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Abstract: It is known that the time until a birth and death process reaches
certain level is distributed as a sum of independent exponential random variables.
Diaconis, Miclo and Swart gave a probabilistic proof of this fact by coupling the
birth and death process with a pure birth process such that the two processes
reach the given level at the same time. We apply their techniques to find a
one-dimensional diffusion and a pure birth process whose transition probabilities
are related by an intertwining relation. From this we prove that the time to
absorption of the diffusion has the same distribution as the time to explosion of
the pure birth process, although we do not manage to couple them such that the
two times are a. s. equal. This gives us a probabilistic proof of the known fact
that the time to absorption of the diffusion is distributed as a sum of independent
exponential random variables. We also find a coupling of a similar diffusion with
the same pure birth process, which is now stopped at an arbitrary level. This
allows us to interpret the diffusion as being initially reluctant to get absorbed,
but later getting more and more compelled to get absorbed.
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Introduction

It is known that the time until a birth and death process Xt started at the origin
reaches certain level is distributed as a sum of independent exponential variables
whose parameters are given by certain eigenvalues. Diaconis and Miclo [2] and
Swart [10] have given a probabilistic proof of this fact by finding a pure birth
process Yt which reaches the given level at the same time as Xt. The goal of this
thesis is to generalize this technique to the case that Xt is a diffusion. Since the
general case is too difficult, we will mostly restrict ourselves to a special type of
diffusion called the Wright-Fisher diffusion.

The technique that Diaconis, Miclo and Swart employ is called intertwining
of Markov processes. For a given transition semigroup Pt of a birth and death
process Xt on {0, . . . , n} absorbed at n, they find a transition semigroup Qt of a
pure birth process Yt on {0, . . . , n} and a probability kernel K which satisfy

PtK = KQt (1)

and
K(x, n) = 1[x=n], x ∈ {0, . . . , n} . (2)

The algebraic relation (1) is called intertwining, which gives the name to the
intertwining of Markov processes. From (1) they derive that if both processes
start at zero, then

P (Yt = y) = E [K (Xt, y)]

for all y = 0, . . . , n. Given (2), this means that

P (Yt = n) = P (Xt = n) ,

and from this they conclude that the time until Yt reaches n has the same distri-
bution as the time until Xt reaches n. But since Yt is a pure birth process, the
time until it reaches n starting from zero is distributed as the sum of independent
exponential variables, whose rates are the birth rates of Yt.

Until now, we have only been dealing with the marginal distributions of Xt

and Yt. However, Fill [4] proved that whenever we have relation (1), the Markov
processes Xt and Yt can be coupled (i. e. defined on the same probability space)
such that

P (Yt = y|Xu, 0 ≤ u ≤ t) = K (Xt, y) . (3)

Using this, Diaconis, Miclo and Swart proved that Xt and Yt can be coupled such
that the times of absorption of Xt and Yt are a. s. the same.

In this thesis, we derive analogue results for a diffusion. As already mentioned,
we mostly deal with the Wright-Fisher diffusion (denoted here as Xt), which is a
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Markov process with state space [−1, 1] absorbed at its end points.1 We find an
explosive pure-birth process Yt on N̄=N ∪ {∞} and a probability kernel K from
[−1, 1] to N ∪ {∞} satisfying the intertwining relation (1) and

K (x,∞) = 1[x=±1].

Just as in discrete state-space, we show that if both processes start at zero, then

P (Yt = y) = E [K (Xt, y)]

for all y ∈ N ∪ {∞}, hence

P (Yt =∞) = P (Xt = ±1) .

We conclude that the time to absorption of the Wright-Fisher diffusion starting
from zero has the same distribution as the time to explosion of the pure birth
process starting from zero, which is the sum of independent exponential variables
whose intensities are the birth rates of Yt.2

In order to find a coupling satisfying (3), we need to restrict ourselves further,
as we are unable to find it for the Wright-Fisher diffusion and the pure-birth
process on N ∪ {∞}. However, for any n ≥ 1, we manage to find a probability
kernel Kn from [0, 1] to {0, . . . , n} and a Markov process

(
X̄t, Yt

)
such that X̄t

is the Wright-Fisher diffusion with reflection at zero, Yt is the pure birth process
considered before, but stopped at n, and (3) holds (with K replaced by Kn).
Unfortunately, Kn(x, n) 6= 1[x=±1], so X̄t is not absorbed at the same time as Yt
reaches n. To get a coupling such that the time of absorption of X̄t is a. s. the
same as the time of explosion of Yt, one would have to prove an analogue result
for n =∞. Present result find step in this direction.

Although we find the coupling only for finite n, and X̄t is not absorbed at
the same time as Yt reaches n, this coupling nevertheless gives us some intuitive
insight about the behavior of X̄t. Specifically, we find that when Yt = y, X̄t

behaves like the Wright-Fisher diffusion with reflection at zero and with drift
which depends on y. We find that this drift pushes X̄t toward certain point,
which we denote xy. We also find that xy is increasing in y, x0 = 0 and xn = 1.
We therefore interpret X̄t as being initially reluctant to get absorbed (as Yt is
small so xy is close to zero), but being more and more compelled to get absorbed
as Yt rises (because xy approaches 1).

The structure of the thesis is as follows. In Chapter 1 we present the theory
of Markov processes. In Chapter 2 we review the literature on the intertwining of
Markov processes with discrete state-spaces. Finally, in Chapter 3 we generalize
some of the results presented in Chapter 2 to the case that one of the processes
is a diffusion while the other is a pure birth process.

1Usually, the Wright-Fisher diffusion is defined such that its state-space is [0, 1], but a simple
linear transformation gives us a process with state-space [−1, 1].

2Just as with the birth and death processes, the distribution of the time to absorption of
the Wright-Fisher diffusion has long been known, but our proof is new.

3



Chapter 1

Markov processes

In this chapter, we present basic results in the theory of Markov processes in
continuous time. Since this theory is closely related to functional analysis, we
start by stating a few functional-analytic definitions.

1.1 Preliminaries from functional analysis
Definition 1.1. Let L1 and L2 be Banach spaces. A function T : L1 → L2 is
called a linear operator from L1 to L2 if

T (αf + βg) = αTf + βTg

for all α, β ∈ R and f, g ∈ L1. If L1 = L2 we speak of a linear operator on L1,
and if L2 = R, we speak of a linear functional.

We say that the operator T is bounded if

‖T‖ := sup
‖f‖≤1

‖Tf‖ <∞.

It is well known that a linear operator is bounded if and only if it is continuous.
If ‖T‖ ≤ 1, T is called a contraction. If on L1 and L2 we have defined partial
order, we say that a linear operator T : L1 → L2 is positive if Tf ≥ 0 whenever
f ≥ 0, or equivalently Tf ≥ Tg whenever f ≥ g.

Definition 1.2. Let L1 and L2 be Banach spaces and G : D(G)→ L2 be a linear
operator, where D(G) is a linear subspace of L1. We define the graph of G as
{(f,Gf) ; f ∈ D(G)}. If the graph of G is a closed set in L1 × L2 (with respect
to the product topology), we say that G is a closed operator. If G is a (not
necessarily closed) linear operator and the closure of the graph of G is the graph
of a linear operator, which we denote Ḡ, then we say that G is closable and Ḡ is
its closure.

Let (T (t))t≥0 be a family of continuous linear operators on a Banach space
L. We say that T (t) is a semigroup if T (0) = I, the identity operator, and
T (s + t) = T (s)T (t) for all s, t ≥ 0. We say that the semigroup is strongly
continuous if additionally limt→0 T (t)f = f for all f ∈ L.

Now we define derivatives and integrals of Banach space-valued functions.
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Definition 1.3. Let u : [a, b]→ L for some [a, b] ⊂ R and a Banach space L. We
define the derivative of u at t0 ∈ [a, b] as

d
dtu (t0) = lim

t→t0

u(t)− u (t0)
t− t0

provided the limit exists.
A tagged partition of the interval [a, b] is a sequence ti, a = t1 < t2 < · · · <

tn = b, together with a sequence si, ti ≤ si ≤ ti+1, i = 1, . . . , n − 1. The norm
of the partition is maxi=1,...,n−1 (ti+1 − ti). Suppose that for every sequence tj of
tagged partitions of the interval [a, b] whose norm approaches zero the limit

lim
j→∞

nj−1∑
k=1

u (si) (ti+1 − ti)

exists and suppose that this limit does not depend on the choice of the tagged
partition. Then we say that u is Riemann integrable over [a, b] and write

ˆ b

a

u(t)dt = lim
j→∞

nj−1∑
k=1

u (si) (ti+1 − ti) .

It can be proved that whenever u is continuous, u is integrable. Furthermore,
if u has a continuous derivative on [a, b], then

ˆ b

a

d
dtu(t)dt = u(b)− u(a)

(see Ethier and Kurtz [3], Lemma 1.4 in Chapter 1).
Next we introduce some notation.

Notation 1.4. Let (E, E) be a measurable space. By bE we denote the space of
bounded measurable functions f : E → R. Furthermore, if E is a metric space
(in which case we take E to be its Borel σ-algebra), we denote by C(E) the space
of all continuous functions from E to R. If E is a locally compact metric space,
we denote by CK(E) the space of continuous functions with compact support and
by C0(E) the space of continuous functions vanishing at infinity, that is,

CK(E) = {f ∈ C(E); ∃K ⊆ E compact such that f = 0 onE\K} ,

C0(E) = {f ∈ C(E); ∀ε > 0∃K ⊆ E compact such that |f | < ε onE\K} .

Note that if E is itself compact, then CK(E) = C0(E) = C(E). Finally, if E ⊆ Rd

is an open set, we denote by Ck(E) the space of k-times continuously differen-
tiable functions from E to R, and by Ck

(
Ē
)
the space of k-times continuously

differentiable functions f : E → R such that f and all its derivatives up to kth
order can be extended to continuous functions on Ē.

Lemma 1.5. If (E, E) is a measurable space and we equip bE with the supremum
norm, it is a Banach spaces. If E is a locally compact metric space and we equip
C0(E) with the supremum norm, it is also a Banach space.
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Proof. We only need to prove completeness, as the other properties from the
definition of Banach space are trivial. Let fn ∈ bE be a Cauchy sequence. Then
fn(x) is Cauchy in R for all x ∈ E, and therefore has a limit, which we denote
f(x). Since f is a pointwise limit of measurable functions, it is measurable. Let
us fix ε > 0. By the Cauchy property of fn, there exists n0 such that for all
n,m ≥ n0 we have ‖fn − fm‖ < ε/2. For every x ∈ E, we can find mx ≥ n0
such that |fmx(x)− f(x)| < ε/2. Then we have that for every n ≥ n0 and every
x ∈ E, |fn(x)− f(x)| ≤ |fmx(x)− f(x)|+ |fn(x)− fmx(x)| < ε. This proves that
fn converges to f in supremum norm, and it follows that f is bounded.

Let now fn be a Cauchy sequence in C0 (E). Since C0(E) ⊆ bE , where E is
the Borel sigma-algebra of E, there is f ∈ bE such that fn → f in the supremum
norm. But convergence in the supremum norm preserves continuity, so f ∈ C(E).
Let us fix ε > 0. There is n such that ‖fn − f‖ < ε/2. Since fn is in C0(E), there
is a compact set K ⊆ E such that |fn| < ε/2 on E\K. Hence, |f | < ε on E\K,
so f is also in C0(E).

1.2 Transition probabilities and semigroups
Throughout this chapter we will assume that (Ω,F , (Ft) ,P) is a filtered proba-
bility space.

Definition 1.6. Let (E, E) be a measurable space and X = (Xt)t≥0 be an E-
valued (Ft)-adapted random process. We say that Xt is (Ft)-Markov process
if

P (Xt ∈ A|Fs) = P (Xt ∈ A|Xs) (1.1)

a. s. for all A ∈ E and t ≥ s ≥ 0. If Ft = σ (Xs, 0 ≤ s ≤ t), we say that Xt is a
Markov process. Observe that every (Ft)-Markov process is a Markov process.

Next we define transition kernels.

Definition 1.7. Let (U,A) and (V,B) be measurable spaces. We say that func-
tion K : U × B → [0, 1] is a probability kernel (also called stochastic kernel or
Markov kernel) from (U,A) to (V,B) if

1. for all x ∈ U the function K (x, ·) is a probability measure on (V,B) and

2. for all B ∈ B the function K (·, B) is A-measurable.

If (U,A) = (V,B), we say that K is a probability kernel on (U,A).

Remark 1.8. If V is countable and B = 2V , then K is uniquely determined by
K (x, {y}) , x ∈ U, y ∈ V . To simplify the notation, we will write K(x, y) instead
of K (x, {y}). Then we can say that K : U × V → [0, 1] is a probability kernel
if and only if ∑y∈U K(x, y) = 1 for all x ∈ U and K (·, y) is measurable for all
y ∈ V .

The Riesz representation theorem (Rudin [8], Theorem 6.19) says that there
is a correspondence between measures and linear functionals. There is similar
correspondence between probability kernels and linear operators, as described by
the following two lemmas.
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Lemma 1.9. Let K be a probability kernel from (U,A) to (V,B) for some measur-
able spaces (U,A) and (V,B). For a bounded measurable function f from (V,B)
to R and for x ∈ U define

TKf(x) =
ˆ
f(y)K (x, dy) .

Then TK is a positive continuous linear operator from bB to bA.
Proof. Measurability of TKf can be proved by approximating f by simple func-
tions and noting that K (·, B) is measurable for all B ∈ B. Linearity and positiv-
ity follow from the properties of the integral. Finally, |TKf(x)| ≤

´
|f(y)|K (x, dy) ≤

‖f‖, which proves that TKf is a bounded function and TK is a bounded, hence
continuous (by linearity), operator.

There is also a converse to the previous lemma.
Lemma 1.10. Let V be a locally compact separable metric space and (U,A) a
measurable space. Let T be a positive continuous linear operator from C0(V ) to
bA such that

sup
f∈C0(V ),‖f‖≤1

Tf(x) = 1

for all x ∈ U . Then there exists a probability kernel KT from (U,A) to (V,B(V ))
such that

Tf(x) =
ˆ
f(y)KT (x, dy) (1.2)

for all f ∈ C0(V ) and x ∈ U .
Proof. (For the proof of a similar statement, see Kallenberg [5], Proposition 17.14)
Let us fix x ∈ U . The functional

Tx : f 7→ Tf(x)

is a positive linear functional on C0(V ). By the Riesz representation theorem
(Rudin [8], Theorem 6.19), there exists a measureKT (x, ·) on (V,B) such that (1.2)
holds for all f ∈ C0(V ). Moreover,

KT (x, V ) = sup
f∈C0(V ),‖f‖≤1

Tf(x)

= 1,

so KT (x, ·) is in fact a probability measure. For f ∈ C0(V ), the function

x 7→
ˆ
f(y)KT (x, dy)

is measurable by assumption. Let G be an open set in V . Since V is a locally
compact separable metric space, it is known that there exist fn ∈ CK(V ) such
that fn(y)↗ 1G(y) for all y ∈ V .1The monotone convergence theorem now proves
that

x 7→
ˆ

1G(y)KT (x, dy) = KT (x,G)

1If V is compact, we can define fn(y) = min (1, nd(y, V \G)) where d(y, V \G) =
infz∈V \G d(y, z) is the distance of y and V \G, and d(y, z) is the metric on V . However, if
V is not compact, then this definition would not necessarily give us compactly supported func-
tions. The construction of fn in the non-compact case is more complicated and can be found
at the beginning of Chapter 2 of Seidler [9].
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is also measurable. If we now define

D = {A ∈ B(V ); x 7→ KT (x,A) is measurable} ,

it is easy to see that D is a monotone class. Since we have proved that all open
sets are in D, the monotone class theorem (Theorem 1.1 in Kallenberg [5]) now
shows that D = B(V ).

In the light of the previous lemmas we will not make a distinction between
probability kernels and the corresponding linear operators. For example, we will
write Kf instead of TKf where K is a probability kernel, and we will say that a
linear operator satisfying the requirements of Lemma 1.10 is a probability kernel.
Similarly, we will not make a distinction between measures and their correspond-
ing linear functionals. This allows us to define composition of a measure and a
kernel by operator composition. That is, if µ is a measure and K is a kernel,
then by µK we denote the composition of the linear functional associated with
µ with the linear operator associated with K. This composition is itself a linear
functional and can be represented by a measure. It is easy to see that the measure
is given by

(µK) (A) =
ˆ
K(x,A)µ(dx).

Analogously, it is possible to define composition of two kernels.
Lemma 1.10 shows that a probability kernel is uniquely determined by its re-

striction to continuous functions vanishing at infinity. Sometimes it will be useful
to use probability kernels that map continuous functions vanishing at infinity to
continuous functions vanishing at infinity.

Definition 1.11. Let U and V be locally compact metric spaces and let A and
B be their Borel σ-algebras. We say that a probability kernel K from (U,A) to
(V,B) is continuous if it maps C0(V ) to C0(U).

Lemma 1.12. Let U and V be compact metric spaces and let D be a dense
subspace of C(V ) containing 1. Let K : D → C(U) be a positive continuous linear
operator such that K1 = 1. Then K can be uniquely extended to a continuous
probability kernel from U to V .

Proof. Let f be in C(V ). There exist fn ∈ D such that fn → f . Since the
sequence fn is Cauchy in C(V ),

‖Kfn −Kfm‖ ≤ ‖K‖ ‖fn − fm‖ → 0

as n,m→∞, so Kfn is also Cauchy in C(U). We may therefore define

K̂f = lim
n→∞

Kfn.

It is easy to see that this definition does not depend on the choice of the approx-
imating functions fn (if there are two such sequences fn and gn combine them
into a new sequence hn to show that Khn has a limit, and the limits of Kfn and
Kgn must therefore be equal, since they are subsequences of Khn). It can also
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be seen that K̂f = Kf for f ∈ D (just take fn = f), so K̂ is indeed an extension
of K. Since K is linear, so must be K̂, and∥∥∥K̂∥∥∥ = sup

f∈C(V )

∥∥∥K̂f∥∥∥
= sup

f∈D
‖Kf‖

= ‖K‖

where we have used that D is dense in C(V ). Hence K̂ is a continuous linear
operator from C(V ) to C(U). To see that K̂ is positive, observe that if f ∈ C(V )
is greater than or equal to ε > 0 and fn ∈ D is its approximating sequence, then
fn ≥ 0 for sufficiently large n. Then

K̂f = lim
n→∞

Kfn

≥ 0

where we have used the positivity of K. If now f ∈ C(V ) is nonnegative,

K̂ (f + ε) ≥ 0.

Taking the limit ε→ 0 and noting that K̂ is continuous, we get that K̂ is positive.
Finally

sup
f∈C(V ),‖f‖≤1

K̂f(x) = K1(x)

= 1

for all x ∈ V , where we have used positivity of K. Lemma 1.10 now proves that
K̂ is a continuous probability kernel.

LetXt be an (Ft)-Markov process and suppose that the conditional probability
on the right hand-side of (1.1) has a regular version. That is, assume that for all
t ≥ s ≥ 0 there exist probability kernels Ps,t such that

P (Xt ∈ A|Fs) = Ps,t (Xs, A)

a. s. for all A in E . Observe that then we have

E (f (Xt) |Fs) = Ps,tf (Xs)

a. s. for all measurable f for which Ps,tf is well defined, i. e. for P ◦X−1
s -almost

every x, (Ps,tf+) (x) and (Ps,tf−) (x) are not both ∞ (in particular, this holds
true for all f ∈ bE). For all t ≥ u ≥ s ≥ 0 and for all A ∈ E we also have

Ps,t (Xs, A) = P (Xt ∈ A|Fs)
= E (P (Xt ∈ A|Fu) |Fs)
= E (Pu,t (Xu, A) |Fs)
= Ps,uPu,t (Xs, A)

a. s., which implies
Ps,tf(x) = Ps,uPu,tf(x) (1.3)

for all f ∈ bE and P◦X−1
s -almost every x, where the exceptional set may depend

on f . Equation (1.3) is called the Chapman-Kolmogorov equality. This finding
motivates the following definition, where we require that (1.3) holds for every x,
not only for almost every x.
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Definition 1.13. Let (Ps,t)t≥s≥0 be a family of probability kernels on a measur-
able space (E, E). We call this family a transition probability if for all 0 ≤ s ≤
u ≤ t the probability kernels satisfy

Ps,t = Ps,uPu,t

and
Pt,t = I,

where I is the identity kernel.2 If Xt is an (Ft)-Markov process and Ps,t is a
transition probability such that

P (Xt ∈ A|Fs) = Ps,t (Xs, A)

a. s. for all 0 ≤ s ≤ t and A ∈ E , then we say that Ps,t is associated with Xt.
If Ps,t is associated with Xt and we denote by πXt = P (Xt ∈ ·) the distribution

of X at time t, then for 0 ≤ s ≤ t and f ∈ bE ,

πXt (t)f = Ef (Xt)
= E [E [f (Xt) |Fs]]
= E [Ps,tf (Xs)]
= πXs Ps,tf,

that is, πXt = πXs Ps,t. Specifically, πXt = πX0 P0,t, so the initial distribution and the
transition probability determine the one-dimensional distributions of the Markov
process. In a similar way, it can be proved that the initial distribution and
the transition probability determine all finite-dimensional distributions. Then,
whenever we are given an initial distribution and a transition probability, we
can calculate finite-dimensional distributions and use the Kolmogorov extension
theorem (provided we work on a Polish space) to construct an associated Markov
process. This discussion leads us to the following Proposition.

Proposition 1.14. Let π0 be a probability measure and (Ps,t)t≥s≥0 a transition
probability on a Polish space (E, E). Then there exists a filtered probability space
(Ω,F , (Ft) ,P) and an (Ft)-Markov process Xt on (E, E) satisfying

P (Xt ∈ A|Fs) = Ps,t (Xs, A) (1.4)

a. s. and
P (X0 ∈ A) = π0(A) (1.5)

for all t ≥ s ≥ 0 and A ∈ E. Moreover, if there is another filtered probability
space and a random process satisfying (1.4) and (1.5), then the finite-dimensional
distributions of the two processes agree.

Proof. Proposition 7.2 in Kallenberg [5] shows that transition probability and
initial distribution determine finite-dimensional distributions. Theorem 7.4 in [5]
in turn proves the existence.

2Some authors do not require that Pt,t = I, but we will not deal with such cases.
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Unfortunately, the sample paths of the constructed Markov process might be
quite irregular. We would like to construct a Markov process with RCLL sample
paths (right continuous having left limits). For this, further restrictions on the
transition probability will be required.

In the following we will restrict our attention to time-homogeneous transition
probabilities. A transition probability is called time-homogeneous if

Ps,t = P0,t−s

for all t ≥ s ≥ 0. To simplify the notation, we will write Pt instead of P0,t. We
will also assume that E is a locally compact separable metric space and E is its
Borel σ-algebra.

Definition 1.15. Let E be a locally compact separable metric space and let
(Pt)t≥0 be a family of linear operators which map C0(E) into itself. We say
that Pt is a Feller semigroup if it is a conservative, strongly continuous, positive
semigroup, that is, for all s, t ≥ 0,

1. P0f = f for all f ∈ C0(E).

2. (semigroup property) Ps+t = PsPt on C0(E).

3. (strong continuity) limt→0+ Ptf = f for all f ∈ C0(E).

4. (positivity) Ptf ≥ 0 for every nonnegative f ∈ C0(E).

5. (conservativity) For all x ∈ E, supf≤1 Ptf(x) = 1.

Observe that positivity and conservativity imply ‖Pt‖ = 1, hence Pt is a
contraction. Note also that if E is compact, then conservativity is equivalent to
Pt1 = 1.

The crucial restrictions in Definition 1.15 are strong continuity and that Pt
are continuous probability kernels (see Lemma 1.10 and Definition 1.11). The
interpretation of the latter is that for f ∈ C0 (E),

Ptf(x) = E [f (Xt) |X0 = x]

is continuous in x and vanishing at infinity, which is a form of continuous depen-
dence on the initial condition. With these restrictions on the transition probabil-
ity, we are able to construct an RCLL process.

Theorem 1.16. Let Pt be a Feller semigroup and π0 be a probability distribution
on a locally compact, separable metric space E. Then there exists a Markov
process associated with Pt whose initial distribution is π0 and whose sample paths
are RCLL.

Proof. See Kallenberg [5], Theorem 17.15.

Before we proceed further, we demonstrate here an important technique of
“completing” a semigroup with missing probability. Sometimes we will find a
strongly continuous, positive, contraction semigroup Pt which is not conservative.

11



Then, the associated transition probability will be substochastic. To make Pt into
a Feller semigroup we will use the following construction. Let

E∆ = E ∪ {∆} (1.6)

where ∆ is a point at infinity if E is not compact (i. e. E∆ is the one-point
compactification of E) and an isolated point otherwise. Observe that E∆ is
compact, so C0

(
E∆

)
= C

(
E∆

)
. For f in C0(E) and x ∈ E∆ define

f∆(x) =

f(x), x ∈ E,
0, x = ∆,

and observe that f∆ is in C
(
E∆

)
. Observe also that

C
(
E∆

)
=

{
a+ f∆; a ∈ R, f ∈ C0(E)

}
,

C0(E) =
{
f �E −f(∆); f ∈ C

(
E∆

)}
,

where by f �E we mean the restriction of f to E, and define

P∆
t f = f(∆) + (Pt (f �E −f(∆)))∆ (1.7)

for f ∈ C
(
E∆

)
. We will prove that P∆

t is a Feller semigroup on C
(
E∆

)
and ∆

is an absorbing point.

Definition 1.17. Let Pt be a transition probability on a metric space E. We say
that x ∈ E is an absorbing point if Pt (x, ·) = δx.

The meaning of the absorbing point is that if a Markov process ever reaches
this point, it stays there forever. It is easy to see that x is an absorbing point
if and only if Ptf(x) = f(x) for all f ∈ C0(E), since a measure is uniquely
determined by how it integrates continuous functions.

Lemma 1.18. Let Pt be a strongly continuous, positive, contraction semigroup
on C0(E) for a locally compact separable metric space E. Let E∆ and P∆

t be
defined by (1.6) and (1.7). Then P∆

t is a Feller semigroup on C
(
E∆

)
and ∆ is

an absorbing point.

Proof. (See also Lemma 2.3 in Chapter 4 of Ethier and Kurtz [3].) First, P∆
t maps

C
(
E∆

)
into itself, since Pt maps C0 (E) into itself. Next, P∆

t is a semigroup, since

P∆
0 f = f (∆) + (P0 (f �E −f(∆)))∆

= f(∆) + f − f(∆)
= f

and

P∆
s P

∆
t f = P∆

t f(∆) + Ps
((
P∆
t f

)
�E −P∆

t f(∆)
)∆

= f(∆) + PsPt (f �E −f(∆))∆

= P∆
s+tf

12



for s, t ≥ 0 and f ∈ C
(
E∆

)
. Next, for f ∈ C

(
E∆

)
we have∥∥∥P∆

t f − f
∥∥∥ =

∥∥∥(Pt (f �E −f(∆)))∆ − (f − f(∆))
∥∥∥

= ‖Pt (f �E −f(∆))− (f �E −f(∆))‖ ,

which converges to 0 as t → 0 by the strong continuity of Pt, hence P∆
t is also

strongly continuous. To prove positivity, let 0 ≤ f ∈ C
(
E∆

)
and write

P∆
t f = f (∆) +

(
Pt (f �E −f(∆))+

)∆
−
(
Pt (f �E −f(∆))−

)
.

Now
(
Pt (f �E −f(∆))+

)
≥ 0 by the positivity of Pt. Also

∥∥∥(f �E −f(∆))−
∥∥∥ ≤

f(∆) since f is positive, so Pt (f �E −f(∆))− ≤ f(∆) by the contraction property
of Pt. Hence, P∆

t f ≥ 0. Finally,

P∆
t 1 = 1 + Pt0

= 1,

so P∆
t is conservative. We have therefore proved that P∆

t is a Feller semigroup.
Moreover, P∆

t f(∆) = f(∆) for all f ∈ C
(
E∆

)
, so ∆ is absorbing.

In this section we have found a way to characterize a Markov process in terms
of its transition probability. Unfortunately, the transition probability cannot be
specified explicitly by a formula except for a few special cases. For this reason,
we will define generators which uniquely determine transition probabilities and
in many practical cases can be given by formulas.

1.3 Generators
In this section, we will describe how to characterize Feller semigroups in terms of
their generators. Since part of the theory does not depend on specific assumptions
about Feller semigroups, we will start this section by presenting results about
strongly continuous, contraction semigroups, and later specialize them to the
case of Feller semigroups.

Definition 1.19. Let L be a Banach space. We say that a family of linear
operators (Pt)t≥0 on L is a strongly continuous contraction semigroup if

1. P0 = I,

2. (semigroup property) Ps+t = PsPt on L for all s, t ≥ 0,

3. (strong continuity) limt→0+ Ptf = f for all f in L

4. (contractiveness) ‖Pt‖ ≤ 1 for all t ≥ 0.

Let Pt be a strongly continuous contraction semigroup on a Banach space L.
The infinitesimal generator of Pt is defined as

Gf = lim
t→0+

1
t

(Ptf − f) .

The domain of G, denoted by D(G), is taken to be the subspace of L such that
the limit exists.

13



Theorem 1.20. (Hille-Yosida) A linear operator G on L is the generator of a
strongly continuous contraction semigroup on L if and only if

1. D(G) is dense in L,

2. G is dissipative, that is, ‖λf −Gf‖ ≥ λ‖f‖ for every f ∈ D(G) and λ > 0,

3. R(λ−G) = L for some λ > 0.

Proof. See Ethier and Kurtz [3], Theorem 1.2.6.

Corollary 1.21. Let G be the generator of a strongly continuous contraction
semigroup on a Banach space L. Then G is closed (see Definition 1.2). Moreover,
D(G) = L if and only if G is bounded (in particular if L is finite-dimensional).

Proof. Since G is dissipative andR(λ−G) = L is closed, Lemma 2.2 in Chapter 1
of Ethier and Kurtz [3] shows that G is closed.

Suppose now that G is bounded and let f be in L. Then there are fn ∈ D(G)
such that fn → f . Since fn is Cauchy,

‖Gfn −Gfm‖ ≤ ‖G‖ ‖fn − fm‖
→ 0

as n,m → ∞. Therefore, Gfn is Cauchy and has a limit. Since G is closed, f
must be in D(G). But f was arbitrary, so D(G) = L.

On the other hand, if D(G) = L, then the closed graph theorem shows that
G is continuous, hence bounded.

The domain of a generator might be difficult to describe. For this reason, we
often define a generator only on a “nice” set and then we take the closure.

Theorem 1.22. (Hille-Yosida) A linear operator G on L is closable and its
closure (see Definition 1.2) is the generator of a strongly continuous contraction
semigroup on L if and only if

1. D(G) is dense in L.

2. G is dissipative.

3. R(λ−G) is dense in L for some λ > 0.

Proof. See Ethier and Kurtz [3], Theorem 1.2.12.

The preceding theorem motivates the following definition.

Definition 1.23. Let G be the generator of a strongly continuous contraction
semigroup on a Banach space L, and let D be a subspace of D(G). We say that
D is a core of G if the closure of G �D is G.

It should be noted that not every dense subspace of D(G) is a core of G.
For a counterexample, see Liggett [6], Remark 3.57. However, there is a simple
sufficient condition for a dense subspace of D(G) to be a core.

14



Proposition 1.24. (Invariance and cores) Let G be the generator of a strongly
continuous contraction semigroup Pt on a Banach space L and let D ⊆ D(G) be
a dense subspace of L such that Pt : D → D for all t ≥ 0. Then D is a core for
G.

Proof. See Ethier and Kurtz [3], Proposition 3.3 in Chapter 1.

Proposition 1.25. Let G and H be generators of strongly continuous semigroups
on a Banach space L. Then we have the following:

1. If G is an extension of H (that is, D(G) ⊇ D(H) and Gf = Hf for all
f ∈ D(H)), then G = H.

2. If D is a core of H such that D ⊆ D(G) and Gf = Hf for all f ∈ D, then
G = H.

Proof. Ethier and Kurtz [3], Theorem 4.1 in Chapter 1, shows that if H is a
generator and G is a linear and dissipative extension of H, then G = H. Since
G is linear and dissipative by Theorem 1.20, the first assertion is proved. For the
proof of the second assertion let f be in D(H). Then there are fn ∈ D such that
fn → f and Gfn = Hfn → Hf . Since G is closed, f is in D(G) and Gf = Hf .
Hence, G is an extension of H and the second assertion follows from the first.

If L = C0(E) for some locally compact metric space, then we have the following
positive maximum principle, which we can use in the Hille-Yosida theorem instead
of dissipativity. In addition, it will imply positivity of the associated semigroup.

Definition 1.26. Let E be a locally compact metric space and let G be a linear
operator defined on a subspace of C0 (E). We say that G satisfies the positive
maximum principle if ∀f ∈ D (G) ,∀x0 ∈ E such that supx f (x) = f (x0) ≥ 0 we
have Gf (x0) ≤ 0.

Theorem 1.27. (Hille-Yosida for continuous functions) Let E be a locally com-
pact metric space. A linear operator G on C0(E) is closable and its closure is the
generator of a strongly continuous, positive, contraction semigroup on C0(E) if
and only if

1. D(G) is dense in C0(E).

2. G satisfies the positive maximum principle.

3. R(λ−G) is dense in C0(E) for some λ > 0.

Proof. See Ethier and Kurtz [3], Theorem 4.2.2.

The Hille-Yosida theorem gives us a necessary and sufficient condition for an
operator to be the generator of a semigroup. However, it does not tell us how to
calculate the associated semigroup. For that purpose, the next proposition might
be useful.

Proposition 1.28. (Kolmogorov backward equation) Let Pt be a strongly continu-
ous semigroup on a Banach space L and let G be its generator. Let u : [0,∞)→ L
and assume that f = u(0) ∈ D(G). Then the following are equivalent
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1. u is a continuous function such that u(t) ∈ D(G) for all t ≥ 0 and Gu :
(0,∞)→ L is continuous. Moreover,

d
dtu(t) = Gu(t)

for all t > 0, or equivalently

u(t) = u(ε) +
ˆ t

ε

Gu(s) ds (1.8)

for all t > ε > 0.

2. u(t) = Ptf for all t ≥ 0.

Proof. (See also Ethier and Kurtz [3], Proposition 3.4 in Chapter 1) Let us first
prove that 1⇒ 2. Define v : [0,∞)→ L by

v(t) = Ptf.

By strong continuity and the semigroup property, v is continuous. By Propo-
sition 1.5 in Chapter 1 of [3], v(t) ∈ D(G) for all t ≥ 0, Gv(t) = PtGf (which
implies that Gv(t) is continuous) and v satisfies (1.8). Hence, by Proposition 2.10
in Chapter 1 of [3], ‖u(t) − v(t)‖ ≤ ‖u(0) − v(0)‖ = 0 for all t ≥ 0. Therefore,
u = v.

Now we will prove that 2 ⇒ 1. Clearly, u(t) is continuous by the strong
continuity and the semigroup property of Pt. Proposition 1.5 in Chapter 1 of [3]
shows that u(t) ∈ D(G) and

d
dtu(t) = Gu(t) = PtGf

for all t ≥ 0. It follows from the strong continuity of Pt that Gu(t) is continuous.

Corollary 1.29. Let G be the generator of a Feller semigroup on a separable,
locally compact metric space E. Then x ∈ E is an absorbing point if and only if
Gf(x) = 0 for all f ∈ D(G).

Proof. Assume that x is an absorbing point and let f ∈ D(G). Then Ptf(x) =
f(x) and

Gf(x) = lim
t→0

1
t
(Ptf(x)− f(x))

= 0.

On the other hand, suppose that Gf(x) = 0 for all f ∈ D(G). Let f be in D(G).
Then by Proposition 1.28 Ptf is in D(G) and

d
dtPtf(x) = GPtf(x)

= 0,

hence t 7→ Ptf(x) is constant, so Ptf(x) = f(x). Since D(G) is dense in C0(E)
and Pt is a continuous operator, Ptf(x) = f(x) for all f ∈ C0(E), hence x is
absorbing.
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Corollary 1.30. Let L1 be a closed subspace of a Banach space L2 and let Pt
and Qt be strongly continuous semigroups on L1 and L2 with generators G and
H. Suppose that D(G) ⊆ D(H) and G = H on D(G). Then Pt = Qt on L1 for
all t ≥ 0. In particular, strongly continuous semigroups are uniquely determined
by their generators.

Proof. Let f be in D(G). Then by applying implication 2⇒ 1 of Proposition 1.28
on u(t) = Ptf we get that Ptf and d

dtPtf are continuous, Ptf is in D (G) and

d
dtPtf = GPtf

= HPtf

for all t ≥ 0, where we have used that G = H on D(G). By implication 1⇒ 2 of
the same Proposition, Ptf = Qtf . Since D(G) is dense in L1, Ptf = Qtf for all
f ∈ L1.

Recall that a strongly continuous, positive, contraction semigroup Pt on C(E)
for a compact metric space E is conservative if and only if Pt1 = 1 (see Defini-
tion 1.15).

Corollary 1.31. Let Pt be a strongly continuous, positive, contraction semigroup
on C(E), where E is a compact metric space, and let G be its generator. Then
Pt is conservative (hence Feller) if and only if 1 is in D(G) and G1 = 0.

Proof. Assume that Pt is conservative. Then

Pt1− 1
t

= 0,

hence 1 ∈ D(G) and G1 = 0.
Assume now that 1 is in D(G) and G1 = 0 and define u(t) = 1. By Proposi-

tion 1.28, Pt1 = u(t) = 1.

Now we return to Lemma 1.18.

Lemma 1.32. Let Pt be a positive, strongly continuous, contraction semigroup
on C0(E) for some locally compact metric space and let G be its generator. Define
E∆ and P∆

t as in Lemma 1.18 and let G∆ be the generator of P∆
t . Then

D
(
G∆

)
=
{
a+ f∆; a ∈ R, f ∈ D(G)

}
,

or equivalently
D(G) =

{
f �E −f(∆); f ∈ D

(
G∆

)}
,

and
G∆f = (G (f �E −f(∆)))∆ (1.9)

for f ∈ D
(
G∆

)
. Moreover, if D ⊆ D(G) is a core of G, then

D∆ =
{
a+ f∆; a ∈ R, f ∈ D

}
is a core of G∆.
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Proof. Let f be in C
(
E∆

)
. Observe that

P∆
t f − f
t

=
(
Pt (f �E −f(∆))− (f �E −f(∆))

t

)∆

and this expression converges as t → 0 if and only if f �E −f(∆) is in D(G) in
which case the limit is given by (1.9).

To prove the statement about the cores, let f be in D
(
G∆

)
. We need

to find fn ∈ D∆ such that fn → f and G∆fn → G∆f . But we know that
f �E −f(∆) is in D(G), so there are f̃n ∈ D such that f̃n → f �E −f(∆) and
Gf̃n → G (f �E −f(∆)). It is now easy to see that fn = f̃∆

n + f(∆) satisfy the
requirements.

1.4 Diffusions
In this section we describe diffusions. A diffusion is a Feller process with con-
tinuous sample paths. First, we give a sufficient condition for the generator of a
Feller semigroup to be associated with a diffusion.

Theorem 1.33. Let G be the generator of a Feller semigroup on C0(E) where
E is a locally compact separable metric space. Suppose that for each x0 ∈ E and
ε > 0 there exists f ∈ D(G) such that f (x0) = ‖f‖, supx∈E\B(x0,ε) f(x) < ‖f‖
and Gf (x0) = 0. Then almost all sample paths of the process associated with G
are continuous.

Proof. See Ethier and Kurtz [3], Proposition 2.9 and Remark 2.10 in Chapter 4.

Now we give an example of a diffusion process. Define C2[−1, 1] as the space
of continuous functions on [−1, 1] whose restrictions to (−1, 1) are twice continu-
ously differentiable and whose second derivative has finite limits as x→ ±1 and
therefore can be regarded as a continuous function on [−1, 1]. Let us define an
operator on C2 [−1, 1] by

GWF =
(
1− x2

) ∂2

∂x2 . (1.10)

We will now prove that GWF generates a diffusion process. The process is called
the Wright-Fisher diffusion (see Liggett [6], Example 3.48).3

Lemma 1.34. The operator GWF defined by (1.10) is closable and its closure is
the generator of a Feller semigroup. Moreover, the associated Markov process is
a diffusion.

Proof. (See also Liggett [6], Example 3.48 and Theorem 3.49) First, we verify the
conditions of the Hille-Yosida theorem for continuous functions (Theorem 1.27)
to prove that GWF is closable and its closure generates a strongly continuous,
positive, contraction semigroup.

3Note that the Wright-Fisher diffusion is usually defined on [0, 1], but a linear transformation
of space yields our definition.
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1. D
(
GWF

)
contains the set of all polynomials on [−1, 1], which is dense in

C [−1, 1] by the Stone-Weierstrass theorem.

2. Let f ∈ C2 [−1, 1] and x0 ∈ [−1, 1] be such that supx∈[−1,1] f(x) = f (x0). If
x0 ∈ (−1, 1) then ∂2f

∂x2 (x0) ≤ 0. If x0 ∈ {−1, 1} then 1 − x2
0 = 0. In both

cases, GWFf (x0) ≤ 0.

3. We show that R (λ−G) contains the set of all polynomials. Let

g(x) =
n∑
k=0

bkx
k

be given. We will try to find a polynomial of the form

f(x) =
n∑
k=0

akx
k

such that
(
λ−GWF

)
f = g. We have

(λ−GWF )f(x) =
[
λ−

(
1− x2

) ∂2

∂x2

]
n∑
k=0

akx
k

=
n∑
k=0

ak
[
λxk −

(
1− x2

)
k(k − 1)xk−2

]
=

n∑
k=0

ak [λ+ k(k − 1)]xk

−
n−2∑
m=0

am+2(m+ 2)(m+ 1)xm

=
n∑
k=0
{ak [λ+ k(k − 1)]

−1[k≤n−2]ak+2(k + 2)(k + 1)
}
xk

Therefore, coefficients of f must satisfy

(λ+ k(k − 1)) ak − (k + 2)(k + 1)ak+2 = bk, k = 0, . . . , n− 2,
(λ+ (n− 1)(n− 2)) an−1 = bn−1,

(λ+ n(n− 1)) an = bn.

These equations can be solved recursively, starting from an working down
to a0. Then f satisfies (λ−GWF )f = g, which means g ∈ R (λ−G).

Since GWF1 = (1− x2) ∂2

∂x2 1 = 0, by Corollary 1.31, the associated semigroup is
conservative. We have therefore shown that GWF generates a Feller semigroup.
To prove that the associated Markov process is a diffusion, we verify the conditions
of Theorem 1.33.

Let x0 ∈ [−1, 1] and ε > 0 be given and define f as

f(x) = 16− (x− x0)4 .
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Clearly f ≥ 0 and f attains its unique maximum at x0, so

sup
x∈[−1,1]\(x0−ε,x0+ε)

f(x) < f (x0) = ‖f‖.

Moreover,
∂2

∂x2f (x0) = 0,

so GWFf (x0) = 0.

In general, it is difficult to determine the domain of a generator of a Feller
semigroup. However, in one dimension the situation is easier.

Lemma 1.35. D(ḠWF ) = {f ∈ C [−1, 1] ∩ C2(−1, 1); limx→±1 (1− x2) f ′′(x) = 0}.

Proof. Use Theorem 8.1.1 in [3].

For future reference, we also give the following useful representation of the
Wright-Fisher semigroup for polynomials.

Lemma 1.36. Let PWF
t be the semigroup associated with GWF . If p ∈ C [−1, 1]

is a polynomial,

p(x) =
n∑
k=0

akx
k,

then there exist bk ∈ C [0,∞), k = 0, . . . , n such that bk(0) = ak and

PWF
t p(x) =

n∑
k=0

bk(t)xk.

Moreover, if p (·) is an even polynomial, then so is PWF
t p (·) for all t ≥ 0.

Proof. We will find bk(t) such that u(t) := ∑n
k=0 bk(t)xk satisfies the Kolmogorov

backward equation (Proposition 1.28). First observe that4

d
dtu(t) =

n∑
k=0

b′k(t)xk

since

lim sup
s→0

sup
x∈[−1,1]

∣∣∣∣∣u(t+ s, x)− u(t, x)
s

−
n∑
k=0

b′k(t)xk
∣∣∣∣∣

= lim sup
s→0

sup
x∈[−1,1]

∣∣∣∣∣
n∑
k=0

(
bk(t+ s)− bk(t)

s
− b′k(t)

)
xk
∣∣∣∣∣

≤ lim
s→0

n∑
k=0

∣∣∣∣∣bk(t+ s)− bk(t)
s

− b′k(t)
∣∣∣∣∣

=0.
4The derivative here is interpreted in the sense of Definition 1.3, where the Banach space is

C [−1, 1], not simply as the point derivative.
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By the Kolmogorov backward equation, we need d
dtu(t) to be equal to

GWFu(t) =
n∑
k=0

k(k − 1)bk(t)
(
1− x2

)
xk−2

=
n−2∑
k=0

(k + 2)(k + 1)bk+2(t)xk −
n∑
k=0

k(k − 1)bk(t)xk.

That is
b′k(t) = 1[k≤n−2](k + 2)(k + 1)bk+2(t)− k(k − 1)bk(t). (1.11)

From the Kolmogorov backward equation we also have the initial condition

u(0) = p,

that is
bk(0) = ak

for all k. This is a system of linear differential equations, hence it has a unique
solution.

Finally note that the right-hand side of (1.11) only uses bk and bk+2, so if
ak = 0 for all odd k, then bk(t) = 0 for all odd k, so u(t) is an even polynomial.

Corollary 1.37. The set of polynomials on [−1, 1] is a core for the Wright-Fisher
diffusion.

Proof. Follows from the previous Lemma and Proposition 1.24.

We describe one more diffusion process which we call the Wright-Fisher dif-
fusion with reflection at zero. Let f ∈ C2[0, 1] be such that ∂

∂x
f(0) = 0 and

define
GWF,rf(x) =

(
1− x2

) ∂2

∂x2f(x), (1.12)

x ∈ [0, 1]. Note that this formula is the same as that of the generator of ordinary
Wright-Fisher diffusion, but the domain is different.

Lemma 1.38. GWF,r is closable and its closure is the generator of a diffusion
process.

Proof. This proof is analogous to that of Lemma 1.34. We start by verifying the
conditions of Theorem 1.27.

1. D
(
GWF,r

)
contains even polynomials and they are dense in C [0, 1] by the

Stone-Weierstrass theorem.

2. Let f be in D
(
GWF,r

)
and x0 ∈ [0, 1] be such that supx∈[0,1] f(x) = f (x0).

If x0 ∈ (0, 1) then ∂2f
∂x2 (x0) ≤ 0. If x0 = 0, then ∂2f

∂x2 (x0) ≤ 0, since
∂
∂x
f (x0) = 0. If x0 = 1 then 1− x2

0 = 0. In all cases, GWF,rf (x0) ≤ 0.

3. We claim that R
(
λ−GWF,r

)
contains the set of all even polynomials. In

other words, for every even polynomial g there exists f ∈ D
(
GWF,r

)
such

that
(
λ−GWF,r

)
f = g. The calculations are the same as in the proof of

Lemma 1.34, we just need to point out that the equations there guarantee
that whenever g is even, then so is f .
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Thus, we have proved that GWF,r is closable and its closure generates a strongly
continuous, positive contraction semigroup. Since GWF,r1 = 0, the semigroup is
conservative, hence Feller. We conclude the proof by verifying the conditions of
Theorem 1.33.

Let x0 ∈ [0, 1] and ε > 0 be given. Define

f(x) = 1−
(
x2 − x2

0

)4
.

Then f ≥ 0 on [0, 1] and it attains its unique maximum at x0. Hence

sup
x∈[0,1]\(x0−ε,x0+ε)

f(x) < f (x0) = ‖f‖.

Moreover,
∂2

∂x2f (x0) = 0,

so GWF,rf (x0) = 0.

Remark 1.39. In analogy to Lemma 1.36, we can prove that if p is an even poly-
nomial, then so is PWF,r

t p. Moreover, since the Kolmogorov backward equations
are the same, PWF,r

t p(x) = PWF
t p(x) for x ∈ [0, 1]. Then, just as in the Corol-

lary 1.37, we have that the set of even polynomials on [0, 1] is a core for the
Wright-Fisher diffusion with reflection at zero.

We say that a Markov process whose generator is GWF,r is the Wright-Fisher
diffusion with reflection at zero. The next lemma justifies this name.

Lemma 1.40. Let Xt be the Wright-Fisher diffusion. Then |Xt| is the Wright-
Fisher diffusion with reflection at zero.

Proof. (Adapted from Liggett [6], Example 3.55, where similar techniques are
used for Brownian motion with reflection at zero.) For f : [0, 1] → R define the
even extension by

fe(x) =

f(x), x ∈ [0, 1],
f(−x), x ∈ [−1, 0).

First we will prove that (
PWF,r
t f

)
e

= PWF
t fe (1.13)

for all f ∈ C [0, 1]. If f is an even polynomial, then (1.13) follows from Re-
mark 1.39. The general case now follows from the fact that even polynomials are
dense in C [0, 1].

Let now f be in C [0, 1]. Then for s, t ≥ 0,

E [f (|Xs+t|) | |Xu| , 0 ≤ u ≤ s]
=E [E [fe (Xs+t) |Xu, 0 ≤ u ≤ s] | |Xu| , 0 ≤ u ≤ s]
=E

[
PWF
t fe (Xs) | |Xu| , 0 ≤ u ≤ s

]
=E

[(
PWF,r
t f

)
e
(Xs) | |Xu| , 0 ≤ u ≤ s

]
=
(
PWF,r
t f

)
(|Xs|)

a. s.
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1.5 Birth and death process
In this section, we define birth and death processes.

Definition 1.41. We say that a linear operator G on R{0,...,n} is the generator
of a birth and death process on {0, . . . , n} if there exist non-negative numbers
b0, . . . , bn−1 and d1, . . . , dn such that

Gf(k) =


b0f(1)− b0f(0), k = 0,
bkf(k + 1)− (bk + dk) f(k) + dkf(k − 1), 0 < k < n,

dkf(k − 1)− dkf(k), k = n.

Similarly, we say that a linear operator G on RN is the generator of a birth and
death process on N if there exist non-negative numbers b0, b1, . . . and d1, d2, . . .
such that

Gf(k) =

b0f(1)− b0f(0), k = 0
bkf(k + 1)− (bk + dk) f(k) + dkf(k − 1), k > 0

The numbers b0, b1, . . . are called birth rates and d1, d2, . . . are called death rates.
If all death rates are zero, we speak of a pure birth process.

Observe that the generator of a birth and death process satisfies the positive
maximum principle. Indeed, if f attains its maximum at k for 0 < k < n, then
f(k) dominates both f(k + 1) and f(k − 1), hence (bk + dk) f(k) ≥ bkf(k +
1) + dkf(k − 1). On the other hand, if f attains its maximum at k = 0, then
b0f(0) ≥ b0f(1). Similarly, if f is maximized at k = n, then dkf(n) ≥ dkf(n−1).
In all cases, Gf(k) ≤ 0.

Let G be the generator of a birth and death process on {0, . . . , n}. Noting
that C ({0, . . . , n}) = R{0,...,n} we can prove that G is the generator of a Feller
semigroup. Indeed, its domain is dense (since it is the entire space R{0,...,n}), it sat-
isfies the positive maximum principle as noted above, (λ−G)−1 = 1

λ

(
I − G

λ

)−1
=

1
λ

∑∞
k=0

(
G
λ

)k
for λ > ‖G‖, so R (λ−G) = R{0,...,n} for such λ, and G1 = 0.

When G is the generator of a birth and death process on N, the situation is
more complicated. We note that when G is unbounded, it does not necessarily
map C0(N) into itself. For simplicity, we will only deal with generators of pure
birth processes on N, as that is all we will need.

Proposition 1.42. Let G be the generator of a pure birth process on N. Define
D = {f ∈ C0 (N) ; Gf ∈ C0 (N)}. Then the restriction of G to D is the generator
of a strongly continuous positive contraction semigroup on C0 (N). Moreover,
CK (N) is a core of this generator.

Proof. First note that whenever f is in CK(N) then so is Gf , so CK (N) ⊂ D.
Moreover, CK (N) is dense in C0 (N).

Let λ > 0 and g ∈ CK(N) be fixed. We will find f ∈ CK(N) such that

(λ−G) f = g. (1.14)

This will prove that the range of (λ−G) contains CK(N) and is therefore dense
in C0(N).
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Let n be such that g(k) = 0 for all k ≥ n. By definition of G, f ∈ RN

satisfies (1.14) if and only if

f(k + 1) =
(

1 + λ

bk

)
f(k)− g(k)

bk
, (1.15)

By iterating 1.15 we get

f(n) =
n−1∏
l=0

(
1 + λ

bl

)
f(0)−

n−1∑
k=0

n−1∏
l=k+1

(
1 + λ

bl

)
g(k)
bk

.

Now we wish to set f(0) such that f(n) = 0. This is accomplished by setting

f(0) =
n−1∑
k=0

k∏
l=0

(
1 + λ

bl

)−1
g(k)
bk

.

If we now use (1.15) to define f recursively for all k > 0, then f solves (1.14).
Moreover, f(n) = 0, hence f(k) = 0 for all k > n, so f ∈ CK(N).

Recall that we have shown above that G satisfies the positive maximum prin-
ciple. Theorem 1.27 now proves that both G �CK(N) and G �D are closable and
their closures are the generators of strongly continuous positive contraction semi-
groups. Corollary 1.30 shows that these semigroups agree, so CK (N) is indeed a
core of the closure of G �D. To complete the proof, it suffices to prove that G �D
is closed. Let fn ∈ D and f, g ∈ C0 (N) such that fn → f and Gfn → g in C0 (N).
Then fn → f pointwise, so Gfn → Gf pointwise. Therefore Gf = g and f ∈ D
by the definition of D.

Let G be a generator of a pure birth process on N and let Pt be its corre-
sponding semigroup. The kernel associated with Pt may be substochastic. The
“missing probability” is the probability of explosion. To make Pt into a Feller
semigroup we make use of Lemmas 1.18 and 1.32. Let N̄ = N ∪ {∞} be the
one-point compactification of N and for f in C

(
N̄
)
define

P∆
t f = (f(∞) + Pt (f �N −f(∞)))∆ .

Lemma 1.18 shows that Pt is a Feller semigroup and∞ is an absorption state (see
also Lemma 2.3 and Proposition 2.4 in chapter 4 of [3]). Moreover, the generator
of Pt is given by (1.9) and its core are functions such that

f(k) = f(n); k ≥ n

for sufficiently large n.
We have constructed pure birth processes from their generators using the

Hille-Yosida theorem. However, there is also an alternative construction. Let
b0, b1, . . . be positive numbers and let T0, T1, . . . be independent exponential ran-
dom variables with parameters b0, b1, . . . Define

τn =
n∑
k=0

Tk, n = 0, 1, . . .
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and
Xt =

∞∑
k=0

1[τk≤t].

Then Xt is a Feller process and its generator is the generator of a pure birth
process with birth rates b0, b1, . . . in the sense of Definition 1.41. Similarly,

X
(n)
t =

n−1∑
k=0

1[τk≤t]

is a pure birth process with birth rates b0, . . . bn−1. Observe that τn−1 is the time
it takes the process X(n)

t to reach its absorbing state n, and

τ∞ =
∞∑
k=0

Tk

is the time it takes process Xt to reach its absorbing state ∞. For the details of
the construction and proofs, see Chapter 2 of Liggett [6]. We note that similar
construction using exponential waiting times is possible for more general Markov
processes with countable state spaces than just pure birth processes. When the
state spaces are finite, the two constructions (i. e. by the Hille-Yosida theorem and
by exponential waiting times) are equivalent. But there are Markov processes with
countably infinite state spaces that can be constructed by exponential waiting
times, but they are not Feller processes, so they cannot be constructed using the
Hille-Yosida theorem. Hence for infinite state spaces the two constructions are
not equivalent (however, as mentioned above, the two constructions are equivalent
for pure birth processes even on countably infinite state spaces).
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Chapter 2

Intertwining of Markov processes
with discrete state-space

In this chapter, we review the literature on intertwining of Markov processes with
discrete state-space. We show results in both discrete and continuous time, as the
former is often the basis for the latter. The basic idea is to find two generators
G and H and a probability kernel K such that

GK = KH. (2.1)

From this, we deduce an analogous relation for the associated semigroups, that
is

PtK = KQt (2.2)

for all t ≥ 0. From this relation, we may deduce distributional properties of the
associated Markov processes. Algebraic relations of the type (2.1) and (2.2) are
called intertwining relations, which gives the name to the intertwining of Markov
processes.

2.1 Discrete time
Intertwining of Markov processes in discrete time and space was studied by Di-
aconis and Fill [1]. They consider the following situation. Let S1 and S2 be
countable spaces, P and Q be probability kernels on S1 and S2 (interpreted as
transition probabilities of Markov processes Xn and Yn), and K be a probability
kernel from S1 to S2. Assume that the discrete-time analogue of (2.1) holds, that
is,

PK = KQ. (2.3)

Iterating this equation, we get

P nK = KQn, (2.4)

which is the discrete-time analogue of (2.2). If πX0 and πY0 are initial distributions
that satisfy

πY0 = πX0 K,
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then the time n distributions satisfy an analogous relationship, namely,

πYn = πY0 Q
n

= πX0 KQ
n

= πX0 P
nK

= πXn K.

This means that
P (Yn = y) = E [K (Xn, y)] . (2.5)

However, it is possible to prove more. Diaconis and Fill show that it is possible
to couple Xn and Yn in such a way that the conditional distribution of Yn, given
the history of Xn, is given by K, as is shown in the next Theorem.

Theorem 2.1. Let S1 and S2 be countable sets with discrete topology,
(
πX0 , P

)
a distribution and a probability kernel on S1, and

(
πY0 , Q

)
a distribution and a

probability kernel on S2, and let K be a probability kernel from S1 to S2. Then
there exists a Markov chain (Xn, Yn) with margins Xn ∼

(
πX0 , P

)
and Yn ∼(

πY0 , Q
)
such that

P (Yn = yn|Xn = xn, . . . , X0 = x0) = K (xn, yn)

for every n ≥ 1, yn ∈ S2 and almost every x0, . . . , xn ∈ S1 w. r. t. law of
(X0, . . . , Xn), if and only if

πY0 = πX0 K,

PK = KQ.

Remark 2.2. By Xn ∼
(
πX0 , P

)
we mean that, on its own, Xn is a Markov process

with the initial distribution πX0 and the transition probability P . Expression
Yn ∼

(
πY0 , Q

)
is interpreted analogously.

Proof. See Diaconis and Fill [1], Theorem 2.17. The basic idea for the proof of
sufficiency is to define a distribution and a probability kernel on

S = {(x, y) ∈ S1 × S2; K (x, y) > 0}

by
π

(X,Y )
0 (x, y) = πX0 (x)K(x, y) (2.6)

and

P (X,Y ) ((x1, y1) , (x2, y2)) =


Q(y1,y2)P (x1,x2)K(x2,y2)

∆(x1,y2) , if ∆ (x1, y2) > 0,
0, otherwise,

(2.7)

where ∆ = PK = KQ. To see that π(X,Y )
0 is indeed a distribution on S, observe

that ∑
(x,y)∈S

π
(X,Y )
0 (x, y) =

∑
x∈S1

πX0 (x)
∑

y∈S2,K(x,y)>0
K(x, y)

=
∑
x∈S1

πX0 (x)

= 1.
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To see that P (X,Y ) is a probability kernel on S, let (x1, y1) ∈ S and y2 ∈ S2 and
note that ∑

x2∈S1,K(x2,y2)>0
P (X,Y ) ((x1, y1) , (x2, y2)) = Q (y1, y2) 1[∆(x1,y2)>0], (2.8)

where we used the fact that

∆ (x1, y2) =
∑
x2∈S1

P (x1, x2)K (x2, y2) .

However, we also have that

∆ (x1, y2) =
∑
y∈S2

K (x1, y)Q (y, y2)

≥ K (x1, y1)Q (y1, y2) .

But (x1, y1) is in S, soK (x1, y1) > 0. Hence, if ∆ (x1, y2) = 0, then Q (y1, y2) = 0,
which proves that the indicator on the right-hand side of (2.8) can be dropped.
Then we get∑
(x2,y2)∈S

P (X,Y ) ((x1, y1) , (x2, y2)) =
∑
y2∈S2

∑
x2∈S1,K(x2,y2)>0

P (X,Y ) ((x1, y1) , (x2, y2))

=
∑
y2∈S2

Q (y1, y2)

= 1,

which shows that P (X,Y ) is indeed a probability kernel. Then Diaconis and Fill
prove that the Markov process with the initial distribution π(X,Y )

0 and the tran-
sition probability P (X,Y ) has the desired properties (compare this with the proof
of Remark 3.17 below).

Remark 2.3. It is worthwhile to point out that the coupled Markov process is
not necessarily unique. That is, there might be other choices for the coupled
transition probability than (2.7) such that the coupled process has the desired
properties, see Remark 2.23 in Diaconis and Fill [1].
Remark 2.4. Note that the intertwining relationship PK = KQ is not symmet-
ric. Even if K is invertible, K−1 is generally not a probability kernel. To express
this asymmetry, we say that Yn is an averaged Markov process on Xn, following
the terminology used in Swart [10]. This terminology can be motivated by (2.5),
which says that the distribution of Yn is the average (expectation) of some func-
tion of Xn.

The construction used in the proof of Theorem 2.1 created the bivariate
Markov chain in one step. However, Diaconis and Fill also give the following
sample path construction. In this construction, they first construct the Markov
chain Yn and then for each sample path of Yn they construct the Markov chain Xn

using knowledge of the sample path of Yn and independent randomness. Specifi-
cally, let Yn be the Markov chain with the initial distribution πY and transition
probability Q. Define X0 as the random variable whose conditional distribution
is

P (X0 = x0|Y0 = y0) = πX0 (x0)K (x0, y0)
πY0 (y0) . (2.9)
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Assuming that X0, . . . , Xn−1 have already been constructed, construct Xn as

P (Xn = xn|Xn−1 = xn−1, . . . , X0 = x0, Yn = yn, . . . Y0 = y0) =
P (xn−1, xn)K (xn, yn)

∆ (xn−1, yn) . (2.10)

They then show that (Xn, Yn) constructed in this way is a Markov chain with
the initial distribution π(X,Y )

0 of (2.6) and transition probability P (X,Y ) of (2.7).
Hence, it is a coupled Markov chain in the sense of Theorem 2.1.

2.2 Continuous time
Fill [4] extends the results of Diaconis and Fill [1] to Markov processes with
continuous time. However, he still only considers the case of the discrete state-
space. Note that Fill uses formalism of Markov chains constructed by exponential
waiting times, and not the formalism of Feller processes (see the discussion at the
end of Chapter 1). In this theses we are interested mostly in Feller processes
(indeed, entire Chapter 3 is concerned with Feller processes). Nevertheless, we
use Fill’s results only as an inspiration, and all our proofs in Chapter 3 are
formally independent from Fill’s results presented in this section. Hence, it does
not matter that he uses different formalism than we do.

In discrete time, the equivalence of (2.3) and (2.4) was trivial, but in contin-
uous time, the proof is more complicated.

Proposition 2.5. Let S1 and S2 be countable spaces and let K be a probability
kernel from S1 to S2. Let G and H be generators on S1 and S2 and let Pt and
Qt be their associated semigroups. Then

PtK = KQt (2.11)

for all t ≥ 0 if and only if
GK = KH. (2.12)

Proof. See Lemma 3 and Proposition 2 in Fill [4]. The idea of proving (2.11)⇒(2.12)
is to differentiate (2.11). The proof of (2.12)⇒(2.11) uses the Kolmogorov back-
ward equation.

If we assume (2.11) and that the initial distributions are properly intertwined,

πY0 = πX0 K,

then, just as in the discrete time, we can prove that time t distributions are
intertwined:

πYt = πY0 Qt

= πX0 KQt

= πX0 PtK

= πXt K.

(2.13)

Again, it is possible find a coupling such that the conditional distribution of Yt
given the history of Xt is given by K.
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Theorem 2.6. Let S1 and S2 be finite spaces and let K be a probability kernel
from S1 to S2. Let πX0 and Pt be a probability distribution and a semigroup on S1
and analogously let πY0 and Qt be a probability distribution and a semigroup on
S2. Then there exists a Markov chain (Xt, Yt) with margins Xt ∼

(
πX0 , Pt

)
and

Yt ∼
(
πY0 , Qt

)
satisfying

P (Yt = y|Xu, 0 ≤ u ≤ t) = K (Xt, y) (2.14)

a. s. for all t ≥ 0, if and only if

πY0 = πX0 K

and
PtK = KQt

for all t ≥ 0.

Proof. See Theorem 2 in Fill [4]. We give here only a sketch of the proof of
sufficiency. Define a state-space for the bivariate process as

S = {(x, y) ∈ S1 × S2; K(x, y) > 0} .

Also define a distribution on S by

π
(X,Y )
0 (x, y) = πX0 (x)K(x, y).

In analogy with (2.7), for t > 0 define a probability kernel on S by

P (t) ((x1, y1) , (x2, y2)) =


Qt(y1,y2)Pt(x1,x2)K(x2,y2)

∆(t)(x1,y2) , if ∆(t)(x1, y2) > 0,
0, otherwise,

(2.15)

where ∆(t) = PtK. It turns out, however, that P (t) does not satisfy the Chapman-
Kolmogorov equations and hence cannot be used to construct the bivariate process
directly. However, Fill proves that there exists a generator G on S (for which he
gives an explicit formula) such that

P (t) − I
t

→ G (2.16)

as t→ 0. It is then shown that

lim
h→0

(
P (h)

)bt/hc
= P t, (2.17)

where P t is the semigroup generated by G. Fill then uses (2.15) and (2.17)
to prove that the bivariate Markov process associated with G has the desired
properties.

Remark 2.7. Contrary to the discrete-time case, it is not clear if there is more than
one G such that the bivariate process generated by G has the desired properties.
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Remark 2.8. Note that Theorem 2.6 assumes that the state-spaces are finite.
Indeed, Fill is unable to generalize the algebraic proof sketched above to the case
that the state-spaces are infinite, because he is unable to prove that (2.17) holds
in the infinite case.

Nevertheless, Fill finds a way to prove Theorem 2.6 even for the countably
infinite case, although he does not present the entire proof. When the state-
spaces are infinite, he makes some simplifying assumptions that are satisfied in
all cases he is interested in. Specifically, he assumes that Pt and Qt define non-
explosive Markov chains, there exists exactly one absorbing state ∞ ∈ S1 such
that K (∞, ·) is a stationary distribution for Qt, and for all x ∈ S1\ {∞} the sets

{y ∈ S2; K(x, y) > 0}

are finite. Under these assumptions he observes that the explicit formula which he
found for G in the proof for the finite state-spaces continues to define a generator
even when the state spaces are infinite. Then he proves that

ΛG = GΛ

and
ΛP t = PtΛ

where Λ is a kernel from S1 to S defined by

Λ (x̃, (x, y)) = K(x, y)1[x=x̃]

(see the proof of Proposition 4 in Fill [4]). He uses this to prove that if (Xt, Yt) ∼(
π

(X,Y )
0 ,G

)
then Xt ∼

(
πX0 , Pt

)
and (2.14) holds (compare this to the proofs of

Remark 3.17 and Theorem 3.9 below). He is unable to prove algebraically that

(Xt, Yt) ∼
(
π

(X,Y )
0 ,G

)
⇒ Yt ∼

(
πY0 , Qt

)
. (2.18)

However, he finds a continuous-time analogy of the sample path construction (2.9)
and (2.10). Specifically, for a given Markov process Yt ∼

(
πY0 , Qt

)
he constructs

a process Xt such that (Xt, Yt) ∼
(
π

(X,Y )
0 ,G

)
. Since the distribution of a Markov

process is uniquely determined by its initial distribution and transition probability
(or equivalently the generator), this proves (2.18).

Diaconis and Miclo [2] use these results to give a probabilistic representation
of the time to absorption for a birth and death process. Specifically, let G be a
generator of a birth and death process on {0, . . . , n} for some n ∈ N. Suppose
that all birth rates are positive and n is an absorbing state. Diaconis and Miclo
construct a generator G+ of a pure birth process on {0, . . . , n} and a probability
kernel K+ such that G+K+ = K+G (i. e. the birth and death process is averaged
on the pure birth process). The birth rates of G+ are the negative eigenvalues of
G in descending order. Moreover, the probability kernel is constructed such that

K+ (x, {0, . . . , x}) = 1 (2.19)

for all x ∈ {0, . . . , n} and
K+(n, n) = 1. (2.20)
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From Theorem 2.6 they conclude that there exists a bivariate Markov chain
(X+, X) whose margins evolve according to G+ and G. From the properties
of K+, they conclude that X+

t ≥ Xt and that X+
t and Xt are absorbed at the

same time. That is, the time to absorption of a birth and death process can be
represented as the time to absorption of a pure birth process, which is equal to
the sum of independent exponentially distributed random variables, whose inten-
sities are equal to the birth rates of the pure birth process.1It turns out that the
distribution intertwining (2.13) is sufficient to derive the distribution of the time
to absorption, and the more general Theorem 2.6 is not needed.

Swart [10] extends this result by constructing another generator G− of a pure
birth process and another kernel K− such that GK− = K−G− (i. e. the pure
birth process is averaged on the birth and death process). The birth rates of G−
are again the negative eigenvalues of G, now in ascending order. The probability
kernel K− again satisfies (2.19) and (2.20). By applying Theorem 2.6 twice, he
constructs Markov process

(
X−t , Xt, X

+
t

)
such that

X−t ≤ Xt ≤ X+
t

and all three processes are absorbed at the same time.

1The distribution of the time to absorption for birth and death process was known much
earlier, see references in [2]. However, the proof given by Diaconis and Miclo is the first
probabilistic proof of this fact. Earlier proofs derived the result via analytical methods without
probabilistic interpretation.
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Chapter 3

Intertwining of diffusions

In this chapter we generalize the results of Chapter 2 to the case when one of the
processes is a diffusion and the other is a pure birth process on either {0, . . . , n} or
N. Since the general case is too difficult, we restrict ourselves to the case that the
diffusion is either the Wright-Fisher diffusion or the Wright-Fisher diffusion with
reflection at zero. This restriction is motivated by the fact that the generator and
the semigroup of the Wright-Fisher diffusion (with or without reflection) maps
polynomials to polynomials (see Lemma 1.36), which simplifies things quite a bit.

In the first part, we describe generator and semigroup intertwining, which
allows us to find the distribution of the time to absorption of the Wright-Fisher
diffusion. In the second part, we construct a coupling in the spirit of Theorem 2.6.
We construct the coupling only for the pure-birth process on {0, . . . , n} and not
on N. Moreover, at one point, one of our proofs fails to work for the Wright-Fisher
diffusion without reflection, so we are only able to construct the coupling for the
Wright-Fisher diffusion with reflection at zero. This is our main motivation for
dealing with the Wright-Fisher diffusion with reflection at zero in the first place.

3.1 Generator and semigroup intertwining
As the first step, we generalize Proposition 2.5.

Theorem 3.1. Let L1, L2 be Banach spaces. Let Pt and Qt be strongly continuous
contraction semigroups defined on L1, L2 and let G and H be their generators. Let
K : L2 → L1 be a continuous linear operator. Then the following are equivalent:

1. For all t ≥ 0,
PtK = KQt (3.1)

on L2,

2. K maps D(H) into D(G) and

GK = KH (3.2)

on D(H),

3. There exists a core D of H such that K maps D into D(G) and (3.2) holds
on D.
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Proof. To prove (1)⇒ (2), fix f ∈ D(H). Then 1
t

(Qtf − f) converges to Hf , so
1
t

(KQtf −Kf) converges to KHf . By (3.1), 1
t

(PtKf −Kf) is also convergent,
so Kf is in D(G) and GKf = KHf .

In order to prove (2) ⇒ (1), fix f ∈ D(H) and define u(t) = KQtf . Since
Qtf is in D(H), u(t) ∈ D(G) for all t ≥ 0. By the continuity of K

d
dtu(t) = K

d
dtQtf = KHQtf = GKQtf = Gu(t).

Since
d
dtu(t) = KQtHf,

Gu(t) = d
dtu(t) is continuous. By the Kolmogorov backward equation (Proposi-

tion 1.28), u(t) = Ptu(0) = PtKf which proves that (3.1) holds on D(H). Since
all operators involved in (3.1) are continuous, the assertion now follows from the
density of D(H) in L2.

The implication (2) ⇒ (3) is trivial by taking D = D(H). To prove the
converse, let f be in D(H). Then there exist fn ∈ D such that fn → f and
Hfn → Hf . Since K is continuous, Kfn → Kf and GKfn = KHfn → KHf ,
where we have used (3.2) for fn. Since G is a closed operator, Kf is in D(G) and
GKf = KHf .

Corollary 3.2. Under the assumptions of Theorem 3.1, assume further that Li =
C0 (Si) where Si are locally compact metric spaces interpreted as state-spaces for
random processes. Let Xt and Yt be processes associated with Pt and Qt with
initial distributions πX0 and πY0 . If the initial distributions satisfy the intertwining
relationship

πY0 = πX0 K,

then the time t distributions satisfy

πYt = πXt K (3.3)

or
P (Yt ∈ A) = E (K (Xt, A)) (3.4)

for all t ≥ 0 and A ∈ B (S2).

Proof. Write

πYt = πY0 Qt

= πX0 KQt

= πX0 PtK

= πXt K.

Now we describe an analogy of the work of Swart [10]. More precisely the birth
and death process Xt of Section 2.2 is replaced by the Wright-Fisher diffusion
(with or without reflection) and we construct a pure birth process Yt which is an
averaged process on Xt, analogous to the process X−t of Swart [10]. Moreover,
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we would like to construct Yt such that it is absorbed or explodes at the same
time as Xt is absorbed.

Let n ∈ N be given and define a probability kernel from [−1, 1] to {0, . . . , n}
by

Kn(x, k) =

(1− x2)x2k, if 0 ≤ k < n,

x2n, if k = n.
(3.5)

Define the generator of a pure birth process on {0, . . . , n} by

Hnf(k) =

λk (f(k + 1)− f(k)) 0 ≤ k < n,

0, k = n,
(3.6)

where
λk = (2k + 1) (2k + 2) , 0 ≤ k < n.

Lemma 3.3. Let K = Kn of (3.5), H = Hn of (3.6) and let G = GWF of (1.10)
be the generator of the Wright-Fisher diffusion. Then K maps C ({0, . . . , n}) to
C2[−1, 1] and GK = KH on C ({0, . . . , n}).

Proof. Since K (·, k) ∈ C2[−1, 1] for 0 ≤ k ≤ n, it follows from linearity that the
range of K must also be in C2[−1, 1]. Let x be in [−1, 1]. For 0 ≤ k < n we have

GK1{k}(x) =
(
G
((

1− x2
)
x2k

))
(x)

=
(
1− x2

) ∂2

∂x2

(
x2k − x2k+2

)
=

(
1− x2

) (
2k(2k − 1)x2k−2 − (2k + 2)(2k + 1)x2k

)
and

KH1{k}(x) = K
(
λk−11{k−1} − λk1{k}

)
(x)

=
(
1− x2

) (
2k(2k − 1)x2k−2 − (2k + 2)(2k + 1)x2k

)
.

For k = n we have

GK1{n}(x) = G
(
x2n

)
(x)

=
(
1− x2

) ∂2

∂x2x
2n

= 2n(2n− 1)
(
1− x2

)
x2n−2

and

KH1{n}(x) = K
(
λn−11{n−1}

)
(x)

= 2n(2n− 1)
(
1− x2

)
x2n−2.

The assertion of the lemma now follows from linearity.

Remark 3.4. Observe thatKn, when restricted to [0, 1]×{0, . . . , n} is a probability
kernel from [0, 1] to {0, . . . , n}. A simple modification of the proof of Lemma 3.3
shows that it also holds if we replace the generator of the Wright-Fisher diffusion
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by the generator of the Wright-Fisher diffusion with reflection at zero (defined
by (1.12)) and if we interpret Kn as a probability kernel form [0, 1] to {0, . . . , n}.
To see this, note that ∂

∂x
Kn (0, k) = 0, so Kn maps C {0, . . . , n} into D

(
GWF,r

)
.

Since the formulas defining GWF and GWF,r are the same, the proof showing that
GWFKn = KnHn also works for GWF,r. In the remainder of this section, we
will formulate all our assertions in terms of the Wright-Fisher diffusion (without
reflection), but it is easy to modify their proofs to show that they also hold for
the Wright-Fisher diffusion with reflection at zero.

For theWright-Fisher diffusion, we have found a pure birth process on {0, . . . , n}
and a probability kernel that are properly intertwined in the sense of equa-
tion (3.2). We would like it if the time to absorption of the diffusion had the
same distribution as the time to absorption of the pure birth process. This would
be guaranteed by (3.4) if Kn(x, n) were equal to 1[x∈{−1,1}]. Unfortunately, this
is not the case, so we take the limit as n approaches infinity. Specifically, define
the generator of a pure birth process on N by

H∞f(k) = λk (f(k + 1)− f(k)) 0 ≤ k <∞ (3.7)

and use construction of Lemmas 1.18 and 1.32 to extend it to a generator H∆
∞ on

N̄. Define a probability kernel from [−1, 1] to N̄ by

K∞(x, k) =

(1− x2)x2k, 0 ≤ k <∞,
1[x∈{−1,1}], k =∞.

(3.8)

Lemma 3.5. K∞ is a continuous probability kernel from [−1, 1] to N̄.

Proof. Since K∞(x, k) ≥ 0 and ∑∞
k=0K∞(x, k) + K∞(x,∞) = 1, K (x, ·) is a

probability measure for every x ∈ [−1, 1]. K∞ (·, k) is clearly measurable (for
0 ≤ k < ∞ it is continuous and for k = ∞ it is an indicator of a closed set).
Hence K∞ is a probability kernel from [−1, 1] to N̄. To finish the proof, it suffices
to show that for every f ∈ C

(
N̄
)
, K∞f is in C [−1, 1].

Let f be in C
(
N̄
)
. For x ∈ (−1, 1) we have

K∞f(x) =
∞∑
k=0

(
1− x2

)
x2kf(k) (3.9)

=
∞∑
k=0

f(k)x2k −
∞∑
k=0

f(k)x2k+2.

Since K∞f can be expressed as a difference of two power series, it is continuous
within the radius of convergence, which is at least one, because f is bounded. It
is thus sufficient to prove that K∞f is continuous in ±1. Fix ε > 0 and let n be
such that |f(k)− f(∞)| < ε for all k > n. For x in (−1, 1) we have

|K∞f(x)− f(∞)| ≤
∞∑
k=0

(
1− x2

)
x2k|f(k)− f(∞)|

≤ 2‖f‖
(
1− x2n

)
+

∞∑
k=n+1

(
1− x2

)
x2kε

≤ 2‖f‖
(
1− x2n

)
+ ε.
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Passing to the limit we get

lim sup
x→±1

|K∞f(x)− f(∞)| ≤ ε.

Since ε was arbitrary, K∞f is continuous.

Just as in the case of Kn, by restricting its domain, we may interpret K∞ as
a continuous probability kernel from [0, 1] to N̄.

Theorem 3.6. Let

D =
{
f ∈ C

(
N̄
)

; ∃n s. t.∀k ≥ n : f(k) = f(n)
}
,

let H = H∆
∞, K = K∞ and let G = GWF of (1.10) be the generator of the Wright-

Fisher diffusion. Then D is a core of H and K maps D into D(G). Moreover,
GK = KH on D.

Proof. The fact that D is a core follows from Proposition 1.42 and the discussion
following it. Fix f in D and let n be such that f(k) = f(n) for all k > n. Then
for x ∈ (−1, 1),

Kf(x) =
(
1− x2

) n−1∑
k=0

x2kf(k) + x2nf(n)

= f(0) +
n∑
k=1

x2k (f(k)− f(k − 1)) . (3.10)

As x approaches ±1, Kf(x) approaches f(n). Now

K∞f (±1) = f(∞) = f(n).

Hence (3.10) holds also for x = ±1, and therefore Kf(x) is in C∞[−1, 1] ⊆ D(G).
Also, for x ∈ [−1, 1],

GKf(x) =
(
1− x2

) n−1∑
k=0

λkx
2k (f(k + 1)− f(k)) .

Now for k < n
Hf(k) = λk (f(k + 1)− f(k)) ,

and for k ≥ n,
Hf(k) = 0,

hence for x ∈ [−1, 1],

KHf(x) =
(
1− x2

) n−1∑
k=0

λkx
2k (f(k + 1)− f(k)) .

We summarize our findings in the following Theorem.
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Theorem 3.7. Let ḠWF be the generator of the Wright-Fisher diffusion on [−1, 1]
with semigroup PWF

t (recall equation (1.10) and Lemma 1.34) and let Kn be
the probability kernel from [−1, 1] to {0, . . . , n} defined by (3.5). Let Hn be the
generator of a pure-birth process in {0, . . . , n} defined in (3.6) and denote by Q(n)

t

its associated semigroup. Then

PWF
t Kn = KnQ

(n)
t (3.11)

on C ({0, . . . , n}) for all t ≥ 0. Moreover, let K∞ be the probability kernel from
[−1, 1] to N̄ defined by 3.8 and let H∆

∞ be the generator of a pure-birth process on
N̄ constructed from H∞ of (3.7) by the means of Lemmas 1.18 and 1.32. Denote
by Q(∞)

t the semigroup associated with H∆
∞. Then

PWF
t K∞ = K∞Q

(∞)
t (3.12)

on C
(
N̄
)
for all t ≥ 0.

Proof. Lemma 3.3 shows that Kn maps C ({0, . . . , n}) into D
(
ḠWF

)
and that

ḠWFKn = KnHn

on C ({0, . . . , n}). Equality (3.11) now follows from Theorem 3.1. Theorem 3.6
shows that there exists a core D of H∆

∞ such that K∞ maps D into D
(
ḠWF

)
and

ḠWFK∞ = K∞H
∆
∞

on D. Equality (3.12) follows again from Theorem 3.1.

We can use the intertwining relation that we have just found to describe the
distribution of the time to absorption for the Wright-Fisher diffusion.

Theorem 3.8. Let PWF
t and Q(∞)

t be as in Theorem 3.7. Let Xt be the Markov
process with continuous sample paths associated with PWF

t . Define τ as the time
to absorption

τ = inf {t ≥ 0;Xt = ±1} .
Let Yt be the Markov process with right-continuous sample paths associated with
Q

(∞)
t . Define σ as the time to explosion

σ = inf {t ≥ 0;Yt =∞} .

Assume that the initial distributions are properly intertwined:

πY0 = πX0 K∞. (3.13)

Then
τ

d= σ.

In particular, if Xt starts from zero, then

τ
d=
∞∑
k=0

Tk (3.14)

where T0, T1, . . . are independent random variables such that Tk is exponentially
distributed with intensity λk.
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Remark. The distribution of τ given by (3.14) is an old result, see the work cited
in [2].

Proof. From Theorem 3.7 and Corollary 3.2 we have that

P (Yt = k) = E (K∞ (Xt, k)) .

Now we can calculate the distribution of σ in terms of Xt:

P (σ ≤ t) = P (Yt =∞)
= E (K∞ (Xt,∞))
= P (Xt = ±1)
= P (τ ≤ t) .

We conclude that σ d= τ . If Xt starts from zero, then the appropriate initial
distribution of Yt so that (3.13) is satisfied, is given by

πX0 K∞ = δ0K∞

= K∞ (0, ·)
= δ0

and it is well known that the distribution of the time to explosion of a pure birth
process starting from zero is given by (3.14).

Note that we have found the intertwining such that the pure birth process
is averaged on the diffusion (see Remark 2.4). This is an analogue to the result
in Swart [10] discussed at the end of Chapter 2. It is perhaps also possible to
find an intertwining such that the diffusion is averaged on the pure birth process
(an analogy of the result in Diaconis and Miclo [2], also discussed at the end of
Chapter 2), but we do not pursue it here.

3.2 Coupled process
Let Pt and Qt be Feller semigroups, G and H their generators and Xt and Yt
the associated Markov processes. Additionally, let K be a probability kernel. In
Corollary 3.2 we have shown that if PtK = KQt for all t ≥ 0 and the initial
distributions satisfy

πY0 = πX0 K,

then
πYt = πXt K. (3.15)

However, as described in Chapter 2, in discrete state-space it is possible to do
more. It is possible to construct a coupled Markov process (Xt, Yt) such that its
margins evolve according to Pt and Qt and its distribution satisfies (2.14) (see
Theorem 2.6). Here, we generalize this result to the case where Xt is a diffusion.
We shall devote the rest of this section to proving the following result.
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Theorem 3.9. There exists a generator G of a Markov process (Xt, Yt) with the
state-space [0, 1]×{0, . . . , n} with the following properties. For f ∈ C ({0, . . . , n})
and s, t ≥ 0,

E [f (Ys+t) | (Xu, Yu) , 0 ≤ u ≤ s] = Qtf (Ys) , (3.16)

where Qt is the semigroup generated by H = Hn of (3.6). Hence Yt on its own is
a Markov process with generator H.

If additionally the initial distribution π(X,Y )
0 satisfies

π
(X,Y )
0 (A× {y}) =

ˆ
A

K(x, y)πX0 (dx)

where K = Kn is the probability kernel defined by (3.5) and πX0 is an arbitrary
probability distribution on [0, 1], then

P (Yt = k|Xs, 0 ≤ s ≤ t) = K (Xt, k) (3.17)

a. s. for all t ≥ 0 and k = 0, . . . , n, and Xt on its own is the Wright-Fisher
diffusion with reflection at zero (generated by GWF,r defined by (1.12)) with the
initial distribution πX0 .

Note that Theorem 3.9 is stated for the Wright-Fisher diffusion with reflection
at zero. Although we believe that an analogous result also holds for the Wright-
Fisher diffusion without reflection at zero, we are unable to prove it. The reason
for the complications with the diffusion without reflection is that K(0, k) is zero
for k > 0. Hence, if (3.17) is to hold, Xt cannot be zero after Yt departs from
zero. Later while proving Theorem 3.9 we will find that when Yt = k, Xt behaves
like the Wright-Fisher diffusion with an additional drift which depends on k.
This drift is infinite at zero when k > 0, in accordance with our observation
that Xt cannot be zero in this case. Intuitively this means that if we were to
prove Theorem 3.9 for the Wright-Fisher diffusion without reflection at zero, the
dynamics of Xt would be as if it was only one diffusion on the entire interval
[−1, 1] when Yt = 0, but when Yt > 0, the dynamics of Xt would change, and it
would behave as two independent diffusions on [−1, 0] and [0, 1] (since the infinite
drift at zero would not permit Xt to cross zero). It would then become difficult
to link the two independent diffusions for Yt > 0 with the single diffusion on the
entire interval for Yt = 0. This intuitive interpretation of why our proof fails for
the diffusion without reflection at zero is stated more precisely in Remark 3.27.

Also note that Theorem 3.9 is stated only for the pure birth process with
finite state-space. This simplifies the situation, because [0, 1] × {0, . . . , n} is
compact, while [0, 1] × N is not. Moreover, the compactification that we would
find natural, [0, 1]× (N ∪ {∞}) may not be appropriate, because K∞ (x,∞) > 0
only if x = 1, which could lead to problems because by (3.17), [0, 1) × {∞}
would be unreachable. Moreover, whatever compactification we would choose,
the topology would be more complicated than in the finite case. Since {0, . . . , n}
has discrete topology, f : [0, 1] × {0, . . . , n} → R is continuous if and only if
f (·, k) is continuous for all k = 0, . . . , n. However, if f were a mapping from
some compactification of [0, 1]× N to R, we would additionally need restrictions
on the behavior of limits as k → ∞ in order to make sure that f is continuous.
We deal only with the finite case to avoid these complications.
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We shall prove Theorem 3.9 by imitating the proofs used for the discrete
state-space. In Theorem 3.10 we find an analogy to the probability kernel P (t)

from the proof of Theorem 2.6. Then in Lemma 3.18 we find the operator

G = lim
t→0

1
t

(
P (t) − I

)
and in Theorem 3.20 we prove that G generates a Feller semigroup. Finally,
we apply Theorem 3.28, which was proved by Rogers and Pitman [7]. This
theorem states that under certain conditions, a function of a Markov process is
a Markov process, and it also states the relation between the original and the
transformed Markov process. Theorem 2.6 and Lemma 3.18 work also for the
diffusion without reflection, but the proof of Theorem 3.20 fails for this case as
explained by Remark 3.27.

We start by reviewing the probability kernel P (t) of (2.15). Since the state-
space was discrete in Chapter 2, we were able to define the probability kernel
in (2.15) as a function from S1 × S2 × S1 × S2 to [0, 1] (where S1 and S2 are
discrete state-spaces, recall the setting of Theorem 2.6). In order to find an
analogous kernel for the continuous state-space, we need to reformulate (2.15) as
an operator on functions on S1×S2. For a function f : S1×S2 → R, we multiply
both sides of (2.15) by f (x2, y2) and then sum over (x2, y2) to get

P (t)f (x1, y1)

=
∑
y2∈S2

Qt (y1, y2) 1[∆(t)(x1,y2)6=0]

∑
x1∈S1 Pt (x1, x2) f (x2, y2)K (x2, y2)

∆(t) (x1, y2) (3.18)

where

∆(t) (x1, y2) =
∑
x2∈S1

Pt (x1, x2)K (x2, y2)

= (PtK (·, y2)) (x1)
= (PtK) (x1, y2) .

In this expression, PtK may be viewed as the composition of the two kernels.
Alternatively, K may be viewed not as a kernel, but simply as a function of two
variables. Then PtK may be viewed as the application of the kernel Pt to this
function. Note that although Pt operates on functions of only one variable, we
may extended it to operate on functions of two variables by fixing the redundant
variable.1 Similarly, the numerator of (3.18) can be written as

(Pt (fK)) (x1, y2) = (Ptf (·, y2)K (·, y2)) (x1) ,

where by fK we mean the pointwise product of the two functions (here K must
be viewed as a function of two variables and not as a kernel), and Pt (fK) denotes
the application of the semigroup on the product, with the same caveat that the
redundant variable is fixed. Then we can rewrite (3.18) as

P (t)f = Qt1[PtK 6=0]
PtfK

PtK
. (3.19)

1Probabilistically, this means that we extend the kernel Pt to the kernel on S1 × S2 by
defining Pt ((x1, y1) , (x2, y2)) = Pt (x1, x2) 1[y1=y2]. For the sake of readability, we will use the
same symbol Pt both for the kernel on S1 and for the kernel on S1 × S2.
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Here, 1[PtK 6=0]
PtfK
PtK

denotes the pointwise division of PtfK and PtK, which is then
multiplied by the indicator 1[PtK 6=0]. Qt is then applied to the resulting function.
Although this is a function of two variables and Qt operates on functions of only
one variable, we interpret (3.19) by fixing the redundant variable. Note that (3.19)
is not a suitable definition for the case that state-spaces are continuous, because
we need to make sure that the resulting function is continuous, but the indicator
1[PtK 6=0] can introduce discontinuity. To get around this problem, we shall prove
that PtfK

PtK
can be extended to a continuous function, and then define P (t) by

P (t)f = Qt
PtfK

PtK
. (3.20)

Theorem 3.10. Let Pt = PWF,r
t be the Wright-Fisher semigroup with reflection

at zero and let K = Kn be as defined by (3.5). Let f be in C ([0, 1]× {0, . . . , n})
and t > 0. Then the function

(x, k) 7→ (Ptf (·, k)K (·, k)) (x)
(PtK (·, k)) (x) , (x, k) ∈ D, (3.21)

where
D = {(x, k) ∈ [0, 1]× {0, . . . , n} ; (PtK (·, k)) (x) > 0} ,

can be uniquely extended to a continuous function on [0, 1]×{0, . . . , n}, which we
denote by

PtfK

PtK
(x, k).

Moreover, the operator on C ([0, 1]× {0, . . . , n}) defined by

f 7→ PtfK

PtK

is a continuous probability kernel.

Before we can prove Theorem 3.10, we need several lemmas. In order to
prove the existence of the continuous extension of (3.21) it is enough to prove
the existence of the continuous extension for every fixed k, since we assume the
discrete topology on {0, . . . , n}. Therefore, the following lemmas assume that k
is fixed. To simplify notation, they also assume that f is in C [0, 1], so we can
write f (·) instead of f (·, k).

First, let us show that whenever the denominator of (3.21) is zero, then so is
the numerator.

Lemma 3.11. Under the assumptions of Theorem 3.10, let 0 ≤ k ≤ n, t > 0
and f ∈ C [0, 1]. Then

|(Ptf (·)K (·, k)) (x)| ≤ ‖f‖ |(PtK (·, k)) (x)|

for all x ∈ [0, 1] and therefore

‖Ptf (·)K (·, k)‖ ≤ ‖f‖ ‖PtK (·, k)‖ .
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Proof. Since Pt is a positive operator and K (·, k) ≥ 0,

(Ptf (·)K (·, k)) (x) ≤ ‖f‖ (PtK (·, k)) (x)

and
(Ptf (·)K (·, k)) (x) ≥ −‖f‖ (PtK (·, k)) (x),

hence
|(Ptf (·)K (·, k)) (x)| ≤ ‖f‖ |(PtK (·, k)) (x)| .

Now we will find all (x, k) ∈ [0, 1] × {0, . . . , n} such that the denominator
of (3.21) is zero.

Lemma 3.12. Under the assumptions of Theorem 3.10 let 0 ≤ k < n, t > 0 and
x ∈ [0, 1]. Then

(PtK (·, k)) (x) = 0

if and only if x = 1. Moreover

(PtK (·, n)) (x) > 0

for all x ∈ [0, 1].

Proof. Since K (·, n) > 0, it follows that (PtK (·, n)) (x) > 0 for all x. Moreover,
since Gf (1) = 0 for all f ∈ D(G), 1 is an absorbing point by Corollary 1.29, hence
(PtK (·, k)) (1) = K (1, k) = 0 for 0 ≤ k < n. Finally, to prove that PtK (x, k) is
positive for 0 ≤ k < n and x ∈ [0, 1), it suffices to prove that

Pt (x, (0, 1)) > 0, x ∈ [0, 1), (3.22)

since K (·, k) is positive on (0, 1) for 0 ≤ k < n. Define

f(x) =
(
1− x2

)
x2

= x2 − x4.

If we prove Ptf(x) > 0 on [0, 1), then (3.22) will be proved.
By solving the Kolmogorov backward equations as in the proof of Lemma 1.36,

we can show that for x ∈ [0, 1) and t > 0,

Ptf(x) = 1
5e
−2t

(
1− x2

)
− 1

5e
−12t

(
1− 6x2 + 5x4

)
≥ 1

5
(
1− x2

) (
e−2t − e−12t

)
> 0,

where we have used that 1− 6x2 + 5x4 ≤ 1− x2 since x4 ≤ x2 for x ∈ [0, 1).

Since the denominator of (3.21) can be zero only if k < n, it is sufficient
to consider only this case. The next two lemmas show us the structure of the
denominator of (3.21).
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Lemma 3.13. Under the assumptions of Theorem 3.10, let 0 ≤ k < n and t > 0.
Then

∂

∂x
(PtK (·, k)) (x)

∣∣∣∣∣
x=1

< 0.

If additionally k < n− 1, then

lim
x→1

(PtK (·, k + 1)) (x)
(PtK (·, k)) (x) > 0.

Proof. Let 0 ≤ k < n and t > 0. Let Qt be the semigroup whose generator is
H = Hn defined by (3.6). Observe that for x ∈ [0, 1]

(PtK (·, k)) (x) = PtK1{k}(x)
= KQt1{k}(x)

=
n∑
l=0

K(x, l)Qt(l, k)

=
k∑
l=0

(
x2l − x2l+2

)
Qt(l, k)

where we have used that Qt(l, k) = 0 for l > k. Differentiating with respect to x
we get

∂

∂x
(PtK (·, k)) (x)

∣∣∣∣∣
x=1

=
k∑
l=0
−2Qt(l, k).

Since Qt(l, k) > 0 for l ≤ k, the first assertion is proved.
Suppose now that 0 ≤ k < n − 1 and t > 0. Since (PtK (·, k)) (1) and

(PtK (·, k + 1)) (1) are zero by Lemma 3.12, we can use l’Hospital’s rule to con-
clude that

lim
x→1

(PtK (·, k + 1)) (x)
(PtK (·, k)) (x) = lim

x→1

∂
∂x

(PtK (·, k + 1)) (x)
∂
∂x

(PtK (·, k)) (x)
> 0.

Lemma 3.14. Under the assumptions of Theorem 3.10, let 0 ≤ k < n and t > 0.
Then

pk(x) = (PtK (·, k)) (x), x ∈ [0, 1]
is a polynomial whose only root in [0, 1] is 1 and it is a simple root. That is, there
exists a polynomial uk such that uk > 0 on [0, 1] and

pk(x) = (1− x)uk(x), x ∈ [0, 1]. (3.23)

Proof. Lemma 1.36 shows that pk is a polynomial. Since by Lemma 3.12 pk(1) = 0
and pk > 0 on [0, 1), the only root in [0, 1] is 1. That is, there exists a polynomial
uk such that uk > 0 on [0, 1) and (3.23) holds. We will prove that uk (1) > 0 by
induction in k.

For k = 0, it can be verified by solving the Kolmogorov backward equations
as in Lemma 1.36 that (PtK (·, 0)) (x) = e−2t (1− x2), hence u0(x) = e−2t(1 + x),
so u0(1) > 0.
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Let us now assume that we have proved that uk (1) > 0 and we wish to prove
that uk+1 (1) > 0 for 0 ≤ k < n− 1. Observe that

uk+1 (1)
uk (1) = lim

x→1

pk+1(x)
pk(x)

which is positive Lemma 3.13.

Given that the root of (PtK (·, k)) (x) is simple, it is be possible to cancel it,
as the next lemma shows.

Lemma 3.15. Under the assumptions of Theorem 3.10, let 0 ≤ k < n, t > 0
and let p be a polynomial. Then the function

x 7→ (Ptp (·)K (·, k)) (x)
(PtK (·, k)) (x) , x ∈ [0, 1)

can be extended to a continuous function on [0, 1].

Proof. Lemma 1.36 shows that both (Ptp (·)K (·, k)) (x) and (PtK (·, k)) (x) are
polynomials in x. Lemma 3.14 shows that

(PtK (·, k)) (x) = (1− x)u(x)

where u is a polynomial such that u > 0 on [0, 1]. Lemma 3.11 then shows that
1 is a root of (Ptp (·)K (·, k)) (x), so

(Ptp (·)K (·, k)) (x) = (1− x) v(x)

where v is a polynomial. Then for x ∈ [0, 1) we have

(Ptp (·)K (·, k)) (x)
(PtK (·, k)) (x) = v(x)

u(x)

which is a continuous function on [0, 1].

Now we extend this result to arbitrary continuous functions.

Lemma 3.16. Under the assumptions of Theorem 3.10, let 0 ≤ k < n and t > 0.
Then for every f in C [0, 1], the function

x 7→ (Ptf (·)K (·, k)) (x)
(PtK (·, k)) (x) , x ∈ [0, 1)

can be uniquely extended to a continuous function on [0, 1]. Moreover, the linear
operator on C [0, 1] given by

f 7→ Ptf (·)K (·, k)
PtK (·, k)

is a continuous probability kernel on [0, 1].
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Proof. For a polynomial p ∈ C [0, 1], denote by µp the unique continuous extension
of

Ptp (·)K (·, k)
PtK (·, k)

whose existence is guaranteed by Lemma 3.15. Clearly, µp is linear in p.
For a polynomial p ≥ 0 we have that (Ptp (·)K (·, k)) ≥ 0 and (PtK (·, k)) ≥ 0

by the positivity of Pt and the fact that K (·, k) ≥ 0. Hence for x ∈ [0, 1),
µp(x) ≥ 0. Since µp is a continuous function, µp ≥ 0, so µ is a positive operator.

Furthermore, by Lemma 3.11 |µp(x)| ≤ ‖p‖ for x ∈ [0, 1). Using continuity of
µp, ‖µp‖ ≤ ‖p‖, so µ is bounded, and therefore continuous. Finally (µ1) (x) = 1
for x ∈ [0, 1), and using continuity of µ1, we get that µ1 = 1.

By Lemma 1.12, µ can be uniquely extended to a continuous probability kernel
µ̂ on [0, 1]. Let f be in C [0, 1] and let pm be polynomials such that pm → f . Then
µpm → µ̂f . For x ∈ [0, 1) we have that

µ̂f(x) = lim
m→∞

(Ptpm (·)K (·, k)) (x)
(PtK (·, k)) (x)

= (Ptf (·)K (·, k)) (x)
(PtK (·, k)) (x) .

µ̂f is therefore a continuous extension of

(Ptf (·)K (·, k))
PtK (·, k)

as required.

Now we can prove Theorem 3.10.

Proof of Theorem 3.10. Lemma 3.16 shows that for every 0 ≤ k < n there exists
a continuous probability kernel µk on [0, 1] such that for f ∈ C [0, 1], µkf is a
continuous extension of

(Ptf (·)K (·, k))
PtK (·, k) .

Lemma 3.12 shows that for f ∈ C [0, 1]

(Ptf (·)K (·, n))
PtK (·, n)

is a continuous function and it is easy to see that

µnf = (Ptf (·)K (·, n))
PtK (·, n) , f ∈ C [0, 1]

defines a continuous probability kernel.
Let us now define

µf(x, k) = (µkf (·, k)) (x)
where f is in C ([0, 1]× {0, . . . , n}) and (x, k) is in [0, 1] × {0, . . . , n}. Since µk
are continuous probability kernels, µf is continuous. By construction, µf is a
continuous extension of

PtfK

PtK
.
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Moreover, since µk are continuous probability kernels, µ is a positive continuous
linear operator such that µ1 = 1. Hence µ is a continuous probability kernel by
Lemma 1.12.

Having proved Theorem 3.10, we can now use (3.20) to define P (t), where
PtfK
PtK

is defined in Theorem 3.10. Note that since P (t) is a composition of the
probability kernels Qt and PtfK

PtK
, it is itself a probability kernel.

Remark 3.17. Since for a fixed t > 0, P (t) is a probability kernel, it can be
used to define a discrete-time Markov chain (Xn, Yn). It is easy to see that Yn
marginally is a Markov chain with transition kernel Qt. This follows from the
fact that if f ∈ C ([0, 1]× {0, . . . , n}) does not depend on its first argument, then
(Ptf(k)K (·, k)) (x) = f(k) (PtK (·, k)) (x), hence P (t)f = Qtf . Moreover, if the
initial distribution satisfies

π
(X,Y )
0 (A× {k}) =

ˆ
A

K(x, k)πX0 (dx) , (3.24)

then also Xn marginally is a Markov chain with transition kernel Pt and moreover

P (Yn = y|Xi, 0 ≤ i ≤ n) = K (Xn, y) . (3.25)

This result is similar to Theorem 2.1, except that now the state-space of Xn is
not countable.

Proof. (This proof is inspired by the proof of Proposition 4 in Fill [4].) To prove
the claims about Xn, define

Λ (x,A× {k}) = δx(A)K(x, k)

where x is in [0, 1], A is a Borel subset of [0, 1] and k is in {0, . . . , n}. Observe
that Λ is a probability kernel from [0, 1] to [0, 1]× {0, . . . , n}, π(X,Y )

0 = πX0 Λ and

Λf(x) =
n∑
k=0

f(x, k)K(x, k)

= (Kf (x, ·)) (x)

where x ∈ [0, 1] and f is in C ([0, 1]× {0, . . . , n}). Observe also that

ΛQtf(x) = ((KQt) f (x, ·)) (x)
= ((PtK) f (x, ·)) (x)

=
n∑
k=0

(PtK (·, k)) (x)f(x, k),

hence

ΛP (t)f(x) = ΛQt
PtfK

PtK
(x)

=
n∑
k=0

(PtK (·, k)) (x)× PtfK

PtK
(x, k).

47



Now note that for (x, k) ∈ [0, 1] × {0, . . . , n} such that (PtK (·, k)) (x) > 0, we
have

PtfK

PtK
(x, k) = (Ptf (·, k)K (·, k)) (x)

(PtK (·, k)) (x) ,

hence
(PtK (·, k)) (x)× PtfK

PtK
(x, k) = (Ptf (·, k)K (·, k)) (x).

Since all expressions in the last equality are continuous in (x, k) and since the set
of (x, k) such that (PtK (·, k)) (x) > 0 is dense, the last equality must hold for all
(x, k) ∈ [0, 1]× {0, . . . , n}. Therefore we get

ΛP (t)f(x) =
n∑
k=0

(Ptf (·, k)K (·, k)) (x)

= (PtΛf) (x). (3.26)

Now we can prove (3.25). First observe that (3.25) is equivalent to

E (f (Xn, Yn) |Xi, 0 ≤ i ≤ n) = Λf (Xn) (3.27)

for all f in C ([0, 1]× {0, . . . , n}). We shall prove (3.27) by induction in n. For
n = 0, it follows directly from (3.24). Let us now assume that (3.25) holds for
some n ≥ 0 and prove it for n+ 1. Observe that

E [f (Xn+1, Yn+1) |Xi, 0 ≤ i ≤ n] =
=E [E [f (Xn+1, Yn+1) | (Xi, Yi) , 0 ≤ i ≤ n] |Xi, 0 ≤ i ≤ n]
=E

[
P (t)f (Xn, Yn) |Xi, 0 ≤ i ≤ n

]
=ΛP (t)f (Xn)
=PtΛf (Xn)

(3.28)

where we have used the induction hypothesis and (3.26). Note that if f does not
depend on its second argument, then from (3.28) we get

E [f (Xn+1) |Xi, 0 ≤ i ≤ n] = PtΛf (Xn)
= Ptf (Xn) ,

which proves that marginally, Xn is a Markov chain with transition kernel Pt.
From (3.28) we then get

E [f (Xn+1, Yn+1) |Xi, 0 ≤ i ≤ n] = E [Λf (Xn+1) |Xi, 0 ≤ i ≤ n] .

Hence for gi in C [0, 1],

E
[
f (Xn+1, Yn+1)

n+1∏
i=0

gi (Xi)
]

=

=E
[
E [f (Xn+1, Yn+1) gn+1 (Xn+1) |Xi, 0 ≤ i ≤ n]

n∏
i=0

gi (Xi)
]

=E
[
E [(Λfgn+1) (Xn+1) |Xi, 0 ≤ i ≤ n]

n∏
i=0

gi (Xi)
]

=E
[
Λf (Xn+1)

n+1∏
i=0

gi (Xi)
]
,
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where in the last equality we have used that

(Λfgn+1) (x) =
n∑
k=0

K(x, k)f(x, k)gn+1(x)

= gn+1(x)
n∑
k=0

K(x, k)f(x, k)

= gn+1(x) (Λf) (x).

This proves (3.27) for n+ 1.

Now that we have defined an approximation of the coupled semigroup, we can
try to construct the generator by a limit procedure similar to the one used by
Fill [4] (see (2.16)).

Lemma 3.18. Let G = ḠWF,r be the Wright-Fisher generator with reflection at
zero defined by (1.12), let H = Hn be the generator of the pure birth process
defined by (3.6) and let K = Kn be the probability kernel defined by (3.5). Let Pt
and Qt be the semigroups associated with G and H and let P (t) be given by (3.20).
Define

D = {f ∈ C ([0, 1]× {0, . . . , n}) ; f (·, k)K (·, k) ∈ D(G)∀k ∈ {0, . . . , n}} .

Then for all f ∈ D and (x, k) ∈ [0, 1]×{0, . . . , n} such that K(x, k) > 0 we have

1
t

(
P (t) − 1

)
f(x, k)→ Gf(x, k)

pointwise as t→ 0, where

Gf(x, k) =
∑

l∈{0,...,n},K(x,l)>0
H(k, l)f(x, l)

+
∑

l∈{0,...,n},K(x,l)=0,GK(x,l)>0
H(k, l)(Gf (·, l)K (·, l)) (x)

(GK (·, l)) (x)

+(Gf (·, k)K (·, k)) (x)− f(x, k) (GK (·, k)) (x)
K(x, k) . (3.29)

Proof. Fix f ∈ D and (x, k) ∈ [0, 1]×{0, . . . , n} such that K(x, k) > 0. We have

1
t

((
P (t) − 1

)
f
)

(x, k) =

=1
t

[
Qt
PtfK

PtK
(x, k)− f(x, k)

]

=1
t

[
(Qt − 1) PtfK

PtK
(x, k)

+ (Ptf (·, k)K (·, k)) (x)− f(x, k) (PtK (·, k)) (x)
(PtK (·, k)) (x)

]

=1
t

[
(Qt − 1) PtfK

PtK
(x, k) + ((Pt − 1) f (·, k)K (·, k)) (x)

(PtK (·, k)) (x)

− f(x, k)(PtK (·, k)) (x)−K(x, k)
(PtK (·, k)) (x)

]
.

(3.30)
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The first term in (3.30) equals

n∑
l=0

1
t

(
Qt(k, l)− 1[k=l]

) PtfK
PtK

(x, l) =

=
∑

l∈{0,...,n},K(x,l)>0

1
t

(
Qt(k, l)− 1[k=l]

) PtfK
PtK

(x, l)

+
∑

l∈{0,...,n},K(x,l)=0,(GK)(x,l)>0

1
t

(
Qt(k, l)− 1[k=l]

) PtfK
PtK

(x, l)

+
∑

l∈{0,...,n},K(x,l)=0,(GK)(x,l)≤0

1
t

(
Qt(k, l)− 1[k=l]

) PtfK
PtK

(x, l).

(3.31)

Note that 1
t

(
Qt(k, l)− 1[k=l]

)
converges to H(k, l). To find the limit of the first

sum in (3.31), observe that (PtK) (x, l) converges toK(x, l) and (PtfK) (x, l) con-
verges to f(x, l)K(x, l). Thus, if K(x, l) > 0, then (PtK) (x, l) > 0 for sufficiently
small t and

PtfK

PtK
(x, l) = (Ptf (·, l)K (·, l)) (x)

(PtK (·, l)) (x)

→ f(x, l)K(x, l)
K(x, l)

= f(x, l).

Hence,

lim
t→0

∑
l∈{0,...,n},K(x,l)>0

1
t

(
Qt(k, l)− 1[k=l]

) PtfK
PtK

(x, l)

=
∑

l∈{0,...,n},K(x,l)>0
H(k, l)f(x, l).

Now assume that K(x, l) = 0 and (GK (·, l)) (x) > 0. Then we have

d

dt
(PtK (·, l)) (x)

∣∣∣∣∣
t=0

= (GK (·, l)) (x) > 0,

so again (PtK (·, l)) (x) > 0 for all sufficiently small t > 0. Now we can use
l’Hospital rule to get

lim
t→0

(Ptf (·, l)K (·, l)) (x)
(PtK (·, l)) (x) = lim

t→0

(PtGf (·, l)K (·, l)) (x)
(PtGK (·, l)) (x)

= G (f (·, l)K (·, l)) (x)
(GK (·, l)) (x) ,

therefore

lim
t→0

∑
l∈{0,...,n},K(x,l)=0,(GK)(x,l)>0

1
t

(
Qt(k, l)− 1[k=l]

) PtfK
PtK

(x, l)

=
∑

l∈{0,...,n},K(x,l)=0,(GK)(x,l)>0
H(k, l)G (f (·, l)K (·, l)) (x)

(GK (·, l)) (x) .
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Finally, let K(x, l) = 0 and (GK (·, l)) (x) ≤ 0. Observe that

(GK (·, l)) (x) =
(
GK1{l}

)
(x)

= KH1{l}(x)

=
n∑
u=0

K(x, u)H(u, l)

= 1[l>0]λl−1K(x, l − 1)− λlK(x, l)
= 1[l>0]λl−1K(x, l − 1)
≥ 0 (3.32)

where we have used Lemma 3.3, the definition of H (3.6) and the fact that
K(x, l) = 0. Note that since K(x, k) > 0 and K(x, l) = 0, k 6= l. Also note
that if k = l − 1, the inequality in (3.32) would be strict, which would be in
contradiction with our assumption that (GK (·, l)) (x) ≤ 0. Hence, k is neither l
nor l − 1, which by definition of H (3.6) means that H(k, l) = 0. Since we also
have ∣∣∣∣∣PtfKPtK

(x, l)
∣∣∣∣∣ ≤ ‖f‖,

we conclude that

lim
t→0

∑
l∈{0,...,n},K(x,l)=0,(GK)(x,l)≤0

1
t

(
Qt(k, l)− 1[k=l]

) PtfK
PtK

(x, l) = 0.

To sum up, we have shown that

lim
t→0

1
t

(
Qt − 1[k=l]

) PtfK
PtK

(x, k)

=
∑

l∈{0,...,n},K(x,l)>0
H(k, l)f(x, l)

+
∑

l∈{0,...,n},K(x,l)=0,GK(x,l)>0
H(k, l)(Gf (·, l)K (·, l)) (x)

(GK (·, l)) (x) .
(3.33)

To conclude the proof, we note that

lim
t→0

1
t

((Pt − 1) f (·, k)K (·, k)) (x)
(PtK (·, k)) (x) = (Gf (·, k)K (·, k)) (x)

K(x, k)

and
lim
t→0

1
t
f(x, k)(PtK (·, k)) (x)−K(x, k)

(PtK (·, k)) (x) = f(x, k)(GK (·, k)) (x)
K(x, k) .

Now we observe that the expression (3.29) can be slightly simplified.

Lemma 3.19. Let G be defined as in (3.29). Then

Gf(x, k) = (Hf (x, ·)) (k) + (Gf (·, k)K (·, k)) (x)− f(x, k) (GK (·, k)) (x)
K(x, k)

where f is in D and (x, k) ∈ [0, 1]× {0, . . . , n} such that K(x, k) > 0.
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Proof. We have to show that for (x, k) ∈ [0, 1]×{0, . . . , n} such that K(x, k) > 0,

∑
l∈{0,...,n},K(x,l)>0

H(k, l)f(x, l)+
∑

l∈{0,...,n},K(x,l)=0,GK(x,l)>0
H(k, l)(Gf (·, l)K (·, l)) (x)

(GK (·, l)) (x)

= (Hf(x, ·)) (k).

It suffices to show that if x ∈ [0, 1] and k, l ∈ {0, . . . , n}, such that K(x, k) > 0,
K(x, l) = 0 and H(k, l) 6= 0, then (GK (·, l)) (x) > 0 and

(Gf (·, l)K (·, l)) (x)
(GK (·, l)) (x) = f(x, l). (3.34)

Observe that K(x, l) can be zero only if x ∈ {0, 1}, so it suffices to consider only
such x.

Let us first consider the case x = 0. Then K(0, k) > 0 if and only if k = 0.
Now H(0, l) 6= 0 if and only if l ∈ {0, 1}. But for l = 0, K(0, l) > 0, so we only
need to consider the case l = 1. It is easy to see that

(Gf (·, 1)K (·, 1)) (0) =
(
1− x2

) ∂2

∂x2f(x, 1)
(
x2 − x4

)∣∣∣∣∣
x=0

= 2f(0, 1)

and similarly (GK (·, 1)) (0) = 2, hence (3.34) is satisfied.
Let now x = 1. Then K(1, k) > 0 if and only if k = n, but then H(k, l) =

H(n, l) = 0 for all l.

Now that we have found the candidate generator by limiting procedure, we
shall prove that it indeed is the generator of a Feller semigroup.

Theorem 3.20. Let G = ḠWF,r as in (1.12) be the generator of the Wright-Fisher
diffusion with reflection at zero, H = Hn the generator of the pure birth process
defined by (3.6) and K = Kn the probability kernel defined by (3.5), restricted to
[0, 1]× {0, . . . , n}. Define

D (G) = {f ∈ C ([0, 1]× {0, . . . , n}) ; f (·, k) is an even polynomial ∀k ∈ {0, . . . , n}}

For (x, k) ∈ [0, 1]× {0, . . . , n} such that K(x, k) > 0 and f ∈ D (G) define

Gf(x, k) = (Hf (x, ·)) (k) + (Gf (·, k)K (·, k)) (x)− f(x, k) (GK (·, k)) (x)
K(x, k) .

(3.35)
Then Gf can be extended to a continuous function on [0, 1]× {0, . . . , n}. More-
over, G is a closable operator and its closure is the generator of a Feller semigroup
on C ([0, 1]× {0, . . . , n}).

Remark 3.21. Observe that under the assumptions of Theorem 3.20, both K (·, k)
and f (·, k)K (·, k) are even polynomials, and therefore are in D (G). Hence, the
expression (3.35) is well defined.

We will prove Theorem 3.20 in several lemmas.

Lemma 3.22. D (G) is dense in C ([0, 1]× {0, . . . , n}).
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Proof. It suffices to prove that even polynomials are dense in C [0, 1]. This follows
from the Stone-Weierstrass theorem.

Lemma 3.23. Let f be in D (G). For (x, k) ∈ [0, 1] × {0, . . . , n} such that
K(x, k) > 0 we have

Gf(x, k) = 1[k 6=n]λk (f(x, k + 1)− f(x, k))

+
[

4k
x
− 2(2k + 21[k 6=n])x

]
∂

∂x
f(x, k)

+
(
1− x2

) ∂2

∂x2f(x, k). (3.36)

Moreover, Gf can be extended to a continuous function on [0, 1]× {0, . . . , n}.

Proof. For f ∈ D (G) and (x, k) ∈ [0, 1] × {0, . . . , n} such that K(x, k) > 0 we
have

(Gf (·, k)K (·k)) (x) =
(
1− x2

) ∂2

∂x2 (f(x, k)K(x, k))

=
(
1− x2

)( ∂2

∂x2f(x, k)
)
K(x, k)

+2
(
1− x2

) ∂

∂x
f(x, k) ∂

∂x
K(x, k)

+
(
1− x2

)
f(x, k) ∂

2

∂x2K(x, k),

hence

(Gf (·, k)K (·, k)) (x)− f(x, k) (GK (·, k)) (x)
K(x, k)

=
(
1− x2

) ∂2

∂x2f(x, k) + 2
(
1− x2

) ∂
∂x
K(x, k)
K(x, k)

∂

∂x
f(x, k).

For 0 ≤ k < n we have

2
(
1− x2

) ∂
∂x
K(x, k)
K(x, k) = 22kx2k−1 − (2k + 2)x2k+1

x2k

= 4k
x
− 2(2k + 2)x,

and for k = n we get

2
(
1− x2

) ∂
∂x
K(x, n)
K(x, n) = 2

(
1− x2

) 2nx2n−1

x2n

= 4n
x
− 4nx.

This shows that

(Gf (·, k)K (·, k)) (x)− f(x, k) (GK (·, k)) (x)
K(x, k)

=
[

4k
x
− 2(2k + 21[k 6=n])x

]
∂

∂x
f(x, k) +

(
1− x2

) ∂2

∂x2f(x, k)
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and that concludes the proof of (3.36). To prove that Gf has a continuous
extension, observe that

lim
x→1

Gf(x, k)

trivially always exists. To prove that

lim
x→0

Gf(x, k)

exists, it suffices to prove that

lim
x→0

4k
x

∂

∂x
f(x, k)

exists. For k = 0 this is trivial and for k = 1, . . . , n it follows from the fact that
f (·, k) is an even polynomial.

Remark 3.24. For the interpretation of (3.36) notice that

1[k 6=n]λk (f(x, k + 1)− f(x, k)) = (Hf (x, ·)) (k)

corresponds to the pure birth process,

(
1− x2

) ∂2

∂x2f(x, k) = (Gf (·, k)) (x)

corresponds to the Wright-Fisher diffusion (with reflection), and[
4k
x
− 2(2k + 21[k 6=n])x

]
∂

∂x
f(x, k)

is an extra drift for the diffusion. Once we have proved thatG generates a Markov
process, denoted by (Xt, Yt), we can interpret Yt as the pure birth process with
birth rates λk and Xt as the Wright-Fisher diffusion with reflection at zero and
with extra drift which depends on the state k of Yt. For fixed k, the drift is
positive for x < xk and negative for x > xk, where

xk =
√√√√ 4k

4k + 41[k 6=n]
.

Hence, we can interpret Xt as being pushed towards xk when Yt = k. Noting that
xk is increasing in k and xn = 1, we can think of Xt as being initially reluctant to
get absorbed, but getting more and more compelled to get absorbed as Yt rises.

Lemma 3.25. G satisfies the positive maximum principle.

Proof. Let f be in D (G) and (x, k) be in [0, 1]× {0, . . . , n} such that

sup
(y,l)∈[0,1]×{0,...,n}

f(y, l) = f(x, k) ≥ 0.

Then 1[k<n]λk (f(x, k + 1)− f(x, k)) must be non-positive. If x is in (0, 1), then
∂f
∂x

(x, k) = 0 and ∂2f
∂x2 (x, k) ≤ 0, so Gf(x, k) ≤ 0. If x = 0, then the second order
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term of the polynomial x 7→ f(x, k), x ∈ [0, 1] must be non-positive, since it is
an even polynomial. Hence

lim
x→0

1
x

∂

∂x
f(x, k) ≤ 0

and
lim
x→0

∂2

∂x2f(x, k) ≤ 0,

so G (0, k) ≤ 0.
Finally , if x = 1, then ∂

∂x
f(x, k) ≥ 0 and 4k

x
−2(2k+21[k 6=n])x ≤ 0. Moreover,

(1− x2) ∂2

∂x2f(x, k) = 0, so Gf(x, k) ≤ 0.

Lemma 3.26. Let λ > 0. Then R (λ−G) ⊇ D (G), hence R (λ−G) is dense
in C ([0, 1]× {0, . . . , n}).

Proof. Let g be in D (G). Then there exist M ∈ N and bk,m ∈ R, with k =
0, . . . , n and m = 0, . . . ,M such that

g(x, k) =
M∑
m=0

bk,mx
m, x ∈ [0, 1] . (3.37)

Moreover, bk,m = 0 whenever m is odd. We will try to find ak,m such that

f(x, k) =
M∑
m=0

ak,mx
m, x ∈ [0, 1] (3.38)

satisfies (λ−G) f = g. First observe that (λ−G) f(·, k) is also a polynomial
for all k = 0, . . . , n. If we define λn = 0 and ak,m = 0 if either k > n or m > M ,
then from (3.36) we get that the coefficient of xm in (λ−G) f (·, k) is

λak,m − λkak+1,m + λkak,m − 4k(m+ 2)ak,m+2 + 2
(
2k + 21[k 6=n]

)
mak,m

− (m+ 2) (m+ 1) ak,m+2 +m(m− 1)ak,m. (3.39)

(λ−G) f = g holds if and only if the expression in (3.39) equals bk,m, which is
equivalent to

ak,m = bk,m + λkak+1,m + 4k(m+ 2)ak,m+2 + (m+ 2) (m+ 1) ak,m+2

λ+ λk + 2
(
2k + 21[k 6=n]

)
m+m(m− 1)

. (3.40)

Note that the denominator of (3.40) is non-zero, because λ > 0 and the other
terms are non-negative. (3.40) can be solved recursively, starting by an,M proceed-
ing to an,0, then an−1,M to an−1,0 and so on. Observe that (3.40) also guarantees
that ak,m = 0 whenever m is odd, hence f is in D (G).

The previous lemmas together with the Hille-Yosida Theorem 1.27 and the
simple observation that G1 = 0 prove Theorem 3.20.
Remark 3.27. Lemma 3.26 is the only point where our proof fails for the Wright-
Fisher diffusion without reflection at zero. Originally, we tried to prove The-
orem 3.20 for the Wright-Fisher diffusion without reflection. We defined G
by (3.35), where (x, k) was now in [−1, 1] × {0, . . . , n} such that K(x, k) > 0
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and G = ḠWF was taken to be the generator of the Wright-Fisher diffusion
(defined by (1.10)). Note that at this point we could not take D (G) to be
functions such that f (·, k) are even polynomials, because even polynomials are
not dense in C [−1, 1]. But if we allowed all polynomials, we could not prove
that Gf can be extended to a continuous function on [−1, 1] × {0, . . . , n} be-
cause of the term 4k

x
∂
∂x
f(x, k) in (3.36). The deeper reason for these prob-

lems is that K(0, k) = 0 for k > 0. The interpretation is that after the pure
birth process departs from zero, the diffusion is no longer allowed to cross 0.
Moreover, for k > 0, the drift of the diffusion points away from zero and ap-
proaches infinity as x approaches zero (see (3.36)). This means that the semigroup
P tf(x, k) = E [f (Xt, Yt) |X0 = x, Y0 = k] may not be expected to be continuous
at (0, k) for k > 0 – if X0 is a small positive number, the drift will push it away
from zero, so P tf(x, k) will depend on values of f

(
x̃, k̃

)
, x̃ > 0, and if X0 is

a negative number close to zero, the drift will push it further to the negative
numbers, so P tf(x, k) will depend on values of f

(
x̃, k̃

)
, x̃ < 0.

To overcome this problem, we defined the state-space of the coupled process
to be

S = [−1, 1]× {0}
∪
([
−1, 0−

]
∪
[
0+, 1

])
× {1, . . . , n} . (3.41)

Here, we interpret 0− and 0+ to be two distinct points. Now we could define
D (G) to be the set of functions on S such that

x 7→ f (x, 0)

is a polynomial and

x 7→ f(x, k), x ∈
[
−1, 0−

]
x 7→ f(x, k), x ∈

[
0+, 1

]
are even polynomials for all k = 1, . . . , n. Note that when k > 0, the polynomials
for x > 0 and x < 0 are allowed to have different coefficients. This allows us to
prove that D (G) is dense in C (S) by the Stone-Weierstrass theorem. Moreover,
since all polynomials except for k = 0 are even, Gf can be extended to a contin-
uous function on C (S) as in Lemma 3.23 (the fact that f(x, 0) is not necessarily
even does not matter, since the term 4k

x
∂
∂x
f(x, k) vanishes for k = 0).

In this setting, however, the proof of Lemma 3.26 fails. The reason is that
now equation (3.37) has to be rewritten to reflect the fact that the coefficients of
g(k, x) may differ for positive and negative x when k > 0. We may write it as

g(k, x) =
M∑
m=0

b+
k,mx

m, x ∈
[
0+, 1

]
,

g(k, x) =
M∑
m=0

b−k,mx
m, x ∈

[
−1, 0−

]
,

with the additional requirement that b−0,m = b+
0,m for all m = 0, . . . ,M . Equa-

tion (3.38) has to be modified in a similar way. The effect of this is that we also
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get two versions of equation (3.40), one for the “plus” coefficients and the other
for the “minus” coefficients. Since we solve this equation backward, starting at
k = n and proceeding toward k = 0, we cannot guarantee that a−0,m = a+

0,m even
if we know that b−0,m = b+

0,m. We cannot even prove that the a+
0,0 and a−0,0 would

agree, meaning that f could be discontinuous at zero.
An obvious idea how to get around this problem is to split the interval [−1, 1]

into two even for k = 0. However, K(0, 0) > 0, so the drift at (x, k) = (0, 0) is
finite. The diffusion can therefore reach this point, and we need to specify what
happens here. If we say that the diffusion should reflect (which corresponds to
requiring that f (x, 0) , x > 0 and f(x, 0), x < 0 are even polynomials; a natural
requirement since we require the same thing for k > 0), then we get the Wright-
Fisher diffusion with reflection at zero. Now the parts where x > 0 and x < 0
are symmetric and independent of each other, so we need to only deal with one
of them. If we choose only the part where x > 0, we get the present formulation
of Theorem 3.20.

To summarize, it seems likely that if we defineG by (3.36) and make a suitable
choice of D (G), then a version of Theorem 3.20 holds also for the process without
reflection, where the state-space of the process generated by G should be defined
by (3.41). However, it seems impossible to use polynomials to prove that the
closure of G defined by (3.36) generates a Feller process on S. Using other
techniques, such as stochastic differential equations, would lead too far for the
present thesis.

In order to show that the generator G satisfies the requirements of Theo-
rem 3.9, we will use the following theorem due to Rogers and Pitman [7].

Theorem 3.28. Let (S,SSS ) and (S,S ) be measurable spaces and let φ : S → S
be a measurable transformation. Let Λ be a probability kernel from S to S and
define a probability kernel from S to S by

Φf = f ◦ φ.

Let X be a continuous-time Markov process with state space (S,SSS ), transition
semigroup P t and initial distribution π0 = π0Λ, for some distribution π on S.
Suppose further:

1. ΛΦ = I, the identity kernel on S,

2. for each t ≥ 0 the probability kernel P t = ΛP tΦ from S to S satisfies

ΛP t = P tΛ. (3.42)

Then P t is a transition semigroup on S, φ ◦X is Markov with the initial distri-
bution π0 and

P (Xt ∈ A|φ ◦Xs, 0 ≤ s ≤ t) = Λ (φ ◦Xt, A)

a. s. for all t ≥ 0 and A ∈SSS .

Proof. Rogers and Pittman ([7], Theorem 2) proved this for the case that π0 = δy
for some y ∈ S. The general case follows by integration with respect to π0.
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Now we are able to prove Theorem 3.9.

Proof of Theorem 3.9. We shall prove that the generatorG defined by (3.35) sat-
isfies the requirements of the Theorem. Let f be in C ({0, . . . , n}). We may view
C ({0, . . . , n}) as a subspace of C ([0, 1]× {0, . . . , n}) using the natural embedding

Ψ : f 7→ f ◦ ψ

where
ψ(x, k) = k.

Since
E [f (Ys+t) | (Xu, Yu) , 0 ≤ u ≤ s] = P tf (Xs, Ys)

where P t is the semigroup corresponding to G, (3.16) will be proved if we prove
that P tf(x, k) does not depend on x and equals Qtf(k) for all f ∈ C ({0, . . . , n})
and t ≥ 0. Let f be in D(H) = C ({0, . . . , n}). Then f is in D (G) and Gf = Hf
by (3.35), so Qt = P t on C ({0, . . . , n}) by Corollary 1.30.

In order to prove the claims about Xt, we will use Theorem 3.28. In the
present setting, S = [0, 1] × {0, . . . , n} and S = [0, 1]. Define a function φ :
[0, 1]×{0, . . . , n} → [0, 1] by φ(x, k) = x and a probability kernel Φ from [0, 1]×
{0, . . . , n} to [0, 1] as in Theorem 3.28. Define also a probability kernel from [0, 1]
to [0, 1]× {0, . . . , n} by

Λ (x,A× {y}) = δx(A)K(x, y),

where x ∈ [0, 1], y ∈ {0, . . . , n} and A is a Borel subset of [0, 1]. In other words,

Λf(x) =
n∑
k=0

K(x, k)f(x, k)

for f ∈ C ([0, 1]× {0, . . . , n}) and x ∈ [0, 1]. Observe that

πX0 Λ (A× {y}) =
ˆ
δx(A)K(x, y)πX0 (dx)

= π
(X,Y )
0 (A× {y}) .

Also observe that for f ∈ C [0, 1] we have

ΛΦf(x) =
n∑
k=0

K(x, k)f(x) = f(x),

hence
ΛΦ = I. (3.43)

Let us now prove that
ΛP t = PtΛ (3.44)

where Pt = PWF,r
t is the semigroup of the Wright-Fisher diffusion with reflection

at zero. By Theorem 3.1, it suffices to prove that

ΛGf = GΛf

58



for all f ∈ C ([0, 1]× {0, . . . , n}) such that f (·, k) is an even polynomial for all
k = 0, . . . , n. Let f be such a function and (x, k) ∈ [0, 1] × {0, . . . , n} such that
K(x, k) > 0. By (3.35),

K(x, k) (Gf) (x, k)
= K(x, k) (Hf (·, x)) (k) +G (f (·, k)K (·, k)) (x)− f(x, k) (GK (·, k)) (x).

Since both sides of the equality are continuous in (x, k) and the set whereK(x, k) >
0 is dense, the equality must hold for all (x, k) ∈ [0, 1]× {0, . . . , n}. Hence

ΛGf(x) =
n∑
k=0

K(x, k) (Hf (x, ·)) (k) +GΛf(x)−
n∑
k=0

f(x, k) (GK (·, k)) (x).

The first term can be rewritten as
n∑
k=0

K(x, k)
n∑
l=0

H(k, l)f(x, l).

The last term can be written as
n∑
k=0

f(x, k)
(
GK1{k}

)
(x) =

n∑
k=0

f(x, k)
(
KH1{k}

)
(x)

=
n∑
k=0

f(x, k)
n∑
l=0

K(x, l)H(l, k)

where in the first equality we have used Lemma 3.3. Therefore, ΛGf = GΛf .
Finally, from (3.43) and (3.44) we get that Pt = ΛP tΦ. Thus, we have verified

all requirements of Theorem 3.28. It follows that Xt is the Wright-Fisher diffusion
with reflection at zero with the initial distribution πX0 and

P (Yt = k|Xs, 0 ≤ s ≤ t) = Λ (Xt, [0, 1]× {k})
= K(Xt, k).

Remark 3.29. Observe that in the proof of Theorem 3.9 we have shown that
ΛP t = PtΛ

and then applied Theorem 3.28. Meanwhile, in the proof of Remark 3.17 we have
derived an analogous relation

ΛP (t) = PtΛ
and then proved (3.25) by induction. We could have proved Theorem 3.9 by an
inductive argument similar to that of Remark 3.17 without using Theorem 3.28.
To see this, note that (3.17) is equivalent to saying that for all m ∈ N and for all
0 ≤ t1 < · · · < tm,

P (Ytm = k|Xtm , . . . , Xt1) = K (Xtm , k) a. s., k = 0, . . . , n. (3.45)
Moreover, saying that Xt on its own is the Wright-Fisher diffusion with reflection
at zero is equivalent to saying that for all m ∈ N and for all 0 ≤ t1 < · · · < tm,

P
(
Xtm ∈ A|Xtm−1 , . . . , Xt1

)
= PWF,r

tm−tm−1

(
Xtm−1 , A

)
a. s., A ∈ B ([0, 1]) , (3.46)

where PWF,r
t is the semigroup of the Wright-Fisher diffusion with reflection at

zero. We could have proved (3.45) and (3.46) by induction in m.
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Conclusion

In this thesis we have generalized several results that were previously proved only
for Markov processes with discrete state-space. In particular, we have shown that
for arbitrary Feller semigroups, the intertwining of their generators of the form

GK = KH

is equivalent to the intertwining of the semigroups

PtK = KQt, (3.47)

see Theorem 3.1. We have used this result to find an intertwining between the
Wright-Fisher diffusion and a pure birth process on N ∪ {∞}. This intertwining
relation allowed us to find a probabilistic proof of the fact that the time to
absorption of the Wright-Fisher diffusion is distributed as a sum of independent
exponential random variables (although the distribution of the time to absorption
was already known, our proof of this fact is new).

A simple consequence of the intertwining relation (3.47) is that if the initial
distributions satisfy

πY0 = πX0 K,

then also the time t distributions satisfy

πYt = πXt K,

in other words
P(Yt = k) = E [K (Xt, k)] .

As in the discrete setting [4], one can try to generalize this by finding a coupling
of the processes Xt and Yt which satisfies

P (Yt = k|Xu, 0 ≤ u ≤ t) = K (Xt, k) .

We have tried to find such a coupling for the Wright-Fisher diffusion and a pure-
birth process on N ∪ {∞}, but due to technical difficulties, we were only able to
find it for the Wright-Fisher diffusion with reflection at zero and for a pure-birth
process on {0, . . . , n}. In the process of constructing the coupling, we noticed
that when Yt = k, Xt behaves like the Wright-Fisher diffusion with reflection at
zero and with additional drift which depends on k. This drift pushes Xt toward
certain point, and this point increases in k and reaches 1 when k = n. This can
be interpreted as Xt being initially reluctant to get absorbed, but getting more
compelled to get absorbed as Yt rises.

We have constructed the coupled process directly from the generator. How-
ever, as described in Chapter 2, Diaconis and Fill [1] and Fill [4] showed that in
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the discrete setting, there is also an alternative, sample path construction. We
believe that this sample path construction can be extended to construct a cou-
pling for the Wright-Fisher diffusion (with or without reflection). To outline the
construction (for concreteness, we demonstrate the construction for the diffusion
without reflection), let X(0,x0)

t be the Markov process on [−1, 1] generated by

G(0,x0)f(x) = −4x ∂
∂x
f(x) +

(
1− x2

) ∂2

∂x2f(x), f ∈ C2[−1, 1]

and started at x0, where x0 ∈ [−1, 1].2 Similarly, for each x0 ∈ (0, 1] and k =
1, . . . , n, let us have Markov process X(k,x0)

t with state-space [0, 1] started at x0
and generated by

G(k,x0)f(x) =
[

4k
x
− 2(2k + 21[k 6=n])x

]
∂

∂x
f(x) +

(
1− x2

) ∂2

∂x2f(x),

f ∈ C2[0, 1] s. t. ∂
∂x
f(x) = 0,

and for each x0 ∈ [−1, 0) and k = 1, . . . , n, let us have Markov process X(k,x0)
t

with state-space [−1, 0] started at x0 and generated by

G(k,x0)f(x) =
[

4k
x
− 2(2k + 21[k 6=n])x

]
∂

∂x
f(x) +

(
1− x2

) ∂2

∂x2f(x),

f ∈ C2[−1, 0] s. t. ∂
∂x
f(x) = 0.

Let Yt be the pure birth process on {0, . . . , n} generated by Hn of (3.6) and
started at zero. Assume that Yt and all X(k,x0)

t are mutually independent. Let τk,
k = 1, . . . , n be the times when Yt jumps from k − 1 to k, and define τn+1 =∞.
Now define Xt as

Xt =

X
(0,0)
t , t ≤ τ1,

X
(k,Xτk)
t−τk , τk < t ≤ τk+1, k = 1, . . . , n.

Note that Xt is not well defined for t > τk in the event that Xτk = 0, but
since this event has zero probability, we can define Xt for t > τk arbitrarily (e. g.
defining Xt = 0 for t > τk if Xτk = 0) without affecting its distribution. In view
of Remark 3.24, we conjecture that (Xt, Yt) is a coupled process in the sense of
Theorem 3.9. We also conjecture that this construction could be used to construct
a coupling of the Wright-Fisher diffusion (with or without reflection at zero) with
the pure birth process on N ∪ {∞}.

2For the motivation for this and the following generators, see Lemma 3.23.
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