normalised submeasure µ ∈ mSub1(B), or

measure, such that µ ↾ S ≤ f. We can also ask a “complementary” question:

whether µ can be found above f.

The question is clearly motivated by pathological submeasures, finding mea-

sures below a function appears for example in [Fre04]. Conditions of that type

also appear in paper of A. Horn and A. Tarski [HT48] as a criteria for a function

to be extendable to a measure. We will give a necessary and sufficient condition

for a function to majorize a minimal submeasure and slightly modify the proof to

get a version for measures. In the sequel, we deal with normalised submeasures

only for the sake of simplification.

4.12 Definition. Let ā = 〈a0, . . . , an−1〉 be a non-empty finite sequence of ele-

ments of a Boolean algebra B (multiple occurrence is allowed). Let P denote

the set of all atoms of the subalgebra generated by {a0, . . . , an−1}. Hence P is a

partition of unity and for all p ∈ P and i < n we have either p ⊥ ai or p ≤ ai.

Note that for the sake of the subsequent definition one can take any partition of

unity with the latter property.

A characteristic function of a family ā is a function χā : P → n defined by

χā(p) = |{i < n : p ≤ ai}|.

We call a caliber of ā a maximum of χā, cal(ā) = max χā.

We call a covering of ā a minimum of χā, cov(ā) = min χā.

4.13 Fact. For any ā = 〈a0, . . . , an−1〉 ∈ Bn, n > 0 we have

(i) cal(ā) = max{|I| : I ⊆ n and
∧

i∈I a 6= 0},

(ii) cov(ā) = n − cal(〈−a0, . . . ,−an−1〉).

5. DUALITY OF 2-ADDITIVE FUNCTIONS

We denote by ¬f the function derived from f by the following formula ¬f(a) =

f(1) − f(−a), we will mainly use it in case of normalised function ¬f(a) = 1 −

f(−a), which looks more natural. First we note, that 2-additive functions are in

this sense self dual.
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5.1 Fact. A function f : B → R on Boolean algebra B is 2-additive if and only if

f = ¬f.

There is a duality in finding normalised 2−additive nonnegative functional

above or below a given function f : B → [0, 1]. In this setting we can formulate

this duality in general.

5.2 Fact. Let f : B → [0, 1] be arbitrary function. For any 2−additive normalised

nonnegative functional ϕ on B the following conditions are equivalent

(i) ϕ ≤ f,

(ii) ϕ ≥ ¬f.

Note that whenever ϕ satisfies one of the equivalent conditions from the pre-

ceding Fact it has to be non-negative.

5.3 Theorem. Let B be a Boolean algebra, S ⊆ B an arbitrary subset of B and

f : S → [0, 1] a function. Then

(i) there is a minimal normalised submeasure ν such that ν ↾ S ≤ f if and only if

for every set {ai ∈ S : i < n} the following holds

∨

i<n

ai = 1 −→
∑

i<n

f(ai) ≥ 1,

(ii) there is a minimal normalised submeasure µ such that f ≤ µ ↾ S if and only

if for every set {ai ∈ S : i < n} the following holds

∧

i<n

ai = 0 −→
∑

i<n

f(ai) ≤ n − 1.

Proof. The condition in (i) is clearly necessary for ν being a normalised submea-

sure. Without loss of generality we can consider S = B since we can define

f(b) = 1 for all b ∈ B\S. We can also redefine if necessary f(1) = 1. Now we

use function f : B → [0, 1] as a pavement and we get submeasure ϕf with the

declared properties except minimality. So if ϕf is not minimal we simply put ν

as a minimal submeasure below ϕf and we are done.

Item (ii) is just the dualization of (i). Let µ be a minimal submeasure below

¬f. This submeasure is as desired since f(a) = 1 − ¬f(−a) ≤ 1 − µ(−a) = µ(a),

the last equality holds because µ is minimal, hence 2−additive.

5.4 Remark. Whenever S is centered, we can extend S to an ultrafilter on B and

find even a measure (2-valued) with required properties.

In the previous we use submeasures for approximations, now we focus on

approximations by measures. In this case we use characterisation over finite

families of elements instead of sets.

5.5 Theorem. (D. H. Fremlin [Fre03]) Let w : D → [0, 1] be a function defined on

a subset D ⊆ B of Boolean algebra B. Then
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(i) there is a normalised measure m on B such that m ↾ D ≤ w if and only if for

every family ā = 〈a0, . . . , an−1〉 ∈ Dn

∑

i<n

w(ai) ≥ cov(ā),

(ii) there is a normalised measure m on B such that m ↾ D ≥ w if and only if for

every family ā = 〈a0, . . . , an−1〉 ∈ Dn

∑

i<n

w(ai) ≤ cal(ā).

Proof. First note, that as in previous the conditions (i) and (ii) are mutually dual.

A normalised measure m as a 2-additive functional satisfies m ↾ D ≤ w if and

only if m ↾ D ≥ ¬w. So if
∑

i<n w(ai) ≥ cov(ā), then

n −
∑

i<n

w(ai) ≤ n − cov(ā)

∑

i<n

1 − w(ai) ≤ cal(−ā)

∑

i<n

¬w(−ai) ≤ cal(−ā).

Since clearly all the inequalities above are equivalent, the proof of duality

between (i) and (ii) is complete.

In this context the standard approach uses the Hahn - Banach theorem. We

state here a version of this theorem which we are going to use in the rest of the

proof.

5.6 Theorem. HAHN - BANACH Let V be a real vector space and let p : V → [0,∞)

be a real functional satisfying following conditions:

(i) ∀u, v ∈ V p(u + v) ≤ p(u) + p(v),

(ii) ∀v ∈ V ∀α ≥ 0 p(αv) = αp(v).

Then for any v0 ∈ V there is a linear functional L : V → R such that L(v0) = p(v0)

and L(v) ≤ p(v) for every v ∈ V .

Proof. CONTINUATION OF PROOF OF THE THEOREM IV.5.5: Since we proved the

duality of (i) and (ii) it suffices to prove (i). One can always assume that B is

a field of subsets of a set X, for example X is the Stone space of B. In order to

use Hahn - Banach theorem we define a real vector space V . The vector space V

consist of all finite values functions f : X → R such that ∀α ∈ rng(f) f−1(α) ∈ B.

Now we define real functional p : V → [0,∞) as

p(h) = inf{
∑

i<n

αiw(ai) : n > 0, αi ≥ 0, 〈ai : i < n〉 ∈ Dn and
∑

i<n

αiχai
≥ h},
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where χa is the characteristic function of a set a ⊆ X. Note that we assumed that

B is a field of subsets of X and that for any d ∈ D p(χd) ≤ w(d) ≤ 1 and since

we can assume that 1 ∈ D we get that for any b ∈ B p(χb) ≤ 1.

Clearly functional p satisfies conditions (i) and (ii) from Hahn - Banach the-

orem. We noted that p(χX) = p(χ1) ≤ 1. Now we show that p(χ1) = 1. Sup-

pose in contrary that p(χ1) < 1, then there are n > 0, 〈ai : i < n〉 ∈ Dn and

〈αi > 0 : i < n〉 such that
∑

αiw(ai) < 1 and
∑

αiχai
≥ χ1. We can increase

a little coefficients αi so that the both inequalities remains the same and each

αi = qi/ri becomes rational number. There are natural numbers si such that∑
i<n siw(ai) < t, where t is the least common multiple of ri’s. Applying to

second inequality we obtain that
∑

i<n siχai
≥ tχ1, therefore the family

ā = 〈
s0 times︷ ︸︸ ︷

a0, . . . , a0,

s1 times︷ ︸︸ ︷
a1, . . . , a1, . . . ,

sn−1 times︷ ︸︸ ︷
an−1, . . . , an−1〉

has the covering cov(ā) ≥ t, but this is in contrary with our assumption since

we know that
∑

i<n siw(ai) < t.

Let L be a linear functional given by Hahn - Banach theorem for chosen

v0 = χ1 i.e. p(χ1) = L(χ1) = 1. Since L is a linear functional it determines a

normalised measure m on B, m(b) = L(χb). It remains to show that m is non-

negative for any b ∈ B. Suppose in contrary that for some b ∈ B m(b) < 0,

then m(−b) = 1 − m(b) is greater then 1, but this is impossible since L(−b) ≤
p(−b) ≤ 1.

For the proof of the opposite direction let ā = 〈ai : i < n〉 ∈ Dn. As in

the previous we will think about ai’s as about subsets of X. We have a mea-

sure m on B such that m ↾ D ≤ w. So
∑

i<n w(ai) ≥ ∑
i<n m(ai). Evaluation

of last sum is the same as an integral over X of a function f =
∑

i<n χai
m(ai)

with respect to the measure m. Since f is piecewise constant function the in-

tegral is equal to
∑

i<k f(pi)m(pi), where 〈pi : i < k〉 is disjoint refinement

of 〈ai : i < n〉. From the definition of covering we get that cov(ā) ≤ f(pi)

for any i < k and without loss of generality we can suppose that ā covers

X since otherwise cov(ā) = 0, hence
∑

i<k m(pi) = m(X) = 1, and we are

done since we’ve proved that
∑

i<n w(ai) ≥ ∑
i<n m(ai) =

∑
i<k f(pi)m(pi) ≥

cov(ā)
∑

i<k m(pi) = cov(ā).

Now we mention some application of Theorem IV.5.5. Consider a subset

D ⊂ B of algebra B. Fix a real number 0 < α ≤ 1. The following assertion is a

core of Kelley’s theorem.

5.7 Proposition. There is a normalised measure m on B such that m(d) ≥ α for

every d ∈ D if and only if for every positive natural number n ∈ ω and for each

sequence ā ∈ Dn

cal(ā) ≥ n · α.

Proof. It suffices to take a constant function w : D → [0, 1] with value α and

apply Theorem IV.5.5 (ii).
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5.8 Definition. Let ∅ 6= P ⊂ B. The intersection number of P is

α(P) = inf{
cal(ā)

n
: n > 0 & ā ∈ Pn}.

The covering number of P is

β(P) = sup{
cov(ā)

n
: n > 0 & ā ∈ Pn}.

5.9 Corollary. Let D ⊂ B, then the intersection number of D is

α(D) = sup
m∈Meas1(B)

inf {m(d) : d ∈ D}.

It follows that for every normalised measure on Boolean algebra B

α({b ∈ B : m(b) ≥ 1
k
}) ≥ 1

k
, and

β({b ∈ B : m(b) < 1
k
}) ≤ 1

k
.

5.10 Theorem. (J. L. Kelley [Kel59]) A Boolean algebra B carries a strictly positive

measure if and only if there is a fragmentation B+ =
⋃

n∈ω Pn such that each Pn

has a positive intersection number.

Proof. By the proposition IV.5.5 we have for each Pn a measure mn on B such

that ∀p ∈ Pn mn(p) > 0.

It is enough to put

m =
∑

n∈ω

mn

2n+1

to obtain strictly positive measure on B.

Note that it is sufficient to have such fragmentation on some dense subset of

a Boolean algebra B.

5.11 Theorem. [Chr76] A submeasure µ on a Boolean algebra B is pathological if

and only if µ 6= 0 and

β({b ∈ B : µ(b) < ε}) = 1 for every ε > 0, or equivalently

α({b ∈ B : µ(−b) < ε}) = 0.

Proof. Let us denote

P = {a ∈ B : µ(−a) < ε}.

We show that if µ is a pathological submeasure, then the set P cannot have the

positive intersection number.

Let us suppose in contrary that the set P has the positive intersection number

α > 0. Then there is a normalised measure m such that for each a ∈ P the

measure m(a) ≥ α. We proceed by the induction. Suppose we have b0 . . . bn−1

disjoint elements of B such that µ(bi) ≤ εm(bi) and sn =
∨

i<n bi such that
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−sn ∈ P, hence m(−sn) ≥ α. Now put for any x ∈ B νn(x) = m(x − sn). Since

νn(1) = m(−sn) ≥ α, the measure νn is nontrivial and put

δn = sup{ νn(b) : µ(b) ≤ ενn(b) }.

The value δn has to be positive since µ is pathological and therefor there is an

element bn disjoint with sn such that

νn(bn) = m(bn) >
1

2
δn.

Clearly µ(bn) ≤ ενn(bn) = εm(bn). The following easy computation shows

that −sn+1 = −(
∨

n+1 bi ) is in the set P:

µ(sn+1) ≤
∑

n+1

µ(bi) ≤ ε
∑

n+1

m(bi) = εm(sn+1) ≤ ε,

which completes the induction step.

Now let ν(x) = limn m(x − sn), for x ∈ B. The measure ν is nontrivial since

ν(1) = limn m(−sn) ≥ α. By the assumption the submeasure µ is pathological

and hence there is a ∈ B such that µ(a) < εν(a). Let us denote an = a − sn, it

follows immediately that µ(an) ≤ µ(a) < εν(a) ≤ εm(an). The last inequality

yields that an takes part in the definition of δn and hence m(an) ≤ δn; note that

an⊥sn. Now we can estimate m(bn):

m(bn) >
1

2
δn ≥ 1

2
m(an) ≥ 1

2
ν(a) > 0.

This is a contradiction since bn, n ∈ ω are disjoint and all have the measure

m(bn) greater or equal to a positive constant.

On the other hand if the set P has zero intersection number α(P) = 0, then

a submeasure µ is pathological. Suppose on contrary that there is a nontrivial

measure m ≤ µ. Then P ⊂ Q = {a ∈ B : m(−a) < ε}. Since m is a measure

Q = {a ∈ B : m(a) ≥ ε},

hence by corollary IV.5.9 it has positive intersection number. But α(P) ≥ α(Q)

since P ⊆ Q (cf. corollary IV.5.9); a contradiction.

6. FREMLIN - KUPKA OPERATOR

Remind, that the pavement construction of submeasures described in the previ-

ous can be viewed as an operator; cf. equation (IV.1) on page 62

D : Fn+(B) −→ Sub(B)

f 7−→ sup{ν ∈ Sub(B) : ν ≤ f}.

In the following we will deal with another kind of operator which can also

produce some interesting examples of submeasures. One of the main advantage

of this operator is that it preserves submeasures, similarly to D. Let us remark,

that in [FK90], D. Fremlin and J. Kupka dealt with this operator only in the realm

of submeasures.
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6.1 Definition. The Fremlin - Kupka operator φ is an operator on Fn+
0 on a

Boolean algebra B. For a nonnegative bounded function f ∈ Fn+
0 , it is defined as

a limit:

φ : Fn+
0 (B) → Fn+

0 (B)

φ(f)(a) = lim
n→∞

ϕn(f)(a),

where

ϕn(f)(a) = sup {min {f(ai) : i ≤ n} : 〈ai : i ≤ n〉is disjoint, and (∀i) ai ≤ a}.

Note that the sequence 〈ϕn(f)(a) : n ∈ ω〉 is nonincreasing because every se-

quence 〈ai : i ≤ n + 1〉 taking part in the definition of ϕn+1 also participate in

the definition of ϕn as the same sequence with one element omitted. Note that

we do not require the sequence to be a decomposition of a and also we allow 0’s

as elements of a disjoint sequence.

6.2 Proposition. (i) φ(f) ≤ f, for any monotone function f ∈ Fn+
0 ,

(ii) for any f ∈ Fn+
0 the function φ(f) is monotone,

(iii) if f ∈ Fn+
0 is subadditive then φ(f) is a submeasure.

Proof. Case (i) is clear from the definition. Case (ii) is true even for all ϕn,

n ∈ ω; that is for all a ≤ b the inequality ϕn(f)(a) ≤ ϕn(f)(b) holds.

Let us now suppose the opposite in case (iii), that is that there are some

disjoint elements a and b such that φ(a ∨ b) − φ(a) − φ(b) > 0. Then there has

to be some n ∈ ω and some positive δ such that ϕ2n(a∨b)−ϕn(a)−ϕn(b) > δ.

Since ϕ2n(a ∨ b) is defined as a supremum over disjoint families, one can pick

some disjoint 〈ci : i ≤ 2n〉 such that for any i ∈ 2n f(ci) ≥ ϕ2n(a ∨ b) − ϑ,

where ϑ is some positive real significantly smaller than δ. We define sequences

〈ai = ci ∧ a : i ≤ 2n〉 and 〈bi = ci ∧ b : i ≤ 2n〉. Since f is subadditive,

the following inequality holds f(ai) + f(bi) ≥ f(ci) and since ϑ is smaller then

δ we get that f(ai) + f(bi) ≥ f(ci) ≥ ϕ2n(a ∨ b) − ϑ > ϕn(a) + ϕn(b). From

the last inequality it is clear, that at least one of this cases: (a) f(ai) > ϕn(a),

or (b) f(bi) > ϕn(b) must come up for any i ∈ 2n. Since the size of partition

〈ci : i ≤ 2n〉 is 2n + 1, the case (a) or the case (b) must apply at least n + 1

times. Without loss on generality we can suppose that the case (a) happens n+1

times. In this case we obtain n+1 disjoint elements 〈ak : k ∈ n〉 such that ak ≤ a

and f(ak) > ϕn(a) for any k ∈ n, which is a contradiction with the definition of

ϕn(a).

6.3 Corollary. (D. Fremlin, J. Kupka [FK90]) The Fremlin - Kupka operator pre-

serves submeasures. That is

φ : Sub(B) −→ Sub(B).
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6.4 Proposition. (i) If f ∈ Fn+
0 is an exhaustive function, then φ(f) is also ex-

haustive,

(ii) A function f ∈ Fn+
0 is uniformly exhaustive if and only if φ(f) = 0.

Proof. (i) If φ(f) is not exhaustive, then there is disjoint sequence 〈ai : i ∈ ω〉
and some ε > 0 such that φ(f)(ai) > ε for each i ∈ ω. One can easily find

refinement 〈bi : i ∈ ω〉 of 〈ai : i ∈ ω〉 such that f(bi) > ε/2, which contradicts

exhaustivity of f.

(ii) Suppose that f is uniformly exhaustive, then for any a ∈ B the sequence

〈ϕn(f)(a) : n ∈ ω〉 converges to 0. On the other hand if f is not uniformly

exhaustive one can find some ε > 0 such that for arbitrary length n ∈ ω there is

some finite disjoint sequence 〈ai : i ≤ n〉 such that f(ai) > ε. Hence φ(f)(1) ≥
ε > 0.

In the preceding we saw how the Fremlin - Kupka operator treats uniformly

exhaustive functions and now we show that the Fremlin - Kupka operator in fact

annihilates any uniformly exhaustive contributions of a functions on which it is

applied.

6.5 Proposition. Let f, g ∈ Fn+
0 (B) and let g be uniformly exhaustive. Then φ(f) =

φ(max(0̄, f − g)).

Proof. Let a ∈ B, if φ(f)(a) = 0, then by IV.6.4 we know that f ↾ a is uniformly

exhaustive and then max(0̄, f − g) is also uniformly exhaustive so φ(max(0̄, f −

g))(a) = 0.

Suppose that φ(f)(a) > 0 then for some small positive η > 0 there is n0 ∈ ω

such that for all n > n0 φ(f)(a) − η < ϕn(f)(a). For arbitrary small ε > 0 there

is k ∈ ω given by uniform exhaustivity of g such that for any disjoint sequence

〈ai : i ∈ ω〉 there is at most k ai’s such that g(ai) > ε. Since φ(f)(a) − η <

ϕn+k(f)(a) we pick some disjoint family 〈ai : i ∈ n + k〉 for which the inequality

φ(f)(a) − η ≤ min{f(ai) : i ∈ n + k} ≤ ϕn+k(f)(a) holds true. Clearly there are

at least n elements of 〈ai : i ∈ n + k〉 such that |g(ai)| ≤ ε, let them denote by

〈ai : i ∈ n〉. Now we get the following

φ(f)(a)−η−ε ≤ min{f(ai) : i ∈ n}−ε ≤ min{(f−g)(ai) : i ∈ n} ≤ ϕn(f−g)(a).

This yields that φ(f)(a) ≤ φ(f − g)(a).

On the other hand we can again assume, that φ(f−g)(a) > 0 since otherwise

we know that f − g is uniformly exhaustive. It is just a routine check that from

uniform exhaustivity of g and f − g we get uniform exhaustivity of f.

Again we fix some small η > 0, ε > 0 and find appropriate k ∈ ω. In this case

we are even able to proof that 0 < ϕn+k(f − g) ≤ ϕn(f). We pick some disjoint

family 〈ai : i ∈ n + k〉 such that 0 < ϕn+k(f − g)(a) − η ≤ min{(f − g)(ai) :

i ∈ n + k}. Employing the uniform exhaustivity of g we can find at least n ai’s

such that |g(ai)| ≤ ε and denote them 〈ai : i ∈ n〉. Clearly the following chain of

inequalities min{(f − g)(ai) : i ∈ n + k} ≤ min{(f − g)(ai) : i ∈ n} ≤ min{f(ai) :

i ∈ n} + ε ≤ ϕn(f)(a) + ε holds true. This completes our proof.
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6.6 Theorem. Let f ∈ Fn+
0 (B) be an exhaustive function. Then there is no nonzero

uniformly exhaustive submeasure below φ(f).

Proof. Assume that there is some nonzero uniformly exhaustive submeasure ν ≤
φ(f) and put ε = ν(1). We pick some convergent series

∑
αi = ε/2, αi > 0.

Since ν is uniformly exhaustive there is some constant k0 such that any disjoint

sequence 〈ai : i ∈ ω〉 has at most k0 elements such that ν(ai) ≥ α0. Because

φ(f)(1) ≥ ε, there is a disjoint sequence of arbitrary length n > k0 such that

for any of its members f(a) > ε/2. Since we choose n > k0 we can pick some

element a0 such that ν(a0) < α0 and f(a0) > ε/2. Now we know that ε/2 <

ν(1 − a0) ≤ φ(f)(1 − a0) so we can continue in similar fashion and find some a1

disjoint with a0 such that ν(a1) < α1 and f(a1) > ε/2. In this way one can find

infinite disjoint sequence 〈ai : i ∈ ω〉 such that ν(ai) < αi and f(ai) > ε/2 which

contradicts exhaustivity of f.

6.7 Corollary. (D. Fremlin, J. Kupka [FK90]) If µ is exhaustive, non uniformly

exhaustive submeasure, then φ(µ) is nonzero exhaustive pathological submeasure.

6.8 Remark. As we mention at the end of chapter III when f ∈ Fn0 is a monotone

exhaustive function on Boolean algebra B then

νf ≡ φ(f),

where ν is an operator defined by equation III.2 on page 60.

Proof. Fix a ∈ B+. For each n ∈ ω and ε > 0 there is a disjoint 〈ai ≤ a : i ∈ n〉
such that

f(ai) > φ(f)(a) − ε.

For each ε > 0 and each n ∈ ω we have an increasing a ′
i =

∨
j≤i aj, i ∈ ω such

that f(a ′
j −a ′

i) > φ(f)(a)− ε for every i < j < n. Hence τφ(f)(a),f (a) > n for each

n ∈ ω and so

νf(a) ≥ φ(f)(a).

From the definition of νf it follows

( ∀ε < νf(a) ) τf,ε(a) + 1 > ω.

It means that for each n ∈ ω there is an increasing ai ր a, i ∈ n such that

ai ≤f,ε aj, for i < j < n. Let a ′
i = ai+1 − ai and we get

sup
aiրa

{ min {f(ai) : i ∈ n} } ≥ ε.

Hence φ(f)(a) ≥ ε for each ε ≤ νf(a), which completes the proof of the remain-

ing inequality

νf(a) ≤ φ(f)(a).

6.9 Theorem. (D. Fremlin, J. Kupka [FK90]) Let µ be a pathological submeasure,

then φ(µ) ≥ 1/3µ.
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The following combinatorial proposition is the key tool for evaluating inter-

section numbers and also plays important role in the proof of Fremlin - Kupka

and Kalton - Roberts [KR83] theorem. The proof can by found in [Fre89], or

[KR83].

6.10 Proposition. Suppose that q, p, m are natural numbers such that 1 ≤ q ≤ m

and 18mq ≤ p2. Then for a sequence 〈a1, . . . , am〉 with caliber cal(a1, . . . , am) = q

of elements of Boolean algebra B, there is an (m, p)-matrix (bi,j ∈ B : 1 ≤ i ≤
m, 1 ≤ j ≤ p) such that

(i) each column consist of disjoint elements,

(ii) each row contains at most three nonzero elements.

and
∨

{bi,j : 1 ≤ j ≤ p} = ai for every i ≤ m .

In the following we will consider µ to be a normalised submeasure and for

arbitrary ε > 0 we define the set

P = {a ∈ B : µ(−a) < ε}.

Since µ is pathological submeasure, then the set P cannot have the positive

intersection number by the theorem IV.5.11.

Proof. OF FREMLIN - KUPKA THEOREM

Since for any a ∈ B+ φ(µ ↾ a) = φ(µ) ↾ a it suffices to show that φ(µ)(1) ≥
1/3.

From the previous fact we know that the set P cannot have positive intersec-

tion number, hence for any δ > 0 there are finitely many elements a1, . . . , am ∈ P

such that for their caliber q = cal(a1, . . . , am) the inequality q/m < δ holds.

Now we choose a natural number p such that p2 ≥ 18mq ≥ (p − 1)2 and

apply the previous combinatorial proposition. So we have a matrix (bi,j ∈ B :

1 ≤ i ≤ m, 1 ≤ j ≤ p) with disjoint columns and with rows containing at most

three non zero elements. Since µ(ai) > 1 − ε for every i ≤ m, there exists

g(i) ≤ p such that µ(bi,g(i)) > 1/3 − ε. We can pick a 1 ≤ j∗ ≤ p such that the set

E = {i : g(i) = j∗} has the maximal size. Clearly m/p ≤ |E|, and it follows that

1/(
√

18δ) ≤ m/(p − 1) and so the fraction m/p can be arbitrary large. Hence we

are able to find arbitrarily large disjoint family of elements and each of them has

size at least 1/3−ε. Since ε was arbitrary we get φ(µ)(1) ≥ 1/3 which completes

the proof of Fremlin - Kupka theorem.

6.11 Theorem. (N. J. Kalton, J. W. Roberts [KR83]) If the Boolean algebra B
carries a strictly positive uniformly exhaustive submeasure µ, then it carries a strictly

positive measure m.

Proof. Put

Cn = { a ∈ B : µ(a) >
1

n + 1
},

then B+ =
⋃

n Cn. We claim that Cn has a positive intersection number.
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Since µ is uniformly exhaustive there is r ∈ ω such that for each disjoint

a0, a1, . . . , ar there is i ≤ r such that

µ(ai) ≤ 1

4(n + 1)
.

Toward a contradiction suppose that α(Cn) = 0; i.e. ∀δ > 0 there are

a1, a2, . . . , am inCn so that q = cal(a1, a2, . . . , am) and

q

m
< δ.

We use the combinatorial proposition IV.6.10 for p ∈ ω such that p2 ≥
18mq ≥ (p − 1)2 and obtain a matrix (bij ∈ B : 1 ≤ i ≤ m, 1 ≤ j ≤ p). In

each row i ≤ m there is some g(i) ≤ p such that

µ(bi g(i)) >
1

4(n + 1)
.

Now pick j∗ ≤ p so that E = {i : g(i) = j∗} has a maximal size. Clearly m
p
≤ |E|.

Following the easy computation

p2 ≥ 18qm ≥ (p − 1)2

18q

m
≥

(
p − 1

m

)2

√
18δ ≥ p − 1

m
1√
18δ

≤ m

p − 1

yields that m
p−1

can be arbitrary large, provided δ → 0. Hence m
p

and so |E| can be

arbitrary large, contradicting the uniform exhaustivity of µ.

Cn has a positive intersection number αn > 0 and so (IV.5.9) there is a mea-

sure mn on B so that mn ↾ Cn ≥ α. Define

m =
∑ 1

2n
mn;

m is the strictly positive measure on algebra B.

7. HOMOGENISATION OF SUBMEASURES

First of all we have to clarify what we mean by homogeneous submeasure. We

mean that the submeasure is invariant under some kind of shift or generally

under some set of automorphisms. Hence we will generally formulate it as a

G-homogeneity, where G will be some group acting on Boolean algebra.

Let us recall what it means that group G has an action over set X.
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7.1 Definition. Let G be a group and X be a set. By acting of group G over set X

we mean function:

h : G × X −→ X.

with following properties. We will denote hp : X → X the function given by

hp(x) = h(p, x), p ∈ G.

(i) hp◦q(x) = hp(hq(x)), where ◦ is the group operation,

(ii) he ≡ idX, where e ∈ G is unit element.

Moreover let B be a Boolean algebra and let G be a group having action on

B. We say that G is acting on B via automorphisms if

(∀p ∈ G) hp : B −→ B is an automorphism of Boolean algebras.

Now we are ready to specify what we will understand by G-homogeneous

submeasure.

7.2 Definition. Let G be a group having action h on a Boolean algebra B via

homomorphisms and let µ be a submeasure on B. We call µ G-homogeneous

submeasure if

(∀p ∈ G)(∀a ∈ B) µ(a) = µ(hp(a)).

For illustration of our definitions we introduce here some finitary example of

homogenisation of submeasure.

7.3 EXAMPLE. Let the group G be finite |G| = n and G is acting on Boolean

algebra B via automorphisms. Let mu be submeasure on B. Then the arithmetic

mean

µG(a) =
1

n

∑

p∈G

µ(hp(a))

is a G-homogeneous submeasure on B and ‖µ‖ = ‖µG‖. △

7.4 Theorem. Let B be a Boolean algebra with submeasure µ and let G be a com-

pact group having action on B via homomorphisms and moreover for any a ∈ B the

mapping

G −→ [0, ‖µ‖]
p 7−→ µ(hp(a))

is Λ-measurable, where Λ is uniquely determined normalised Haar measure on G.

Then

(i) µG(a) =
∫

G
µ(hp(a))dΛ is a submeasure and ‖µG‖ = ‖µ‖,

(ii) µG is a G-homogeneous submeasure.
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Proof. Due to our assumptions µG is well defined, since whenever we integrate,

we integrate measurable function bounded by a constant µ(1).

(i) Clearly µG(0) = 0, since for any p ∈ G the mapping hp is homomorphism.

Now assume, that a ≤ b we have to prove that µG(a) ≤ µG(b). For any p ∈ G

we get hp(a) ≤ hp(b) and since µ is a submeasure we get µ(hp(a)) ≤ µ(hp(b))

and this inequality remain intact by integration, hence µG is monotone. To prove

subadditivity pick some disjoint elements a, b ∈ B and as in previous we get that

µ(hp(a) ∨ hp(b)) = µ(hp(a ∨ b) ≤ µ(hp(a)) + µ(hp(b)) for any p ∈ G and again

the inequality remain intact. It remains to evaluate µG(1) =
∫

G
µ(hp(1))dΛ =∫

G
µ(1)dΛ = µ(1), since Λ is normalised.

(ii) We prove G-homogeneity by the following chains of equalities, let q ∈ G,

then

µG(hq(a)) =

∫

G

µ(hp(hq(a)))dΛ =

∫

G

µ(hp◦q(a))dΛ =

=

∫

G◦q

µ(hp(a))dΛ =

∫

G

µ(hp(a))dΛ = µG(a).

One can also ask quite natural question, what properties of a submeasure are

preserved by its homogenisation.

7.5 Proposition. Let µ be a submeasure on Boolean algebra B and let G be a

compact group satisfying assumptions of the theorem. Then

(i) if µ is 2-additive submeasure, then µG is also 2-additive,

(ii) if µ is exhaustive submeasure, then µG is also exhaustive,

(iii) if µ is measure, then µG is a measure.

Proof. (i) Let us suppose that µ is 2-additive, then for any p ∈ G and any a ∈ B
µ(hp(a)) + µ(−hp(a)) = µ(1). Employing this fact we get

µG(a) + µG(−a) =

∫

G

(
(µ(hp(a)) + µ(hp(−a))

)
dΛ =

=

∫

G

(
(µ(hp(a)) + µ(−hp(a))

)
dΛ =

∫

G

µ(1) = µG(1)

(ii) In this part we use known Lebesgue’s bounded convergence theorem (the

proof can be found for example in [HR79]):

7.6 Theorem. (Lebesgue’s bounded convergence theorem) Let {fn : n ∈ ω} be a

family of integrable functions such that fn
a.e.−→ f and there is g integrable function

such that ∀n ∈ ω |fn(x)| ≤ |g(x)| a.e. (almost everywhere). Then f is integrable

function and ∫
fn

n→∞−−−→
∫

f.
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Let 〈ai : i ∈ ω〉 be a disjoint sequence. Clearly for any p ∈ G the sequence

〈hp(ai) : i ∈ ω〉 is also disjoint. We define functions fn : G −→ R as fn(p) =

µ(hp(an)). It follows from our assumption that for any n ∈ ω the function fn is

measurable and since it is bounded by a constant integrable function g : G −→ R
g(p) = µ(1) all assumptions of Lebesgue’s bounded convergence theorem are

satisfied. Moreover since µ is exhaustive and the sequence 〈hp(ai) : i ∈ ω〉
is disjoint for any p ∈ G the functions fn converges to f ≡ 0. Hence by the

Lebesgue’s bounded convergence theorem we get

µG(an) =

∫

G

µ(hp(an))dΛ =

∫

G

fn(p)dΛ
n→∞−−−→ 0.

7.7 EXAMPLE. Consider the group G be (P(ω),△) as a compact topological

group, or equivalently (2ω, mod(2)) ≃ ΠnZ2.

As usual A = Clop(2ω) is Cantor algebra. Choose finite, or countable set

{fi : i ∈ I} and evaluation by reals 〈αi > 0 : i ∈ I〉, such that
∑

I αi = 1.

Define measure m on A by

m(A) =
∑

{ αi : fi ∈ A }.

Then homogenisation of m by the group G is exactly standard product measure

on A. △



V. CONTINUOUS SUBMEASURES

1. INTRODUCTION

At the beginning of this chapter we deal with sequential topology on Boolean al-

gebras. This chapter is based on and extends [BFH99], [BJP05]. Of such topolo-

gies we require at least homogeneity and one-sided continuity of the Boolean

operations. It is natural to describe and investigate such a topology on a Boolean

algebra B in terms of zero-convergence structures, i.e. special ideals on Bω, the

usual countable product of B.

Bω with coordinate-wise definitions of the operations is again a Boolean al-

gebra. Some motivation for our interest in such products follows from viewing

the elements of Bω as B-names for reals (i.e. subsets of ω) in generic extensions

of V via forcing with B. It is clear that for f ∈ Bω and n ∈ ω, f(n) is a B-value of

the formula n ∈ f, i.e. f(n) = ‖n ∈ f‖B.

For a given Boolean algebra B and a generic filter G on B over V ,

R(B, G) = { {n ∈ ω : ‖n ∈ f‖B ∈ G} : f ∈ Bω}

represents a set of reals in V [G] coded by B. If the algebra B is complete, then

R(B, G) = P(ω)V[G]. For investigations of topologies on B or the Abelian group

(B,△) (△ denotes symmetric difference), the structure

Z(B) = {f : ω → B : (∀I ∈ [ω]ω)
∧

{f(n) : n ∈ I} = 0}

is quite relevant. In forcing terms Z(B) represents names of reals that do not

contain any infinite subset from the ground model in any generic extension, cf.

II.1.9. Formally

f ∈ Z(B) if and only if

(∀G B-generic over V) (∀X ∈ P(ω) ∩ V) if X ⊂ fG then X is finite.

In the previous we already meet this structure when investigating almost dis-

joint refinement cf. II.2.21. If the extension M is generic, i.e. M = VB for some

complete Boolean algebra B, then

H = {fG : f ∈ Z(B)}.

It is well known that once forcing with B adds a new real, it also adds a new

real that does not include any infinite subset from the ground model. Therefore,

if forcing with B adds a new real, it also adds a new real with a name from Z(B),

provided that B is complete algebra.

The main interest is investigation of zero-convergence structures on B that

are special ideals on Bω. We shall denote by ϕ ∈ ωωր the fact that ϕ is a strictly

increasing sequence of non-negative integers.
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Our motivation comes from famous Control Measure problem posed by D.

Maharam in 1947 [Mah47] and solved by M. Talagrand in January 2006 [Tal06].

M. Talagrand found an algebra that carries a strictly positive continuous submea-

sure does not admit a σ-additive measure.

It is natural to consider the following four classes of Boolean algebras.

MBA: the class of all Boolean algebras carrying strictly positive finitely additive

measure.

McBA: the class of measurable algebras, i.e. complete algebras carrying strictly

positive probability measure.

EBA: the class of algebras carrying strictly positive exhaustive submeasure.

CcBA: the class of all complete algebras carrying strictly positive continuous sub-

measure; i.e. Maharam submeasures.

The diagram below shows the obvious inclusion relations:

The following theorem gives additional information. Note that the relations

between the classes with measure are the same as those with submeasure. The

proof of the theorem is scattered throughout Fremlin’s work [Fre89].

1.1 Theorem. (i) The class MBA consists exactly of all subalgebras of algebras

belonging to the class McBA.

(ii) The class EBA consists exactly of all subalgebras of algebras in CcBA.

(iii) The class McBA consists of all algebras from the class MBA which are complete

and weakly distributive.

(iv) The class CcBA consists of all algebras in EBA that are complete and weakly

distributive.

We start with the description of Zero-convergence structure on Boolean alge-

bra and the topology given by the Zero-convergence structures.
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2. CONVERGENT STRUCTURES ON BOOLEAN ALGEBRAS

Let us first introduce the largest possible zero convergence structure Z(B) on a

Boolean algebra B.

Z(B) = {f : ω → B : (∀I ∈ [ω]ω)
∧

{f(n) : n ∈ I} = 0}.

Clearly, ∅ 6= Z(B) ⊆ Bω.

When clear from the context, we drop the reference to B and use just Z, and

similarly for other structures defined on Boolean algebras that will be introduced

later.

2.1 Definition. Let B be a Boolean algebra and let I be an ideal on Bω. I is

zero-convergence structure on B if

(i) I ⊆ Z,

(ii) I is closed under subsequences, i.e. whenever f ∈ I and ϕ ∈ ωωր, then

f ◦ ϕ ∈ I.

Note that Z itself need not be (an ideal) a zero-convergence structure on B.

2.2 EXAMPLE. Consider a Cantor algebra A, i.e. A ≈ Clop(2ω), the algebra

of clopen subsets of the Cantor space 2ω. Equivalently, A is a free algebra with

countably many independent generators, say 〈xn : n ∈ ω〉. Then f defined by

f(n) = xn belongs to Z(A), and so does −f = 〈−xn : n ∈ ω〉. Since f∨−f = 1Aω ,

Z(A) cannot be an ideal. △

Therefore, the largest possible zero-convergence structure with respect to ⊆
need not be a zero-convergence structure at all, nevertheless the maximality prin-

ciple is applicable, hence each zero-convergence structure on B can be extended

to a maximal one.

Conditions under which Z(B) itself is a zero-convergence structure are dis-

cussed later (paragraph 6.) in this chapter.

2.3 Definition. Let B be a Boolean algebra and let A ⊆ Bω. The Urysohn closure

of A, U(A), is a subset of Bω with the property that every subsequence of a

sequence from U(A) has a subsequence that belongs to A, i.e.

U(A) = {f ∈ Bω : (∀ϕ ∈ ωωր)(∃ψ ∈ ωωր)(f ◦ ϕ ◦ ψ) ∈ A}.

The following are easy observations.

2.4 Fact. (i) for any A ⊆ Bω, U(U(A)) = U(A),

(ii) Z is Urysohn closed,

(iii) if I is a zero-convergence structure, then U(I) is also a zero-convergence struc-

ture,

(iv) if I is a zero-convergence structure, then U(I) is closed under permutations.
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The set of zero-convergences on Bω is partially ordered by set inclusion. In

general they do not form a lattice, however every upward directed family of

zero-convergences has an upper bound.

If I is a zero-convergence structure on B, we consider the elements of I as

sequences converging to 0. We can extend this to a notion of convergence s(I)

of sequences on B by defining xn −→
s(I)

x whenever 〈xn △ x : n ∈ ω〉 ∈ I, where

△ denotes the Boolean operation of symmetric difference. It is easy to verify that

the following hold.

2.5 Fact. (i) every sequence has at most one limit, i.e. if xn −→
s(I)

x and

xn −→
s(I)

y, then x = y,

(ii) if x ∈ B, then the constant sequence 〈x : n ∈ ω〉 has x as its limit,

(iii) if xn −→
s(I)

x and 〈yn : n ∈ ω〉 is a subsequence of 〈xn : n ∈ ω〉, then

yn −→
s(I)

x,

(iv) if xn ≤ yn ≤ zn for every n and xn −→
s(I)

x and zn −→
s(I)

x, then yn −→
s(I)

x,

(v) the convergence respects Boolean operations, i.e. if xn −→
s(I)

x and yn −→
s(I)

y,

then xn∨yn −→
s(I)

x∨y and −xn −→
s(I)

−x.

The notions of zero convergence and convergence are really identical in the

sense that a convergence structure s(I) induced by a zero-convergence structure

I is a convergence structure on B, i.e. a structure satisfying V.2.5 (i) - (v), while

for a convergence structure s on B, s0 = {f ∈ Bω : f(n) −→
s

0} ⊆ Z and is a

zero-convergence structure on B.

3. EXAMPLES OF ZERO-CONVERGENCE

In this section we discuss some basic examples of zero-convergent structures on

an arbitrary Boolean algebra B. We define exhaustive convergence structures

motivated by exhaustive submeasures and their continuity. We introduce and

characterise a zero-convergence structure E that is the intersection of all maximal

zero-convergence structures and introduce the most important ‘order sequential

zero-convergence structure’.

3.1 Definition. For f ∈ Bω , the set {n : f(n) 6= 0} is the support of f. We shall

call f a finite element of Bω if its support is finite. Set

Fin(B) = {f ∈ Bω : f has finite support}.

It is natural in this context that some notions for ideals on P(ω) can be trans-

lated to ideals on Bω, for instance the notion of P-ideal.

3.2 Definition. An ideal I on Bω is a P-ideal if for any countable family {fk : k ∈
ω} ⊂ I (∃g ∈ I) (∀k ∈ ω) fk − g ∈ Fin, where Fin is an ideal on Bω of sequences

with finite support.
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Let us remark that Fin is the Urysohn closure of {0}. Since P(ω) can be

naturally embedded to Bω, Fin plays the same role on Bω as does fin = {X ⊆ ω :

X is finite} on P(ω); one can be generated from the other.

3.3 Fact. Fin is the least Urysohn closed zero-convergence structure and the topology

τ(Fin) which it determines is discrete.

Although the ideal Fin is not very interesting from the convergence point of

view, it becomes more interesting in the context of quotient algebras. For any

B, the quotient algebra Bω/Fin is σ-closed, i.e. any descending sequence of non-

zero elements has a non-zero lower bound. If Bω/Fin has a dense subset of size ≤
2ω, then Bω/Fin has a base tree (not necessarily homogeneous in height). For the

basic case when B = {0, 1} and hence Bω/Fin = P(ω)/fin, see [BPS80]. Let A be

the Cantor algebra. Under the CH, algebras Aω/Fin and P(ω)/fin are the same.

The reason is that both algebras are saturated structures as models of Boolean

algebra. Recently A. Dow solved the long-standing problem and showed that

consistently the completions of those two algebras may be different. Moreover,

the height of Aω/Fin can be smaller than that of P(ω)/fin. Alternative, simpler

proof of Dow’s result can be found in [BH01].

3.4 Definition. Let k be a positive integer, d ∈ Bω is called a k-disjoint sequence,

if for any X ⊂ ω of size k,
∧

{d(n) : n ∈ X} = 0. We use the term disjoint sequence

for a 2-disjoint sequence. Let

D(B) = { f ∈ Bω : (∃m ∈ ω)(∀X ∈ [ω]m)
∧

{f(i) : i ∈ X} = 0 }.

It is clear that Fin ⊆ D ⊆ Z.

3.5 Proposition. D is the zero-convergence structure generated by all disjoint se-

quences, i.e. for any f ∈ D there are disjoint sequences d1, ..., dk so that f ≤
d1 ∨ ... ∨ dk.

Proof. When d1, ..., dk are disjoint sequences, then for any X ⊆ ω, |X| = k+1,

using the usual distributivity and the pigeon hole principle,

∧

i∈X

d1(i) ∨ ... ∨ dk(i) = 0.

We shall argue the opposite direction using induction. Let f ∈ D be an m-

disjoint sequence. If m = 2, f is disjoint, and so we assume that m > 2. Put

d(n) = f(n) −
∨

i<n f(i) for every n ∈ ω. Then d is a disjoint sequence. We show

that g = f−d is (m−1)-disjoint. For every n ∈ ω we have g(n) = f(n)∧
∨

i<n f(i),

in particular, g(0) = 0. Let us check that for arbitrary x1 < x2 < · · · < xm−1 we

get
∧m−1

j=1 g(xj) = 0.

In case of x1 = 0 we are done, so assume that x1 > 0. We have

m−1∧

j=1

g(xj) =

m−1∧

j=1

(f(xj) ∧
∨

i<xj

f(i)) =
∨

i<x1

(f(i) ∧

m−1∧

j=1

f(xj)).
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Since f is m-disjoint each member of the latter join is 0, hence g is a (m − 1)-

disjoint sequence.

3.6 Definition. Let I be a zero-convergence structure. I is called exhaustive if

D ⊆ I. In such case, the induced convergence structure s(I) is referred to as

exhaustive.

We can ask about the description of the largest zero-convergence structure

or equivalently the weakest topology in which all exhaustive submeasures are

continuous.

3.7 Definition. Put

L(B) = {f ∈ Bω : (∀X ⊆ ω, infinite)(∃Y ⊆ X, finite)
∧

{f(i) : i ∈ Y} = 0},

these are all sequences without infinite centered subsequences.

3.8 Proposition. L(B) is a Urysohn closed zero-convergence structure.

Of course D ⊂ L , moreover U(D) ⊆ L. We show the situation where U(D) is

strictly smaller then L.

3.9 EXAMPLE. Let us consider the algebra B = P([ω]<ω) and the set S = {s ∈
[ω]<ω : min(s) ≥ |s|}. Now we define a sequence Sn = {s ∈ S : n ∈ s}, which

belongs to L(B) and not to U(D(B)).

Clearly the sequence 〈Sn : n ∈ ω〉 belongs to L(B), because whenever we fix

arbitrary n1 < n2 < · · · < nn1+1 then by the property min(s) ≥ |s| the intersection⋂n1+1

i=1 Sni
is empty.

The sequence 〈Sn : n ∈ ω〉 does not belong to U(D(B)). It suffices to show

that ∀X ∈ [ω]ω ∀m ∈ ω ∃Y ∈ [X]m such that
⋂m

i=1 Syi
6= ∅. As Y we can fix

arbitrary m members from X with the property m ≤ x1 < x2 < · · · < xm, and we

are done. △

3.10 EXAMPLE. Recall that zero-convergence structures are ordered by inclusion

and that there are maximal ones. For an arbitrary algebra B, set

E(B) =
⋂

{I : I is a maximal zero-convergence structure on B}.

E is again a zero-convergence structure, which is Urysohn closed, for it is an

intersection of Urysohn closed structures. △

3.11 ORDER SEQUENTIAL ZERO-CONVERGENCE

In what follows we will focus on order sequential zero-convergence and order

sequential topology.

3.12 Definition. Let C denote a σ-completion of B. Then order zero-convergence

structure on B is defined by

Os(B) = {f ∈ Bω : (∃g ∈ Cω, g ց 0B) f ≤ g}.

Therefore Os(B) = Bω ∩ Os(C).
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The order zero-convergence structure on Boolean algebra B can be degener-

ated; for instance, if B = P(ω)/fin, then Os = Z = L.

The convergence structure induced by the order zero-convergence structure

on B is the most frequently studied one in the context of σ-fields of sets or σ-

complete Boolean algebras.

3.13 Fact. For any Boolean algebra B, Os(B) is an exhaustive zero-convergence,

not necessarily Urysohn closed, however L ⊆ U(Os).

Instead of a proof let us recall a few notions. Let C be a σ-completion of B.

For any sequence 〈xn : n ∈ ω〉 ∈ Cω we have defined notion of limes superior,

limes inferior and notion of limit; cf. I.3.34.

Let us remark that Os zero-convergence is exactly the convergence given by

the sequences that converges to 0, cf. I.3.33

Os(C) = { f ∈ Cω : lim f(n) = 0 }.

Since lim (xn ∨ yn) = lim xn ∨ lim yn for arbitrary 〈xn〉, 〈yn〉 (see I.3.35), then

Os(C) is a zero-convergence. Since for any disjoint sequence 〈xn〉, lim xn = 0,

Os(C) is exhaustive. Os(B) has the same property; it follows from the fact that

B is dense in C.

4. SEQUENTIAL TOPOLOGY ON BOOLEAN ALGEBRAS

A convergence structure s on a Boolean algebra B gives rise to a sequential topol-

ogy on B in the following way: consider all topologies τ on B so that whenever

xn −→
s

x, then xn −→
τ

x. There is a largest topology with respect to inclusion

among all such topologies, and we denote it by τ(s) and call it the sequential

topology determined by s.

Alternatively, the topology τ(s) can be described through the closure oper-

ation: for A ⊆ B, let u(A) = {x : x is the s-limit of a sequence 〈xn〉 of

elements ofA}. Then

clτ(s)(A) =
⋃

α<ω1

u(α)(A),

where u(α+1)(A) = u(u(α)(A)) and u(α)(A) =
⋃

{u(β)(A) : β < α} for a limit α.

It follows from V.2.5(ii) that every singleton is a closed set, i.e. τ(s) is a T1

topology. Moreover, (B, τ(s)) is a sequential topological space, and it is Fréchet

if and only if clτ(s)(A) = u(A) for every A ⊆ B.

4.1 Fact. A sequence 〈xn〉 converges to x in the topology τ(s), xn −→
τ(s)

x, if and only

if any subsequence of 〈xn〉 has a subsequence that converges to x in s.

Let I be a zero-convergence structure on a Boolean algebra B. In the way

described above, the convergence structure s(I) determines a sequential topol-

ogy, which we denote by τ(I). It follows that the Urysohn closure of I, U(I),

is the set of all sequences of elements of B that converge to 0 in the topology
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τ(I). Moreover, if I is Urysohn closed, then xn −→
s(I)

x if and only if xn −→
τ(I)

x.

Note that from larger zero-convergent structure we obtain a weaker sequential

topology.

Let us state here the basic obvious fact which puts together zero-convergence

structure and continuity of submeasure.

4.2 Fact. (i) Let I be a zero-convergence structure on B. Then for any submea-

sure µ on B, µ is continuous in τ(I) if and only if (∀f ∈ I) µ(f(n)) −→ 0.

(ii) Let S be a non-empty set of submeasures on B such that for any a ∈ B+ there

is some µ ∈ S with µ(a) > 0. Then {f ∈ Bω : (∀µ ∈ S) limn µ(f(n)) = 0} is

a Urysohn closed zero-convergence structure.

The following fact gives the motivation and justification of the term ‘exhaus-

tive zero-convergence’ introduced in V.3.6. It follows immediately from the defi-

nition of exhaustivity and Fact V.4.2(i).

4.3 Fact. For any submeasure µ on B, µ is exhaustive if and only if it is continuous

in the τ(D) topology.

4.4 Fact. Let B be a Boolean algebra with topology τL given by zero-convergence

structure L. The sequence 〈an : n ∈ ω〉 converges to a ∈ B in a topology τL if and

only if

∀X ∈ [ω]<ω ∃Y ∈ [X]ω such that
∨

n∈Y

an ≥ a &
∧

n∈Y

an ≤ a.

The following theorem is a modification of the result of R. Frič [Fri01], who

proved the theorem for measures. This is one of the situations when the global

properties of exhaustive submeasures and measures on Boolean algebras are the

same.

4.5 Theorem. L is a Urysohn closed zero-convergence structure. Moreover,

L = {f ∈ Bω : for every exhaustive submeasure µ on B, µ(f(n)) −→ 0}.

In the proof of the theorem in addition to Frič’s methods we are going to use

the following equivalence which we already proved III.1.2(iv).

4.6 Proposition. Let µ be a submeasure on B. Then µ is exhaustive if and only if

for any 〈xn : n ∈ ω〉 ∈ Bω and any ε > 0, there is a k ∈ ω such that

(∀p ≥ k) µ(
∨

i≤p

xi −
∨

i≤k

xi) < ε.

Proof. PROOF OF THEOREM V.4.5

An ultrafilter F on B corresponds uniquely to a {0, 1}-valued measure µF de-

fined by µF(x) = 1 if and only if x ∈ F, and 0 otherwise.

Given the simple observation that L = {f ∈ Bω : (∀µ {0, 1}-valued measure)

µ(f(n)) −→ 0} and V.4.2(ii), it follows that L is a zero-convergence structure,

Urysohn closed, and moreover it is exhaustive.
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In the following we will show that any exhaustive submeasure µ on B is contin-

uous in the topology determined by L.

Let 〈xn〉 ∈ L and let ε > 0. We want to show that for some n0, µ(xn) ≤ ε

whenever n ≥ n0. Using V.4.6, by induction we can construct a ϕ ∈ ωωր with

the property that

µ
( ∨

k≤i≤p

xi −
∨

k≤i≤ϕ(k)

xi

)
< ε/2k.

Set ak =
∨

k≤i≤ϕ(k)

xi. It follows that xk ≤ ak and xk ≤ ∧
i≤k

ai ∨
∨
i≤k

(ak − ai).

Since for i ≤ k, ak − ai =
∨

k≤j≤ϕ(k)

xj −
∨

i≤j≤ϕ(i)

xj, µ(ak − ai) < ε/2i and thus

µ
( ∨

i≤k

(ak − ai)
)

< 2ε.

Set bk =
∧

i≤k ai. 〈bk〉 is a descending sequence. If 〈bk〉 is not in L, then 〈bk〉
has the finite intersection property and hence can be extended to an ultrafilter

F on B. Then for any k there is an i ≥ k so that xi ∈ F, and so there is 〈yn〉,
a subsequence of 〈xn〉, with µF(yn) −→ 1, a contradiction with the definition of

L. Thus 〈bk〉 ∈ L, and, consequently, for some k0, bk = 0 for any k ≥ k0, and

therefore µ(bk) −→ 0.

Since xk ≤ ∧
i≤k

ai ∨
∨
i≤k

(ak − ai), for sufficiently large k,

µ(xk) ≤ µ
( ∨

i≤k

(ak − ai)
)

< 2ε.

From now on whenever we mention sequential topology on Boolean algebra

we will mean the following order sequential topology.

4.7 Definition. The sequential topology on Boolean algebra B given by Os(B)

zero-convergence is called the order sequential topology and in what follows we

denote it simply τs instead of τ(Os).

4.8 EXAMPLE. (The order sequential convergence on a powerset algebra) Let B =

P(X) for an infinite set X. A sequence 〈Xn : n ∈ ω〉, Xn ⊆ X, belongs to Z if

and only if {Xn : n ∈ ω} is a point-finite family of sets. Moreover, Z is a zero-

convergence structure. For this example let s denote the convergence structure

induced by Z. When we identify P(X) with 2X via characteristic functions, then

the convergence in the topology τ(s) is exactly the pointwise convergence of

sequences on 2X. It is well known that the corresponding sequential topology

τ(s) on 2X is a product topology if and only if X is at most countable, see I.2.11.

For an uncountable X, the sequential space (2X, τ(s)) is a Hausdorff, but not a

regular, topological space, see [Głó91] or [BGJ98]. Moreover, the topology τ(s)

is stronger than the usual product topology τc on 2X and τ(s) coincides with

the sequential modification τs of compact topology τc see I.2.14. If we consider

the spaces of continuous real-valued functions on 2X with respect to those two

topologies, it is shown in [BH01] that C(2X, τ)) Ã C(2X, τ(s)) if and only if size

of X is at least as large as the first submeasurable cardinal. △
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Order zero-convergence structures for the Cantor algebra A and its comple-

tions are not Urysohn closed.

4.9 Definition. A sequence 〈an : n ∈ ω〉 ∈ Bω is independent sequence if for

every finite F ⊂ ω and ε : F → {0, 1} the intersection

∧

n∈F

aε(n)
n 6= 0

is nonempty, where a1
n = an and a0

n = −an.

4.10 EXAMPLE. Here we show the sequence that converges in the sense of topol-

ogy, but do not converges in the algebraic sense. Such a sequence can be found

in both Cohen and random algebra. In fact this simple construction is based on

the existence of an appropriate independent sequence. It is well known fact that

both Cohen and random contains such a sequence.

Having an independent sequence one can

easily construct a sequence as in the pic-

ture. For such a sequence

∨

n≥k

a(n) = 1, and
∧

n≥k

a(n) = 0,

for any k ∈ ω. Hence such a sequence

cannot converge in the algebraic sense.

On the other hand it follows from Ramsey Theorem that the sequence 〈a(n) :

n ∈ ω〉 converges to 0 in the τs topological sense, since 〈a(n) : n ∈ ω〉 ∈ U(Os).

△

4.11 SEMICONTINUITY OF MONOTONE FUNCTIONS

We consider σ-complete Boolean algebras as a topological space endowed with

order sequential topology; i.e. topology given by order sequential zero-converge-

nce see V.3.12. We reformulate conditions for real valued functions on Boolean

algebra B to be semicontinuous, respective continuous in the topological space

(B, τs). Main interest concerns monotone functions and submeasures.

In the sequel, let B be a σ-complete Boolean algebra. Since (B, τs) is a sequen-

tial space, continuity of a mapping is equivalent to sequential continuity I.2.3. If

a sequence 〈xn : n ∈ ω〉 converges to x in τs topology xn →τs
x, it does not imply

that the sequence converges to x algebraically; cf. example V.4.10.

We check that for continuity it is sufficient to consider only algebraically con-

vergent sequences; cf. V.4.2.

4.12 Fact. A function f : B → R is continuous in τs if and only if for every sequence

〈xn : n ∈ ω〉 algebraically converging to x, f(x) = limn f(xn).

We start with continuity of measure and submeasure.

4.13 Theorem. Let B be a σ-complete Boolean algebra. Then
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(i) submeasure µ on B is continuous with respect to τs topology if and only if µ

is Maharam submeasure,

(ii) finitely additive measure m on B is continuous with respect to τs topology if

and only if m is σ-additive measure.

Proof. (i) is a direct consequence of V.4.2(i)

(ii) Let 〈an : n ∈ ω〉 be disjoint sequence. Then by continuity of m

m(
∨

n

an) = m(lim
n

∨

i≤n

ai) = lim
n

m(
∨

i≤n

ai) = lim
n

n∑

0

m(ai) =

∞∑

0

m(ai).

If m is σ-additive, then m is Maharam, hence by (i) continuous: Let an ց 0,

we can suppose that a0 = 1. Then bn = bn − bn+1 is disjoint sequence with∨
bn = 1. Clearly m(

∧
n an) = m(1) −

∑
n m(bn) = 0; and we are done.

In fact in the proof of previous theorem when checking continuity we checked

only nonincreasing sequences, hence in fact only semicontinuity; cf. I.2.23, let

us restate the theorem here in terms of semicontinuity.

4.14 Corollary. Let µ be a submeasure on σ-complete Boolean algebra then the

following are equivalent

(i) µ : B → R is τs-continuous function,

(ii) µ is Maharam submeasure,

(iii) µ : B → R is τs-upper semicontinuous function.

When investigating Measure algebra one can use complements, hence lower

and upper semicontinuity coincides.

4.15 Corollary. Let m be a measure on σ-complete Boolean algebra then the fol-

lowing are equivalent

(i) m : B → R is τs-continuous function,

(ii) m : B → R is τs-upper semicontinuous function,

(iii) m : B → R is τs-lower semicontinuous function,

(iv) m is σ-additive measure.

5. DISCRETE VERSUS CONTINUOUS EXHAUSTIVE SUBMEASURES

Exhaustive submeasures share many properties with measures. We show that

there is one-to-one correspondence between exhaustive submeasures on the al-

gebra of clopen sets, A = Clop(2ω) - the discrete version and continuous submea-

sures on Borel(2ω) - the continuous version.
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Let µ be a continuous submeasure on Borel(2ω). Since µ is exhaustive func-

tional µ̂ = µ ↾ A is also exhaustive submeasure on A. We know that algebra

A ⊂ Borel(2ω) is dense subset of the space (Borel(2ω), τs) and µ is continuous

function, therefore µ is by µ̂ determined uniquely.

On the opposite direction we have the following well known

5.1 Theorem. Every exhaustive submeasure µ on A can be uniquely extended to

continuous submeasure µ defined on Borel(2ω).

Proof. First, we deal with an extension of µ to open and closed subsets of the

Cantor space. Let U be an open set. There is a nondecreasing sequence of Vn ∈ A
such that U =

⋃
Vn. Put

µ(U) = lim
n→∞

µ(Vn).

Similarly, for closed set F, there is nonincreasing sequence Vn ∈ A such that

F =
⋂

Vn and we put µ(F) = lim µ(Vn). Value µ does not depend on the repre-

sentation of U or V by clopen sets, it follows from compactness. In fact

µ(U) = sup {µ(V) : V ∈ A & V ⊂ U},

µ(F) = inf {µ(V) : V ∈ A & V ⊃ F}.

Till now, we used only monotonicity of µ on A and certainly we obtained an

extension of the starting submeasure µ.

Claim.

(a) µ is monotone and subadditive on open sets,

(b) for every open U and ε > 0 there is a clopen V ⊂ U such that µ(U−V) < ε,

the dual version holds for closed sets.

(c) If F is closed, U is open and F ⊂ U, then µ(U) − µ(F) ≤ µ(U − F).

(a) We use subadditivity of µ on A. Let U1, U2 be an open sets and U1 =⋃
{U1(n) : n ∈ ω} and U2 =

⋃
{U2(n) : n ∈ ω} be arbitrary approximating

sequences consisting of clopen sets. Then for U(n) = U1(n) ∪ U2n, we have

U1 ∪ U2 =
⋃

{U(n) : n ∈ ω} and µ(U1 ∪ U2) = lim µ(U(n)) ≤ lim µ(U1(n)) +

lim µ(U2(n)) ≤ µ(U1) + µ(U2).

(b) We use exhaustivity and monotonity of µ and apply III.1.2(iv).

(c) Assume 〈Vn : n ∈ ω〉 and 〈Fn : n ∈ ω〉 sequences of clopen sets such that

U =
⋃

Un and F =
⋂

Fn. Since µ is subadditive on clopen sets and Un\Fn ⊂ U\F

for each n ∈ ω we get

µ(U) − µ(F) = lim µ(Un) − lim µ(Fn) = lim (µ(Un) − µ(Fn)) ≤
≤ lim µ(Un \ Fn) ≤ µ(U \ F),

which completes the proof of the Claim.
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We have just proved that we are able to extend the starting µ from clopen to

both open and closed sets. For second, consider a family S ⊂ P(2ω) defined by

A ∈ S if and only if for every ε > 0 there are closed F and open U such that

F ⊂ A ⊂ U & µ(U − F) < ε.

By claim (b) the family S contains all open sets. Moreover, if A ∈ S then also

clearly −A ∈ S. To show that S is σ-field of sets, consider the countable family

{An : n ∈ ω} ⊂ S. Fix ε > 0. Take Fn’s closed, Un’s open such that Fn ⊂ An ⊂ Un

and µ(Un − Fn) ≤ ε2−n for all n ∈ ω.

Put U =
⋃

i∈ω Ui, U is open and by claim (b) there is a clopen V ⊂ U such

that µ(U\V) < ε. It follows from the compactness that there is n0 ∈ ω such that

V ⊂ ⋃
i≤n0

Ui. By the claim (a)

µ(U \
⋃

i≤n0

Fi) ≤ µ(U \ V) +

n0∑

0

µ(Ui \ Fi) < 3ε,

moreover
⋃

i≤n0
Fi ⊂

⋃
i∈ω Ai ⊂ U.

Thus we proved that
⋃

i∈ω Ai ∈ S and therefore Borel(2ω) ⊂ S.

For A ∈ S put

µ̂(A) = inf {µ(U) : A ⊂ U & U is open}.

By claim (c) one can see that µ̂(A) = sup{µ(F) : F ⊂ A & F is closed}, and that

µ̂ extends the starting submeasure and that µ̂ is defined on S ⊃ Borel(2ω). We

need to verify that µ̂ is a continuous submeasure. Let A1, A2 be from S. For ε > 0

choose U1, U2 open such that µ(Ui) ≤ µ̂(Ai) + ε, Ai ⊂ Ui, i = 1, 2. By the claim

(a) we have µ̂(A1 ∪ A2) ≤ µ(U1 ∪ U2) ≤ µ(U1) + µ(U2) ≤ µ̂(A1) + µ̂(A2) + 2ε,

hence µ̂ is a submeasure.

Now suppose that 〈An : n ∈ ω〉 is decreasing sequence of sets from S such

that
⋂

n∈ω An = ∅. The sequence 〈µ̂(An) : n ∈ ω〉 is nonincreasing, suppose for

the contradiction that lim µ̂(An) = ε > 0. There is a sequence 〈Fn : n ∈ ω〉 of

closed sets such that Fn ⊂ An and µ̂(An \ Fn) < ε2−(n+2).

For any n ⋂

i≤n

Fi ∪
⋃

k≤n

Ak \ Fk ⊃ An.

Thus

µ(
⋂

i≤n

Fi) > µ̂(An) −
∑

k≤n

µ(Ak \ Fk) >
ε

2
,

so
⋂

i≤n Fi 6= ∅. That yields ∅ 6= ⋂
i∈ω Fi ⊂

⋂
i∈ω Ai = ∅, a contradiction. There-

fore lim µ̂(An) = 0 and hence µ̂ is continuous.

6. WHEN Z IS A ZERO-CONVERGENCE STRUCTURE

In this section we focus on the question when the Z itself is a zero-convergence

structure and give here several characterisations. This part is based on and ex-

tends the work of B. Balcar, F. Franek and J. Hruška [BFH99].
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The main theorem of this section characterises Boolean algebras that do not

add independent reals in the generic extension.

6.1 Definition. We say that the Cantor algebra A is almost regularly embedded

into a Boolean algebra B if there is A ′, a subalgebra of B, so that

(i) A ′ is isomorphic to A, and

(ii) there is a set {xn : n ∈ ω} of generators of A ′ such that for any infinite

subset X of ω,
∨

B{xn : n ∈ X} = 1 and
∧

B{xn : n ∈ X} = 0.

6.2 Theorem. For any B the following are equivalent.

(i) Z is a zero-convergence structure; i.e Z is an ideal on Bω,

(ii) for any a ∈ B+, the Cantor algebra A cannot be almost regularly embedded

into B↾a.

6.3 Remark. Recall, that B is (ω, 2)-distributive if for any sequence 〈an : n ∈
ω〉 ∈ Bω and for any b ∈ B+, there is a c ≤ b, c 6= 0, such that for any n ∈ ω,

either c ≤ an or c ∧ an = 0. Thus an (ω, 2)-distributive algebra satisfies (ii), and

so Jakub́ık’s result [BFH99] that for an (ω, 2)-distributive Boolean algebra, Z is

a zero-convergence structure, follows as a direct consequence of the theorem.

Proof. Proving ¬(i) → ¬(ii). Z is not a zero-convergence structure if and only

if Z is not an ideal if and only if there are a ∈ B+ and f, g ∈ Z such that

f ∨ g = ka. Then {f(n) : n ∈ ω} ⊆ B↾a. Let A ′ be a subalgebra of B↾a generated

by {f(n);n ∈ ω}. Then A ′ is countable. Moreover, it is atomless, otherwise there

is an atom c 6= 0 and so for any n, either c ≤ f(n) or c ∧ f(n) = 0. One of those

cases must happen infinitely many times. The former contradicts the fact that

f ∈ Z, while the latter contradicts the fact that g ∈ Z. Thus A ′ is isomorphic to

the Cantor algebra.

For proving ¬(ii) → ¬(i), set f(n) = xn and g(n) = a − xn. It follows that

f ∨ g = ka, hence Z is not an ideal.

In the following we will characterise some Boolean algebras that satisfy the

theorem using their forcing properties. We shall explain how some of the notions

discussed previously can be reinterpreted in terms of properties of reals in generic

extensions and restated in the forcing language.

Let us repeat here well known basic relations concerning the interrelationship

of functions and subsets of ω in a generic extension and the ground model.

6.4 Definition. Let M denote a generic extension of V .

(i) X ⊆ ω in the extension is said to be an independent (or splitting) real over

V if for all Y ∈ [ω]ω ∩ V both X ∩ Y and Y − X are infinite.

(ii) A function f ∈ M, f ∈ ωω, is a dominating real over V if and only if for all

g ∈ ωω ∩ V for all but finitely many n ∈ ω, g(n) ≤ f(n).
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(iii) Function h ∈ ωω in the extension is said to be an unbounded real over V if

for all f ∈ ωω ∩ V is the set {n ∈ ω : h(n) > f(n)} infinite.

(iv) M is an ωω-bounding extension of V if every f ∈ M, f ∈ ωω is bounded by

a g ∈ ωω ∩ V , i.e. f(n) ≤ g(n) for any n.

If B is a Boolean algebra and C its completion, sequences from Cω can be

viewed as canonical names for all reals in a generic extension when forcing with

(B+,≤) or (C+,≤). Sequences from Bω can be viewed as names for elements of

a subfield of all reals in the generic extension. If G is a generic filter on C over

V , then a real (= subset of ω) in V [G] named by f ∈ Cω is fG = {n : f(n) ∈ G}.

6.5 EXAMPLE. Assume that a complete Boolean algebra adds an unbounded real

h ∈ V [G]. We can suppose that h is strictly increasing, so h is an enumeration of

some subset ρ ⊆ ω. Then there is a name f for ρ such that f ∈ Z(B): let g ∈ Bω

be a name for ρ, then for every infinite subset X ∈ [ω]ω ∩ V ,

∧

n∈X

g(n) 6∈ G.

Suppose the opposite; then clearly X ⊆ ρ and so for an enumeration e(X) ≥
e(ρ) = h, which contradicts the fact that h is unbounded.

Now we put

c =
∨

X∈[ω]ω∩V

∧

n∈X

g(n).

Then c 6∈ G and put f(n) = g(n) − c. Clearly fG = gG and f belongs to Z(B). △

6.6 Definition. We call a sequence 〈xn : n ∈ ω〉 ∈ Bω splitting if for every

b ∈ B+ xn ∧ b 6= 0 and b − xn 6= 0 for all but finitely many n.

6.7 Lemma. If there exists a sequence 〈xn : n ∈ ω〉 ∈ Bω such that for every

ϕ ∈ ωωր the sequence 〈cϕ
n :=

∨
n≤i≤ϕ(n) xi : n ∈ ω〉 is splitting, then B adds an

unbounded real.

Proof. Define function f(n) = xn and let G be a generic on B over V . We put

h = e(fG) enumeration of fG ⊆ ω. Now pick arbitrary ϕ ∈ ωωր ∩ V and

assume that h ≤ ϕ. Then for all n ∈ ω cϕ
n belongs to G since h ≤ ϕ and so

for arbitrary infinite set X ⊂ ω from the groundmodel V we get
∧

n∈X cϕ
n ∈ G.

This is a contradiction, since every infinite meet of a splitting sequence should be

zero.

The following theorem describes the equivalences of almost regular embed-

ding of Cantor algebra.

6.8 Theorem. For any Boolean algebra B the following are equivalent.

(i) Cantor algebra is almost regularly embedded in algebra B,

(ii) there is a sequence {xn : n ∈ ω} in B such that for any infinite subset X of ω,∨
B{xn : n ∈ X} = 1 and

∧
B{xn : n ∈ X} = 0,
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(iii) there is a splitting sequence in B,

(iv) there is a splitting independent sequence in B,

(v) there is f ∈ Bω such that for every generic G on B fG is an independent real

in V [G].

Proof. (i) → (ii) is clear from the definitions.

(ii) → (iii) Arguing by contradiction, we establish that the sequence 〈xn : n ∈ ω〉
satisfying (ii) is splitting: let b ∈ B+ be element not split by the sequence, then

one of the sets {n ∈ ω : xn ≤ −b} and {n ∈ ω : xn ≥ b} is infinite, contradicting

(ii).

(iii) → (iv) Let {xn : n ∈ ω} be a splitting sequence. We define y0 = x0. Since

{xn : n ∈ ω} is splitting, there exists n1 ∈ ω such that ∀m > n1 xm splits ǫx0,

where ǫ ∈ {−1, 1} and we put y1 = xn1
. By induction we construct a splitting

sequence 〈yn : n ∈ ω〉 since it is subsequence of 〈xn : n ∈ ω〉. By the construction∧
n∈K ǫyn 6= 0 for any finite K so the sequence 〈yn : n ∈ ω〉 is independent.

(iv) → (i) We define A as a Boolean algebra generated by the sequence 〈yn : n ∈
ω〉. This algebra is countable and atomless, since atoms can not be split so is

isomorphic to Cantor algebra.

(iii) → (v) Function f(n) = xn, where 〈xn : n ∈ ω〉 is a splitting sequence, is an

independent real for any generic G on B. Fix some G and assume that there is an

infinite set a ⊆ ω in V that is not split by fG. We can assume that the set a ∩ fG

is finite and so a\fg is cofinite, hence both belong to groundmodel V . Now the

element v =
∧

n∈a∩fG
xn ∧

∧
n∈a\fG

−xn belongs to G and so v ∈ B+ but is not

split by any element of 〈xn : n ∈ ω〉.
(v) →(iii) We show that the sequence 〈f(n) : n ∈ ω〉 is splitting, where f ∈ Bω

is an independent real for any generic G on B. Let b ∈ B+ be an element that

is not split. It means that one of the following sets b0 = {n ∈ ω : −b ≥ f(n)},

b1 = {n ∈ ω : b ≤ f(n)} is infinite. We chose G so that it contains b. Then

b0 ∩ fG = ∅ or b1 ∩ fG = b1 contradicting the fact that f is an independent real,

since both b0 and b1 belong to V .

Hence any forcing notion that does not add an independent real gives an ex-

ample of a complete Boolean algebra B for which Z(B) is a zero-convergence

structure. Among them the ones that add a real, but not an independent real,

are the non-trivial and interesting ones. There are several examples of such forc-

ing notions. The most familiar are Sacks forcing [Sac71], Miller forcing [Mil84],

Blass-Shelah forcing [BS89b], and Matet forcing [Bla89]. Therefore, Boolean

algebras of regular open sets of these partial orders and all their dense subalge-

bras are examples of non (ω, 2)-distributive Boolean algebras for which Z is a

zero-convergence structure.

It is well known that among the forcing notions mentioned above, only Sacks

forcing is ωω-bounding. On the other hand, any forcing notion adding a dom-

inating real adds also an independent real and so it is not an example of an

algebra where Z is a zero-convergence structure.
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Recall that a topological space X is sequentially compact if every sequence

〈an : n ∈ ω〉, an ∈ X, has a convergent subsequence.

Since we are dealing with sequences, the most interesting cases concern ccc

Boolean algebras. For instance, whenever B is a regular subalgebra of a C, then

Z(B) = Z(C)∩Bω. If C satisfies ccc, then Z(B) = Z(C)∩Bω implies that B is a

regular subalgebra. In the preceding we introduced several equivalences for the

fact that Z(B) itself is an ideal. In the following theorem we show that this is

equivalent with sequential compactness of the topology given by the Os ideal.

6.9 Theorem. For a ccc complete Boolean algebra B, the following statements are

equivalent.

(i) Z(B) is zero-convergence.

(ii) Z(B) is Urysohn closure of Os(B).

(iii) The topological space (B, τs), where τs is the order sequential topology, is

sequentially compact.

Proof. (i) → (iii) Since Z(B) is zero-convergence there is no sequence 〈an : n ∈
ω〉 ⊂ Bω and no constant a ∈ B+ such that

∧
aϕ(n) = 0 and

∨
aϕ(n) = a for any

ϕ ∈ ωωր.

Given arbitrary sequence 〈an : n ∈ ω〉 we have to show that there is a τ-

convergent subsequence 〈bn : n ∈ ω〉. It is sufficient to show that sequence 〈bn〉
converges in s(Os).

Let us assume that liman > liman because otherwise we are done. There is

a subsequence 〈dn〉 of 〈an〉 such that its every subsequence has the same limes

superior. We obtain it as follows: Suppose that there is a subsequence 〈c1
n〉 of

〈an〉 such that liman > limc1
n and also there is a subsequence 〈c2

n〉 of 〈c1
n〉 such

that limc1
n > limc2

n and so on. Since B satisfy ccc and P(ω)/fin is σ-closed,

the process has to stop after countably many steps and the pseudointersection

works. Similarly we can find subsequence 〈bn〉 of 〈dn〉 which is homogeneous in

limes inferior. It suffice to show that limbn = limbn.

Assume in contrary that limbn > limbn and define sequence 〈en = bn −

limbn : n ∈ ω〉. From the properties of 〈bn〉 it is clear that
∧

eϕ(n) = 0 and∨
eϕ(n) = limbn − limbn ∈ B+ for any ϕ ∈ ωωր but such sequence cannot

exists. Hence limbn = limbn.

The implication (ii) → (i) is trivial.

Now we prove the implication (iii) → (ii). Let 〈an〉 be a sequence from Z(B) so

from the definition of Z(B) its liman = 0. By the sequential compactness there

is a subsequence 〈bn〉 which is convergent in s(Os). Since Z(B) is closed under

subsequences limbn = 0 so as the limbn = 0 since 〈bn〉 is convergent. Now

we proved that the sequence 〈bn〉 belongs to Os hence Z(B) ⊂ U(Os) and the

opposite inclusion follows directly from the definition.

As a corollary we get the following theorem. The direct proof of this theorem

can be found in [BJP05].
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6.10 Theorem. Let B be a complete ccc Boolean algebra. B does not add indepen-

dent reals if and only if (B, τs) is sequentially compact.

7. THE DECOMPOSITION THEOREM

Let us first remind the definition of weak distributivity.

7.1 Definition. Let κ be an infinite cardinal. A Boolean algebra B is (ω, κ)-

weakly distributive if for every sequence {Pn} of maximal antichains, each of size

at most κ, there exists a maximal antichain Q with the property that each q ∈ Q

meets only finitely many elements of each Pn. B is weakly distributive if it is

(ω, ω)-weakly distributive.

If B is κ+ complete Boolean algebra then B is (ω, κ)-weakly distributive if and

only if it satisfies the following distributive low:

∧

n

∨

α

anα =
∨

f:ω→[κ]<ω

∧

n

∨

α∈f(n)

anα.

Let us recall some known characterisations of weak distributivity.

7.2 Theorem. For ccc Boolean algebra B the following are equivalent

(i) B is weakly distributive,

(ii) the ideal of nowhere dense sets in the Stone space St(B) is a σ-ideal, i.e.

meager sets are nowhere dense,

(iii) topological space (B, τs) is Fréchet [BGJ98],

(iv) the extension VCompl(B) of groundmodel V is ωω-bounding.

In the proof of the decomposition theorem we use the following characterisa-

tion of Maharam algebras.

7.3 Theorem. (B. Balcar, W. Głowcziński, T. Jech [BGJ98]) The complete ccc

Boolean algebra B is Maharam if and only if the order sequential topology τs on B
is Hausdorff.

7.4 Theorem. THE DECOMPOSITION THEOREM Let B be a complete ccc Boolean

algebra. Then there are disjoint elements d, m ∈ B such that d ∨ m = 1 and

(i) In the space (B ↾ d, τs) the closure of every nonempty open set is the whole

space.

(ii) The Boolean algebra B ↾ m carries a strictly positive Maharam submeasure.
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The elements d and m are uniquely determined, and either can be 0. If m 6= 0

then B carries a nontrivial continuous submeasure while if m = 0 then every

continuous real valued function on B is constant. For the reader convenience we

state here lemmas from [BGJ98] which we employ in the proof of the theorem.

Let

N = {U : U is an open neighbourhood of 0 and is downward closed}

where downward closed means that a < b ∈ U implies a ∈ U.

7.5 Lemma. If (B, τs) is Fréchet and A is downward closed then cl(A) =
⋂

{A∨V :

V ∈ N }, and cl(A) is downward closed.

7.6 Lemma. Let B be a σ-complete Boolean algebra such that (B, τs) is Fréchet.

Then for every U ∈ N there exists V ∈ N such that V ∨ V ∨ V ⊆ U ∨ U.

Proof. First we prove the theorem in the case when B is weakly distributive. Let

B be a weakly distributive complete ccc Boolean algebra. By V.7.2(iii) the space

(B, τs) is Fréchet. By lemma V.7.5 if (B, τs) is Fréchet then N is a neighbourhood

base of 0 and the closure cl(A) of each downward closed set A is
⋂

{A ∨ U : U ∈
N } and is also downward closed.

Now let

D =
⋂

{cl(U) : U ∈ N } and d =
∨

D.

D is both downward closed and topologically closed, and it follows from the

remarks above that

D =
⋂

{U ∨ V : U, V ∈ N } =
⋂

{U ∨ U : U ∈ N }.

If a 6∈ D then for some U ∈ N , a 6∈ U∨U and hence U and a △ U are disjoint; in

other words, a is Hausdorff separated from 0. It follows that if we let m = −d,

then the space (B ↾ m, τs) is a Hausdorff space. By V.7.3, B ↾ m carries a strictly

positive Maharam submeasure. It remains to show that in (B ↾ d, τs), every

nonempty open set is dense.

Claim. D is closed under ∨.

Let U ∈ N . By lemma V.7.6, there exists a U1 ∈ N such that U1 ∨ U1 ∨ U1 ⊂
U ∨ U. Similarly, there exists a U2 ∈ N such that U2 ∨ U2 ∨ U2 ⊂ U1 ∨ U1, and

letting V = U1∩U2 we get V ∨V ∨V ∨V ⊂ U∨U. Hence D =
⋂

{V ∨V ∨V ∨V :

V ∈ N }. It follows that D ∨ D = D.

Now let {an : n ∈ ω} be a maximal antichain in D. The sequence {
∨n

k=0 ak :

n ∈ ω} is in D and converges to d. Since D is closed, we have d ∈ D, and so

B ↾ d = D.

For every U ∈ N , cl(U) ⊃ D. Now let G be an arbitrary topologically open

set in B ↾ d. There exist a ∈ D and U ∈ N such that G ⊃ (a △ U) ∩ D. Since

cl(a △ U) ⊃ a △ D = D, we have cl(G) ⊃ D and the theorem follows for the

weakly distributive case.
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In the general case, there exists an element d1 ∈ B such that B ↾ −d1 is

weakly distributive, and such that B ↾ d1 is nowhere weakly distributive. There

exists an infinite matrix {akl} such that each row is a partition of d1 and for every

nonzero x ≤ d1 there is some k ∈ ω such that x ∧ akl 6= 0 for infinitely many l.

Let d2 and m, with d2 ∨ m = −d1, be the decomposition of the weakly dis-

tributive algebra B ↾ −d1, so that B ↾ m carries a strictly positive Maharam

submeasure and (B ↾ d2, τs) has the property that every nonempty open set is

dense in the space. Let d = d1 ∨ d2, and let us prove that in (B ↾ d, τs), every

nonempty open set is dense.

Let U be an open neighbourhood of 0 in B ↾ d. The space (B ↾ d2, τs) is a

closed subspace of (B ↾ d, τs), and V = U ∩ B ↾ d2 is an open neighbourhood of

0 in B ↾ d2.

Let c ≤ d be arbitrary; we shall prove that c is in the closure of U. Let

c1 = c ∧ d1 and c2 = c ∧ d2. Since c2 is in the closure of V and B ↾ d2 is Fréchet,

there exists a sequence 〈zn : n ∈ ω〉 in V that converges to c2. We shall prove

that c1 ∨ zn ∈ cl(U) for each n ∈ ω, and then it follows that c = limn(c1 ∨ zn) is

in cl(U).

Thus let n ∈ ω be fixed. For every k and every l let ykl = c1 ∧
∨

i≥l aki. Since

the sequence 〈y0l : l ∈ ω〉 converges to 0, we have liml(y0l ∨ zn) = zn, and since

zn ∈ U, there exists some l0 such that y0l0 ∨ zn ∈ U. Let x0 = y0l0 .

Next we consider the sequence 〈y1l∨x0∨zn : l ∈ ω〉. This sequence converges

to x0 ∨ zn ∈ U and so there exists some l1 such that x1 ∨ zn ∈ U where x1 =

y1l1 ∨ x0. We proceed by induction and obtain a sequence 〈lk : k ∈ ω〉 and an

increasing sequence 〈xk : k ∈ ω〉 with xk ∨ zn ∈ U for each k. The sequence

〈xk : k ∈ ω〉 converges to c1 because otherwise, if b 6= 0 is the complement of∨
k xk in c, then b ≤ ∧

k

∨
i<lk

aki and so b meets only finitely many elements in

each row of the matrix. Hence c1 ∨ zn = limk(xk ∨ zn) ∈ cl(U).

We use this theorem to different proof of the well known fact. Note that

random real, i.e. the generic real added by random forcing is independent.

7.7 Lemma. If B is atomless and carries a strictly positive Maharam submeasure

then B adds an independent real.

Proof. Let µ be a strictly positive Maharam submeasure on B.

Case 1. The submeasure µ is uniformly exhaustive. By Kalton - Roberts theorem

IV.6.11, B is a measure algebra which is known to add independent reals.

Case 2. There exists an ε > 0 and a sequence 〈Pn : n ∈ ω〉 of finite antichains

with |Pn| ≥ n, and µ(a) ≥ ε for each a ∈ Pn. We can find infinitely many

functions fk, k ∈ ω, such that fk(n) ∈ Pn for every n ∈ ω and when k 6= l

then fk(n) 6= fl(n) for eventually all n. Since B does not add independent reals,

by Theorem V.6.10 τs is sequentially compact and so we can find convergent

subsequences gk of fk, with dom(gk+1) ⊂ dom(gk). If ak = limn gk(n) then the

ak’s are mutually disjoint, and µ(ak) ≥ ε for each k ∈ ω (by continuity of µ).

Thus µ is not exhaustive; a contradiction.
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8. WEAKLY DISTRIBUTIVE BOOLEAN ALGEBRAS

In the following we proceed to another characterisations of weak distributivity;

cf. V.7.2. To prevent the confusion let us remind the notion of P-ideal on Bω and

P-ideal on the set B.

8.1 Definition. (i) An ideal I on Bω is a P-ideal if for any countable family

{fk : k ∈ ω} ⊂ I there is g ∈ I such that for each k ∈ ω) fk − g ∈ Fin, where

Fin is an ideal on Bω of sequences with finite support.

(ii) An ideal I on the set B is called P-ideal if for any {In ∈ I : n ∈ ω} there

exists I ∈ I such that In ⊆∗ I for every n ∈ ω.

The next theorem shows that the behaviour of the ideal Os(B) is somewhat

crucial for the weak distributivity of the Boolean algebra B.

8.2 Theorem. Complete Boolean algebra B satisfying ccc is weakly distributive if

and only if Os(B) is a P-ideal on Bω.

Proof. As we already mention, Os is always an ideal. Let us suppose that Os is a

P-ideal on Bω. Let 〈Pn : n ∈ ω〉 be a countable family of disjoint decompositions

of the unity. Define a function gn(m) = −
∨m

i=0 Pn(i), gn ∈ Os since every Pn

is a decomposition of the unity. By our assumption there exists g ∈ Os such

that for all n ∈ ω, gn − g ∈ Fin. Now we define a decomposition of the unity

Q : let Q(0) = −g(0) and Q(m) = −g(m) −
∨m−1

i=0 Q(i). Q is a decomposition

of the unity since g ∈ Os. For every n ∈ ω there exists kn ∈ ω such that

∀m > kn gn(m) ≤ g(m); that means
∨m

i=0 Q(i) ≤ ∨m

i=0 Pn(i) and so Q witnessing

the weak distributivity, since every Q(m) meets at most finitely many members

of each Pn.

On the other hand let 〈fn : n ∈ ω〉 ⊆ Os, since B is complete we can assume

that fn ց 0. Define gn =
∨n

i=0 fi, gn ∈ Os since Os is an ideal. As in previous

every function gn determines a partition of the unity and by weak distributivity

of algebra B we get a partition of the unity Q which determines a function f(n) =∨
n≤k Q(k). Clearly f belongs to Os and for all n ∈ ω there exists k(n) ∈ ω such

that f(n) ≥ gn(k(n)). Therefore gn − f ∈ Fin, which completes the proof.

8.3 Definition. (i) Recall the well known diagonal sequence property. If 〈xn,k :

n ∈ ω, k ∈ ω〉 is double indexed sequence of elements of Boolean algebra

B such that for every n ∈ ω xn,k −→k xn and xn −→n x then for every n

we can choose k(n) such that xn,k(n) −→n x.

(ii) The similar notion is weak diagonal sequence property which says that for

double indexed sequence 〈xn,k : n ∈ ω, k ∈ ω〉 of elements of B such that

for every n ∈ ω xn,k −→k xn and xn −→n x there exists ϕ ∈ ωωր and

function k : rng(ϕ) → ω such that xϕ(n),k(ϕ(n)) −→n x.

8.4 Theorem. For ccc complete Boolean algebra B the following conditions are

equivalent.

(i) B has the diagonal sequence property,
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(ii) B has the weak diagonal sequence property,

(iii) B is weakly distributive.

Proof. Implication (i)→(ii) is trivial.

(ii)→(iii) It is enough to show that Os is P-ideal. Let 〈fn : n ∈ ω〉 ⊆ Os. Since

B is complete Boolean algebra we can assume that fn ց 0 and since Os is an

ideal we can also assume that for m ≤ n the inequality fm ≤ fn holds. Now

by weak diagonal sequence property there are ϕ ∈ ωωր and k : rng(ϕ) →
ω such that fϕ(n)(k(ϕ(n))) −→n 0; fn is nonincreasing hence we can chose k

increasing. Now we define sequence g ∈ Bω, g(m) := fϕ(n)(k(ϕ(n))) for m ∈
[k(ϕ(n)), k(ϕ(n+1))). Clearly g ∈ Os and fn−g ∈ Fin since for all m ≥ k(ϕ(n))

g(m) = fϕ(n)(k(ϕ(n))) ≥ fn(k(ϕ(n)) ≥ fn(m), for m ∈ [k(ϕ(n)), k(ϕ(n + 1))).

(iii) → (i) Assume that 〈xn,k : n ∈ ω, k ∈ ω〉 is double indexed sequence of

elements of B such that for every n ∈ ω xn,k −→k xn and xn −→n x. We define

countable family of partitions of unity 〈Pn : n ∈ ω〉. Let Pn(0) := −(xn,0 △ xn)

and Pn(m) := −
∨m−1

i=0 Pn(i)−(xn,m △ xn). By weak distributivity of algebra B we

obtain partition unity Q such that for all n ∈ ω there exists k(n) ∈ ω for which

the inequality
∨n

i=0 Q(i) ≤ ∨k(n)

i=0 Pn(i) holds true. From this inequality we derive

that xn,k(n) △ xn −→n 0 since the function −
∨n

i=0 Q(i) ց 0 is its majorant. It

remains to show that xn,k(n) −→n x, it means that
∧

k

∨
n≥k xn,k(n) △ x = 0, but it

is clear since xn,k(n) △ x ≤ (xn,k(n) △ xn) ∨ (xn △ x).

The following theorem has a very similar structure with many ‘Baire-like’ the-

orems. Here one has to be extra careful. When we talk about dense set D in

Boolean algebra B, we mean that for each a ∈ B+ there is some d ∈ D+ for

which d ≤ a.

When we talk about dense set X in topological space (B, τs) we mean that

each τs-open set U intersect with X.

8.5 Theorem. Let B be a ccc complete Boolean algebra, then B is weakly distribu-

tive if and only if for every collection 〈Un : n ∈ ω〉 of downward closed dense sets in

the topological space (B, τs) the intersection

⋂

n∈ω

Un

is a dense set in the Boolean algebra B.

Proof. Let B be a ccc, weakly distributive Boolean algebra and let 〈Un : n ∈ ω〉
be downward closed topologically dense sets. Fix a ∈ B+. Since the space (B, τs)

is Fréchet and each Un is topologically dense, there is a sequence

〈am
n : m ∈ ω〉 ⊂ Un, am

n րm a, for each n.

From the weak distributivity it follows that there is positive c ∈ ⋂
n∈ω Un, c ≤ a.

To show weak distributivity let am
n ր 1 be nondecreasing sequences. Put

Un = { b ∈ B+ : (∃m ∈ ω) b ≤ am
n }.
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Un’s are downward closed and topologically dense, hence by the assumption⋂
Un is dense in algebra B. It means that for each c ∈ B+ there is some positive

b ∈ ⋂
Un such that b ≤ c; which completes the proof.

Let us conclude the weak distributivity part with the recent result of B. Bal-

car and T. Jech [BJ07]. Note that random algebra is preserved by this simple

iteration.

8.6 Theorem. If B is a Maharam algebra and if Ċ is a Maharam algebra in VB,

then B ⋆ Ċ is a Maharam algebra.

9. ALGEBRAIC CHARACTERISATION OF MAHARAM ALGEBRA

In this section we are going to characterise Maharam algebra using its algebraic

properties. We already mention the topological characterisation of Maharam

algebra; cf. V.7.3. We employ the decomposition theorem to produce another

topological characterisation V.9.13 and to prove the algebraic one. Main theorem

of this section is due to S. Todorcevic.

Theorem. (Todorcevic [Tod04]) Let B be a complete Boolean algebra. Then B
carries a strictly positive Maharam submeasure if and only if

(i) B is weakly distributive, and

(ii) B satisfies the σ-finite cc.

We give here a different proof of this theorem using our techniques.

9.1 SET - STRUCTURES DERIVED FROM CONVERGENCE ONES

The general idea of this paragraph is simple: Given some set of sequences say

A ⊆ Bω we can forget the sequence structure of A and define something we call

a ’A-set’ as a family of ranges of the sequences in A, formally:

Aset = {X ∈ [B]≤ℵ0 : ∃f ∈ A rng(f) = X}

As an example of this notion we can look at the basic structure Z(B). It is

easily seen, that

Zset = {X ∈ [B]≤ℵ0 : ∀a ∈ B+ the set {x ∈ X : x ≥ a} is finite }.

One can ask a natural question how such systems of sets of elements of the

Boolean algebra B behaves in case that we start from some particular Zero -

convergence structure especially from Os(B) and if it is possible to reconstruct

the structure again. In case of Zset the reconstruction of structure Z(B) is again

easily seen: the set {f ∈ ωB : f is finite to one and rng(f) ∈ Zset} contains every

sequence from Z(B) with an infinite support. Since Z(B) contains all sequences

with finite support we have to add them
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Z(B) = {f ∈ ωB : f is fin to one & rng(f) ∈ Zset} ∪ {f ∈ ωB : supp(f) is finite }.

In the following we focus on some properties of an ideal of Zero - convergence

Os(B).

9.2 Definition. Let A be a subset of Boolean algebra B. We define for every

positive element b ∈ B+ set of b-compatible elements of A as the set

{a ∈ A : a ‖ b}

and we will denote it Cp(b, A).

9.3 Fact. Let B be a ccc Boolean algebra, then X ∈ Osset if and only if there exists

a maximal antichain A in B such that for every a ∈ A the set Cp(a, X) is finite.

Proof. Let us have X ∈ Osset, then there is a witness f ∈ Os such that rng(f) = X.

By the definition of Os there must be a function g : ω → Compl(B) such that

g ց 0 and f ≤ g. By induction we define a countable antichain A ′ = {A ′(i) : i ∈
ω} in Compl(B): Set A ′(0) = −g(0) and A ′(n) = −g(n) −

∨n−1

i=0 A ′(i). It suffices

to take a maximal antichain A in B as a refinement of the maximal antichain A ′.

On the other hand let us have X = 〈Xi : i ∈ ω〉 as stated in the fact, i.e. there

is a maximal antichain A = {A(i) : i ∈ ω}, such that ∀a ∈ A the set Cp(a, X)

is finite. Note that such X has to be finite, because B is ccc Boolean algebra.

Define functions g, f : ω → B by induction: A(0) is compatible with only finitely

many, say k0, elements of X. We set f(i) = Xi and g(i) = 1 for i ≤ k0. We

continue in a similar fashion, if A(n) is not compatible with any Xi, i > kn−1

then we set f(kn−1 + 1) = Xkn−1+1 and g(kn−1 + 1) = −
∨n

i=0 A(i). Otherwise

A(n) is compatible with finitely many, say m, elements of 〈Xi : i > kn−1〉 and

we set kn = kn−1 + m and f(kn−1 + i) = Xkn−1+i and g(kn−1 + i) = −
∨n−1

i=0 A(n)

for i ≤ m. Thus defined functions f and g satisfy: rng(f) = X and f ∈ Os since

g ց 0 and f ≤ g.

Since an ideal Os(B) contains every sequence with finite support we can again

easily describe its reconstruction from Osset in the same fashion as we did for

Z(B).

9.4 Fact. Let B be a ccc Boolean algebra, then the sequence f belongs to the Os(B)

if and only if it has a finite support or is finite to one and rng(f) ∈ Osset.

The previous two proposition lead us to alternative definition of the Zero -

convergence ideal Os(B) for a ccc Boolean algebra B in which we do not employ

a σ-completion of B.

9.5 Corollary. Let B be a ccc Boolean algebra, then the sequence f ∈ ωB belongs

to the Zero - convergence Os(B) if and only if there is a maximal antichain A in B
such that the set {n ∈ ω : f(n) ‖ a} is finite for every a ∈ A.

The following theorem characterises weakly distributive algebras among ccc

Boolean algebras in terms of Osset.
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9.6 Theorem. A ccc Boolean algebra B is weakly distributive if and only if Osset(B)

is a P-ideal on [B]≤ℵ0 .

Proof. (i) Let us have a sequence 〈Xn : n ∈ ω〉, Xn ∈ Osset(B). By the definition of

Osset(B) there is a collection of decompositions of unity Pn. By weak distributivity

there is a decomposition of unity P such that ∀p ∈ P ∀n ∈ ω the set Cp(p, Pn)

is finite. We enumerate P = {pi : i ∈ ω} and set

X =
⋃

n

{ x ∈ Xn : x ⊥ ∪j≤npj }.

Now a decomposition P is the witness of X ∈ Osset(B) and ∀n ∈ ω Xn\X is finite.

(ii) Let us have a collection {Pn : n ∈ ω} of maximal antichains. Clearly Pn ∈
Osset(B). Due to our assumptions there is a set X ∈ Osset(B) such that Pn\X

is finite for all n ∈ ω and some decomposition P which witnesses this fact i.e:

∀p ∈ P the set Cp(p, X) is finite, so the algebra B is weakly distributive.

The following principle was formulated by S. Todorcevic

9.7 Definition. P-Ideal Dichotomy (PID) Let S be an infinite set. Then for every

P-ideal I ⊂ [S]≤ω either

(i) ∃Y ⊂ S uncountable such that [Y]≤ω ⊂ I, or

(ii) ∃{Sn : n ∈ ω} such that
⋃

n Sn = S and ∀n ∈ ω ∀I ∈ I |Sn ∩ I| < ω.

The principle PID follows from the Proper Forcing Axiom and is also consistent

with GCH [Tod00b]. For related principles with many interesting applications,

see [AT97].

9.8 Lemma. If B is ccc Boolean algebra then there exists no uncountable X ⊂ B
such that [X]ω ⊂ Osset.

Proof. Let X ⊂ B+ be uncountable, where B+ = B − {0}. First we claim that

there exists some b ∈ B+ such that for every nonzero a ≤ b the set Xa = {x ∈
X : x ∧ a 6= 0} is uncountable. To see this assume that for every b ∈ B+ there

is some nonzero a ≤ b such that the set Xa is at most countable; thus the set

D = {a ∈ B+ : Xa is at most countable} is dense in B. By ccc D has a countable

subset W ⊂ D such that
∨

W = 1. Now X =
⋃

a∈W Xa; a contradiction.

Let b ∈ B+ be as in the claim. If Y ⊂ X is countable than we can find a

countable set Z ⊂ (X − Y) such that
∨

Z ≥ b. This is because
∨

(X − Z) ≥ b (by

the claim), and so a countable Z ⊂ (X − Y) with
∨

Z =
∨

(X − Y) exists by ccc.

Now let X0 ∈ [X]ω be such that
∨

X0 ≥ b and by induction let Xn ∈ [X −⋃
i<n Xi]

ω such that
∨

Xn ≥ b. Clearly
⋃

Xn ∈ [X]ω; we claim that
⋃

Xn 6∈ Osset.

Otherwise by corollary V.9.5 there is an antichain W such that every w ∈ W is

incompatible with all but finitely many x ∈ ⋃
Xn. To obtain a contradiction it is

enough to choose some w ∈ W such that w ∧ b 6= 0.

9.9 Corollary. (S. Quickert [Qui02]) Under PID every ccc, weakly distributive

Boolean algebra is σ-finite cc.
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9.10 Corollary. Let B be weakly distributive, ccc complete Boolean algebra. PID

implies that every singleton is a Gδ set in (B, τs).

Proof. It is enough to show that {0} is a Gδ set in (B, τs). Assuming PID for Is,

it follows that B =
⋃∞

n=0 Sn with each Sn meeting only finitely many elements

of each A ∈ Is. It follows that 0 is not in the closure of Sn − {0} for any n. Let

Un = B−cl(Sn−{0}). Each Un is an open neighbourhood of 0 and
⋂

n∈ω Un = {0},

hence {0} is Gδ in (B, τs).

9.11 Theorem. Assuming PID, every weakly distributive ccc complete Boolean al-

gebra carries a strictly positive Maharam submeasure.

Proof. Let m, d ∈ B be given by the decomposition theorem. If m = 1 the space

(B, τs) is completely metrizable. Suppose now that d > 0. By the corollary V.9.10

there is a family {Un : n ∈ ω} of open neighbourhoods of 0 such that
⋂

n∈ω Un =

{0}. We may assume that Un+1 ⊂ Un, and since B is weakly distributive, the

space is Fréchet and we may assume that each Un is downward closed. By the

decomposition theorem, d is in the closure of every nonempty open set, and since

the space is Fréchet, there exists for each n a sequence {an
k}k in Un that converges

to d. By weak distributivity there exists a function k(n) such that the sequence

{bn}n = {an
k(n)}n converges to d. Since d > 0 there exists a c > 0 such that

bn ≥ c for eventually all n, say all n ≥ n0. Since each Un is downward closed

and bn ∈ Un, it follows that c ∈ Un for all n ≥ n0, a contradiction.

9.12 Corollary. Assuming PID, every weakly distributive ccc complete Boolean al-

gebra adds independent reals.

This result was obtained independently by B. Velickovic [Vel05].

Let us say that B has the Gδ-property if {0} is a Gδ-set in (B, τs). In the proof

of theorem V.9.11 we applied PID by using the Gδ-property. Thus we proved the

following equivalence in ZFC.

9.13 Theorem. Let B be a complete Boolean algebra. Then B carries a strictly

positive Maharam submeasure if and only if

(i) B is weakly distributive, and

(ii) B has the Gδ property.

Note that the Gδ-property implies ccc, in fact it implies σ-finite cc. The pre-

ceding theorem was recently improved by S. Todorcevic to algebraic characteri-

sation of Maharam algebras.

9.14 Theorem. (S. Todorcevic [Tod04]) Let B be a complete Boolean algebra.

Then B carries a strictly positive Maharam submeasure if and only if

(i) B is weakly distributive, and

(ii) B satisfies the σ-finite cc.



V. CONTINUOUS SUBMEASURES 116

Proof. Using the Decomposition theorem V.7.4 it is enough to show that d < 1.

Suppose in contrary that d = 1.

Since B is σ-finite cc there are upward closed sets Vn such that

B+ =
⋃

n∈ω

Vn.

So we have downward closed sets −Vn = {a ∈ B : a 6∈ Vn} such that
⋂

−Vn = {0}.

From the definition of σ-finite cc it follows that Vn does not contain infinite

antichain. But in such a case −Vn are τs-topologically dense which is a contra-

diction with Theorem V.8.5.

To conclude the proof we have to show that −Vn are τs-topologically dense.

Let U 6= ∅ be τs-open. We show that U have to contain an infinite antichain. It

is enough to show that arbitrary a ∈ U can be split up to disjoint a1, a2 ≤ a,

a1, a2 ∈ U. Without loss on generality suppose a = 1. Since U is an open set,

the set V = {−x : x ∈ U} is also open. By the assumption d = 1 the intersection

U ∩ V is nonempty. Now choose arbitrary a1 ∈ U ∩ V , then a2 = −a1 ∈ U ∩ V .

Clearly a1, a2 ∈ U are disjoint which completes the proof.

10. REGULAR IDEALS ON Bω

In the previous we investigate the Os ideal on complete Boolean algebra. One is

naturally interested in how the factor algebra

Bω/Os

behaves as a forcing notion. Generalisation to more general ideals instead of Os

was motivated by M. Hrušák. First we characterise ideals I on Bω for which the

mapping

e : B −→ Bω

b 7−→ 〈b : n ∈ ω〉

determines a regular embedding

ê : B −→ Bω/I.

Note that trivially B is a regular subalgebra of Bω.

10.1 Definition. Let B be a Boolean algebra, I an ideal on Bω such that Fin ⊂ I
and e(b) 6∈ I for any b ∈ B+, i.e. I does not contain nonzero constants. We say

that I is regular if f : ω → B ∈ I if and only if there is a maximal antichain of

unity 〈cn ∈ B+ : n ∈ J〉 such that f ∧ e(cn) ∈ I for each n ∈ J.

Clearly the mapping e : B → Bω is an embedding of Boolean algebras.

10.2 Fact. For ideal I ⊂ Bω, I ⊃ Fin, the embedding e : B → Bω/I is regular if

and only if I is the regular ideal.
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Proof. If I is not regular then there is some f 6∈ I such that there is a decompo-

sition of unity 〈cn : n ∈ K〉 such that f ∧ e(cn) ∈ I for each n ∈ K. We claim

that 〈e(cn) : n ∈ K〉 is not a decomposition of unity in Bω/I, hence the embed-

ding is not regular. Clearly the elements e(cn) are positive (I does not contains

constants) and disjoint but they do not form a decomposition. Function f 6∈ I is

positive and disjoint with each e(cn) since f ∧ e(cn) ∈ I.

On the other hand if the embedding e : B → Bω/I is not regular, then there

is a decomposition 〈cn : n ∈ K〉 such that the 〈e(cn) : n ∈ K〉 is not maximal i.e.

there is a positive function f : ω → B such that f ∧ e(cn) ∈ I.

10.3 Definition. Let B be a complete Boolean algebra, I be an ideal on Bω and

let G be a generic ultrafilter on B over groundmodel V . We define

IG = {fG : f ∈ I},

where fG = {n ∈ ω : f(n) ∈ G}.

10.4 Lemma. Let B be a complete Boolean algebra. Then for any generic G on B

OsG = fin = [ω]<ω.

Proof. Let f ∈ Os and suppose on contrary that fG is infinite set for some generic

G. Since f ∈ Os, there exists g ց 0 such that f ≤ g. Clearly whenever f(n) ∈ G

then g(n) ∈ G. Since g is monotone and fG is infinite we have g(n) ∈ G for

every n ∈ ω. This is the contradiction since 0 =
∧

{g(n) : n ∈ ω} ∈ G.

On the other hand let us suppose that f 6∈ Os and set d = limf > 0. We

choose generic G such that d ∈ G. Clearly ∀k ∈ ω d ≤ ∨
{f(n) : n > k}, that

means that ∀k ∈ ω ∃m > k such that f(m) ∈ G; hence the set fG is infinite.

10.5 Fact. The canonical embedding of Boolean algebra B into Bω/Os(B) is regular

whenever B is σ-complete.

Proof. Let us suppose that f ∈ Bω−Os. It suffices to show that there exists some

d ∈ B such that e(d) ∧ f 6∈ Os. We set d = limf, clearly d > 0 since f 6∈ Os.

Following the simple computation: lim(e(d) ∧ f) = d ∧ limf = d > 0, yields that

e(d) ∧ f 6∈ Os. Hence e(d) is the required pseudoprojection (cf. I.3.18); which

completes the proof.

10.6 Fact. If an ideal I is regular, then Os ⊂ I.

Proof. Suppose f ∈ Os, by the definition there is a decreasing function g : ω → B
such that

∧
n∈ω g(n) = 0 and f ≤ g. Clearly g − e(g(n)) ∈ Fin for each n ∈ ω

and hence function g belongs to I. Since f ≤ g, f belongs also to I.

10.7 Corollary. If a Boolean algebra B is σ-complete, then the ideal Os(B) is the

least regular ideal containing Fin.

When we slightly modify the convergence structure Os to its Urysohn closure

U(Os) we obtain, by a similar argument that the canonical embedding of B into

Bω/U(Os) is also regular whenever the Boolean algebra B is ccc and complete.
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10.8 Corollary. Let B be a complete, ccc Boolean algebra. Then the canonical

embedding of the Boolean algebra B into Bω/U(Os(B)) is regular.

10.9 Theorem. Let B be a complete Boolean algebra. If an ideal I ⊂ Bω is regular

then

Bω/I ∼= B ⋆ (P(ω)/IG)V(B).

Proof. We define

ϕ : B ⋆ P(ω)/IG −→ Bω/I
(b, f) 7−→ e(b) ∧ f,

where f is a B-name for a subset of ω. Let us remind the ordering i.e.

(b, f) ≤ (c, g) if and only if b ≤ c & b ° ‘‘[f]I ≤ [g]I ",

where b ° ‘‘[f]I ≤ [g]I " means that e(b) ∧ f ≤I e(b) ∧ g.

It is a routine check to verify that ϕ preserves ordering, disjoint relation and

that ϕ[B ⋆ P(ω)/IG] is dense in Bω/I.

The following shows how the Boolean algebra Bω/Os(B) behaves from the

forcing point of view.

10.10 Corollary. (A. Kamburelis) If B is a complete Boolean algebra, then the

Boolean algebra Bω/Os(B) is isomorphic with an iteration of B and P(ω)/fin, that

means

Bω/Os(B) ∼= B ⋆ (P(ω)/fin)V(B).

10.11 THE BEHAVIOUR OF Bω/Z(B).

In general Z(B) is not an ideal in Bω. From preceding we know that Z(B) is

an ideal if and only if B as a forcing notion does not add independent reals (cf.

V.6.8). Equivalent property is:

Z(B) is the largest ideal in Bω such that Z(B) ∩ e[B] = {e(0)}.

Under this condition Z(B) is a regular ideal.

It was mentioned that Sacks or Miller algebras are examples for which Z(B)

is an ideal. Both, Miller and Sacks does not satisfies ccc.

In [BJP05] there are described examples of atomless ccc algebras for which

Z(B) is an ideal.

In chapter I we discussed general situation B ⊂ C, B subalgebra of C. We

described the smallest ideal I such that B is a regular subalgebra of C/I; cf.

I.3.20.

10.12 Theorem. Let B be a complete Boolean algebra such that Z(B) is an ideal.

Then

Bω/Z(B) ∼= B ⋆ (P(ω)/fin)V.
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Proof. Let G be a generic on B over V . Then e : B → Bω/Z(B) is a regular

embedding.

{fG : f ∈ Bω} = (P(ω))V[G]

{fG : f ∈ Z(B)} = (H)V[G],

where H is an ideal defined in II.2.21; note that B does not add independent

reals here. From II.2.23 it follows that

(P(ω)/H)V[G] ∼= (P(ω)/fin)V.

10.13 Corollary. Let B be a complete ccc Boolean algebra such that Z(B) is an

ideal. Then

Bω/U(Os) ∼= B ⋆ (P(ω)/fin)V.

Now let B be a complete Boolean algebra. We can ask how to describe in

VB an ideal Imin determined (note that whenever adding new real the following

embedding is not regular) by a couple

(P(ω)/fin)V ⊂ (P(ω)/fin)V(B).

i.e. the minimal ideal Imin such that the embedding

(P(ω)/fin)V →֒ (P(ω)/fin)V(B)/Imin

is regular.

10.14 Theorem. Let B be a complete Boolean algebra and G be a generic in B over

V . Then

Imin = U(Os)G.

Proof. Let f ∈ V be such that fG = ρ ⊂ ω destroys a MAD A ∈ V . We find a

name g ∈ U(Os) for the set ρ. Suppose f 6∈ U(Os); i.e. there is X ⊂ ω infinite

such that f ↾ Y 6∈ Os for each Y ∈ [X]ω. Let

X = { X ∈ [ω]ω : ∀Y ∈ [X]ω f ↾ Y 6∈ Os }.

For X ∈ X there is A ∈ A such that X ∩ A is infinite; denote this infinite inter-

section YX = X ∩ A. Since X ∈ X f ↾ YX 6∈ Os; i.e. limYX
f 6∈ G. Otherwise

if ∧

k∈ω

∨

k≤n∈YX

f(n) ∈ G,

then
∨

k≤n∈YX
f(n) ∈ G for each k ∈ ω and we get that the set fG ∩ (A ∩ X) is

infinite, which contradicts the fact that fG destroys MAD A. Now put

c =
∨

X∈X

limn∈YX
f(n) 6∈ G,
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and g(n) = f(n) − c; clearly gG = fG = ρ and g ∈ U(Os).

Let f ∈ U(Os) \ Os i.e. for each infinite X there is YX ∈ [X]ω such that

f ↾ YX ∈ Os. The family

F = { YX : X ∈ [ω]ω }

is dense in P(ω)/fin. Now pick an arbitrary MAD A ⊂ F . Clearly fG is infinite

set (f 6∈ Os) and destroys the MAD A.

This result together with corollary II.2.19 yields the following equivalence.

This equivalence was achieved independently by M. S. Kurilić and A. Pavlović in

[KP07].

10.15 Corollary. For complete Boolean algebra B the following are equivalent

(i) U(Os(B)) = Os(B),

(ii) there is no VB-destructible MAD in V ,

(iii) algebra B as a forcing notion does not add new reals.
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tures on Boolean algebras. Acta Univ. Carolin. Math. Phys., 40(2):27–

41, 1999.
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[Fri01] R. Frič. Boolean algebras: convergence and measure. In Proceedings of

the International School of Mathematics “G. Stampacchia” (Erice, 1998),

volume 111, pages 139–149, 2001.

[Gai64] H. Gaifman. Concerning measures on boolean algebra. Pacific J.Math.,

14:61–73, 1964.

[Gal80] F. Galvin. Chain conditions and products. Fund.Math., 108:33–48,

1980.
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