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Abstract

We deal with sequences of observations that are naturally ordered in time and assume various

underlying stochastic models. These models are parametric and some of the parameters are

possibly subject to change at some unknown time point. The main goal of this thesis is to

test whether such an unknown change has occurred or not. The core of the change point

methods presented here is in ratio type statistics based on maxima of cumulative sums.

Firstly, an overview of thesis’ starting points is given. Then we focus on methods for

detecting a gradual change in mean. Consequently, procedures for detection of an abrupt

change in mean are generalized by considering a score function. We explore the possibility

of applying the bootstrap methods for obtaining critical values, while disturbances of the

change point model are considered as weakly dependent.

Procedures for detection of changes in parameters of linear regression models are shown

as well and a permutation version of the test is derived. Then, a related problem of testing

a change in autoregression parameter is studied. Finally, our interest lies in panel data of

a moderate or relatively large number of panels, while the panels contain a small number

of observations. Asymptotic and bootstrap testing procedures to detect a possible common

change in means of the panels are established.

All the theoretical results are illustrated through simulations. Several practical applica-

tions of the developed procedures are presented on real data as well.

Keywords:

change point, maximum type statistics, ratio type statistics, hypothesis testing, change in

mean, abrupt change, gradual change, change in regression, change in autoregression, panel

data, asymptotic distribution, robustness, bootstrap, weak dependence, block bootstrap
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Abstrakt

Budeme se zabývat posloupnostmi pozorování, která jsou přirozeně uspořádána v čase

a současně pro ně uvažujeme různé stochastické modely. Tyto modely jsou parametrické

a některé z parametrů mohou podléhat změně v předem neznámém čase. Hlavní cíl této di-

sertace spočívá v testování, zda taková změna nastala nebo ne. Jádrem zde prezentovaných

metod detekce okamžiku změny jsou statistiky podílového typu založené na maximech ku-

mulativních součtů.

Nejdřív jsou prezentována východiska disertační práce. Pak se zaměříme na metody

detekce postupné změny ve střední hodnotě. Následně zobecníme procedury pro detekci

náhlé změny ve střední hodnotě pomocí skórové funkce. Budeme studovat možnosti použití

metody bootstrap pro získání kritických hodnot v případě, že náhodné chyby modelu mohou

být slabě závislé.

Představíme také procedury pro detekci změny v parametrech lineárního regresního mo-

delu a odvodíme permutační verzi testu. Dále budeme studovat příbuzný problém testování

změny v parametru autoregrese. Na závěr se zaměříme na panelová data se středně velkým až

velkým počtem panelů, kde panely obsahují malý počet pozorování. Odvodíme asymptotické

a bootstrapové procedury pro detekci možné společné změny v panelech.

Všechny teoretické výsledky jsou ilustrovány pomocí simulací. Navržené metody jsou

taktéž aplikovány na reálných datech.

Klíčová slova:

okamžik změny, statistika maximálního typu, statistika podílového typu, testování hypotéz,

změna ve střední hodnotě, náhlá změna, postupná změna, změna v regresi, změna v autore-

gresi, panelová data, asymptotické rozdělení, robustnost, bootstrap, slabá závislost, blokový

bootstrap
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Preface

To know whether a change has happened is a task that is not only interesting, but also de-

sirable for many scientific fields, e.g., in econometrics, biology, or climatology. Our approach

to detect the unknown change lies in usage of ratio type test statistics. When computing ad-

equately constructed test statistics, it is not necessary to estimate variance of the underlying

stochastic model. This may be considered as the most remarkable advantage of ratio type

test statistics. Such property makes them a reasonable alternative to classical (non-ratio)

statistics—most of all in situations, when it is difficult to find a suitable variance estimate.

Our main interest—ratio type test statistics for detecting the unknown change—is intro-

duced in the first chapter of the thesis. A summary of previous results on model of abrupt

change in mean is given. An overview of the recent results concerning the change point

problem is provided.

One can think of a change in mean in the way that the change from a constant mean is

not rapid but rather continuous. Therefore, a gradual change in mean is investigated in the

second chapter and testing procedures based on the ratio type test statistics are derived.

In the third chapter, the simplest change point model is considered—an abrupt change

in mean, where at most one change in mean of the observed sequence could happen. Our

contribution to this setup lies in considering α-mixing model errors in combination with

robust ratio type test statistics. Besides that, a block bootstrap resampling testing procedure

is implemented for the abrupt change in mean model.

The fourth chapter deals with detection of a change in regression parameters in a trending

regression model with independent random errors. Again, a resampling testing procedure is

derived and its properties are studied in simulations.

Moreover, tests for a change in autoregression based on the ratio type statistics are

developed in the fifth chapter as a special case of the regression change point detection

procedures.

On the top of that, the sixth chapter concentrates on the change point problem for panel

xv



xvi

data. In the considered scenario, it is assumed that there can be at most one common change

point for all the panels that have fixed length. The number of panels is sufficiently large and

this fact is used to obtain asymptotic results. A bootstrap testing technique in this setup is

proposed and its validity proved.

Finally, several simulation studies and real data examples through the whole thesis il-

lustrate the theoretical results presented here. Some of the well-known and frequently used

definitions and theorems are recapitulated in the appendix at the end.



Notation

a.s. . . . almost surely

B . . . Brownian bridge

a.s.ÝÝÑ . . . convergence almost surely

DÝÑ . . . convergence in distribution

PÝÑ . . . convergence in probability P

Dra,bsÝÝÝÝÑ . . . convergence in the Skorokhod topology on ra, bs

O, o . . . deterministic Landau symbols, confer Appendix

E . . . expectation

iid . . . independent and identically distributed

I . . . indicator function

Z . . . integers, i.e., t. . . ,´2 ´ 1, 0, 1, 2, . . .u

N . . . natural numbers, i.e., t1, 2, . . .u

N0 . . . natural numbers with zero, i.e., t0, 1, 2, . . .u

P . . . probability

R . . . real numbers

sgn . . . signum function

Dra, bs . . . Skorokhod space on interval ra, bs
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W . . . standard Wiener process

OP ,oP . . . stochastic Landau symbols, confer Appendix

r¨s . . . truncated number to zero decimal digits (rounding down the absolute

value of the number while maintaining the sign)

Var . . . variance
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Chapter 1

Introduction to Ratio Type Tests

In Change Point Analysis

Ratio type statistics studied in this thesis are derived from non-ratio type statistics based

on partial sums of residuals. They do not need to be standardized by any variance estimate,

which makes them a suitable alternative for non-ratio type statistics, most of all in situations,

when it is difficult to find a variance estimate with satisfactory properties. Such difficulty

can occur in situations with dependent random errors. Although, variance estimators often

do not perform well even in the iid case, especially under alternative.

1.1 Main goals

We aim to utilize the idea of ratio type statistic for testing structural changes in different

setups, which include gradual change, abrupt change, robust procedures suitable for heavy-

tailed distributions, change in regression parameters, change in autoregression of first order,

and change in mean for panel data with fixed panel size. An important part of this task is

to derive asymptotic properties under null hypothesis as well as under alternative. Limiting

distributions can be theoretically derived, but the corresponding critical values are typically

not available in an explicit form. Therefore, it is advantageous to use resampling methods

in order to determine the rejection region. Such methods also need to be justified theoret-

ically by proving asymptotic equivalency of both the original and the resampling statistic.

Computer simulations using R software and real data applications give us the idea about

performance of the proposed tests.

Our main concern are changes in the mean values of stochastic processes, while the

particular stochastic process can have a very general error structure. The only chapter,

where the change in mean is not of the main interest, concerns the change of autoregression

1



2 1.2 GENERAL LOCATION MODEL

parameter. In all of the studied models, the random deviations from the mean structure are

assumed to possess common unknown variance. Hence, the change in the variance structure

is not in the center of our interest. Although similarly constructed ratio type statistics were

used to test for a change in variance in Zhao et al. (2010), Zhao et al. (2011) and Chen and

Tian (2014).

1.2 General location model

Let us begin with the simplest model of a single change in location parameter. For a fixed

n P N, we consider a set of observations Y1,n, . . . , Yn,n obtained at time ordered points. We

are interested in testing the null hypothesis of all observations being random variables with

distributions having equal mean values. Our goal is to test against the alternative of the

first τn observations having distributions with mean value µn and the remaining n ´ τn

observations coming from distributions with mean values µn ` δn, δn ‰ 0. We suppose that

τn, µn and δn are unknown parameters. We can describe the situation as a special case of

the general location model

Yk,n “ µk,n ` εk, k “ 1, . . . , n, (1.1)

where µ1,n, . . . , µn,n are unknown mean values of the original observations Y1,n, . . . , Yn,n
and ε1, . . . , εn are random error terms. The forthcoming results for the performing statis-

tical tests will be of asymptotic character. It means that we consider that the number of

observations n is increasing over all limits.

1.3 At most one change in mean

When considering a model with at most one change in constant mean, we can further specify

the above described model (1.1) as

Yk,n “ µ` δnItk ą τnu ` εk, k “ 1, . . . , n, (1.2)

where µ, δn and τn are unknown parameters.

Despite the fact, that the observed data tYk,nun,8k“1,n“1
form a stochastic triangular array,

the random disturbances tεnu8
n“1 are just a single sequence of random variables. So, the

errors remain the same for each row of the triangular array of the observed variables.

Remark 1.1 (△-scheme). For the sake of convenience, we suppress the index n in the ob-

servations Yk,n as well as in the parameters δn and τn (and in variables depending on the

latter) whenever possible. However, we have to keep in mind that in the asymptotic results

below, as n Ñ 8, both δn and τn may be changing when n is increasing.



CHAPTER 1. INTRODUCTION TO RATIO TYPE TESTS IN CHANGE POINT ANALYSIS 3

With respect to previous Remark 1.1 about the triangular scheme, model (1.2) can be

rewritten as

Yk “ µ ` δItk ą τu ` εk, k “ 1, . . . , n.

Assumption T1. Random errors are assumed to have zero mean and satisfy the functional

central limit theorem (CLT), i.e., they satisfy

D σ ą 0 such that
1?
n

ÿ

1ďiďnt

εi
Dr0,1sÝÝÝÝÑ
nÑ8

σWptq,

where tWptq, t P r0, 1su denotes a standard Wiener process and the symbol
Dr0,1sÝÝÝÝÑ
nÑ8

stands

for weak convergence in space Dr0, 1s.

Remark 1.2. We are using simplified notation for the weak convergence of sequences of

stochastic processes every time when it is clear from the context. That is, let us consider

a sequence of stochastic processes tUnptq, t P ra, bsu8
n“1. We write

Unptq Dra,bsÝÝÝÝÑ
nÑ8

Uptq

instead of

tUnptq, t P ra, bsu Dra,bsÝÝÝÝÑ
nÑ8

tUptq, t P ra, bsu,

which means that the sequence of stochastic processes tUnptq, t P ra, bsu8
n“1 converges in the

Skorokhod topology (Billingsley, 1968) to a stochastic process tUptq, t P ra, bsu. We also say,

that the sequence of processes weakly converges to the process.

Assumption T1 is satisfied, e.g., for iid errors having finite p2 ` ∆q-th moment for some

∆ ą 0. In case of α-mixing random errors, the functional CLT holds, when the assumptions

of Theorem 1 by Doukhan (1994, Section 1.5.1) hold. The functional central limit theo-

rem can also be applied to martingale differences, when the assumptions of Theorem 27.14

by Davidson (1994) are satisfied.

Using the above introduced notation, the null and the alternative hypothesis can be

expressed as

H0 : τ “ n (1.3)

and

H1 : τ ă n, δ ‰ 0. (1.4)

A graphical illustration of the change point model (1.2) in mean under the alternative, can
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be seen in Figure 1.1.

k “ 1 k “ τ k “ n

µ

δ

Figure 1.1: Illustration of the change point in location problem – abrupt change in mean.

For this situation, a broad range of test statistics has been developed. Many of them are

functionals of the cumulative sums (CUSUM) statistic

Sk,n “
kÿ

i“1

pYi ´ sYnq.

where sYn “ 1{nřn
j“1

Yj is the sample mean. This is due to the fact that such test statistics

naturally arise as a result of the likelihood approach (Csörgő and Horváth, 1997, Chapter 1).

For example the test statistic

Tn “ 1a
pσ2
n

max
1ďkďn´1

ˇ̌
ˇ̌
ˇ
kÿ

i“1

pYi ´ sYnq
ˇ̌
ˇ̌
ˇ (1.5)

with a suitable variance estimator pσ2
n may be used. The null hypothesis is rejected for large

values of Tn.

1.4 Variance estimation

In order to ensure that a test statistic is asymptotically distribution-free under the null

hypothesis, it is necessary to use a suitable estimator of variance for the random error

terms. The minimal requirement for pσ2
n would be consistency (i.e., pσ2

n
PÝÑ σ2) under H0 and

boundedness (in probability) under H1.

Often, the Bartlett estimator is used to estimate the variance

σ̂2

npLq “ R̂p0q ` 2
ÿ

1ďkďL

ˆ
1 ´ k

L

˙
R̂pkq, L ă n,
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where

R̂pkq “ 1

n

ÿ

1ďiďn´k

pYi ´ ȲnqpYi`k ´ Ȳnq, 0 ď k ă n.

However, it does not always provide satisfactory results and finding a proper estimate may

be troublesome. The rate of convergence is small even under the null hypothesis and σ̂2
npLq

might go to infinity under the alternative (Horváth et al., 2008).

The consistency properties of the above described Bartlett estimator and of its modifi-

cation are studied in Antoch et al. (1997). The authors also describe difficulties of long run

variance estimation when detecting a change in the mean of a linear process in more detail.

A simulation study shows that it is not easy to find a variance estimate that would work

well both under null hypothesis and under alternative. Furthermore, such estimators are

often very sensitive to the choice of the window length L.

1.5 Ratio type test statistic based on CUSUM statistic

In Horváth et al. (2008) the authors introduced and studied several ratio CUSUM-type test

statistics. When using these statistic, estimating variance is not necessary. We take a closer

look on one of the proposed ratio type statistics

Tn “ max
nγďkďn´nγ

max
1ďiďk

ˇ̌
ˇ̌
ˇ

ř
1ďjďi

pYj ´ sYkq
ˇ̌
ˇ̌
ˇ

max
kďiďn´1

ˇ̌
ˇ̌
ˇ

ř
i`1ďjďn

pYj ´ rYkq
ˇ̌
ˇ̌
ˇ

, (1.6)

where 0 ă γ ă 1{2 is a given constant and

sYk “ 1

k

kÿ

i“1

Yi and rYk “ 1

n´ k

nÿ

i“k`1

Yi. (1.7)

The asymptotic properties under the null hypothesis and under the alternative are de-

scribed in following two theorems.

Theorem 1.1. Suppose that Y1, . . . , Yn follow model (1.2) and that the null hypothesis (1.3)

is true. Then, if Assumption T1 holds

Tn
DÝÝÝÑ

nÑ8
sup

γďtď1´γ

sup0ďuďt |Wpuq ´ u{tWptq|
suptďuď1

ˇ̌
ˇĂWpuq ´ p1 ´ uq{p1 ´ tqĂWptq

ˇ̌
ˇ
, (1.8)

where tWpxq, 0 ď x ď 1u is a standard Wiener process and ĂWpxq “ Wp1q ´ Wpxq.
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Theorem 1.2. Suppose that Y1, . . . , Yn follow model (1.2) and that the alternative hypoth-

esis (1.4) is true. Further suppose that τ “ rnts with some 0 ă t ă 1 and

n1{2 |δn| ÝÝÝÑ
nÑ8

8.

Then, for γ ă t ă 1 ´ γ holds

Tn
PÝÝÝÑ

nÑ8
8.

Proof. The proofs of both theorems may be found in Horváth et al. (2008).

Let us consider the asymptotic distribution from (1.8). A Brownian bridge tBptq, t P
r0, 1su is defined as

Bptq “ Wptq ´ tWp1q, t P r0, 1s.

Then, the change of variable and the scale transformation of W give that

sup
0ďuďt

|Wpuq ´ u{tWptq| “ sup
0ďsď1

|Wpstq ´ sWptq| D“
?
t sup
0ďsď1

|Bpsq| , @ t P p0, 1q.

Similarly,

sup
tďuď1

ˇ̌
ˇĂWpuq ´ p1 ´ uq{p1 ´ tqĂWptq

ˇ̌
ˇ D“

?
1 ´ t sup

0ďsď1

ˇ̌
ˇ rBpsq

ˇ̌
ˇ , @ t P p0, 1q,

where t rBpsq, s P r0, 1su is also a Brownian bridge. The Wiener process W has independent

increments and, therefore, for any 0 ă t ă 1 we have that tWpuq ´ u{tWptq, 0 ď u ď tu
and tĂWpuq ´ p1 ´ uq{p1 ´ tqĂWptq, t ď u ď 1u are independent. Hence, tBpsq, s P r0, 1su and

t rBpsq, s P r0, 1su are two independent Brownian bridges.

It follows that the ratio from the limit distribution (1.8) can be equivalently expressed

as a functional of Brownian bridges

sup0ďuďt |Wpuq ´ u{tWptq|
suptďuď1

ˇ̌
ˇĂWpuq ´ p1 ´ uq{p1 ´ tqĂWptq

ˇ̌
ˇ

D“
ˆ

t

1 ´ t

˙1{2
sup0ďsď1 |Bpsq|
sup0ďsď1

ˇ̌
ˇ rBpsq

ˇ̌
ˇ

(1.9)

for any t P p0, 1q.
The lower bound for k in (1.6) may be relaxed to 1 (or 2, since the ratio is equal to 0

for k “ 1) and, correspondingly, supγďtď1´γ in the limit distribution may be replaced

with sup0ătď1´γ . However, as noted in Hušková (2007), this does not remain true for the

supremum of the upper bound, i.e., supγďtď1´γ cannot be replaced by sup0ătă1 nor can it
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be replaced by supγďtă1, since

lim
tÑ1´

sup
tďsď1

ˇ̌
ˇWpsq ´ s

t
Wptq

ˇ̌
ˇ “ 0, a.s.

In the original article, we can also find modifications of Vn and other ratio type statis-

tics for different kinds of alternatives, particularly for detecting changes from asymptotic

stationary sequence into an asymptotic difference stationary sequence.

1.6 General form of the ratio type test statistic

A general form of a test statistic studied in this thesis is

max
nγďkďn´nγ

max
1ďjďk

Vj,k

max
kďjďn´1

rVj,k
, (1.10)

where Vj,k for j “ 1, . . . , k denotes a statistic based on observations Y1, . . . , Yk and rVj,k
for j “ k ` 1, . . . , n is a similar statistic based on observations Yk`1, . . . , Yn. Constant

0 ă γ ă 1{2 is a known (predetermined) parameter. A reversed ratio, i.e., numerator based

on the last n ´ k observation and denominator based on the first k observations can be

also considered. Using a reversed ratio type statistic is possible and all the properties and

asymptotic results for the test statistic remain the same, when the same model structure

before and after the change is considered under alternative and when the random errors are

iid (under certain conditions, they can even be weakly dependent). A situation, where both

statistics cannot be symmetrically interchanged is studied in Chapter 2.

The basic motivation for studying such ratio type test statistics lies in the fact that when

computing such test statistic, it is not necessary to estimate variance of the underlying model.

This property makes the ratio type statistics a suitable alternative of classical (non-ratio

type) statistic—most of all in situations, when variance estimation is not a straightforward

task.

1.7 Change point estimation

Until now, we mainly dealt with task of hypotheses testing. Particularly, we tried to answer

the question whether a change in mean of a time series occurred or not. However, hypothesis

testing in change point analysis goes hand in hand with change point estimation and after

a change is detected, it is a very important task to determine the exact time point, when

the change occurred. The ratio type test statistics are typically not suitable to do this, since

the ratio values in (1.10) usually achieve their maximum towards one of the end points of

the observed interval (i.e., for k close to nγ or np1 ´ γq).
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To estimate the actual change point, several methods may be used. In the situation of

stable variance, common change point estimators generally do not require variance estima-

tion. Therefore, the ratio type statistic may be used in combination with such methods. For

example, a natural choice in the previously discussed case would be to employ the related

non-ratio type statistic, which corresponds to the numerator of the ratio type statistic for

k “ n in (1.6), i.e.,

pτn “ arg max
1ďiďn

ˇ̌
ˇ̌
ˇ

ÿ

1ďjďi

pYj ´ sYnq
ˇ̌
ˇ̌
ˇ .

1.8 State of art and preliminary work on the ratio type

test statistics

Kim (2000) and, consequently, Kim and Amador (2002) studied how to detect a struc-

tural change characterized by a shift in persistence of linear time series using a similarly

constructed ratio type statistic. This work is further continued by the simulation study

of Leybourne and Taylor (2006), where both asymptotic and finite sample properties of the

proposed test are studied.

In Hušková (2007) two ratio type statistics based on cumulative sums of residuals are

briefly introduced. These are intended to be used when testing whether the mean has

changed at an unknown time and also when testing for change from asymptotic stationary

sequence into asymptotic difference stationary sequence. In Horváth et al. (2008), more

details on the topic are given and other ratio type test statistics are introduced. The

applicability of the method is demonstrated through a simulation study.

Zhao et al. (2010) and Zhao et al. (2011) propose ratio type tests to detect change in the

variance of linear processes. Furthermore, a new change point estimation method based on

the ratio type statistics is introduced by Zhao et al. (2011).

Chen and Tian (2014) studied a ratio type test to detect the variance change in the

nonparametric regression models under both fixed and random design cases.

The same ratio type statistic as introduced in this chapter is studied to analyse change

in mean for heavy tailed distributions in the work of Wang et al. (2014). This leads to

a more general asymptotic distribution under the null hypothesis, which is a functional of

stable Levy processes. A bootstrap approximation method to determine the critical values

and change point estimation using the ratio method are also discussed.

Bazarova et al. (2014) develop a ratio type test to detect changes in the location pa-

rameters of dependent observations with infinite variances. The ratio type statistic based

on the cumulative sums’ process is adjusted by trimming off a set of observations that are

the largest in magnitude. Moreover, the ratio and non-ratio type statistics are compared by

simulations.
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1.9 Groundwork for the thesis

This thesis focuses on the ratio type statistics based on cumulative sums that where derived

from maximum type test statistics for detection of changes. Part of the work has already

been published.

In Madurkayová (2007) a ratio type statistic for testing the gradual change in mean is

derived. The random errors are considered to be iid with finite variance. Ratio type statistics

for a trending regression model with iid random errors are investigated in Madurkayová

(2009a). Madurkayová (2009b) and Madurkayová (2011) deal with a robust version of the

ratio type statistic for the abrupt change in location parameter, while α-mixing random

errors are assumed. Furthermore, a block bootstrap method for obtaining critical values of

the test statistic is studied. Peštová and Pešta (2015) focus on panel data that consist of

a moderate or relatively large number of panels, while the panels contain a small number

of observations. Testing procedures based on the ratio type statistics to detect a possible

common change in means of the panels are established. A bootstrap testing technique in

this setup is proposed and its validity proved.
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Chapter 2

Least Squares Procedures For

Gradual Change In Mean

In this chapter, we deal with statistical methods for detection of a gradual change in mean

after an unknown time point, where the change is no more rapid but rather continuous. We

report on some recent results related to the topic and, consequently, we try to extend the

ideas by incorporating the ratio type test statistics for the detection of a gradual change.

We outline the possibility of extending the idea of the ratio CUSUM type statistic in-

troduced in the previous chapter for testing simple shift in mean to the case of testing for

the gradual change. A demonstration of the proposed method on simulated data is also

included. The text is based on the paper by Madurkayová (2007).

2.1 Introduction

In the previous chapter, a ratio type test statistic for detecting a single change in the mean

was described. Now, we handle the problem of testing for the gradual change. We describe

a non-ratio type test statistic based on partial sums of weighted residuals, which can be

considered as an analogue of the CUSUM statistic. Then, we take it as a basis for the ratio

type test statistic, similar to the one for testing against one abrupt change in the mean.

Moreover, we study asymptotic properties of the proposed test statistic.

The problem of testing the null hypothesis of no change against the alternative of the

gradual change after some unknown time point τ is related to the case of testing a change in

regression parameters. Several methods for handling such types of alternatives are generally

discussed for example in Csörgő and Horváth (1997) or Hušková and Steinebach (2000).

Particularly, Jarušková (1998) and Albin and Jarušková (2003) studied and proposed testing

appearance of a linear trend. Additionally to that, Jarušková (1999) dealt with appearance

11
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of a polynomial trend.

2.2 Basic assumptions and notation

First of all, let us introduce the notation. Similarly as in the previous chapter, we suppose

to have a set of observations Y1, . . . , Yn obtained at time ordered points, which follow the

general location model (1.1) taking into account Remark 1.1. The model with the gradual

change after an unknown time point τ can be further specified as

Yk “ µ` δ

ˆ
k ´ τ

n

˙α

`
` εk, k “ 1, . . . , n, (2.1)

where µ, δ “ δn, and τ “ τn are unknown parameters. The symbol a` denotes the positive

part of a real number a, i.e.,

a` “

$
&
%
a if a ě 0,

0 if a ă 0.

The parameter α ą 0 is supposed to be known. We assume the following model assumption.

Assumption G1. Errors ε1, . . . , εn are iid such that E εk “ 0, Var εk “ σ2 ą 0, and

E |εk|2`∆ ă 8, for k “ 1, . . . , n and some ∆ ą 0.

Note that Assumption G1 is postulated in the way that the functional central limit

theorem holds for the errors of model (2.1).

We are again interested in testing the null hypothesis of no change in mean

H0 : τ “ n (2.2)

against the alternative of the gradual change in mean

H1 : τ ă n, δ ‰ 0. (2.3)

A graphical illustration of the change point model (2.1) for the gradual change in mean

under the alternative can be seen in Figure 2.1.

2.3 Non-ratio type test statistic

The above described model is considered in Hušková and Steinebach (2000). The authors

studied the properties of a class of test procedures based on partial sums of weighted residuals

sSk,n “
nÿ

i“1

pxik ´ x̄k,nqYi, k “ 1, . . . , n,
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k “ 1 k “ τ k “ n

µ

Figure 2.1: Illustration of the gradual change point problem.

where

xik “ xikpn, αq “
ˆ
i´ k

n

˙α

`
, i, k “ 1, . . . , n;

x̄k,n “ x̄k,npαq “ 1

n

nÿ

i“1

xik, k “ 1, . . . , n.

The (non-ratio type) test statistic has the form

Gn “ 1

pσn
?
n

max
1ďkďn´1

ˇ̌ sSk,n

ˇ̌
,

where pσn is some general consistent estimator of σ, i.e., it satisfies the condition

pσn ´ σ “ oP p1q, n Ñ 8. (2.4)

Under the assumptions for the model of the gradual change, asymptotic behavior of Gn

under the null hypothesis is given by the following theorem.

Theorem 2.1. Suppose that Y1, . . . , Yn follow model (2.1), Assumption G1 is satisfied, and
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condition (2.4) holds. Then, under null hypothesis (2.2)

Gn
DÝÝÝÑ

nÑ8
sup

0ďtď1

ˇ̌
ˇ̌
ż 1

t

αpx´ tqα´1
Wp1 ´ xqdx´ p1 ´ tqα`1

α ` 1
Wp1q

ˇ̌
ˇ̌ ,

where tWptq, 0 ď t ď 1u is a standard Wiener process.

Proof. Theorem 2.2 by Hušková and Steinebach (2000) for gptq “ tα`, t P R is applied

together with the Slutsky’s theorem and consistency assumption (2.4).

The next theorem describes the limit behavior of the non-ratio type test statistic under

the alternative.

Theorem 2.2. Suppose that Y1, . . . , Yn follow model (2.1) and Assumption G1 is satisfied.

Assume that
?
n|δn| Ñ 8 as n Ñ 8 and τ “ rnts for some t P p0, 1q. Then, under

alternative (2.3)

Gn
PÝÝÝÑ

nÑ8
8.

Proof. Without loss of generality suppose µ “ 0. Let us take k “ τ . Then for the mean

value of n´1{2| sSτ,n|, we have that

E
| sSτ,n|
n1{2 ě

ˇ̌
ˇ̌E

sSτ,n

n1{2

ˇ̌
ˇ̌ ,

where the right side is equal to

ˇ̌
ˇ̌
ˇ

nÿ

j“τ`1

δn

n1{2

ˆ
j ´ τ

n

˙2α

´
nÿ

j“τ`1

ˆ
j ´ τ

n

˙α
1

n

nÿ

m“τ`1

δn

n1{2

ˆ
m´ τ

n

˙α
ˇ̌
ˇ̌
ˇ

“ n1{2|δn|
„ pn´ rntsq2α`1

n2α`1

ˆ
α2

p2α` 1qpα ` 1q2 ` rnts
npα ` 1q2 ` o p1q

˙

as n Ñ 8. The expression in square brackets tends to a positive non-zero limit. Hence by

assumption
?
n|δn| Ñ 8 as n Ñ 8, we have E |n´1{2 sSτ,n| Ñ 8 as n Ñ 8. Subsequently,

max1ďkďn´1 |n´1{2 sSk,n| PÑ 8 as n Ñ 8.

Remark 2.1. The case of α “ 1 was discussed and limiting extreme value distributions of

Gumbel type were derived for the test statistic in Jarušková (1998). These results were

extended to the polynomial trend alternative in Jarušková (1999).

2.4 Ratio type test statistic for gradual change

Now, a natural question arises, whether it is possible to generalize the concept of ratio type

statistics and obtain a test for the gradual change alternative using a ratio type test statistic
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that does not depend on the choice of estimate of σ. Being particular, it is demanded to

avoid variance estimation and, hence, omit assumption (2.4). Following the analogy to the

ratio type statistic (1.6), we arrive at the idea to study the statistic of the following form

Gn “ max
nγďkďn´nγ

max
kďiďn´1

| rSi,k|

max
1ďiďk

| sSi,k| ,

where 0 ă γ ă 1{2 is a given constant and

sSi,k “
kÿ

j“1

pxji ´ x̄i,kqYj , i, k “ 1, . . . , n,

rSi,k “
nÿ

j“k`1

pxji ´ x̃i,kqYj , i “ 1, . . . , n; k “ 1, . . . , n ´ 1,

x̄i,k “ 1

k

kÿ

j“1

xji, i, k “ 1, . . . , n,

x̃i,k “ 1

n´ k

nÿ

j“k`1

xji, i “ 1, . . . , n; k “ 1, . . . , n´ 1.

Similarly as in the case of statistics described in Chapter 1, the numerator and the

denominator in the ratio are based on different subsets of subsequent observations. However,

the subsets are not the same. For a fixed k the numerator in Gn is based on observations

Yk`1, . . . , Yn, while in Tn from (1.6), it is the denominator that is based on Yk`1, . . . , Yn.

The reason for the subsets being different is that otherwise the statistic Gn would not have

desirable asymptotic properties under alternative (2.3).

Let us discuss the asymptotic properties of the ratio type test statistic Gn under the null

hypothesis.

Theorem 2.3 (Under null). Suppose that Y1, . . . , Yn follow model (2.1) and Assumption G1

is satisfied. Then, under null hypothesis (2.2)

Gn
DÝÝÝÑ

nÑ8
sup

γďtď1´γ

sup
tďsď1

ˇ̌
ˇ
ş1
s
αpx ´ sqα´1 ĂWpxqdx´ 1

1´t

ps´tqα`1

α`1
ĂWptq

ˇ̌
ˇ

sup
0ďsďt

ˇ̌
ˇ
şt
s
αpx ´ sqα´1Wpt´ xqdx´ 1

t

pt´sqα`1

α`1
Wptq

ˇ̌
ˇ
, (2.5)

where tWpuq, 0 ď u ď 1u is a standard Wiener process and ĂWpuq “ Wp1q ´ Wpuq.

Proof. The theorem can be proved by the same means as the asymptotic results for Tn.

We give the proof along the lines of the proof of Theorem 2.1 by Hušková and Steinebach

(2000, p. 61–63). First, we note that by the Komlós-Major-Tusnády strong approximations
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(Csörgő and Révész, 1981), there exists a Wiener process tWpyq : 0 ď y ă 8u such that

max
1ďiďk

ˇ̌
ˇ̌
ˇ

iÿ

j“1

Yj ´ µ

σ
´ Wpiq

ˇ̌
ˇ̌
ˇ “ oP

´
k

1

2`∆

¯
, k Ñ 8. (2.6)

Moreover, Theorem 1.2.1 by Csörgő and Révész (1981) provides that for any Wiener process

tWpyq : 0 ď y ă 8u:

sup
0ďtďT

sup
0ďyď1

|Wpt` yq ´ Wptq| a.s.“ O
´

plog T q1{2
¯
, T Ñ 8. (2.7)

Let us denote i1 “ k ´ i ` 1 and Y 1
j “ Yk´j`1, j “ 1, . . . , k. Then, after some calculations,

by (2.6) we get

sSi,k “ σ

˜
i1´1ÿ

m“1

„´m
n

¯α

´
ˆ
m ´ 1

n

˙α i1´mÿ

l“1

Y 1
l ´ µ

σ
´ 1

k

i1´1ÿ

m“1

ˆ
i1 ´m

n

˙α kÿ

l“1

Y 1
l ´ µ

σ

¸

“ σ

˜
i1´1ÿ

m“1

„´m
n

¯α

´
ˆ
m ´ 1

n

˙α
Wpi1 ´mq ´ 1

k

kÿ

m“i`1

ˆ
m´ i

n

˙α

Wpkq
¸

` oP

ˆˆ
k ´ i

n

˙α ˆ
pk ´ iq

1

2`∆ ` k ´ i

k
k

1

2`∆

˙˙
, k Ñ 8, (2.8)

uniformly in i “ 1, . . . , k´ 1. Now, let us take k “ rnts and i “ rnss for some 0 ă s ă t ă 1.

Similarly as in Hušková and Steinebach (2000), by (2.7) and considering properties of the

Wiener process, it can be shown that as n Ñ 8

rntsÿ

m“rnss`1

„ˆ
m ´ rnss

n

˙α

´
ˆ
m´ rnss ´ 1

n

˙α
Wprnts ´m` 1q

“
ż rnts

n

rnss`1

n

α

ˆ
y ´ rnss

n

˙α´1

`
Wpnpt ´ yqqdy

`OP

ˆˆ rnts ´ rnss
n

˙α a
logprnts ´ rnssq

˙

“ 1

t

pt ´ sqα`1

pα ` 1q Wpntq `OP

ˆˆ rnts ´ rnss
n

˙α a
logprnts ´ rnssq

˙
(2.9)
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and

1

rnts

rntsÿ

m“1

ˆ
m ´ rnss

n

˙α

`
Wprntsq

“ 1

rnts

rntsÿ

m“1

ˆ
m´ rnss

n

˙α

`
Wpntq `OP

˜
prnts ´ rnssqα`1

a
logprntsq

rntsnα

¸

“ 1

t

pt´ sqα`1

pα ` 1q Wpntq `OP

˜
prnts ´ rnssqα`1

a
logprntsq

rntsnα

¸
(2.10)

uniformly in s, t P r0, 1s, s ď t ´ 1

n
. Furthermore,

ż rnts
n

rnss`1

n

α

ˆ
y ´ rnss

n

˙α´1

`
Wpnpt ´ yqqdy

“
ż t

s

α py ´ sqα´1

` Wpnpt ´ yqqdy ` OP

ˆˆ rnts ´ rnss
n

˙α

`

˙
(2.11)

and

1

rnts

rntsÿ

m“1

ˆ
m ´ rnss

n

˙α

`
Wpntq

“ 1

t

pt ´ sqα`1

pα ` 1q Wpntq ` OP

ˆˆ
1?
nt

rnts ´ rnss
n

˙α

`

˙
(2.12)

uniformly in s, t P r0, 1s, s ď t ´ 1

n
. It follows that

sSi,k?
n

“ σ

ż t

0

ˆ
px´ sqα` ´ 1

t

ż t

0

py ´ sqα`dy
˙

dWpxq `OP

´
n

1

2`∆
´ 1

2

¯
(2.13)

“ σ

ż t

0

ˆ
px´ sqα` ´ 1

t

pt ´ sqα`1

α ` 1

˙
dWpxq `OP

´
n

1

2`∆
´ 1

2

¯
, n Ñ 8. (2.14)

Then combining (2.8)–(2.14) for a given k “ rnts and integrating by parts, we get

sup
0ďsďt

ˇ̌
ˇ̌n´1{2 sSi,rnts ´ σ

ˆż t

s

αpx ´ sqα´1Wpt ´ xqdx´ 1

t

pt´ sqα`1

α ` 1
Wptq

˙ˇ̌
ˇ̌

“ OP

´
n

1

2`∆
´ 1

2

¯
, n Ñ 8. (2.15)
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An analogous statement for maxkďiďn | rSi,k|

sup
tďsď1

ˇ̌
ˇ̌n´1{2 rSi,rnts ´ σ

ˆż 1

s

αpx´ sqα´1 ĂWpxqdx´ 1

1 ´ t

ps ´ tqα`1

α ` 1
ĂWptq

˙ˇ̌
ˇ̌

“ OP

´
n

1

2`∆
´ 1

2

¯
, n Ñ 8 (2.16)

can be proved by the same arguments and by realizing the property of independent incre-

ments of the Wiener process.

Assumption G1 yields that

˜
1?
n

ÿ

1ďiďnt

Yi ´ µ

σ
,

1?
n

ÿ

ntăiďn

Yi ´ µ

σ

¸
D

2r0,1sÝÝÝÝÝÑ
nÑ8

´
Wptq, ĂWptq

¯
. (2.17)

Relations (2.15)–(2.17) under hypothesis H0 give

ˆ
1

σ
?
n

max
1ďiďrnts

| sSi,rnts|,
1

σ
?
n

max
rntsďiďn

| rSi,rnts|
˙

D
2rγ,1´γsÝÝÝÝÝÝÝÑ
nÑ8

˜
sup

0ďsďt

ˇ̌
ˇ̌
ż t

s

αpx ´ sqα´1Wpt ´ xqdx´ 1

t

pt´ sqα`1

α ` 1
Wptq

ˇ̌
ˇ̌ ,

sup
tďsď1

ˇ̌
ˇ̌
ż 1

s

αpx´ sqα´1 ĂWpxqdx´ 1

1 ´ t

ps ´ tqα`1

α ` 1
ĂWptq

ˇ̌
ˇ̌
¸

for all 0 ă γ ă 1{2. The assertion of the theorem is a direct consequence of the previous

statement and the continuous mapping theorem.

A consistent test is a test, which power for a fixed untrue null hypothesis increases to one

as the number of observations increases. Therefore, we need to show how the test statistic

behaves under the alternative.

Theorem 2.4 (Under alternative). Suppose that Y1, . . . , Yn follow model (2.1) and Assump-

tion G1 is satisfied. Assume that

n1{2|δn| Ñ 8, n Ñ 8 (2.18)

and τ “ rnts for some γ ă t ă 1 ´ γ. Then under alternative (2.3)

Gn
PÝÝÝÑ

nÑ8
8.

Proof. Without loss of generality suppose µ “ 0. Let us take k “ τ and i “ τ . Then for the
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mean value of n´1{2| rSτ,τ | we have by the Jensen’s inequality

E
| rSτ,τ |
n1{2 ě

ˇ̌
ˇ̌
ˇE

rSτ,τ

n1{2

ˇ̌
ˇ̌
ˇ ,

where the right side is equal to

ˇ̌
ˇ̌
ˇ

nÿ

j“τ`1

δn

n1{2

ˆ
j ´ τ

n

˙2α

´
nÿ

j“τ`1

ˆ
j ´ τ

n

˙α
1

n´ τ

nÿ

m“τ`1

δn

n1{2

ˆ
m ´ τ

n

˙α
ˇ̌
ˇ̌
ˇ

“ n1{2|δn|
„ pn ´ rntsq2α`1

n2α`1

ˆ
α2

p2α ` 1qpα ` 1q2 ` rnts
npα ` 1q2 ` o p1q

˙
,

as n Ñ 8. The expression in square brackets tends to a positive non-zero limit. Hence

by (2.18), we have that E |n´1{2 rSτ,τ | Ñ 8 as n Ñ 8. Subsequently,

max
τďiďn´1

|n´1{2 rSi,τ | PÝÝÝÑ
nÑ8

8.

Since we have taken τ “ k, then n´1{2 max1ďiďk | sSi,k| has the same distribution as it has

under hypothesis H0 (see the proof of Theorem 2.3). Therefore, it is bounded in probability,

which implies that Gn
PÑ 8 as n Ñ 8.

Theorem 2.4 says that in presence of the gradual change in mean, the test statistic

explodes above all bounds. Hence, the testing procedure is consistent and the asymptotic

distribution from Theorem 2.3 can be used to construct the test.

The null hypothesis is rejected for large values of Gn. I.e., we reject H0 at significance

level α if and only if Gn ą g1´α,γ , where g1´α,γ is the p1 ´ αq-quantile of the asymptotic

distribution (2.5), However, an explicit form of the limit distribution (2.5) under the null

hypothesis is not known. Therefore, in order to obtain critical values, we have to use, for

example, simulations from the limit distribution.

2.5 Application on simulated data

We present some applications of the proposed ratio type test statistic to simulated data from

normal and Laplace distributions. When simulating the gradual change, we took α “ 1, i.e,

a constant mean changes into a linear one. The difference between the behavior under the

null hypothesis and under the alternative becomes apparent approximately for δ “ 3. In

Figures 2.2 and 2.3, we can see the values of ratio

Qk “
max

kďiďn´1

| rSi,k|

max
1ďiďk

| sSi,k| ,
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computed for k : nγ ď k ď n ´ nγ with γ “ 0.1. Simulated 95% critical values for each of

the two distributions are depicted by a horizontal line.
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Figure 2.2: The values of Qk from Gn for simulated normal distribution samples with pa-

rameters µ “ 0, σ “ 1, n “ 100, and γ “ 0.1. The figure on the left side refers to the null

hypothesis. Figure on the right refers to the alternative with τ “ n{2 “ 50, α “ 1, and

δ “ 4.

On one hand, one can observe that in both Figures 2.2 and 2.3, the curves from left

subfigures—corresponding to the ratios under the null—hardly come closer to the straight

horizontal line (critical value). This means that the value of ratio type test statistic Gn is

not sufficiently large to reject hypothesis H0.

On the other hand, the curves from the right subfigures—corresponding to the ratios

under the alternative—clearly cross to the critical value depicted by the straight horizon-

tal line. Therefore, the value of ratio type test statistic Gn is sufficiently large to reject

hypothesis H0 against alternative H1.

A deeper simulation study concerning also a sensitivity analysis, but for a different test
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Figure 2.3: The values of Qk from Gn for simulated Laplace distribution samples with

parameters µ “ 0, b “ 1, n “ 100, δ “ 0, and γ “ 0.1. The figure on the left side refers to

the null hypothesis. Figure on the right refers to the alternative with τ “ n{2 “ 50, α “ 1,

and δ “ 4.

statistic, will be performed in the next Chapter 3. The reason for not showing a similar

simulation experiment here is that the model and setup in Chapter 3 allow more complex

design of the simulations, which is more interesting.

2.6 Summary

The detection of the gradual change in mean with at most one change at some unknown

time point is studied. When a suitable variance estimate is not available or problematic, the

ratio type test statistics provide an advantageous alternative to the non-ratio type statistics.

Therefore, we extend the usage of non-ratio type test statistics for the ratio type ones in

the model of gradual change in mean. Asymptotic behavior of the ratio type test statistic is
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elaborated under the null hypothesis of no change and under the alternative of one gradual

change as well.



Chapter 3

Robust Procedures For Abrupt

Change In Mean

This chapter presents procedures for detection of a change in mean of the observed time

ordered sequence. The considered underlying stochastic model allows at most one change.

Moreover, the character of the change is that it is a rapid—also called abrupt—change,

which happens suddenly at some unknown time point. Main focus is given to the test

procedures based on ratio type test statistics that are functionals of the partial sums of M -

type residuals. We explore the possibility of applying the bootstrap method for obtaining

critical values of the proposed test statistics and derive the limit behavior of the circular

block bootstrap test statistic. The core of this chapter comes from Madurkayová (2009b)

and Madurkayová (2011).

3.1 Introduction

We describe basic properties of statistics for detection of a change in the location model with

at most one abrupt change in mean. Asymptotic behavior of the ratio type test statistics is

studied under the null hypothesis of no change as well as under the alternative of a change

occurring at some unknown time point. We extend the ideas presented by Hušková (2007)

and Horváth et al. (2008) in the way that weakly dependent errors of the model are supposed

together with incorporating general score function in the test statistics.

In order to obtain critical values for the studied test statistics not only from their asymp-

totic distributions, we focus on the circular moving block bootstrap method (Politis and Ro-

mano, 1992) in case of L2 score function. This type of resampling method was applied in

a similar situation by Kirch (2006).

23
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3.2 Abrupt change point model

Let us consider observations Y1, . . . , Yn that were obtained at n time ordered points. We

study the location model with at most one abrupt change in mean

Yk “ µ` δ Itk ą τu ` εk, k “ 1, . . . , n, (3.1)

where µ, δ “ δn, and τ “ τn are unknown parameters. Time point τ is called the change

point. By ε1, . . . , εn, we denote the random error terms.

We are going to test the null hypothesis that no change occurred

H0 : τ “ n (3.2)

against the alternative that change occurred at some unknown time point τ

H1 : τ ă n, δ ‰ 0. (3.3)

3.3 M-estimates of a location parameter

To estimate a location parameter of the distribution, the maximum likelihood approach is

traditionally used. Huber et al. (1964) proposed a generalization of this method.

An M -estimate of location parameter θ P R is defined as

θ̂ “ argmin
tPR

mÿ

i“1

ρpXi ´ tq,

where X1, . . . , Xm is the random sample, θ is an unknown parameter of interest, ρ is a loss

function and θ̂ is the so-called M -estimate. If function ρpx´ tq is differentiable with respect

to t, the M -estimate is a solution of equation

mÿ

i“1

ψpXi ´ tq “ 0,

where ψpuq “ B
Buρpuq denotes a score function. More on M -estimates can be found in Ju-

rečková et al. (2012, Chapters 3 and 5) or Serfling (1980, p. 243).

Alternatively, the M -estimate may be viewed as generalization of the least squares es-

timate. Considering loss function ρpx ´ tq “ px ´ tq2{2 results in the sample mean as the

least squares (and also empirical) estimate of the mean value (theoretical mean). The cor-

responding score function is ψpx ´ tq “ x ´ t. Therefore, M -estimates may be viewed as

generalized estimates of the location parameter. The main advantage of using M -estimates

is that they are more robust with respect to outliers and to heavy tailed distributions when

comparing to the least squares estimate.
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3.4 Ratio type statistic based on M-residuals

Let us move to the ratio type test statistic. We robustify the original ratio type test statis-

tic (1.6) from Chapter 1. Following the ideas described in Hušková (2007), Horváth et al.

(2008), and Hušková and Marušiaková (2012), a test statistic based on M -residuals is con-

sidered

Anpψq “ max
nγďkďn´nγ

max
1ďiďk

ˇ̌
ˇ

ř
1ďjďi

ψpYj ´ pµ1kpψqq
ˇ̌
ˇ

max
kďiďn´1

ˇ̌
ˇ

ř
i`1ďjďn

ψpYj ´ pµ2kpψqq
ˇ̌
ˇ
, (3.4)

where 0 ă γ ă 1{2 is a given constant, pµ1kpψq is an M -estimate of parameter µ based on ob-

servations Y1, . . . , Yk, and pµ2kpψq is an M -estimate of µ based on observations Yk`1, . . . , Yn.

That means, pµ1kpψq is a solution of estimating equation

kÿ

i“1

ψpYi ´ µq “ 0

and, similarly, pµ2kpψq is a solution of estimating equation

nÿ

i“k`1

ψpYi ´ µq “ 0.

For the choice of ψL2
pxq “ x, we get one of the statistics studied in Horváth et al. (2008). By

considering different score functions, we may construct similar statistics, but more robust

against outliers and more suitable for heavy tailed distributions.

3.5 Strong mixing dependence

Prior to deriving asymptotic properties of the test statistic, we need to formulate assump-

tions for the score function ψ and the distribution of random errors ε1, . . . , εn. Before that,

we explain the notion of strong mixing (α-mixing) dependence in more detail.

Suppose that tεnu8
n“1 is a sequence of random elements on a probability space pΩ,F ,P q.

For sub-σ-fields A,B Ď F , we define

αpA,Bq :“ sup
APA,BPB

|P pA XBq ´ P pAqP pBq| .

Intuitively, αp¨, ¨q measures the dependence of the events in B on those in A. There are

many ways how to describe weak dependence or, in other words, asymptotic independence

of random variables (Bradley, 2005). Considering a filtration Fn
m :“ σtεi P F ,m ď i ď nu,
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sequence tεnu8
n“1 of random variables is said to be strong mixing (α-mixing) if

αpnq :“ sup
kPN

αpFk
1 ,F

8
k`nq Ñ 0, n Ñ 8. (3.5)

This notion was introduced by Ibragimov (1959). Coefficients of dependence αpnq measure

how much dependence exists between events separated by at least n observations or time

periods. Note that in case of a strictly stationary sequence, the supkPN in the definition

becomes redundant.

Finite order processes, which do not satisfy Doeblin’s condition, can be shown to be

α-mixing (Ibragimov and Linnik, 1971, pp. 312–313). Rosenblatt (1971) provides general

conditions under which stationary Markov processes are α-mixing. Since functions of mixing

processes are themselves mixing (Bradley, 2005), time-varying functions of any of the above

mentioned processes just mentioned are mixing as well.

3.6 Limit distribution under null hypothesis

Now we proceed to the assumptions that are needed for deriving asymptotic properties of

the proposed test statistic.

Assumption A1. The random error terms tεi, i P Nu form a strictly stationary α-mixing

sequence with marginal distribution function F , that is symmetric around zero, and for

some χ ą 0, χ1 ą 0 there exists a constant C1pχ, χ1q ą 0 such that

8ÿ

h“0

ph ` 1qχ{2αphqχ1{p2`χ`χ1q ď C1pχ, χ1q, (3.6)

where αpkq, k “ 0, 1, . . . are the α-mixing coefficients.

Assumption A2. The score function ψ is a non-decreasing and antisymmetric function.

Assumption A3.

ż
|ψpxq|2`χ`χ1

dF pxq ă 8

and

ż
|ψpx` t2q ´ ψpx ` t1q|2`χ`χ1

dF pxq ď C2pχ, χ1q|t2 ´ t1|η,

|tj | ď C3pχ, χ1q, j “ 1, 2

for some constants 1 ď η ď 2`χ`χ1, χ ą 0, χ1 ą 0 as in (3.6) and constants C2pχ, χ1q ą 0,

C3pχ, χ1q ą 0 both depending only on χ and χ1.



CHAPTER 3. ROBUST PROCEDURES FOR ABRUPT CHANGE IN MEAN 27

Assumption A4. Let us denote λptq “ ´
ş
ψpe´tqdF peq, for t P R. We assume that λp0q “ 0

and that there exists a first derivative λ1p¨q that is Lipschitz in the neighborhood of 0 and

satisfies λ1p0q ą 0.

Assumption A5. Let

0 ă σ2pψq “ Eψ2pε1q ` 2
8ÿ

i“1

Eψpε1qψpεi`1q ă 8.

Assumption A1 is satisfied for example for ARMA processes with continuously dis-

tributed stationary innovations and bounded variance (Doukhan, 1994, Section 2.4).

The conditions regarding ψ reduce to moment restrictions for ψL2
pxq “ x (L2 method)

taking η “ 2 ` χ` χ1. For ψL1
pxq “ sgnpxq (L1 method), the conditions reduce to F being

a symmetric distribution, having continuous density f in a neighborhood of 0 with fp0q ą 0,

and η “ 1 for any χ ą 0 and χ1 ą 0. Similarly, we may consider the derivative of the Huber

loss function, i.e.,

ψHpxq “ x It|x| ď Cu ` C sgnpxq It|x| ą Cu (3.7)

for some C ą 0. In that case to satisfy Assumptions A2–A4, we need to assume F being

a symmetric distribution function with continuous density f in a neighborhood of C and

´C satisfying fpCq ą 0 and fp´Cq ą 0 with η “ 2 ` χ` χ1.

The following theorem states the asymptotic behavior of the studied ratio type test

statistic under the null hypothesis.

Theorem 3.1 (Under null). Suppose that Y1, . . . , Yn follow model (3.1) and assume that

Assumptions A1–A5 hold. Then, under null hypothesis (3.2)

Anpψq DÝÝÝÑ
nÑ8

sup
γďtď1´γ

sup
0ďuďt

|Wpuq ´ u{tWptq|

sup
tďuď1

ˇ̌
ˇĂWpuq ´ p1 ´ uq{p1 ´ tqĂWptq

ˇ̌
ˇ
, (3.8)

where tWpuq, 0 ď u ď 1u is a standard Wiener process and ĂWpuq “ Wp1q ´ Wpuq.

Proof. The proof is inspired by several steps from the proof of Theorem 1.1 in Horváth et al.

(2008). Without loss on generality, we assume that µ “ 0. Let

Znptq “ 1?
n

ÿ

1ďjďnt

ψpεjq and rZnptq “ 1?
n

ÿ

ntăjďn

ψpεjq.

Then, by applying Theorem 1 from Doukhan (1994, Section 1.5.1) with the consequent

remark, we get

´
Znptq, rZnptq

¯
D

2r0,1sÝÝÝÝÝÑ
nÑ8

σpψq
´
Wptq, ĂWptq

¯
, (3.9)
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where ĂWptq “ Wp1q ´ Wptq. Lemma 4.3 and Lemma 4.4 by Hušková and Marušiaková

(2012) and Assumptions A1–A5 lead to

sup
1ďiďnt

$
’’&
’’%
nκ

d
rnts

iprnts ´ iq

ˇ̌
ˇ̌
ˇ

ÿ

1ďjďi

ψ
`
Yj ´ pµ1,rntspψq

˘

´
˜

ÿ

1ďjďi

ψpεjq ´ i

rnts
ÿ

1ďjďnt

ψpεjq
¸ ˇ̌

ˇ̌
ˇ

,
//.
//-

PÝÝÝÑ
nÑ8

0,

for some κ ą 0, where ras denotes the integer part of a P R. Hence,

1?
n

sup
1ăiďnt

ˇ̌
ˇ̌
ˇ

ÿ

1ďjďi

ψ
`
Yj ´ pµ1,rntspψq

˘
ˇ̌
ˇ̌
ˇ “ sup

1ďiďnt

ˇ̌
ˇ̌Zn

ˆ
i

n

˙
´ i

rntsZnptq
ˇ̌
ˇ̌ ` oP p1q, n Ñ 8.

Similarly, we get

1?
n

sup
ntăiďn

ˇ̌
ˇ̌
ˇ

ÿ

iďjďn

ψ
`
Yj ´ pµ2,rntspψq

˘
ˇ̌
ˇ̌
ˇ

“ sup
ntăiďn

ˇ̌
ˇ̌ rZn

ˆ
i

n

˙
´ n´ i

n´ rnts
rZnptq

ˇ̌
ˇ̌ ` oP p1q, n Ñ 8.

With respect to (3.9), we get for all 0 ă γ ă 1{2

˜
1?
n

sup
1ăiďnt

ˇ̌
ˇ̌
ˇ

ÿ

1ďjďi

ψ
`
Yj ´ pµ1,rntspψq

˘
ˇ̌
ˇ̌
ˇ ,

1?
n

sup
nt´1ăiďn´1

ˇ̌
ˇ̌
ˇ

ÿ

i`1ďjďn

ψ
`
Yj ´ pµ2,rntspψq

˘
ˇ̌
ˇ̌
ˇ

¸

D
2rγ,1´γsÝÝÝÝÝÝÝÑ
nÑ8

σpψq
ˆ

sup
0ďuďt

ˇ̌
ˇWpuq ´ u

t
Wptq

ˇ̌
ˇ , sup

tďuď1

ˇ̌
ˇ̌ĂWpuq ´ 1 ´ u

1 ´ t
ĂWptq

ˇ̌
ˇ̌
˙
.

Finally, the continuous mapping theorem completes the proof.

The null hypothesis is rejected for large values of Anpψq. Hence, we reject H0 at sig-

nificance level α if Anpψq ą a1´α,γ , where a1´α,γ is the p1 ´ αq-quantile of the asymptotic

distribution (3.8). Explicit form of the limit distribution (3.8) under the null hypothesis is

not known. Therefore, in order to obtain critical values, we have to use either simulation

from the limit distribution or resampling methods.

For ψL2
: ψL2

pxq “ x, x P R, the above stated Assumptions A2 and A4 are satisfied.

We can also drop the requirement of symmetry of F in Assumption A1 and replace it by

E ε1 “ 0. Assumptions A3 and A5 reduce to the following two assumptions.
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Assumption D1.

E |ε1|2`β ă 8.

for some constant β ą 0.

Assumption D2.

0 ă σ2pψL2
q “ E ε21 ` 2

8ÿ

i“1

E ε1εi`1 ă 8.

Next, we show how the test statistic behaves under the alternative.

Theorem 3.2 (Under alternative). Suppose that Y1, . . . , Yn follow model (3.1), assume that
?
n|δn| Ñ 8 as n Ñ 8, and τ “ rζns for some γ ă ζ ă 1´γ. Then, under Assumptions A1–

A5 and alternative (3.3)

Anpψq PÝÝÝÑ
nÑ8

8.

Proof. Let k ą τ`1 and k “ rξns for some ζ ă ξ ă 1´γ. Note that τ “ Opnq and k “ Opnq
as n Ñ 8. Lemma 4.3 and Lemma 4.4 by Hušková and Marušiaková (2012) provide

?
k ppµ1kpψq ´ µq “ 1?

kλ1p0q

kÿ

i“1

ψpεiq `
?
kδnp1 ´ ζq ` oP p1q, n Ñ 8.

Consequently, applying Lemma 4.3 by Hušková and Marušiaková (2012) again, we obtain

1?
k

ˇ̌
ˇ̌
ˇ
τ`1ÿ

j“1

ψ pYj ´ pµ1kpψqq ´
˜

τ`1ÿ

j“1

ψpεjq ´ τ ` 1

k

kÿ

l“1

`
ψpεlq ` λ1p0qδngζppτ ` 1q{kq

˘
¸ˇ̌

ˇ̌
ˇ

ď max
1ďiďk

1?
k

ˇ̌
ˇ̌
ˇ

iÿ

j“1

ψ pYj ´ pµ1kpψqq ´
˜

iÿ

j“1

ψpεjq ´ i

k

kÿ

l“1

`
ψpεlq ` λ1p0qδngζpi{kq

˘
¸ˇ̌

ˇ̌
ˇ

PÝÝÝÑ
nÑ8

0,

where gζpxq “ minpζ, xqr1 ´ maxpζ, xqs for x P p0, 1q. Since
?
n|δn| Ñ 8 as n Ñ 8 and

1?
k

ˇ̌
ˇ̌
ˇ
τ`1ÿ

j“1

ψpεjq ´ τ ` 1

k

kÿ

l“1

ψpεlq
ˇ̌
ˇ̌
ˇ “ OP p1q, n Ñ 8

according to the proof of Theorem 3.1, we get

max
1ďiďk

1?
k

ˇ̌
ˇ̌
ˇ

iÿ

j“1

ψ pYj ´ pµ1kpψqq
ˇ̌
ˇ̌
ˇ ě 1?

k

ˇ̌
ˇ̌
ˇ
τ`1ÿ

j“1

ψ pYj ´ pµ1kpψqq
ˇ̌
ˇ̌
ˇ

PÝÝÝÑ
nÑ8

8.
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Note that there is no change in the means of Yk, . . . , Yn. Again from the proof of Theorem 3.1,

we have

max
rξnsďiďn´1

1?
n

ˇ̌
ˇ̌
ˇ

nÿ

j“i`1

ψ pYj ´ pµ2kpψqq
ˇ̌
ˇ̌
ˇ

Drγ,1´γsÝÝÝÝÝÝÑ
nÑ8

σpψq sup
ξďuď1

ˇ̌
ˇ̌ĂWpuq ´ 1 ´ u

1 ´ ξ
ĂWpξq

ˇ̌
ˇ̌ ,

which completes the proof.

Theorem 3.2 says that in presence of the structural change in mean, the test statistic ex-

plodes above all bounds. Hence, the procedure is consistent and the asymptotic distribution

from Theorem 3.1 can be used to construct the test.

The limit results for AnpψL2
q were derived in Hušková (2007) and Horváth et al. (2008)

under less restrictive assumptions regarding the random errors (cf. Chapter 1). For other

score functions ψ, results regarding limit behavior under fixed as well as under local alter-

natives for the related non-ratio type statistic are presented in Hušková and Marušiaková

(2012). The result for the ratio type statistic under fixed alternative may be derived by

a modification of the proof therein.

3.7 Block bootstrap with replacement

In the following section, we are going to study only the case of ψL2
pxq “ x. Extension to

the case of general score function ψ from the previous sections is straightforward, but the

proofs are much more complex.

There are several different approaches that may be used when resampling dependent

observations. Classical resampling methods are not suitable, since they do not take into

account the underlying dependency structure. Here, we focus our attention to a so-called

circular moving block bootstrap method, which was introduced by Politis and Romano (1992).

Overlapping blocks of consequent observations are formed from the original observations.

The first few consequent observations from the original sequence are appended after the

last observation, so that for a sequence of length n, we always have n possible blocks of

subsequent observations to choose from

tpYj`1, . . . , Yj`Kq, j “ 0, . . . , n´ 1u; where Yi “ Yi´n, i ą n.

With this method, there is equal probability for each observation to be included in the

bootstrap sample. For more details on the method, we also refer to Kirch (2006).

Let L denote the number of blocks and let K be the block length. In order to keep

the notation as simple as possible, we restrict ourselves to situation, where n “ KL, i.e., if

the set of n observations can be divided in exactly L blocks of length K. It can be proved

(Kirch, 2006) that the limit results remain the same after omitting the last K1 observations,

if n “ KL ` K1, 1 ď K1 ď K ´ 1. We will assume that K and n are both functions of L
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such that n “ KL. Moreover, we will suppose that

L Ñ 8 and K Ñ 8 as n Ñ 8.

It is also possible to use the non-circular moving block bootstrap, where one does not

append the first few consequent observations from the original sequence after the last ob-

servation. This bootstrap version effectively gives n ´ K blocks to choose from (instead of

n blocks), but we will not concentrate on this approach here.

First, let us define the following subsets of NˆN for integer numbers l, k, L,K and real

number 0 ă γ ă 1{2

Πl,k,L,K “ tpp, qq : p, q P N,
1 ď p ď l, 1 ď q ď K, pp ´ 1qK ` q ď pl ´ 1qK ` ku,

rΠl,k,L,K “ tpp, qq : p, q P N,
l ď p ď L, 1 ď q ď K, pp ´ 1qK ` q ě pl ´ 1qK ` k ` 1u,

ΩL,Kpγq “ tpl, kq : l, k P N,
1 ď l ď L, 1 ď k ď K, KLγ ď pl ´ 1qK ` k ď KLp1 ´ γqu.

For a set of iid random variables U “ pU1, . . . , ULq, uniformly distributed on the set

t0, . . . , n´ 1u, we define the following block bootstrap statistic

SU
L,Kpp, q, l, kq “

p´1ÿ

i“1

Kÿ

j“1

`
YUi`j ´mU

L,Kpl, kq
˘

`
qÿ

j“1

`
YUp`j ´mU

L,Kpl, kq
˘
,

where

mU
L,Kpl, kq “ 1

pl ´ 1qK ` k

˜
l´1ÿ

r“1

Kÿ

s“1

YUr`s `
kÿ

s“1

YUl`s

¸

for p, l “ 1, . . . , L, q, k “ 1, . . . ,K, p ď l, pp ´ 1qK ` q ď pl ´ 1qK ` k. Similarly, we define

rSU
L,Kpp, q, l, kq “

Kÿ

j“k`1

`
YUl`j ´ m̃U

L,Kpl, kq
˘
Itp ě l ` 1u

`
p´1ÿ

i“l`1

Kÿ

j“1

`
YUi`j ´ m̃U

L,Kpl, kq
˘
Itp ě l ` 2u `

qÿ

j“1

`
YUp`j ´ m̃U

L,Kpl, kq
˘
,
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where ItAu denotes the indicator of set A and

m̃U
L,Kpl, kq “ 1

pL´ l ` 1qK ´ k

˜
Kÿ

s“k`1

YUl`s `
Lÿ

s“l`1

Kÿ

r“1

YUr`s

¸

for p, l “ 1, . . . , L, q, k “ 1, . . . ,K such that p ě l, pp´ 1qK ` q ě pl ´ 1qK ` k ` 1.

Now, define the block bootstrap version of AnpψL2
q from (3.4) by

A˚
L,KpψL2

q “ max
pl,kqPΩL,Kpγq

maxpp,qqPΠl,k,L,K

ˇ̌
SU
L,Kpp, q, l, kq

ˇ̌

maxpp,qqP rΠl,k,L,K

ˇ̌
ˇ rSU

L,Kpp, q, l, kq
ˇ̌
ˇ
.

Statistic A˚
L,KpψL2

q is constructed in a similar fashion as the original ratio type test

statistic AnpψL2
q. The idea behind the bootstrap test statistic lies in indexing the randomly

chosen (possibly overlapping) bootstrap blocks by l “ 1, . . . , L. The first l blocks are used

in the nominator of the bootstrap statistic. The lth block is employed in the nominator as

well as in the denominator. The last L ´ l ` 1 blocks are used in the denominator of the

statistic A˚
L,KpψL2

q. Regarding the lth block appearing in the nominator and denominator,

this particular block is split into two continuous disjunctive parts: the first one contains the

first element from the lth block, has up to k elements, and is used for the nominator; the

second part contains the last elements from the lth block, has up to K ´ k elements, and is

used for the denominator. So, there does not exist an observation appearing simultaneously

in the nominator and denominator.

An algorithm for the circular block bootstrap is illustratively shown in Procedure 3.1

and its validity will be proved in Theorem 3.3. We are going to show that the bootstrapped

ratio type test statistic, conditioned on the original observations, has exactly the same

limit behavior as the original test statistic under the null. It does not matter whether our

observations come form the null hypothesis or the alternative. In other words, we are going

to prove that A˚
L,KpψL2

q provides asymptotically correct critical values for the test based

on AnpψL2
q, when observations follow either the null hypothesis or the alternative.

Theorem 3.3 (Bootstrap consistency). Suppose that Y1, . . . , Yn follow model (3.1). Let

E |ε1|ν ă 8 for some ν ą 4. Let Assumption A1 be satisfied for χ1, χ
1
1 ą 0 and for

χ2, χ
1
2 ą 0 such that 2`2κ ă χ1 ă ν´2, χ1

1 “ ν´2´χ1 and 0 ă χ2 ă pχ1´2´2κq{p2`κq,
χ1

2 “ pχ1 ´ 2´ 2κq{p2` κq ´ χ2 for some 0 ă κ ă pν ´ 4q{2. Moreover, let Assumption D2

be satisfied, K “ OpLq as L Ñ 8, and let

K ď Lχ2{2´ǫ (3.10)

for some 0 ă ǫ ă χ2

2
. Under alternative, let τ “ rnζs for some ζ : γ ă ζ ă 1 ´ γ. Then we
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Procedure 3.1 Bootstrapping test statistic AnpψL2
q.

Input: Sequence of observations Y1, . . . , Yn, block length K and 0 ă γ ă 1{2.
Output: Bootstrap distribution of AnpψL2

q, i.e., the empirical distribution where proba-
bility mass 1{B concentrates at each of p1qA

˚
L,KpψL2

q, . . . , pBqA
˚
L,KpψL2

q.
1: determine number of blocks L “ rn{Ks
2: define set ΩL,Kpγq
3: for b “ 1 to B do // repeat in order to obtain the empirical distribution
4: generate random sample U “ pU1, . . . , ULq from discrete uniform distribution on

t0, . . . , n´ 1u
5: for pl, kq P ΩL,Kpγq do

6: define sets Πl,k,L,K and rΠl,k,L,K

7: calculate pbqm
U
L,Kpl, kq and pbqm̃

U
L,Kpl, kq

8: for pp, qq P Πl,k,L,K do

9: calculate pbqS
U
L,Kpp, q, l, kq

10: end for

11: compute maxpp,qqPΠl,k,L,K

ˇ̌
pbqS

U
L,Kpp, q, l, kq

ˇ̌

12: for pp, qq P rΠl,k,L,K do

13: calculate pbq rSU
L,Kpp, q, l, kq

14: end for

15: compute maxpp,qqP rΠl,k,L,K

ˇ̌
ˇpbq rSU

L,Kpp, q, l, kq
ˇ̌
ˇ

16: end for

17: compute bootstrap test statistics pbqA
˚
L,KpψL2

q
18: end for

have for all y P R, as L Ñ 8,

P
`
A˚

L,KpψL2
q ď y|Y1, . . . , Yn

˘

a.s.ÝÝÑ P

¨
˚̋

sup
γďtď1´γ

sup
0ďuďt

|Wpuq ´ u{tWptq|

sup
tďuď1

ˇ̌
ˇĂWpuq ´ p1 ´ uq{p1 ´ tqĂWptq

ˇ̌
ˇ

ď y

˛
‹‚,

where tWpuq, 0 ď u ď 1u is a standard Wiener process and ĂWpuq “ Wp1q ´ Wpuq.

Proof. The proof goes along the lines of proof of Theorem 3.6.2 in Kirch (2006) for the case

of qptq “ 1, t P p0, 1q and uses several results derived there. In contrast to Kirch (2006), we

drop the assumption of random errors being a linear process, because this is only assumed in

order to show that the original (not bootstrapped) statistic weakly converges under the null

hypothesis. Assumptions of Theorem 3.3 and null hypothesis (3.2) provide us the asymptotic

distribution of AnpψL2
q from Theorem 3.1.

Note that we have (possibly) overlapping blocks. If tεi, i P Nu is an α-mixing sequence,
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then
$
&
%

1?
K

¨
˝

n´rÿ

j“1

εr`j `
K´pn´rqÿ

j“1

εj

˛
‚, n P N

,
.
-

is also α-mixing for all K ě 2 and r “ n´K`1, . . . , n´1, but with smaller or equal mixing

coefficients than tεi, i P Nu (Bradley, 2005, Theorem 5.2). Hence, assumption (3.6) is

uniformly fulfilled in K and r. Moreover, the above considered sequence remains stationary

for stationary tεi, i P Nu.
Theorem 1 by Yokoyama (1980) says that there exists a constantD “ Dpα, χ, χ1, C1q ą 0

depending only on the constants χ, χ1, sequence of α-mixing coefficients α ” tαpkqukPN, and

C1pχ, χ1q, such that

E

ˇ̌
ˇ̌
ˇ̌

1?
K

¨
˝

n´rÿ

j“1

εr`j `
K´pn´rqÿ

j“1

εj

˛
‚

ˇ̌
ˇ̌
ˇ̌

2`χ1

ď D, a.s.,

uniformly in K and r. Then according to the de la Vallée-Poussin theorem (Meyer, 1966,

p. 19, Theorem T22),

1

n

n´1ÿ

r“0

max
k“0,...,K´1

ˇ̌
ˇ̌
ˇ

1?
K

Kÿ

j“k`1

εr`j

ˇ̌
ˇ̌
ˇ

2`κ

ď µ2`κ ` op1q ď D2, a.s.,

for some constant D2 ą 0, where here εj “ εj´n for j ą n and

µ2`κ :“ E max
k“0,...,K´1

ˇ̌
ˇ̌
ˇ

1?
K

Kÿ

j“k`1

εr`j

ˇ̌
ˇ̌
ˇ

2`κ

uniformly in K and r.

The Markov inequality and Yokoyama (1980, Theorem 1) give for any ω ą 0

P

«
1

n

nÿ

j“1

|Zj | ě ω

ff
“ P

«
Kÿ

k“1

1

L

L´1ÿ

l“0

|ZKl`k| ě Kω

ff

ď P

«
max

k“1,...,K

1

L

L´1ÿ

l“0

|ZKl`k| ě ω

ff
ď

Kÿ

k“1

P

«
1

L

L´1ÿ

l“0

|ZKl`k| ě ω

ff
(3.11)

“ O

ˆ
1

ω2`χ2

K

L1`χ2{2

˙
, L Ñ 8,

where

Zs :“ max
k“0,...,K´1

ˇ̌
ˇ̌
ˇ

1?
K

Kÿ

j“k`1

εs´1`j

ˇ̌
ˇ̌
ˇ

2`κ

´ µ2`κ.
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By condition (3.10), we have

8ÿ

L“1

K

L1`χ2{2 ď
8ÿ

L“1

1

L1`ǫ
ă 8.

This yields that (3.11) converges sufficiently fast to zero, which implies convergence almost

surely. Consequently,

1

n

n´1ÿ

s“0

¨
˝ max

k“0,...,K´1

ˇ̌
ˇ̌
ˇ

1?
K

Kÿ

j“k`1

εs`j

ˇ̌
ˇ̌
ˇ

2`κ

´ µ2`κ

˛
‚` µ2`κ ď D2, a.s.

This is going to be used for verifying the assumptions of Theorem 3.6.1 in Kirch (2006), i.e.,

1

n

n´1ÿ

i“0

˜
max

k“0,...,K´1

ˇ̌
ˇ̌
ˇ

1?
K

Kÿ

j“k`1

panpi` jq ´ ānq
ˇ̌
ˇ̌
ˇ

ρ¸
ď D1, a.s., (3.12)

for some 2 ă ρ ď 4 with appropriately chosen scores

an “ panp1q, . . . , anpnqq,

such that ān “ 1

n

řn
i“1

anpiq.
Let us consider three different situations and for each of them we choose the appropriate

scores an:

(i) Kδ2n “ Op1q. This case also includes the null hypothesis (with δn “ 0). We choose

anpiq “ Yi.

(ii) 1{pKδ2nq “ Op1q. In this case, we let anpiq “ Yi{p
?
Kδnq.

(iii) Both Kδ2n ď 1 and Kδ2n ą 1 is true for infinitely many n P N. Note that K ” Kn. In

this case, we use a combination of both score choices, i.e.,

anpiq “

$
&
%

Yi, Kδ2n ď 1;

Yi?
Kδn

, Kδ2n ą 1.

The proof of Theorem 3.6.2 and Theorem 3.5.1 by Kirch (2006) provide the verification

of (3.12).

Using the above chosen scores an, the proof of Theorem 3.6.1 (c) (or Theorem 3.4.1 (c))

for the nominator of the considered statistic gives that conditionally on the observations
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Y1, . . . , Yn

max
pp,qqPΠl,k,L,K

ˇ̌
SU
L,Kpp, q, l, kq

ˇ̌

σpψL2
q
?
LK

D“ max
pp,qqPΠl,k,L,K

ˇ̌
ˇ̌W

´ p
L

¯
´ p

l
W

ˆ
l

L

˙ˇ̌
ˇ̌ ` oP p1q, n Ñ 8. (3.13)

Here, we understand that Vn “ oP p1q as n Ñ 8, conditionally on the Y1, . . . , Yn, if

@φ ą 0 : P p|Vn| ě φ|Y1, . . . , Ynq a.s.ÝÝÝÑ
nÑ8

0.

Sometimes one writes Vn “ oP ˚p1q as n Ñ 8, where P
˚p¨q ” P p¨|Y1, . . . , Ynq, but this is

not necessary here in this proof, since the meaning is clear from the context. Moreover, the

same proof gives (conditionally on Y1, . . . , Yn)

max
pp,qqPΠl,k,L,K

ˇ̌
ˇ̌W

´ p
L

¯
´ p

l
W

ˆ
l

L

˙ˇ̌
ˇ̌

“ max
pp,qqPΠl,k,L,K

ˇ̌
ˇ̌W

ˆ pp´ 1qK ` q

KL

˙

´ pp ´ 1qK ` q

pl ´ 1qK ` k
W

ˆ pl ´ 1qK ` k

KL

˙ ˇ̌
ˇ̌ ` oP p1q, n Ñ 8. (3.14)

Since l “ rLts for some t P r0, 1s, equations (3.13) and (3.14) imply that it suffices to consider

the asymptotic behavior of

max
1ďiďnt

1?
n

ˇ̌
ˇ̌
ˇ

ÿ

1ďjďi

`
Xj ´ sXrnts

˘
ˇ̌
ˇ̌
ˇ ,

where tXj, j P Nu are iid standard normal variables and sXi “ 1

i

ř
1ďjďiXj . I.e., condition-

ally on Y1, . . . , Yn,

max
pp,qqPΠl,k,L,K

ˇ̌
SU
L,Kpp, q, l, kq

ˇ̌

σpψL2
q
?
LK

D“ max
1ďiďnt

1?
n

ˇ̌
ˇ̌
ˇ

ÿ

1ďjďi

`
Xj ´ sXrnts

˘
ˇ̌
ˇ̌
ˇ ` oP p1q, n Ñ 8

for all t P rγ, 1 ´ γs.

Similarly, conditionally on Y1, . . . , Yn, it holds that

max
pp,qqP rΠl,k,L,K

ˇ̌
ˇ rSU

L,Kpp, q, l, kq
ˇ̌
ˇ

σpψL2
q
?
LK

D“ max
pp,qqP rΠl,k,L,K

ˇ̌
ˇ̌ĂW

´ p
L

¯
´ L´ p

L´ l
ĂW

ˆ
l

L

˙ˇ̌
ˇ̌ ` oP p1q, n Ñ 8
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and

max
pp,qqP rΠl,k,L,K

ˇ̌
ˇ̌ĂW

´ p
L

¯
´ L´ p

L´ l
ĂW

ˆ
l

L

˙ˇ̌
ˇ̌

“ max
pp,qqP rΠl,k,L,K

ˇ̌
ˇ̌ĂW

ˆ pp ´ 1qK ` q

KL

˙

´ L´ ppp ´ 1qK ` qq
L´ ppl ´ 1qK ` k ` 1q

ĂW
ˆ pl ´ 1qK ` k ` 1

KL

˙ ˇ̌
ˇ̌ ` oP p1q, n Ñ 8.

Thus, conditionally on Y1, . . . , Yn,

max
pp,qqP rΠl,k,L,K

ˇ̌
ˇ rSU

L,Kpp, q, l, kq
ˇ̌
ˇ

σpψL2
q
?
LK

D“ max
ntăiďn

1?
n

ˇ̌
ˇ̌
ˇ

ÿ

iďjďn

´
Xj ´ rXrnts

¯ˇ̌
ˇ̌
ˇ ` oP p1q, n Ñ 8

for all t P rγ, 1 ´ γs, where rXi “ 1

n´i

ř
iăjďnXj.

Now, the assumptions of Theorem 3.1 are satisfied for tXj, j P Nu under the null hypoth-

esis as well as under the alternative. Hence, we get that along almost all samples Y1, . . . , Yn,

it holds that

¨
˝ max

pp,qqPΠl,k,L,K

ˇ̌
SU
L,Kpp, q, l, kq

ˇ̌

σpψL2
q
?
LK

, max
pp,qqP rΠl,k,L,K

ˇ̌
ˇ rSU

L,Kpp, q, l, kq
ˇ̌
ˇ

σpψL2
q
?
LK

˛
‚

D
2rγ,1´γsÝÝÝÝÝÝÝÑ
nÑ8

ˆ
sup

0ďuďt

|Wpuq ´ u{tWptq| , sup
tďuď1

ˇ̌
ˇĂWpuq ´ p1 ´ uq{p1 ´ tqĂWptq

ˇ̌
ˇ
˙
,

conditionally on Y1, . . . , Yn.

Finally, the assertion of Theorem 3.3 is straightforward, since the considered bootstrap

statistic is a continuous function of the above vector of statistics.

Remark 3.1. Condition (3.10) can be omitted, but the almost sure convergence in the as-

sertion of Theorem 3.3 needs to be changed into convergence in probability (Kirch, 2006,

Theorem 3.6.2). After that, the condition ν ą 4 can be relaxed to ν ą 2 (Kirch, 2006,

Remark 3.5.4), although the remaining assumptions concerning ν have to be changed ac-

cordingly.

A choice of the block length L in the circular moving block bootstrap is an important

decision. It will affect the bootstrapped version of the test statistic. Therefore, the block

length can be viewed as a tuning parameter in the circular moving block bootstrap procedure.

One possibility, how to make such optimal choice, is to minimize the asymptotic mean square

error (MSE) of the circular moving block bootstrap variance estimate. Fitzenberger (1997)

proved that this approach yields K “ Opn1{3q as n Ñ 8 in case of α-mixing random errors.

In contrast to this asymptotic result, the practical choice of the block length usually needs

to be made based on one finite sample consisting of n observations. Several finite sample
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approaches for choosing the block length K were proposed by Hall et al. (1995), Politis and

White (2004), and Lahiri et al. (2007).

3.8 Modification of the test statistic

As it will be further seen in simulations in Subsection 3.9, α-errors (i.e., probabilities of

the first type error) are sometimes not sufficiently close to the theoretical α-errors for test

procedures based on the ratio type test statistic Anpψq. Therefore, based on the numerical

results, we suggest a modification of the original statistic Anpψq in the following form

rAnpψq “ max
nγďkďn´nγ

c
n ´ k

k

max
1ďiďk

ˇ̌
ˇ

ř
1ďjďi

ψpYj ´ pµ1kpψqq
ˇ̌
ˇ

max
kďiďn´1

ˇ̌
ˇ

ř
i`1ďjďn

ψpYj ´ pµ2kpψqq
ˇ̌
ˇ
, (3.15)

where 0 ă γ ă 1{2 is a given constant. The way, how the original test statistics is modified,

is that the ratio in the original test statistic is standardized by
a

pn ´ kq{k. This makes the

ratio more constant (flatter) with respect to k and, hence, the test based on the modified

test statistic keeps the theoretical α-level better (more firmly).

Similarly as in Theorem 3.1, one can derive the asymptotic behavior of the modified test

statistics under the null hypothesis.

Theorem 3.4. Suppose that Y1, . . . , Yn follow model (3.1) and assume that Assumptions

A1–A5 hold. Then, under null hypothesis (3.2)

rAnpψq DÝÝÝÑ
nÑ8

sup
γďtď1´γ

ˆ
1 ´ t

t

˙1{2 sup
0ďuďt

|Wpuq ´ u{tWptq|

sup
tďuď1

ˇ̌
ˇĂWpuq ´ p1 ´ uq{p1 ´ tqĂWptq

ˇ̌
ˇ
, (3.16)

where tWpuq, 0 ď u ď 1u is a standard Wiener process and ĂWpuq “ Wp1q ´ Wpuq.

Proof. See proof of Theorem 3.1.

A theoretical argument for the modification suggested above comes from distributional

relation (1.9) and asymptotic distribution (3.16). The asymptotic distribution of the original

test statistic Anpψq from (3.8) can be consequently rewritten as

sup
γďtď1´γ

sup
0ďuďt

|Wpuq ´ u{tWptq|

sup
tďuď1

ˇ̌
ˇĂWpuq ´ p1 ´ uq{p1 ´ tqĂWptq

ˇ̌
ˇ

D“ sup
γďtď1´γ

ˆ
t

1 ´ t

˙1{2
sup0ďsď1 |Bpsq|
sup0ďsď1

ˇ̌
ˇ rBpsq

ˇ̌
ˇ
,

where tBpsq, s P r0, 1su and t rBpsq, s P r0, 1su are two independent Brownian bridges. Func-

tion
a
t{p1 ´ tq is strictly increasing, which offers the idea of multiplying asymptotic distri-

bution of the original test statistic Anpψq by the reciprocal function, i.e.,
a

p1 ´ tq{t. Thus,
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the asymptotic distribution of the original test statistic rAnpψq from (3.16) can simply be

rewritten as

sup0ďsď1 |Bpsq|
sup0ďsď1

ˇ̌
ˇ rBpsq

ˇ̌
ˇ
.

This leads to our modification of the original test statistic, where the ratio of maxima in

Anpψq is multiplied by
b

1´k{n
k{n “

a
pn ´ kq{k.

The asymptotic behavior of the modified test statistic under the alternative can be

derived as well.

Theorem 3.5. Suppose that Y1, . . . , Yn follow model (3.1), assume that
?
n|δ| Ñ 8 as

n Ñ 8, and τ “ rζns for some γ ă ζ ă 1 ´ γ. Then, under Assumptions A1–A5 and

alternative (3.3)

rAnpψq PÝÝÝÑ
nÑ8

8.

Proof. See proof of Theorem 3.2.

The block bootstrap version of the modified ratio type test statistic rAnpψL2
q can be

defined as

rA˚
L,KpψL2

q “ max
pl,kqPΩL,Kpγq

d
KL´ ppl ´ 1qK ` kq

pl ´ 1qK ` k

maxpp,qqPΠl,k,L,K

ˇ̌
SU
L,Kpp, q, l, kq

ˇ̌

maxpp,qqP rΠl,k,L,K

ˇ̌
ˇ rSU

L,Kpp, q, l, kq
ˇ̌
ˇ
.

The block bootstrap version of the modified statistic rA˚
L,KpψL2

q also provides asymptotically

correct critical values for the test based on rAnpψL2
q, when observations follow either the

null hypothesis or the alternative as it is formally stated in the following theorem.

Theorem 3.6. Suppose that Y1, . . . , Yn follow model (3.1). Let E |ε1|ν ă 8 for some ν ą 4.

Let Assumption A1 be satisfied for χ1, χ
1
1 ą 0 and for χ2, χ

1
2 ą 0 such that 2 ` 2κ ă χ1 ă

ν´2, χ1
1 “ ν´2´χ1 and 0 ă χ2 ă pχ1´2´2κq{p2`κq, χ1

2 “ pχ1´2´2κq{p2`κq´χ2 for

some 0 ă κ ă pν ´ 4q{2. Moreover, let Assumption D2 be satisfied, K “ OpLq as L Ñ 8,

and let

K ď Lχ2{2´ǫ (3.17)

for some 0 ă ǫ ă χ2

2
. Under alternative, let τ “ rnζs for some ζ : γ ă ζ ă 1 ´ γ. Then we
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have for all y P R, as L Ñ 8,

P

´
rA˚
L,KpψL2

q ď y|Y1, . . . , Yn
¯

a.s.ÝÝÑ P

¨
˚̋

sup
γďtď1´γ

ˆ
1 ´ t

t

˙1{2 sup
0ďuďt

|Wpuq ´ u{tWptq|

sup
tďuď1

ˇ̌
ˇĂWpuq ´ p1 ´ uq{p1 ´ tqĂWptq

ˇ̌
ˇ

ď y

˛
‹‚,

where tWpuq, 0 ď u ď 1u is a standard Wiener process and ĂWpuq “ Wp1q ´ Wpuq.

Proof. See the proof of Theorem 3.3.

3.9 Simulations

We were interested in the performance of the tests based on the ratio type test statistics

Anpψq and rAnpψq with ψL2
pxq “ x and ψL1

pxq “ sgnpxq. We focused on comparison of

the accuracy of critical values obtained by circular moving block bootstrap method with

the accuracy of critical values obtained by simulation from the limit distribution. Some

simulation results concerning the test based on asymptotic critical values for the studied type

of test statistic can be also found in Horváth et al. (2008) (the L2 method and asymptotic

critical values) and Madurkayová (2009b).

In Figures 3.1–3.8, one may see size-power plots or size-power curves (SPC) for choices

of n “ 100 or 200, γ “ 0.1 or 0.2, τ “ 0.5, and δ “ 1 considering test statistics Anpψq and
rAnpψq in case of L2 and L1 score function both under the null hypothesis and under the

alternative. The size-power plots illustrate the power of a test. The empirical distribution

function of the p-values of the test statistic for the null hypothesis or a given alternative

is plotted with respect to the distribution used to determine the critical values of the test.

What we get is a plot that shows the actual α-errors resp. 1´(β-errors) on the y-axis

for the chosen quantiles on the x-axis. The ideal situation under the null hypothesis is

depicted by the straight diagonal dotted line. Under the alternative, the desired situation

would be a steep function with values close to 1. For more details on size-power plots we

may refer, e.g., to Kirch (2006). The random errors were simulated as an AR(1) process

with autoregression coefficients 0.3 (orange) and 0.5 (green), and as a set of iid random

errors (blue). Rejection rates based on simulated asymptotic critical values are depicted by

a dashed line, rejection rates based on block bootstrap with block length K “ 5 are depicted

by a solid line. Standard normal distribution and Student t-distribution with 5 degrees of

freedom are used for generating the innovations of models’ errors.

We generated 10000 independent samples in order to compute the asymptotic critical

values. When bootstrapping, for each sample we used 1000 bootstrap samples to compute

the bootstrap critical values. In simulations of rejection rates, we used 1000 repetitions.
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(h) t5, n “ 200, and γ “ 0.2

Figure 3.1: Size-power plots for AnpψL2
q under null hypothesis H0. Dashed lines are re-

jection rates based on the asymptotic critical values, solid ones correspond to the block

bootstrap. Orange lines stand for AR(1) with coefficient 0.3, green lines for AR(1) with

coefficient 0.5, and blue ones for iid.



42 3.9 SIMULATIONS

0.00 0.05 0.10 0.15 0.20

0.
0

0.
4

0.
8

(a) Np0, 1q, n “ 100, and γ “ 0.1
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(b) Np0, 1q, n “ 200, and γ “ 0.1

0.00 0.05 0.10 0.15 0.20

0.
0

0.
4

0.
8

(c) Np0, 1q, n “ 100, and γ “ 0.2

0.00 0.05 0.10 0.15 0.20
0.

0
0.

4
0.

8

(d) Np0, 1q, n “ 200, and γ “ 0.2
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(f) t5, n “ 200, and γ “ 0.1
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(h) t5, n “ 200, and γ “ 0.2

Figure 3.2: Size-power plots for AnpψL2
q under alternative H1. Dashed lines are rejection

rates based on the asymptotic critical values, solid ones correspond to the block bootstrap.

Orange lines stand for AR(1) with coefficient 0.3, green lines for AR(1) with coefficient 0.5,

and blue ones for iid.
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(h) t5, n “ 200, and γ “ 0.2

Figure 3.3: Size-power plots for AnpψL1
q under null hypothesis H0. Dashed lines are re-

jection rates based on the asymptotic critical values, solid ones correspond to the block

bootstrap. Orange lines stand for AR(1) with coefficient 0.3, green lines for AR(1) with

coefficient 0.5, and blue ones for iid.
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(a) Np0, 1q, n “ 100, and γ “ 0.1
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(b) Np0, 1q, n “ 200, and γ “ 0.1
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(c) Np0, 1q, n “ 100, and γ “ 0.2
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(d) Np0, 1q, n “ 200, and γ “ 0.2
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(f) t5, n “ 200, and γ “ 0.1
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(h) t5, n “ 200, and γ “ 0.2

Figure 3.4: Size-power plots for AnpψL1
q under alternative H1. Dashed lines are rejection

rates based on the asymptotic critical values, solid ones correspond to the block bootstrap.

Orange lines stand for AR(1) with coefficient 0.3, green lines for AR(1) with coefficient 0.5,

and blue ones for iid.
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(a) Np0, 1q, n “ 100, and γ “ 0.1
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(b) Np0, 1q, n “ 200, and γ “ 0.1
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(c) Np0, 1q, n “ 100, and γ “ 0.2
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(d) Np0, 1q, n “ 200, and γ “ 0.2
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(f) t5, n “ 200, and γ “ 0.1
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(h) t5, n “ 200, and γ “ 0.2

Figure 3.5: Size-power plots for rAnpψL2
q under null hypothesis H0. Dashed lines are re-

jection rates based on the asymptotic critical values, solid ones correspond to the block

bootstrap. Orange lines stand for AR(1) with coefficient 0.3, green lines for AR(1) with

coefficient 0.5, and blue ones for iid.
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(a) Np0, 1q, n “ 100, and γ “ 0.1
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(b) Np0, 1q, n “ 200, and γ “ 0.1
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(d) Np0, 1q, n “ 200, and γ “ 0.2
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(f) t5, n “ 200, and γ “ 0.1
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(h) t5, n “ 200, and γ “ 0.2

Figure 3.6: Size-power plots for rAnpψL2
q under alternative H1. Dashed lines are rejection

rates based on the asymptotic critical values, solid ones correspond to the block bootstrap.

Orange lines stand for AR(1) with coefficient 0.3, green lines for AR(1) with coefficient 0.5,

and blue ones for iid.
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(a) Np0, 1q, n “ 100, and γ “ 0.1
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(b) Np0, 1q, n “ 200, and γ “ 0.1
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(c) Np0, 1q, n “ 100, and γ “ 0.2
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(d) Np0, 1q, n “ 200, and γ “ 0.2
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(f) t5, n “ 200, and γ “ 0.1

0.00 0.05 0.10 0.15 0.20

0.
0

0.
4

0.
8
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(h) t5, n “ 200, and γ “ 0.2

Figure 3.7: Size-power plots for rAnpψL1
q under null hypothesis H0. Dashed lines are re-

jection rates based on the asymptotic critical values, solid ones correspond to the block

bootstrap. Orange lines stand for AR(1) with coefficient 0.3, green lines for AR(1) with

coefficient 0.5, and blue ones for iid.
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(a) Np0, 1q, n “ 100, and γ “ 0.1
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(b) Np0, 1q, n “ 200, and γ “ 0.1
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(c) Np0, 1q, n “ 100, and γ “ 0.2
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(d) Np0, 1q, n “ 200, and γ “ 0.2
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(f) t5, n “ 200, and γ “ 0.1
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(h) t5, n “ 200, and γ “ 0.2

Figure 3.8: Size-power plots for rAnpψL1
q under alternative H1. Dashed lines are rejection

rates based on the asymptotic critical values, solid ones correspond to the block bootstrap.

Orange lines stand for AR(1) with coefficient 0.3, green lines for AR(1) with coefficient 0.5,

and blue ones for iid.
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In all of 64 figures depicting a situation under the null hypothesis, we may see that com-

paring to the critical values obtained by simulations from the asymptotic distribution, the

critical values obtained by bootstrapping are more accurate, especially for AR(1) sequences.

When comparing the accuracy of α-errors for different choices of score function ψ, the L1

method seems to perform better than the L2 method. However, when using the L1 method,

power of the test slightly decreases, as we may also see in Table 3.1. Similarly, the choice of

γ “ 0.2 seems to provide more accurate critical values than the choice of γ “ 0.1, but the

test power is larger in the latter case.

Asymptotics Bootstrap
L2 statistic L1 statistic L2 statistic L1 statistic

Np0, 1q t5 Np0, 1q t5 Np0, 1q t5 Np0, 1q t5

ϕ “ 0 0.924 0.906 0.769 0.866 0.922 0.925 0.801 0.906

ϕ “ 0.3 0.726 0.729 0.577 0.682 0.718 0.733 0.585 0.696

ϕ “ 0.5 0.531 0.523 0.365 0.448 0.500 0.508 0.404 0.485

Table 3.1: Simulated rejection rates for the abrupt change in mean based on the asymptotic

and bootstrap version of Anpψq for the L1 and L2 method with n “ 200, γ “ 0.2 under

alternative H1 with δ “ 1 and τ “ n{2, considering significance level α “ 0.05. Random

errors were simulated either as Np0, 1q or as t5 distributed AR(1) sequences with several

values of autoregression coefficient ϕ.

Furthermore, with the choice of ψL2
, the simulated rejection rates under H0 are higher

than the corresponding theoretical α-levels for larger values of the autoregression coefficient,

while for the L1 method they remain much more stable. Comparing the case of Np0, 1q
innovations with the case of t5 innovations, rejection rates for the L1 version of the test

statistic tend to be slightly higher for t5 distribution, while they remain more or less the

same for the L2 version. As expected, the accuracy of the critical values tends to be better

for larger n.

On one hand, simulations showed that the actual α-errors are closer to the theoretical

α-errors (significance levels) for the test procedures based on rAn. On the other hand, the

test procedures based on An provide slightly higher power than the procedures based on the

modified test statistic.

Additionally, one can use a size-power plot with adjusted (empirical) α-errors to compare

the performance of An against rAn. The empirical size-power plots in Figure 3.9 display

empirical size of the test (i.e., 1´sensitivity) on the x-axis versus empirical power of the test

(i.e., specificity) on the y-axis. The ideal shape of the curve is as steep as possible. The

empirical size-power plots demonstrate that the modified ratio type test statistic rAn (or its

bootstrap counterpart) gives approximately same (only slightly smaller) empirical powers
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for adjusted empirical sizes comparing to the original test statistic An. This is due to two

opposing facts: rAn keeps the significance level of the test better, but An gives higher power

of the test.
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(d) rAnpψL2
q and n “ 200

Figure 3.9: Empirical size-power plots for AnpψL2
q and rAnpψL2

q with δ “ 1. Dashed lines

come from the asymptotic distributions, solid correspond to the block bootstrap. Orange

lines stand for AR(1) with coefficient 0.3, green lines for AR(1) with coefficient 0.5, and blue

ones for iid. Innovations are Np0, 1q distributed and γ “ 0.1.

Finally, we may conclude that with larger abrupt change, the power of the test increases.

Plots in Figure 3.10 show the powers of the test for alternatives with δ “ 0.1 and δ “ 0.2.

Besides that, one can again see the previously mentioned fact that the tests based on the

modified test statistic lack power compared to the tests based on the original test statistic.

3.10 Summary

Ratio type statistics provide an alternative to non-ratio type statistics in situations, in which

variance estimation is problematic. The change point detection in the location model with
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(d) rAnpψL1
q and δ “ 2

Figure 3.10: Size-power plots for AnpψL1
q and rAnpψL1

q under various alternatives. Dashed

lines are rejection rates based on the asymptotic critical values, solid ones correspond to the

block bootstrap. Orange lines stand for AR(1) with coefficient 0.3, green lines for AR(1) with

coefficient 0.5, and blue ones for iid. Innovations possess Student t5 distribution, n “ 100,

and γ “ 0.2.

at most one abrupt change in mean is discussed. Asymptotic behavior of the ratio type

test statistics is studied under the null hypothesis of no change and under the alternative

of a change occurring at some unknown time point. We generalize testing procedures by

assuming weakly dependent errors of the model together with incorporating general score

function in the test statistics. The circular block bootstrap method is investigated. We

prove that the block bootstrap method provides asymptotically correct critical values for the

studied ratio type statistics in the location model with α-mixing random errors. Simulations

show that critical values obtained by block bootstrapping seem to be more accurate than

critical values obtained by simulation from the limiting distribution, especially for AR(1)

sequences.
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Chapter 4

Change In Regression

Parameters

Linear regression models are relatively frequently used models in statistical analysis, with

many possible applications. Difficulties with variance estimation in such models lead to

the idea of avoiding the necessity of standardizing the test statistic by a variance estimate.

Therefore, it seems reasonable to use ratio type test statistics.

In this chapter, we focus on the asymptotic properties of the robust ratio type test statis-

tics for detection of changes in linear regression models, particularly the trending regression

models, and demonstrate these properties both on simulated and real data. Moreover, a per-

mutation bootstrap is proposed to overcome computational issues for obtaining the critical

values for the test. The chapter is partially based on work by Madurkayová (2009a).

4.1 Introduction and regression model description

We assume to have a set of observations Y1, . . . , Yn obtained at time ordered points and

that these data follow a linear regression model. Particularly, we are interested in studying

a situation, where a change in regression parameters may occur at some unknown time

point τ . We may formally describe such situation as

Yk “ hJpk{nqβ ` hJpk{nqδItk ą τu ` εk, k “ 1, . . . , n, (4.1)

where β “ pβ1, . . . , βpqJ, δ “ δn “ pδ1, . . . , δpqJ, and τ “ τn are unknown parameters.

Functions hptq “ ph1ptq, . . . , hpptqqJ are such that h1ptq “ 1 for t P r0, 1s and hjptq, j “
2, . . . , p are continuously differentiable functions on r0, 1s. We are going to assume that the

error terms ε1, . . . , εn are independent and identically distributed (iid) random variables,

53
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satisfying E εk “ 0 and Var εk “ σ2 ą 0 for k “ 1, . . . , n.

Model (4.1) corresponds to the situation where the first τ observations follow the linear

model with the regression parameter β and the remaining n ´ τ observations follow the

linear regression model with the changed regression parameter β ` δ. The parameter τ is

again called the change point.

The basic question, we are trying to answer, is whether a change in regression parameters

occurred at some unknown time point τ or not. Using the above introduced notation, the

null hypothesis of no change can be expressed as

H0 : τ “ n. (4.2)

We are going to test this null hypothesis against the alternative hypothesis that the change

occurred at some time point τ prior to the latest observed time n, i.e.,

H1 : τ ă n, δ ‰ 0. (4.3)

A graphical illustration of the change point model (4.1) for regression parameters under

the alternative can be seen in Figure 4.1.

k “ 1 k “ τ k “ n

β

β ` δ

Figure 4.1: Illustration of the change point problem in regression.

A procedure for testing the change in linear regression with equidistant design was con-

sidered by Jarušková (2003). Limit distribution for over-all maximum type test statistics

under assumption of no change was given. Antoch and Hušková (2003) described detection

of structural changes in a general regression setup. Nonlinear polynomial regression model

from the change point perspective was studied by Aue et al. (2008). M -tests for detection of
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changes in the linear models are presented by Hušková and Picek (2002). The paper focuses

on the application of modified permutational arguments in order to obtain approximations

for critical values. Furthermore, Hušková and Picek (2004) performed permutation type

tests in the linear models. Bootstrap with and without replacement in change point analysis

in the linear regression models is discussed in Hušková and Picek (2005). Bai and Perron

(1998) give an extension into multiple structural changes, occurring at unknown time points,

in the linear regression model estimated by least squares. Lately, Prášková and Chochola

(2014) considered procedures for detecting a change of regression parameters in the linear

model when both the regressors and the errors are weakly dependent in the sense of Lp-m

approximability. M -estimators and weighted M -residuals are used to construct the test

statistics.

4.2 Test statistic for detection of a change in regression

parameters

For the situation described above, test statistics based on the weighted partial sums of

residuals are often used, i.e., statistics of the form

Sj,kpψq “
jÿ

i“1

hpi{nqψ
`
Yi ´ hJpi{nqbkpψq

˘
, j, k “ p` 1, . . . , n, j ď k, (4.4)

which can be rewritten also elementwise (for the lth element of Sk)

S
plq
j,kpψq “

jÿ

i“1

hlpi{nqψ
`
Yi ´ hJpi{nqbkpψq

˘
, l “ 1, . . . , p; j, k “ p` 1, . . . , n, j ď k.

Here, ψ is a score function and bkpψq is an M -estimate of the regression parameter β based

on observations Y1, . . . , Yk from model (4.1) with τ “ n (under the null), i.e., it is the solution

of the equation

kÿ

i“1

hpi{nqψ
`
Yi ´ hJpi{nqb

˘
“ 0

with respect to b. Let us similarly denote

rSj,kpψq “
nÿ

i“j`1

hpi{nqψ
´
Yi ´ hJpi{nqrbkpψq

¯
, j, k “ 1, . . . , n´ p´ 1, k ď j, (4.5)
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where rbkpψq is an M -estimate of the parameter β based on observations Yk`1, . . . , Yn. That

means, it is a solution of the equation

nÿ

i“k`1

hpi{nqψ
`
Yi ´ hJpi{nqb

˘
“ 0

with respect to b. Further, we denote

Cj,k “
kÿ

i“j

hpi{nqhJpi{nq, j, k “ 1, . . . , n, j ď k. (4.6)

Using this notation, we may now define the ratio type test statistic

Rnpψq “ max
nγďkďn´nγ

max
1ďjďk

SJ
j,kpψqC´1

1,kSj,kpψq

max
kďjďn´1

rSJ
j,kpψqC´1

k`1,n
rSj,kpψq

, (4.7)

where 0 ă γ ă 1{2 is a given constant.

Remark 4.1. Let us note that the matrices C1,k and Ck`1,n become regular after adding

Assumption M2 (see below) and considering k and n´k sufficiently large. Being particular,

k ´ 1 and n´ k ´ 1 have to be at least as large as p, i.e., the dimension of hp¨q. Inverses of

these matrices in (4.7) exist, because γ is a fixed constant known in advance and the test

statistic Rnpψq is mainly studied from the asymptotic point of view. This ensures that the

number of summands in (4.6) is larger than fixed p.

The idea behind the construction of the test statistic Rnpψq in (4.7) lies in comparing

two total distances of weighted residuals from their center of gravity (by evaluating the

ratio of the nominator and the denominator). This view comes from the fact that Sj,kpψq
from (4.4) is a sum of weighted residuals and C1,k from (4.6) acts as a distance measure in

the Mahalanobis sense. Similarly for the denominator of (4.7).

4.3 Asymptotic properties of the robust test statistic

We proceed with deriving asymptotic properties of the robust ratio type test statistic Rnpψq,
under the null hypothesis as well as under the alternative. Before stating the main asymp-

totic results, we introduce several model assumptions. The following four assumptions apply

to the model’s errors ε1, . . . , εn and the score function ψ.

Assumption R1. The random error terms tεi, i P Nu are iid random variables with a distri-

bution function F , that is symmetric around zero.

Assumption R2. The score function ψ is a non-decreasing and antisymmetric function.
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Assumption R3.

0 ă
ż
ψ2pxqdF pxq ă 8

and
ż

|ψpx` t2q ´ ψpx` t1q|2dF pxq ď C1|t2 ´ t1|η, |tj | ď C2, j “ 1, 2

for some constants η ą 0 and C1, C2 ą 0.

Assumption R4. Let us denote λptq “ ´
ş
ψpe´tqdF peq, for t P R. We assume that λp0q “ 0

and that there exists a first derivative λ1p¨q that is Lipschitz in the neighborhood of 0 and

satisfies λ1p0q ą 0.

The choice of the score function ψ has already been discussed in previous Chapter 3. To

recapitulate, the commonly used score functions are the L2 score function ψL2
pxq “ x, the

L1 score function ψL1
pxq “ sgnpxq, and the Huber score function (3.7). Besides that, the

use of score function

ψβpxq “ β ´ Itx ă 0u, x P R, β P p0, 1q

results in test procedures related to the β-regression quantiles.

The next pair of assumptions refer to the system of covariate functions h “ ph1, . . . , hpqJ,

which represent the model design.

Assumption M1. h1ptq “ 1, t P r0, 1s.

Assumption M2. h2p¨q, . . . , hpp¨q are continuously differentiable functions on r0, 1s such that

ż 1

0

hjptqdt “ 0, j “ 2, . . . , p.

The pˆ p matrix functions

Cptq “
ˆż t

0

hjpxqhlpxqdx
˙

j,l“1,...,p

, t P r0, 1s

and rCptq “ Cp1q ´ Cptq are regular for each t P p0, 1s and t P r0, 1q, respectively.

Concerning the design points hpi{nq, i “ 1, . . . , n, quite often one assumes that, as

s Ñ 8, pCk`s ´ Ckq{s is close to a regular matrix C uniformly in k which is not gen-

erally satisfied under Assumption M2 (Hušková and Picek, 2005). Assumption M2 covers

important situations like polynomial and harmonic polynomial regression.

Now, we may characterize the limit behavior of the test statistic under the null hypoth-

esis.



58 4.3 ASYMPTOTIC PROPERTIES OF THE ROBUST TEST STATISTIC

Theorem 4.1 (Under null). Suppose that Y1, . . . , Yn follow model (4.1) and assume that

Assumptions R1–R4 and M1–M2 hold. Then, under null hypothesis (4.2)

Rnpψq DÝÝÝÑ
nÑ8

sup
γďtď1´γ

sup0ďsďt S
Jps, tqC´1ptqSps, tq

suptďsď1
rSJps, tq rC´1ptq rSps, tq

, (4.8)

such that

Sps, tq “
ż t

s

hpxqdWpxq ´ CpsqC´1ptq
ż t

0

hpxqdWpxq, 0 ď s ď t ď 1, t ‰ 0

and

rSps, tq “
ż s

t

hpxqdĂWpxq ´ rCpsq rC´1ptq
ż 1

t

hpxqdĂWpxq, 0 ď t ď s ď 1, t ‰ 1,

where tWpxq, 0 ď x ď 1u is a standard Wiener process and ĂWpxq “ Wp1q ´ Wpxq.

Proof. The proof goes along the lines of proof of Theorem 2.1 in Hušková and Picek (2005).

Asymptotic representation for the M -estimate of regression parameter β can be obtained

by Jurečková et al. (2012, Section 5.5)

bkpψq ´ β “ C´1

1,k

1

λ1p0q
kÿ

i“1

hpi{nqψpεiq `OP pk´1q (4.9)

as k Ñ 8 and nγ ď k ď np1 ´ γq. Moreover, by the Hájek-Rényi-Chow inequality (Chow

and Teicher, 2003) for each A ą 0, ϕ P p0, 1{2s, and t P R
p

P

«
max

1ďlďk{2
k´1{2`ϕl´ϕ

ˇ̌
ˇ̌

lÿ

i“1

hjpi{nq
´
ψpεi ´ hJpi{nqtk´1{2q ´ ψpεiq

` λphJpi{nqtk´1{2q
¯ˇ̌

ˇ̌ ě A

ff

ď D1A
´2k´1`2ϕ

rk{2sÿ

i“1

l´2ϕ

ż ´
ψpε´ hJpi{nqtk´1{2q ´ ψpεq

¯2

dF pεq

ď D2A
´2

´
k´1{2}t}

¯η

, j “ 1, . . . , p, (4.10)
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with some constants D1, D2 ą 0, where η is the constant from Assumption R3. Similarly,

P

«
max

k{2ďlďk´1

k´1{2`ϕpk ´ lq´γ

ˇ̌
ˇ̌

kÿ

i“l`1

hjpi{nq
´
ψpεi ´ hJpi{nqtk´1{2q ´ ψpεiq

` λphJpi{nqtk´1{2q
¯ˇ̌

ˇ̌ ě A

ff

ď D3A
´2

´
k´1{2}t}

¯η

, j “ 1, . . . , p, (4.11)

with some constant D3 ą 0. Combining (4.9)–(4.11), we get

max
1ďjďk´1

1?
k

ˆ
jpk ´ jq
k2

˙´ϕ
›››››

jÿ

i“1

hpi{nqψ
`
Yi ´ hJpi{nqbkpψq

˘

´
˜

jÿ

i“1

hpi{nqψpεiq ´ C1,jC
´1

1,k

kÿ

i“1

hpi{nqψpεiq
¸ ››››› “ oP p1q, (4.12)

as k Ñ 8. Using again the same arguments, we also have as pn ´ kq Ñ 8

max
k`1ďjďn´1

1?
n´ k

ˆ pn´ jqpj ´ kq
pn ´ kq2

˙´ϕ
›››››

nÿ

i“j`1

hpi{nqψ
´
Yi ´ hJpi{nqrbkpψq

¯

´
˜

nÿ

i“j`1

hpi{nqψpεiq ´ Cj`1,nC
´1

k`1,n

nÿ

i“k`1

hpi{nqψpεiq
¸ ››››› “ oP p1q. (4.13)

Hence with respect to (4.12) and (4.13), the limit distribution of

ˆ
max
1ďjďk

SJ
j,kpψqC´1

1,kSj,kpψq, max
kďjďn´1

rSJ
j,kpψqC´1

k`1,n
rSj,kpψq

˙

is the same as that of

˜
max
1ďjďk

#
1?
k

˜
jÿ

i“1

hpi{nqψpεiq ´ C1,jC
´1

1,k

kÿ

i“1

hpi{nqψpεiq
¸J ˆ

1

k
C1,k

˙´1

1?
k

˜
jÿ

i“1

hpi{nqψpεiq ´ C1,jC
´1

1,k

kÿ

i“1

hpi{nqψpεiq
¸ +

,

max
kďjďn´1

# ˜
nÿ

i“j`1

hpi{nqψpεiq ´ Cj`1,nC
´1

k`1,n

nÿ

i“k`1

hpi{nqψpεiq
¸J

C´1

k`1,n

˜
nÿ

i“j`1

hpi{nqψpεiq ´ Cj`1,nC
´1

k`1,n

nÿ

i“k`1

hpi{nqψpεiq
¸ +¸

,
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which by denoting k “ rnts for t P p0, 1q weakly converges in D2rγ, 1 ´ γs to

˜
sup

0ďsďt

# ˆż s

0

hpxqdWpxq ´ CpsqC´1ptq
ż t

0

hpxqdWpxq
˙J

C´1ptq

ˆż s

0

hpxqdWpxq ´ CpsqC´1ptq
ż t

0

hpxqdWpxq
˙ +

,

sup
tďsď1

# ˆż 1

s

hpxqdĂWpxq ´ rCpsq rC´1ptq
ż 1

t

hpxqdĂWpxq
˙J

rC´1ptq

ˆż 1

s

hpxqdĂWpxq ´ rCpsq rC´1ptq
ż 1

t

hpxqdĂWpxq
˙ +¸

,

as n Ñ 8. The weak distributional convergence holds due to Jandhyala and MacNeill (1997,

Theorem 1), Assumption M2, the fact that

sup
0ďsďt

# ˆż s

0

hpxqdWpxq ´
ż s

0

„
hpxq

ż t

0

hJpxqC´1ptqhpyqdWpyq


dx
˙J

C´1ptq

ˆż s

0

hpxqdWpxq ´
ż s

0

„
hpxq

ż t

0

hJpxqC´1ptqhpyqdWpyq


dx
˙ +

“ sup
0ďsďt

# ˆż s

0

hpxqdWpxq ´ CpsqC´1ptq
ż t

0

hpxqdWpxq
˙J

C´1ptq

ˆż s

0

hpxqdWpxq ´ CpsqC´1ptq
ż t

0

hpxqdWpxq
˙ +

,

and that

sup
tďsď1

# ˆż 1

s

hpxqdĂWpxq ´
ż 1

s

„
hpxq

ż 1

t

hJpxq rC´1ptqhpyqdĂWpyq


dx
˙J

rC´1ptq

ˆż 1

s

hpxqdĂWpxq ´
ż 1

s

„
hpxq

ż 1

t

hJpxq rC´1ptqhpyqdĂWpyq


dx
˙ +

“ sup
tďsď1

# ˆż 1

s

hpxqdĂWpxq ´ rCpsq rC´1ptq
ż 1

t

hpxqdĂWpxq
˙J

rC´1ptq

ˆż 1

s

hpxqdĂWpxq ´ rCpsq rC´1ptq
ż 1

t

hpxqdĂWpxq
˙ +

.

Then, the assertion of the theorem directly follows by the continuous mapping theorem.

Remark 4.2. Realizing the property of a standard Wiener process, the definition of a Brow-

nian bridge Bpxq “ Wpxq ´ xWp1q, x P r0, 1s, and using stochastic calculus together with
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Assumption M2, we end up with

ż s

0

hpxqdWpxq ´ CpsqC´1ptq
ż t

0

hpxqdWpxq

“
ż s

0

hpxqdBpxq ´ CpsqC´1ptq
ż t

0

hpxqdBpxq.

Therefore, one can still have the same limit distribution when dWpxq is replaced by dBpxq
and dĂWpxq is replaced by d rBpxq, where tBpxq, 0 ď x ď 1u and t rBpxq, 0 ď x ď 1u are

independent Brownian bridges.

The next theorem describes situation under some local alternatives.

Theorem 4.2 (Under local alternatives). Suppose that Y1, . . . , Yn follow model (4.1), as-

sume that

}δn} Ñ 0 and
?
n}δn} Ñ 8, as n Ñ 8, (4.14)

and τ “ rζns for some γ ă ζ ă 1´γ (alternative (4.3) holds). Then, under Assumptions R1–

R4 and M1–M2

Rnpψq PÝÝÝÑ
nÑ8

8.

Proof. Let us choose k ą τ ` 1 and k “ rξns for some ζ ă ξ ă 1 ´ γ. Moreover, let us take

into account assumption (4.14). Using the same arguments as in (4.12) and due to the fact

that the local alternatives hold, we have as n Ñ 8,

max
1ďjďk

SJ
j,kpψqC´1

1,kSj,kpψq ě SJ
τ,kpψqC´1

1,kSτ,kpψq

“
˜

τÿ

i“1

hpi{nqψ
`
Yi ´ hJpi{nqbkpψq

˘
¸J

C´1

1,k

˜
τÿ

i“1

hpi{nqψ
`
Yi ´ hJpi{nqbkpψq

˘
¸

“ Ak1 ` 2Ak2 `Ak3 ` oP p1q,

where

Ak1 “
˜

τÿ

i“1

hpi{nqψpεiq ´ C1,τC
´1

1,k

kÿ

i“1

hpi{nqψpεiq
¸J

C´1

1,k

˜
τÿ

i“1

hpi{nqψpεiq ´ C1,τC
´1

1,k

kÿ

i“1

hpi{nqψpεiq
¸
,
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Ak2 “
˜

τÿ

i“1

hpi{nqψpεiq ´ C1,τC
´1

1,k

kÿ

i“1

hpi{nqψpεiq
¸J

C´1

1,k

˜
τÿ

i“1

hpi{nqhJpi{nq ´ C1,τC
´1

1,kCτ`1,k

¸
δ,

Ak3 “ δJ
˜

τÿ

i“1

hpi{nqhJpi{nq ´ Cτ`1,kC
´1

1,kC1,τ

¸
C´1

1,k

˜
τÿ

i“1

hpi{nqhJpi{nq ´ C1,τC
´1

1,kCτ`1,k

¸
δ.

Then from the proof of Theorem 4.1 we get, as n Ñ 8,

Ak1 “ OP p1q.

Furthermore, with respect to assumption (4.14),

Ak3 “ δJ
´
C1,τ ´ Cτ`1,kC

´1

1,kC1,τ

¯
C´1

1,k

´
C1,τ ´ C1,τC

´1

1,kCτ`1,k

¯
δ

“ δJC1,τC
´1

1,kC1,τC
´1

1,kC1,τC
´1

1,kC1,τδ
PÝÝÝÑ

nÑ8
8.

Finally,

|Ak2| ď
a
Ak1Ak3.

Therefore, under the considered assumptions, the term Ak3 is asymptotically dominant over

the remaining terms. It follows that

max
1ďjďk

SJ
j,kpψqC´1

1,kSj,kpψq PÝÝÝÑ
nÑ8

8.

For τ ` 1 ă k “ rξns, the denominator in (4.7) has the same distribution as under the null

hypothesis and it is, therefore, bounded in probability. It follows that the maximum of the

ratio has to tend to infinity as well, as n Ñ 8.

The previous theorem provides asymptotic consistency of the studied test statistic under

the given assumptions. By Theorem 4.2, the statistic Rnpψq converges in probability to

infinity, the null hypothesis is rejected for large values of the ratio type test statistic. Being

more formal, we reject H0 at significance level α if Rnpψq ą r1´α,γ , where r1´α,γ is the

p1 ´ αq-quantile of the asymptotic distribution (4.8).
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4.4 Asymptotic critical values for the change

in regression

The explicit form of the limit distribution (4.8) is not known. The critical values may be

determined by simulation of the limit distribution from Theorem 4.1. Theorem 4.2 ensures

that we reject the null hypothesis for large values of the test statistic. We tried to simulate

the asymptotic distribution (4.8) by discretizing the stochastic integrals present in Sps, tq and
rSps, tq and using the relationship of a random walk to a Wiener process. We considered 1000

as the number of discretization points within r0, 1s interval and the number of simulations

equal to 1000. We also tried to use higher numbers of discretization points, but only small

differences in the critical values were acquired. In Table 4.1, we present several critical values

for covariate functions h1ptq “ 1 and h2ptq “ t´ 1{2.

90% 95% 97.5% 99% 99.5%

γ “ 0.1 7.629223 9.923813 13.114384 17.339711 20.891231

γ “ 0.2 4.351720 5.9810256 7.583841 11.048126 14.371703

Table 4.1: Simulated critical values corresponding to the asymptotic distribution of the

test statistic Rnpψq under the null hypothesis and to the covariate functions h1ptq “ 1 and

h2ptq “ t ´ 1{2.

Moreover, Table 4.2 shows critical values for covariate functions h1ptq “ 1, h2ptq “ t´1{2,
and h3ptq “ 4t2 ´ 4t ` 2{3 with γ “ 0.1. The system of covariate functions was chosen in

the way that those functions are orthogonal in the L2pr0, 1sq sense.

90% 95% 97.5% 99% 99.5%

γ “ 0.1 5.638486 7.062320 8.633249 12.225500 13.631059

Table 4.2: Simulated critical values corresponding to the asymptotic distribution of the

test statistic Rnpψq under the null hypothesis and to the covariate functions h1ptq “ 1,

h2ptq “ t ´ 1{2, and h3ptq “ 4t2 ´ 4t` 2{3.

To illustrate the applicability of the asymptotic critical values, a random sample (n “
100) from the regression change point model model (4.1) with the quadratic covariate system

h1ptq “ 1, h2ptq “ t ´ 1{2, and h3ptq “ 4t2 ´ 4t ` 2{3 is simulated for particular choices of

the errors’ distribution (standard normal or Student t5), τ , and δ. Considering γ “ 0.1, we
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plot ratio

Qk “
max
1ďjďk

SJ
j,kpψqC´1

1,kSj,kpψq

max
kďjďn´1

rSJ
j,kpψqC´1

k`1,n
rSj,kpψq

, nγ ď k ď n´ nγ (4.15)

from the ratio type test statistic Rnpψq for ψpxq “ x in Figure 4.2 and for ψpxq “ sgnpxq in

Figure 4.3. The null hypothesis is rejected when the curve corresponding to Qk goes above

the colored horizontal line depicting the critical value. One may also notice, that under the

alternative, the values of Qk tend to increase with k in most cases and the maximum value

is obtained for k close to n.

As it will be noticed further in the simulation study (cf. Section 4.7), the simulated

critical values from the asymptotic distribution seem to be too liberal, meaning that the

simulated versions of the critical values are smaller than they should be. In other words,

the tests based on simulated asymptotic critical values reject more often than they should.

4.5 Permutation bootstrap

In the previous section, we dealt with simulation from the limit distribution as a way for

approximation of the critical values of the proposed test statistic. Similarly as in Chapter 3,

an alternative way to construct the test is to use resampling methods. These may even

provide computationally better results when comparing to simulations of the asymptotic

distribution.

Here, we propose resampling procedure without replacement. By permutation principle,

we would like to resample the iid random errors ε1, . . . , εn. Then, the permutation version

of our test statistics can be obtained by replacing original errors ε1, . . . , εn by εR1
, . . . , εRn

,

where R1, . . . , Rn is a random permutation of 1, . . . , n, which is independent of observations

Y1, . . . , Yn. However, the random errors ε1, . . . , εn are not observed and, hence, unknown.

Therefore, we permute predicted errors—the M -residuals. We apply the permutation prin-

ciple on the nominator and on the denominator of the ratio type test statistic separately.

For more detailed explanation of the permutation principles in the change point analysis,

we refer to Antoch and Hušková (2001), Hušková and Picek (2002), Antoch and Hušková

(2003), Hušková (2004), Hušková and Picek (2004), or Hušková and Picek (2005).

First of all, we define residuals for the first k observations

pεipψq :“ ψ
`
Yi ´ hJpi{nqbkpψq

˘
, i “ 1, . . . , k

and, similarly, residuals for the last n ´ k observations

prεipψq :“ ψ
´
Yi ´ hJpi{nqrbkpψq

¯
, i “ k ` 1, . . . , n.
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Figure 4.2: The values of Qk from the RnpψL2
q test statistic with γ “ 0.1 for the simulated

normal distribution samples with parameters µ “ 0 and σ “ 1 (left hand side) and for the

simulated Student t5 distribution samples (right hand side), where n “ 100 in both cases.

The upper figures refer to the null hypothesis. The other figures refer to the alternatives

with τ “ n{2 “ 50 and δ “ p0, 0,
?
27qJ, δ “ p

?
27, 0, 0qJ, δ “ p3, 3, 3qJ.
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Figure 4.3: The values of Qk from the RnpψL1
q test statistic with γ “ 0.1 for the simulated

normal distribution samples with parameters µ “ 0 and σ “ 1 (left hand side) and for the

simulated Student t5 distribution samples (right hand side), where n “ 100 in both cases.

The upper figures refer to the null hypothesis. The other figures refer to the alternatives

with τ “ n{2 “ 50 and δ “ p0, 0,
?
27qJ, δ “ p

?
27, 0, 0qJ, δ “ p3, 3, 3qJ.
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Consequently, for each nγ ď k ď np1 ´ γq, we generate permutations Rk “ pR1, . . . , Rkq
of sequence p1, . . . , kq and rRn´k “ p rRk`1, . . . , rRnq of pk ` 1, . . . , nq. Now, the residuals are

bootstrapped without replacement, which leads to two sets of permuted residuals

`
pεR1

pψq, . . . , pεRk
pψq

˘
and

`prε rRk`1
pψq, . . . , prε rRn

pψq
˘
.

The bootstrapped version of Sj,kpψq is centered by a weighted average of the residuals.

Sj,kpψ;Rkq “
jÿ

i“1

hpi{nqpεRi
´ C1,jC

´1

1,k

kÿ

l“1

hpl{nqpεRl
, j, k “ 1, . . . , n, j ď k

and, analogously, for rSj,kpψq

rSj,kpψ; rRn´kq “
nÿ

i“j`1

hpi{nqprε rRi
´Cj`1,nC

´1

k`1,n

nÿ

l“k`1

hpl{nqprε rRl
, j, k “ 1, . . . , n, k ď j.

Finally, the bootstrapped version of the original ratio type test statistic Rnpψq is obtained

by replacing the original statistics by their permuted counterparts, i.e.,

R˚
npψq “ max

nγďkďn´nγ

max1ďjďk S
J
j,kpψ;RkqC´1

1,kSj,kpψ;Rkq
maxkďjďn´1

rSJ
j,kpψ; rRn´kqC´1

k`1,n
rSj,kpψ; rRn´kq

, (4.16)

where 0 ă γ ă 1{2 is the same given constant from the definition of the original test statistic

Rnpψq.

An algorithm for the permutation bootstrap is illustratively shown in Procedure 4.1 and

its validity is proved in Theorem 4.3. It is necessary to show that the proposed permutation

test statistic is at least asymptotically correct when data follow either the null hypothesis

or some alternative. Toward this, it suffices to show that given the observed data, the

asymptotic conditional distribution of the original ratio type test statistic asymptotically

coincides with the unconditional limit distribution of Rnpψq under the null hypothesis.

Theorem 4.3 (Permutation bootstrap validity). Suppose that Y1, . . . , Yn follow model (4.1)

with }δn} Ñ 0 as n Ñ 8. Suppose that Assumptions R1–R4 and M1–M2 hold. Under

alternative, let τ “ rnζs for some ζ : γ ă ζ ă 1 ´ γ. Then, for all y P R,

P pR˚
npψq ď y|Y1, . . . Ynq PÝÝÝÑ

nÑ8
P

˜
sup

γďtď1´γ

sup0ďsďt S
Jps, tqC´1ptqSps, tq

suptďsď1
rSJps, tq rC´1ptq rSps, tq

ď y

¸
,

such that

Sps, tq “
ż t

s

hpxqdWpxq ´ CpsqC´1ptq
ż t

0

hpxqdWpxq, 0 ď s ď t ď 1, t ‰ 0,
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Procedure 4.1 Bootstrapping test statistic Rnpψq without replacement.

Input: Sequence of observations Yi, . . . , Yn, score function ψ and 0 ă γ ă 1{2.
Output: Bootstrap distribution of Rnpψq, i.e., the empirical distribution where probability

mass 1{B concentrates at each of p1qR
˚
npψq, . . . , pBqR

˚
npψq.

1: for nγ ď k ď np1 ´ γq do // permute separately in nominator and denominator
2: calculate bkpψq and rbkpψq
3: compute C´1

1,k and C´1

k`1,n

4: calculate residuals
`
pε1pψq, . . . , pεkpψq

˘
and

`prεk`1pψq, . . . , prεnpψq
˘

5: for b “ 1 to B do // repeat in order to obtain the empirical distribution
6: generate ppbqR1, . . . , pbqRkq as a random permutation of p1, . . . , kq
7: generate ppbq rRk`1, . . . , pbq rRnq as a random permutation of pk ` 1, . . . , nq
8: for 1 ď j ď k do // evaluate for the nominator
9: construct permuted residuals

`
pbqpεR1

pψq, . . . , pbqpεRk
pψq

˘

10: calculate pbqSj,kpψ;Rkq
11: end for

12: calculate max1ďjďk pbqS
J
j,kpψ;RkqC´1

1,kpbqSj,kpψ;Rkq
13: for k ď j ď n´ 1 do // evaluate for the denominator
14: construct permuted residuals

`
pbqprε rRk`1

pψq, . . . , pbqprε rRn
pψq

˘

15: calculate pbq rSj,kpψ; rRn´kq
16: end for

17: calculate maxkďjďn´1 pbq rSJ
j,kpψ; rRn´kqC´1

k`1,npbq rSj,kpψ; rRn´kq
18: evaluate

pbqQ
pnq
k pψq :“

max1ďjďk pbqS
J
j,kpψ;RkqC´1

1,kpbqSj,kpψ;Rkq
maxkďjďn´1 pbq rSJ

j,kpψ; rRn´kqC´1

k`1,npbq rSj,kpψ; rRn´kq

19: end for

20: end for

21: for b “ 1 to B do // pick the highest bootstrapped ratio
22: compute bootstrap test statistics pbqR

˚
npψq “ maxnγďkďnp1´γq pbqQ

pnq
k pψq

23: end for

rSps, tq “
ż s

t

hpxqdĂWpxq ´ rCpsq rC´1ptq
ż 1

t

hpxqdĂWpxq, 0 ď t ď s ď 1, t ‰ 1,

where tWpxq, 0 ď x ď 1u is a standard Wiener process and ĂWpxq “ Wp1q ´ Wpxq.

Proof. According to Hušková and Picek (2005, Theorem 2.3) for all py, zqJ P R
2,

P

˜
max

1ďjďnt
SJ
j,rntspψ;RrntsqC´1

1,rntsSj,rntspψ;Rrntsq ď y,

max
ntăjďn´1

rSJ
j,rntspψ; rRn´rntsqC´1

rnts`1,n
rSj,rntspψ; rRn´rntsq ď z

ˇ̌
ˇ̌Y1, . . . Yn

¸

PÝÝÝÑ
nÑ8

P

ˆ
sup

0ďsďt
SJps, tqC´1ptqSps, tq ď y, sup

tďsď1

rSJps, tq rC´1ptq rSps, tq ď z

˙
, (4.17)
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for each t P p0, 1q. Since (4.17) holds also for all t P rγ, 1 ´ γs, the assertion of the theorem

directly follows.

We have already shown that the resampled ratio type test statistic R˚
npψq, conditioned on

the original observations Y1, . . . , Yn, has exactly the same limit behavior as the original test

statistic Rnpψq under the null hypothesis. This remains true both under the null hypothesis

and the local alternatives. Hence, the bootstrap distribution of Rnpψq gives critical values

as empirical quantiles. This means that we have proved that R˚
npψq provides asymptotically

correct critical values for the test based on Rnpψq, when observations follow either the null

hypothesis or the alternative. We reject the null hypothesis for large values of the test

statistic Rnpψq due to Theorem 4.2.

4.6 Extension for weakly dependent random errors

In the previous sections, properties of the ratio type statistics for detection of changes in the

linear regression models were only described for the case of independent random errors. We

would also like to study the possibility of extending these methods for the case of dependent

random errors, including ARMA processes.

In case of independent random errors, the variance of the studied model is usually es-

timated by sums of squared residuals. In case, when the random errors form, e.g, a linear

process, it is more appropriate to use an estimate that respects the underlying dependency

structure. Therefore, the Bartlett estimator or one of its modifications is often used to es-

timate the long run variance. Especially for the case of dependent random errors, it may

be difficult to find variance estimates that have satisfactory behavior both under null hy-

pothesis and under alternative. Hence, the ratio type test statistics can become even more

applicable when model’s errors are no more independent.

One can indeed extend the results from this chapter concerning the change in regression

parameters into the setup, where the weakly dependent errors are assumed. Hence the

independence assumption for model’s errors can be dropped out. This extension could

follow the same steps as the proof of Theorem 4.1 and use similar arguments to justify

the results. However, other assumptions on the weak dependency structure of the errors

ε1, . . . , εn would need to be added. These additional assumptions have to assure that one

can apply the Bahadur-Kiefer asymptotic representation (4.9) of the regressionM -estimates,

the Hájek-Rényi type inequality (4.10), and two-dimensional functional central limit theorem

on
`
n´1{2 ř

1ďiďnt εi, n
´1{2 ř

ntăiďn εi
˘

for dependent errors. Then the asymptotic results

would remain the same for the independent and for the weakly dependent errors. The

only difference would be more restrictive assumptions on the errors’ structure in the case

of weakly dependent errors. An alternative way of extending the presented results from

this chapter for weakly dependent errors is to use the Abel type of summability proposed
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by Hušková and Steinebach (2000, p. 61–62) and combine it with the results derived in

previous Chapter 3.

4.7 Simulation study

A simulation experiment was conducted to study the finite sample properties of the asymp-

totic and permutation bootstrap test for an unknown change in the regression parameters.

Performance of the tests based on ratio type test statistic Rnpψq with ψL2
pxq “ x and

ψL1
pxq “ sgnpxq is studied from a numerical point of view. In particular, the interest lies in

the empirical size of the proposed tests under the null hypothesis and in the empirical rejec-

tion rate (power) under the alternative. Random samples of data (1000 repetitions) are gen-

erated from the linear regression change point model (4.1) with h1ptq “ 1 and h2ptq “ t´1{2.
The number of observations considered is mainly n “ 100. Higher sample sizes were also

tried and the effect of number of observations will be discussed at the end of this section.

Parameter γ is set to 0.1.

The innovations are obtained as iid random variables from a standard normal Np0, 1q
or Student t5 distribution. The regression parameters β is chosen as p2, 3qJ. Simulation

scenarios are produced by varying all possible combinations of these settings. The number

of bootstrap replications used is 1000. Table 4.3 provides the empirical size of the tests for

both the asymptotic and bootstrap version of the regression change point test, where the

theoretical significance level is α.

score innovations α “ 0.01 α “ 0.05 α “ 0.10

L2 Np0, 1q 0.023 0.005 0.111 0.023 0.214 0.042

t5 0.050 0.008 0.191 0.028 0.294 0.052

L1 Np0, 1q 0.003 0.000 0.045 0.012 0.136 0.024

t5 0.003 0.002 0.039 0.010 0.112 0.026

Table 4.3: Empirical size of the test for the change in regression under H0 using the asymp-

totic critical values and the permutation bootstrap from Rnpψq, considering various sig-

nificance levels α and n “ 100.

Additionally, a graphical illustration of the performance of the test under the null hy-

pothesis for significance level varying from 0.01 to 0.20 is provided by the size-power plots

(for a more detailed description see Section 3.9) in Figure 4.4. The theoretical rejection rate

(i.e., the significance level) under the null hypothesis is depicted by a straight dotted line.

Generally, the empirical sizes in case of asymptotic test are higher than they should

be. That means the test rejects the null hypothesis more often than it should. Possible

explanation of this difficulty can be that the test statistics converge only very slowly to
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Figure 4.4: Rejection rates for the asymptotic and permutation bootstrap tests for change

in regression based on Rnpψq under null hypothesis H0.

the theoretical asymptotic distribution under the null hypothesis. On the other hand, the

permutation bootstrap keeps the theoretical significance level. Nevertheless, the bootstrap

method for testing change in regression is too conservative meaning that it rejects the null

hypothesis more often than it should.

Better performance of the asymptotic test under the null hypothesis is achieved, when the

L1 score function is chosen for Rnpψq compared to the L2 method. The empirical significance

levels are approximately the same as the theoretical significance levels, especially for values

of α less or equal to 0.1. The L2 method seems to be too liberal in rejecting the null

hypothesis. However, the L2 method works better in case of bootstrapping. There is no

significant effect of the errors’ distribution on the empirical rejection rates based on this

simulation study.

The performance of the testing procedure under H1 in terms of the empirical rejection

rates is shown in Table 4.4, where the change point is set to τ “ n{2 or τ “ n{4. The values

of δ are chosen as δ “ p1, 1qJ and δ “ p2, 3qJ. The performance of the tests under the

alternatives for significance level varying from 0.01 to 0.20 is visualized by the size-power

plots in Figures 4.5–4.8.

The size power plots under the alternatives show that the power is generally higher in

case of the asymptotic test compared to the bootstrap one. However, we should keep in mind

that the test based on asymptotic critical values does not keep the theoretical significance

level under the null hypothesis.

The test power drops when switching from a change point located in the middle of the
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score innovations δ τ α “ 0.01 α “ 0.05 α “ 0.10

L2 Np0, 1q p1, 1qJ n{2 0.110 0.036 0.332 0.114 0.476 0.176

n{4 0.065 0.011 0.197 0.042 0.330 0.069

p2, 3qJ n{2 0.600 0.299 0.855 0.546 0.922 0.674

n{4 0.096 0.023 0.296 0.084 0.465 0.137

t5 p1, 1qJ n{2 0.108 0.016 0.319 0.060 0.469 0.099

n{4 0.087 0.007 0.247 0.037 0.348 0.065

p2, 3qJ n{2 0.429 0.162 0.690 0.346 0.801 0.452

n{4 0.106 0.013 0.281 0.044 0.426 0.077

L1 Np0, 1q p1, 1qJ n{2 0.017 0.008 0.145 0.042 0.291 0.077

n{4 0.002 0.001 0.086 0.017 0.211 0.047

p2, 3qJ n{2 0.105 0.076 0.508 0.279 0.715 0.386

n{4 0.005 0.005 0.115 0.035 0.241 0.065

t5 p1, 1qJ n{2 0.009 0.006 0.112 0.050 0.237 0.082

n{4 0.005 0.000 0.072 0.008 0.190 0.031

p2, 3qJ n{2 0.091 0.060 0.436 0.220 0.651 0.342

n{4 0.003 0.002 0.102 0.022 0.233 0.051

Table 4.4: Empirical power of the test for the change in regression under H1 using the

asymptotic critical values and the permutation bootstrap from Rnpψq, considering various

significance levels α and n “ 100.

time series to a change point closer to the beginning or the end of the time series. The

errors with heavier tails (i.e., t5) yield slightly smaller power than the errors with lighter

tails. When using the L1 method, power of the test decreases compared to the L2 method.

Although, it keeps the theoretical significance level under the null hypothesis better in case

of the asymptotic test.

We have shown power plots only for one choice of β, however, several other values were

tried in simulations. There was no visible effect of the value of regression parameter on the

power of the tests. Naturally, the higher the value of change in the regression parameter is,

the higher the power is achieved.

For several simulation scenarios, the proposed methods do not seem very satisfactory.

Better results may be obtained by considering larger sample size (cf. Figure 4.10) or an al-

ternative more far away from the null hypothesis. The results for the choice of δ “ p5, 5qJ

are shown in Figure 4.9. It may be concluded that in case of relatively large change in the

regression parameter, the power of the tests (both asymptotic and bootstrap) increases.

Note that the length of each time series considered until this point in the simulation
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Figure 4.5: Rejection rates for the asymptotic and permutation bootstrap tests for change

in regression based on Rnpψq under alternative H1 with τ “ n{2 and δ “ p1, 1qJ.
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Figure 4.6: Rejection rates for the asymptotic and permutation bootstrap tests for change

in regression based on Rnpψq under alternative H1 with τ “ n{4 and δ “ p1, 1qJ.

study was only 100. Let us now consider 250 observations and investigate the performance

of the tests under the null hypothesis and under the alternative, see Figure 4.10.

One can conclude that the power of the tests (both asymptotic and bootstrap) increases

as the number of observations increases, which is expected. For the bootstrap test, even the
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Figure 4.7: Rejection rates for the asymptotic and permutation bootstrap tests for change

in regression based on Rnpψq under alternative H1 with τ “ n{2 and δ “ p2, 3qJ.
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Figure 4.8: Rejection rates for the asymptotic and permutation bootstrap tests for change

in regression based on Rnpψq under alternative H1 with τ “ n{4 and δ “ p2, 3qJ.

size of the test increases and comes closer to the theoretical significance level. It seems that

bootstrapping starts to work satisfactory for 250 observations and more. On the other hand,

bootstrapping longer time series becomes computationally very intensive even when using

parallel cluster computing. When comparing the detection procedures of abrupt change
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Figure 4.9: Rejection rates for the asymptotic and permutation bootstrap tests for change

in regression based on Rnpψq under alternative H1 with τ “ n{2 and δ “ p5, 5qJ.
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Figure 4.10: Rejection rates for the asymptotic and permutation bootstrap tests for change

in regression based on Rnpψq under H0 and under H1 for different sample sizes.

in mean from Chapter 3 and the detection procedures of change in regression parameters

presented in this chapter, the tests for the simpler model of abrupt change perform generally

better.

Further, we compare the results to an alternative algorithm to the permutation bootstrap
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(without replacement). The residuals are now going to be resampled with replacement and,

moreover, the resampling of residuals is done from the whole vector of residuals. Hence, the

residuals from the nominator and the denominator of the test statistic are mixed (interlaced)

after resampling. This is different from the previously described permutation bootstrap,

where the resampled residuals remain separated—those from the nominator are used for the

nominator of the bootstrap version of the test statistics and similarly for those from the

denominator. The whole regression bootstrap algorithm can be formalized in Procedure 4.2.

Procedure 4.2 Bootstrapping test statistic Rnpψq with replacement.

Input: Sequence of observations Yi, . . . , Yn, score function ψ and 0 ă γ ă 1{2.
Output: Bootstrap distribution of Rnpψq, i.e., the empirical distribution where probability

mass 1{B concentrates at each of p1qR
˚
npψq, . . . , pBqR

˚
npψq.

1: for nγ ď k ď np1 ´ γq do // permute separately in nominator and denominator
2: calculate bkpψq and rbkpψq
3: compute C´1

1,k and C´1

k`1,n

4: calculate residuals
`
pε1pψq, . . . , pεkpψq

˘
and

`prεk`1pψq, . . . , prεnpψq
˘

5: merge residuals together
`
ε̆1pψq, . . . , ε̆npψq

˘
“

`
pε1pψq, . . . , pεkpψq, prεk`1pψq, . . . , prεnpψq

˘

6: for b “ 1 to B do // repeat in order to obtain the empirical distribution
7: generate ppbqR1, . . . , pbqRnq randomly from p1, . . . , nq with replacement
8: for 1 ď j ď k do // evaluate for the nominator
9: construct permuted residuals

`
pbqε̆R1

pψq, . . . , pbqε̆Rk
pψq

˘

10: replace pbqpεRi
pψq by pbqε̆Ri

pψq and calculate pbqSj,kpψ;Rkq
11: end for

12: calculate max1ďjďk pbqS
J
j,kpψ;RkqC´1

1,kpbqSj,kpψ;Rkq
13: for k ď j ď n´ 1 do // evaluate for the denominator
14: construct permuted residuals

`
pbqε̆Rk`1

pψq, . . . , pbqε̆Rn
pψq

˘

15: replace pbqprε rRi
pψq by pbqε̆Ri

pψq and calculate pbq rSj,kpψ; rRn´kq
16: end for

17: calculate maxkďjďn´1 pbq rSJ
j,kpψ; rRn´kqC´1

k`1,npbq rSj,kpψ; rRn´kq
18: evaluate

pbqQ
pnq
k pψq :“

max1ďjďk pbqS
J
j,kpψ;RkqC´1

1,kpbqSj,kpψ;Rkq
maxkďjďn´1 pbq rSJ

j,kpψ; rRn´kqC´1

k`1,npbq rSj,kpψ; rRn´kq

19: end for

20: end for

21: for b “ 1 to B do // pick the highest bootstrapped ratio
22: compute bootstrap test statistics pbqR

˚
npψq “ maxnγďkďnp1´γq pbqQ

pnq
k pψq

23: end for

Despite the original expectations when proposing the alternative version of the permu-

tation bootstrap without replacement, the regression bootstrap with replacement does not

gain significantly higher power compared to the permutation bootstrap without replacement.

To demonstrate this numerically using size-power plots, the rejection rates of the separated

permutation bootstrap and the interlaced regression bootstrap under the null hypothesis are
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shown in Figure 4.11. Moreover, the comparison of rejection rates of the bootstrap with-

out replacement (Procedure 4.1) and bootstrap with replacement (Procedure 4.2) under the

alternative is displayed in Figure 4.12.
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Figure 4.11: Rejection rates for the permutation bootstrap test without replacement and

the regression bootstrap test with replacement based on Rnpψq under null hypothesis H0.
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Figure 4.12: Rejection rates for the permutation bootstrap test without replacement and

the regression bootstrap test with replacement based on Rnpψq under alternative H1.



78 4.8 APPLICATION TO SURFACE TEMPERATURE DATA

4.8 Application to surface temperature data

The analysed data come from a large data set based on long term surface temperature

measurements at several meteorological stations around the world (for more details see Met

Office Hadley Centre (2008), data set HadCRUT3). In Figure 4.15, we may see the data

together with already estimated regression curves. The data represent temperature anoma-

lies, i.e., differences from what is expected to be measured in some particular area at some

particular time of the year. Each observation corresponds to monthly measurements at the

chosen area located in the South Pacific Ocean, close to New Zealand (the center of the 5ˆ5

degree area is located at 177.5W and 32.5S). The data covers the period of years 1947–1987

including 485 months.

We took L2 score function with p “ 3, h1pxq “ 1, h2pxq “ x´1{2, h3pxq “ 4x2´4x`2{3,
and γ “ 0.1. We apply the methods described above. The values of the ratio Qk defined

by (4.15) are shown in Figure 4.13 for the L2 method. We also show the ratio Qk for the

L1 method in Figure 4.14.
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Figure 4.13: The values of Qk from the L2 test statistic for the surface temperature data.

The simulated 95% critical value is depicted by the colored horizontal line.

We reject the null hypothesis of no change in the parameters of the quadratic regression

model based on the asymptotic test (95% critical value equals 7.06232) both for the L2

method and the L1 method, since R485pψL2
q “ 30.59436 and R485pψL1

q “ 8.477089. We

also reject the null hypothesis of no change according to the permutation bootstrap, because

the bootstrap critical values are even smaller than the asymptotic ones.

We estimate the time of change τ by maximizing the nominator in (4.7) when using all
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Figure 4.14: The values of Qk from the L1 test statistic for the surface temperature data.

The simulated 95% critical value is depicted by the colored horizontal line.

the time series’ observations for the statistic in the nominator, i.e.,

pτ “ argmax
k

SJ
k,npψqC´1

1,nSk,npψq. (4.18)

For the L2 score function, we get pτ “ 171. Using L1 approach, we obtain pτ “ 212.

The estimates of the regression parameters can be then obtained as

bpτ “ C´1

1,pτ

pτÿ

i“1

h pi{nqYi and rbpτ “ C´1

pτ`1,n

nÿ

i“pτ`1

h pi{nqYi. (4.19)

The fitted quadratic curves for the surface temperature data before and after the esti-

mated change point are shown in Figure 4.15 for the L2 method and in Figure 4.16 for the

L1 method.

Note that the estimated change points using the L2 and L1 method are not very close to

each other. As a consequence, the estimated quadratic regression parameter corresponding

to the fitted curve before the estimated change point using the L2 method possesses the

opposite sign compared to the estimated quadratic regression parameter corresponding to

the fitted curve before the estimated change point using the L1 method. Similarly for

the estimated quadratic regression parameter corresponding to the fitted curve after the

estimated change point. One of the possible reasons is that there exist more change points

in such a long observation history.
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Figure 4.15: The surface temperature data analysed by the L2 method. Estimated change

point is depicted by the orange vertical line and estimated regression curves are drawn by

the blue and green lines.
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Figure 4.16: The surface temperature data analysed by the L1 method. Estimated change

point is depicted by the orange vertical line and estimated regression curves are drawn by

the blue and green lines.
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4.9 Application to ratings of clients data

We consider two time series obtained from a Czech loan providing company. Note that the

demonstrated approaches shown below should not be considered as a complete data analysis,

but only to show practical application of the derived methods and results.

Each time series contains daily averages of ratings of clients applying for a specific loan

product. The first time series includes ratings of existing clients, the second one covers

new clients. By ratings we mean assessments of clients’ creditworthiness, based on credit

scoring. Assessments are typically made shortly after filling an application (on the same

day), using both data provided by the client and data that are already at the company’s

disposal. There are 377 business days available for both time series. Our question is whether

the population of clients applying for this product changed in the last 18 months. We use

only the L2 approach for the detection of change in regression, since the L1 method performs

very similarly.

A linear regression model is assumed for the newcomers. The values of the ratio Qk

defined by (4.15) are plotted in Figure 4.17. The value of the ratio type test statistic for
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Figure 4.17: The values of Qk from the L2 test statistic for the rating of new clients data.

The simulated 95% critical value is depicted by the colored horizontal line.

the change in regression is 57.12984, which is larger than the simulated 95% critical value of

9.923813. Therefore, we reject the null hypothesis of no change in the regression parameters.

Moreover, we estimate the time of change τ as in (4.18), which yields pτ “ 234. The estimates

of the regression parameters can be then obtained from (4.19). The fitted linear lines for

the rating of new clients data before and after the estimated change point are shown in

Figure 4.18.



82 4.9 APPLICATION TO RATINGS OF CLIENTS DATA

4.00

4.25

4.50

4.75

0 100 200 300
Days

A
ve

ra
ge

 r
at

in
g

Rating of new clients using L2 method

Figure 4.18: The rating of new clients data analysed by the L2 method. Estimated change

point is depicted by the orange vertical line and estimated regression lines are drawn by the

blue and yellow lines.

A quadratic regression model is considered for data about the existing clients. The values

of the ratio Qk are visualized in Figure 4.19.
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Figure 4.19: The values of Qk from the L2 test statistic for the rating of existing clients

data. The simulated 95% critical value is depicted by the colored horizontal line.
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The test statistic for the change in regression is R377pψL2
q “ 32.71579, which is larger

than the simulated 95% critical value of 7.062320. Hence, we reject the null hypothesis of

no change in the regression parameters. Besides that, we estimate the time of change τ as

pτ “ 288. The fitted quadratic curves for the rating of existing clients data before and after

the estimated change point are shown in Figure 4.20. Permutation bootstrap extensions of

the asymptotic techniques presented on these time series give the same conclusions.
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Figure 4.20: The rating of existing clients data analysed by the L2 method. Estimated

change point is depicted by the orange vertical line and estimated regression lines are drawn

by the blue and yellow lines.

The detected change point in the existing clients’ average ratings corresponds to a change

in the company’s business strategy. However, the detected change point for newcomers does

not have any straightforward explanation. Maybe considering multiple changes would bring

some deeper insight.

4.10 Future research

As it has already been pointed out, one of the possible extensions of the presented results

is to derive testing procedures based on the asymptotics as well as on the bootstrapping

for a change in the regression parameters in case of weakly dependent errors with a general

score function.

Besides that, it would be preferable to increase the power of the bootstrap tests (with or

without replacement) in case of moderate sample size (in this case, e.g., n “ 100). A possible

solution to this issue of low power can be a two-step testing procedure for detecting the
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change in regression: The first step would be a consistent estimation of the possible change

point, i.e., to obtain pτn such that pτn ´ τn “ oP p1q as n Ñ 8. The second step would consist

of bootstrapping residuals

pei :“

$
&
%

ψ
`
Yi ´ hJpi{nqbpτnpψq

˘
, i ď pτn,

ψ
´
Yi ´ hJpi{nqrbpτnpψq

¯
, i ą pτn.

This approach will be implemented in forthcoming Section 6.7 (cf. Procedure 6.1) when

testing a common change in panel means. The one-step bootstrap procedure derived in the

similar manner as in this chapter, but used for the panel data problem introduced later on,

gave very low power.

4.11 Summary

Procedures for detection of at most one change in the regression parameters of the regres-

sion model are considered. In particular, the test procedures based on the ratio type test

statistics—that are functionals of partial sums of the residuals—are studied. Ratio type

statistics are interesting for the fact, that in order to compute such statistics, there in no

requirement to estimate the variance of the underlying model.

The presented methods generalize the traditional L2 approach in constructions of the test

statistics for the change detection by incorporating a general score function. To approximate

the critical values for testing procedures, either approximations of the limit distribution or

resampling methods are used. We concentrate on the permutation bootstrap. The asymp-

totic behavior of the proposed ratio type test statistics is studied under the null hypothesis as

well as under local alternatives. Additionally, the justification for the permutation bootstrap

method is given.



Chapter 5

Change in Autoregression

Parameter

In the present chapter, we focus on autoregressive time series of order one, i.e., AR(1) series.

We try to detect a possible change of the scalar parameter from a stationary autoregressive

model using ratio type test statistics, which allows us to avoid estimating the unknown

nuisance dispersion parameter of the time series.

The results are inspired by a paper by Hušková et al. (2007), where an autoregressive

time series model of order p is taken into account and the whole vector of autoregression

parameters is subject to change. The authors proposed to detect such change by computing

partial sums of weighted residuals based on maximum type CUSUM test statistics. The

results were consequently extended by the bootstrap approach in Hušková et al. (2008).

5.1 Autoregressive model with possibly changed

parameter

We consider the time series model with a possible change in parameter after an unknown

time point τ

Yt “ βYt´1 ` δYt´1Itt ą τu ` εt, t “ 2, . . . n, (5.1)

where β and δ ‰ 0 are fixed (not depending on n) unknown parameters, 1 ă τ “ τn ď n is

the unknown change point, and ε1, . . . , εn are iid random errors satisfying further conditions

specified below.

We are going to test the null hypothesis that the autoregression parameter remained

85
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constant for the whole observation period

H0 : τ “ n (5.2)

against the alternative that a change of the autoregression parameter occurred at some

unknown time point τ

H1 : τ ă n, δ ‰ 0. (5.3)

5.2 Test statistic for change in autoregression

We propose the following ratio type test statistic to detect the change in autoregression of

order one

Vn “ max
nγďkďn´nγ

max
2ďiďk

ˇ̌
ˇ
ři´1

j“1
YjpYj`1 ´ pβ1kYjq

ˇ̌
ˇ

max
k`1ďiďn´1

ˇ̌
ˇ
řn´1

j“i YjpYj`1 ´ pβ2kYjq
ˇ̌
ˇ
, (5.4)

where 0 ă γ ă 1{2 is a given constant, pβ1k is an ordinary least squares estimate of

parameter β based on observations Y1, . . . , Yk and pβ2k is an ordinary least squares esti-

mate of β based on observations Yk`1, . . . , Yn. Being more formal, estimate pβ1k is ob-

tained when regressing vector of responses y1,k :“ pY2, . . . , YkqJ on the vector of covariates

x1,k :“ pY1, . . . , Yk´1qJ. Analogously, estimate pβ2k is obtained when regressing vector of

responses yk`1,n :“ pYk`2, . . . , YnqJ on the vector of regressors xk`1,n :“ pYk`1, . . . , Yn´1qJ.

The motivation for constructing the ratio type test statistic Vn comes from the linear

regression setup (so-called normal equations). Estimate pβ1k is a solution of

xJ
1,k py1,k ´ x1,kbq “ 0

with respect to b P R and estimate pβ2k is a solution of

xJ
k`1,n pyk`1,n ´ xk`1,nbq “ 0

with respect to b P R. Therefore, we may define partial sums of weighted residuals as

xJ
1,i

´
y1,i ´ x1,i

pβ1k
¯
, i “ 2, . . . , k

and

xJ
i,n

´
y,n ´ xi,n

pβ2k
¯
, i “ k ` 1, . . . , n.

Consequently, these partial sums can be used as basis for the maxima of partial sums in the
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nominator and the denominator of Vn.

Note that this approach—usage of the ratio type test statistics—can be generalized for

the change of a vector autoregression parameter of the stationary autoregressive AR(p)

process, when p ě 2, using the notation from Hušková et al. (2007).

Before deriving asymptotic properties of the ratio type test statistic, we formulate several

stochastic assumptions on time series model (5.1):

Assumption F1. β P p´1, 1qzt0u.

Assumption F2. β ` δ P p´1, 1qzt0u.

Assumption I1. tεi, i “ 0,˘1, . . .u are iid random variables having E εi “ 0, Var εi “ σ2 ą 0,

and E ε4i ă 8 for all i. Observation Y1 is independent of tε2, ε3, . . .u.

Assumptions F1, F2, and I1 ensure that the time series is a stationary autoregressive

sequence of order one (and not an iid sequence) before and even after the possible change

point.

The limit behavior of the test statistic under the null hypothesis is characterized by the

following theorem.

Theorem 5.1 (Under null). Suppose that Y1, . . . , Yn follow model (5.1), assume that As-

sumptions F1 and I1 hold. Then, under null hypothesis (5.2)

Vn
DÝÝÝÑ

nÑ8
sup

γďtď1´γ

sup0ďuďt |Wpuq ´ u{tWptq|
suptďuď1

ˇ̌
ˇĂWpuq ´ p1 ´ uq{p1 ´ tqĂWptq

ˇ̌
ˇ
, (5.5)

where tWpxq, 0 ď x ď 1u is a standard Wiener process and ĂWpxq “ Wp1q ´ Wpxq.

Proof. Let us consider an array

Un,i “
a
1 ´ β2

σ2
?
n´ 1

Yi´1εi, i “ 2, . . . , n

and a filtration Fn,i “ σtεj , j ď iu, i “ 2, . . . , n and n P N. Then, tUn,i,Fn,iu is a martingale

difference array such that

EU2

n,i “ 1 ´ β2

σ4pn ´ 1qEY
2

i´1ε
2

i “ 1

n´ 1
.

Moreover,

nÿ

i“2

U2

n,i ´
nÿ

i“2

EU2

n,i “ 1 ´ β2

σ4pn´ 1q
nÿ

i“2

pY 2

i´1ε
2

i ´ EY 2

i´1ε
2

i q.
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Furthermore,

1

n´ 1

nÿ

i“2

pY 2

i´1ε
2

i ´ EY 2

i´1ε
2

i q “ 1

n ´ 1

nÿ

i“2

rY 2

i´1pε2i ´ σ2qs ` 1

n´ 1

nÿ

i“2

pY 2

i´1 ´ EY 2

i´1qσ2.

Since tY 2
i´1pε2i ´ σ2qu is a martingale difference array again with respect to Fn,i, we have

under Assumption I1 from the Chebyshev’s inequality that

1

n´ 1

nÿ

i“2

rY 2

i´1pε2i ´ σ2qs PÝÝÝÑ
nÑ8

0.

Similarly, as a consequence of Lemma 4.2 by Hušková et al. (2007),

1

n´ 1

nÿ

i“2

pY 2

i´1 ´ EY 2

i´1q PÝÝÝÑ
nÑ8

0.

Thus,

nÿ

i“2

U2

n,i
PÝÝÝÑ

nÑ8
1. (5.6)

Next, for any ǫ ą 0,

P

ˆ
max
2ďiďn

U2

n,i ą ǫ

˙
ď

nÿ

i“2

P

ˆ
1 ´ β2

σ4pn ´ 1qY
2

i´1ε
2

i ą ǫ

˙

ď p1 ´ β2q2
ǫ2σ8pn ´ 1q2

nÿ

i“2

EY 4

i´1E ε
4

i ÝÝÝÑ
nÑ8

0. (5.7)

Additionally,

lim
nÑ8

rntsÿ

i“2

EU2

n,i “ lim
nÑ8

rnts ´ 1

n´ 1
“ t (5.8)

for all t P r0, 1s.

According to Theorem 27.14 by Davidson (1994) for the martingale difference array

tUn,i,Fn,iu, where the assumptions of this theorem are satisfied due to (5.6), (5.7), and (5.8),

we get

rntsÿ

i“2

Un,i
Dr0,1sÝÝÝÝÑ
nÑ8

Wptq.
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Therefore,

1?
n´ 1

¨
˝

rntsÿ

i“2

Yi´1εi,

nÿ

i“rnts`2

Yi´1εi

˛
‚ D

2r0,1sÝÝÝÝÝÑ
nÑ8

σ2

a
1 ´ β2

´
Wptq, ĂWptq

¯
, (5.9)

where ĂWptq “ Wp1q ´ Wptq.

Let us define Yj,l “ pYj , . . . , YlqJ and εj,l “ pεj , . . . , εlqJ. Hence, for the expression from

the nominator of Vn holds

i´1ÿ

j“1

YjpYj`1 ´ pβ1kYjq “ Y J
1,i´1

´
Y2,i ´ Y1,i´1

pβ1k
¯

“ Y J
1,i´1

´
Y1,i´1β ` ε2,i ´ Y1,i´1β ´ Y1,i´1

`
Y J
1,k´1Y1,k´1

˘´1

Y J
1,k´1ε2,k

¯

“ Y J
1,i´1ε2,i ´ Y J

1,i´1Y1,i´1

`
Y J
1,k´1Y1,k´1

˘´1

Y J
1,k´1ε2,k. (5.10)

Similarly for the expression from the denominator of Vn

n´1ÿ

j“i

YjpYj`1 ´ pβ2kYjq

“ Y J
i,n´1εi`1,n ´ Y J

i,n´1Yi,n´1

`
Y J
k`1,n´1Yk`1,n´1

˘´1

Y J
k`1,n´1εk`2,n. (5.11)

Lemma 4.2 by Hušková et al. (2007) gives

sup
γďtă1

1

rnts

ˇ̌
ˇ̌
ˇ̌
rntsÿ

s“1

pY 2

s ´ EY 2

s q

ˇ̌
ˇ̌
ˇ̌ “ oP p1q (5.12)

and

sup
0ătď1´γ

1

rnp1 ´ tqs

ˇ̌
ˇ̌
ˇ̌

n´1ÿ

s“rnts`1

pY 2

s ´ EY 2

s q

ˇ̌
ˇ̌
ˇ̌ “ oP p1q. (5.13)

Finally, (5.9) together with (5.10), (5.11), (5.12), and (5.13) implies

1?
n´ 1

¨
˚̋ sup

0ďuďt

ˇ̌
ˇ
řrnus´1

j“1
YjpYj`1 ´ pβ1rntsYjq

ˇ̌
ˇ

sup
tďuď1

ˇ̌
ˇ
řn´1

j“rnus`1
YjpYj`1 ´ pβ2rntsYjq

ˇ̌
ˇ

˛
‹‚

D
2rγ,1´γsÝÝÝÝÝÝÝÑ
nÑ8

σ2

a
1 ´ β2

¨
˝ sup0ďuďt |Wpuq ´ u{tWptq|

suptďuď1

ˇ̌
ˇĂWpuq ´ p1 ´ uq{p1 ´ tqĂWptq

ˇ̌
ˇ

˛
‚.

Then, the assertion of the theorem directly follows.
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The next theorem describes the test statistic’s behavior under a fixed alternative.

Theorem 5.2 (Under alternative). Suppose that Y1, . . . , Yn follow model (5.1), assume that

alternative (5.3) holds for some fixed δ ‰ 0, and τ “ rζns for some γ ă ζ ă 1 ´ γ. Then,

under Assumptions F1, F2, and I1

Vn
PÝÝÝÑ

nÑ8
8.

Proof. Let us take k “ τ ` 2, k “ rξns for some ζ ă ξ ă 1 ´ γ and i “ τ ` 1. Then,

τÿ

j“1

YjpYj`1 ´ pβ1pτ`2qYjq

“ Y J
1,τε2,τ`1 ´ Y J

1,τY1,τ

`
Y J
1,τ`1Y1,τ`1

˘´1

Y J
1,τ`1ε2,τ`2 ´ Y J

1,τY1,τ δ.

According to the proof of Theorem 5.1, as n Ñ 8,

1?
n ´ 1

´
Y J
1,τε2,τ`1 ´ Y J

1,τY1,τ

`
Y J
1,τ`1Y1,τ`1

˘´1

Y J
1,τ`1ε2,τ`2

¯
“ OP p1q.

Lemma 4.2 by Hušková et al. (2007) gives

1?
n ´ 1

ˇ̌
Y J
1,τY1,τδ

ˇ̌
PÝÝÝÑ

nÑ8
8.

Now,

1?
n ´ 1

max
2ďiďk

ˇ̌
ˇ̌
ˇ
i´1ÿ

j“1

YjpYj`1 ´ pβ1kYjq
ˇ̌
ˇ̌
ˇ

PÝÝÝÑ
nÑ8

8.

For τ ă k “ rξns, the denominator in (5.4) divided by
?
n´ 1 has the same distribution as

under the null hypothesis and it is, therefore, bounded in probability. It follows that the

maximum of the ratio has to tend in probability to infinity as well, while n Ñ 8.

The previous theorem provides consistency of the studied test statistic under the given

assumptions. The null hypothesis is rejected for large values of the ratio type test statistic.

Being more formal, we reject H0 at significance level α if Vn ą v1´α,γ , where v1´α,γ is the

p1 ´ αq-quantile of the asymptotic distribution (5.5).

5.3 Asymptotic critical values for the change

in AR parameter

The explicit form of the limit distribution (5.5) is not known. However, the asymptotic

distribution of Vn is the same as the asymptotic distribution from (3.8) for the test statistic
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Anpψq, because the order of the considered autoregression time series model under the null

hypothesis is just one. The critical values may be determined by simulation from the limit

distribution from Theorem 5.1. Theorem 5.2 ensures that we reject the null hypothesis for

large values of the test statistic. We tried to simulate the asymptotic distribution (5.5) by

discretizing the Wiener process and using the relationship of a random walk to the Wiener

process. We considered 1000 as the number of discretization points within r0, 1s interval and

the number of simulation runs equals to 100000. Higher numbers of discretization points

and simulations were tried as well, but only negligible differences in the critical values were

acquired. In Table 5.1, we present several critical values for γ “ 0.1 and γ “ 0.2.

90% 95% 97.5% 99%

γ “ 0.1 6.298815 7.293031 8.283429 9.589896

γ “ 0.2 4.117010 4.745884 5.368286 6.159252

Table 5.1: Simulated critical values corresponding to the asymptotic distribution of the test

statistic Vn under the null hypothesis.

5.4 Connection between test statistics for the change

in regression and in autoregression

As it was already mentioned above when constructing the test statistic (5.4) for the change

in autoregression, one can see Vn as an analogy to the ratio type test statistic (4.7) for the

change in regression with the L2 score function. To point out this informal similarity, let us

imagine that the regression parameter from Chapter 4 is only one-dimensional correspond-

ing to a linear trend without intercept. The vectors of weighted partial sums of residuals

Sj,kpψq and rSj,kpψq are just scalars and, furthermore, matrix Cj,k becomes a scalar as well.

Now, let us replace the covariate functions hpi{nq, i “ 1, . . . k´1 with the lagged time series

observations x1,k. The regression setup with a system of covariate functions h on a com-

pact interval is usually called trending regression, whereas we proceed to the non-trending

regression setup satisfying that xJ
1,kx1,k{k converges to a positive constant as k Ñ 8.

After that, Sj´1,kpψL2
q can be seen as xJ

1,j

´
y1,j ´ x1,j

pβ1k
¯

and C1,k´1 becomes xJ
1,kx1,k.

Similarly for the terms from the denominator of RnpψL2
q. Being informal, RnpψL2

q becomes

equivalent to

rVn “ max
nγďkďn´nγ

max
2ďiďk

”
xJ
1,i

´
y1,i ´ x1,i

pβ1k
¯ı2 ´

xJ
1,kx1,k

¯´1

max
k`1ďiďn´1

”
xJ
i,n

´
yi,n ´ xi,n

pβ2k
¯ı2 ´

xJ
k`1,nxk`1,n

¯´1
.
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Being again informal, xJ
1,kx1,k “

řk´1

t“1
Y 2
t « pk´ 1qEY 2

1 under H0. Hence, instead of
b

rVn,

one may use

V̆n “ max
nγďkďn´nγ

c
n ´ k ´ 1

k ´ 1

max
2ďiďk

ˇ̌
ˇxJ

1,i

´
y1,i ´ x1,i

pβ1k
¯ˇ̌

ˇ

max
k`1ďiďn´1

ˇ̌
ˇxJ

i,n

´
yi,n ´ xi,n

pβ2k
¯ˇ̌

ˇ
,

which is just a modification of the original test statistics Vn for the change in autoregression.

The modification is in the same manner as in (3.15).

Note that the nominator and denominator both in the original test statistic Vn and in

the modified one V̆n can be interchanged and can still be used for detection of the change

in autoregression (but using different critical values).

5.5 Brief simulation study

A simulation experiment was performed to study the finite sample properties of the asymp-

totic test for the change in the AR(1) parameter. In particular, the interest lies in the

empirical size of the proposed test under the null hypothesis and in the empirical rejection

rate (power) under the alternative. Random samples (1000 each time) are generated from

the time series change point model (5.1). The number of observations is set to n “ 150

and n “ 300 in order to demonstrate the performance of the testing approaches in case of

different sample sizes. Two values of the autoregression parameter are taken into consider-

ation, i.e., β “ 0.2 and β “ 0.5. The innovations are obtained as iid random variables from

a standard normal Np0, 1q or Student t5 distribution. Simulation scenarios are produced as

all possible combinations of the above mentioned settings.

To assess the theoretical results under H0 numerically, Table 5.2 provides the empirical

sizes (empirical probabilities of the type I error) of the test for change in the autoregression

parameter, where the significance level is α “ 0.05. The proportion of rejecting the null

α 0.01 0.05 0.10

innovations Np0, 1q t5 Np0, 1q t5 Np0, 1q t5

β “ 0.2 n “ 150 0.113 0.220 0.212 0.341 0.292 0.413

n “ 300 0.062 0.097 0.155 0.221 0.235 0.294

β “ 0.5 n “ 150 0.119 0.173 0.231 0.296 0.302 0.385

n “ 300 0.067 0.121 0.160 0.231 0.231 0.300

Table 5.2: Empirical size of the test for the change in autoregression under H0 using the

asymptotic critical values of Vn with γ “ 0.1, considering a significance level α. Innovations

are iid having Np0, 1q or t5 distribution.
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hypothesis is getting closer to the theoretical significance level as the number of time series’

observations increases. Better performance of the test under the null hypothesis is observed,

when the innovations have lighter tails. Note that the test statistic Vn is based on the

L2 regression approach. There is no visible direct effect of the value of the autoregression

parameter (considering Np0, 1q distributed innovations) on the empirical rejection rates based

on this particular simulation study. Generally, the empirical sizes are higher than they should

be. The same effect—the test rejects the null hypothesis more often than it should—can be

seen in the detection of change in regression. Possible explanation of this difficulty can be

slow convergence of the test statistics under the null hypothesis (see Section 4.7).

The performance of the testing procedure under H1 in terms of the empirical rejection

rates is shown in Table 5.3, where the change point is set to τ “ n{2 or τ “ n{3. The

parameter δ is chosen as δ “ 0.4. We may conclude that the power of the test increases

α 0.01 0.05 0.10

innovations Np0, 1q t5 Np0, 1q t5 Np0, 1q t5

β “ 0.2 n “ 150 τ “ n{2 0.427 0.372 0.589 0.535 0.676 0.610

τ “ n{3 0.409 0.325 0.571 0.485 0.662 0.564

n “ 300 τ “ n{2 0.515 0.456 0.691 0.655 0.773 0.729

τ “ n{3 0.470 0.411 0.630 0.620 0.725 0.727

β “ 0.5 n “ 150 τ “ n{2 0.392 0.347 0.531 0.491 0.585 0.582

τ “ n{3 0.311 0.257 0.453 0.392 0.536 0.485

n “ 300 τ “ n{2 0.477 0.433 0.632 0.623 0.734 0.717

τ “ n{3 0.377 0.336 0.540 0.516 0.637 0.607

Table 5.3: Empirical power of the test for the change in autoregression under H1 using the

asymptotic critical values of Vn with γ “ 0.1, considering a significance level α and δ “ 0.4.

Innovations are iid having Np0, 1q or t5 distribution.

as the number of observations increases, which was expected. The test power drops when

switching from a change point located in the middle of the time series to a change point

closer to the beginning or the end of the time series. Innovations with heavier tails (i.e.,

t5) yield slightly smaller power than innovations with lighter tails. There is again no visible

effect of the value of autoregression parameter β on the power of the test.

In contrast to the slightly lower power in case of relatively small sample size and moderate

change in the autoregression parameter, one may try to consider larger change in β from

´0.8 to 0.8 in case of n “ 150. Here, the simulated power reaches 0.994 (for α “ 0.05).

Hence, in case of a large change in autoregression, the test achieves high power.

To improve the computational performance of the test for detecting the change in au-

toregression, longer time series of observations are a general solution. Moreover, a suitable
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bootstrap extension of the developed procedures could be helpful from a numerical and

computational point of view.

5.6 Application to stock exchange index

As an illustrative example of the proposed technique for detecting of the change in autore-

gression, we concentrate on the Prague Stock Exchange index called PX Index (formerly

PX50). It is a capitalization-weighted index of major stocks that trade on the Prague Stock

Exchange.

The starting exchange day for the Index PX50 was April 5, 1994. We consider a time

series consisting of daily PX50 values starting from November 16, 1994 up to September 27,

2001. Only business days were taken into account, providing 1850 observations. The starting

date of the observation period was chosen later than the starting day of the exchange, since

only weekly (not daily) values of PX50 records were available at the beginning. Moreover, the

market after opening the exchange was not as stable as later on. The last observation date

was chosen in order to avoid effects of the attacks on September 11, 2001. The considered

time series can be seen in Figure 5.1.
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Figure 5.1: Daily Prague Stock Exchange index (PX50) values from November 16, 1994 to

September 27, 2001.

I would like to thank doc. RNDr. Zuzana Prášková, CSc. from Charles University in

Prague for pointing out the interesting nature of this data set and providing the data. The

PX50 data can also be downloaded from the Prague Stock Exchange (2015) webpage.

We denote the original data of the PX50 index as tXtut. Firstly, we transform the
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PX50 index by taking into account the differences of logarithms, i.e, Yt “ logpXt{Xt´1q.
This transformation can be interpreted as considering logarithms of daily returns of the

PX50 index. Besides that, using this approach stationary time series before and even after

a possible change point are obtained. The transformed index values are shown in Figure 5.3.

Let us assume that Y1, . . . , Yn follow autoregressive change point model (5.1). We are

going to decide whether the change in the AR(1) parameter occurred or not based on the

proposed asymptotic test. The value of the test statistic Vn for γ “ 0.1 is 7.321143, which is

larger than the 95%-critical value 7.293031 simulated from the limit distribution under the

null hypothesis. Therefore, we reject the null hypothesis of no change in the autoregressive

parameter. The progress of the ratio of the test statistic

Qk “
max
2ďiďk

ˇ̌
ˇ
ři´1

j“1
YjpYj`1 ´ pβ1kYjq

ˇ̌
ˇ

max
k`1ďiďn´1

ˇ̌
ˇ
řn´1

j“i YjpYj`1 ´ pβ2kYjq
ˇ̌
ˇ
, nγ ď k ď n´ nγ

is depicted in Figure 5.2.
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Figure 5.2: The values of Qk for the PX50 index data with γ “ 0.1. The colored horizontal

line represents the 95%-critical value.

We may also estimate the unknown change point τ in a similar fashion as described in

Chapter 1 by

pτ “ arg max
2ďkďn

ˇ̌
ˇ̌
ˇ
k´1ÿ

j“1

YjpYj`1 ´ pβ1nYjq
ˇ̌
ˇ̌
ˇ .

This leads to pτ “ 949, which corresponds to October 7, 1998. The log returns of PX50
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together with the depicted change point for the change in autoregression are displayed in

Figure 5.3.
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Figure 5.3: Logs of ratios of index PX50 values.

The explanation of the detected change in autoregression is possibly connected to the

Russian financial crisis (also called Ruble crisis) that hit Russia on August 17, 1998. It

resulted in the Russian government and the Russian Central Bank devaluing the ruble and

defaulting on its debt. In 1998 influenced by Russian financial crisis, the index reached its

historical bottom on October 8 with 316 points, which is the first day after the detected

change in autoregression of the PX50 log returns.

Finally, we investigated the ACF (autocorrelation function) and PACF (partial auto-

correlation function) plots of the time series before and after the estimated change point.

Both ACF plots go to zero at an exponential rate, while both PACF plots become zero

immediately after the first lag. We applied the Ljung-Box test on the residuals of the fitted

AR(1) models (before and after the change). The hypothesis that the residuals in each

AR(1) model have no autocorrelation is rejected in both cases, which suggests that the two

series are stationary.

5.7 Summary

We investigate a possible change in the time series model, where the situation of no change

corresponds to the fact that the considered sequence is a stationary AR(1) process. The

alternative situation of the change present means that the time series is an AR(1) process

up to some unknown time point and it is again an AR(1) process after that unknown time
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point, but the autoregression parameter is different.

The testing procedure for the change in autoregression can be viewed as an analogy to

the testing procedure for the change in regression. The asymptotic behavior of the ratio type

test statistic for the change in autoregression is investigated under the null hypothesis as

well as under the alternative. The theoretical limiting distribution under the null hypothesis

provides critical values for the test, which are obtained by simulations. A brief simulation

study is conducted to perform the numerical performance of the proposed testing approach.

Finally, an application of the developed procedure on the stock exchange index data is

performed.
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Chapter 6

Common Change in Panel Data

Until this moment, we have considered a change point in a sequence of observations, where

only one stochastic copy of the sequence is available. We focus now on a change point

problem, where several sequences are subject to change simultaneously.

Our interest lies in panel data that consist of a moderate or relatively large number of

panels, while each of the panels contain a small number of observations. In this chapter, we

establish testing procedures to detect a possible common change in means of the panels. We

again consider a ratio type test statistic and derive its asymptotic distribution under the no

change null hypothesis for the panel change point model. Moreover, we prove the consistency

of the test under the alternative. A bootstrap technique is proposed as an add-on to the

testing procedure based on asymptotics in order to make our approach completely data

driven without any tuning parameters. The validity of the bootstrap algorithm is shown.

As a by-product of the developed tests, we introduce a common break point estimate and

prove its consistency. This chapter is based on paper Peštová and Pešta (2015).

6.1 Introduction

The problem of an unknown common change in means of the panels is studied here, where

the panel data consist ofN panels and each panel contains T observations over time. Various

values of the change are possible for each panel at some unknown common time τ “ 1, . . . , N .

The panels are considered to be independent, but this restriction can be weakened. In spite

of that, observations within the panel are usually not independent. It is supposed that

a common unknown dependence structure is present over the panels.

Tests for change point detection in the panel data have been proposed only in case when

the panel size T is sufficiently large, i.e., T increases over all limits from an asymptotic point

of view, cf. Chan et al. (2013) or Horváth and Hušková (2012). However, the change point

estimation has already been studied for finite T not depending on the number of panels

99
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N , see Bai (2010). The remaining task is to develop testing procedures to decide whether

a common change point is present or not in the panels, while taking into account that the

length T of each observation regime is fixed and can be relatively small.

6.2 Motivation

Structural changes in panel data—especially common breaks in means—are wide spread

phenomena. Our primary motivation comes from non-life insurance business, where asso-

ciations in many countries uniting several insurance companies collect claim amounts paid

by every insurance company each year. Such a database of cumulative claim payments can

be viewed as panel data, where insurance company i “ 1, . . . , N provides the total claim

amount Yi,t paid in year t “ 1, . . . , T into the common database. The members of the

association can consequently profit from the joint database.

For the whole association it is important to know, whether a possible change in the

claim amounts occurred during the observed time horizon. Usually, the time period is

relatively short, e.g., 10–15 years. To be more specific, a widely used and very standard

actuarial method for predicting future claim amounts—called chain ladder—assumes a kind

of stability of the historical claim amounts. The formal necessary and sufficient condition is

derived in Pešta and Hudecová (2012). This chapter shows a way how to test for a possible

historical instability.

6.3 Panel change point model

Let us consider the panel change point model

Yi,t “ µi ` δiItt ą τu ` σεi,t, 1 ď i ď N, 1 ď t ď T ; (6.1)

where σ ą 0 is an unknown variance-scaling parameter and T is fixed, not depending on

N . The possible common change point time is denoted by τ P t1, . . . , T u. A situation

where τ “ T corresponds to no change in means of the panels. The means µi are panel-

individual. The amount of the break in mean, which can also differ for every panel, is

denoted by δi. Furthermore, it is assumed that the sequences of panel disturbances tεi,tut
are independent and within each panel the errors form a weakly stationary sequence with

a common correlation structure. This can be formalized in the following assumption.

Assumption P1. The vectors rεi,1, . . . , εi,T sJ existing on a probability space pΩ,F ,P q are

iid for i “ 1, . . . , N with E εi,t “ 0 and Var εi,t “ 1, having the autocorrelation function

ρt “ Corr pεi,s, εi,s`tq “ Cov pεi,s, εi,s`tq , @s P t1, . . . , T ´ tu,
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which is independent of the lag s, the cumulative autocorrelation function

rptq “ Var

tÿ

s“1

εi,s “
ÿ

|s|ăt

pt´ |s|qρs,

and the shifted cumulative correlation function

Rpt, vq “ Cov

˜
tÿ

s“1

εi,s,

vÿ

u“t`1

εi,u

¸
“

tÿ

s“1

vÿ

u“t`1

ρu´s, t ă v

for all i “ 1, . . . , N and t, v “ 1, . . . , T .

The sequence tεi,tuTt“1 can be viewed as a part of a weakly stationary process. Note

that the dependent errors within each panel do not necessarily need to be linear processes.

For example, GARCH processes as error sequences are allowed as well. The assumption of

independent panels can indeed be relaxed, but it would make the setup much more complex.

Consequently, probabilistic tools for dependent data need to be used (e.g., suitable versions

of the central limit theorem). Nevertheless, assuming, that the claim amounts for different

insurance companies are independent, is reasonable. Moreover, the assumption of a common

homoscedastic variance parameter σ can be generalized by introducing weights wi,t, which

are supposed to be known. Being particular in actuarial practice, it would mean to normalize

the total claim amount by the premium received, since bigger insurance companies are

expected to have higher variability in total claim amounts paid.

It is required to test the null hypothesis of no change in the means

H0 : τ “ T (6.2)

against the alternative that at least one panel has a change in mean

H1 : τ ă T and Di P t1, . . . , Nu : δi ‰ 0. (6.3)

A graphical illustration of the change point model (6.1) in panel data under the alternative,

where the means change, can be seen in Figure 6.1.

6.4 Test statistic and asymptotic results

We propose a ratio type statistic to test H0 againstH1, because this type of statistic does not

require estimation of the nuisance parameter for the variance. Generally, this is due to the

fact that the variance parameter simply cancels out from the nominator and denominator

of the statistic. In spite of that, the common variance could be estimated from all the

panels, of which we possess a sufficient number. Nevertheless, we aim to construct a valid

and completely data driven testing procedure without interfering estimation and plug-in
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t “ 1 t “ τ t “ T

i “ N

δN

i “ 2
δ2

i “ 1
δ1

Figure 6.1: Illustration of the common change point problem in panel data.

estimates instead of nuisance parameters. A bootstrap add-on is going to serve this purpose

as it is seen later on.

For surveys on ratio type test statistics, we refer to Chen and Tian (2014), Csörgő and

Horváth (1997), Horváth et al. (2008), Liu et al. (2008), and Madurkayová (2011). Our

particular panel change point test statistic is

PN pT q “ max
t“2,...,T´2

maxs“1,...,t

ˇ̌
ˇ
řN

i“1

“řs
r“1

`
Yi,r ´ sYi,t

˘‰ˇ̌
ˇ

maxs“t,...,T´1

ˇ̌
ˇ
řN

i“1

”řT
r“s`1

´
Yi,r ´ rYi,t

¯ıˇ̌
ˇ
,

where sYi,t is the average of the first t observations in panel i and rYi,t is the average of the

last T ´ t observations in panel i, i.e.,

sYi,t “ 1

t

tÿ

s“1

Yi,s and rYi,t “ 1

T ´ t

Tÿ

s“t`1

Yi,s.

An alternative way for testing the change in panel means could be a usage of CUSUM

type statistics. For example, a maximum or minimum of a sum (not a ratio) of properly

standardized or modified sums from our test statistic PN pT q. The theory, which follows,
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can be appropriately rewritten for such cases.

Firstly, we derive the behavior of the test statistics under the null hypothesis.

Theorem 6.1 (Under null). Suppose that panel data tYi,tuN,T
i,t“1

follow model (6.1). Under

null hypothesis (6.2) and Assumption P1

PNpT q DÝÝÝÝÑ
NÑ8

max
t“2,...,T´2

maxs“1,...,t

ˇ̌
Xs ´ s

t
Xt

ˇ̌

maxs“t,...,T´1

ˇ̌
ˇZs ´ T´s

T´t
Zt

ˇ̌
ˇ
, (6.4)

where Zt :“ XT ´Xt and rX1, . . . , XT sJ is a multivariate normal random vector with zero

mean and covariance matrix Λ “ tλt,vuT,T
t,v“1

such that

λt,t “ rptq and λt,v “ rptq `Rpt, vq, t ă v.

Proof. Let us define

UNptq :“ 1

σ
?
N

Nÿ

i“1

tÿ

s“1

pYi,s ´ µiq.

Using the multivariate Lindeberg-Lévy CLT for a sequence of T -dimensional iid random

vectors trř1

s“1
εi,s, . . . ,

řT
s“1

εi,ssJuiPN, we have under H0

rUNp1q, . . . , UN pT qsJ DÝÝÝÝÑ
NÑ8

rX1, . . . , XT sJ,

since Var rř1

s“1
ε1,s, . . . ,

řT
s“1

ε1,ssJ “ Λ. Indeed, the t-th diagonal element of the covari-

ance matrix Λ is

Var

tÿ

s“1

ε1,s “ rptq

and the upper off-diagonal element on position pt, vq is

Cov

˜
tÿ

s“1

ε1,s,

vÿ

u“1

ε1,u

¸
“ Var

tÿ

s“1

ε1,s ` Cov

˜
tÿ

s“1

ε1,s,

vÿ

u“t`1

ε1,u

¸

“ rptq `Rpt, vq, t ă v.

Moreover, let us define the reverse analogue to UNptq, i.e.,

VN ptq :“ 1

σ
?
N

Nÿ

i“1

Tÿ

s“t`1

pYi,s ´ µiq “ UN pT q ´ UN ptq.
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Hence,

UN psq ´ s

t
UNptq “ 1

σ
?
N

Nÿ

i“1

#
sÿ

r“1

«
pYi,r ´ µiq ´ 1

t

tÿ

v“1

pYi,v ´ µiq
ff+

“ 1

σ
?
N

Nÿ

i“1

sÿ

r“1

`
Yi,r ´ sYi,t

˘

and, consequently,

VN psq ´ T ´ s

T ´ t
VN ptq “ 1

σ
?
N

Nÿ

i“1

#
Tÿ

r“s`1

«
pYi,r ´ µiq ´ 1

T ´ t

Tÿ

v“t`1

pYi,v ´ µiq
ff+

“ 1

σ
?
N

Nÿ

i“1

Tÿ

r“s`1

´
Yi,r ´ rYi,t

¯
.

Using the continuous mapping theorem, we end up with

max
t“2,...,T´2

maxs“1,...,t

ˇ̌
UN psq ´ s

t
UN ptq

ˇ̌

maxs“t,...,T´1

ˇ̌
ˇVN psq ´ T´s

T´t
VN ptq

ˇ̌
ˇ

DÝÝÝÝÑ
NÑ8

max
t“2,...,T´2

maxs“1,...,t

ˇ̌
Xs ´ s

t
Xt

ˇ̌

maxs“t,...,T´1

ˇ̌
ˇpXT ´Xsq ´ T´s

T´t
pXT ´Xtq

ˇ̌
ˇ
.

The limiting distribution does not depend on the variance nuisance parameter σ, but it

depends on the unknown correlation structure of the panel change point model, which has

to be estimated for testing purposes. The way of its estimation is shown in Section 6.6.

Furthermore, Theorem 6.1 is just a theoretical mid-step for the bootstrap test, where the

correlation structure need not to be known. That is why the presence of unknown quantities

in the asymptotic distribution is not troublesome.

Note that in case of independent observations within the panel, the correlation structure

and, hence, the covariance matrix Λ is simplified such that rptq “ t and Rpt, vq “ 0.

Next, we show how the test statistic behaves under the alternative.

Assumption P2. limNÑ8
1?
N

ˇ̌
ˇ
řN

i“1
δi

ˇ̌
ˇ “ 8.

Theorem 6.2 (Under alternative). Suppose that panel data tYi,tuN,T
i,t“1

follow model (6.1).

If τ ď T ´ 3, then under Assumptions P1, P2 and alternative (6.3)

PN pT q PÝÝÝÝÑ
NÑ8

8. (6.5)
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Proof. Let t “ τ ` 1. Then, under alternative H1

1

σ
?
N

max
s“1,...,τ`1

ˇ̌
ˇ̌
ˇ
Nÿ

i“1

«
sÿ

r“1

`
Yi,r ´ sYi,τ`1

˘
ffˇ̌

ˇ̌
ˇ

ě 1

σ
?
N

ˇ̌
ˇ̌
ˇ
Nÿ

i“1

τÿ

r“1

`
Yi,r ´ sYi,τ`1

˘
ˇ̌
ˇ̌
ˇ

“ 1

σ
?
N

ˇ̌
ˇ̌
ˇ
Nÿ

i“1

τÿ

r“1

˜
µi ` σεi,r ´ 1

τ ` 1

τ`1ÿ

v“1

pµi ` σεi,vq ´ 1

τ ` 1
δi

¸ˇ̌
ˇ̌
ˇ

“ 1?
N

ˇ̌
ˇ̌
ˇ
Nÿ

i“1

τÿ

r“1

pεi,r ´ sεi,τ`1q ´ τ

σpτ ` 1q

Nÿ

i“1

δi

ˇ̌
ˇ̌
ˇ

“ OP p1q ` τ

σpτ ` 1q
?
N

ˇ̌
ˇ̌
ˇ
Nÿ

i“1

δi

ˇ̌
ˇ̌
ˇ

PÝÑ 8, N Ñ 8,

where sεi,τ`1 “ 1

τ

řτ`1

v“1
εi,v.

Since there is no change after τ ` 1 and τ ď T ´ 3, then by Theorem 6.1 we have

1

σ
?
N

max
s“τ`1,...,T´1

ˇ̌
ˇ̌
ˇ
Nÿ

i“1

Tÿ

r“s`1

´
Yi,r ´ rYi,τ`1

¯ˇ̌
ˇ̌
ˇ

DÝÝÝÝÑ
NÑ8

max
s“τ`1,...,T´1

ˇ̌
ˇ̌Zs ´ T ´ s

T ´ τ
Zτ`1

ˇ̌
ˇ̌ .

Assumption P2 is satisfied, for instance, if 0 ă δ ď δi, @i (a common lower change point

threshold) and δ
?
N Ñ 8, N Ñ 8. Another suitable example of δis for the condition

in Assumption P2, can be 0 ă δi “ KN´1{2`η, @i for some K ą 0 and η ą 0. Or

δi “ Ciα´1
?
N, @i may be used as well, where α ě 0 and C ą 0. The assumption τ ď T ´3

means that there are at least three observations in the panel after the change point. It is also

possible to redefine the test statistic by interchanging the nominator and the denominator

of PN pT q. Afterwards, Theorem 6.2 for the modified test statistic would require three

observations before the change point, i.e., τ ě 3.

Theorem 6.2 says that in presence of a structural change in the panel means, the test

statistic explodes above all bounds. Hence, the procedure is consistent and the asymptotic

distribution from Theorem 6.1 can be used to construct the test. The null hypothesis is

rejected for large values of PN pT q. Hence, we reject H0 at significance level α if and only if

PN pT q ą p1´α, where p1´α is the p1 ´ αq-quantile of the asymptotic distribution (6.4).

6.5 Change point estimation

Despite the fact that the aim of the chapter is to establish testing procedures for detection of

a panel mean change, it is necessary to construct a consistent estimate for a possible change

point. There are two reasons for that: Firstly, the estimation of the covariance matrix
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Λ from Theorem 6.1 requires panels as vectors with elements having common mean (i.e.,

without a jump). Secondly, the bootstrap procedure, introduced later on, requires centered

residuals to be resampled.

A consistent estimate of the change point in the panel data is proposed in Bai (2010),

but under circumstances that the change occurred for sure. In our situation, we do not know

whether a change occurs or not. Therefore, we modify the estimate proposed by Bai (2010)

in the following way. If the panel means change somewhere inside t2, . . . , T ´ 1u, let the

estimate consistently select this change. If there is no change in panel means, the estimate

points out the very last time point T with probability going to one. In other words, the

value of the change point estimate can be T meaning no change. This is in contrast with Bai

(2010), where T is not reachable.

Let us define the estimate of τ :

pτN :“ arg max
t“2,...,T

1

t

Nÿ

i“1

tÿ

s“1

pYi,s ´ sYi,tq2. (6.6)

Now, we show the desired property of consistency for the proposed change point estimate

under the following assumptions.

Assumption C1. L ă limNÑ8
1

N

řN
i“1

δ2i ă 8, where L “ ´8 if τ “ T and L “
maxt“τ`1,...,T

σ2t2

τpt´τq

´
rpτq
τ2 ´ rptq

t2

¯
otherwise.

Assumption C2. E ε41,t ă 8, t P t1, . . . , T u.

Theorem 6.3 (Change point estimate consistency). Suppose that panel data tYi,tuN,T
i,t“1

follow model (6.1). Assume that τ ‰ 1 and the sequence trptq{t2uTt“2 is decreasing. Then

under Assumptions P1, C1, and C2

lim
NÑ8

P rpτN “ τ s “ 1.

Proof. Let us define

S
piq
N ptq :“ 1

t

tÿ

s“1

pYi,s ´ sYi,tq2

and, consequently, SN ptq :“ 1

N

řN
i“1

S
piq
N ptq. Then,

S
piq
N ptq “

$
&
%

σ2

t

řt
s“1

pεi,s ´ sεi,tq2, t ď τ,

1

t

”řτ
s“1

pσεi,s ´ σsεi,t ´ t´τ
t
δiq2 ` řt

s“τ`1
pσεi,s ´ σsεi,t ` τ

t
δiq2

ı
, t ą τ ;

where sεi,t “ 1

t

řt
s“1

εi,s. By the definition of the cumulative autocorrelation function, we
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have for 2 ď t ď τ

ES
piq
N ptq “ σ2

t

tÿ

s“1

E pεi,s ´ sεi,tq2 “ σ2

t

tÿ

s“1

«
1 ´ 2

t

tÿ

r“1

E εi,sεi,r ` 1

t2
rptq

ff

“ σ2

ˆ
1 ´ rptq

t2

˙
.

In the other case when t ą τ , one can calculate

ES
piq
N ptq “ σ2

ˆ
1 ´ rptq

t2

˙
` τ

t

ˆ
t ´ τ

t

˙2

δ2i ` t ´ τ

t

´τ
t

¯2

δ2i

“ σ2

ˆ
1 ´ rptq

t2

˙
` τpt ´ τq

t2
δ2i .

Realize that Spiq
N ptq ´ ES

piq
N ptq are independent with zero mean for fixed t and i “ 1, . . . , N .

Due to Assumption C2, for 2 ď t ď τ it holds

VarSNptq “ 1

N2

Nÿ

i“1

σ4

t2
Var

«
tÿ

s“1

pεi,s ´ sεi,tq2
ff

“ 1

N
C1pt, σq,

where C1pt, σq ą 0 is some constant not depending on N . If t ą τ , then

VarSNptq “ 1

N2

Nÿ

i“1

1

t2
Var

«
σ2

τÿ

s“1

pεi,s ´ sεi,tq2 ´ 2
t´ τ

t
σδi

τÿ

s“1

pεi,s ´ sεi,tq

`
ˆ
t ´ τ

t

˙2

δ2i ` σ2

tÿ

s“τ`1

pεi,s ´ sεi,tq2

` 2
τ

t
σδi

tÿ

s“τ`1

pεi,s ´ sεi,tq `
´τ
t

¯2

δ2i

ff

ď 1

N
C2pt, τ, σq ` 1

N2
C3pt, τ, σq

Nÿ

i“1

δ2i ` 1

N2
C4pt, τ, σq

ˇ̌
ˇ̌
ˇ
Nÿ

i“1

δi

ˇ̌
ˇ̌
ˇ ,

where Cjpt, τ, σq ą 0 does not depend on N for j “ 2, 3, 4.

The Chebyshev inequality provides SN ptq ´ ESNptq “ OP

´a
VarSN ptq

¯
as N Ñ 8.

According to Assumption C1 and the Cauchy-Schwarz inequality, we have

1

N2

ˇ̌
ˇ̌
ˇ
Nÿ

i“1

δi

ˇ̌
ˇ̌
ˇ ď 1

N

gffe 1

N

Nÿ

i“1

δ2i Ñ 0, N Ñ 8.
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Since the index set t1, . . . , T u is finite and τ is finite as well, then

max
1ďtďT

VarSN ptq ď 1

N
K1pσq `K2pσq 1

N2

Nÿ

i“1

δ2i `K3pσq 1

N2

ˇ̌
ˇ̌
ˇ
Nÿ

i“1

δi

ˇ̌
ˇ̌
ˇ ď 1

N
K4pσq,

where Kjpσq ą 0 are constants not depending on N for j “ 1, 2, 3, 4. Thus, we also have

uniform stochastic boundedness, i.e.,

max
1ďtďT

|SN ptq ´ ESNptq| “ OP

ˆ
1?
N

˙
, N Ñ 8.

Adding and subtracting, one has

SN pτq ´ SN ptq “ SN pτq ´ ESN pτq ´ rSN ptq ´ ESNptqs ` ESNpτq ´ ESNptq
ě ´2 max

1ďrďT
|SN prq ´ ESNprq| ` ESNpτq ´ ESNptq

“ ´2 max
1ďrďT

|SN prq ´ ESNprq| ` σ2

ˆ
rptq
t2

´ rpτq
τ2

˙
` Itt ą τuτpt ´ τq

t2
1

N

Nÿ

i“1

δ2i .

The above inequality holds for each t P t2, . . . , T u and, particularly, it holds for pτN . Note

that pτN “ argmaxt SN ptq. Hence, SNpτq ´ SN ppτN q ď 0. Therefore,

2
?
N max

1ďrďT
|SN prq ´ ESNprq|

ě
?
N

«
σ2

ˆ
rppτN q

pτ2N
´ rpτq

τ2

˙
` ItpτN ą τuτppτN ´ τq

pτ2N
1

N

Nÿ

i“1

δ2i

ff
. (6.7)

If pτN ą τ , then the left hand side of (6.7) is OP p1q as N Ñ 8, but the right hand side is

unbounded because of Assumption C1. So, if pτN ď τ , then

0
PÐÝÝÝÝ

NÑ8
2 max
1ďrďT

|SN prq ´ ESNprq| ě σ2

ˆ
rppτN q

pτ2N
´ rpτq

τ2

˙
,

which yields due to the monotonicity of rptq{t2 that P rpτN “ τ s Ñ 1 as N Ñ 8.

Assumption C1 assures that the values of changes have to be large enough compared

to the variability of the random noise in the panels and to the strength of dependencies

within the panels as well. On one hand, Assumption C1 implies the usual assumption

limNÑ8
1?
N

řN
i“1

δ2i “ 8 in change point analysis, cf. Bai (2010) or Horváth and Hušková

(2012). On the other hand, Assumption C1 assures that limNÑ8
1

N2

řN
i“1

δ2i “ 0, which is

not present when the panel size T is considered as unbounded, i.e., T Ñ 8. Here, this second

part is needed to control the asymptotic boundedness of the variability of 1

t

řN
i“1

řt
s“1

pYi,s´
sYi,tq2, because a finite T cannot do that.

Similarly as in the previous section, Assumption C1 is satisfied for 0 ă δ ď δi ă ∆,@i
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(a common lower and upper bound for the change amount) and suitable σ and rptq. As-

sumptions P2 and C1 are generally incomparable. The monotonicity assumption from Theo-

rem 6.3 in not very restrictive at all. For example in case of independent observations within

the panel, this assumption is automatically fulfilled, since t1{tuTt“2 is decreasing. Moreover,

the weaker the dependency within the panel, the faster the decrease of rptq{t2.

One can check the proof of Theorem 6.3 and see that Assumption C1 can be replaced

by more restrictive assumptions limNÑ8
1

N

řN
i“1

δ2i “ 8 and limNÑ8
1

N2

řN
i“1

δ2i “ 0. This

first assumption might be considered as too strong, because a common value of δ “ δi for

all i does not fulfill it.

Various competing consistent estimates of a possible change point can be suggested, e.g.,

the maximizer of
řN

i“1

”řt
s“1

pYi,s ´ sYi,T q
ı2

. To show the consistency, one needs to postulate

different assumptions on the cumulative autocorrelation function and shifted cumulative

correlation function compared to Theorem 6.3 and this may be rather complex.

6.6 Estimation of the correlation structure

Since the panels are considered to be independent and the number of panels may be suffi-

ciently large, one can estimate the correlation structure of the errors rε1,1, . . . , ε1,T sJ empir-

ically. We base the errors’ estimates on residuals

pei,t :“

$
&
%

Yi,t ´ sYi,pτN , t ď pτN ,
Yi,t ´ rYi,pτN , t ą pτN .

(6.8)

Then, the empirical version of the autocorrelation function is

pρt :“
1

pσ2NT

Nÿ

i“1

T´tÿ

s“1

pei,spei,s`t.

Consequently, the kernel estimation of the cumulative autocorrelation function and shifted

cumulative correlation function is adopted in lines with Andrews (1991):

prptq “
ÿ

|s|ăt

pt´ |s|qκ
´ s
h

¯
pρs,

pRpt, vq “
tÿ

s“1

vÿ

u“t`1

κ

ˆ
u´ s

h

˙
pρu´s, t ă v;
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where h ą 0 stands for the window size and κ belongs to a class of kernels given by

!
κp¨q : R Ñ r´1, 1s

ˇ̌
κp0q “ 1, κpxq “ κp´xq, @x,

ż `8

´8
κ2pxqdx ă 8,

κp¨q is continuos at 0 and at all but a finite number of other points
)
.

Since the variance parameter σ is not present in the limiting distribution of Theorem 6.1,

it neither has to be estimated nor known. Nevertheless, one can use pσ2 :“ 1

NT

řN
i“1

řT
s“1

pe2i,s.

6.7 Bootstrap and hypothesis testing

A wide range of literature has been published on bootstrapping in the change point problem,

e.g., Hušková and Kirch (2012) or Hušková et al. (2008). We build up the bootstrap test

on the resampling with replacement of row vectors trpei,1, . . . , pei,T sui“1,...,N corresponding

to the panels. This provides bootstrapped row vectors trpe˚
i,1, . . . , pe˚

i,T sui“1,...,N . Then, the

bootstrapped residuals pe˚
i,t are centered by their conditional expectation 1

N

řN
i“1

pei,t yielding

pY ˚
i,t :“ pe˚

i,t ´ 1

N

Nÿ

i“1

pei,t.

The bootstrap test statistic is just a modification of the original statistic PN pT q, where the

original observations Yi,t are replaced by their bootstrap counterparts pY ˚
i,t:

P˚
N pT q “ max

t“2,...,T´2

maxs“1,...,t

ˇ̌
ˇ
řN

i“1

”řs
r“1

´
pY ˚
i,r ´ spY ˚

i,t

¯ıˇ̌
ˇ

maxs“t,...,T´1

ˇ̌
ˇ̌řN

i“1

„řT
r“s`1

ˆ
pY ˚
i,r ´ rpY ˚

i,t

˙ˇ̌
ˇ̌
,

such that

spY ˚
i,t “ 1

t

tÿ

s“1

pY ˚
i,s and rpY ˚

i,t “ 1

T ´ t

Tÿ

s“t`1

pY ˚
i,s.

An algorithm for the bootstrap is illustratively shown in Procedure 6.1 and its validity

will be proved in Theorem 6.6.

6.8 Validity of the resampling procedure

The idea behind bootstrapping is to mimic the original distribution of the test statistic in

some sense with the distribution of the bootstrap test statistic, conditionally on the original

data denoted by Y ” tYi,tuN,T
i,t“1

.

First of all, two simple and just technical assumptions are needed.



CHAPTER 6. COMMON CHANGE IN PANEL DATA 111

Procedure 6.1 Bootstrapping test statistic PN pT q.
Input: Panel data consisting of N panels with length T , i.e., N row vectors of observations

rYi,1, . . . , Yi,T s.
Output: Bootstrap distribution of PN pT q, i.e., the empirical distribution where probability

mass 1{B concentrates at each of p1qP
˚
NpT q, . . . , pBqP

˚
N pT q.

1: estimate the change point by calculating pτN
2: compute residuals pei,t
3: for b “ 1 to B do // repeat in order to obtain the empirical distribution
4: trpe˚

i,1, . . . , pe˚
i,T suNi“1

resampled with replacement from the original rows of residuals
trpei,1, . . . , pei,T suNi“1

5: calculate bootstrap panel data pY ˚
i,t

6: compute bootstrap test statistics pbqP
˚
N pT q

7: end for

Assumption B1. tεi,tut possesses the lagged cumulative correlation function

Spt, v, dq “ Cov

˜
tÿ

s“1

εi,s,

vÿ

u“t`d

εi,u

¸
“

tÿ

s“1

vÿ

u“t`d

ρu´s, @i P N.

Assumption B2. limNÑ8 P rpτN “ τ s “ 1.

Assumption B1 is not really an assumption, actually it is only a notation. Notice that

Spt, v, 1q ” Rpt, vq. Assumption B2 is satisfied for our estimate proposed in (6.6), if the

assumptions of Theorem 6.2 hold. Assumption B2 is postulated in a rather broader sense,

because we want to allow any other consistent estimate of τ to be used instead.

Let us now introduce two supporting theorems, in order to be able to justify the bootstrap

method in our setup.

Suppose that tξnu8
n“1 is a sequence of random variables/vectors existing on a probabil-

ity space pΩ,F ,P q. A bootstrap version of ξ ” rξ1, . . . , ξnsJ is its (randomly) resampled

sequence with replacement—denoted by ξ˚ ” rξ˚
1
, . . . , ξ˚

nsJ—with the same length, where

for each i P t1, . . . , nu it holds that P
˚
ξ rξ˚

i “ ξjs ” P rξ˚
i “ ξj |ξs “ 1{n, j “ 1, . . . , n. In

the sequel, P ˚
ξ denotes the conditional probability given ξ. So, ξ˚

i has a discrete uniform

distribution on tξ1, . . . , ξnu for every i “ 1, . . . , n. The conditional expectation and variance

given ξ are denoted by E
P

˚
ξ

and Var
P

˚
ξ
.

If a statistic has an approximate normal distribution, one may be interested in the asymp-

totic comparison of the bootstrap distribution with the original one. A tool for assessing

such an approximate closeness can be a bootstrap central limit theorem for triangular arrays.

Theorem 6.4 (Bootstrap CLT for triangular arrays). Let tξn,kn
u8
n“1 be a triangular array

of zero mean random variables on the same probability space such that the elements of the

vector rξn,1, . . . , ξn,kn
sJ are iid for every n P N satisfying

sup
nPN

E P ξ
4

n,1 ă 8 (6.9)
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and kn Ñ 8 as n Ñ 8. Suppose that ξ˚ ” rξ˚
n,1, . . . , ξ

˚
n,kn

sJ is the bootstrapped version of

ξ ” rξn,1, . . . , ξn,kn
sJ and denote

ξ̄n :“ k´1

n

knÿ

i“1

ξn,i, ξ̄˚
n :“ k´1

n

knÿ

i“1

ξ˚
n,i, and ς2n :“ Var P ξn,1.

If

lim inf
nÑ8

ς2n “ ς2 ą 0, (6.10)

then

sup
xPR

ˇ̌
ˇ̌
ˇP

˚
ξ

«?
kna
ς2n

`
ξ̄˚
n ´ ξ̄n

˘
ď x

ff
´ P

« ?
kna
ς2n
ξ̄n ď x

ffˇ̌
ˇ̌
ˇ

PÝÝÝÑ
nÑ8

0.

Proof. The Lyapunov condition (Billingsley, 1986, p. 371) for a triangular array of random

variables tξn,kn
u8
n“1 is satisfied due to (6.9) and (6.10), i.e., for ω “ 2:

1
a
knς2n

2`ω

knÿ

i“1

E |ξn,i|2`ω ď k
´ω{2
n

ς2`ω
n

sup
ιPN

E |ξι,1|2`ω Ñ 0, n Ñ 8.

Therefore, the CLT for tξn,kn
u8
n“1 holds and

sup
xPR

ˇ̌
ˇ̌
ˇP

«?
kna
ς2n
ξ̄n ď x

ff
´

ż x

´8

1?
2π

exp

"
´ t2

2

*
dt

ˇ̌
ˇ̌
ˇ ÝÝÝÑ

nÑ8
0.

Now, to prove the theorem, it suffices to show the following three statements:

(i)

sup
xPR

ˇ̌
ˇ̌
ˇ̌P

˚
ξ

»
–

?
knb

Var
P

˚
ξ
ξ˚
n,1

´
ξ̄˚
n ´ E

P
˚
ξ
ξ̄˚
n

¯
ď x

fi
fl ´

ż x

´8

1?
2π

exp

"
´ t2

2

*
dt

ˇ̌
ˇ̌
ˇ̌

PÝÝÝÑ
nÑ8

0;

(ii) Var
P

˚
ξ
ξ˚
n,1 ´ ς2n

PÝÝÝÑ
nÑ8

0;

(iii) E
P

˚
ξ
ξ̄˚
n “ ξ̄n, rP s-a.s.

Proving (iii) is trivial, because E
P

˚
ξ
ξ̄˚
n “ E

P
˚
ξ
ξ˚
n,1 “ k´1

n

řkn

i“1
ξn,i “ ξ̄n, rP s-a.s.

Let us calculate the conditional variance of the bootstrapped variable ξ˚
n,1: Var

P
˚
ξ
ξ˚
n,1 “

E
P

˚
ξ
ξ˚2
n,1 ´ pE

P
˚
ξ
ξ˚
n,1q2 “ k´1

n

řkn

i“1
ξ2n,i ´

´
k´1
n

řkn

i“1
ξn,i

¯2

, rP s-a.s. The weak law of large
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numbers together with (6.9) provides

ξ̄n ´ n´1

knÿ

i“i

E P ξn,i “ ξ̄n
PÝÝÝÑ

nÑ8
0

and

0
PÐÝÝÝ

nÑ8
k´1

n

knÿ

i“1

ξ2n,i ´
˜
k´1

n

knÿ

i“1

ξn,i

¸2

´ E P ξ
2

n,1 “ Var
P

˚
ξ
ξ˚
n,1 ´ ς2n.

The last result of the WLLN is true, because (6.9) implies

k´2

n

knÿ

i“1

Var P ξ
2

n,i ď k´2

n

knÿ

i“1

E P ξ
4

n,i ď k´1

n sup
ιPN

E P ξ
4

ι,1 ÝÝÝÑ
nÑ8

0.

Thus (ii) is proved.

The Berry-Esseen-Katz theorem (see Katz (1963)) with gpxq “ |x|ǫ, ǫ ą 0 for the boot-

strapped sequence of iid (with respect to P
˚) random variables tξ˚

n,iukn

i“1
results in

sup
xPR

ˇ̌
ˇ̌
ˇ̌P

˚
ξ

»
–

?
knb

Var
P

˚
ξ
ξ˚
n,1

´
ξ̄˚
n ´ E

P
˚
ξ
ξ̄˚
n

¯
ď x

fi
fl ´

ż x

´8

1?
2π

exp

"
´ t2

2

*
dt

ˇ̌
ˇ̌
ˇ̌

ď Ck´ǫ{2
n E

P
˚
ξ

ˇ̌
ˇ̌
ˇ
ξ˚
n,1 ´ E

P
˚
ξ
ξ˚
n,1

Var
P

˚
ξ
ξ˚
n,1

ˇ̌
ˇ̌
ˇ

2`ǫ

rP s-a.s., (6.11)

for all n P N where C ą 0 is an absolute constant.

The Jensen inequality and Minkowski inequality provide an upper bound for the nomi-

nator from the right-hand side of (6.11):

E
P

˚
ξ

|ξ˚
n,1 ´ E

P
˚
ξ
ξ˚
n,1|2`ǫ “ k´1

n

knÿ

i“1

ˇ̌
ˇ̌
ˇξn,i ´ k´1

n

knÿ

j“1

ξn,j

ˇ̌
ˇ̌
ˇ

2`ǫ

ď k´1

n

$
&
%

˜
knÿ

i“1

|ξn,i|2`ǫ

¸1{p2`ǫq

` k´p1`ǫq{p2`ǫq
n

ˇ̌
ˇ̌
ˇ
knÿ

j“1

ξn,j

ˇ̌
ˇ̌
ˇ

,
.
-

2`ǫ

ď 21`ǫk´1

n

knÿ

i“1

|ξn,i|2`ǫ ` 21`ǫ

ˇ̌
ˇ̌
ˇk

´1

n

knÿ

i“1

ξn,i

ˇ̌
ˇ̌
ˇ

2`ǫ

rP s-a.s.

The right-hand side of the previously derived upper bound is uniformly bounded in proba-

bility P , because of Markov’s inequality and (6.9). Indeed, for fixed η ą 0

P

«
k´1

n

knÿ

i“1

|ξn,i|2`ǫ ě η

ff
ď η´1k´1

n

knÿ

i“1

E P |ξn,i|2`ǫ ď η´1 sup
ιPN

E P |ξι,1|2`ǫ ă 8, @n P N
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and

P

«ˇ̌
ˇ̌
ˇk

´1

n

knÿ

i“1

ξn,i

ˇ̌
ˇ̌
ˇ ě η

ff
ď η´1k´1

n E P

ˇ̌
ˇ̌
ˇ
knÿ

i“1

ξn,i

ˇ̌
ˇ̌
ˇ ď η´1 sup

ιPN
E P |ξι,1| ă 8, @n P N.

Since E
P

˚
ξ

|ξ˚
n,1 ´E P˚ξ˚

n,1|2`ǫ is bounded in probability P uniformly over n and the denom-

inator of the right-hand side of (6.11) is uniformly bounded away from zero due to (6.10),

then the left-hand side of (6.11) converges in probability P to zero as n tends to infinity.

So, (i) is proved as well.

Theorem 6.5 (Bootstrap multivariate CLT for triangular arrays). Let tξn,kn
u8
n“1 be a tri-

angular array of zero mean q-dimensional random vectors on the same probability space such

that the elements of the vector sequence tξn,1, . . . , ξn,kn
u are iid for every n P N satisfying

sup
nPN

E P |ξpjq
n,1|4 ă 8, j P t1, . . . , qu, (6.12)

where ξn,1 ” rξp1q
n,1, . . . , ξ

pqq
n,1sJ P Rq, n P N and kn Ñ 8 as n Ñ 8. Assume that Ξ˚ ”

rξ˚
n,1, . . . , ξ

˚
n,kn

sJ is the bootstrapped version of Ξ ” rξn,1, . . . , ξn,kn
sJ. Denote

ξ̄n :“ k´1

n

knÿ

i“1

ξn,i, ξ̄˚
n :“ k´1

n

knÿ

i“1

ξ˚
n,i, and Γn :“ Var P ξn,1.

If

lim inf
nÑ8

Γn “ Γ ą 0, (6.13)

then

P
˚
Ξ

”a
knΓ

´1{2
n

`
ξ̄˚
n ´ ξ̄n

˘
ď x

ı
´ P

”a
knΓ

´1{2
n ξ̄n ď x

ı
PÝÝÝÑ

nÑ8
0, @x P Rq.

Proof. According to the Cramér-Wold theorem, it is sufficient to ensure that all assump-

tions of one-dimensional bootstrap CLT 6.4 for triangular arrays are valid for any linear

combination of the elements of the random vector ξn,1, n P N.

For arbitrary fixed t P Rq using the Jensen inequality, we get

sup
nPN

E P |tJξn,1|4 ď q3 sup
nPN

qÿ

j“1

t4jE P |ξpjq
n,1|4 ď q4 max

j“1,...,q
t4j sup

nPN
E P |ξpjq

n,1|4 ă 8.

Hence, assumption (6.12) implies assumption (6.9) for the random variables ttJξn,kn
unPN.

Similarly, assumption (6.13) implies assumption (6.10) for such an arbitrary linear com-
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bination, i.e., positive definiteness of the matrix Γ yields

lim inf
nÑ8

Var P t
Jξn,1 “ lim inf

nÑ8
tJ pVar P ξn,1q t ě tJ

´
lim inf
nÑ8

Γn

¯
t “ tJΓt ą 0.

Now we may proceed to the bootstrap justification theorem. Realize that it is not known,

whether the common panel means’ change occurred or not. In other words, one does not

know whether the data come from the null or the alternative hypothesis. Therefore, the

following theorem holds under H0 as well as H1.

Theorem 6.6 (Bootstrap justification). Suppose that panel data Y “ tYi,tuN,T
i,t“1

follow

model (6.1). Under Assumptions P1, B1, B2, and C2

P
˚
NpT q|Y DÝÝÝÝÑ

NÑ8
max

t“2,...,T´2

maxs“1,...,t

ˇ̌
Xs ´ s

t
Xt

ˇ̌

maxs“t,...,T´1

ˇ̌
ˇZs ´ T´s

T´t
Zt

ˇ̌
ˇ

in probability P ,

where Zt :“ XT ´ Xt and rX1, . . . ,XT sJ is a multivariate normal random vector with zero

mean and covariance matrix Γ “ tγt,vpτquT,T

t,v“1
such that

γt,tpτq “

$
’’’&
’’’%

rptq ` t2

τ2 rpτq ´ 2t
τ

rrptq `Rpt, τqs, t ă τ ;

0, t “ τ ;

rpt ´ τq ` pt´τq2
pT´τq2 rpT ´ τq ´ 2pt´τq

T´τ
rrpt ´ τq `Rpt ´ τ, T ´ τqs , t ą τ ;

and

γt,vpτq “

$
’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’%

0, t “ τ or v “ τ,

rptq `Rpt, vq ` tv
τ2 rpτq ´ v

τ
rrptq `Rpt, τqs ´ t

τ
rrpvq `Rpv, τqs, t ă v ă τ ;

Spt, v, τ ` 1 ´ tq ` tpv´τq
τpT´τqRpτ, T q

´ v´τ
T´τ

Spt, T, τ ` 1 ´ tq ´ t
τ
Rpτ, vq, t ă τ ă v;

rpt ´ τq `Rpt´ τ, v ´ τq ` pt´τqpv´τq
pT´τq2 rpT ´ τq

´ v´τ
T´τ

rrpt ´ τq `Rpt ´ τ, T ´ τqs
´ t´τ

T´τ
rrpv ´ τq `Rpv ´ τ, T ´ τqs, τ ă t ă v.

Proof. Let us define pǫi,t :“ σ´1
řt

s“1
pei,s, pǫ˚

i,t :“ σ´1
řt

s“1
pe˚
i,s,

pUNptq :“ 1

σ
?
N

Nÿ

i“1

tÿ

s“1

pei,s “ 1?
N

Nÿ

i“1

pǫi,t,
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and

pU˚
N ptq :“ 1

σ
?
N

Nÿ

i“1

tÿ

s“1

pY ˚
i,s “ 1

σ
?
N

Nÿ

i“1

tÿ

s“1

˜
pe˚
i,s ´ 1

N

Nÿ

i“1

pei,s
¸

“ 1

σ
?
N

Nÿ

i“1

tÿ

s“1

`
pe˚
i,s ´ pei,s

˘
“ 1?

N

Nÿ

i“1

`
pǫ˚
i,t ´ pǫi,t

˘
.

Realize that pǫi,t depends on pτN and, hence, it depends on N . Thus, pǫi,t ” pǫi,tpNq. Since

Assumption C2 holds, then according to the bootstrap multivariate CLT for triangular

arrays (Theorem 6.5) of T -dimensional vectors ξN,i “ rpǫi,1pNq, . . . ,pǫi,T pNqsJ with kN “ N ,

we have

P

”
Γ

´1{2
N r pU˚

N p1q, . . . , pU˚
N pT qsJ ď x

ˇ̌
Y

ı
´ P

”
Γ

´1{2
N r pUNp1q, . . . , pUNpT qsJ ď x

ı

PÝÝÝÝÑ
NÑ8

0, @x P RT ,

where ΓN “ Var rpǫi,1, . . . ,pǫi,T sJ.

Now, it is sufficient to realize that r pUNp1q, . . . , pUNpT qsJ has an approximate multivariate

normal distribution with zero mean and covariance matrix Γ “ limNÑ8 ΓN . Using the law

of total variance,

Varpǫi,t “ E rVar tpǫi,t|pτNus ` Var rE tpǫi,t|pτN us

“
Tÿ

π“1

P rpτN “ πsVar rpǫi,t|pτN “ πs `
Tÿ

π“1

P rpτN “ πstE rpǫi,t|pτN “ πsu2

´
#

Tÿ

π“1

P rpτN “ πsE rpǫi,t|pτN “ πs
+2

.

Since limNÑ8 P rpτN “ τ s “ 1 and E rpei,t|pτN “ τ s “ 0, then

lim
NÑ8

Varpǫi,t “ lim
NÑ8

Var rpǫi,t|pτN “ τ s.

Similarly with the covariance, i.e., after applying the law of total covariance, we have

lim
NÑ8

Cov ppǫi,t,pǫi,vq “ lim
NÑ8

Cov ppǫi,t,pǫi,v|pτN “ τq .

Note that

ppei,t|pτN “ τq “

$
&
%

σpεi,t ´ sεi,τ q, t ď τ ;

σpεi,t ´ rεi,τ q, t ą τ ;
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where

sεi,t “ 1

t

tÿ

s“1

εi,s and rεi,t “ 1

T ´ t

Tÿ

s“t`1

εi,s.

Taking into account the definitions of rptq, Rpt, vq, and Spt, v, dq together with some simple

algebra, we obtain that Var rpǫi,s|pτN “ τ s “ γt,tpτq and Cov ppǫi,t,pǫi,v|pτN “ τq “ γt,vpτq for

t ă v, where the elements γt,tpτq and γt,vpτq are as in the statement of Theorem 6.6.

Then the sum in the nominator of P˚
NpT q can be alternatively rewritten as

1

σ
?
N

Nÿ

i“1

sÿ

r“1

´
pY ˚
i,r ´ spY ˚

i,t

¯
“ 1

σ
?
N

Nÿ

i“1

#«
sÿ

r“1

pY ˚
i,r

ff
´ s

t

tÿ

v“1

pY ˚
i,v

+
“ pU˚

N psq ´ s

t
pU˚
Nptq.

Concerning the denominator of P˚
N pT q, one needs to perform a similar calculation as

in the proof of Theorem 6.1 with VN ptq, i.e., to define pVN ptq and pV ˚
N ptq analogously to

pUN ptq and pU˚
Nptq as VN ptq is to UNptq. Applying the Cramér-Wold theorem completes the

proof.

The validity of the bootstrap test is assured by Theorem 6.6. Indeed, the conditional

asymptotic distribution of the bootstrap test statistic is a functional of a multivariate normal

distribution under the null as well as under the alternative. It does not converge to infinity

(in probability) under the alternative. That is why it can be used for correctly rejecting the

null in favor of the alternative, having sufficiently large N . Moreover, the following theorem

states that the conditional distribution of the bootstrap test statistic and the unconditional

distribution of the original test statistic coincide. And that is the reason why the bootstrap

test should approximately keep the same level as the original test based on the asymptotics

from Theorem 6.1.

Theorem 6.7 (Bootstrap test consistency). Suppose that panel data Y “ tYi,tuN,T
i,t“1

follow

model (6.1). Under Assumptions P1, B2, C2 and null hypothesis (6.2), the asymptotic

distribution of PN pT q from Theorem 6.1 and the asymptotic distribution of P˚
NpT q|Y from

Theorem 6.6 coincide.

Proof. Recall the notation from the proof of Theorem 6.6. Under H0, B2, and C2 it holds

lim
NÑ8

P rpτN “ T s “ 1.

Then in view of (6.8),

lim
NÑ8

P

”
pUN psq ´ s

t
pUNptq “ UNpsq ´ s

t
UN ptq

ı
“ 1, 1 ď s ď t ď T.
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Now, the simulated (empirical) distribution of the bootstrap test statistic can be used

to calculate the bootstrap critical value, which will be compared to the value of the original

test statistic in order to reject the null or not.

Assuming common variance parameter σ for each panel in panel model (6.1) might seem

restrictive for some practical applications. To generalize the panel model, it is possible to

consider a panel specific unknown variance parameters σi such that there exist a lower and

an upper bound for all the σi’s, i.e., 0 ă σmin ď σi ď σmax ă `8 for all i “ 1, . . . , N . For

this model’s generalization, one may also show the bootstrap validity similar to Theorem 6.6,

but the corresponding proof becomes more technical.

Finally, note that one cannot think about any local alternative in this setup, because τ

has a discrete and finite support.

6.9 Simulations

A simulation experiment was performed to study the finite sample properties of the asymp-

totic and bootstrap test for a common change in panel means. In particular, the interest

lies in the empirical sizes of the proposed tests under the null hypothesis and in the em-

pirical rejection rate (power) under the alternative. Random samples of panel data (5000

each time) are generated from the panel change point model (6.1). The panel size is set to

T “ 10 and T “ 25 in order to demonstrate the performance of the testing approaches in

case of small and intermediate panel length. The number of panels considered is N “ 50

and N “ 200.

The correlation structure within each panel is modeled via random vectors generated

from iid, AR(1), and GARCH(1,1) sequences. To recall the notation for the Generalized

Autoregressive Conditional Heteroskedasticity processes (Bollerslev, 1986), a GARCH(1,1)

process tεtutPZ with volatility process tσtutPZ is a solution to the equations

εt “ σtǫt, t P Z;
σ2

t “ α0 ` α1ε
2

t´1 ` β1σ
2

t´1, t P Z;

where the process tσtutPZ is non-negative and the driving noise sequence tǫtutPZ is a sequence

of iid random variables.

The considered AR(1) process has coefficient φ “ 0.3. In case of GARCH(1,1) process,

we use coefficients α0 “ 1, α1 “ 0.1, and β1 “ 0.2, which according to Lindner (2009,

Example 1) gives a strictly stationary process. In all three sequences, the innovations are

obtained as iid random variables from a standard normal Np0, 1q or Student t5 distribu-

tion. Simulation scenarios are produced as all possible combinations of the above mentioned

settings.

When using the asymptotic distribution from Theorem 6.1, the covariance matrix is
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estimated as proposed in Section 6.6 using the Parzen kernel

κP pxq “

$
’’’&
’’’%

1 ´ 6x2 ` 6|x|3, 0 ď |x| ď 1{2;
2p1 ´ |x|q3, 1{2 ď |x| ď 1;

0, otherwise.

Several values of the smoothing window width h are tried from the interval r2, 5s and all

of them work fine providing comparable results. To simulate the asymptotic distribution of

the test statistics, 2000 multivariate random vectors are generated using the pre-estimated

covariance matrix.

The bootstrap approach does not need to estimate the covariance structure. The number

of bootstrap replications used is 2000. To access the theoretical results under H0 numeri-

cally, Table 6.1 provides the empirical specificity (one minus size) of the tests for both the

asymptotic and bootstrap version of the panel change point test, where the significance level

is α “ 5%.

T N innovations IID AR(1) GARCH(1,1)

10 50 Np0, 1q 0.948 0.949 0.943 0.955 0.949 0.955

t5 0.949 0.954 0.941 0.956 0.946 0.953

200 Np0, 1q 0.952 0.951 0.937 0.954 0.942 0.952

t5 0.948 0.953 0.935 0.960 0.944 0.953

25 50 Np0, 1q 0.948 0.951 0.929 0.952 0.954 0.959

t5 0.946 0.951 0.932 0.954 0.944 0.958

200 Np0, 1q 0.950 0.950 0.927 0.951 0.947 0.949

t5 0.948 0.953 0.931 0.952 0.952 0.952

Table 6.1: Empirical specificity (1´size) of the test for the common change in panel means

based on PN pT q under H0 using the asymptotic and the bootstrap critical values, consid-

ering a significance level of 0.05.

It may be seen that both approaches (using asymptotic and bootstrap distribution) are

close to the theoretical value of specificity 0.95. As expected, the best results are achieved in

case of independence within the panel, because there is no information overlap between two

consecutive observations. The precision of not rejecting the null is increasing as the number

of panels is getting higher and the panel is getting longer as well.

The performance of both testing procedures under H1 in terms of the empirical rejection

rates is shown in Table 6.2, where the change point is set to τ “ rT {2s and the change sizes

δi are independently uniform on r1, 3s in 33%, 66% or in all panels.

One can conclude that the power of both tests increases as the panel size and the number
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H1 T N innovations IID AR(1) GARCH(1,1)

33% 10 50 Np0, 1q 0.25 0.29 0.26 0.28 0.21 0.22

t5 0.18 0.18 0.19 0.21 0.20 0.24

200 Np0, 1q 0.46 0.50 0.48 0.51 0.40 0.45

t5 0.37 0.38 0.39 0.41 0.40 0.47

25 50 Np0, 1q 0.38 0.43 0.31 0.37 0.30 0.36

t5 0.34 0.32 0.27 0.30 0.32 0.37

200 Np0, 1q 0.72 0.79 0.69 0.66 0.60 0.67

t5 0.53 0.54 0.51 0.52 0.58 0.59

66% 10 50 Np0, 1q 0.45 0.52 0.47 0.50 0.39 0.41

t5 0.36 0.35 0.38 0.39 0.39 0.42

200 Np0, 1q 0.76 0.84 0.81 0.81 0.70 0.77

t5 0.65 0.66 0.68 0.64 0.69 0.76

25 50 Np0, 1q 0.71 0.79 0.63 0.66 0.60 0.70

t5 0.60 0.63 0.44 0.45 0.60 0.72

200 Np0, 1q 0.96 0.98 0.95 0.95 0.90 0.94

t5 0.84 0.82 0.86 0.85 0.90 0.92

100% 10 50 Np0, 1q 0.64 0.69 0.67 0.71 0.56 0.64

t5 0.52 0.48 0.49 0.51 0.55 0.62

200 Np0, 1q 0.93 0.96 0.94 0.95 0.86 0.92

t5 0.84 0.83 0.86 0.83 0.87 0.92

25 50 Np0, 1q 0.86 0.91 0.83 0.86 0.80 0.85

t5 0.76 0.79 0.66 0.67 0.79 0.85

200 Np0, 1q 1.00 1.00 0.99 0.99 0.98 0.97

t5 0.98 0.97 0.98 0.97 0.99 0.99

Table 6.2: Empirical sensitivity (power) of the test for the common change in panel means

based on PN pT q under H1 using the asymptotic and the bootstrap critical values, consid-

ering a significance level of 0.05.

of panels increase, which is straightforward and expected. It should be noticed that numer-

ical instability issues may appear for larger T , when generating from a T -variate normal

distribution. Moreover, higher power is obtained when a larger portion of panels is subject

to have a change in mean. The test power drops when switching from independent obser-

vations within the panel to dependent ones. Innovations with heavier tails (i.e., t5) yield

smaller power than innovations with lighter tails. Generally, the bootstrap outperforms the

classical asymptotics in all scenarios.
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Let us mention that for finite sections of processes with a stronger dependence structure

than taken into account in the simulation scenarios, Assumption C1 does not have to be

fulfilled. For example, Assumption C1 is violated for AR(1) with coefficient φ “ 0.9, δi “ 2,

σ “ 1, standard normal or Student t5 innovations, and τ “ 5 for T “ 10 or τ “ 12 for

T “ 25. Here, the dependency under the considered variability is too strong compared to

the change size. It is rather difficult to detect possible changes in such a setup.

Finally, an early change point is discussed very briefly. We stay with standard normal

innovations, iid observations within the panel, the size of changes δi being independently

uniform on r1, 3s in all panels, and the change point is τ “ 3 in case of T “ 10 and τ “ 5 for

T “ 25. The empirical sensitivities of both tests for small values of τ are shown in Table 6.3.

T N τ H1, iid, Np0, 1q

10 50 3 0.59 0.63

200 3 0.89 0.91

25 50 5 0.66 0.68

200 5 0.94 0.96

Table 6.3: Empirical sensitivity of the test for the common change in panel means based

on PNpT q for small values of τ under H1 using the asymptotic and the bootstrap critical

values, considering a significance level of 0.05.

When the change point is not in the middle of the panel, the power of the test generally

falls down. The source of such decrease is that the left or right part of the panel possesses less

observations with constant mean, which leads to a decrease of precision in the correlation

estimation in case of the asymptotic test and in the change point estimation in case of the

bootstrap test. Nevertheless, the bootstrap test again outperforms the asymptotic version

and, moreover, provides solid results even for early or late change points (the late change

points are not numerically demonstrated here).

6.10 Real data analysis

As mentioned in the introduction, our primary motivation for testing the panel mean change

comes from the insurance business. The data set is provided by the National Association

of Insurance Commissioners (NAIC) database, see Meyers and Shi (2011). We concentrate

on the ‘Private passenger auto liability/medical’ insurance line of business. The data col-

lect records from N “ 136 insurance companies (having positive earned premium every

year). Each insurance company provides T “ 10 yearly total claim amounts—denoted by
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Figure 6.2: Developments of the yearly total claim amounts standardized by the earned

premium for 20 selected insurance companies.

Xi,t—and earned premiums pi,t starting from year 1988 up to year 1997. One can consider

standardizing (normalizing) the claim amounts by the premium received by company i in

year t. That is thinking of panel data Yi,t “ Xi,t{pi,t as loss ratios. Such a standardization

is reasonable, because it puts the claim amounts of different insurance companies in different

years on the ‘same level’ (same magnitude). Besides that, this may also yield a stabilization

of series’ variability, which corresponds to the assumption of a common variance.

Figure 6.2 graphically shows series of standardized claim amounts (loss ratios) for 20 se-

lected insurance companies (a plot with all 136 panels would be cluttered).

The data are considered as panel data in the way that each insurance company cor-

responds to one panel, which is formed by the company’s yearly total standardized claim

amounts. The length of the panel is quite short. This is very typical in insurance busi-

ness, because considering longer panels may invoke incomparability between the early claim

amounts and the late ones due to changing market or policies’ conditions over time.

We want to test whether or not a change in the standardized claim amounts occurred in

a common year, assuming that the standardized claim amounts are approximately constant

in the years before and after the possible change for every insurance company. Our ratio

type test statistic gives P136p10q “ 15.6. The asymptotic critical value is 57.3 and the

bootstrap critical value equals 56.8. These values mean that we do not reject the hypothesis

of no change in panel means in both cases. If a striking difference occurred between the two
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critical values (asymptotic and bootstrap), it would mean inefficient correlation structure

estimation or violation of the model assumptions (e.g., not common volatility of the panels).

We also try to take the logarithms of loss ratios and to consider log standardized amounts

as the panel data observations. Nevertheless, we do not reject the hypothesis of no change

in the panel means (i.e., means of log standardized amounts) again. For the sake of com-

pleteness, we may reveal that our estimate of the panel change point provides value pτN “ 10

meaning no change in panels.

6.11 Summary

In this chapter, we consider the change point problem in panel data with fixed panel size.

Occurrence of common breaks in panel means is tested. We introduce a ratio type test

statistic and derive its asymptotic properties. Under the null hypothesis of no change, the

test statistic weakly converges to a functional of the multivariate normal random vector with

zero mean and covariance structure depending on the intra-panel covariances. As shown in

this chapter, these covariances can be estimated and, consequently, used for testing whether

a change in means occurred or not. This is indeed feasible, because the test statistic under

the alternative converges to infinity in probability.

The secondary aim of the chapter lies in proposing a consistent change point estimate,

which is straightforwardly used for bootstrapping the test statistic. We establish the asymp-

totic behavior of the bootstrap version of the test statistic, regardless of the fact whether the

data come from the null or the alternative hypothesis. Moreover, the asymptotic distribution

of the bootstrap test statistic coincides with the original test statistic’s limiting distribution.

This provides justification for the bootstrap method. One of the main goals is to obtain

a completely data driven testing approach whether the means remain the same during the

observation period or not. The ratio type test statistic allows us to omit a variance estima-

tion and the bootstrap technique overcomes estimation of the correlation structure. Hence,

neither nuisance nor smoothing parameters are present in the whole testing process, which

makes it very simple for practical use. Furthermore, the whole stochastic theory behind

requires relatively simple assumptions, which are not too restrictive.

A simulation study illustrates that even for small panel size, both presented approaches—

based on traditional asymptotics and on bootstrapping—work fine. One may judge that both

methods keep the significance level under the null, while various simulation scenarios are

considered. Besides that, the power of the test is slightly higher in case of the bootstrap.

Finally, the proposed methods are applied to insurance data, for which the change point

analysis in panel data provides an appealing approach.
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6.12 Discussion

First of all, it has to be noted that the non-ratio CUSUM type test statistic can be used

instead of the ratio type, but this requires to estimate the variance of the observations.

The statements of theorems and proofs would become even less complicated. Omitting

the usage of the bootstrap test statistic can especially be unreliable in short panels from

a computational point of view. This is due to the fact that the bootstrap overcomes the

issue of estimating the correlation structure.

Furthermore, our setup can be modified by considering large panel size, i.e., T Ñ 8.

Consequently, the whole theory leads to convergences to functionals of Gaussian processes

with a covariance structure derived in a very similar fashion as for fixed T . However, our

motivation is to develop techniques for fixed and relatively small panel size.

Dependent panels may be taken into account and the presented work might be gener-

alized for some kind of asymptotic independence over the panels or prescribed dependence

among the panels. Nevertheless, our incentive is determined by a problem from non-life

insurance, where the association of insurance companies consists of a relatively high number

of insurance companies. Thus, the portfolio of yearly claims is so diversified, that the panels

corresponding to insurance companies’ yearly claims may be viewed as independent and

neither natural ordering nor clustering has to be assumed.
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Conclusions

Various parametric models for sequences of ordered observations, where some parameters

can change at unknown time point, are considered in this thesis. The aim is to develop

stochastic approaches for testing whether a change occurred at some unknown time or not.

These testing procedures rely on maximum ratio type statistics based on cumulative sums.

Generally, the main advantage of the ratio type statistics in hypotheses testing is that they

provide an alternative to non-ratio type statistics mainly in situations, in which variance

estimation is problematic or cumbersome.

Asymptotic distributional behavior of the test statistics is derived under the null hypoth-

esis for each change point model. Consequently, large sample properties of the test statistics

are studied under alternatives. In many cases, it is not possible to calculate critical values

for the test directly from the derived asymptotic distribution. However, to overcome this

issue, one can use simulations and resampling methods. Validity of such approaches is shown

and their appropriateness is justified. Moreover, simulation studies showed that the criti-

cal values obtained by resampling methods seem to be more accurate than critical values

obtained by simulations from the limiting distributions.

One of the simplest model for a structural change is the model with a possible single

abrupt change in mean. The idea of ratio type statistics was firstly described for this setup

in existing literature. We study the possibility of extending this idea to the situation of

testing the no-change hypothesis against the alternative of a gradual change in mean. Being

specific, the means of the observations are constant for a while and, after reaching some

time point, the means slowly start to change. It means that the changes occur gradually

rather than abruptly, which can be considered as a smooth change point.

Then we focus our attention back on the testing null hypothesis of no change in mean

against the alternative of one abrupt shift in mean. A testing procedure based on ratio type

statistic for detection of this type of change is generalized for α-mixing model disturbances

with heavy tails. Hence, the traditional ratio type statistic is robustified by considering
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general loss function instead of the traditional quadratic one. A block bootstrap method

is also proposed for the testing purposes to handle observations that are not necessarily

independent. We prove that the block bootstrap method provides asymptotically correct

critical values for the studied ratio type statistic in the location model with α-mixing random

errors.

Subsequently, ratio type statistics with a general score function for detection of changes

in linear regression models are investigated. Their asymptotic behavior under the null hy-

pothesis and under local alternatives is proved. Application of the permutation bootstrap

technique is elaborated and its justification is given. As an analogy of the change point prob-

lem in regression, a testing procedure for a possible change in the autoregression parameter

is demonstrated. It detects whether the observed sequence is an AR(1) process, or the time

series is an AR(1) process up to some unknown time point and it is again an AR(1) process

after this unknown time point with a different autoregression parameter.

Finally, we deal with the change point problem in panel data with fixed panel size, where

occurrence of common breaks in panel means is tested. Besides that, a consistent change

point estimate is proposed. A bootstrap version of the ratio type test statistic is defined in

order to obtain a completely data driven approach to test whether the means remain the

same during the observation period or not.



Appendix A

Useful Definitions and Theorems

Definition A.1 (Deterministic Landau symbols). Let tanu8
n“1 and tbnu8

n“1 be two se-

quences of real numbers. One writes

an “ Opbnq, n Ñ 8;

if and only if there exists a positive real number M ą 0 and an integer n0 P N such that

|an| ď M |bn|, @n ě n0.

One writes

an “ opbnq, n Ñ 8;

if and only if, for every positive real number τ ą 0, there exists an integer n0 P N such that

|an| ď τ |bn|, @n ě n0.

Definition A.2 (Stochastic Landau symbols). Let tXnu8
n“1 be a sequence of random vari-

ables and tanu8
n“1 be a sequence of constants. One writes

Xn “ OP panq, n Ñ 8;

if and only if, for every positive real number ǫ ą 0, there exists a positive real number M ą 0

and an integer n0 P N such that

P

„ˇ̌
ˇ̌Xn

an

ˇ̌
ˇ̌ ą M


ă ǫ, @n ě n0.
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One writes

Xn “ oP panq, n Ñ 8;

if and only if, for all positive real numbers ǫ ą 0 and τ ą 0, there exists an integer n0 P N
such that

P

„ˇ̌
ˇ̌Xn

an

ˇ̌
ˇ̌ ą τ


ă ǫ, @n ě n0.

Theorem A.1 (Slutsky’s). Let tXnu8
n“1 and tYnu8

n“1 be sequences of scalar or vector or

matrix random elements. If

Xn
DÝÝÝÑ

nÑ8
X

and

Yn
PÝÝÝÑ

nÑ8
c,

where c is a constant element, then (for suitable dimensions)

(i) Xn ` Yn
DÝÝÝÑ

nÑ8
X ` c;

(ii) YnXn
DÝÝÝÑ

nÑ8
cX;

(iii) Y´1
n Xn

DÝÝÝÑ
nÑ8

c´1X, provided that Yn and c are invertible.

Proof. See van der Vaart (1998, Lemma 2.8).

Theorem A.2 (Continuous mapping). Let tXnu8
n“1 be a sequence of random vectors in

R
k, X be a random vector in R

k, and g : Rk Ñ R
m be continuous at every point of a set C

such that P rX P Cs “ 1.

(i) If Xn
DÝÝÝÑ

nÑ8
X, then gpXnq DÝÝÝÑ

nÑ8
gpXq.

(ii) If Xn
PÝÝÝÑ

nÑ8
X, then gpXnq PÝÝÝÑ

nÑ8
gpXq.

(iii) If Xn
a.s.ÝÝÝÑ
nÑ8

X, then gpXnq a.s.ÝÝÝÑ
nÑ8

gpXq.

Proof. See van der Vaart (1998, Theorem 2.3).

Theorem A.3 (Cramér-Wold). Let tXnu8
n“1 be a sequence of random vectors in R

k and

X be a random vector in R
k. Then,

Xn
DÝÝÝÑ

nÑ8
X
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if and only if

tJXn
DÝÝÝÑ

nÑ8
tJX

for all t P R
k.

Proof. A consequence of Lévy’s continuity theorem (van der Vaart, 1998, Theorem 2.13).

Theorem A.4 (Hájek-Rényi-Chow inequality). If tYn “ řn
j“1

Xj , Fn, n ě 1u is an L2

martingale and tbn, n ě 1u is a positive, non-decreasing real sequence, then for any λ ą 0

P

„
max
1ďjďn

ˇ̌
ˇ̌Yj
bj

ˇ̌
ˇ̌ ě λ


ď 1

λ2

nÿ

j“1

EX2
j

b2j
.

Proof. See Chow and Teicher (2003, Theorem 8(iii)).
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