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Introduction

On the financial markets, investors constantly face to a trade-off between adjust-
ing potential returns for higher risk. Recently, there is a number of ways that
risk can be defined and measured.

In 1952, Harry Markowitz introduced modern porfolio theory [13], or mean-
variance analysis. Due to symmetrical nature of the variance, which is the reason
why the variance does not differentiate the gain from the loss, even Markowitz
himself later proposed using the semivariance instead. To be better convenient for
different risk profiles of the investors, Bawa [2] and Fishburn [8] introduced a class
of downside risk measures known as the lower partial moments, or LPM. Value-at-
risk, or VaR, is a popular measure of risk in financial risk management. However,
VaR has been critized in recent years in several aspects. VaR is not subadditive
in general distribution case and thus it is not a coherent risk measure in the sense
of Artzner [1]. A very serious shortcoming of VaR is that it is just a percentile
of a loss distribution, so it does not show the nature of extreme losses exceeding
it. These troubles motivated the search for a better measure of risk than VaR for
practical applications. Conditional value-at-risk, or CVaR, roughly defined as the
mean of the tail distribution exceeding VaR, is a measure of risk with significant
advantages over VaR. It is able to quantify dangers beyond VaR and it is coherent.
Rockafellar and Uryasev [15] introduced a fundamental minimization formula for
CVaR and showed that CVaR can be calculated by minimizing a more tractable
auxiliary function without predetermining the corresponding VaR. Moreover, VaR
can be calculated as a by-product. The CVaR minimization formula usually
results in convex programs, and even linear programs. Therefore, CVaR attracted
much attention in recent years and is applied to financial optimization and risk
management.

As Black and Litterman [3] noticed, in the classical mean variance model, the
portfolio selection is very sensitive to the mean and the covariance matrix. They
showed that even a small change in the mean can produce a large change in the
portfolio position. Thus, the associated risk grows due to the uncertainty of the
underlying probability distribution. The relevant keywords in this context are
robustness and robust portfolio selection.

Chen, He and Zhang [6] pointed that the assumptions on the distribution
are arguably always subjective. Therefore, estimation on the moments of asset
returns using the historical data may be considered more objective measurement.
Using the knowledge of the mean and the covariance, they introduced (see [6])
analytical solution of the robust portfolio selection based on LPM, VaR or CVaR,
as a risk measure.

Lobo and Boyd [11], Costa and Paiva [5], Goldfarb and Iyengar [9], and Lu
[12] studied the robust portfolio in the mean variance framework. Instead of the
precise information on the mean and the covariance matrix of asset returns, they
introduced some types of uncertainties, such as polytopic, box and ellipsoidal
uncertainty.

This thesis is outlined as follows: In the first chapter, we introduce risk mea-
sures that are often applied to robust portfolio management. In the second chap-
ter, we formulate the corresponding minimization problems for the proposed mea-
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sures of risk and make further investigation on some special cases of underlying
probability distribution. We are particularly interested in the problem of min-
imizing the worst-case CVaR, or WCVaR, associated with mixture distribution
uncertainty, box uncertainty, and ellipsoidal uncertainty in the distributions. In
the third chapter, we present the application of WCVaR, introduced by Zhu and
Fukushima [17], to robust portfolio optimization. In the last chapter, we dis-
cuss the results of numerical applications on portfolio selection performed via the
methods proposed in this thesis. Finally, we conclude the results and outline the
future directions.
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1. Risk Measures

Measures of risk have an important role in optimization under uncertainty, espe-
cially in finance and insurance industry. In this chapter, we introduce the most
popular risk measures used in risk management, and discuss their fundamental
properties.

In the return-risk trade-off analysis, the risk is explicitly quantified by a risk
measure that maps the loss to a real number. In general, loss can be expressed as
a function Z = f(x,y) of a decision vector x ∈ X ⊆ Rn representing portfolio,
where X expresses decision constraints, and a random vector y ∈ Y ⊆ Rm

representing the future values, e.g., interest rates, random rates of return. When
y has a known probability distribution, a random variable Z has its distribution
dependent on the choice of x. Therefore, if we want to choose x within terms of
any optimization problem, then we should take into account not just expectations,
but also the “riskness” of x.

There is a number of ways that risk can be defined. The important question
is, how a suitable risk measure looks like, and what a risk measure might or not
might have. In 1999, Artzner et al. [1] presented their essential work on coherent
risk measure. They presented the following set of consistency rules for a risk
measure ρ mapping a random loss Z to a real number:

(i) Subadditivity: For all random losses Z and Y , ρ(Z + Y ) ≤ ρ(Z) + ρ(Y );

(ii) Positive homogenity: For positive constant λ, ρ(λZ) = λρ(X);

(iii) Monotonicity: If Z ≤ Y a.s. for each outcome, then ρ(Z) ≤ ρ(Y );

(iv) Translation invariance: For any constant c, ρ(Z + c) = ρ(X) + c.

A risk measure that satisfies the above axioms is called a coherent risk measure.
Let random loss Z be defined on some probability space (Ω,F , P ). In the

situation that a probability measure P is ambiguous and characterized as a certain
set P, then we generally define the worst-case risk measure ρW related to ρ as
follows:

ρW(Z) = sup
P∈P

ρ(Z). (1.1)

Proposition 1 ([17]). If ρ associated with crisp probability measure P is a coher-
ent risk measure, then the corresponding ρW associated with ambiguous probability
measure P remains a coherent risk measure.

Coherent risk measure, in the sense introduced by Artzner [1], is supposed to
be a “good” measure of risk because it has four desirable properties. In this thesis,
different risk measures are discussed and they are not necessarily coherent. We are
particularly interested in CVaR, that is a well known coherent risk measure, and
the worst-case CVaR. By Proposition 1, the worst-case CVaR is also a coherent
risk measure.

Throughout the thesis, we also present the results on a class of downside
risk measures known as the lower partial moments, introduced by Bawa [2] and
Fishburn [8].
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1.1 Lower Partial Moments

The lower partial moments are defined as follows

LPMm(r) = E [(r −X)m+ ], (1.2)

where (t)+ = max{t, 0}, X is the asset return (X = −Z), r is the return on
a benchmark index, and m is a parameter, that can take any nonnegative value.
Specifically,

• if m = 0, then LPM0 is clearly the probability of the asset return falling
below the benchmark index;

• if m = 1, then LPM1 is the expected shortfall of the investment, falling
below the benchmark index;

• if m = 2, then LPM2 is almost an analog of the semivariance, but the
deviation references to the benchmark instead of the mean.

As we can see, LPM is specified by r and m. The return r is often set to the
risk-free rate, or simply to zero. By choosing the degree m an investor can specify
the measure of his/her risk attitude. Intuitively, large values of m will penalize
large deviations more than low values.

We denote
P = {p|E p[ξ] = µ,Covp[ξ] = Γ � 0},

where P is the set of probability distributions with mean µ ∈ Rn and covariance
matrix Γ ∈ Sn++, which is positive semidefinite. We denote R ∼ (µ,Γ) to repre-
sent the fact that the random vector R belongs to the set whose elements have
mean µ and covariance matrix Γ.

1.1.1 Upper Bounds for the Univariate Cases

In this section, we discuss the moment upper bounds, using the information about
the mean and the covariance of the underlying distribution. These bounds lead
to robust portfolio optimization models, as we will see later.

As we remarked, LPM0(r) measures the probability that a random return falls
below the target r. Its upper bound, which is presented in the following lemma,
is exactly set by Chebyshev-Cantelli inequality [4].

Lemma 2 ([6]). It holds that

sup
X∼(µ,σ2)

LPM0(r) = sup
X∼(µ,σ2)

P{X ≤ r}

=

{
1

1+(r−µ)2/σ2 , if r < µ,

1, if r ≥ µ.

LPM1(r) is the expected shortfall of X below the benchmark r. As we will
see later, this measure of risk is highly related to CVaR. In this case, Jensen’s
inequality is used to derive its upper bound.
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Lemma 3 ([6]). It holds that

sup
X∼(µ,σ2)

LPM1(r) = sup
X∼(µ,σ2)

E [(r −X)+] =
r − µ+

√
σ2 + (r − µ)2

2
.

A tight upper bound on LPM2(r) can be also established by Jensen’s inequal-
ity.

Lemma 4 ([6]). It holds that

sup
X∼(µ,σ2)

LPM2(r) = sup
X∼(µ,σ2)

E [(r −X)2
+] = [(r − µ)+]2 + σ2.

Proof. Firstly, it holds

σ2 = varX = E X2 − (E X)2 = E X2 − µ2,

and thus
E X2 = µ2 + σ2.

Further, for any X ∼ (µ, σ2), by Jensen’s inequality we have

E [(r −X)2
+] = E [(r −X)2]− E [(r −X)2

−]

≤ E [(r −X)2]− E [(r −X)−]2

= E [r2 − 2rX −X2]− ([E r − E X]−)2

= r2 − 2rX − E X2 − [(r − µ)−]2

= r2 − 2rX + (µ2 + σ2)− [(r − µ)−]2

= (r2 − 2rX + µ2) + σ2 − [(r − µ)−]2

= (r − µ)2 + σ2 − [(r − µ)−]2

= σ2 − [(r − µ)+]2.

To show the tightness of the bound, consider a sequence of distributions

Xn =

{
µ+ σ√

n−1
, with probability n−1

n
,

µ− σ
√
n− 1, with probability 1/n.

We determine mean and variance of Xn

E Xn =
n− 1

n

(
µ+

σ√
n− 1

)
+

1

n

(
µ+ σ

√
n− 1

)
=

1

n

(
nµ− µ+ σ

√
n− 1

)
+

1

n

(
µ− σ

√
n− 1

)
=

1

n

(
nµ− µ+ σ

√
n− 1 + µ− σ

√
n− 1

)
=

1

n
nµ

= µ
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varXn = E X2
n − E (Xn)2

=
n− 1

n

(
µ+

σ√
n− 1

)2

+
1

n

(
µ+ σ

√
n− 1

)2 − µ2

=
n− 1

n

(
µ2 +

2µσ2

√
n− 1

+
σ

n− 1

)
+

1

n

(
µ2 − 2µσ

√
n− 1 + (n− 1)σ2

)
−µ2

=
1

n

(
(n− 1)µ2 + 2µσ

√
n− 1 + σ2

)
+

1

n

(
µ2 − 2µσ

√
n− 1 + σ2n− σ2

)
−µ2

=
1

n

(
(nµ2 + µ2 + 2µσ

√
n− 1 + σ2 + µ2 − 2µσ

√
n− 1 + σ2n− σ2

)
− µ2

=
1

n

(
nµ2 + nσ2

)
− µ2

= σ2 (1.3)

It means that Xn ∼ (µ, σ2), and

E [(r −Xn)2
+] −→ σ2 + [(r − µ)+]2, as n −→∞.

This indicates that the upper bound is indeed tight, which completes the proof.

Remark. If m > 2, then sup
X∼(µ,σ2)

E [(r −X)m+ ] = +∞, see [6].

1.2 Value-at-risk

Value-at-risk is one of the most popular risk measures. However, it is unstable and
numerical application is difficult when losses does not follow normal distribution.
Beyond the treshold amount indicated by this measure, there is no handle on the
extent of the losses that might occure. It is incapable of distinguishing between
situations when losses are only a little bit worse and those which are enormous.
Moreover, VaR is not a coherent risk measure in the sense of Artzner [1]. Despite
of all shortcomings, VaR is frequently used in risk management.

In everything that follows, we suppose that random vector y is governed by
a probability measure P on Y (a Borel measure) that is independent of x. For
each x, we denote by Ψ(x, ·) on R the resulting distribution function for the loss
f(x,y), i.e.,

Ψ(x, ζ) = P{y|f(x,y) ≤ ζ}. (1.4)

The previous function (1.4) actually represents the probability that f(x,y) does
not exceed a treshold ζ.

Given a confidence level α ∈ (0, 1) (usually greater than 0.9), the value-at-risk
is defined as follows.

Definition 1. The VaRα of the loss associated with a decision x is the value

ζα(x) = min{ζ | ψ(x, ζ) ≥ α}. (1.5)
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Definition 2. The VaR+
α (“upper” VaRα) of the loss associated with a decision

x is the value
ζ+
α (x) = min{ζ | ψ(x, ζ) > α}. (1.6)

Remark. The minimum in (1.5) is achieved because ψ(x, ζ) is nondecreasing and
right-continuous in ζ. In the situation when ψ(x, ζ) is strictly increasing and
continuous, ζα(x) is equal to the unique ζ satisfying ψ(x, ζ) = α. In all other
cases, this equation can have no solution or a whole range of solutions.

1.3 Conditional Value-at-risk

A coherent risk measure that quantifies the losses that might occure in the tail
is conditional value-at-risk. This risk assessment technique is derived by taking
a weighted average between the value-at-risk and losses exceeding the value-at-
risk. Therefore, the term is also known as “Mean Excess Loss” or “Tail VaR”.

We make a technical assumption that f(x,y) is continuous in x and measur-
able in y. We also assume that E (|f(x,y)|) < +∞ for each x ∈X .

Definition 3. The CVaRα of the loss associated with a decision x is the value

φα(x) = mean of the α− tail distribution of f(x,y),

where the distribution in question is the one with distribution function ψα(x, ·)
defined by

ψα(x, ζ) =

{
0, for ζ < ζα(x)

[ψ(x, ζ)− α]/[1− α], for ζ ≥ ζα(x).
(1.7)

Definition 4. The CVaR+
α (“upper” CVaRα) of the loss associated with a decision

x is the value
ψ+
α = E {f(x,y)|f(x,y) > ζα(x)}, (1.8)

whereas the CVaR−α (“lower” CVaRα) of the loss associated with a decision x is
the value

ψ−α = E {f(x,y)|f(x,y) ≥ ζα(x)}. (1.9)

We note that the conditional expectation in (1.9) is well defined because
P{f(x,y)|f(x,y) > ζα(x)} ≥ 1 − α > 0, but (1.8) only makes sense as long
as P{f(x,y)|f(x,y > ζα(x)} > 0, which is not assured merely through the
assumption that α ∈ (0, 1). For more details see [16].

1.4 Worst-case VaR and Worst-case CVaR

Instead of assuming the precise knowledge of the distribution of the random vector
y, we assume that the density function is only known to belong to a certain set
P of distributions, i.e., p(·) ∈P.

According to general definition of the worst-case risk measure (1.1), we define
the worst-case VaR and the worst-case CVaR as follows.

Definition 5. The WVaRα of the loss associated with a decision x is the value

WVaRα(x) = sup
p(·)∈P

VaRα(x).

8



Definition 6. The WCVaRα of the loss associated with a decision x is the value

WCVaRα(x) = sup
p(·)∈P

CVaRα(x).
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2. Minimization of Risk
Measures

In this chapter, we discuss the minimization problem of CVaR and WCVaR.
For WCVaR we make further investigation on some special cases of P, formu-
late the corresponding minimization problems, that can be efficiently solved, and
discuss their computational aspects. We are particularly interested in mixture
distribution, box uncertainty in discrete distribution and ellipsoidal uncertainty
in discrete distribution, which are the most often used uncertainty structures in
robust optimization.

2.1 Minimization of CVaR

Suppose that y follows a continuous distribution. As Rockafellar and Uryasev
demonstrate [15], the calculation of CVaR can be achieved by minimizing of the
following auxiliary function with respect to the variable ζ ∈ R:

Fα(x, ζ) = ζ +
1

1− α

∫
y∈Rm

[f(x,y)− ζ]+p(y)dy, (2.1)

where [t]+ = max{t, 0}, and p(·) denotes a density function of y. Thus, we have
the fundamental minimimization formula specified in the following theorem. For
more details and the proof of this theorem see [15].

Theorem 5 (Fundamental minimization formula [15]). As a function of ζ ∈ R,
Fα(x, ζ) is finite and convex (hence continuous), with

φα(x) = min
ζ∈R

Fα(x, ζ)

and moreover

ζα(x) = lower endpoint of arg min
ζ∈R

Fα(x, ζ),

ζ+
α (x) = upper endpoint of arg min

ζ∈R
Fα(x, ζ),

where the argmin refers to the set of ζ for which the minimum is attained and
in this case has to be a nonempty, closed, bounded interval (perhaps reducing to
a single point). In particular, one always has

ζα(x) ∈ arg min
ζ∈R

Fα(x, ζ), φα(x) = Fα(x, ζα(x)).

As noticed in [15], Theorem 5 shows the difference between CVaR and VaR,
and present the fundamental reason why CVaR is much better behaved than
VaR when dependence on a choice of x must be handled. The reason is the fact,
that the optimal value in a problem of minimization, in this case φα(x), is more
agreeable as a function of parameters than is the optimal solution set, which is
here the argmin interval with ζα(x) as its lower endpoint.
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In (2.1) we assume that y follows a continuous distribution. However, to
consider a discrete distribution make sense even for a continuous distribution in
CVaR formulation, because we usually use summation to approximate the integral
in (2.1). Let S denote the number of sample points. In the following, we assume
that the sample space of the random vector y is given by {y(1),y(2), . . . ,y(S)},

where P{y(k)} = πk and
S∑
k=1

πk = 1, πk ≥ 0, k = 1, . . . , S. Further, denote

π = (π1, π2, . . . , πS)T and define

Gα(x, ζ,π) = ζ +
1

(1− α)

S∑
k=1

πk[f(x,y(k))− ζ]+. (2.2)

For given x and π, Rockafellar and Uryasev [16] defined the corresponding CVaR
as

CVaRα(x,π) = min
ζ∈R

Gα(x, ζ,π). (2.3)

We can formulate minimizing of CVaR as the following minimization program
with decision variables (x,u, ζ) ∈ Rn × RS × R:

min ζ +
1

1− α
(π)Tu (2.4)

s.t. x ∈X , (2.5)

uk ≥ f(x,y(k))− ζ, k = 1, . . . , S, (2.6)

uk ≥ 0, k = 1, . . . , S, (2.7)

where u = (u1, . . . , uS) is an auxiliary vector utilized to deal with the computation
of [·]+ in the original objective function.

If the function f(x,y) is linear with respect to x and the set X is a convex
polyhedron, then the problem (2.4) - (2.7) can be solved by a linear programming
method.

2.2 Minimization of Worst-case CVaR

In this section, we present the results formulated by Zhu and Fukushima [17].
First of all, we quote the following lemma (minimax theorem), which will be used
to formulate the minimization problems in a tractable way.

Lemma 6 ([17]). Suppose that X and Y are nonempty compact convex sets in
Rn and Rm, respectively, and the function φ(x,y) is convex in x for any given y,
and concave in y for any given x. Then, we have

min
x∈X

max
y∈Y

φ(x,y) = max
y∈Y

min
x∈X

φ(x,y)

One can find the details and the proof of Lemma 6 for example in [7].
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2.2.1 Mixture Distribution

In this section, we assume that about the distribution of y we only know it be-
longs to a set of distributions that consists of all mixtures of some predetermined
likelihood distributions, i.e.,

p(·) ∈PM =

{
l∑

i=1

λip
i(·) :

l∑
i=1

λi = 1, λi ≥ 0, i = 1, . . . , l

}
, (2.8)

where pi(·) denotes the ith likelihood distribution, and l denotes the number of
the likelihood distributions. Denote

Λ =

{
λ = (λ1, . . . , λl) :

l∑
i=1

λi = 1, λi ≥ 0, i = 1, . . . , l

}
. (2.9)

Define

F i
α(x, ζ) = ζ +

1

1− α

∫
y∈Rm

[f(x,y)− ζ]+pi(y)dy, i = 1, . . . , l. (2.10)

Using Lemma 6, we get the following theorem.

Theorem 7 ([17]). For each x, WCV aRα(x) with respect to PM can be computed
as

WCV aRα(x) = min
ζ∈R

max
i∈L

F i
α(x, ζ), (2.11)

where L = {1, 2, . . . , l}.

Proof. For given x ∈X , we define the following function

Hα(x, ζ,λ) = ζ +
1

1− α

∫
y∈Rm

[f(x,y)− ζ]+

[
l∑

i=1

λip
i(y)

]
dy

=
l∑

i=1

λiF
i
α(x, ζ) (2.12)

where λ ∈ Λ, and the set Λ is specified as (2.9). The function Hα(x, ζ,λ) is
convex in ζ and concave in λ [16]. Moreover, min

ζ∈R
Hα(x, ζ,λ) is a continuous

function with respect to λ. By the definition of WCVaRα(x), and the fact that
Λ is a compact set, we can write

WCVaRα(x) = max
λ∈Λ

min
ζ∈R

Hα(x, ζ,λ)

= max
λ∈Λ

min
ζ∈R

l∑
i=1

λiF
i
α(x, ζ) (2.13)

As Rockafellar and Uryasev proved [16], for fixed x and each i, the optimal
solution set of min

ζ∈R
F i
α(x, ζ) is a nonempty, closed, and bounded interval. Thus,

we denote
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[α∗i , ᾱ
∗
i ] = arg min

ζ∈R
F i
α(x, ζ), i = 1, . . . , l.

Suppose that g1(t) and g2(t) are two convex functions defined on R. Let
the nonempty, closed, and bounded intervals [t∗1, t̄

∗
1] and [t∗2, t̄

∗
2] denote their sets

of minima. It holds that for any β1 ≥ 0 and β2 ≥ 0 such that β1 + β2 > 0,
β1g1(t) + β2g2(t) is also a convex function, and its set of minima must lie in the
nonempty, closed, and bounded interval [min{t∗1, t∗2},max{t̄∗1, t̄∗2}]. By this fact,
we get

arg min
ζ∈R

Hα(x, ζ,λ) ⊆ A ,∀λ ∈ Λ,

where A is the nonempty, closed, and bounded interval given by

A = [min
i∈L

α∗i ,max
i∈L

ᾱ∗i ],

which implies
min
ζ∈R

Hα(x, ζ,λ) = min
ζ∈A

Hα(x, ζ,λ).

Thus, by Lemma 6

max
λ∈Λ

min
ζ∈R

Hα(x, ζ,λ) = max
λ∈Λ

min
ζ∈A

Hα(x, ζ,λ)

= min
ζ∈A

max
λ∈Λ

Hα(x, ζ,λ). (2.14)

Obviously, it holds

min
ζ∈A

max
λ∈Λ

Hα(x, ζ,λ) ≥ inf
ζ∈R

max
λ∈Λ

Hα(x, ζ,λ) (2.15)

By (2.14), (2.15), and the well-known result on the min-max inequality

inf
ζ∈R

max
λ∈Λ

Hα(x, ζ,λ) ≥ max
λ∈Λ

min
ζ∈R

Hα(x, ζ,λ),

we get
max
λ∈Λ

min
ζ∈R

Hα(x, ζ,λ) = min
ζ∈R

max
λ∈Λ

Hα(x, ζ,λ).

Therefore, we can write

WCVaRα(x) = min
ζ∈R

max
λ∈Λ

Hα(x, ζ,λ)

= min
ζ∈R

max
λ∈Λ

l∑
i=1

λiF
i
α(x, ζ). (2.16)

Now we only need to verify that the righ-hand sides of (2.11) and (2.16)
are equivalent. The right-hand side of (2.16) can be written as the following
optimization problem

min
(ζ,θ)∈R×R

{
θ :

l∑
i=1

λiF
i
α(x, ζ) ≤ θ, ∀λ ∈ Λ

}
. (2.17)

13



By the specification of the set Λ (2.9), it is clear that any feasible solution of
(2.17) satisfies

F i
α(x, ζ) ≤ θ, i = 1, . . . , l. (2.18)

On the other hand, if (2.18) holds, then for any λ ∈ Λ, we have

l∑
i=1

λiF
i
α(x, ζ) ≤

l∑
i=1

λiθ = θ.

Thus, we can see that the problem (2.17) is equivalent to

min
(ζ,θ)∈R×R

{
θ : F i

α(x, ζ) ≤ θ, i = 1, . . . , l
}
,

which is in fact the righ-hand side of (2.11) written as an optimization problem.
This completes the proof.

Denote

FL
α (x, ζ) = max

i∈L
F i
α(x, ζ). (2.19)

By Theorem 7, we get the following corollary.

Corollary 8 ([17]). Minimizing WCV aRα(x) over X can be achieved by mini-
mizing FL

α (x, ζ) over X × R, i.e.,

min
x∈X

WCV aRα(x) = min
(x,ζ)∈X ×R

FL
α (x, ζ). (2.20)

More specifically, if (x∗, ζ∗) attains the right-hand side minimum, then x∗

attains the left-hand side minimum, and ζ∗ attains the minimum of FL
α (x∗, ζ),

and vice versa.

As Rockafellar and Uryasev demonstrate [16], the function Fα(x, ζ) defined
by 2.1 is convex in (x, ζ) if the function f(x,y) is convex in x. It holds that
the function g(t) = max{g1(t), g2(t)} is convex whenever both g1(t) and g2(t) are
convex. Thus, we can see that if f(x,y) is convex in x, then FL

α (x, ζ) is convex
in (x, ζ). Moreover, if f(x,y) is convex in x and X is a convex set, then the
problem of WCVaR minimization is a convex program.

Using Theorem 7 and Corollary (8), we get that the WCVaR minimization
problem is equivalent to

min
(x,ζ,θ)∈X ×R×R

{
θ : ζ +

1

1− α

∫
y∈Rm

[f(x,y)− ζ]+pi(y)dy ≤ θ, i = 1, . . . , l

}
,

(2.21)
which is more tractable problem in comparison with the original one. The cal-
culation of the integral is probably the most difficult part in this computation.
Monte Carlo simulation is one of the most popular and efficient approximation
methods used to deal with this complexity. Rockefellar and Uryasev [16] use this
method to approximate F̃α(x, ζ) as follows
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F̃α(x, ζ) = ζ +
1

S(1− α)

S∑
k=1

[f(x,y(k))− ζ]+, (2.22)

where y(k) denotes the kth sample point that is generated by simple random
sampling according to density function p(·) of y, and S denotes the number of
sample points. When the number of sample points used in approximation is large
enough, then the approximation accuracy (or convergence) is guaranteed by the
law of large numbers.

Remark. We note that the function Gα(x, ζ,π) (2.2) is equal to the function
F̃α(x, ζ) (2.22), if πk is equal to 1/S.

In the following, we replace the integral in (2.21) with the summation used in
(2.22)

min
(x,ζ,θ)∈X ×R×R

θ : ζ +
1

Si(1− α)

Si∑
k=1

[f(x,y(k))
i − ζ]+ ≤ θ, i = 1, . . . , l

 ,

(2.23)
where yi(k) denotes the kth sample point with respect to the ith likelihood distri-

bution pi(·), and Si denotes the number of sample points.
In general, the problem (2.21) can be formulated using the approximation as

min
(x,ζ,θ)∈X ×R×R

θ : ζ +
1

(1− α)

Si∑
k=1

πik[f(x,y(k))
i − ζ]+ ≤ θ, i = 1, . . . , l

 ,

(2.24)
where πik denotes the probability with respect to the ith likelihood distribution
pi(·) according to the kth sample point.

Remark. Obviously, if πik is equal to 1/Si for all k, then (2.24) can be reducing
to problem (2.23).

This general form (2.24) of the optimization problem can be reformulated as
the following problem with decision variables (x,u, ζ, θ) ∈ Rn × Rm × R× R:

min θ (2.25)

s.t. x ∈X , (2.26)

ζ +
1

1− α
(πi)Tui ≤ θ, i = 1, . . . , l, (2.27)

uik ≥ f(x,yi(k))− ζ, k = 1, . . . , Si, i = 1, . . . , l, (2.28)

uik ≥ 0, k = 1, . . . , Si, i = 1, . . . , l. (2.29)

where πi = (πi1, . . . , π
i
Si), and u = (u1; u2; . . . ; ul) ∈ Rm is an auxiliary vector,

where m =
l∑

i=1

Si.

If the function f(x,y) is linear with respect to x and the set X is a convex
polyhedron, then the problem (2.25) - (2.29) is a linear program.

Remark. Especially if l = 1, then the problem (2.25) - (2.29) is exactly that of
Rockafellar and Uryasev [16] with πik = 1/S1.

15



2.2.2 Discrete Distribution

In this section, we assume that y follows a discrete distribution. We are partic-
ularly interested in minimizing of WCVaR under box uncertainty and ellipsoidal
uncertainty. These two types of uncertainty sets are easy to be specified and
the optimization problem can be formulated in a tractable way. In the previous
chapter, we defined WCVaRα(x) for the general distribution case. In the case of
discrete distribution, we denote P as Pπ, that we may identify as a subset of
RS. By the formula (2.3), WCVaR for fixed x ∈ X with respect to Pπ is then
defined as

WCVaRα(x) = sup
π∈Pπ

CVaRα(x,π),

and it is equivalent to

WCVaRα(x) = sup
π∈Pπ

min
ζ∈R

Gα(x, ζ,π).

Using Lemma 6, we get the following theorem. The proof of this theorem is
given for example in [17].

Theorem 9 ([17]). Suppose that Pπ is a compact convex set. Then, for each x,
we have

WCV aRα(x) = min
ζ∈R

max
π∈Pπ

Gα(x, ζ,π).

By Theorem 9, if Pπ is a compact convex set, the minimization problem
of WCVaRα(x) over X can be also formulated as the following problem with
decision variables (x,u, ζ, θ) ∈ Rn × RS × R× R:

min θ (2.30)

s.t. x ∈X , (2.31)

max
π∈Pπ

ζ +
1

1− α
πTu ≤ θ, (2.32)

uk ≥ f(x,y(k))− ζ, k = 1, . . . , S, (2.33)

uk ≥ 0, k = 1, . . . , S. (2.34)

Problem (2.30) - (2.34) includes the max operation in the constraints and
thus it is not suitable for numerical application. If f(x,y) is linear in x and X
is a convex polyhedron, then under box uncertainty in distribution, this prob-
lem can be formulated as a linear program, and under ellipsoidal uncertainty in
distribution, as a second-order cone program [17].

2.2.3 Box Uncertainty in Discrete Distribution

Suppose that π belongs to a box, i.e.,

π ∈PB
π = {π : π = π0 + η, eTη = 0,η ≤ η ≤ η̄}, (2.35)
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where π0 denotes nominal distribution (the most likely distribution), e denotes
the vector of ones, and η and η̄ are given constant vectors. We can see that the

constraint eTη = 0 ensures π to be a probability distribution, and the nonnega-
tivity constraint π ≥ 0 is included in the box constraints η ≤ η ≤ η̄.

It holds

ζ +
1

1− α
πTu = ζ +

1

1− α
(π0 + η)Tu = ζ +

1

1− α
(π0)Tu+

1

1− α
(η)Tu,

and thus we get

max
π∈PB

π

ζ +
1

1− α
πTu = ζ +

1

1− α
(π0)Tu+

γ∗(u)

1− α
,

where γ∗(u) denotes the optimal value of the following linear program:

max
η∈RS
{uTη : eTη = 0,η ≤ η ≤ η̄}. (2.36)

The dual program of (2.36) is given by

min
(z,ξ,ω)∈R×RS×RS

{η̄Tξ + ηTω : ez + ξ + ω = u, ξ ≥ 0,ω ≤ 0}. (2.37)

By the previous discussion, we get the following minimization problem with de-
cision variables (x,u, z, ξ,ω, ζ, θ) ∈ Rn × RS × R× RS × RS × R× R:

min θ (2.38)

s.t. x ∈X , (2.39)

ζ +
1

1− α
(π0)Tu+

1

1− α
(η̄Tξ + ηTω) ≤ θ, (2.40)

ez +ξ + ω = u, (2.41)

ξ ≥ 0,ω ≤ 0, (2.42)

uk ≥ f(x,y(k))− ζ, k = 1, . . . , S, (2.43)

uk ≥ 0, k = 1, . . . , S. (2.44)

Remark. If η = η̄ = 0, then the problem (2.38) - (2.44) reduces to the original
CVaR minimization problem.

If the function f(x,y) is convex with respect to x and X is a convex set,
then (2.38) - (2.44) is a convex program. Moreover, if f(x,y) is linear in x and
X is a convex polyhedron, then the problem is a linear program.

Proposition 10 ([17]). If (x∗,u∗, z∗, ξ∗, ω∗, ζ∗, θ∗) solves (2.38) - (2.44), then
(x∗,u∗, ζ∗, θ∗) solves (2.30) - (2.34) with Pπ = PB

π . Conversely, if (x̃∗, ũ∗, ζ̃∗, θ̃∗)
solves (2.30) - (2.34) with Pπ = PB

π , then (x̃∗, ũ∗, z̃∗, ξ̃∗, ω̃∗, ζ̃∗, θ̃∗) solves (2.38)
- (2.44), where (z̃∗, ξ̃∗, ω̃∗) is an optimal solution to (2.38) with u = ũ∗.

17



Proof. Let (x∗,u∗, z∗, ξ∗, ω∗, ζ∗, θ∗) is an optimal solution to (2.38) - (2.44). It
holds that (z∗, ξ∗, ω∗) is feasible to (2.37) with u = u∗. By the duality theorem
of linear programming, we have

γ∗(u∗) ≤ η̄Tξ∗ + ηTω∗.

Therefore, we get

max
π∈PB

π

ζ∗ +
1

1− α
πTu∗ = ζ∗ +

1

1− α
(π0)Tu∗ +

γ∗(u∗)

1− α

≤ ζ∗ +
1

1− α
(π0)Tu∗ +

1

1− α
(η̄Tξ∗ + ηTω∗)

≤ θ∗. (2.45)

The last inequality, together with constraints (2.39), (2.43), and (2.44), implies
that (x∗,u∗, ζ∗, θ∗) is feasible to (2.30) - (2.34) with Pπ = PB

π .
Now we need to show that (x∗,u∗, ζ∗, θ∗) is an optimal solution. Suppose

that (x∗,u∗, ζ∗, θ∗) is not an optimal solution to (2.30) - (2.34) with Pπ = PB
π .

It means, there exist the other optimal solution (x̄∗, ū∗, ζ̄∗, θ̄∗) to (2.30) - (2.34)
such that θ̄∗ < θ∗.

Let (z̄∗, ξ̄∗, ω̄∗) be an optimal solution to (2.37) with ū = ū∗. By the duality
theorem of linear programming, we get

ζ̄∗ +
1

1− α
(π0)T ū∗ +

1

1− α
(η̄T ξ̄∗ + ηT ω̄∗) = ζ̄∗ +

1

1− α
(π0)T ū∗ +

γ∗(ū∗)

1− α

= max
π∈PB

π

ζ̄∗ +
1

1− α
πT ū∗

= θ̄∗, (2.46)

which, together with the constraints (2.31), (2.33), (2.34), and (2.37), implies
that (x̄∗, ū∗, z̄∗, ξ̄∗, ω̄∗, ζ̄∗, θ̄∗) is feasible to (2.38) - (2.44). Due to θ̄∗ < θ∗, this
contradicts our assumption that (x∗,u∗, z∗, ξ∗, ω∗, ζ∗, θ∗) is an optimal solution to
(2.38) - (2.44). Thus (x∗,u∗, ζ∗, θ∗) is an optimal solution to (2.30) - (2.34) with
Pπ = PB

π .
On the other hand, let (x̃∗, ũ∗, ζ̃∗, θ̃∗) be an optimal solution to (2.30) - (2.34)

with Pπ = PB
π , and let (z̃∗, ξ̃∗, ω̃∗) denote an optimal solution to (2.37) with

u = ũ∗. Then (x̃∗, ũ∗, z̃∗, ξ̃∗, ω̃∗, ζ̃∗, θ̃∗) must solve (2.38) - (2.44). Otherwise,
there exist an optimal solution (x̄∗, ū∗, z̄∗, ξ̄∗, ω̄∗, ζ̄∗, θ̄∗) of (2.38) - (2.44) such
that θ̄∗ < θ̃∗. By the first part of the proof, (x̄∗, ū∗, ζ̄∗, θ̄∗) is an optimal solution
to (2.30) - (2.34), which contradicts the assumption that (x̃∗, ũ∗, ζ̃∗, θ̃∗) is an
optimal solution to (2.30) - (2.34) because θ̄∗ < θ̃∗. This completes the proof.

2.2.4 Ellipsoidal Uncertainty in Discrete Distribution

Suppose that π belongs to an ellipsoid, i.e.,

π ∈PE
π = {π : π = π0 + Aη, eTAη = 0,π0 + Aη ≥ 0, ‖η‖ ≤ 1}, (2.47)
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where ‖η‖ =
√
ηTη, π0 denotes a nominal distribution that is the center of the

ellipsoid, and A ∈ RS×S is the scaling matrix of the ellipsoid. The conditions
eTAη = 0 and π0 + Aη ≥ 0 ensure that π is a probability distribution.

By (2.47), it holds

ζ +
1

1− α
πTu = ζ +

1

1− α
(π0 + Aη)Tu = ζ +

1

1− α
(π0)Tu+

1

1− α
A(η)Tu.

Thus, using the constraint (2.32) we get

max
π∈PB

π

ζ +
1

1− α
πTu = ζ +

1

1− α
(π0)Tu+

γ∗(u)

1− α
,

where γ∗(u) denotes the optimal value of the following convex program:

max
η∈RS
{uTAη : eTAη = 0,π0 + Aη ≥ 0, ‖η‖ ≤ 1}, (2.48)

The dual of (2.48) is the second-order cone program (see [10])

min
(γ,ω,ξ,z)∈R×RS×RS×R

{γ + (π0)Tω : −ξ − ATω + ATez = ATu, ‖ξ‖ ≤ γ,ω ≥ 0}.

(2.49)
Under some mild condition, such as the existence of interior feasible points

for both (2.48) and (2.49), the zero duality gap is guaranteed by the strong conic
duality theorem [10]. In this case, by using a similar argument to Proposition 10,
we can equivalently formulate (2.30) - (2.34), with Pπ = PE

π as the following
minimization problem with decision variables (x,u,γ,ω, ξ, z, ζ, θ) ∈ Rn × RS ×
R× RS × RS × R× R× R:

min θ (2.50)

s.t. x ∈X , (2.51)

ζ +
1

1− α
(π0)Tu+

1

1− α
[γ + (π0)Tω] ≤ θ, (2.52)

−ξ −ATω + ATez = ATu, (2.53)

‖ξ‖ ≤ γ,ω ≥ 0, (2.54)

uk ≥ f(x,y(k))− ζ, k = 1, . . . , S, (2.55)

uk ≥ 0, k = 1, . . . , S. (2.56)

Remark. If A = 0, then the problem (2.50) - (2.56) reduces to the original CVaR
minimization problem.

If the function f(x,y) is convex with respect to x and the set X is convex,
then problem (2.50) - (2.56) is a convex program. Furthermore, if the function
f(x,y) is linear with respect to x and the set X is convex polyhedron, then the
problem is a second-order cone program.
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3. Robust Portfolio Selection

In this chapter, we formulate a portfolio management problem by utilizing the
risk measures presented in this thesis. We show that the upper bounds described
in the first chapter lead to robust portfolio optimization and discuss several robust
downside risk models. Moreover, we present an explicit formula for solving the
robust portfolio problem with CVaR or VaR as a risk measure. We specify the
constraint set X in the case of CVaR and WCVaR as a risk measure, which
usually includes for example the requirement of minimum expected return that
occures in the worst-case.

Suppose that an investor in the financial market can choose from n risky
assets, or we can simly say, that the investor can decide how to divide his/her
available capital between n assets. The vector x = (x1, . . . , xn)T ∈ Rn represents
the amount of the investments in the assets decided by the investor and the
random vector y = (y1, . . . , yn)T ∈ Rn represents the uncertain returns of the
assets. Therefore, the total portfolio return is defined as xTy. Naturally, the
total portfolio loss is the negative of the return and thus the loss function f(x,y)
is equal to −xTy.

Identifying investment goals of the investor is the first task in constructing
a portfolio. Important factor to take into account is his/her risk tolerance, i.e.,
his/her will to risk some money for the possibility of greater returns. Obviously,
the possibility of greater returns comes at the expense of greater risk of losses,
which is a principle known as the risk-return trade-off.

Important items to consider in portfolio construction are amount of capital
to invest (initial wealth) and future capital needs. Suppose that the investor has
an initial wealth w0. In this case, it holds

eTx = w0. (3.1)

In order to ensure diversification and satisfy the regulations, we include the
bound constraints

x ≤ x ≤ x̄, (3.2)

where x and x̄ are the given lower and upper bounds on the portfolios.
Let r0 be the minimum expected return that the investor requires in the

worst-case. This expectation can be represented as

min
p(·)∈P

E p(x
Ty) ≥ r0, (3.3)

where E p denotes the expectation operator with respect to the distribution p(·)
of y.

In general, X is specified by (3.1), (3.2) and (3.3), i.e.,

X = {x : eTx = w0,x ≤ x ≤ x̄, min
p(·)∈P

E p(x
Ty) ≥ r0}. (3.4)
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3.1 Portfolio Selection with CVaR

In this case, condition (3.3) can be written as

E p(x
Ty) ≥ r0, (3.5)

where p(·) denotes the distribution of y. We formulate this constraint as

xT ȳ ≥ r0, (3.6)

where ȳ denotes the expected value of y with respect to p(·).
By (2.4)- (2.7), the portfolio selection problem based on CVaR can be formu-

lated as the linear program with decision variables (x,u, ζ) ∈ Rn × RS × R:

min{2.4 : (2.6)− (2.7), (3.1), (3.2) and (3.6)}, (3.7)

where f(x,y(k)) in (2.6) is specified as −xTy(k).

3.2 Robust Portfolio Selection Using LPM

In this section, we discuss the robust downside risk models. We are particularly
interested in the lower partial moments LPMm(r), m ∈ {0, 1, 2}.

The portfolio selection models (Pm) are formulated as

(Pm) min
x

E [(r − xTy)m+ ],

s.t. xTe = 1,

where m ∈ {0, 1, 2} represents risk aversion of the investor, and e denotes the
vector of all ones with an appropriate dimension.

We assume that the mean and the covariance of y are known, and we make no
further assumption on its distribution. For a given portfolio x, our risk measure
is E [(r − xTy)m+ ]. The corresponding robust portfolio selection model may be
written as

RPm = min
x

sup
y∼(µ,Γ)

E [(r − xTy)m+ ]

s.t. xTe = 1,

where m ∈ {0, 1, 2}.
The upper bounds presented in the first chapter can be used to get an explicit

expression for the objective function in RPm. Those bounds are good only for
univariate distributions, whereas the ambiguous distribution set P in RPm in-
volves multidimensional distributions. For any given y, if we know the moments
of y, then we have all the information about the moments for the distribution
xTy. In general, the opposit is not true, but if we work only with the first two
moments, then there is actually no loss of information.

For any a 6= 0 ∈ Rn, we consider two sets

A := {aTξ|E [ξ] = µ, cov(ξ) = Γ},
B := {η|E [η] = aTµ, var(η) = aTΓa}.
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Obviously, A ⊆ B. As proved in [6], the opposite relationship also holds. It means

A = B. (3.8)

By this equivalence, we have

sup
y∼(µ,Γ)

E [(r − xTy)m+ ] = sup
ζ∼(xTµ,xTΓx)

E [(r − ζ)m+ ].

Therefore, we can directly apply the univariate bounds developed in the first
chapter.

3.2.1 Explicit Solution of the Robust Portfolio Problem

In the following theorem, we present how to derive explicit solution of the robust
portfolio problem based on LPM for the cases m ∈ {0, 1, 2} (see [6]). Suppose
Γ � 0. We denote

c0 := eTΓ−1e, c1 := eTΓ−1µ, c2 := µTΓ−1µ,

b0 :=
c0

c0c2 − c2
1

, b1 :=
c1

c0c2 − c2
1

, b2 :=
c2

c0c2 − c2
1

.

Theorem 11 ([6]). Consider the optimization problem

υ(RPm) := min
x

sup
ζ∼(xTµ,xTΓx)

E [(r − ζ)m+ ]

s.t. xTe = 1.

For the case m ∈ {0, 1, 2}, we have the following explicit solutions:

(a) If b1 ≥ rb0, then

υ(RP0) =
1

1 + (µ− re)TΓ−1(µ− re)
,

x∗RP0
=

Γ−1(µ− re)

eTΓ−1µ− reTΓ−1e
.

Else, if b1 < rb0, then υ(RP0) = 1/(1 + 1/b0).

(b)

υ(RP1) =
b0r − b1 +

√
(b0r − b1)2 + (b0b2 − b2

1)(b0 + 1)

2(b0 + 1)
,

x∗RP1
=
(
Γ−1µ Γ−1e

)( b0 −b1

−b1 b2

)(
b0(b1+r)+

√
(b0r−b1)2+(b0b2−b21)(b0+1)

b0(b0+1)

1

)
.

(c)

υ(RP2) =
[(b0r − b1)+]2

b0(b0 + 1)
+

1

c0

,

x∗RP2
=

(
Γ−1µ Γ−1e

)( b0 −b1

−b1 b2

)( (b0r−b1)+
b0(b0+1)

+ b1
b0

1

)
.
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Proof. Using the bounds presented in the first chapter, we denote

f0(s, t) := sup
X∼(s,t2)

E [(r −X)0
+] =

1

1 + (r − s)2/t2
;

f1(s, t) := sup
X∼(s,t2)

E [(r −X)1
+] =

r − s+
√
t2 + (r − s)2

2
,

f2(s, t) := sup
X∼(s,t2)

E [(r −X)2
+] = [(r − s)+]2 + t2.

Now we can express our optimization problem as follows

υ(RPm) = min
x
{fm(xTµ,

√
xTΓx)|xTe = 1}

= min
s∈R

min
x
{fm(s,

√
xTΓx)|xTe = 1,xTµ = s} (3.9)

For any given s and m, the optimal solution x∗s of the inner optimization
problem in (3.9) is a mean-variance efficient solution:

x∗s = arg min
x
{fm(s,

√
xTΓx)|xTe = 1,xTµ = s}

= arg min
x
{xTΓx|xTe = 1,xTµ = s}

=
(
Γ−1µ Γ−1e

)( b0 −b1

−b1 b2

)(
s
1

)
. (3.10)

The second equality comes from the increasing property of fm(s, t) in t for all
m ∈ {0, 1, 2}. It holds

(x∗s)
TΓx∗s = b0s

2 − 2b1s+ b2, (3.11)

and thus we have

υ(RPm) = min
s∈R

fm(s,
√
b0s2 − 2b1s+ b2).

By solving the above problem we get

s∗RP0
= arg min

s∈R
f0(s,

√
b0s2 − 2b1s+ b2)

= arg max
s≥r

(r − s)2

b0s2 − 2b1s+ b2

=

{
b2−b1r
b1−b0r , if b1 ≥ rb0

+∞, if b1 ≤ rb0

s∗RP1
= arg min

s∈R
f1(s,

√
b0s2 − 2b1s+ b2)

= arg min
s∈R

r − s+
√
b0s2 − 2b1s+ b2 + (r − s)2

2

=
b0(b1 + r) +

√
(b0r − b1)2 + (b0b2 − b2

1)(b0 + 1)

b0(b0 + 1)
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s∗RP2
= arg min

s∈R
f2(s,

√
b0s2 − 2b1s+ b2)

= arg min
s∈R

[(r − s)+]2 + b0s
2 − 2b1s+ b2

=
(b0r − b1)+

b0(b0 + 1)
+
b1

b0

.

This completes the proof.

Remark. All of the above portfolios are mean-variance efficient. In particular,
s∗RP0

≥ s∗RP1
≥ s∗RP2

, which means that for a fixed r, the higher the order of lower
partial moments, the more conservative portfolio.

With the simple constraint xTe = 1, the robust portfolio problem with CVaR
or VaR as risk measure can be solved explicitly.

Theorem 12 ([6]). Suppose the loss function is f(x,y) = −xTy and the random
vector y has mean µ and covariance matrix Γ � 0. Let α ∈ (0.5, 1]. Consider

υ(RCα) = min
x

sup
p∈P

CVaRα(x)

s.t. xTe = 1,

and

υ(RVα) = min
x

sup
p∈P

VaRα(x)

s.t. xTe = 1,

Then the optimal value of worst-case CVaR is:

υ(RCα) =


√
b0b2−b21

√
αb0
1−α−1

b0
, if α

1−αb0 ≥ 1,

−∞, if α
1−αb0 < 1,

and when α/(1− α)b0 ≥ 1, with optimal solution

x∗RCα =
(
Γ−1µ Γ−1e

)( b0 −b1

−b1 b2

) √
b0b2−b21

b0
√
αb0/(1−α)−1

+ b1
b0

1

 .

The optimal value of worst-case VaR is:

υ(RVα) =


√
b0b2−b21

√
b0/(4α(1−α))−b0−1

b0
− b1

b0
, if b0

4α(1−α)
≥ 1 + b0,

−∞, if b0
4α(1−α)

< 1 + b0,

When b0/(4α(1− α)) ≥ 1 + b0, the optimal solution is

x∗RVα =
(
Γ−1µ Γ−1e

)( b0 −b1

−b1 b2

) √
b0b2−b21

b0
√
b0/(4α(1−α))−b0−1

+ b1
b0

1

 .
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The proof of the previous theorem, is given in [6]. In the following, we outline
the main idea of this proof. By (2.1), for the linear loss function f(x,y) = −xTy,
the calculation of CVaR can be achieved by minimizing of the following auxiliary
function

Fα(x, ζ) = ζ +
1

1− α
E [−xTy − ζ]+,

where [t]+ = max{t, 0}. Using Lemma 3 and the proposed equivalence (3.8), we
have

RCα(x) = sup
p∈D

CVaRα(x)

= min
ζ∈R

sup
ξ∼(xTµ,xTΓx)

ζ +
1

1− α
E [(−ζ − ξ)+]

= min
ζ∈R

ζ +
1

1− α
sup

ξ∼(xTµ,xTΓx)

E [(−ζ − ξ)+]

= min
ζ∈R

ζ +
1

1− α

[
1

2

√
xTΓx+ (xTµ+ ζ)2 +

−ζ − xTµ
2

]
Let

hα(ζ) = ζ +
1

1− α

[
1

2

√
xTΓx+ (xTµ+ ζ)2 +

−ζ − xTµ
2

]
,

and
RCα(x) = h(ζ∗x),

where ζ∗x denotes the optimal solution minimizing hα(ζ) for given x. By the
first order optimality condition, (3.10) and (3.11), we get the required explicit
expression.

Remark. As Zhu and Fukushima notice in [6], the expected downfall measured
by CVaR and VaR are unbounded if α/(1−α)b0 < 1 and b0/(4α(1−α)) ≤ 1+b0.
In all other cases, the optimal portfolios are mean-variance efficient.

3.3 Robust Portfolio Selection Using WCVaR

In this section, we consider that random returns of financial assets are just spec-
ified by a set of distributions. We focus on robust portfolio selection problems
under the three types of uncertainties described in the previous chapter.

The robust portfolio selection problem using WCVaR can be represented as

min
x∈X

WCVaRα(x).

According to the minimization problems that we formulated in the previous chap-
ter, to complete the robust portfolio selection model, we only need to specify the
constraint set X .
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3.3.1 Mixture Distribution Uncertainty

In the case of mixture distribution uncertainty given by (2.8), condition (3.3) can
be written as

l∑
i=1

λi E pi(x
Ty) ≥ r0,∀λ ∈ Λ, (3.12)

where Λ is defined by (2.9). It is easy to see that the constraint (3.12) is equivalent
to

E pi(x
Ty) ≥ r0, i = 1, . . . , l. (3.13)

We represent the set of contraints (3.13) as

xT ȳi ≥ r0, i = 1, . . . , l, (3.14)

where ȳi denotes the expected value of y with respect to the likelihood distri-
bution pi(·). By (2.25)- (2.29), the robust portfolio selection problem under the
mixture distribution is formulated as the following linear program with decision
variables (x,u, ζ, θ) ∈ Rn × Rm × R× R:

min{θ : (2.27)− (2.29), (3.1), (3.2) and (3.14)}, (3.15)

where f(x,yi(k)) in (2.28) is specified as −xTyi(k).

3.3.2 Box Uncertainty in Discrete Distribution

The sample space of random vector y is given by {y(1),y(2), . . . ,y(S)}. We denote

Y =

 y
T
(1)
...
yT(S)

 . (3.16)

In the case of box uncertainty in discrete distributions, by (2.35) and (3.4), the
constraint set X is specified by

XB = {x : eTx = w0,x ≤ x ≤ x̄, (Y x)Tπ0 + min
{η:eTη=0,η≤η≤η̄}

(Y x)Tη ≥ µ}.

The dual problem of the inner linear program

min
η∈RS
{(Y x)Tη : eTη = 0,η ≤ η ≤ η̄}

is formulated as

max
(δ,τ ,ν)∈R×RS×RS

{η̄Tτ + ηTν : eδ + τ + ν = Y x, τ ≤ 0,ν ≥ 0}.

Define
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ΦB = {(x, δ, τ ,ν) : eTx = w0,x ≤ x ≤ x̄, eδ + τ + ν = Y x,

τ ≤ 0,ν ≥ 0, (Y x)Tπ0 + η̄Tτ + ηTν ≥ µ}

and

ΦB
X = {x : ∃(δ, τ ,ν) such that (x, δ, τ ,ν) ∈ ΦB}.

By the duality theory of linear programming, it holds [17]

XB = ΦB
X . (3.17)

By (2.38) - (2.44) and (3.17), in the case of box uncertainty in discrete distri-
bution, the robust portfolio selection problem can be formulated as the following
linear program with decision variables (x,u, z, ξ,ω, ζ, θ, δ, τ ,ν) ∈ Rn×RS ×R×
RS × RS × R× R× R× RS × RS:

min{θ : (2.40)− (2.44) and (x, δ, τ ,ν) ∈ ΦB}, (3.18)

where f(x,y(k)) is equal to −xTy(k).

3.3.3 Ellipsoidal Uncertainty in Discrete Distribution

By (2.47) and (3.4), in the case of the ellipsoidal uncertainty in discrete distribu-
tions, X is specified by

XE = {x : eTx = w0,x ≤ x ≤ x̄, (Y x)Tπ0

+ min
{η:eTAη=0,π0+Aη≥0,‖η‖≤1}

(Y x)TAη ≥ µ},

where Y is definied by (3.16). Probably the most difficult part to calculate is the
minimum operation in the constraints, which is formulated as the second-order
cone program

min
η∈RS
{(Y x)TAη : eTx = w0,x ≤ x ≤ x̄, eTAη = 0,π0 + Aη ≥ 0, ‖η‖ ≤ 1}

and the dual program is given by [17]

max
(σ,τ ,ν,δ)∈R×RS×RS×R

{−σ − (π0)Tτ : ν + ATτ + ATeδ = ATY x, ‖ν‖ ≤ σ, τ ≥ 0}.

Define

ΦE = {(x, δ, τ ,ν, σ) : eTx = w0,x ≤ x ≤ x̄, eδ + τ + ν) = Y x,

ν + ATτ + ATeδ = ATY x, ‖ν‖ ≤ σ,

τ ≥ 0, (Y x)Tπ0 − σ − (π0)Tτ ≥ µ}

and
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ΦE
X = {x : ∃(δ, τ ,ν, σ) such that (x, δ, τ ,ν, σ) ∈ ΦE}.

By the conic duality theory [10], we have

XE = ΦE
X . (3.19)

By (2.50) - (2.56) and (3.19), the robust portfolio selection can be written as
the following second-order cone program:

min{θ : (2.52)− (2.56) and (x, δ, τ ,ν, σ) ∈ ΦE}, (3.20)

with decision variables (x,u, γ,ω, ξ, z, ζ, θ, σ, τ ,ν, δ) ∈ Rn×RS×R×RS×RS×
R× R× R× R× RS × RS × R. The function f(x,y(k)) is specified as −xTy(k).
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4. Numerical Application

In this chapter, we present the results of numerical applications for nominal and
robust portfolio optimization problems performed via the methods proposed in
this thesis. Firstly, we apply the original CVaR approach and examine its per-
formance. Secondly, we present the results for the robust portfolio optimization
under box uncertainty in distribution and illustrate its advantage over the nominal
formulation. Finally, we consider mixture distribution. We look at the benefits as
well as the shortcomings of the robust portfolio optimization problem and present
an explicit solution of the worst-case CVaR. As we will see later, the dataset used
in the first two examples is not suitable for this numerical experiment, because
daily returns seem to follow the same distribution within the whole time hori-
zon. Therefore, in this example, we use another dataset where it makes sense to
consider several time periods. Among other things, we also demonstrate a saying
that goes “there is no such thing as a free lunch”, which means that if an investor
wants higher return he/she needs to take on lager risk.

Several important issues in the modeling, such as how to select stocks to be
included in the portfolio or transaction costs, are beyond the scope of this thesis.
However, the application and comparison of CVaR and several worst-case CVaR
approaches, which is our main goal, is not undermine.

We use the historical market data (closing stock prices in USD) collected
from Yahoo!Finance. All stocks that we work with are traded on New York
Stock Exchange (NYSE).

The numerical applications are implemented on a PC (8.00 GB RAM, CPU
2.30 GHz) and all the problems are successfully solved within 5 seconds. We use
a software environment RStudio for the computations and graphics. For solving
large-scale linear programmimg we use Rglpk package (CPLEX solver).

4.1 CVaR Approach

In this example, we consider the financial assets of ten different companies, that
are known as the companies with the top most expensive stocks as of January
2016, to construct the portfolio.

• Amazon.com, Inc. (AMZN);

• AutoZone, Inc. (AZO);

• Berkshire Hathaway Inc. (BRK-B);

• Chipotle Mexican Grill, Inc. (CMG);

• Alphabet Inc. (GOOG);

• Intuitive Surgical, Inc. (ISRG);

• Markel Corp. (MKL);

• NVR, Inc. (NVR);
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Table 4.1: Estimated means, variances, and skewness of returns
AMZN AZO BRK-B CMG GOOG

Mean (10−2) 0.1247 0.0874 0.0462 0.0810 0.0858
Variance (10−2) 0.0428 0.0129 0.0136 0.0401 0.0256
Skewness 0.5132 0.1135 0.6298 -0.5592 1.5258

ISRG MKL NVR PCLN SEB
Mean (10−2) 0.0759 0.0713 0.0802 0.1075 0.0559
Variance (10−2) 0.0393 0.0125 0.0209 0.0367 0.0526
Skewness 0.4262 -0.3550 -0.7914 -0.2748 0.2497

• The Priceline Group Inc. (PCLN);

• Seaboard Corp. (SEB).
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Figure 4.1: Daily returns of AMZN

A total of 1257 sample points of daily returns for these ten assets are collected
from January 4, 2011 to December 30, 2015. Figure 4.1 is constructed by the
sample points of daily returns of AMZN. The estimated means, variances, and
skewness of returns are listed in Table 4.1.

In this example, we assume discrete distribution of random returns with re-
alizations rik, i = 1, . . . , 10, k = 1, . . . , 1257, and probabilities 1/1257. We use
linear programmimg model (3.7) for different values of minimal required return
r0 and confidence level α. We set w0 = 1, x = (0, . . . , 0)T and x̄ = (1, . . . , 1)T .

Let rmin and rmax denote the minimum and maximum estimated means that
are equal to 0.0462 ·10−2 and 0.1247 ·10−2, respectively. Figure 4.2 illustrates the
values of optimal CVaR0.95 for different values of the required minimal expected
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Table 4.2: Comparison of CVaRs and expected returns for different values of r0

and α
CVaRα Expected return (10−2)

r0 (10−2) α = 0.90 α = 0.95 α = 0.98 α = 0.90 α = 0.95 α = 0.98
0 0.0147 0.0189 0.0247 0.0773 0.0792 0.0736
0.05 0.0147 0.0189 0.0247 0.0773 0.0792 0.0736
0.075 0.0147 0.0189 0.0247 0.0773 0.0792 0.075
0.08 0.0147 0.0189 0.0250 0.08 0.08 0.08
0.085 0.0152 0.0192 0.0253 0.085 0.085 0.085
0.09 0.0163 0.0204 0.0262 0.09 0.09 0.09
0.095 0.0178 0.0224 0.0285 0.095 0.095 0.095
0.1 0.0196 0.0249 0.0321 0.1 0.1 0.1

return r0 from interval [rmin, rmax]. Naturally, higher required minimal expected
return leads to higher associated risk. Figure 4.2 demonstrates the increasing
value of optimal CVaR0.95 for the increasing value of r0.
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Figure 4.2: Optimal values of CVaR0.95 for different values of minimal required
return r0

Table 4.2 shows the expected portfolio returns and the CVaRs of the corre-
sponding optimal portfolios for different values of r0 and α. If α ∈ {0.09, 0.95},
the constraint xT ȳ > r0 is inactive for r0 ∈ {0, 0.0005, 0.00075} and active at an
optimal solution for r0 ∈ {0.0008, 0.00085, 0.0009, 0.00095, 0.001}. If α = 0.98,
the constraint on the minimal required return becomes active for r0 = 0.00075.
We can observe that the increasing value of α leads to higher values of CVaRα.
Obviously, if the minimal required return r0 is higher than rmax, the optimization
problem has no feasible solution.
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4.2 WCVaR under Box Uncertainty

In this part, we perform market data simulation analysis for the robust portfolio
optimization problem under the box uncertainty in distribution. As Zhu and
Fukushima notice in their paper [17], a nonempty ellipsoid must contain a smaller
box, and at the same time, must be contained by a bigger box. Thus, for both
ellipsoidal and box uncertainties, we may expect that the simulation results will
be very similar to each other. To avoid duplicate statements, we consider here
only the case of box uncertainty, i.e., the linear programming model (3.18).

We use the dataset given in the previous example, where the portfolio is to
be constructed by the ten assets. We set α = 0.95, w0 = 1, x = (0, . . . , 0)T

and x̄ = (1, . . . , 1)T . The result of a robust portfolio problem depends on the
structure of the uncertainty set. Thus, a properly chosen uncertainty set is the
key to successful application. In this numerical experiment, the question is how
to choose the parameters η and η̄. In all computations, we set these paratemers
symmetrically, i.e., |η| = |η̄|, and we denote their common absolute value as
parameter η.
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Figure 4.3: Worst-case CVaRs of nominal optimal and robust optimal portfolios.

The nominal optimal portfolio is obtained by solving model (3.18) with param-
eters η = η̄ = 0. In this special case, the problem reduces to the original CVaR
minimization problem as we mentioned in the previous chapter. The worst-case
CVaR of the nominal optimal portfolio is obtained from model (3.18) by setting
fixed values of x =“nominal optimal portfolio”.

For both nominal optimal and robust optimal portfolios, we compute the
worst-case CVaR for different values of η, and the fixed value of r0 = −0.05.
Figure 4.3, which illustrates a part of these numerical results, shows that the
worst-case CVaR grows as the uncertainty grows. The most important observa-
tion is that the gap between the two curves in Figure 4.3 becomes larger as the
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Table 4.3: Worst-case CVaR of nominal optimal and robust optimal portfolios
for different values of η and r0.

η
0.00001 0.00002 0.00003

r0 (10−2) Robust Nominal Robust Nominal Robust Nominal
0 0.019040 0.019004 0.019116 0.019114 0.019181 0.019188
0.05 0.019040 0.019004 0.019116 0.019114 0.019281 0.019188
0.075 0.019613 — 0.021850 — — —
0.08 0.020101 — 0.025927 — — —
0.085 0.022205 — 0.033132 — — —
0.09 0.025310 — — — — —
0.095 0.029380 — — — — —
0.1 0.034718 — — — — —

Table 4.4: Out-of-sample total return of nominal optimal and robust optimal
portfolios for different values of η and r0.

η
0 0.00001 0.00002

r0 (10−2) Robust Nominal Robust Nominal
0 0.09046 0.09051 0.09046 0.09154 0.09046
0.05 0.09046 0.09051 0.09046 0.09154 0.09046
0.075 0.09046 0.08427 — 0.09854 —
0.08 0.08593 0.09581 — 0.11056 —
0.085 0.09188 0.10280 — 0.11881 —
0.09 0.09013 0.11042 — — —
0.095 0.10147 0.11174 — — —
0.1 0.10999 0.12195 — — —

uncertainty grows, which demonstrates the advantage of the robust optimization
formulation.

Table 4.3 shows the results corresponding to several values of r0 and η. Those
results indicate that the portfolio problem becomes infeasible when r0 or η in-
creases to a certain value. For example, the nominal optimal portfolio obtained
by solving (3.18) with η = 0 and r0 = 0.00075 is infeasible to (3.18) with
η = 0.00001, although problem (3.18) with η = 0.00001 itself is feasible. For
both nominal optimal and robust optimal portfolios, the values of the worst-case
CVaRs for η = 0 are equal to the values of CVaR0.95 from the previous example.
The corresponding values are listed in Table 4.2.

For out-of-sample analysis we use 124 sample points from January 4, 2016
to Jun 30, 2016. The total returns for different values of η and r0 are listed in
Table 4.4. We can observe that the robust approach leads to higher returns than
nominal approach and CVaR approach (η = 0).
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Table 4.5: Estimated means, variances, and skewness of returns in different peri-
ods.

Mean (10−2) Variance (10−2) Skewness
Period 1 Period 2 Period 1 Period 2 Period 1 Period 2

MGT -0.0343 0.1486 0.0560 1.0291 1.4056 1.5693
ZION -0.0393 0.4640 0.0220 1.1760 -0.0955 1.4979
MAC 0.1135 0.1716 0.0694 1.0251 11.2359 1.5782
MKL 0.0304 0.0383 0.0151 0.0935 0.0529 0.1863
MS -0.0295 0.0965 0.0351 0.3363 -0.7099 4.3789

4.3 WCVaR under Mixture Distribution

The financial crisis 2008 had an impact on global stock markets, where securities
suffered large losses during 2008 and early 2009. As we know, stock prices are
volatile and can change extremely every day as a result of market forces. In this
numerical experiment, we focus on companies that experienced several significant
“ups and downs” in 2008 and 2009, and their stock prices have stayed unstable
even after the active phase of the crisis. Nowadays, most of this companies are
known as suitable for investors who prefer higher risk.

We consider the financial assets of the following five companies:

• MGT Capital Investments, Inc. (MGT);

• Zions Bancorporation (ZBK);

• The Macerich Company (MAC);

• Markel Corp. (MKL);

• Morgan Stanley (MS).

A total of 1600 sample points of daily returns for these assets are collected from
January 4, 2005 to May 11, 2011. Figure 4.4 is constructed by the sample points
of daily returns of MGT. We may observe that the distributions of returns vary
before and after March 2008. The daily returns of the other four assets behave
similarly. Due to this observation, we divide the whole time horizon into the
following two subintervals, where each time period includes 800 sample points:

• Period 1: January 4, 2005 - March 6, 2008;

• Period 2: March 7, 2008 - May 9, 2011.

The estimated means, variances, and skewness of returns corresponding to
different time periods are listed in Table 4.5. As we can see, the estimation of the
statistical parameters is not stable. The Shapiro-Wilk test of normality rejected
the null hypothesis that daily returns are normally distributed. Due to this fact
we use a non-parametric test to detect significant differences in behaviour across
the periods. More specifically, Friedman test shows that there exist remarkable
difference in the distributions of returns between the two time periods for MGT,
ZBK and MAC, whereas there is no significant difference for MKL and MS.
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Figure 4.4: Daily returns of MGT

The original CVaR is usually used as a risk measure when the underlying
assumption that the probability distribution is precisly known to be nominal one
is met. In our example, where it is questionable to consider that all the samples
are generated by an identical nominal probability distribution, it makes sense to
assume a mixture distribution and perform the worst-case CVaR minimization.

According to the previous discussion, we consider the mixture distribution of
two likelihood distributions and we assume that the sample points within each
time period are generated by the corresponding likelihood distribution. We use
setting α = 0.95, w0 = 1, x = (0, 0, 0, 0, 0)T and x̄ = (1, 1, 1, 1, 1)T .

In the special case, when l = 1, the problem (3.15) reduces to the original
CVaR minimization problem. Thus, numerical experiments for the nominal port-
folio optimization problem can be also performed via the linear programming
model (3.7). In this numerical experiment, both nominal and robust portfolio
optimization problems are performed via the model (3.15), where we set a corre-
sponding parameter l. In the computation of the nominal portfolio optimization
problem, we consider l = 1 and S1 = 1600, i.e., all the sample points are used
in the model and we assume that they are generated by one nominal probability
distribution. In the computation of the robust portfolio optimization problem,
we set l = 2 and S1 = S2 = 800, and we assume that the sample points within
each time period are generated by the corresponding likelihood distribution.

We set different values of the minimal required return r0. Table 4.6 shows the
worst-case CVaRs at confidence level 0.95 of the corresponding optimal portfolios
for each time period. The expected return of the corresponding optimal portfolios
in different time periods are listed in Table 4.7.

We note that for the same value of r0, the risk of the robust optimal portfolio
optimization policy is larger than the risk of the nominal optimal portfolio policy.
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Table 4.6: Comparison of associated risk of nominal optimal and robust optimal
portfolios.

WCVaR0.95

r0 (10−2) Nominal (l=1) Robust (l=2)
0 0.0469 0.0614
0.05 0.0469 0.0687
0.06 0.0470 0.0794
0.07 0.0484 0.0986
0.08 0.0509 0.1197
0.09 0.0542 0.1426
0.1 0.0588 0.1664
0.15 0.0902 —
0.2 0.1383 —

Table 4.7: Comparison of expected return of nominal optimal and robust optimal
portfolios.

Expected return (10−2)
r0 (10−2) Nominal Robust

Period 1 Period 2 Period 1 Period 2
0 0.0236 0.0897 0.0248 0.0983
0.05 0.0236 0.0897 0.05 0.0708
0.06 0.0236 0.0964 0.06 0.0833
0.07 0.0246 0.1154 0.07 0.0990
0.08 0.0269 0.1331 0.08 0.1148
0.09 0.0266 0.1534 0.09 0.1305
0.10 0.0250 0.1750 0.10 0.1462
0.15 0.0159 0.2840 — —
0.20 -0.0139 0.4137 — —

The difference between associated risk of nominal optimal and robust optimal
portfolios becomes more significant with increasing value of r0.

In our example, the constraint E nominal(x
Ty) ≥ r0 in the nominal portfolio

optimization problem is inactive at an optimal solution for r0 ∈ {0, 0.0005}, and
it becomes active for r0 ∈ {0.0006, 0.0007, 0.0008, 0.0009, 0.001, 0.0015, 0.002}. In
the robust portfolio optimization problem, the constraint min

p(·)∈P
E p(x

Ty) ≥ r0

is inactive for each selected r0. For r0 ∈ {0.0015, 0.002}, the robust portfo-
lio optimization problem is infeasible. According to the constraints (3.14), i.e.,
xT ȳi ≥ r0, i = 1, . . . , l, the robust optimal portfolio policy always guarantees the
minimal required return r0 for each time period. As the maximum in the Period
1 is equal to 0.001135, the condition (3.14) for l = 2 and r0 ∈ {0.0015, 0.002} is
violated for an arbitrary portfolio. This results in infeasibility of robust portfolio
optimization problem for any r0 > 0.001135.

The means and variances computed by the total 1600 sample points for dif-
ferent values of r0 are listed in Table 4.8. In any case, the mean and variance
of the robust optimal portfolios are both larger than those of the nominal opti-
mal portfolios. This observation suggests that robust optimal portfolios can be
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Table 4.8: Mean and variance of nominal optimal and robust optimal portfolios
(1600 sample points)

Nominal portfolio Robust portfolio
r0 (10−2) Mean (10−2) Variance (10−2) Mean (10−2) Variance (10−2)
0 0.0566 0.0436 0.0616 0.0443
0.05 0.0566 0.0436 0.0604 0.0617
0.06 0.06 0.0439 0.0717 0.0903
0.07 0.07 0.0467 0.0845 0.1374
0.08 0.08 0.0529 0.0974 0.2021
0.09 0.09 0.0620 0.1102 0.2844
0.1 0.10 0.0739 0.1231 0.3843

Table 4.9: Weights of the assets in the optimal portfolio
Asset MGT ZION MAC MKL MS
Weight 0.0774 0.0602 0.0828 0.7855 -0.00598

more agressive than the nominal optimal portfolios for the same r0. In general,
an aggressive investment strategy emphasizes capital appreciation as a primary
investment goal, rather than safety of capital.

Furthermore, we find that in the sense of worst-case trade-off, the nominal
optimal policy generated by setting r0 = 0.002 is dominated by the robust optimal
policy generated by setting r0 = 0.0005 because we have 0.0005 > −0.01390 for
the expected returns and 0.0687 < 0.1383 for the associated risks. This fact
together with Table 4.8 proposes that the worst-case requirement in the robust
portfolio formulation does not influence the average performance of the portfolio
substantially.

In this example, we also present an explicit solution of the robust portfolio
model. The corresponding covariance matrix Γ is positive semidefinite, which
means that the robust portfolio problem with CVaR0.95 as a risk measure can be
solved explicitly. Using Theorem 12, the solution of υ(RCα) is equal to 0.0899
and the expected return of the optimal portfolio in Period 1 and Period 2 is equal
to 0.000284 and 0.00082, respectively. In comparison with the previous nominal
approach, the value of WCVaR0.95 is significantly lower for the cases where the
value of expected return for the whole time horizon is approximatelly equal to
0.00005.

In the case of the explicit approach, the weights of the optimal portfolio are
listed in Table 4.9. As we can see, short-selling is allowed and used in this
investment strategy.
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Conclusion

This thesis studies different robust methods in portfolio theory. We introduced
several robust approaches and formulated the corresponding portfolio optimiza-
tion problems. We investigated the problem of minimizing the worst-case CVaR
associated with mixture distribution uncertainty, box uncertainty, and ellipsoidal
uncertainty in the distributions. In the case of mixture distribution, the proposed
approximation produces a linear program. In the case of discrete distribution, we
must deal with the max operation involved in the constraints. Using the linear
and conic duality theory, under box uncertainty and ellipsoidal uncertainty in
distributions, the problem can be cast as a linear and a second-order cone pro-
gram, respectively. To complete the formulation of the robust portfolio selection
model, we specified the corresponding constraint sets.

In the last chapter, we presented the results of numerical applications. Firstly,
we applied the original CVaR approach. We showed that the higher required
minimal expected return leads to higher associated risk. The associated risk also
grows with the increasing value of the confidence level α.

Secondly, we considered the problem of minimizing the worst-case CVaR as-
sociated with box uncertainty in the distributions. We note again that a suitable
specification of the uncertainty set is the key for successful practical application.
We illustrated that the worst-case CVaR grows as the uncertainty grows. We
observed that the difference between the robust and the corresponding nominal
results becomes larger as the uncertainty grows. This observation demonstrates
the advantage of the robust optimization formulation. In comparison with the
original CVaR approach, our numerical examples indicates that the portfolio se-
lection model based on the WCVaR performs robustly in practice.

The last numerical example tests the performance of the worst-case CVaR
associated with mixture distribution uncertainty. We demonstrated that the
worst-case requirement in the robust portfolio formulation does not influence
the average performance of the portfolio considerably. Finally, we presented the
comparison with an explicit solution of the robust portfolio model, which pro-
posed the worst-case CVaR associated with mixture distribution uncertainty to
be more suitable approach in the sense of return-risk trade-off.

Recently, a few researchers have paid more attention to general deviation mea-
sures that were introduced as an extension of standard deviation. An important
deviation used in financial optimization, derived from CVaR, is CVaR deviation.
Investigation of the worst-case CVaR deviation associated with different types of
uncertainty and formulation of the corresponding portfolio optimization problems
is left for further investigation.
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