
MASTER THESIS

Juraj Citoŕık

Predicting targets in Multiple Object
Tracking task

Department of Software and Computer Science Education

Supervisor of the master thesis: Mgr. Filip Děchtěrenko

Study programme: Computer Science

Study branch: Theoretical Computer Science

Prague 2016

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

Title: Predicting targets in Multiple Object Tracking task

Author: Juraj Citoŕık

Department: Department of Software and Computer Science Education

Supervisor: Mgr. Filip Děchtěrenko, Department of Software and Computer
Science Education

Abstract: The aim of this thesis is to predict targets in a Multiple Object Tracking
(MOT) task, in which subjects track multiple moving objects. We processed and
analyzed data containing object and gaze position information from 1148 MOT
trials completed by 20 subjects. We extracted multiple features from the raw
data and designed a machine learning approach for the prediction of targets using
neural networks and hidden Markov models. We assessed the performance of the
models and features. The results of our experiments show that it is possible to
train a machine learning model to predict targets with very high accuracy.

Keywords: Multiple Object Tracking,machine learning,eye movements

ii

None of this would be possible without the support of my family. Thank you. I
would also like to thank my thesis supervisor Mgr. Filip Děchtěrenko for incessant
encouragement, support and insightful advice. Last but not least, I would like
to extend my gratitude to Samuel Bartoš and Lukáš Polák for helping me push
through all the setbacks I have encountered in the process of researching and
writing this thesis.

iii

Contents

Introduction 3

1 Attention and eye tracking 4
1.1 Eye tracking . 4

1.1.1 Types of eye movements 4
1.1.2 Visual angle . 4

1.2 Models of visual attention . 5
1.3 Multiple Object Tracking . 5

1.3.1 Properties of the MOT task 6
1.3.2 Models of eye movements in MOT 6

2 Machine Learning 8
2.1 Cluster analysis . 8

2.1.1 Silhouette plot . 8
2.2 Neural networks . 9

2.2.1 Perceptron . 9
2.2.2 Artificial neural networks 10
2.2.3 Training . 11
2.2.4 Gradient descent . 12
2.2.5 Backpropagation . 12
2.2.6 Regularization and cross-entropy cost function 14

2.3 Hidden Markov models . 14
2.3.1 Markov chains . 15
2.3.2 Hidden Markov models . 15
2.3.3 The evaluation problem 16
2.3.4 The training problem . 16

3 Methods 19
3.1 Data . 19

3.1.1 Eye movement data . 19
3.1.2 Dot trajectory data . 19
3.1.3 Merging eye movement and track data 19
3.1.4 Basic properties . 21
3.1.5 Cluster analysis . 21
3.1.6 Distance covered by gaze 23
3.1.7 Average distance of the gaze from targets 23
3.1.8 Consistency of eye movements in repeated trials 25
3.1.9 Distance of the gaze to targets and distractors 25

3.2 Models . 25
3.2.1 Data preprocessing . 25
3.2.2 Evaluation . 27
3.2.3 Hidden Markov models . 27
3.2.4 Neural networks . 28
3.2.5 A simple model . 29

1

4 Results 30
4.1 Simple model . 30
4.2 Hidden Markov Models . 30

4.2.1 One-subject dataset performance 30
4.2.2 Two-subject dataset performance 30

4.3 Neural Networks . 30
4.3.1 One-subject dataset performance 30
4.3.2 Two-subject dataset performance 33

5 Discussion 36
5.1 Simple model . 36
5.2 Hidden Markov models . 36
5.3 Neural networks . 36
5.4 Other models . 36

Conclusion 37

Bibliography 38

List of Figures 41

List of Tables 42

List of Abbreviations 43

Attachment 1 — Source code description and data 44

2

Introduction

In our everyday lives, we have to deal with a vast amount of information. At-
tention is a mechanism that helps us prioritize the most useful information in a
given situation. The invention of eye tracking devices which enable us to track
the position of a person’s gaze has allowed us to study the connection between
eye movements and visual attention. One task which is very suitable for the
examination of visual attention mechanisms is Multiple Object Tracking (MOT)
introduced by Pylyshyn and Storm [1988]. In a MOT trial, participants are
tasked with the tracking of a subset of moving objects presented on a display.
The tracked objects are called targets and the remaining objects are called dis-
tractors.
Pylyshyn and Storm [1988] presented evidence of a parallel tracking mechanism,
indicating that people can divide their attention among multiple tracked ob-
jects. Multiple models for eye movement prediction in MOT have been suggested
(Lukavsky [2013]). On the other hand, the inverse task of inferring the targets
from the movements of the objects and the gaze has not yet been tackled.
We analyzed data from 1148 MOT trials completed by 20 participants. The data
contained information about the movements of the targets, distractors and the
gaze in MOT trials. First we examined the relationship between the position
of the gaze and the position of targets and distractors. Then we attempted to
utilize machine learning models to identify targets in the trials. We evaluated
and compared the performance of neural networks and hidden Markov models.
The results of our experiments are encouraging and suggest that eye movements
in MOT task convey significant amount of information about the targets.

3

1. Attention and eye tracking

Attention is our ability to selectively focus on and process the large amount
of information we are confronted with, prioritizing some aspects of the visual
scene over others (Carrasco [2011]). The relationship between attention and eye
movements is one of partial mutual dependence. Attention is free to move inde-
pendent of the eyes (Posner [1980]), but eye movements need visual attention to
guide them to the goal (Hoffman [1998]).

1.1 Eye tracking

The emergence of eye trackers, devices which allow us to determine where a person
directs their gaze, enabled us to analyze and model visual attention. There are
three types of eye trackers (Rayner [1998]):

• Eye-attached eye trackers - a special contact lens is attached to the eye,
allowing very precise measurement of eye movements.

• Optical eye trackers - eye movements are tracked using video cameras or
other optical devices. The gaze coordinates are computed from the center
of the pupil and corneal reflection. This type of eye tracking device is very
common.

• Electric potential eye trackers - electrodes are placed around the eye and
electric potential, which changes as the eye moves, is measured and trans-
lated into coordinates.

1.1.1 Types of eye movements

Saccades are rapid movements of the eyes. Between saccades, our eyes remain
relatively still during what we call fixations. During a saccade, we do not obtain
any new information due to the speed of the eye movement (Rayner [1998]).
When a person follows a slowly moving object, they perform smooth pursuit eye
movements.

1.1.2 Visual angle

The size of the image projected on the retina is determined by the size of the
object and the distance of the object from the eye. This causes ambiguity if we
use the real size of an object, because the image of two objects of a different
size can have the same size on the retina. For instance, the retina image size of
two different objects is the same, if one is double the size of the other and its
distance from the eye is also double the distance of the other object. To avoid
this problem, a measure called visual angle capturing the ratio between object’s
size and distance has been defined in the study of visual perception. It can be
computed as follows:

α = 2 arctan
s

2d

4

Figure 1.1: Multiple object tracking task

where s is the real size of the object, d the distance from the eye and α is its
angular size.

1.2 Models of visual attention

For a static scene, several computational models of attention have been proposed.
Saliency maps are one such model, which encodes stimulus conspicuity, or saliency
at every location in the visual scene (Itti and Koch [2001]). Najemnik and Geisler
[2005] have designed an ideal bayesian observer that gains the most information
for the purpose of target finding in a target search task and compared it with the
performance of humans.

Multiple Object Tracking (MOT), is an experimental technique introduced by
Pylyshyn and Storm [1988], designed to study how our visual attention system
tracks multiple moving objects. In a MOT task (Figure 1.1), the subject is
presented with a display containing n points, out of which k are marked briefly.
These are called targets. The remaining points are distractors. The marking is
removed and the points start moving for 6–10 seconds. Afterwards the subject is
asked to select the previously marked targets. Typically, n = 8 points with k = 4
targets are presented in a MOT trial.

The advantage of MOT is that it occurs in everyday life, for instance when we
drive through an intersection, noting the locations of other nearby moving cars,
or when playing team sports. An area where high MOT performance is crucial is
flight traffic control.

1.3 Multiple Object Tracking

Since the introduction of MOT, multiple tracking mechanism models have been
suggested, the main question being whether the tracking mechanism is sequential
or parallel. The most popular models are (Cavanagh and Alvarez [2005]):

• Grouping model - all the targets are grouped into one higher order object
with each target a vertex in a virtual polygon. This whole shape is then
tracked as one object.

• Switching model - includes only one focus of attention that cycles through
the targets, remembering their locations and returning to each before it gets

5

lost.

• Multifocal attention model - assumes that each target attracts a dedicated
focus of attention and these follow the targets through the trial. Pylyshyn
and Storm [1988] provides evidence for such a parallel tracking mechanism.

1.3.1 Properties of the MOT task

Experiments have suggested the following properties of MOT:

• the mean tracking capacity of trials lasting 5 seconds was 4 (Oksama and
Hyönä [2004])

• tracking becomes impossible for displays spanning less than about 1/16th of
a degree, even though the dots are clearly seen (Intriligator and Cavanagh
[2001])

• accurate tracking of even one target moving on a circular path breaks down
for speed greater than 1 to 2 revolutions per second (Verstraten et al. [2000])

• the basic unit of tracking is the dot. Subjects were unable to track targets
once they were connected with a distractor, forming bar shaped objects
Scholl et al. [2001]

• eye movement patterns are consistent for repeated trials with different num-
ber of distractors Dechterenko and Lukavsky [2014]

1.3.2 Models of eye movements in MOT

An intriguing question is, whether it is possible to predict where a person will
look during a MOT trial. Revealing a formula for the prediction of the gaze
position in MOT could provide us with valuable insights into the inner workings
of the underlying tracking mechanism.

Zelinsky and Neider [2008] used trials with 9 animated shark models with 1–4
sharks marked as targets for tracking to analyze eye fixations during a MOT trial.
They discovered that the tracking strategy depended on the number of targets.
For one target, the subjects fixated the target. For two and three targets, they
fixated the centroid of the polygon formed by the targets. When tracking four
targets, the subjects switched between fixating on the targets and the centroid.

Experiments run by Fehd and Seiffert [2008] also support the finding that
people fixate their gaze on the centroid when tracking more than two objects.

Landry et al. [2001] found out in their airplane tracking experiment that
people tend to more often fixate their gaze on planes that are about to collide
with another plane.

Lukavsky [2013] evaluated the following strategies and examined how well
they predict the actual eye movement data from MOT trials:

• Constant strategy - a person looks at the center of the display.

• All-points centroid strategy - the distance to all points is minimized

• Target-centroid strategy - the distance to targets is minimized

6

• Object-centroid strategy - centroid of a planar object formed by the targets
is followed by the gaze

• Anticrowding strategy - between the distance of target from the gaze point
and distance from every distractor

Centroid strategy and its variants explained between 48.8%—54.3% of eye move-
ments, whereas other people’s eye movements explained 68.6%. This means that
more sophisticated models are necessary to fully explain the eye movements in
MOT.

Dechterenko and Lukavsky [2016] trained neural networks to predict the posi-
tion of the gaze in MOT with results better than those of other current strategies.
These findings serve as an incentive to apply machine learning techniques to other
problems related to MOT as well.

Zelinsky et al. [2013] presented an approach to infer whether a person’s task
was to search for a bear or for a butterfly in a static display, based on the person’s
fixations during the search. He used support vector machines and compared their
accuracy with the performance of humans.

Naturally the question arises, whether we can also use machine learning mod-
els to predict targets in the dynamic Multiple Object Tracking task. The aim of
this thesis is to design a solution to this problem using machine learning models.
We will predict targets in MOT trials with 4 targets and 4 distractors.

7

2. Machine Learning

In this chapter we describe the techniques and models that we used for the analysis
of the data and the prediction of targets in Multiple Object Tracking.

Machine learning is a subfield of computer science that studies algorithms
which enable computers to learn to solve problems without being explicitly pro-
grammed. These algorithms learn from data. There are two main types of ma-
chine learning:

• supervised learning - the algorithm learns from examples presented together
with the desired answer

• unsupervised learning - the algorithm attempts to find hidden structure in
the data, for example by applying cluster analysis

The part of data used for the training of a model is called a training set. To
verify how well a model performs on inputs not seen during training, we use a
small part of the dataset as a testing set.

2.1 Cluster analysis

Cluster analysis aims to divide a set of objects into groups in such a way that
objects in the same group, called a cluster, are more similar to each other than
to objects in other clusters.

2.1.1 Silhouette plot

While it is straightforward to evaluate clustering of two or three-dimensional data
by simply plotting it, plotting a clustering of high-dimensional data in a format
that is easy to interpret by humans is difficult. We would like to get a clustering
of the data such that all objects within a group are close to each other and
the groups themselves are clearly separated and far from each other. Rousseeuw
[1987] introduced silhouette plot as a means of evaluating the quality of clustering
for high-dimensional data. A silhouette plot of a clustering of some data can be
obtained as follows: The input is:

• a clustering, i.e. a grouping of the analyzed objects (data rows)

• the distances between the objects, e.g. euclidean distance

For each object i in the data set and the group A to which it has been assigned
we define

a(i) =

∑
x∈A,x 6=i d(i, x)

|A| − 1

i.e. the average distance of i to other elements in A. For some other cluster C,
different from A, let us define

d(i, C) =

∑
c∈C d(i, c)

|C|

8

which is the average distance of i to all the elements in C. Moreover, we define

b(i) = min
C 6=A

d(i, C)

We call the cluster B for which b(i) = d(i, B) the neighbor of object i. We finally
define

s(i) =

1− a(i)/b(i), if a(i) < b(i)

0, if a(i) = b(i)

b(i)/a(i)− 1 if a(i) < b(i)

For s(i) it holds that −1 ≤ s(i) ≤ 1 for all objects i. In case there is only one
object in the cluster of i, we set s(i) = 0.

The interpretation of s(i) is very straightforward, it measures how well object
i matches the analyzed clustering:

• if s(i) is close to 1, it means that the average within-cluster distance is
much lower than the average distance to the objects of the closest neighbor
cluster. This indicates that the cluster to which i has been assigned is very
appropriate.

• if s(i) is close to 0, it is not clear whether i should have been assigned to
its current cluster or to its closest neighbor.

• if s(i) is close to -1, the elements of the nearest neighbor cluster are much
closer than the elements in the cluster of i, indicating that the object should
probably have been assigned to the neighbor cluster.

We can now use the computed s(i) values to create a silhouette plot. The silhouette
of cluster A is a plot with the s(i) values on the horizontal axis, ordered in
decreasing order, for all i ∈ A. The horizontal axis corresponds to the cluster size.
We print the silhouettes of all the clusters below each other. A wide silhouette
with positive values indicates a good clustering. Figure 2.1 displays an example
of a silhouette plot. The wide silhouette of the third cluster indicates that it is
very compact and well separated from the other two clusters.

2.2 Neural networks

Neural nets are machine learning models, inspired by networks of neurons in the
human brain, which learn in a supervised fashion.

2.2.1 Perceptron

Rosenblatt [1958] introduced a simple binary classifier called perceptron. It con-
sists of n inputs and one binary output. A perceptron is characterized by a set
of weights w = [w1 . . . wn] and a threshold. For an input vector x = [x1 . . . xn] the
output f(x) of the perceptron is defined as:

f(x) =

{
1, if w · x > threshold

0 else

9

Figure 2.1: A silhouette plot with a well-separated, compact cluster

Perceptron is a simple model with limited capabilities. Even though Minsky
and Papert [1988] showed that the perceptron cannot learn the XOR operation,
researchers later found out that a network of interconnected perceptrons has much
broader capabilities.

2.2.2 Artificial neural networks

A multilayer perceptron network is a machine learning model consisting of per-
ceptrons divided into layers. We call the perceptrons neurons. Figure 2.2 shows
the layout of such a network. The first layer is the input layer and the last layer
the output layer. The layers between them are called the hidden layers. Each
neuron in a layer is connected with all the neurons in the next layer, the output
of the previous layer serving as the input of the next layer. The neurons within
a layer are not connected with each other. The connections are weighted and the
weights are adjusted during the process of learning to accommodate the presented
training samples. We introduce a bias b = −threshold to get an easier notation
for the output of a neuron:

f(x) =

{
1, if w · x+ b > 0

0 if w · x+ b ≤ 0

This function is a step function and is plotted in Figure 2.3. Its disadvantage
is that small changes in the weights can lead to a large change in the output.
This is not desirable during training, as it makes the fine-tuning of the weights
difficult. We remedy this by introducing a sigmoid neuron, which utilizes the

10

Figure 2.2: A layout of a multilayer perceptron network

Figure 2.3: Step and sigmoid neuron output function

sigmoid function σ (Figure 2.3):

σ(z) =
1

1 + e−z

The output of the sigmoid neuron can then be defined as

f(x) = σ(w · x+ b)

2.2.3 Training

Let x = [x1 . . . xn] denote an input vector and y(x) the desired output for x. To
assess the performance of our neural network, we define a quadratic cost function,
also called mean squared error, which we try to minimize:

C(w, b) =
1

2n

∑
x

‖y(x)− f(x)‖2

where w and b denote the set of all the network weights and the set of biases,
respectively, n is the number of training samples and f(x) the actual output of
the net for input x.

11

2.2.4 Gradient descent

In order to minimize the cost we need to know how it is influenced by the changing
of the weights and the biases, which are the parameters of the neural net model.
For clarity, we label all these parameters as wi in this section. Formally, for
a vector of parameters w = [w1 . . . wn] we want to know what changes ∆w =
[∆w1 . . .∆wn] to apply so that the cost C decreases, i.e. ∆C < 0. Defining the

gradient of C as ∇C = (∂C
∂w1

. . . ∂C
∂wn

)
T

we can write:

∆C ≈ ∇C ·∆w

To make ∆C negative, i.e. to decrease the cost we can choose

∆w = −λ∇C

for a small λ > 0, called the learning rate. The cost decreases (∆C < 0) because
∆C ≈ −λ∇C · ∇C = −λ‖∇C‖2. In this way, by changing weights and biases w
to w′ by setting

w′ = w − λ∇C
we can lower the cost.

Our definition of the cost function requires that we compute the cost for each
sample in the training set. This is not feasible for large datasets. We will estimate
the true cost by randomly choosing a subset of samples from the training dataset
and computing the cost for this subset. We call this subset a mini-batch. For
a mini-batch {x1 . . . xm} of size m, weight wk and bias bl we have the following
rules for updating weights and biases during learning:

w′k = wk −
λ

m

m∑
j=1

∂Cxj

∂wk

b′l = bl −
λ

m

m∑
j=1

∂Cxj

∂bl

The remaining question is how to compute the gradient of the cost function
efficiently.

2.2.5 Backpropagation

Rumelhart et al. [1986] introduced the backpropagation algorithm, which utilizes
the error made by the neural network during training to update weights and
biases in a way which reduces the cost. We describe the algorithm in this section.

First, we extend our notation so that we can clearly refer to specific weights
in the network. In a network with L layers, layer 1 is the input layer, layers
2 . . . L − 1 are the hidden layers and layer L is the output layer. We use wl

jk

to refer to the weight between the kth neuron in the (l − 1)th layer and the jth

neuron in the lth layer. Similarly, blj and alj denote the bias and the activation of
the jth neuron in the lth layer, respectively. Using this notation, we can write the
activation alj as

alj = σ

(∑
k

wl
jka

l−1
k + blj

)

12

where the sum is over all the neurons in the (l − 1)th layer. If we use matrix
notation, we can refer to al as the vector of activations of all the neurons in the
lth layer:

al = σ(wlal−1 + bl)

We call zl = wlal−1 + bl the weighted input of the neurons in layer l.
Using the weighted input zlj of jth neuron in layer l we define the error δlj of

neuron j in layer l as follows:

δlj =
∂C

∂zlj

Using this quantity, we can obtain the error δL for all the output neurons in
output layer L:

δLj =
∂C

∂aLj
σ′(zLj)

written in matrix form:
δL = ∇aC � σ′(zL)

where ∇aC is a vector of partial derivatives ∂C/∂aLj and � denotes elementwise

multiplication. Since for quadratic cost C = 1
2

∑
j (yj − aj)2 is ∂C/∂aLj = (aj −

yj), we have ∇aC = (aL − y) and as a result we can write

δL = (aL − y)� σ′(zL)

Using the error terms of the output layer, we can gradually compute the error
terms for the preceding layers:

δl = ((wl+1)
T
δl+1)� σ′(zl)

In this way the error obtained in later layers propagates back through the network.
Once we have computed the error term for all the layers, we can finally compute
the rate of change for the cost function with respect to weights and biases

∂C

∂blj
= δlj

∂C

∂wl
jk

= al−1k δlj

For proofs of the above equations, see Nielsen [2015].
Using the backpropagation algorithm described above, we can now describe

the training procedure for a neural net using a mini-batch of size m to estimate
the cost function. We iterate through the training set, choosing mini-batches
until there are no samples left in the training set. Once all samples have been
trained on in this way, a training epoch is completed. Training usually entails
many epochs, i.e. each sample is presented multiple times during the training of
the net.

1. Pick a mini-batch {x1, . . . , xm} from the training set

2. Present each input xi to the neural network:

13

• For each layer l compute zl = wlal−1 + bl and al = σ(zl)

• Compute the output layer error δL = ∇aC � σ′(zL)

• Propagate the error back through the network for l ∈ {L − 1, . . . , 2}
by computing δl = ((wl+1)

T
δl+1)� σ′(zl)

• Obtain the gradient of the cost function:
∂Cxi

∂blj
= δlj and

∂Cxi

∂wl
jk

= al−1k δlj

3. Update the weights and biases using the cost estimated from the batch:

w′k = wk −
λ

m

m∑
j=1

∂Cxj

∂wk

b′l = bl −
λ

m

m∑
j=1

∂Cxj

∂bl

4. If there are training samples left, go to Step 1. If the cost is sufficiently low
or the number of training epoch has been reached, terminate, else continue
with a new epoch.

2.2.6 Regularization and cross-entropy cost function

To improve the speed at which the network learns, we can use cross-entropy cost
function instead of the quadratic cost function (Nielsen [2015]). The cross-entropy
cost function is defined as follows:

C = − 1

n

∑
x

[y log a+ (1− y) log(1− a)]

Another way of improving the learning of a network is regularization. This tech-
nique prevents the weights of the network from becoming too large. This is
desirable, because the larger a weight is, the less likely it is that it is ever going
to change significantly in the process of learning, since the learning algorithm
only makes small changes to the weights. The way regularization is implemented
is by adding a new term to the cost function:

C = − 1

n

∑
x

[y log a+ (1− y) log(1− a)] +
α

2n

∑
w

w2

where w are the weights, a is the actual output of the network and y is the desired
output. α determines how large the penalization for large weights is. This new
cost function only necessitates small changes in our weight update procedure,
detailed description can be found in Nielsen [2015].

2.3 Hidden Markov models

Hidden Markov models have been used successfully in many areas, especially
speech recognition and signal processing. In our experiments, we will use them
for sequence classification.

14

2.3.1 Markov chains

A Markov chain is a sequence of random variables X1 . . . Xn, which satisfies the
Markov property :

P (Xn = x | Xn−1 = xn−1, . . . X1 = x1) = P (Xn = x | Xn−1 = xn−1)

The set of possible values of Xi has to be a countable set and is called the state
space of the chain. A Markov chain essentially describes a system that changes
its state at regular time intervals. It is characterized by a transition matrix A,
where aij = P (Xn = j | Xn−1 = i) and by initial state probabilities P (X1 = s) for
each state s. A Markov chain is time-homogeneous if the transition probabilities
in are independent of n.

2.3.2 Hidden Markov models

In a Markov model each state corresponds to an observable event and is thus fully
observable. In a Hidden Markov model (HMM) the observation also depends on
the current state, but this state is unknown to the observer. For example, a
person hidden behind a curtain tosses either a fair or a biased coin and reports
the results of the toss. All we can observe are the reported values, but we do
not know whether these were produced by the fair or by the biased coin. We can
model this scenario using a HMM with 2 hidden states, one for each coin and 2
output symbols, one for head and one for tail.

A Hidden Markov model is characterized by the following (Rabiner [1989]):

1. N , the number of hidden states. We denote the set of all states as S =
{S1, S2, . . . , SN} and state at time t as qt.

2. M , the number of output symbols. We denote the set of all the output
symbols as V = {v1, v2 . . . , vM}.

3. A = {aij}, the state transition probability distribution, where
aij = P (qt+1 = Sj | qt = Si) for 1 ≤ i, j ≤ N

4. B = {bj(k)}, the observation symbol probability in state j, where bj(k) =
P (vk | qt = Sj) for 1 ≤ j ≤ N, 1 ≤ k ≤M

5. π = {πi}, the initial state distribution, where πi = P (q1 = Sj) for 1 ≤ j ≤
N

Given the values of N,M,A,B and π the HMM can generate a sequence of ob-
servations O = O1, . . . OT as follows:

1. Choose an initial state q1 based on π and set t = 1.

2. Choose output symbol Ot according to the observation symbol probability
distribution for state qt specified in B.

3. Change the state to qt+1 according to qt and the probabilities in A.

4. Increase t = t+ 1 and return to step 2 if t < T , otherwise return O.

15

There are multiple questions we can ask about a HMM:

1. Given the observation sequence O = O1, . . . OT and a HMM λ = (A,B, π),
what is the probability that the sequence O has been produced by λ? This
is called the evaluation problem.

2. Given the observation sequence O = O1, . . . OT and a HMM λ, how do we
find the corresponding sequence of states that best explains the observed
sequence O?

3. How do we choose the model parameters A,B, π for λ with respect to a
sequence of observations O so that we maximize the probability P (O | λ)?
This is called the training problem.

The problems that are of interest in our thesis are the evaluation problem and
the training problem.

2.3.3 The evaluation problem

To compute P (O | λ) for observation sequence O and HMM λ we can use the
Forward Procedure (Rabiner [1989]). We define the forward variable αt(i) as

αt(i) = P (O1, O2, . . . , Ot, qt = Si | λ)

i.e. the probability of partial observation sequence up to time t and being in state
Si at time t, given the model. We can proceed inductively as follows:

1. Initialization:
α1(i) = πibi(O1), for 1 ≤ i ≤ N

2. Induction:

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(Ot+1) for 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N

3. We finally compute P (O | λ):

P (O | λ) =
N∑
i=1

αT (i)

2.3.4 The training problem

To estimate the parameters of λ we utilize the Forward Procedure from the pre-
vious section and define three more quantities βt(i), γt(i) and ξt(i, j) (Rabiner
[1989]).

The backward variable βt(i) is the probability of the partial observation se-
quence from time t+ 1 to the end, given state Si at time t and the model.

βt(i) = O(Ot+1, . . . , OT | qt = Si, λ)

We can again proceed inductively:

16

1. Initialization:
βT (i) = 1 for 1 ≤ i ≤ N

2. Induction:

βt(i) =
N∑
j=1

aijbj(Ot+1)βt+1(j) for t = T − 1, . . . , 1, 1 ≤ i ≤ N

γt(i) is the probability of being in state Si at time t, given the sequence of obser-
vations O and the model λ

γt(i) = P (qt = Si | O, λ)

We can express the value of γt(i) in terms of the previously described forward
and backward variables as follows:

γt(i) =
αt(i)βt(i)

P (O | λ)
=

αt(i)βt(i)∑N
i=1 αt(i)βt(i)

where the denominator P (O | λ) ensures that γt(i) is a probability measure, i.e.
that

N∑
i=1

γt(i) = 1

Finally, we define ξt(i, j), the last quantity needed to describe the iterative HMM
parameter estimation procedure:

ξt(i, j) = P (qt = Si, qt+1 = Sj | O, λ)

in other words, the probability of being in state Si at time t and subsequently in
state Sj at time t + 1, given the HMM model and the observation sequence O.
We can compute its value from the forward and backward variables:

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

P (O | λ)
=

αt(i)aijbj(Ot+1)βt+1(j)∑N
i=1

∑N
j=1 αt(i)aijbj(Ot+1)βt+1(j)

where the division by P (O | λ) again ensures that ξt(i, j) is a probability measure.
The numerator is just P (qt = Si, qt+1 = Sj, O | λ).

Using γt(i) and ξt(i, j) we can describe the Baum-Welch algorithm(Rabiner
[1989]) for estimation of HMM parameters with respect to observation sequence
O.

The Baum-Welch algorithm works iteratively, starting with a randomly ini-
tialized model λ = (A,B, π) and repeatedly improves it by reestimating the
parameters in the following way:

1. Start with a random initialization of λ = (A,B, π)

2. Compute reestimated parameters A, B and π as follows:

• Estimate π as the expected number of times in Si at t = 1

πi = γ1(i)

17

• Estimate A as expected number of transitions from Si to Sj divided
by the expected number of transitions from Si (to any state).

aij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

• Estimate B as expected number of times in Sj and observing vk divided
by expected number of times in Sj.

bj(k) =

∑
1≤t≤T , Ot=vk

γt(j)∑T
t=1 γt(j)

3. Set λ = (A,B, π) and repeat Step 2 until desired convergence is reached.

Baum and Sell [1968] have proved that for each HMM λ and a reestimated HMM
λ either λ = λ or P (O | λ) > P (O | λ), i.e. the observation sequence is more likely
for the new model. We stop the algorithm once P (O | λ)−P (O | λ) < tolerance
for a certain positive tolerance or after a specified number of iterations.

To use the Baum-Welch algorithm for HMMs with continuous observations
we need only modify the reestimation procedure for bk(j), see Liporace [1982] .

18

3. Methods

In this chapter we outline the data and the machine learning models used in
our experiments. First, we describe the preprocessing steps and then explore the
properties of the obtained dataset. The second part of the chapter contains the
description of Neural Networks and Hidden Markov models.

3.1 Data

The data we used to train our models comes from Lukavsky [2013]. It contained
1148 MOT trials with 4 targets and 4 distractors, completed by 20 subjects on
40 different dot trajectories. Not all subjects saw all 40 trajectories. The size
of the display was 30 by 30 degrees. A trial lasted 10 seconds and in the first 2
seconds of each trial, the targets were highlighted and did not move. Afterwards,
the dots started to move for 8 seconds. The subject was then asked to mark the
targets. Only data from trials where all 4 were marked correctly was used in our
experiments. The trial data consisted of two files:

• eyedata RpM2.csv - eye movement data

• trackdata RpM2.csv - dot movement data

3.1.1 Eye movement data

Table 3.1 lists the columns in eyedata RpM2.csv, their data types and description.
The data was obtained using the SR Research Eyelink II optical eye tracker with
the sampling rate of 250Hz, which produced 250 data points per second. The eye
movement data was available only for the 8 seconds of a trial during which the
dots moved, the timestamps ranged between time = 2 and time = 10.

3.1.2 Dot trajectory data

Table 3.2 lists the columns in trackdata RpM2.csv, their data types and descrip-
tion. The data contained 100 data points per second. The timestamps ranged
between time = 0 and time = 12.

3.1.3 Merging eye movement and track data

Since the sampling rates for dot movement and eye movement were different, it
was necessary to choose a common sampling rate before joining the data into
one dataset. We decided on a sample rate of 10Hz. The resulting 10 frames per
second provided enough information about both eye and dot movements. The
differences between frames carried meaningful information, as opposed to the
original sample rates, where the difference between consecutive frames was too
small to be useful for machine learning models.

From trackdata RpM2.csv we discarded rows with timestamp lower than 2
and greater than 10, as there was no eye movement data available for these

19

Name Type Description
id integer subject ID
trial integer trial ID
block integer trial block ID
time float timestamp in seconds
x float x coordinate of the

point of gaze, a visual
angle

y float y coordinate of the
point of gaze, a visual
angle

track int point trajectory id
set int trial type ID
OK.4 boolean answer of the subject

was correct

Table 3.1: Columns in eyedata RpM2.csv

Name Type Description
track int point trajectory id
time float timestamp in seconds
x1. . . x4 float x coordinate of the 4

targets, a visual angle
y1. . . y4 float y coordinate of the 4

targets, a visual angle
x5. . . x8 float x coordinate of the

4 distractors, a visual
angle

y5. . . y8 float y coordinate of the
4 distractors, a visual
angle

Table 3.2: Columns in trackdata RpM2.csv

20

Name Type Description
id int subject id
trial int trial id, unique for tri-

als of one subject
track int dot trajectory id
x1. . . x4 float x coordinate of the 4

targets, a visual angle
y1. . . y4 float y coordinate of the 4

targets, a visual angle
x5. . . x8 float x coordinate of the

4 distractors, a visual
angle

y5. . . y8 float y coordinate of the
4 distractors, a visual
angle

x float x coordinate of the
gaze, a visual angle

y float y coordinate of the
gaze, a visual angle

Table 3.3: Columns in RpM2 trialData.csv

timestamps in eyedata RpM2.csv. This left us with information about 8 seconds
of a trial.

The resulting dataset thus contained 80 frames per trial, at 10 frames per
second. Table 3.3 contains the description of the columns in the final merged
dataset. Trial frames were grouped by trial and ordered by timestamp (i.e. the
first 80 rows constituted one trial and so forth). We omitted the timestamp in
the final dataset as it was sufficient to know the order of the frames in a trial.

3.1.4 Basic properties

The coordinates of both dots and the gaze ranged between -10 and 10. The ids of
the subjects were not consecutive integers, there were 20 different values ranging
from 1 to 116. There were 40 different trajectory ids, ranging from 301 to 340.

3.1.5 Cluster analysis

We used the k-means clustering algorithm (see MacQueen [1967]) to examine
the structure of the data. Well-separated clusters would indicate that there are
certain situations, i.e. positions of targets and distractors based on which we
could identify targets in our models.

Since our main focus was the relationship between the position of the gaze
and the positions of targets and distractors, we transformed the coordinates in
each frame to what we call relative coordinates by making the point of gaze the
origin of the coordinate system and recomputing the coordinates of all the points
accordingly. Formally, we define the relative coordinates (xri , yri) for each point

21

Figure 3.1: Silhouette plot of a clustering obtained for k=30 using the k-means
algorithm

(xi, yi) as follows:
xri = xi − x

yri = yi − y

where (x, y) is the position of the gaze.
The results of the k-means algorithm for 2 ≤ k ≤ 50 did not show any suitable

grouping of data for any k. The average silhouette width ranged from 0.1 to 0.26,
implying inadequate separation between groups. Figure 3.1 shows the resulting
silhouette plot for k = 30. Other values of k provided similar results.

In summary, the results of the cluster analysis show that the relationship be-
tween the positions of targets and distractors and the gaze cannot be categorized
into a number of similar situations. This means that the data did not contain
any constellations of point positions that would be closely related to a specific
position of the gaze. This might be caused by the fact that people have different
target tracking strategies in MOT trials and directed their gaze differently. We
examine differences between subjects in more detail later in this chapter.

22

Figure 3.2: Distance covered by gaze in a trial

3.1.6 Distance covered by gaze

In this section, we examine how much the subjects moved their eyes during a
trial. We computed the total distance covered by the gaze for each trial. Figure
3.2 shows the distribution of these distances, with mean value 61.2 and standard
deviation of 36.8.

Figure 3.3 shows comparison of distance covered by gaze between subjects.
We can see that subject 5 moved their eyes much more than most other subjects.
This suggests a different tracking strategy.

Figure 3.4 depicts the amount of eye movement made by each subject on all
trajectories. We can see that the distance covered by gaze was nearly constant
for some subjects, but varied considerably for other subjects.

3.1.7 Average distance of the gaze from targets

To what extent does the gaze follow the targets in a MOT trial? We inspected
how far the gaze was from the targets over time in a trial. For each frame, we
computed the euclidean distance between the point of the gaze and each target
and averaged the values. Figure 3.5 shows this average distance plotted over
time, for each subject completing a trial on track 326. The shape of the plotted
curve is quite similar, in spite of our previous finding that the amount of eye
movement varied significantly among subjects. Plots for other tracks display
similar consistency between subjects. What this plot also shows us is that the
gaze did not follow the targets closely all the time. In this case it wandered away
from the targets between the 4. and 6. second of the trial. Similar parts of trial
with large average distance between the gaze and the targets were found in trials
on other trajectories as well.

23

Figure 3.3: Distance covered by gaze in a trial by each subject

Figure 3.4: Distance covered by gaze for each track by each subject

24

Figure 3.5: Average distance of the gaze to the targets for subjects on track 326

3.1.8 Consistency of eye movements in repeated trials

Across repeated trials on the same trajectory, subjects’ eye movements were often
very consistent, especially for subjects whose gaze did not wander much. Figure
3.6 shows average distance to gaze for repeated trials on track 303 of subjects 5
and 19. The distance curves in the plot are more similar for subject 19 than for
5. This is a result of their different tracking strategies. Nevertheless, we can see
that the general shape of the distance curve remained the same across trials on
one trajectory.

3.1.9 Distance of the gaze to targets and distractors

To get an idea of how reliable a predictor of targets the distance of a point to the
point of gaze could be, we plotted the distances between all the points and the
gaze over time in a trial. In Figure 3.7 we see that although it is quite often the
case that a target (red line) is closer to the point of gaze than a distractor (black
line), it does not hold for all targets all the time. The situation was even more
complicated for subjects who moved their gaze a lot, as is the case with subject
5.

3.2 Models

3.2.1 Data preprocessing

Prior to applying the models, we scaled the raw data using the scale function
included in the R programming language (R Development Core Team [2008]),
which works as follows. For each column x in the dataset, the mean x and

25

Figure 3.6: Average distance of the gaze to the targets for subjects 5 (top) and
19 (bottom) on track 303. Different color indicates different trial.

Figure 3.7: Distance of the gaze to targets and distractors for subjects 107 (bot-
tom) and 5 (top) on track 326. Red lines represent distance to targets.

26

standard deviation σ is computed first. We obtain the scaled value x′ as

x′ =
x− x
σ

After scaling, all the columns had mean of zero and unit variance.

3.2.2 Evaluation

If we split the data randomly into training and testing data, there was a danger
that good results, if obtained, could merely be a result of the model memorizing
the specific trajectories. To ensure that the models generalize well to trajectories
not seen during training, we always split the data into training and testing set in
such a way that trajectories used for training were not used for testing.

The data used in model assessment contained 1148 MOT trials of 20 subjects.
In the first part of the chapter we saw that the amount of eye movement of dif-
ferent people on the same dot trajectory differed significantly. Thus we evaluated
the models in two ways:

• Trials of one subject - to examine how a model trained on one person’s
trials performs for other trials of the same person

• Trials of two subjects - to examine how well the model generalizes when
trained on trials of one subject and tested on different subject’s trials

In our experiments we used three-fold cross-validation (Kohavi et al. [1995]).
The trial trajectories contained in one partition were not included in any other
partition.

Apart from evaluating the success rates for the correct prediction of all 4
targets, we also assessed the success rates for the correct prediction of exactly
3 targets, with one 1 mispredicted target. Mispredicting one target can still be
considered a meaningful result, as the probability of randomly guessing 3 out of
4 targets is 16/70 ≈ 22.9%.

3.2.3 Hidden Markov models

Hidden Markov models are used for sequence classification. We used Python
and the hmmlearn package to train a HMM with continuous observations. We
set the training parameters so that the training terminates when the number of
reestimation steps reaches 30 or when ∆P (O | λ) < 1 between reestimation steps.

We trained two HMMs to recognize whether an individual point is a target or
not, based on an observed sequence of distance to gaze features computed for that
point. In this way, we obtained 8 observation sequences for each trial. One of the
models, λt was trained to recognize targets and the second model, λd recognized
distractors. We computed the probability of each point’s feature sequence Oi for
both models and computed the difference di for 1 ≤ i ≤ 8

di = P (O | λt)− P (O | λd)

The four points with the largest di were predicted as targets.

27

In our evaluation we also employed the windowing technique, in which we di-
vided each observation sequence into multiple overlapping windows. The overlap
was constant and set to half the size of the window. When using windows, we
computed dwi for each window w obtained from observation sequence Oi just like
we did previously for the whole observation sequence. Next, we summed the re-
sulting probabilities, again obtaining di =

∑
w⊂Oi

dwi for each point. Using these
summed di values we predicted targets as in the previous case. Our experiments
examined the influence of window size and the number of hidden states on the
performance of the model.

3.2.4 Neural networks

In our experiments we used an adjusted a Python implementation of neural net-
works from Nielsen [2015]. We trained a neural network with one hidden layer
to classify points in individual frames. The output of the network was an 8-tuple
with values between 0 and 1 and each value representing one dot. We chose the
four dots with the highest output as the targets. A trained network was then
used to predict targets in a MOT trial by classifying all 80 frames of the trial. We
summed the outputs for each frame and chose the four points with the highest
sum of frame outputs as the targets.

We experimented with various hidden layer sizes. The other parameters of
the neural net were:

• Learning rate: λ = 0.5

• Regularization parameter: α = |training set|
10000

• Cost function: Cross-entropy cost function

• Mini-batch size: 10

Evaluated features

We compared the following features in model evaluation:

• Raw coordinates - an 18-tuple with the x and y coordinate of each dot and
the gaze

• Relative coordinates - a 16-tuple with the x and y coordinate of each dot,
with the gaze serving as the origin of the coordinate system, as described
earlier in this chapter

• Distance features - an 8-tuple with the distance from the gaze for each
point, as described earlier in this chapter

Permutation invariance

We also required that our models correctly marked targets even if the order of
points in the input vector was permuted, since the order of the coordinates or
the distances in the input vector does not convey any meaning. To achieve this
permutation invariance, we permuted each sample in both the training and the
testing set. There are

(
8
4

)
= 70 ways of choosing four targets out of eight points,

hence we had 70 permuted input vectors for each vector in the original dataset.

28

3.2.5 A simple model

Based on the findings about the data from the previous chapter, we defined a
simple algorithm for target prediction that served as a baseline for the comparison
of various approaches. The algorithm selected the points that were the most
closely followed by the gaze as the targets.
The algorithm works as follows:

1. For each frame f in a trial, compute the Euclidean distance df (i) between
the gaze and dot i for 1 ≤ i ≤ 8

2. Summing the distances over all frames, we get Disti =
∑N

k=1 dk(i) for 1 ≤
i ≤ 8, i.e. the sum of distances from the gaze in a trial for each dot. N
denotes the number of frames in a trial.

3. The predicted targets are the 4 dots with the lowest Disti

29

4. Results

This chapter summarizes the results of the experiments described in the previous
chapter. The description of the source code used for these experiments can be
found in Attachment 1.

4.1 Simple model

We begin with the assessment of the simple model, described at the end of the
previous chapter. We tested the model on all 1148 trials. The model predicted all
targets correctly in 2.4% of trials, which is only a slightly higher success rate than
chance (1

70
≈ 1.4%). However, the model predicted 3 targets out of four with a

success rate 43.7% which is nearly twice as high as chance (
(
4
3

)
·
(
4
3

)
≈ 22.6%).

4.2 Hidden Markov Models

4.2.1 One-subject dataset performance

Table 4.1 provides an overview of the accuracy of a HMM model trained and
tested on trials of the same subject. We carried out the evaluation for each of
the 20 subjects. The values in the table are averaged over all participants. It
is difficult to choose the best performing model parameters based on the results.
While it can be easily seen that window size 80 performs the best, the choice
of the best number of hidden states is unclear. On average, however, HMM
outperformed the simple model.

4.2.2 Two-subject dataset performance

In Table 4.2 we can see that hidden Markov models do not generalize well to
trials of subjects different from the training subject. The success rates are below
those of the simple model. The significant decrease in accuracy compared to the
one-subject dataset performance indicates that our HMM models are prone to
overfitting for all combinations of model parameters.

4.3 Neural Networks

Apart from assessing neural network models on one-subject and two-subject
datasets, we also evaluated the performance of different features. We compared
raw coordinates with relative coordinates and distance to gaze features.

4.3.1 One-subject dataset performance

In Table 4.3 we can see that the best frame classification with raw coordinates
features is achieved with the hidden layer size of 20. In spite of the accuracy not
being extremely high, combining answers of the net to obtain target prediction
for a whole trial yields nearly perfect accuracy, as can be seen in Table 4.4.

30

Window States 0 errors 1 error
20 2 0.04 0.45
20 3 0.04 0.47
20 4 0.05 0.51
20 5 0.05 0.47
20 8 0.05 0.49
40 2 0.03 0.43
40 3 0.03 0.45
40 4 0.05 0.51
40 5 0.03 0.48
40 8 0.03 0.52
80 2 0.05 0.44
80 3 0.06 0.38
80 4 0.04 0.59
80 5 0.07 0.53
80 8 0.06 0.55

Table 4.1: Success rates for a HMM trained and evaluated on a one-subject
dataset, averaged over all subjects.

Window States 0 Errors 1 Error
20 2 0.01 0.27
20 3 0.01 0.33
20 4 0.01 0.32
20 5 0.01 0.32
20 8 0.01 0.33
40 2 0.01 0.28
40 3 0.01 0.33
40 4 0.01 0.33
40 5 0.02 0.34
40 8 0.01 0.32
80 2 0.01 0.27
80 3 0.02 0.32
80 4 0.02 0.32
80 5 0.02 0.33
80 8 0.02 0.32

Table 4.2: Success rates for a HMM trained and evaluated on a two-subject
dataset, averaged over all subjects.

N.Hidden 0 Errors 1 Error
10 0.26 0.62
20 0.76 0.22
30 0.74 0.24
40 0.71 0.26
50 0.69 0.28

Table 4.3: Individual frame classification success rates for a neural network
trained and evaluated on a one-subject dataset, averaged over all subjects, using
raw coordinates features.

31

N.Hidden 0 Errors 1 Error
10 0.34 0.65
20 1.00 0.00
30 1.00 0.00
40 1.00 0.00
50 0.94 0.00

Table 4.4: Target prediction success rates for a whole trial for a neural network
trained and evaluated on a one-subject dataset, averaged over all subjects, using
raw coordinates features.

N.Hidden 0 Errors 1 Error
10 0.28 0.57
20 0.77 0.21
30 0.78 0.20
40 0.76 0.22
50 0.75 0.23

Table 4.5: Individual frame classification success rates for a neural network
trained and evaluated on a one-subject dataset, averaged over all subjects, using
relative coordinates features.

Relative coordinate features describe the constellation of the dots and the gaze
and neglect the information about the specific location of the gaze and the dots
on the screen. Due to this, we expected better generalization. The trained neural
network did indeed perform better in individual frame classification, as shown in
table 4.5. The number of hidden neurons needed to achieve the best performance
increased to 30 compared to raw coordinate features. The better performance
in frame classification did not, however, translate into an improvement of the
accuracy of prediction in a whole trial, as we can see in table 4.6. The number
of trials in which only 3 targets were marked correctly is greater than in the case
of raw coordinates. Surprisingly, the accuracy of prediction when using only 10
hidden neurons is significantly higher compared to raw coordinates.

Distance features used with neural networks performed worse than when used
in hidden Markov models and were outperformed even by the simple model. In
tables 4.7 and 4.8 we can see that the hidden layer size had little influence on
the accuracy of target prediction. This result coupled with the fact that distance
features were outperformed even by the simple model indicate that the distance

N.Hidden 0 Errors 1 Error
10 0.58 0.40
20 0.93 0.06
30 0.93 0.06
40 0.93 0.06
50 0.91 0.08

Table 4.6: Target prediction success rates for a whole trial for a neural network
trained and evaluated on a one-subject dataset, averaged over all subjects, using
relative coordinates features.

32

N.Hidden 0 Errors 1 Error
10 0.02 0.29
20 0.02 0.28
30 0.01 0.29
40 0.02 0.29
50 0.01 0.29

Table 4.7: Individual frame classification success rates for a neural network
trained and evaluated on a one-subject dataset, averaged over all subjects, using
distance to gaze features.

N.Hidden 0 Errors 1 Error
10 0.04 0.36
20 0.03 0.35
30 0.03 0.35
40 0.03 0.37
50 0.02 0.39

Table 4.8: Target prediction success rates for a whole trial for a neural network
trained and evaluated on a one-subject dataset, averaged over all subjects, using
distance to gaze features.

to gaze does not contain enough information about a point being a target or not.
Due to the poor performance of the distance features, we omitted them in the
following section, which includes evaluation results on a two-subjects dataset.

4.3.2 Two-subject dataset performance

When evaluating neural networks on trials of subjects different from the sub-
ject used for training, the best accuracy achieved was the same for both raw
coordinates and relative coordinates. Table 4.9 shows that the best results were
achieved with 20 hidden neurons for raw coordinates and for relative coordinates
the number was again 30, as shown in table 4.10.

Figure 4.1 contains a detailed overview of model performance on two-subject
datasets using raw coordinates. Each plot describes how a neural network with
20 hidden neurons trained on the corresponding subject’s trials performs when
evaluated on the trials of all the other subjects. Figure 4.2 contains the same
comparison for relative coordinates and a neural network with 30 hidden neurons.

N.Hidden 0 Errors 1 Error
10 0.07 0.70
20 0.97 0.03
30 0.94 0.06
40 0.90 0.10
50 0.85 0.15

Table 4.9: Target prediction success rates for a whole trial for a neural network
trained and evaluated on a two-subject dataset, averaged over all subjects, using
relative coordinates features.

33

N.Hidden 0 Errors 1 Error
10 0.25 0.56
20 0.95 0.05
30 0.97 0.03
40 0.94 0.06
50 0.94 0.05

Table 4.10: Target prediction success rates for a whole trial for a neural network
trained and evaluated on a two-subject dataset, averaged over all subjects, using
relative coordinates features.

Figure 4.1: Neural net performance on two-subject datasets using raw coordinate
features. Each plot describes how a model with 20 hidden neurons trained on
trials of the corresponding subject performs on trials of all the other subjects.

Notable is the performance of models trained on the trials of subject 5. This
subject moved their eyes much more in all trials than the other participants
did. In spite of their apparently different tracking strategy, the neural network
managed to learn enough to predict targets with perfect accuracy in the case of
raw coordinates and nearly perfect accuracy when using relative coordinates.
On the other hand, the trials of subject 107, whose eye movements were small
and consistent in all trials, did not contain enough information to achieve as good
accuracy as with other subjects.
We can also see that the accuracy of neural networks trained on subjects 4 and
6 differs significantly when using different features. It is not clear why this is the
case, because in our initial data analysis the subjects did not stand out in any
way.

34

Figure 4.2: Neural net performance on two-subject datasets using relative coor-
dinate features. Each plot describes how a model with 30 hidden neurons trained
on trials of the corresponding subject performs on trials of all the other subjects.

35

5. Discussion

In our experiments we have evaluated the following three models for target pre-
diction in Multiple Object Tracking trials.

5.1 Simple model

We found out that the simple model cannot predict all 4 targets in almost any
trial, but predicts 3 targets correctly quite well given the straightforward nature
of the model.

5.2 Hidden Markov models

Hidden Markov models also fail to make fully correct predictions, but when eval-
uated on a one-subject dataset, they outperform the simple model when the right
parameters are used. However, HMMs did not generalize well to trials of subjects
different from the training subject and performed worse than the simple model.
This suggests overfitting.

Our models were limited in that they used one-dimensional observations,
which in turn limited the choice of features we could use. Hidden Markov models
can, however, be adjusted to work with multi-dimensional observations and us-
ing these modified HMMs with, for instance, raw coordinates could yield better
results.

5.3 Neural networks

Finally, we found out that neural networks can predict all 4 targets in a MOT
trial with remarkable accuracy, even when evaluated on a two-subject dataset.
Last but not least, we evaluated three kinds of features that we used with neural
networks, discovering that raw and relative coordinates perform equally well in
most cases and that distance features are unsuitable for MOT target prediction.

The disadvantage of neural networks is that by including all the possible
permutations of each input vector in the training set, we increased the size of the
training set seventy times. This significantly increased the time needed to train
a network. To reduce the training time, we tried sorting the points in the input
vector by the x coordinate. The results of this approach were poor, however.

5.4 Other models

Apart from the aforementioned models, we also attempted to apply Naive Bayes
model, the accuracy of which was only slightly above chance.

36

Conclusion

In this thesis, we have used neural networks and hidden Markov models to predict
targets in Multiple Object Tracking task. First we processed data containing
information about the positions of targets, distractors and eye gaze in MOT trials
and performed exploratory data analysis to examine the relationship between the
position of the gaze and that of targets and distractors.

Subsequently we trained neural networks and hidden Markov models to pre-
dict targets in the trials. We also extracted different features from the raw data
and compared the performance of these features when used with neural networks.
The results of our experiments are encouraging and suggest that it is possible to
predict the targets from eye movement data with high accuracy. Our work has
shown that the application of machine learning techniques to Multiple Object
Tracking problems is a very promising area that deserves more attention.

Further augmentations of our work might extend the target prediction to real-
world MOT tasks, such as air traffic control, where an interesting task would be
to analyze and assess the performance of air traffic controllers. Extending the
MOT target prediction to video is also an intriguing challenge.

37

Bibliography

Leonard E Baum and George Sell. Growth transformations for functions on
manifolds. Pacific Journal of Mathematics, 27(2):211–227, 1968.

Marisa Carrasco. Visual attention: The past 25 years. Vision Research, 51(13):
1484–1525, jul 2011. doi: 10.1016/j.visres.2011.04.012. URL http://dx.doi.

org/10.1016/j.visres.2011.04.012.

P Cavanagh and G Alvarez. Tracking multiple targets with multifocal attention.
Trends in Cognitive Sciences, 9(7):349–354, jul 2005. doi: 10.1016/j.tics.2005.
05.009. URL http://dx.doi.org/10.1016/j.tics.2005.05.009.

Filip Dechterenko and Jiri Lukavsky. Models of eye movements in multiple object
tracking with many objects. In Visual Information Processing (EUVIP), 2014
5th European Workshop on, pages 1–6. IEEE, 2014.

Filip Dechterenko and Jiri Lukavsky. Predicting eye movements in multiple object
tracking using neural networks. In Proceedings of the Ninth Biennial ACM
Symposium on Eye Tracking Research & Applications, pages 271–274. ACM,
2016.

Hilda M Fehd and Adriane E Seiffert. Eye movements during multiple object
tracking: Where do participants look? Cognition, 108(1):201–209, 2008.

James E Hoffman. Visual attention and eye movements. Attention, 31:119–153,
1998.

James Intriligator and Patrick Cavanagh. The spatial resolution of visual atten-
tion. Cognitive psychology, 43(3):171–216, 2001.

Laurent Itti and Christof Koch. Computational modelling of visual attention.
Nature reviews neuroscience, 2(3):194–203, 2001.

Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy esti-
mation and model selection. In Ijcai, volume 14, pages 1137–1145, 1995.

Steven J Landry, Thomas B Sheridan, and Yan M Yufik. A methodology for
studying cognitive groupings in a target-tracking task. IEEE Transactions on
intelligent transportation systems, 2(2):92–100, 2001.

L Liporace. Maximum likelihood estimation for multivariate observations of
markov sources. IEEE Transactions on Information Theory, 28(5):729–734,
1982.

J. Lukavsky. Eye movements in repeated multiple object tracking. Journal of
Vision, 13(7):1–16, jun 2013. doi: 10.1167/13.7.9. URL http://dx.doi.org/

10.1167/13.7.9.

J. MacQueen. Some methods for classification and analysis of multivariate ob-
servations. In Proceedings of the Fifth Berkeley Symposium on Mathemati-
cal Statistics and Probability, Volume 1: Statistics, pages 281–297, Berkeley,

38

http://dx.doi.org/10.1016/j.visres.2011.04.012
http://dx.doi.org/10.1016/j.visres.2011.04.012
http://dx.doi.org/10.1016/j.tics.2005.05.009
http://dx.doi.org/10.1167/13.7.9
http://dx.doi.org/10.1167/13.7.9

Calif., 1967. University of California Press. URL http://projecteuclid.org/

euclid.bsmsp/1200512992.

Marvin L. Minsky and Seymour A. Papert. Perceptrons: Expanded Edition. MIT
Press, Cambridge, MA, USA, 1988. ISBN 0-262-63111-3.

Jiri Najemnik and Wilson S Geisler. Optimal eye movement strategies in visual
search. Nature, 434(7031):387–391, 2005.

Michael A Nielsen. Neural networks and deep learning. URL:
http://neuralnetworksanddeeplearning. com/.(visited: 11.07. 2016), 2015.

Lauri Oksama and Jukka Hyönä. Is multiple object tracking carried out auto-
matically by an early vision mechanism independent of higher-order cognition?
an individual difference approach. Visual cognition, 11(5):631–671, 2004.

Michael I Posner. Orienting of attention. Quarterly journal of experimental
psychology, 32(1):3–25, 1980.

Zenon W Pylyshyn and Ron W Storm. Tracking multiple independent targets:
Evidence for a parallel tracking mechanism. Spatial vision, 3(3):179–197, 1988.

R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008.
URL http://www.R-project.org. ISBN 3-900051-07-0.

Lawrence R Rabiner. A tutorial on hidden markov models and selected applica-
tions in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

Keith Rayner. Eye movements in reading and information processing: 20 years of
research. Psychological Bulletin, 124(3):372–422, 1998. doi: 10.1037/0033-2909.
124.3.372. URL http://dx.doi.org/10.1037/0033-2909.124.3.372.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6):386, 1958.

Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis. Journal of Computational and Applied Math-
ematics, 20:53–65, nov 1987. doi: 10.1016/0377-0427(87)90125-7. URL
http://dx.doi.org/10.1016/0377-0427(87)90125-7.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, 323(6088):533–536, oct
1986. doi: 10.1038/323533a0. URL http://dx.doi.org/10.1038/323533a0.

Brian J Scholl, Zenon W Pylyshyn, and Jacob Feldman. What is a visual object?
evidence from target merging in multiple object tracking. Cognition, 80(1):
159–177, 2001.

Frans AJ Verstraten, Patrick Cavanagh, and Angela T Labianca. Limits of at-
tentive tracking reveal temporal properties of attention. Vision research, 40
(26):3651–3664, 2000.

39

http://projecteuclid.org/euclid.bsmsp/1200512992
http://projecteuclid.org/euclid.bsmsp/1200512992
http://www.R-project.org
http://dx.doi.org/10.1037/0033-2909.124.3.372
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1038/323533a0

G. J. Zelinsky, Y. Peng, and D. Samaras. Eye can read your mind: Decoding
gaze fixations to reveal categorical search targets. Journal of Vision, 13(14):
10–10, dec 2013. doi: 10.1167/13.14.10. URL http://dx.doi.org/10.1167/

13.14.10.

Gregory J Zelinsky and Mark B Neider. An eye movement analysis of multiple
object tracking in a realistic environment. Visual Cognition, 16(5):553–566,
2008.

40

http://dx.doi.org/10.1167/13.14.10
http://dx.doi.org/10.1167/13.14.10

List of Figures

1.1 Multiple object tracking task . 5

2.1 A silhouette plot with a well-separated, compact cluster 10
2.2 A layout of a multilayer perceptron network 11
2.3 Step and sigmoid neuron output function 11

3.1 Silhouette plot of a clustering obtained for k=30 using the k-means
algorithm . 22

3.2 Distance covered by gaze in a trial 23
3.3 Distance covered by gaze in a trial by each subject 24
3.4 Distance covered by gaze for each track by each subject 24
3.5 Average distance of the gaze to the targets for subjects on track 326 25
3.6 Average distance of the gaze to the targets for subjects 5 (top) and

19 (bottom) on track 303. Different color indicates different trial. 26
3.7 Distance of the gaze to targets and distractors for subjects 107

(bottom) and 5 (top) on track 326. Red lines represent distance
to targets. 26

4.1 Neural net performance on two-subject datasets using raw coor-
dinate features. Each plot describes how a model with 20 hidden
neurons trained on trials of the corresponding subject performs on
trials of all the other subjects. 34

4.2 Neural net performance on two-subject datasets using relative co-
ordinate features. Each plot describes how a model with 30 hidden
neurons trained on trials of the corresponding subject performs on
trials of all the other subjects. 35

41

List of Tables

3.1 Columns in eyedata RpM2.csv . 20
3.2 Columns in trackdata RpM2.csv 20
3.3 Columns in RpM2 trialData.csv 21

4.1 Success rates for a HMM trained and evaluated on a one-subject
dataset, averaged over all subjects. 31

4.2 Success rates for a HMM trained and evaluated on a two-subject
dataset, averaged over all subjects. 31

4.3 Individual frame classification success rates for a neural network
trained and evaluated on a one-subject dataset, averaged over all
subjects, using raw coordinates features. 31

4.4 Target prediction success rates for a whole trial for a neural net-
work trained and evaluated on a one-subject dataset, averaged over
all subjects, using raw coordinates features. 32

4.5 Individual frame classification success rates for a neural network
trained and evaluated on a one-subject dataset, averaged over all
subjects, using relative coordinates features. 32

4.6 Target prediction success rates for a whole trial for a neural net-
work trained and evaluated on a one-subject dataset, averaged over
all subjects, using relative coordinates features. 32

4.7 Individual frame classification success rates for a neural network
trained and evaluated on a one-subject dataset, averaged over all
subjects, using distance to gaze features. 33

4.8 Target prediction success rates for a whole trial for a neural net-
work trained and evaluated on a one-subject dataset, averaged over
all subjects, using distance to gaze features. 33

4.9 Target prediction success rates for a whole trial for a neural net-
work trained and evaluated on a two-subject dataset, averaged over
all subjects, using relative coordinates features. 33

4.10 Target prediction success rates for a whole trial for a neural net-
work trained and evaluated on a two-subject dataset, averaged over
all subjects, using relative coordinates features. 34

42

List of Abbreviations

• MOT - Multiple Object Tracking

• HMM - Hidden Markov Model

43

Attachment 1 — Source code
description and data

We briefly describe the source code and data included on the attached DVD. All
the experiments were made with Python 3.5. The hmmlearn library is required
to run HMM experiments.

Source code

The source code is divided into two parts, each part located in a separate folder.

• Simple model

• Neural Networks and Hidden Markov Models

The Simple Model folder contains simpleModel.py, which can be run in order to
execute the evaluation of the model.
The Neural Nets and HMM folder contains Python modules for neural networks
and hidden Markov models, feature extraction and experiment execution. The
following five Python scripts execute HMM and neural network experiments:

• e hmm one subject.py - executes one-subject dataset HMM evaluation

• e hmm two subjects.py - executes two-subjects dataset HMM evaluation

• e nn one subject.py - executes one-subject dataset Neural Network eval-
uation

• e nn two subjects raw.py - executes two-subjects dataset Neural Network
evaluation with raw coordinates

• e nn two subjects rel dist.py - executes two-subjects dataset Neural
Network evaluation with relative coordinates and distance to gaze features

Data

The preprocessed data used in all experiments is located in the Neural Nets and

HMM/CSV folder.

Trial videos

We included videos of MOT trials as well. The videos in the All subjects

folder show the gaze of all the subjects at once on that specific trajectory. The
remaining videos show individual trials.

44

	Introduction
	Attention and eye tracking
	Eye tracking
	Types of eye movements
	Visual angle

	Models of visual attention
	Multiple Object Tracking
	Properties of the MOT task
	Models of eye movements in MOT

	Machine Learning
	Cluster analysis
	Silhouette plot

	Neural networks
	Perceptron
	Artificial neural networks
	Training
	Gradient descent
	Backpropagation
	Regularization and cross-entropy cost function

	Hidden Markov models
	Markov chains
	Hidden Markov models
	The evaluation problem
	The training problem

	Methods
	Data
	Eye movement data
	Dot trajectory data
	Merging eye movement and track data
	Basic properties
	Cluster analysis
	Distance covered by gaze
	Average distance of the gaze from targets
	Consistency of eye movements in repeated trials
	Distance of the gaze to targets and distractors

	Models
	Data preprocessing
	Evaluation
	Hidden Markov models
	Neural networks
	A simple model

	Results
	Simple model
	Hidden Markov Models
	One-subject dataset performance
	Two-subject dataset performance

	Neural Networks
	One-subject dataset performance
	Two-subject dataset performance

	Discussion
	Simple model
	Hidden Markov models
	Neural networks
	Other models

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachment 1 — Source code description and data

