
MASTER THESIS

Adam Blažek
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Abstract: This thesis focuses on novel video retrieval scenarios. More par-
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a short video segment known either visually or by a textual description. The
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1. Preface

Nowadays world is without any doubt greatly influenced by modern information
technologies. Digital revolution is rapidly transforming virtually every branch of
industry and countless aspects of our every day life. Devices capable of recording
and storing data are omnipresent and interconnected. Nonetheless, the Internet
is nothing like cold digital plains occupied by machines, it is in fact the exact
opposite. Billions of peoples are communicating through social networks on daily
basis with texts, emails, images and videos.

On YouTube alone, more than 300 hours of video content is being uploaded
every minute. With personal devices capable of capturing images and videos we
indeed face an explosion of multimedia. Multimedia databases are vigorously
growing in the terms of size, complexity and diversity. Hence, we see the arising
need of effective solutions for browsing and retrieving multimedia collections.

Similarly to vision being the dominant source of information from our envi-
ronment, video represents one of the richest, most complex and also challenging
type of multimedia. Within five minutes, one writes an email while another
records a several gigabytes of video. Collections comprising hundreds of hours of
video content are becoming commonly available for educational, professional and
personal use.

With diverse applications, novel video retrieval scenarios are emerging. Fur-
thermore, the video data are generally not annotated; thus, it is not possible to
employ regular textual search techniques. In this thesis, we tackle the topic of
video retrieval and browsing. We propose, implement and evaluate a tool for
interactive browsing of large video collections. Main attention is paid to the
scenario where users search for a known video segment having no suitable example
object.

We base our tool on simple yet effective description of a color distribution
in video key-frames. Users express their search intent in the form of color-
position sketches. This basic approach is further combined with edge-based
descriptors, semantic similarity search, text-based retrieval and effective browsing.
In comparison to other state-of-the-art tools, our approach appears vital and
actually outperforms a number of them. Our system has become a decent base-line
for the problem of known-item search in video.

All the up-to-date solutions to the problem including ours put users to the
central role. The performance is therefore influenced by the level of expertise and
many other factors. Meanwhile, artificial intelligence is able to answer questions
asked in natural language within fractions of seconds. Effortlessly, we obtain
informations such as where is the nearest coffee shop. We do expect similar
solution to be available for video retrieval in the foreseeable future.
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2. Introduction

With the advance of various recording devices, multimedia creation is no longer
a domain reserved for professionals. Devices being used on daily basis such as
smartphones or tablets are able to capture high-quality images and videos in a
convenient way. Hence, large video collections are becoming common, yet their
sizes, contents and applications are indeed diverse. To portray the variability of
video collections, let us describe few examples:

Medical videos for surgery after inspection and training of physicians are
often recorded. During the after inspection, physicians control critical phases
of the surgery and select screenshots for documentation (in some countries
required by legislation). During their education, surgeons have to observe a
number of operations before they can assist at one. Educational database of
operations captured on video might accelerate this process. Students might
look up for the particular type of operation or retrieve cases when a specific
complication happened.

Industrial research videos help to better understand and analyze complex
physical processes in various products. For example, high-speed cameras
can be used to record processes in an engine during the combustion. The
results of such analysis can help to design new types of engines with lower
fuel consumption and producing less harmful emissions.

Personal video collections are probably the most growing category of
videos. Memorable moments from people vacation, weddings etc. are being
commonly captured and stored by billions of ordinary users. Nonetheless,
finding one particular shot within tens or hundreds of hours of video content
collected over years can be quite challenging even for a single personal
archive.

Professional media productions create high quality videos, often equipped
with subtitles and soundtracks. Thousands of short clips are organized and
labeled for easy navigation and access. The provided annotation however,
might be ambiguous, misleading or even missing.

Once the quantity of video data reaches some level, the findability of specific
scenes becomes one of the main issues of video management systems. The videos
can be searched by means of available attributes (e.g., date of creation, GPS
location, length). However, these attributes do no help to find semantic information
recorded in the videos. Some engines [22, 40] implement keyword search, where
users specify their search intents using natural language. The keyword search
stands or falls on the automatic annotation of the videos [41, 79, 85]. While
humans are able to effortlessly and precisely process visual stimuli and recognize
objects, persons or ongoing events, the same does not apply to machines. Although
computer vision has achieved major breakthroughs [60] in recent years, many
problems are far from being satisfactory solved. For example, when it comes to
automatic video event detection state-of-the-art methods [82] achieve no more
than 45% mean average precision for specific benchmarks. Since it is still a difficult
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task to automatically annotate video collections, the search engines employ also
content-based similarity search using query by example. In this research area,
deep learning [38] has started a revolution boosting the performance of similarity
search significantly. However, this scenario can be considered as long as users have
an appropriate query example object. Therefore, some research directions focus
on the Known-item Search (KIS) tasks where users are searching for a particular
video clip known either visually or by textual description (i.e., no example video
is available).

To solve KIS tasks, automatic annotation and content-based similarity search
are employed in combination with exploration scenarios, where users conveniently
browse and explore the database contents or lists of results. For example, users
start with KIS query specification, browse the results and pick one of the results
for similarity search. Iterations of results browsing, query refinement and similarity
search form interactive and often effective user-centric retrieval process.

Although various advanced KIS retrieval tools exist, the usability gap can
prevent from using them. It is common that once the keyword search fails,
ordinary users often skip to classical players with intuitive playback controls.
Clearly not optimal, nor scalable, but very intuitive solution. Hence, as users
become a significant element of the retrieval process, the interfaces have to be
intuitive, responsive and convenient. In other words, KIS tools have to provide
comprehensible query initialization, data visualization and exploration interfaces.

In order to initialize KIS search, the state-of-the-art KIS tools often rely on
automatic concept detection methods. Even with lower than desirable precisions,
object recognition and localization or concept detection techniques might provide
valuable additional information for video retrieval1. With effective browsing
features, a system for video retrieval [53, 63] based on automated concept detectors
may provide reasonable results. Alternatively, video content might be described
with robust low-level features such as color distribution [50] or optical flow [11].
Differently to high-level concept detection, the features can be directly extracted
from the data. Nonetheless, these low-level features are often hard to be specified
by users or they are not descriptive enough.

During the last decade, several orthogonal approaches for KIS have emerged [76].
Unlike classical benchmarks for automatic retrieval, the performance assessment
of tools for KIS video retrieval is complicated problem on its own. As users
are involved in the process, the results are influenced by many factors including
the level of user expertise. For this reason, comparative competitions such as
Video Browser Showdown (VBS) [73] are being organized. In VBS case, each
participating team develops its own tool for video retrieval with which solves
plurality of KIS tasks. In particular, both visual and textual KIS tasks are solved
by experts and novices during live competition. In this way, the state-of-the-art
methods are directly compared. Another relevant workshop is TRECVID [80]
where algorithms for concept detection, object localization and event recognition
in video are compared. In 2017, VBS will cooperate with TRECVID and use the
same IACC.3 video data set comprising 600 hours of video.

1Note that in some specific cases, machine learning algorithms even surpassed human
performance [26].
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2.1 Our contribution

In this thesis, we propose, implement and evaluate a video retrieval tool that
provides an aid for KIS in video collections. We aim at the situation when no
additional information for video content is available (i.e., no subtitles, no sound-
track). In the early versions of the tool, users could express their search intent in a
form of color-position sketch drawings, which led to the name Sketch-based Video
Browser (SBVB). The actual version introduces multi-modal sketches and supports
also keyword search to initialize textual known item search tasks. Interactive
exploration of the database content is further supported with a number of fea-
tures including semantic similarity search, compact visualizations and interactive
navigation summaries.

Note that the first version of the tool was introduced and defended as my
Bachelor Thesis [9] in 2014. Since then, the work has continued and we enhanced
SBVB with a lot of new features, modalities and browsing options. In other words,
SBVB evolved to Enhanced SBVB (ESBVB) which is presented in this thesis.
Most of the contributions were published at international conferences. Hereby, we
include the list of our published papers:

1. Signature-Based Video Browser [46]
Demo paper describing the overall functionality of SBVB.

2. On Effective Known Item Video Search Using Feature Signatures [48]
Demo paper describing our retrieval model.

3. Video Retrieval with Feature Signature Sketches [7]
Full paper on the overall concept and index optimizations.

4. Enhanced Signature-Based Video Browser [8]
Extended demo paper describing the enhancements done in 2014.

5. Multi-sketch Semantic Video Browser [39]
Extended demo paper describing the enhancements done in 2015.

6. Known-Item Search in Video Databases with Textual Queries
Short paper describing our textual query interface and model. Paper is
accepted to the conference on Similarity Search and Applications 2016 in
Tokyo. Its contents are covered with Sections 6.3 and 9.2.

7. Interactive Video Search Tools: a Detailed Analysis of the Video
Browser Showdown 2015 [14]
Journal paper thoroughly analyzing the results from VBS 2015.

Demo papers 1, 4 and 5 were accepted to VBS 2014, 2015 and 2016 respectively
where our tool competed with the other state-of-the-art methods. In short, we
won VBS 2014 and 2015 and ended up 3rd in VBS 2016. Detailed results and
analysis are presented in Chapter 8.
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2.2 Thesis Structure

The thesis is organized as follows. We start with introduction to similarity search
and image/video retrieval as preliminaries to our work (Chapter 3). Before we
describe our system, we portray the state-of-the-art of video retrieval in Chapter 4.
The description of the tool is divided in two chapters. Firstly, in Chapter 5
we present the original SBVB version with many (not yet published) additional
details about the retrieval model. Secondly, in Chapter 6 we go through all the
enhancements done in the last two years.

The architecture of our ESBVB implementation (available in DVD) is discussed
in Chapter 7. In the following Chapter 8, we present and discuss the results from
VBS 2014− 16. Next, we discuss the results of two user studies in Chapter 9 and
finally, we conclude the work and outline our future work in Chapter 10.

An inseparable part of the thesis is a DVD containing the ESBVB implemen-
tation, the user tutorial and other materials. Additionally, we maintain a project
web page available at http://siret.cz/project/sbvb.

The proposed models and algorithms were tested on a dataset of 200 hours
of video content kindly provided by BBC. The dataset comprises various BBC
programmes including TV shows, documents and broadcasts. If not stated
otherwise, the depicted images originate from this dataset. All rights regarding
these materials are reserved to BBC.
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3. Preliminaries

In this chapter, we build the apparatus needed to describe our tool and algorithms.
In particular, we start with defining concepts related to metric spaces, similarity
search and general object retrieval. We follow with domain specific concepts such
as digital image processing and image descriptors.

3.1 Metric and Vector Spaces

A Metric space M is a pair M = (D, δ), where D denotes a descriptor universe
and δ is a distance function D× D→ R (R is the set of real numbers) satisfying
the following conditions ∀x, y, z ∈ D:

δ(x, y) ≥ 0 (non-negativity)

δ(x, y) = 0 iff x = y (identity)

δ(x, y) = δ(y, x) (symmetry)

δ(x, y) + δ(y, z) ≥ δ(x, z) (triangular inequality)

We understand the elements of D as object descriptors (or simply objects) and
the function δ as a distance or dissimilarity measure between them. The crucial
property of metric spaces is the triangular inequality as it induces a number of
interesting properties.

The well known example of a metric space is defined over the d-dimensional
vector space Rd with the following formula:

δ(x, y) = L2(x, y) =

√√√√ d∑
i=1

(xi − yi)2 (3.1)

The distance function (3.1) is also called the Euclidean distance. With d = 2
or d = 3 we get the regular space with δ measuring the actual distance between
two points. The distance function (3.1) might be generalized to

Lp(x, y) =

(
d∑

i=1

|xi − yi|p
) 1

p

(3.2)

for an arbitrary p ≥ 1. The effects of different values of p are demonstrated in
Figure 3.1, wherein we display unit ball regions 1 centered in (0, 0).

1For point x a unit ball is the set of all y having δ(x, y) ≤ 1.
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Figure 3.1 Unit balls centered in (0, 0) under different Lp metric functions. From
left to right: p = 1 (Manhattan distance), p = 2 (Euclidean distance) and p =∞
(Chebyshev distance).

3.1.1 Similarity Search

Often, S ⊂ D represents a database of objects subjected to various queries. As we
have available a dissimilarity measure δ we are able to identify the most similar
(or least dissimilar) objects within S for a particular query q ∈ D. The query
could be expressed in natural language as “find k closest objects for q”. Formally,
we consider two popular types of queries:

k-nn Given a query object q ∈ D and k ∈ N; return first k objects from
the ascending ordering of all objects x ∈ S with respect to δ(q, x) (i.e.,
k-nearest neighbors from S to q)

range Given query object q ∈ D and a range r ∈ R+
0 ; return X = {x |x ∈

S ∧ δ(q, x) ≤ r} (i.e., all the objects within the specified range)

Both queries might be processed with naive algorithm which calculates all the
distances between database objects and query object q. Unfortunately, the distance
function δ could be computationally expensive and/or the number of objects in S
might be very high.

3.1.2 Indexing Metric Spaces

In order to avoid the computation of the distance function during processing of
similarity search queries, various indexing techniques were proposed [87]. Roughly,
the idea is to pre-compute some auxiliary data structures so that we can filter
the database objects that should not be retrieved. The filtering conditions often
utilize the triangular non-equality in some form. Sometimes, it is acceptable to
allow filtering which also filters objects that should be retrieved. In such case, we
are talking about approximate similarity search.

To demonstrate how filtering in a metric space might look alike assume the
following example. In metric space (R2, L2) with objects O = {o1, o2 . . . } we
pre-compute the distances to the selected pivot p (that is L2(p, o1), L2(p, o2) . . . ).
Given a range query (q, r) we do the following:

1. Compute L2(q, p)

2. Filter O′ = {o | o ∈ O, |L2(q, p)− L2(p, o)| ≤ r}

3. Return O′′ = {o|o ∈ O′, L2(q, o) ≤ r}

9



The situation is depicted in Figure 3.2. Note that we do not compute any distances
in the second step! The distance is computed only to the pivot and objects that
pass the filtering. This filtering is beneficial for expensive distance functions.
Mathematically, the condition in the second step is justified with

L2(q, p)− L2(p, o) > r (filtered object)

L2(q, o) + L2(p, o) >= L2(q, p) (triangular inequality)

L2(q, o) >= L2(q, p)− L2(p, o)

Now, by combining 1st and 3rd row we obtain:

L2(q, o) > r (out of range)

I.e., a filtered object o can not be in the range r from q.

q

p

or

L2(q, p)

L2(q, o)

L2(o, p)

Figure 3.2 Range query (q, r) configuration in which we can filter the object o
thanks to the pivot constraint L2(q, p)− L2(p, o) > r.

Our pivot and the actual query range effectively identify parts of the database that
can be completely skipped. With additional pivots and constraints we are able to
further partition the database and tighten the searched area even more. The metric
space approach provides also ball and generalized hyperplane partitioning methods
enabling filtering of groups of objects [87]. Although we do not propose novel
constraints and filtering techniques, we utilize state-of-the-art metric indexing
methods in our system.

The metric space approach is an efficient choice especially for high-dimensional
data that cannot be indexed by traditional spatial access methods [71]. However,
for uniformly distributed low-dimensional vector data, classical grid indexes could
be a more efficient choice [7].

3.2 Image Retrieval and Similarity Search

Despite we aim at video retrieval problems, most of the concepts are exactly the
same in the image domain. As images are less complex than video content, we
start with defining basic image related concepts and we move to the video domain
later on.
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An image is often defined as a real function of two spatial variables.

f(x, y) = z ; f : R× R→ R+ (3.3)

That is, for a given point (x, y) we understand f(x, y) as the intensity at that
point. Although working with images as functions may clarify and ease a number
of complex problems, we are going to prefer the discrete definition. For our needs
a gray-scale image I is a matrix of size M ×N of integer values in one byte range
0− 255. An image element Iij is named pixel. A color image can be defined as a
stack of 3 gray-scale images, each image or channel representing either red, blue
or green color component (Fig. 3.3).

Figure 3.3 Discrete understanding of digital images. A gray-scale image (left)
and a color image (right).

3.2.1 Image Retrieval

Nowadays, databases of millions of images are quite common; thus, algorithms,
indexes and techniques for large scale image retrieval are in the spotlight. Out of
all the problems being solved, we define the following scenarios:

qbe Query by Example: given an example image, we are searching for either
other instances of the same object or visually similar images.

sbir Sketch-based Image Retrieval: searching for particular object/image,
users do not have an example available; thus, the query is specified as a
user-drawn sketch.

In fact, those image retrieval scenarios can be solved by the metric spaces
approach and similarity queries. Furthermore, we know that with proper indexing
techniques, similarity search queries might be processed efficiently.

Now, the question is what is the proper descriptor space for images and of
course what distance function shall be utilized. Often these two challenges are
solved together, i.e. we design an image descriptor together with a distance
function.

3.2.2 Image Descriptors

The selection of an appropriate image descriptor is often a complicated problem.
There is no always-best option and with different tasks and datasets the optimal
descriptor would also differ. We do not provide an exhaustive list of image
descriptors; instead, we demonstrate the overall idea of descriptor design on the
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simple example of a color histogram descriptor which captures the distribution of
colors in images.

Speaking about descriptors capturing color distribution in images, we already
have one – the images themselves. Unfortunately, for image retrieval problems
raw images are rather useless for a number of reasons. At first, we would have to
deal with the very large number of dimensions (the number of pixels times the
number of channels). Furthermore, even an image shifted by a few pixels would be
quite different (pixel-wise) from the original; thus, we would have to design more
sophisticated perceptually sensitive similarity measures that are more expensive.

Basic color histograms compactly represent color frequencies in images. Basi-
cally, we sum up the numbers of pixels with specific colors. Alternatively, we do
this summation channel-wise as is depicted in Figure 3.4. As we lost the spatial
distribution of colors, color histogram is so called global descriptor capturing
overall image characteristics.

Figure 3.4 Per-channel color histogram of Lena color image.

Now, imagine an image with randomly shuffled pixels. Its color histogram
would be the same as the color histogram of the original image although the
images are not similar at all (Fig. 3.5). This should be no surprise as we know
that we simply completely lost the spatial information.

Figure 3.5 Image of Lena (left), the same image with randomly shuffled tiles
(center) and with randomly shuffled pixels (right). All the images would have
exactly the same color histogram.

We might enhance the global color histogram descriptor so that it roughly cap-
tures the color distribution with simple trick. We divide the image in K×L equally
sized parts and calculate the color histogram for each part separately (Fig. 3.6).
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In this way, images in Figure 3.5 would yield different descriptors. Side effect
is that the local histograms descriptor is precisely K × L times larger than one
global histogram.

Figure 3.6 An image (left), its local image histogram descriptor (center) and
feature signature (right).

With 1-byte per color channel representation, total of 2563 = 16777216 different
colors may be specified. A color histogram with this dimensionality would not
be any more compact than the image itself. For this reason, we often quantize
the colors in each channel. Finally, a difference between two histograms might be
measured with their correlation.

Color histogram is quite simple yet in some scenarios surprisingly powerful
image descriptor. Nonetheless, it is easy to come up with scenarios when it fails
completely. For example, although images of dalmatian and golden retriever are
semantically close (both are dogs), their color histograms would be completely
different.

In our system, we utilized the feature signature color descriptor (see Fig. 3.6 –
right) which represents the image as a set of distinct color regions. Differently
form local color histograms, feature signatures do not follow a rigid grid structure
and thus adapts better to image contents. We provide more elaborate description
of feature signatures in Section 5.1.

It is clear that the selection of a suitable image descriptor is the crucial step
in designing an image retrieval system. We might utilize descriptors capturing
different image properties such as its edges, complexity etc. or even combine
multiple descriptors together. Through this work, we describe several additional
image descriptors and discuss the reasons for their selection.

3.2.3 Image Convolution

Seemingly aside from image retrieval and image descriptors is the image convolution
operation. Mathematically, the convolution is defined as a functional operator,
i.e., a mapping between two function spaces where in our case the functions are
images. If we stay with the discrete images it is a sliding window operator which
maps an image to another image. The window is called the convolution filter or
kernel and is in fact a small matrix (e.g.: 3× 3 or 5× 5). With an input image I
and a kernel K of dimensions W ×H, the output image O is defined as:

O(i, j) =

bW2 c∑
k=−bW2 c

bH2 c∑
l=−bH2 c

K

(
k +

⌊
W

2

⌋
, l +

⌊
H

2

⌋)
I (i+ k, j + l) (3.4)
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I.e., the kernel is centered at (i, j), point-wise multiplied with the underlying
portion of image I and summed to produce the pixel value of the filtered image
O(i, j) (Fig. 3.7).

Figure 3.7 Discrete 2D convolution schema. The convolution filter or kernel
(middle) is slided over the original image (left). At each position, point-wise
multiplication and summation produce one pixel value in the resulting filtered
image (right).

The output image is dependent on the values of the utilized convolution kernel
and, of course, on the input image. We might design filters for amplifying image
edges, blurring images etc.

Convolution operations are fundamental building blocks of deep convolutional
neural networks (DCNN) described in the following section. Furthermore, we
utilize convolution for detecting edges in images (Section 6.1).

3.3 Deep Learning as Frontier in Image Retrieval

For a long time, hand crafted features based on detection of key points in images
were dominant in image retrieval, image matching, image registration etc. Huge
effort was paid for crafting, refining and nurturing these features. A typical
example of such hand-crafted feature is the Scale-Invariant Feature Transform
image descriptor (SIFT) [49]. The SIFT descriptor pursues the idea that certain
key points are characteristic for the objects captured in images. Ideal key points
should be invariant to various image transformations such as rotation, scaling etc.
SIFT features actually hold these properties and thus, became very popular for
various image related problems. An example of detected SIFT key-points might
be seen in Figure 3.8.

Visual object recognition and image classification has been one of the major
challenges in computer vision for decades. Since its introduction, SIFT and other
similar features played a major role in virtually every solution proposed for these
problems. Given a set of images divided to certain classes, we start with detection
of key points. These key points are consequently quantized to centers of clusters
(so called Visual Words) obtained by clustering of all the extracted key points.
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Figure 3.8 A gray-scale image (left) and its SIFT key points (right). Images
courtesy of [45]

Each image is represented by the histogram of these Visual Words, which is known
as the Bag of Visual Words (BoVW) model 2.

Machine learning algorithms, such as Support Vector Machines (SVM) [27],
can be employed to classify the resulting feature vectors. A common processing
pipe-line designed in 2012 or earlier would comprise these steps:

1. Key-points detection

2. Key-points clustering (visual vocabulary building)

3. Calculating BoVW representation

4. Training SVM classifier

While each step of the pipe-line can be optimized with variety of improvements
and tricks, everything depends on the properties of the key points being utilized.
It is unclear if there is any better way of selecting and representing the key points.
The performance of visual recognition systems is being evaluated annually at
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [68]. ILSVRC
comprises 1000 object categories, each having around 1000 example images. In
years 2010 and 2011 the state-of-the-art systems following roughly the sketched
pipe-line did not achieve better than 25% top-5 error rate 3 which is quite far
from the desirable levels.

Then, deep convolutional neural networks (DCNN) emerged on the scene
in 2012. The renaissance of neural networks was initialized by daringly large
model utilizing convolutional layers, thorough sub-sampling with max pooling
and clever prevention of over-fitting with so called drop-out. Famous AlexNet [38]
was designed for ILSVCR 2012 and achieved less than 16.5% error rate. The
community quickly adopted the new course and pushed the performance of DCNNs
on image classification tasks even further (see Table 3.1 for details).

The power and beauty of DCNNs lies in their architecture mimicking the
mammalian visual cortex. Crucial components of DCNNs for visual recognition

2An alternative to BoVW model are the Fisher [72] or VLAD [34] Vectors encodings. Both
are global image descriptors obtained by an aggregating of the local image features (e.g. SIFTs).

3Top-5 error rate refers to the percentage of images for which the real category was not
within the top-5 categories suggested by a particular visual recognition system.
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Table 3.1 ILSVCR image classification results from 2010–2014.

Year Method Top-5 error
2010 Key points + SVM 29.8%
2011 Key points + SVM 25.6%
2012 DCNN 16.4%
2013 DCNN 11.7%
2014 DCNN 7.4%

are convolution layers containing small convolution filters with learned parameters.
Once learned, convolution filters detect local patterns present in images. As
we delve deeper, detected patterns become more complex until finally, we are
able to separate the image categories with regular neural network with couple of
fully connected layers. Although the architecture is not complicated (see Figure
3.9), one must make use of many tricks to actually create a DCNN model which
generalizes well. Bottom line is that features are learned instead of crafted by
hand and the whole system is learned in the end-to-end manner. Furthermore,
some of the learned models are publicly available which allows us to stay within a
user-level and utilize them as black-box components. The details how we utilize
DCNNs are provided in Sections 6.2 and 6.3.

Figure 3.9 AlexNet architecture comprising convolutional layers (local pattern de-
tectors), max-pooling layers (down-sampling) and fully connected layers (classifier).
Courtesy of [38].
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4. Known-item Search Tools

Video retrieval is a broad research topic touching other areas such as machine
learning, information retrieval, database systems and cognitive science. It is out
of the scope of this work to provide exhaustive introduction to all these areas.
Instead, we portray the context of our work with a short description of video
retrieval systems designed to solve the same tasks as we try to solve using our
Sketch-based Video Browser.

In particular, a short overview of the top performing teams during the last five
years of the Video Browser Showdown are presented. Although many interesting
approaches and tools competed at the Video Browser Showdown, only the top-3
teams are summarized for each year in this chapter. If a team appeared with their
tool multiple times in the set of top-3 scoring teams, the evolution of the tool is
chronologically summarized.

The overall results of VBS 2012–2016 are captured in Table 4.1 wherein our
tool is denoted as SIRET. (E)SBVB is thoroughly described in Chapters 5 and
Chapters 6. In depth analysis of the VBS results is provided in Chapter 8.

Year 2012 2013 2014 2015 2016
1st place KLU1 NII-UIT SIRET SIRET HTW
2nd place NUS DCU NII-UIT IMOTION KLU-UU
3rd place KLU2 KLU1 KLU1 UU SIRET

Teams 8 6 7 9 9
DB size 1h* 1h* 25h 100h 250h

Table 4.1 Video browser showdown winners and competition settings. * the
name of a one hour video was specified before each search task.

4.1 KLU team

The KLU team from the Institute of Information Technology, Klagenfurt University
has successfuly presented several top-3 scoring tools at VBS. The first tool (KLU1
in Table 4.1) is the AAU video browser [16, 18] that won VBS in 2012 and then
took the third place for two times in 2013 and 2014 (out of competition). The
AAU video browser relies on (exhaustive) human computing by providing parallel
or hierarchical browsing methods. The tool relies mainly on the ability of the
users to track several video streams in parallel. Surprisingly, the tool performed
well also on the collection comprising 25 hours of video. The second version of
the AAU video browser tool uses also a content-based analysis of the video to
provide augmented navigation bars depicting repeating segments [18]. The second
presented tool (KLU2 in Table 4.1) focuses on video browsing with a 3D thumbnail
ring arranged by color similarity [75] and participated only in 2012. The second
tool relies also on the sequential inspection of the video. Instead of time preserving
visualization, the tool arranges the keyframes by their dominant hue color in the
HSV color space. The third tool, developed together with UU team (KLU-UU
in Table 4.1), utilizes also content-based filtering considering automatic concept
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detection and color feature signatures. The tool focuses also on the collaborative
video search (involving more users) combining video retrieval using a desktop
application with human-based visual inspection of a tablet application [30].

4.2 NII-UIT team

The NII-UIT tool was designed by the international team from National Institute
of Informatics in Tokyo and the University of Information Technology and the
University of Science in HCM City. The tool participated three times at the VBS,
where in years 2013 and 2014 the tool took the first and the second place [42, 55].
The first version of the tool relies on coarse-to-fine presentation, where each one
hour video clip is divided into short compact segments and then grouped using a
hierarchial clustering method. The tool employs also filtering methods reducing
the number segments for inspection. Category, layout and color distribution based
filters are considered. The second version of the tool adds also sequential patterns
that can be used to find pairs of consecutive scenes with predefined patterns. In
order to identify concepts, support vector machines in connection with classical
features (BoVW and HOG) are trained.

Figure 4.1 The tool winning VBS 2013 developed by the NII-UIT team. Image
courtesy of [42].

4.3 HTW team

The Visual Computing Group from HTW Berlin, University of Applied Sciences,
has presented a novel browsing approach [5] based on a hierarchical graph and
visually sorted image maps. In order to create the graph (in the preprocessing

18



phase), the authors consider visual features and semantic features learned from
a convolutional neural network. In order to preserve complex image relations
during efficient navigation, a novel method projecting images from the graph
organization to 2D plane is utilized. To initialize the search, time ordered sketches,
categories or frequent scenes can be employed. The results of the search (by sketch
or similarity) are visually sorted and the user can use each displayed image to
jump either to the graph or to the video clip. If the image appears at multiple
levels of the graph, the highest level is selected.

Figure 4.2 The tool winning VBS 2016 developed by the HTW team. Image
courtesy of [5].

4.4 IMOTION team

The IMOTION system is a joint effort of the Numediart Institute for Creative
Technologies at the University of Mons (Belgium), the Intelligent User Interfaces
Lab at Koç University (Turkey), and the Databases and Information Systems
Research Group at the University of Basel (Switzerland) [63]. A multitude of
low-level (global, regional and motion based) and high-level (deep learning based)
features is considered in the system. The system supports rough color or edge
sketches, motion queries or query by example. The three modes are complemented
by a refinement of query results by means of a relevance feedback.

4.5 UU team

The team from the Department of Information & Computing Sciences, Utrecht
University, The Netherlands has presented a story-board based interface for mobile
video browsing [31]. The tool considers limiting factors in the interface design
(e.g., small screen, touch and tilting actions) and relies only on human computing
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and interaction, excluding video analysis and machine-based query processing.
Hence, for 100 hours of video in VBS 2015 and uniform sampling of keyframes
every second, 360000 keyframes has to be inspected. Considering research works
about optimal images sizes for storyboards on mobiles, 625 images on one screen
were considered for the employed device. These settings result in 550 screens
that have to be visited manually. The tool uses a compact space filling curve
for temporal arrangement of thumbnails and a simplified storyboard navigation
interaction restricted to up/down motions.

4.6 DCU team

The team from the Dublin City University focused on visual concept classifica-
tion, visual similarity search and clustering, and face browsing and search [77].
The visual concept classification helps with filtering of non-relevan scenes, where
the concept detectors used popular BoVW representations and support vector
machines. For similarity search in the set of keyframes, detected sparse SIFT
descriptors were aggregated to VLAD vectors. The PCA was used to reduce the
dimensionality of VLAD vectors. The agglomerative clustering on the VLAD de-
scriptors extracted for similarity search was performed to support coarse browsing
of groups of similar keyframes. Since the videos at VBS often contain faces, the
tool also provides a face view that shows all the faces found in the video and
supports navigation operations in the space of faces.

4.7 NUS team

The team from the School of Computing, National University of Singapore has pre-
pared a tool integrating visual content, text and concept based search approaches
[86]. For the visual and conceptual inputs, the user can further specify a temporal
order to enhance the search performance. More specifically, multiple color based
features can be entered to select matching scenes, or a sequence of concept bundles
can be used to describe the searched scene. The text based approach enables
users to select a category enabling relevance ranking of the results. The ranking
method relies on the tag files of the top 100 videos from YouTube and textual
words extracted by ASR and OCR. For each query modality, also a related sample
can be selected to display the k nearest samples from the database.
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5. Sketch-based Video Browser

Our tool for known item video retrieval has been developed since 2013 and was
initially presented as Signature-based Video Browser (SBVB) in 2014 [47], later
it was renamed to Sketch-based Video Browser. In this chapter, we recapitulate
the key ideas embodied in SBVB which is going to serve us as a reference point
for the next Chapter 6. Besides the already published contents [9, 47] additional
details are provided. In particular, the not yet published details are:

• the feature signatures extraction algorithm and its hyper-parameters,

• the discussion on distance function options for the video retrieval model,

• and partial results caching in video retrieval model

The SBVB tool is build around a simple yet effective feature signatures
descriptor [66] which flexibly captures a color distribution in the key-frames and at
the same time allows to specify color-position sketches. The database contents are
ranked according to the similarity with the defined sketch and the top matching
key-frames are presented together with their preceding and following key-frames.
Especially visual KIS tasks can be solved using such interaction loop, where in
each iteration users modify the color sketch and refine results. In this chapter, we
thoroughly describe all the significant parts of the original SBVB tool – feature
signatures, the retrieval model (Section 5.1) and the user interface (Section 5.2).

5.1 Feature Signatures

The wide variety of image and video descriptors and similarity measures was
introduced during the last decades [33, 43, 61, 67]. Each descriptor was designed
to optimize different criteria and to capture different image or video properties.
To address the visual KIS problem, we would like to utilize a descriptor that

Eff is robust, compact, scalable and provide enough filtering power

Comp can be extracted and indexed with low computational and memory
demands

User can be easily specified and understood by users

While the first two properties Eff and Comp are being held by many descrip-
tors it is the last User property that often imposes the actual challenge for KIS
retrieval. To provide an effective solution for the visual KIS scenario, it is vital
when users are able to express their search intent in a simple and convenient way.

One of the candidates for the image descriptor which satisfies all the desired
properties are color-position feature signatures (FS) [66]. With FSs, an image is
represented by a set of its distinct color regions where the number of regions and
their sizes may vary. Rigorously, an image i is described with FSi defined as

FSi = {rij}j (5.1a)

rij = (x, y, L, a, b, r) (5.1b)

21



In other words, a feature signature (Eq. 5.1a) is a set of positioned color
regions rij, whereas each color region (Eq. 5.1b) is defined by the position of its
centre (x, y), its color in the Lab color space 1 (L, a, b) and its size or alternatively
its diameter r. Example of visualized feature signatures are depicted in Figure 5.1.

Figure 5.1 Example key-frames and the visualizations of their feature signatures.

Now, given a video clip to be searched, we assume that users are able to
memorize the overall composition of one or more scenes. Perhaps with a simple
sketching tool, the memorized scene composition might be materialized and used
as an actual query to the system. We designed a simple signature sketching
tool (depicted in Fig. 5.2) where only colored circles (user-defined centroids) are
placed instead of complicated drawings. In this way, we describe the dataset
images/key-frames in the same way/format as users are expressing their search
intents.

Figure 5.2 FS sketching canvas. An arbitrary combination of colored circles
might be defined in order to express the memorized distinct color regions in the
searched scene. Colors might be picked with our custom color-picker displayed
ad-hoc for each centroid.

In the rest of this section, we provide details on FS extraction algorithm and
FS sketch-based image retrieval.

5.1.1 Extraction Algorithm

Our feature signatures extraction algorithm is an adaptive variant of the k-means
clustering [24]. The original K-means clustering is a well known algorithm for

1Lab is a color space designed so that the Euclidean distance corresponds to human-perceived
color difference uniformly over the whole space.
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finding k clusters of objects from a vector space Rn of arbitrary dimension n.
Translated to our world of images, we are finding distinct color regions (clusters)
in a color-position space of image pixels.

First, we describe the vanilla k-means clustering algorithm. Second, we
introduce our variant of k-means clustering tailored to the problem of finding
distinct color regions in images. As our algorithm have a number of hyper
parameters, we also walk through the process of the parameters fine-tuning.

K-means clustering 2

Given a set of points X and an initial set of k means m
(1)
1 . . .m

(1)
k (e.g. random

points from X) the two following steps are repeated until a terminating condition
is reached.

Assigning points to means: Assign the points to the nearest mean.

S
(t)
i = {x ∈ X |L2(x,m

(t)
i ) ≤ L2(x,m

(t)
j )∀j = 1 . . . k} (5.2)

Updating means: Update the means according to the previous assignment.

m
(t+1)
i =

1

|S(t)
i |

∑
x∈S(t)

i

x (5.3)

The algorithm converges to a local optimum once S
(t)
i = S

(t+1)
i for every i;

however, it is not guaranteed that the global optimum will be found in this process.
It is also common to terminate the algorithm earlier, for example, after a limited
number of iterations. A simple example of k-means clustering in 2D space is
depicted in Figure 5.3.

Cluster seeds                                   Iteration 1                                       Iteration 2                Iteration 3

Figure 5.3 K-means clustering in 2D space with k = 3. Current cluster centers
are depicted with stars.

Adapting K-means for Feature Signatures Extraction

In principle, k-means might be utilized directly for finding color regions in images.
In this case, objects to be clustered are the image pixels, i.e., 5-dimensional
color-position points (x, y, L, a, b). As the resolution of images might be quite
high, we might cluster only a randomly selected subset of image pixels.

2Description of k-means clustering is adapted from [9].
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We understand the set of centers of the detected clusters as our color-position
image descriptor – feature signature. The feature signature might be visualized as
colored circles where the circle diameters are defined with the number of pixels
assigned to the respective clusters (see again Figure 5.1). We might understand
the feature signature as a rough approximation of the original image.

Nonetheless, the vanilla k-means algorithm does not fit our needs. In particular,
we would like to achieve the following properties:

Var Different images should have different number of clusters (based on their
complexity)

Uni Smaller yet distinct color regions shall be preserved

Dim Different dimensions may have different importance (e.g., color vs. posi-
tion)

While the Dim property might be achieved by scaling the dimensions prior
running the algorithm, the vanilla version of the k-means algorithm does not
ensure neither Var nor Uni properties. Therefore, we are introducing our variant
of k-means algorithm adapted to feature signatures extraction. The main idea is
to start with densely and uniformly distributed small clusters and with continuous
merging of similar clusters and deletion of small clusters obtain a flexible feature
signature representation. This idea might be embodied as follows:

1. Scale images down to P pixels

2. Scale x, y coordinates with a scaling factor Sp and a, b coordinates with a
scaling factor Sc

3. Initialize cluster centers to the uniform spatial grid with span of G × G
pixels

4. Update clusters color coordinates to the local average of pixel colors

5. Repeat N times:

(a) Assign pixels to the nearest cluster center

(b) Recalculate cluster centers

(c) Merge clusters C1 and C2 if

L2(C1, C2) < M1 and

L2(color(C1), color(C2)) < M2

(Var, Uni)

(d) Delete clusters with less than DF iter pixels (Var)

(e) Recalculate cluster centers

The behavior of our algorithm is well illustrated in an example depicted in
Figure 5.4. We can see that with more iterations we obtain a coarser yet more
compact representation of the original image. Disadvantage is that the algorithm
contains a number of hyper-parameters (summarized in Table 5.1).
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Figure 5.4 An image (left) and visualizations of extracted FSs after 3,6 and 9
iterations of our FS extraction algorithm.

Table 5.1 Hyper-parameters of feature signatures extraction algorithm.

Notion Name Affects
P Resolution comp. cost, precision, number of clusters

Sp, Sc Dimension scaling color-position balance
G Cluster density comp. cost, precision, number of clusters
N DNN comp. cost, FS coarseness and compactness
M1 Merge threshold num. of clusters, FS coarseness and comp.
M2 Merge color threshold distinct color preservation
D Delete threshold FS coarseness and compactness
F D increment speed of compacting

Our extraction algorithm inherits most of the properties of the vanilla k-means.
Similarly to the k-means, most of the computations might be done in parallel.
Nonetheless, there is one subtle yet important difference. Since we do not initialize
cluster centers randomly, our extraction algorithm is deterministic and the chance
of missing a color region by chance is eliminated. Furthermore, the extraction
algorithm is more stable; thus, two consecutive key-frames will more likely have
similar signatures.

Fine-tuning of Feature Signatures Extraction

Evaluating the performance of clustering algorithms is quite complicated. In
many cases, it is subjective what is actually a cluster and what is not. Even if
we are able to design a well defined measure of a clustering quality, evaluating
all the possible combinations of hyper-parameters might not be computationally
feasible. For these reasons, we designed a human-aided tool for finding appropriate
parameters of our FS extraction algorithm. In the simple interface depicted in
Figure 5.5, users are enabled to set up all the hyper-parameters and immediately
observe the algorithm outputs.

Appropriate hyper-parameters might be estimated with the following work-
flow:

1. Load several random key-frames.

2. Adjust parameters until satisfactory results are obtained

3. Check setup robustness by examining results with adjacent key-frames
(similar key-frames should be represented with similar FS)

4. Repeat steps 1,2 and 3 until a stable setup is found
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Figure 5.5 A screenshot of simple interface for human-aided optimization of
hyper-parameters of our FS extraction algorithm.

Although the number of parameters is considerably high, in practice a reason-
able setup can be reached in only couple of iterations of the proposed work-flow.
The estimated setup might be saved and immediately utilized in our tool. In
this way, it is possible to customize the extraction algorithm for a particular
dataset if needed. Although, our default setup appeared to perform quite well on
all the data we encountered, it is possible that with a specific type of data (e.g.
black&white movies or cartoons) all the subsequent algorithms would perform
better with a different setup.

5.1.2 Feature Signatures Video Retrieval Model

To index video files, we select roughly one key-frame for every second, resulting in
the set of key-frames F = {F1.F2 . . . FN}. For all the key-frames Fi ∈ F, feature
signatures FSi = {rij} are extracted where rij denotes the j-th centroid of the i-th
feature signature. As mentioned earlier, users are enabled to define several sketch
centroids which we would like to match to the extracted feature signatures. Since
users may memorize only the most distinct color regions from the searched scene,
we expect only a few query centroids to be specified; hence, the model uses local
instead of global matching.

For a user defined query FSu = {ruv}mv=1 and a centroid distance measure δ,
we start with calculating distances to all the key-frames for each of the sketch
centroids separately. For the sketch centroid ruv the distance to the i-th key-frame
is defined as:

distuvi = min
∀rij∈FSi

δ(rij, ruv) (5.4)

I.e., distuvi is the distance to the closest of the key-frame centroids. For a sketch
centroid ruv we denote the set of distances to all the key-frames as Duv. Formally,

Duv = {distuvi | i = 1 . . . N} (5.5)

Now, the distances for the sketch centroid ruv are scaled to [0,1] interval according
to the minimal and maximal value in Duv.

rankuvi =
(distuvi −minDuv)

(maxDuv −minDuv)
(5.6)
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Thanks to the scaling, all the centroid rankings are comparable and we might
obtain the overall ranking by simply averaging them. In particular, the rank of
the key-frame i is

rankui = avg
∀ruv∈FSu

rankuvi (5.7)

To complete our ranking model, we need to define the centroid distance
measure δ. Given a user-defined centroid q and a database centroid o, δ(o, q) shall
define their distance or dissimilarity. As both spatial and color spaces are suitable
for Lp metrics, our first choice for δ was the regular Euclidean distance:

A δa(o, q) = L2(o, q) =
√ ∑

d∈{x,y,L,a,b}
(do − dq)2

Nonetheless, δa actually ignores one part of the extracted feature signatures
information – the centroid size/radius. As we fixed the sketch circles sizes 3,
including r in δa would only favor centroids of a particular size. For these reasons,
we introduce two additional distance measures:

B δb(o, q) =

√√√√ ∑
d∈{L,a,b}

(do − dq)2 + max

(
0,
√ ∑

d∈{x,y}
(do − dq)2 − ro

)2

C δc(o, q) =

√√√√ ∑
d∈{L,a,b}

(do − dq)2 + max

(
0,

∑
d∈{x,y}

(do − dq)2 − r2o

)

The idea is to take into account the database centroid radius ro. The fun-
damental observation is that larger database centroids are effectively closer to
the query centroid q. Hence, we subtract the radius ro from the spatial part of
the Euclidean distance. To elucidate the idea, consider the proposed distance
functions without the color coordinates:

δ′a(o, q) =
√ ∑

d∈{x,y}
(do − dq)2

δ′b(o, q) = max

(
0,
√ ∑

d∈{x,y}
(do − dq)2 − ro

)

δ′c(o, q) = max

(
0,
√ ∑

d∈{x,y}
(do − dq)2 − r2o

)
Now, we are able to visualize at least δ′a and δ′b distance functions in Figure 5.6.

We see that while δ′a measures the distance between centroid centers, δ′b cuts this
distance at the database centroid boundary. As a result, larger centroids are more
likely to be matched. In practice, we find that the distance measure δb provides
results closer to user expectations; thus, we utilize it in our SBVB implementation.

To include the temporal relations derived from the video, users are enabled to
draw two consecutive sketches. In such case, we rank both sketches separately
and find the best matches with a sliding window 4.

3Specifying sketch circle sizes was rather confusing for users. In practice, users were placing
multiple circles of the same color to capture large color areas.

4Details of the two sketch ranking are available in [9] or [7]
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Figure 5.6 Simplified centroid distance functions δ′a (A) and δ′b (B).

5.1.3 Towards Higher Efficiency of FS Retrieval Model

Computing the ranking from the definition would be quite costly as equation (5.4)
is basically saying that all the pairwise distances between the database centroids
and query centroids must be computed. In practice, computing the full ranking
requires several seconds on our dataset which makes the work with the tool
inconvenient.

Looking closely to users behavior, we find that the error in specifying the
sketches is limited [7, 9]. More precisely, within hundreds of query centroids the
distance to the searched key-frame (i.e., user error) is less than 86 in 95% of the
cases (the absolute value 86 corresponds to the actual settings of our tool). The
cumulative distribution function of the user error is apparently quite similar to
the normal distribution (Fig. 5.7a). We conclude that the database might be
subjected to range queries. Effectively, using range queries and indexing we can
retrieve less than 10% of database objects without negative impact on the overall
performance [9].

To select a proper index for our 5-dimensional feature space, we measured
the overall time needed to process range queries with several index variants [9].
Based on the results (Fig. 5.7b), we identified a simple spatial grid with additional
bounding-sphere filtering constraint to be the best choice.
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Figure 5.7 Results of experiments suggesting that feature signatures feature
space might be subjected to range queries. [7, 9].

To push the efficiency even further, we exploit the observation that the query
is being build incrementally, i.e., one centroid is added, modified or deleted at
a time. Next, rankuvi, that is the ranking for key-frame i and query centroid
ruv, is independent on the remaining query centroids. Putting both observations
together, we might define update rules for each of the add, modify and delete
centroid operations (see Table 5.2).

Now, we can describe the refined algorithm for our FS video retrieval model.
We cache all the partial centroid rankings rankuwi. When a centroid ruv is
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Table 5.2 FS sketch ranking update rules.

Action New query New ranking ranku′i

Centroid added FSu′ = FSu ∪ {ruv} |FSu|rankui+rankuvi
|FS′

u|

Centroid modified FSu′ = FSu ∪ {ruv} \ {ruw} |FSu|rankui+rankuvi−rankuwi

|FS′
u|

Centroid deleted FSu′ = FSu \ {ruw} |FSu|rankui−rankuwi

|FS′
u|

added/modified, we calculate the respective centroid rankings rankuvi and update
the overall ranking according to the appropriate formula from Table 5.2. The
only step requiring computing δ is calculating rankuvi. As a result, the amortized
computational cost for FS sketch ranking is independent on the number of centroids
in the query.

5.2 Results Presentation

The results of FS sketch ranking are either matched key-frames or pairs of key-
frames. In both cases, we present the matched key-frames in rows together with
the preceding and following key-frames to ease the identification of the correct
result (Fig. 5.8). Typically, around ten result rows can fit one screen while
additional results might be listed with mouse scrolling. Each result row might
be dragged to the left or right in order to explore a wider neighborhood of the
matched key-frame.

Figure 5.8 Results presentation in SBVB 2014. Matched key-frames are marked
with red decorations.

5.2.1 Interactivity

Our results presentation interface is simple yet also responsive, convenient and
lucid. Furthermore, we support its interactivity with several interesting features.
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First noteworthy one is the option to pick up an arbitrary centroid from the
presented key-frames and use it in the query sketch. We expect this to be useful
in two use cases – to pick up a suitable color or to pick up several centroids from
one particular key-frame and search for the key-frames similar to it.

Another feature supporting the interactivity of our tool is a browser-like history
of user queries. Each modification of the query is tracked and users might navigate
themselves through the history of queries with widely used undo and redo actions.
With proper caching of results and images, we are able to offer instant responses
which makes work with the SBVB tool more effective.

5.3 Summary

In this chapter, we presented the first release of our tool for video retrieval –
Sketch-based Video Browser. The tool specializes on a convenient interface for
visual KIS scenarios. Users may express their search intent in a form of simple
color-position sketches. The retrieval model is based on feature signatures, a
flexible image descriptor capturing distinct color regions in video key-frames.
Furthermore, we presented several optimizations for the retrieval model including
partial results caching and the selection of appropriate distance function. The
top matching key-frames are presented together with the following and preceding
key-frames (Fig. 5.8) from the video (so called the temporal context). With the
optimized FS retrieval model, the UI might be responsive and convenient to use.
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6. Enhanced Sketch-based Video
Browser

Video retrieval with feature signatures sketches was proven to be effective in many
scenarios, nonetheless, its filtering power is limited. Facing data collections of
hundreds or thousands of hours of video, the color-position sketching would impose
high demands on user precision that cannot be reached. We found users struggling
with specifying the colors and spend most of the time with time demanding
browsing of the top results.

To increase the filtering/ranking power, we enhanced SBVB with additional
modalities. Users may select the most appropriate one or define composite
queries. Each modality leverages different retrieval models and indexing techniques.
The whole system scales up to hundreds of hours of video content. The Enhanced
SBVB tool (ESBV) comprises:

• Edge sketching and matching with edge histograms

• Similarity search with features extracted from deep convolutional networks

• Text-based search

The enhancements did not target only the filtering/ranking part of the appli-
cation. Various features supporting interactivity and easing the results browsing
were introduced as well. To name a few, results are displayed in a compact manner,
users are allowed to balance the number of results on the screen with the size of
displayed neighborhood etc.

This chapter is organized as follows. In Sections 6.1, 6.2 and 6.3, the additional
search modalities are presented. The enhanced multi-modal video retrieval model
is introduced in Sections 6.4 and 6.5 and the filtering options of ESBVB are then
summarized in Section 6.6. The improvements of the results browsing part of
ESBVB are described in Section 6.7 and finally, the overall user interface is briefly
discussed in Section 6.8.

6.1 Edge-based Features

Occurrence and characteristics of edges, corners or similar edge-based features are
often utilized in image-related problems. Edges, i.e., step changes in the intensity
of adjacent pixels can be effectively detected with simple convolution filters such
as Sobel [83]. Filtering images with these filters may be understood as calculating
their derivatives (Fig. 6.1), or smoothed derivatives in Sobel’s case. With an
additional processing, edge features may provide image segmentation, information
about certain shapes present in the image and in the center of our interest –
features suitable for similarity search and image retrieval.

At the same time, humans are highly sensible to edges. Even those with
the lack of drawing skills are able to capture the most distinct edges such as
horizon in landscape images or similar straight lines. With simple free sketch
tools, we can obtain fair approximates of the searched image/scene in the edge
domain (see Figure 6.2).
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Figure 6.1 An image and its derivation in x (horizontal) and y (vertical) axis.

Figure 6.2 Example images and the corresponding free hand sketches. Images
courtesy of [20].

Now, the challenging part is to design an appropriate similarity measure
between the sketches and detected edges in images. Attractive yet unfeasible way
would be to measure the similarity directly in the pixel domain [6]. Alternatively,
we can perform local matching [23] which searches for similar local patterns. Both
the similarity measure and edge features representation matters [28].

All these approaches, however, are being tested on small to medium image
databases of well captured objects divided into several categories. Our situation
is quite different. Our dabase comprises millions of very heterogeneous key-frame
images while many of them capture complex scenes with many objects present or
blurry transitions and various graphics. We expect the edge sketching retrieval
scenario to be applicable only in certain cases where edges are the dominant
feature in the scene (see Fig. 6.3).

Figure 6.3 Example key-frames with distinct edge-features that can be easily
sketched.

For these reasons, we need to utilize edge-based features that are robust
and capture the overall composition of images rather than subtle details. Edge
histograms 1 appeared to satisfy these demands. The main idea is to sum
the detected edges in all the desirable directions (horizontal, vertical etc.) over
predefined set of regions 2. In particular, we followed [62] where the summation

1Also known as histogram of oriented gradients (HOG) features [15].
2Similarly to local color histograms.
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is done on multiple levels which allows to capture global as well as local edge
information.

In practice, our edge histogram features are 120 dimensional integer valued
vectors. More precisely, the images are divided in several regions in which we
sum horizontal, vertical and diagonal gradients. For each region and direction,
a bin in the histogram is reserved. Furthermore, gradients in adjacent regions
are summed and stored in additional bins and finally the global sum of gradients
is added to the histogram. I.e., gradients on local, semi-local and global levels
are captured. The similarity between two edge histograms can be defined as
regular L1 metric. Regarding user sketches, edges and edge histogram features
are computed in the same manner as for the key-frame images.

In practise we find that the utilized edge histograms are effective especially
when few dominant edge lines are sketched, yet not suitable for detailed drawings.
This is compliant with previously defined goals. Furthermore, edge sketching can
be combined with current color-position sketching as is described in Sub-section
6.4.1. Some example edge sketches together with the respective best matches are
depicted in Figure 6.4.

Figure 6.4 Example edge sketches (left) and the respective key-frame matches.

6.1.1 Similarity Search with Edge Histograms

Although the dimensionality of edge histograms is mediocre and the utilized metric
function is not very expensive, evaluating distances between the defined sketch and
all the dataset images is not feasible. Empirically, for a dataset of million images
it took several seconds to compute all the distances on a commodity hardware.

Is the computation of all the distances necessary? In an example query depicted
in Fig. 6.5 we can see that most of the results are rather dissimilar to the edge
sketch. Furthermore, we display only top k results as users are able to examine
only limited number of results. Therefore, we might either approximate or skip
computing distances to the images beyond k-th position.

In similar situations, the approximate k nearest neighbors (k-NN) search is
the method of choice. The idea is to cheaply compute the set of k most promising
objects only to which the actual distances are calculated. For our purposes, we
selected 1-level pivot indexing. Firstly, N pivots are randomly selected from
the dataset. Secondly, all the database objects are associated with the nearest
pivot. After that, a k-NN search is done in the following steps:

33



Figure 6.5 Query edge sketch (left) and histogram of distances of a subset of
our dataset. Images are aligned according to x axis, i.e. The leftmost image is
the best match while the rightmost is one of the worst.

1. Calculate distances from the query object to all the pivots

2. Sort the pivots by the distances in ascending order

3. Return database objects associated with the pivots until at least c > k
candidate objects are retrieved

4. Calculate distances to the candidate objects and return actual k-NN

Where parameters c and k are selected empirically. With large c, we would
achieve better precision paid with higher computational cost. As users may
examine only limited number of results, we may argue that reasonable value for k
is around 1000.

Alternatively, we can view the algorithm as the Voronoi partitioning of the space
and examining the Voronoi cells according to the distances between the cell centers
(pivots) and the query object.

With this approximate search schema, we efficiently avoid computing the ma-
jority of the distances. The number of pivots and k can be estimated empirically
for particular applications. Note that we scale the computed distances to [0,1]
interval for later use in our system.

6.2 Similarity Search with DeCAF

Aside from the fact that DCNNs can provide accurate model for image classification,
they have a number of exciting properties. The most interesting for us are the Deep
Convolutional Activation Features (DeCAF) [19]. DeCAF, as the name indicates,
is the activation of the fully connected layers during feed-forward pass through
the network. Experiments suggest that DeCAF might be used as a substitute for
SIFT or SURF descriptors in general, but more importantly, a simple L2 metric
already represents an acceptable similarity measure. Apparently, the non-linear
transformation in higher DCNN layers produces good features often immune to
changes in angle, rotation, illumination and other transformations.

The crucial characteristic of DeCAFs is that they generalize well to datasets
other than the training one. In particular, DeCAFs outputted from network
trained for ILSVRC provide suitable retrieval performance also on keyframes from
our dataset. Similarly to [59], we incorporate DeCAF image retrieval as our search
by example model.
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Note that DeCAFs happen to be quite high dimensional (e.g. 4096) which
imposes high computational and memory demands. It was shown that DeCAF
features might be binarized without significant loss in precision. Furthermore,
an arbitrary algorithm for dimensionality reduction such as PCA might be em-
ployed [1]. As a proof of concept, in our system we work with DeCAFs in their
raw form, while the dimension reduction/binarization techniques are the subject
of our future work.

Similarly to the edge histogram case, it is not tractable to compute all the dis-
tances between query image and all the database images. As the dimensionality is
higher, we need to retrieve even smaller portion or rather a fixed number of objects
to keep the computation fast enough for real-time responses. In this case, we
picked up the state-of-the-art method for indexing high dimensional metric spaces
– M-Index [57]. M-Index provides effective and efficient processing of approximate
k-NN queries and can be tailored to our system.

Query-by-example DeCAF similarity search might be available side by side
with all the other searching options. The details how we combine the searching
modalities will be provided in section 6.4.2. We present some example queries and
the corresponding best matches in Figure 6.6.

Figure 6.6 Example of query-by-example searches with DeCAFs. Queries (left-
most image) and the corresponding best matches.

6.3 Querying with Natural Language

As previously stated, we assume the searched scene to be known either visually
or by textual description. The later, naturally, posses a greater challenge to our
system as users may struggle with specifying visual clues via sketching canvas.
The textual description might be misleading or simply lack distinct visual clues
(colors, edges). Take for example a simple scene described with sentence Man
wearing a red t-shirt is filmed sitting inside his car. What shade of red is it? Is
the scene taken from outside or inside of the car? What color is the car? How
would you sketch it? As a matter of fact, we observed that users dealing with
textual KIS often prefer simple browsing of the database content rather than
the filtering part of our system. Furthermore, it was shown that simple sequential
storyboard search [32] might perform well on textual tasks (for 100 hours of video).
Next, once a visually similar result is obtained, query by example search (e.g.
with DeCAF features) often lead to success.
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Given a textual description of the searched scene, it is difficult to initialize
the search in a content-based way. If the textual description does not contain
any clues for color or edge/shape, but only a concept label, the keyword search
becomes the preferred filtering choice. Even if the search item is known visually,
it might be easier, especially for novice users, to describe it textually. For these
reasons we focus also on a textual known-item search task initialization.

We compare two orthogonal approaches to find an initial query object using
keyword search. The first approach employs an external image retrieval system
designed for effective keyword search (e.g., Google Images). In such system, users
can usually materialize their ideas and use some of the returned image to initialize
similarity search. The problem of this approach is that the first idea of the user
does not have to correspond (in the terms of similarity) with the contents of
the dataset. For this reason, the second approach is dataset-oriented, where
automatic annotations are created for the searched video. Unlike other state-of-
the-art approaches, our approach is not restricted to speech transcripts only [84]
nor do they require manual pre-annotation [44]. Given the annotations, user-
defined keyword query is matched directly to the contents of the dataset. Such
an approach has been used in several known-item search tools [52]. We enhance
this approach with text processing and exploration of semantic relations between
words. Since the user is part of the search process, only a comparative user study
can decide which of the two approaches is more effective given specific retrieval
tasks.

6.3.1 External Image Search Engine

The first approach we investigate is to use the text query in an external keyword-
based image search engine to get sample images and use these to initialize
the search. Such an engine can be, for example, well-established Google Images
search. However, this approach has two significant limitations. First, a sufficiently
fast Internet connection is necessary and the engine has to be available. Further-
more, as the selected image has to be preprocessed for the video retrieval system,
all the feature extraction techniques (or services) have to be available for instant
usage. Second, the selected image does not have to correspond to the content of
the searched scene, while the materialized image may be distracting for the search.

Our system can be extended easily just by providing an additional text search
field in the application. When user issues a textual query, the application down-
loads top k images from the external image retrieval server. The images are
displayed to the user and the user selects a candidate image for search. DeCAF
descriptors are then extracted and used to initialize similarity search browsing.
Expected use case is depicted in Figure 6.7.

6.3.2 ImageNet Labels

In the second approach investigated in this work, we consider a search method
based on labels automatically assigned to key-frames using arbitrary ImageNet [69]
classification model; in our case, Deep Neural Network [79]. While the model
provides highly specific labels from the ImageNet set of 1000 labels, users tend to
form more elaborate yet generic queries or even whole sentences. For example, we
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Figure 6.7 Example search scenario utilizing external search engine to initialize
search. We start with textual query “Elephant” issued to Google Images Search
Engine. Retrieved images (first and second rows) are displayed to the user.
Consequently, one of the image is selected for DeCAF similarity search (last row).

would like to match a key-frame labeled as ’golden retriever’ with a query ’A dog
is playing with a ball’. To interconnect the worlds of ImageNet labels and user
queries, we introduce two different processing pipelines: key-frames labeling and
query processing and matching.

Key-frames labeling.

During the video preprocessing, the top five labels for each key-frame are extracted
together with their probabilities. Every ImageNet label is in fact a synset (a group
of elements, which are semantically equivalent) from the WordNet [21] lexical
database. Of the five extracted labels, a tree of their hypernyms is built, such as
the one in Fig. 6.8. The nodes represent synsets and edges represent WordNet
hypernym–hyponym relations between them. a probability of a newly inferred
synset is a sum of probabilities of its children. Using this tree, we can deduce
probability values even for labels not available in the ImageNet labels set. Both
extracted and inferred labels and their probabilities are stored in an inverted index
for efficient retrieval.

Query processing and matching.

The processing of a user query follows a simple procedure. First, stop-words (such
as ’a’, ’been’ or ’your’) are removed for higher efficiency while the remaining words
are transformed into their basic forms. Since only nouns (objects) are present in
ImageNet, all other parts of speech are also removed. Consequently, the noun’s
meanings are explored using WordNet and a set of synsets is assigned to each
of the nouns, which usually contains several different meanings of the word (e.g.
a noun ’horse’ might be an animal as well as a gymnastic equipment).

Now, we iteratively generalize each query synset (exchange it for its hypernym)
until it is present in the database. For example, a query synset ’horse’ (not present)
might be exchanged after few iterations for synset ’animal’ (present). This way,
each query synset would yield some results — in the worst case, we would search
for the most general synset – ’entity’ which is present in every key-frame. In
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Figure 6.8 A synset tree of one particular key-frame. Each node represents one
synset together with the probability of its presence in the key-frame. The tree
includes both the synsets extracted by the model (green) and the inferred ones
(blue).

other words, we are going to search for the most specific synsets we can find in
the dataset.

For each query synset, we rank all the key-frames with the probabilities of
occurrence of the synset in the key-frames. The rankings of query synset s are
weighted by 1− avgp(s) where avgp(s) stands for average probability of synset s
over all the dataset key-frames. In other words, we prefer more specific synsets
(rarely present) over generic synsets, which have a weaker filtering power. This
scheme follows the same idea as the term frequency weighing technique [70] utilized
in general textual search.

Example queries together with the respective top matching results are depicted
in Fig. 6.9. We might get impression that caffe

Figure 6.9 Example of textual queries processed with ImageNet labels search.

User feedback loop.

Since all the word meanings are extracted from the query, it is vital for the user to
be able to overlook and control the actual searched labels. We provide a checklist
of them and only a subset might be selected. The effects of this procedure affect
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the results immediately. Experiments reveal that this provides a highly used and
convenient way to further specify the search, now based on information actually
contained in the dataset.

6.4 Combining Modalities

In the previous sections, we incorporated several additional modalities (edge
sketches, DeCAF similarity search etc.) yet we did not clarify how they are com-
bined. We introduce a simple yet effective model for handling queries composited
from multiple modalities. First, we describe our multi-modal sketching canvas
comprising both the original feature signatures and novel edges drawing. Second,
we provide a weighing scheme for overall ranking when a composite query is issued.

6.4.1 Multi-modal Sketches

Although feature signature and edge sketches may seem quite different, nothing
actually prevents us from drawing them both in one canvas. We reserve the left
mouse button for placing and manipulating centroids while pressing the right
mouse button and dragging the mouse over canvas would draw the appropriate
edge curve. Both the centroids and edge curves might be moved, deleted or
copied as the user wishes. An example story comprising several common sketch
manipulation is depicted in 6.10.

Figure 6.10 Multi-modal sketch time-lapse capturing some of the common sketch
modifications. The best matching key-frames at every step are displayed under
the respective sketches. The time-lapse starts with a sketch containing one centroid
and 4 additional steps follow.

1. A horizontal edge line is drawn

2. A green centroid is picked up from displayed results

3. Both the pink centroid and edge line are moved

4. An extra edge line is drawn

6.4.2 Composite Query Ranking

Although each of the modalities may be sufficient to effectively filter the database
content, the combination of modalities is expected to be even more powerful.
Thus, we allow user to define composite queries comprising of multiple modalities,
e.g., combined feature signature and edge sketches or feature signature sketches
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accompanied with textual descriptions. Users may select both the modalities and
their importance ranging from 1 to 5. The modality with higher importance is
going to have higher impact on the results ordering.

Our overall ranking scheme for composite queries is basically a weighted
average over the partial rankings. We define the ranking scheme as follows. To
rank database key-frames Fi with a query comprising modalities M , each modality
m ∈M with importance Im ∈ {1, 2, .., 5}. We define the modality weight as

wm =
Im∑

m∈M Im
(6.1)

For each modality m and each key-frame i we expect the ranking rim ∈ [0, 1],
0 being the worst match while 1 is the best. Then, the overall ranking for
the key-frame i is defined as

ri =
∑
m∈M

wmrim (6.2)

Note that only a subset of key-frames is actually ranked by each modality. For
key-frames not ranked by a modality m we define rim = 0, i.e. The worst match.
Consequently, the key-frames shall be sorted in ascending order according to their
overall rankings ri. This schema can be recognized as a late fusion as opposed to
an early fusion, where the modalities are combined in the feature space and only
one ranking is calculated. It was shown that late fusion models perform slightly
better [81].

As defining such composite query might be difficult, we aid novice users
and automatically set modality importance to zero for all but the most recently
modified modality. In this way, only one modality is used at a time. Once users
get used to the behaviour of our system, they may decide to turn this feature off
and explore the filtering power of composite queries.

Several examples of composite queries are depicted in Figure 6.11.

Figure 6.11 A multi-modal sketch drawn when attempting to retrieve a landscape
scene capturing grass and sky. While both the feature signatures (top) and edge
histograms (bottom) models fail to retrieve the scene, their combination (middle)
achieves the desired result.

40



6.5 Sketch Sequences

From the very beginning, SBVB contained an option to specify two consecutive
sketches. In this case, the search engine would search for video segments matching
to the drawn sketches in the given order at most 20 seconds apart. Although this
option significantly raises the filtering power, the time constraint of 20 seconds
seemed not restrictive enough. More precisely, users typically sketched two
subsequent scenes while the system found two matches up to 20 seconds apart.
For this reason, we introduced an interval slider allowing users to specify the time
interval in which the matched key-frames must appear.

Note that nothing forces us to stay with matching of just two consecutive
sketches. We would be able to specify and match a sequence of sketches of
arbitrary length. Nonetheless, we did not implement such option for two reasons.
Firstly, specifying several sketches would be complicated and time consuming.
Secondly, we find memorizing more than two scenes quite challenging.

6.6 Summary of Searching Features

While the original tool SBVB offered only feature signature sketches for searching
the video content, ESBVB includes several other modalities. Namely, ESBVB
now supports searching with:

• Feature Signatures Sketches

• Edge Sketches

• Example Image (DeCAF similarity search)

• Text Queries

Users may define a composite query with any of the mentioned modalities.
To rank the key-frames, the modalities are combined proportionally to the user
defined modality importances. Appropriate indexing techniques are employed to
retain convenient user experience even when dealing with hundreds of hours of
video content. As a result, even the slightest adjustments of the query might be
immediately reflected in the results. This indeed interactive experience supports
ESBVB effectiveness and allows users to intuitively embrace the behavior of
the search engine.

The newly incorporated features and searching options increase the retrieval
power of our system, though, the original functionality is preserved. Novice
users may stick with single-modal queries while experienced users may select an
appropriate combination of modalities for each task.

6.7 Enhancing Results Browsing

One can discriminate two main components of our system – content searching
and results browsing. We already know that the searching component received
number of enhancements and the same actually applies to the browsing component.
The most important enhancements might be summarized as follows:
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• Scene detection and compacting

• Interactive Navigation Summary [74]

• Coarse to fine results presentation

• Additional video and scene filtering

All of the enhancements are motivated by the user feedback from early versions
of SBVB and we include the motivation in the discussion. None of the enhance-
ments is crucial yet they provide very effective solutions in certain situations.

6.7.1 Scene detection and compacting

The automated scene detection in a video is a well defined problem with a variety
of algorithms available [36, 37]. Most of them share the same idea of detecting
the magnitude of change in consecutive frames and placing a scene cut if this
measure exceeds a defined threshold. We follow this idea in our system where
the magnitude of change is calculated as the distance of the DeCAF features of
the respective frames. The threshold was estimated empirically to fit our dataset
(significantly different dataset may require re-estimation).

The detected scenes or scene cuts find several applications in almost every
video retrieval tool. Commonly, each scene is being represented by only one of
its frames which drastically reduces the number of key-frames to be indexed.
Furthermore, only the selected representative key-frame might be displayed within
the results. Despite the attractivity of this dataset reduction, we do not follow this
procedure for several reasons. Firstly, it might be complicated to select the most
suitable representative for each scene. Secondly, a mistake in scene detection
might make some of the video segments virtually non-retrievable. Thus, we retain
the original uniform sampling of key-frames which might seem redundant in some
cases, nonetheless, it ensures the highly desired robustness for our system.

Nonetheless, we utilize the detected scene in two different ways.

Scene-based results filtering. Dense key-frames sampling induces a high
redundancy of results, therefore, we are filtering the results prior to displaying
them. The original algorithm for removing redundant results [9] resulted
in a set where no results were too close to each other. With detected scene
cuts we might easily extend this algorithm so that we obtain set of results
where no results were too close to each other or within the same scene. In
this way, we remove results that are already quite far apart yet still basically
points to the same scene and displaying both would confuse users.

Scene compaction. Furthermore, we utilize the detected scenes for a com-
pact results presentation. Originally, each matched key-frame (result) was
displayed with the following and preceding key-frames. Now, key-frames are
compacted into scenes, each having only one key-frame fully visible, while
the others are cropped and arranged into pseudo key-frames (see Figure 6.12).
As users hover over the results the fully visible key-frame moves which allows
to examine the scene in full detail. Note that the temporal information, i.e.
The length of the scene, is also preserved. This technique saves a significant
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amount of space on the row. As a consequence, we might display more
temporal context for each of the matched key-frames.

Figure 6.12 A scene displayed as a sequence of key-frames (right) and the same
scene displayed compactly (left).

6.7.2 Coarse to Fine Results Presentation

The way of presenting the results was rather simplistic so far. Each of the matched
key-frames was presented together with its context on one row. This limits
the number of results per page to units based on the available screen resolution.
We find this simple presentation not convenient, especially when users intent to
explore the dataset rather than identify the correct result among well matching
content. We address this issue with option to specify the number of result columns
displayed. Users may balance between the size of the results temporal context
and the number of results per page. The original scheme is one extrema while
results without contextual information yet high density is the other (captured in
Figure 6.13).

Figure 6.13 Two different setups for results displaying – large results context
(left) vs. low results context (right).

We find both views quite useful. The typical scenario is to begin without
the temporal context and once promising results are found, the view is set up so
that the contextual information allows to discriminate the correct result.

6.7.3 Interactive Navigation Summary

Through our experience with SBVB we occasionally encountered a situation where
we found the video containing the searched scene yet not the scene itself. In
these situations, moving the result row to actually browse the video is indeed
cumbersome. When browsing a single video, the random access with a regular
seeker is often preferred. In order to deal with these situations, we included similar
functionality to our system.
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One row, actually the bottom one, is enriched with Interactive Navigation
Summary which works similarly to the well-known seeker bar. Additionally,
the content of the video being browsed is summarized and visualized. Authors
of Interactive Navigation Summary proposed several features that might be
summarized, nonetheless, we stick with the most straightforward one – dominant
colors of the key-frames.

The top-5 dominant colors, calculated during the pre-processing of each
keyframe, are displayed at appropriate positions in the seeker bar, as can be
seen in Figure 6.14. The Interactive Navigation Summary provides top-level
information on the video content and enables focusing on the promising parts
only. On top of that, we visualize the positions of the matched key-frames with
triangular pointers at the respective positions to guide users to the areas with
clusters of matches potentially containing the searched scene.

Figure 6.14 Interactive navigation summary (top) serves as regular seeker bar
with additional information. In this case, we display 5 most dominant colors for
each of the key-frames.

6.7.4 Additional Video and Scene Filtering

As the database grows, searching becomes more difficult and even minor improve-
ments and lesser filtering options might make a difference between a successful
and unsuccessful search. We are introducing variety of features, each solving
a particular situation and slightly reducing the amount of content needed to be
examined. None of the filtering features is actually essential and we expect them
to be used by rather experienced users in certain specific scenarios. It is assumed
that the database consist of multiple video files.

Video Exclusion. When searching for a certain scene, users may im-
mediately identify certain results as irrelevant (e.g. cartoon scenes). We
would like to exclude not only the scene but actually the whole video from
the search. ESBVB includes this option.

Scene Exclusion. Similarly, considerable difficulties are induced when
a certain repetitive scene constantly appears among the top results (e.g.
TV news studio). Excluding such scene from results would significantly
elucidate the browsing of the results. Now, we allow users to do so. The list
of excluded scenes is visibly maintained and any result that is close to any
of the excluded scenes (measured by DeCAF similarity) is not displayed.

Video Focus. In some cases, a scene different from the searched one yet
clearly from the same video may be encountered first. In this case, we would
like to continue with the search only within this video and we know which
one is it. Users are allowed to focus the further search to only one video,
i.e., exclude all the videos but the selected one.
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Scene Marking. a scene visually similar to the searched one happens to
be retrieved during the search process. Unfortunately, it is particularly hard
and time consuming to discriminate these similar scenes. Any scene might
be marked so that when retrieved again with a different query it can be
skipped right away. We display the marked scenes in gray-scale.

6.7.5 Thumbnails Caching

With datasets of hundreds of hours of video content both filtering and displaying
results become a challenge. We are utilizing a variety of indexes, approximations
and heuristics to keep the ranking fast enough to retain real-time responses. All for
nothing, however, if the displaying of the key-frame thumbnails takes a long time.
Imagine a dataset of 250 hours of video. Dense key-frames sampling produces
nearly 1 million key-frames for which we need to have thumbnails available. That
is more than 5 Gigabytes of approx. 170 times 90 pixels large images encoded in
JPG and roughly 8 times more (40 Gigabytes) when stored as bitmaps. Clearly
unfeasible to be maintained in the main memory of a common notebook or PC.

To keep the user experience as convenient as possible we implemented 3-level
thumbnails caching. The levels are the following:

1. Blocks of B consecutive images encoded as JPGs stored on the hard-drive

2. Blocks of B consecutive images encoded as JPGs stored in the main memory

3. Blocks of D consecutive bitmaps stored in the main memory

where B is divisible by D 3. Each time an image shall be shown, a request
dispatched by the topmost cache layer is made. If the respective block is not
available it is requested from the underlying layer and so on. To better utilize
resources, all the processing is done in parallel.

The question is when and how the cache shall be cleared. We achieved
satisfactory results with the following schema (Least Recently Used):

• Keep track of the most recently accessed blocks

• Set up the maximal number of blocks to be kept

• If the maximal number of blocks is reached, clear (release) the least recently
used ones

Figure 6.15 3-level image caching scheme implemented in ESBVB.

This schema (depicted in Fig. 6.15) might be implemented with a bidirectional
list and a hashmap. The hashmap serves for accessing the blocks while accessed

3In our implementation, we set B=D.
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blocks are moved to the front of the list. The blocks to be released can be found
at the end of the list. Each level of the cache may act independently regarding its
maximal number of blocks etc.

How does such system behaves? With properly set up cache parameters we
obtain responsive GUI and keep the memory footprint low. We may enhance
the system with additional heuristics such as when D-block is requested, we
request also its preceding and following blocks (H1) or request blocks needed
for the following results page in advance (H2). All together, we might observe
the following desirable properties:

• The images are loaded and displayed independently, thus, the cached ones
are displayed immediately and the rest once they become available.

• Single adjustment of a query would yield similar results, some of them with
cached images.

• Exploring a result context is smooth as the bitmap images are pre-cached
thanks to H1.

• Results page listing is responsive thanks to H2

• Resubmitting a recently submitted query would yield results with cached
images.

6.8 User Interface

Even the best algorithms, models and filtering techniques can not be effective
without a convenient and responsive user interface (UI). It is because users still
play the major role in the whole process and we expect this statement to be
true for the following years if not decades. We believe that UI requires at least
the same amount of attention as does the back-end system.

It is therefore surprising that our UI did not receive significant changes despite
more than three years of development. Out of many development versions,
we present those with which we participated at VBS through years 2014–2016
(Figs. 6.16, 6.17 and 6.18). We might see that the overall schema remained almost
the same. The UI consists of two parts – the querying interface and results area,
the later occupying the majority of the screen. We try to keep all the UI features
as lucid as possible. The querying interface contains two sketching canvases (since
2014), an interval slider for specifying the time interval between the sketches (since
2015), sliders for specifying the modality importance (since 2015) and a textual
query interface (since 2016).

Regarding the results area, the major improvements are the extra detail row
(bottom) equipped with the Interactive Navigation Summary and the compact
scene presentation (Section 6.7.1) both introduced in the 2015 version. Additionally
to the 2014 version, each result row might be explored without limitations, i.e.,
the whole video might be examined through one result.

The up to date version is captured in Figure 6.19 wherein we label all the UI
components. Furthermore, we include a user guide for the ESBVB tool in a form
of videos in the attached DVD.
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Figure 6.16 Screenshot of SBVB @ VBS 2014.

Figure 6.17 Screenshot of ESBVB @ VBS 2015.

Figure 6.18 Screenshot of ESBVB @ VBS 2016.
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7. Implementation Architecture

In this chapter, we describe the overall architecture of our implementation of
ESBVB. We are going to provide rather a top-level overview; nonetheless, we also
occasionally delve deep to discuss several noteworthy details.

The implementation itself is available in the attached DVD. It is implemented
in C# programming language and thus requires the .NET runtime environment.
The application utilizes multiple 3rd party libraries (available under 2-clause or
3-clause BSD license) in a form of dynamically linked libraries compiled for 64bit
Windows operating system. The most important libraries are Open Computer
Vision library [10] and Caffee deep learning framework [35]. Furthermore, we
include the application sources distributed as MS Visual Studio 2015 project
available at the attached DVD.

Through this chapter, we reference the actual C# classes defined in the source
code. The class names are highlighted with the verbatim font.

7.1 Components

The overall architecture is portrayed in Figure 7.1 wherein 6 top-level components
are discriminated.
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Figure 7.1 Overal (E)SBVB architecture. Application components are depicted
in boxes containing the list of important class names. The communication between
components is depicted with arrows.

Pre-processor analyzes video key-frames and stores descriptors and key-
frame thumbnails to meta file.
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Index builds auxiliary data structures for efficient processing of descriptor
range and k-nn queries.

Search Filter allows users to specify their search intent.

Ranking Engine ranks the database content given a query from the Search
Filter.

Results Display allows users to browse the results provided by the Ranking
Engine.

Image Cache accelerates access to video key-frame thumbnails. (Sec-
tion 6.7.5)

Search Filter and Results Display components contain UI features; hence, we
identify them as parts of the application front-end. The remaining components
form the back-end of the application.

User interactions might be described as the loop between query specification
and results browsing (captured with blue arrows in Figure 7.1). To facilitate the
search loop Ranking Engine ranks the database key-frames every time a query
is issued. As the ranking is calculated on-line, high demands on the efficiency
are imposed. Hence, the query is processed by the Index component. Similarly,
loading of images is accelerated by the Image Cache component.

A video file has to be pre-processed prior to the actual search. This is done
in the Pre-processor component where all the needed descriptors and key-frame
thumbnails are extracted and stored in a meta-file. Afterwards, the descriptors
might be rapidly loaded and indexed to enable the content-based retrieval of the
respective video file.

In the following sections, we describe the application components in more
detail.

7.2 Back-end

When a video is opened, we identify whether its meta data files containing key-
frame thumbnails and the respective descriptors are available. If not, the video
must be pre-processed, otherwise the descriptors are loaded to a continuously
maintained in-memory Index. Hereby, the video becomes accessible using our
video retrieval model. When a user issues a query, the Ranking Engine ranks the
video key-frames that are retrieved from the Index (e.g. with FS sketch query,
the engine calculates the ranking according to Section 5.1.2). Ranked key-frames
are consequently passed to the Results Display.

We might identify three main roles of the back-end – video pre-processing,
indexing and query ranking, each of which is discussed in the following sub-sections
dedicated to the respective components.

7.2.1 Video Pre-processor

In this step, ESBVB extracts all the image/video descriptors and stores them in
meta files located next to the video files. This is perhaps the most computationally
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demanding operation performed by ESBVB; nonetheless it is done only once. At
this moment, the Pre-processor extracts the following items for each key-frame:

1. Thumbnail image

2. FS descriptor (Section 5.1)

3. Edge histogram (Section 6.1)

4. Top-5 dominant colors (Section 6.7.3)

5. DeCAF descriptor (Section 6.2)

6. ImageNet labels (Section 6.3.2)

The extraction of DeCAF descriptors and ImageNet labels require running a
DCNN model and is the most computationally expensive item of our list. A
simple server-like program written in C++ is available for this purpose. It
communicates through the standard input and output, accepting filenames on its
input and responding with either DeCAF, ImageNet labels or both. ESBVB runs
one or more instances of this program and manages the communication in the
SemanticServer class.

The extraction itself is done within the VideoParser class which requires an
instance of VideoProvider providing the video key-frames and an instance of
VideoParsingListener which stores the extracted descriptors. In our case, it
is an instance of the Video class and the extracted meta data are stored in files
located next to the video file. The extraction process is implemented as the 1
Producer – N Consumers design pattern, where the producer produces video
key-frames and consumers are extracting the descriptors in concurrent threads.
The video pre-processing schema is depicted in Figure 7.2.

Figure 7.2 Schema of video pre-processing.

7.2.2 Video Index

To enable efficient similarity search, the descriptors have to be properly indexed.
The Index component, in particular the Index class, provides an interface for
k-nn and range queries described in Chapters 5 and 6. An instance of the Video

class might be added or removed from the Index at any time. Internally, it holds
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multiple instances of image descriptor indexes, each serving a portion of videos.
When a query is issued, it queries the underlying partial indexes and returns the
aggregated results (Schema for FS indexes is depicted in Fig. 7.3). The descriptors
and indexes implemented in ESBVB at this moment are summarized in Table 7.1.

Figure 7.3 Schema of querying the FS index.

Table 7.1 A summary of utilized image descriptors and respective indexes, type
of queries and implementation classes.

Descriptor Index Query Class
Feature Signatures Grid range GridIndex

Edge Histogram 1-level pivoting k-nn List

DeCAF M-Index k-nn MIndexTree

ImageNet labels Inverted index full Dictionary

7.2.3 Query Ranking Engine

The query ranking follows a schema similar to the indexing. The labor is divided
between several threads, each ranks a portion of videos. The partial rankings
are afterwards aggregated, scaled, modalities are combined and the results are
merged and sorted. The whole process, captured in Figure 7.4, is done in the
Engine component. The final rankings are passed to the front-end part of the
application.

All the computations are quite straightforward except the results merging.
The goal is to select only one result (the best one) from each cluster of results. For
this reason, we maintain two data structures – an ordered binary tree of results
rankings and lists of results in the original temporal order. Now, we iteratively
pop the top result from the tree, examine its neighborhood through the lists and
remove neighbor results from both structures until the tree is empty.

7.3 Front-end

The front-end part of ESBVB provides the interface for multi-modal query specifi-
cation and displays the results obtained from the back-end. As all the components
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Figure 7.4 Video ranking scheme of a multi-modal query.

are actually visible to users, we start with locating them in a screen-shot of
ESBVB. Afterwards, we discuss the functionality of each component separately.

The overall scheme of the front-end components hierarchy is captured in
Figure 7.5 where the Results Display and Search Filter components correspond
to those in Figure 7.1. All the top-level components gather the user input and
may produce additional events which are captured and handled by their parent
components. The components are stand-alone, i.e., they might be re-used at a
different locations or even in another application.

Figure 7.5 Scheme of the front-end components of ESBVB. The scheme is cut
in half and depicted in two rows.

The majority of the UI area is occupied with the results presenting component
(Results Display). The remaining area is dedicated to the Search Filter and
its components with which users are defining the query or filtering conditions
(class SearchFilter). The components are highlighted in Figure 7.6 with colors
corresponding to Figure 7.5. The functionality of all the components are described
in the following sections.

7.3.1 Search Filter

In the Search Filter, users define their search intent, i.e., form a query. The
Search Filter contains several components including two sketching canvases
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Figure 7.6 ESBVB front-end components. Colors are compliant with Figure 7.5.

which are characteristic for ESBVB. The components and their functionalities are
enumerated in the following list:

With the Textual Search component a query in natural language (english)
might be issued. Users may select either the Google or ImageNet labels
search scenario (Section 6.3). An input field for the query itself is available
together with the list of actually searched terms.

Modalities are combined as users define in this component. Four sliders
(FS, edges, DeCAF and text) define modality importances (Section 6.4.2).

Multi-modal sketches are the key-stones of ESBVB. We offer two multi-
modal drawing canvases allowing to sketch the searched scene with color-
position centroids and edge lines. Furthermore, a two sketch query might
be issued and the time interval between the sketched scene can be defined
as well.

The Excludes component holds and visualizes all the scenes excluded from
the search (Section 6.7.4). Additionally, users may examine which results
are not displayed just to be sure that the searched scene is not among them.

The Files component manages the video files and allows a video-level
filtering. Next to the list of currently opened videos, there are buttons for
adding videos and playing a random segment.

7.3.2 Results Display

All the back-end computations are carried out in a background thread keeping
the user interface responsive. Every modification of the query launches the new
ranking and terminates the old one. Each time a ranking computation is finished,
the front-end displays the results.
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Result is a component displaying one result, i.e., a matched key-frame or a
pair of key-frames. By default, each Result occupies one row and displays
key-frames following and preceding the matched one. Any Result might
be dragged to the left or right in order to examine wider neighborhood of
the matched key-frame. This functionality is turned off if users set up to
display multiple results per row.

Detail Row component is located at the very bottom of the screen. It
composes of one regular result row and an interactive navigation sum-
mary (Section 6.7.3) functioning as well known seeker bars.
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8. Performance Evaluation

Evaluating the performance of any KIS video retrieval tool is a challenging task, as
users are the significant part of the search process. The performance is influenced
by many factors and there is no rigorous measurement or a single valued quality
indicator. It is therefore extremely important that workshops such as VBS or
TRECVID are challenging teams worldwide to develop solutions for various video
retrieval related tasks. These events undergo continuous development just as do
the participating tools. Datasets are growing, complexity increasing and all this
pushes the state-of-the-art further.

We report our results with respect to other state-of-the-art tools for video
retrieval from VBS 2014, 2015 an 2016. The conditions, tasks and the datasets
are different for each year; thus, we report the results separately. Nonetheless, the
goals, task definitions and the scoring system remained the same through years.

Each participating team develops a tool for KIS in video. The video data are
distributed several months before the event, leaving enough time for arbitrary
pre-processing. The event is organized as a competition where each team tries to
realize KIS of two types:

Visual KIS A short clip 10 to 20 seconds long is played once. The goal
is to identify the video from which the clip originates as well as the exact
position of the clip in the respective video. Video recording is prohibited.

Textual KIS Only a textual description of a clip in the collection is given.
The goal is the same as in the Visual KIS.

The tasks are presented on site and teams receive points for each successfully
solved task. The time for solving the tasks is limited to 3 to 6 minutes per task. To
determine whether a team solved the task correctly, a submission to the evaluation
server must be send and false submissions are penalized. Point rewards are defined
with the following formula:

100− 50 t
Tmax

max (1, s− 1)
(8.1)

Where t is the time of the correct submission, Tmax is the time limit for this task
and s is the number of submissions. In other words, the goal is to locate the clip
as quickly as possible without making any mistakes.

During the session, the current scores are screened and the session itself is
accessible for public which makes VBS indeed interactive, entertaining and exciting
event. In fact, a part of the session includes novice users from the audience.

8.1 VBS 2014

We entered the field of video retrieval via participation at VBS 2014 with our tool
SBVB. The dataset comprised 26 hours of various video content provided by BBC
including TV shows, TV News broadcast and documents in both wide-screen
and 4:3 format. The session was divided in 6 task categories summarized in
Table 8.1. In 2014, the following 7 teams participated: DCU [78], KLU [12],
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Table 8.1 VBS 2014 task categories.

Category Scope User KIS Tasks Limit
Single Visual single video expert Visual 10 3 min.
Single Textual single video expert Textual 10 3 min.
Archive Visual video archive expert Visual 7 6 min.
Archive Textual video archive expert Textual 7 6 min.
Single Visual II single video expert Visual 10 3 min.
Single Visual Novice single video novice Visual 10 3 min.

JRS [2], CERTH [51], SIRET (us) [46], NII-UIT [55] and AAU (out of the
competition) [17].

For single video tasks, the particular video file was announced just before the
task started. 3 out of 7 teams including us were able to participate in an optional
ad-hoc task category where additional dataset was distributed only 1 hour in
advance. In total, 54 KIS tasks were carried allowing to score up to 5400 points.
An example of textual task is depicted in Figure 8.1.

“First a close-up of a beehive with many bees,
then close-up shots of ants cutting and

carrying large green leaves.”

Figure 8.1 One of the textual KIS tasks from VBS 2014. Participants were given
the textual description (bottom), three selected key-frames of the actual clip (top)
were not revealed until the end of the task.

8.1.1 VBS 2014 Results

The results are captured in Figure 8.2 where we might see that we won by a
significant margin (472 points to be precise), NII-UIT team ended up 2nd and
JRS 3rd. The portion of points obtained by the teams for each category are
summarized in Figure 8.3.

Out of 27 expert visual KIS tasks, we correctly submitted 26 within the time
limit. In particular, we achieved a remarkable result in the first single visual
category where we were able to obtain 999 out of 1000 points– in the majority
of cases we found the target segment even before its playback ended. Regarding
the expert textual tasks, we correctly submitted 16 out of 17 tasks and finally,
a novice user was able to solve 7 out of 10 visual tasks in the single video task
category with SBVB.

It comes as no surprise that the archive categories pose a greater challenge
to all the teams. On the other hand, we would expect the Textual KISs to be
significantly harder than Visual KISs; nonetheless, the results on the VBS dataset
do not support this hypothesis, given the competition settings. The amount of
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points obtained by all the teams were roughly the same for comparable Visual
and Textual categories.

Clearly, the degree of user expertise has noticeable impact on the performance
as in the novice category the teams achieved on average 25% points less than
in Single Visual II category. A noteworthy exception to this is NII-UIT team
achieving only 8% less (our SBVB experienced loss of 31%). The novices had only
little time to familiarize with UIs; thus, we argue that intuitiveness of UIs played
an important role here.

At VBS 2014, we demonstrated that a tool effectively utilizing a single de-
scriptor based solely on color distribution can outperform other state-of-the-art
methods on given datasets. We confirmed the strong role of color based descrip-
tors in specific KIS video retrieval scenarios. Actually, no other descriptors are
necessary for the scope of tens hours of BBC video content.

8.2 VBS 2015

The dataset for VBS 2015 comprised approx. 100 hours of video content, i.e., 4
times more than the dataset for VBS 2014. The content was again diverse mixture
of TV programmes. In the light of the results from VBS 2014, organizers did not

58



include single video tasks. The categories, numbers of tasks etc. are summarized in
Table 8.2. Total of 9 teams participated: DCU [88], IMOTION [63], KLU-TJ [29],
NGVB [13], NII-UIT [56], SIRET (us) [8], HTW [4], UU [31] and VERGE [53].

8.2.1 VBS 2015 Results

The points obtained by each team are depicted in Figure 8.4, where we can see
that only 6 out of 9 teams actually scored some points. It was due to various
technical problems; nonetheless, it is perhaps the significantly larger dataset that
induces a number of technical challenges. Although we won VBS 2016, it is no
longer clear victory. In fact, 2nd team IMOTION obtained only 10 points less
which is no more than 1% of our points. Team UU ended up 3rd loosing 58 points
to us. The portion of max. points obtained by the teams are summarized in
Figure 8.5.

Contrary to other years, it was allowed to capture the screen during the visual
tasks. This rule was unfortunately announced only about a month prior to the
competition; thus, most of the teams including us could not exploit this option.

Table 8.2 VBS 2015 task categories.

Category Scope User KIS Tasks Limit
Archive Visual video archive expert Visual 9 6 min.
Archive Textual video archive expert Textual 6 6 min.
Archive Novice video archive novice Visual/Textual 6 6 min.
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The top 3 teams performed equivalently well yet each quite differently. The
IMOTION dominated the expert visual category. It was perhaps with the help
of screen capturing that IMOTION team managed to utilize properly. Even
more distinct outlier can be found in the expert textual category. The UU team
obtained more than two times more points than any other team.

As a mater of fact, UU team was the biggest surprise of VBS 2015. Their
tool was nothing more than storyboard browser. During the search time, users
simply sequentially scanned the key-frames (one key-frame per second) with no
additional filtering being utilized. Effective use of human computation achieved
the same results or even outperformed other state-of-the-art techniques.
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We may argue that the expert memorized majority of the database and could
skip certain videos knowing that they do not contain the searched clip; nonetheless,
this more or less applies to the other teams as well. Furthermore, even UU novices
scored reasonable amount of points.

Our tool showed stable performance over all the categories and in the end,
scored the most points; however, very small margin suggest that other approaches
are viable as well. As the dataset gets larger we no longer see convincing results
and no clear winner arise from VBS 2015.

In-depth analysis of the results from VBS 2015 is available in [14].

8.3 VBS 2016

It seems that the dataset size follows the Moore’s law, i.e. it doubles every year.
More precisely, the dataset for VBS 2016 comprised 250 hours of video content,
that is almost 10 times more than in 2014. Although the session retained novice
tasks, they are no longer included in the final scoring. The task categories of VBS
2016 are summarized in Table 8.3. Total of 9 teams participated: IMOTION [64],
iAutoMotion [65], JRS [3], VERGE [54], KLU-UU [30], SIRET (us) [39], DCU [89],
HTW [5] and UoS [25]. The iAutoMotion team was completely autonomous tool
and included optical character recognition algorithms to deal with the textual
tasks.

Table 8.3 VBS 2016 task categories.

Category Scope User KIS Tasks Limit
Archive Visual video archive expert Visual 10 6 min.
Archive Textual video archive expert Textual 10 6 min.

8.3.1 VBS 2016 Results

The resulting points obtained by the participating teams are depicted in Figure 8.6.
The scale of the y-axis was intentionally set to the maximal number of points
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that could be acquired. It is clearly visible that with larger dataset, the tasks
became noticeably more challenging. The competition was won by HTW team,
followed by KLU-UU team with loss of 42 points. Our tool ended up 3rd with 55
points loss to HTW team. The portion of max. points obtained by the teams are
summarized in Figure 8.7.
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Figure 8.6 Total points acquired by the teams participating on VBS 2016.
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Figure 8.7 Percentage of maximal possible points acquired by the teams partici-
pating on VBS 2016.

The large dataset effectively divided the teams in two groups. One “successful”
with teams HTW, KLU-UU and SIRET each having more than 600 points and
“unsuccessful” where teams have less than 300 points, i.e., two times less. From
our experience, it might be seemingly trivial things that may drag the overall
performance down. For this reason, the techniques utilized by the teams from the
“unsuccessful” group should not be considered as inefficient. Perhaps they only
require more fine tuning.

Interestingly, both SIRET and HTW teams seem to struggle with textual KIS
tasks. Both teams combined have only one correct textual KIS submission. In
contrast to that, this does not apply to KLU-UU team which obtained roughly
the same amount of points from both textual and visual KIS tasks.

We conclude that VBS and its goal remain highly relevant. No distinct winner
came out of VBS 2016 and it is clear that exchange of ideas and combination of
approaches may push the field even further.
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8.4 Summary

Since its first versions, SBVB reached the performance of the state-of-the-art in
the field of video retrieval and KIS in video. Some teams, inspired by our tool,
included similar sketching canvas and retrieval model to their tools [5, 56]. Thus,
we are able to say that we played our small part in pushing the frontier a bit
further.

Despite the effort, the problems we aim are far from being satisfactory solved.
This confirms the importance of events such as VBS.

The results are summarized in Table 8.4 including our remarks for each year
we participated.

Table 8.4 Summary of the VBS results from years 2014–2016.

Year Scope Our rank Our loss Remarks
2014 26 hrs 1st - Single video KIS solved

We won by a significant margin
Feature Signatures established as
a baseline color descriptor

2015 100 hrs 1st - A tool based on human computation
demonstrated competitive perfor-
mance
Very tight results

2016 250 hrs 3rd 55 pts Dataset size becomes challenging
Tight results
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9. User Studies

In this chapter, we present results of two user studies. In particular, we analyze an
expert user behavior from data logged at VBS 2014 and evaluate performance of
two textual search approaches introduced in Section 6.3. Interestingly, the studies
were carried out two years apart.

9.1 Analysis of SBVB at VBS 2014

In this section, we analyze users behavior at VBS competition 2014. Both novices
and experts performed visual and textual KIS tasks using the original version of
SBVB. Task categories, participating teams and the overall results are summarized
in Section 8.1.

All the user interactions with the tool were recorder including sketch manipula-
tions, results browsing etc. In fact, the searching options and browsing capabilities
were quite limited at that time. Either one or two sketches could be specified and
the best matching key-frames were displayed.

Out of 54 KIS tasks, the expert successfully solved 52 within the time limit
reaching impressive 96% success rate. On the other hand, the novice user was
successful at only 7 out of 10 KIS tasks. This suggest significant difference between
novice and expert users performance.

The search times 1 for the successful tasks are plotted in Figure 9.1.
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Figure 9.1 Search times of the 59 successful KIS tasks from VBS 2014.

Extraordinary results were achieved in the first task category where all the
tasks were solved within one or two seconds from the end of the video playback.
Actually, this holds for the most of the visual KIS tasks in single video even in
the Single Visual Novice category. Search times are noticeable longer in textual
and archive categories which is not surprising.

We identified two types of interactions – results browsing and query specifi-
cation. Results browsing includes examining wider neighborhood of a particular
result or listing additional results. Although we incorporated a video player in our
tool it was not used at all. Query specification is in fact drawing of the sketches,
i.e., positioning colored circles, color picking etc.

1For visual KIS, time is measured from the end of the playback. For textual KIS the time is
measured from the first appearance of the textual description.
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The relative amount of the search time spent browsing is depicted in Figure 9.2.
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Figure 9.2 Relative amount of the search time spent by browsing in the 59
successful KIS tasks from VBS 2014.

We may see that within all the categories users spend roughly 30% of time with
results browsing. Considering the variance, we can not identify any (statistically)
significant differences between the task categories.

Furthermore, we identified the number of centroids in the final sketch for each
KIS task. Histograms of the number of sketch centroids are depicted in Figure 9.3
where Single Video summarizes Single Visual and Single Textual tasks and Video
Archive summarizes Archive Visual and Archive Textual tasks.
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Figure 9.3 Distributions of the numbers of centroids in the final sketches for
single (left) and archive (right) task categories.

Apparently, it is often sufficient to specify two sketch centroids to locate the
target segment in a single video. This explains how we achieved the minuscule
search times for the single KIS tasks. Average sketch of the target segment can
be drawn within seconds and the results are displayed nearly instantly.

In accordance to our expectations, the archive KIS tasks required more elab-
orate sketches. Typically, the final sketch comprised two or more centroids.
Additionally, in 35% of the archive tasks, the user utilized also the second sketch
contrary to 15% for the single video tasks. We conclude that in the archive scope,
the searched scene has to be described in more detail to facilitate a successful
search.

9.2 Search Initialization with Textual Queries

In section 6.3, we proposed two orthogonal textual search approaches. In fact, the
textual search module is the only part that was not tested at the VBS competition.
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Hence, we carried out a simple user study in order to determine which of the
proposed approaches is more effective. A total of 21 novice participants were
briefly introduced to the tool and asked to find 6 different video segments presented
via playback with a limit of 3 minutes for each task. The database contained
almost 30 hours of diverse video content including, TV shows, sports, indoor and
outdoor activities, etc. Example key-frames from the searched video segments are
displayed in Fig. 9.4.

(a) Task 1 (b) Task 2 (c) Task 3

(d) Task 4 (e) Task 5 (f) Task 6

Figure 9.4 Example key-frames from the searched video segments.

The two textual search approaches presented in this paper are referred to as
Google (Section 6.3.1) and ImageNet (Section 6.3.2). For each task, participants
were randomly divided in three groups, where each group was enabled to use
either Google, ImageNet or both approaches.

Out of 102 individual searches, 96 included a textual query, and 33 of them
consecutively lead to a success (34.4 %). The numbers of successful searches
are captured in Fig. 9.5. In 13 out of the successful 33 searches, participants
did not use any feature other than textual search. The data collected do not
demonstrate statistically significant differences between success rates — for Google
vs ImageNet p-value is 0.731014, for Google vs both p-value is 0.291958 and for
ImageNet vs both p-value 0.261518. In the case of the group enabled to use both
techniques, total number of Google queries was 108, as opposed to 72 ImageNet
queries. However, if we restrict this to the successful tasks, there were 17 Google
queries and 20 ImageNet queries.

ImageNet turned to be effective search initialization for scenes, that contain a
particular, easily identifiable object, e.g. a harvester in Task 3 or a golf cart in
Task 6. Regarding complex scenes containing plurality of concepts (Tasks 2, 4
and 5), users struggled to select the one actually detected by ImageNet.

Arguably, the main limitation of the Google approach is that the retrieved
images frequently do not fit users expectations. Although they may contain the
searched object, the context happens to be quite dissimilar to the searched scene.
We observed that inexperienced users were using these unfitting images instead
of refining the query. On the other hand, we are able to retrieve suitable images
with a seemingly unrelated query independently on the content of our database.

Apparently, Tasks 6 and 3 were rather easy as both approaches lead to the
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Figure 9.5 Numbers of successful searches for each task.

success almost instantaneously. We contribute this to the fact that distinct
keywords were available to begin the search with (e.g. golf cart, harvester). Task
1 could have been solved just by using the sketch-based techniques. Task 4 was
very hard for users limited to ImageNet as none of the obvious concepts (pumpkin,
goat) were actually detected. Task 5 required to follow the obvious text query
football with additional browsing techniques. Task 2 was rather confusing as some
of the apparent search words such as military or kitchen provided misleading
results.

We conclude that both approaches provide a viable way to search for a known-
item in certain scenarios. It was also revealed that the textual queries are preferred
by novice users, as a third of the successful searches was carried out without any
other modalities, such as color and edge sketches.

9.3 Summary

In this chapter, the results of two user studies were provided. In the first study,
we analyzed the behavior of users when only the feature signature model was
available. It was revealed that a sketch with units of centroids may be sufficient to
find the searched segment. In the second study, we tested two orthogonal textual
search approaches. Both appeared viable even for novice users.
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10. Conclusions

This thesis approaches the problem of large-scale video retrieval and browsing.
In particular, we address the Known-item Search scenario wherein users search
for a short video segment known either visually or by textual description. The
topic requires to combine algorithms and apparatuses from a number of research
areas such as machine learning, computer vision, database systems and cognitive
science.

We have shown that the state-of-the-art solutions to KIS problem are indeed
diverse yet none clearly outperforms the others. More importantly, none of the
solutions provides steady and satisfactory level of performance.

In our bachelor thesis, we proposed a novel approach to the known-item search
problem based on color feature signatures descriptor, where users define their
search intent in a form of simple colored sketches. Although, compared with other
approaches at VBS 2014 our tool SBVB came out as a winner, we saw room for
improvements.

In this work, we adapted additional search modalities and enhanced SBVB
with a number of browsing options. In particular, we incorporated multi-modal
(color and edge) sketches, similarity search with DeCAF descriptors, new visual-
ization/browsing methods and two orthogonal models for textual search. Hereby,
SBVB evolves to Enhanced SBVB with which we underwent a comparison with
other state-of-the-art tools at VBS 2015 and 2016. As a matter of fact, we won
VBS 2015 and ended up 3rd at VBS 2016.

The results shown that our approach is not only viable but also able to
outperform other methods. Our feature signatures video retrieval model was
adapted and further extended by other teams competing at VBS. Furthermore,
we enclosed additional user studies which demonstrated the applicability of our
methods even for novice users.

10.1 Future Work

Although the overall performance of ESBVB is among the state-of-the-art, we
still see room for improvements. We would like to investigate various novel im-
age/video descriptors and similarity models (including up-to-date DCNN models).
Furthermore, we register a significant performance gap between novice and expert
users. One factor is that the user interface offers a number of features which might
be confusing at the first glance. Nonetheless, it is also the knowledge about the
behavior of the underlying retrieval system which may be effectively exploited by
experts.

In our future work, we would like to further study behavior of users in our
system and investigate what is the difference in novice and expert usage patterns.
Is it possible to aid novice users and minimize the performance gap? Ultimately,
we would like our system to be adaptive to a particular user.

Nonetheless, we believe that to significantly push the performance further, we
must better understand the actual video content. More precisely, machines have
to. It was shown that human aided computation may perform surprisingly well.
Perhaps mimicking human cognitive abilities is the way to go.
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Vera Aleksić, Fotini Markatopoulou, Christina Papagiannopoulou, Stefanos
Vrochidis, Vasileios Mezaris, Reinhard Busch, and Ioannis Kompatsiaris.
VERGE: An Interactive Search Engine for Browsing Video Collections, pages
411–414. Springer International Publishing, Cham, 2014. ISBN 978-3-319-
04117-9. doi: 10.1007/978-3-319-04117-9 48. URL http://dx.doi.org/10.

1007/978-3-319-04117-9_48.

[52] Anastasia Moumtzidou, Konstantinos Avgerinakis, Evlampios Apostolidis,
and et al. Verge: An interactive search engine for browsing video collections.
In MultiMedia Modeling, volume 8326 of Lecture Notes in Computer Science,
pages 411–414. Springer International Publishing, 2014. ISBN 978-3-319-
04116-2. doi: 10.1007/978-3-319-04117-9 48. URL http://dx.doi.org/10.

1007/978-3-319-04117-9_48.

72

http://dx.doi.org/10.1007/978-3-319-04117-9_49
http://dx.doi.org/10.1007/978-3-319-04117-9_49
http://dx.doi.org/10.1007/978-3-319-04117-9_49
http://dx.doi.org/10.1007/978-3-319-04117-9_49
http://doi.acm.org/10.1145/2578726.2582617
http://dx.doi.org/10.1007/978-3-319-04117-9_48
http://dx.doi.org/10.1007/978-3-319-04117-9_48
http://dx.doi.org/10.1007/978-3-319-04117-9_48
http://dx.doi.org/10.1007/978-3-319-04117-9_48


[53] Anastasia Moumtzidou, Konstantinos Avgerinakis, Evlampios Apostolidis,
Fotini Markatopoulou, Konstantinos Apostolidis, Theodoros Mironidis, Ste-
fanos Vrochidis, Vasileios Mezaris, Ioannis Kompatsiaris, and Ioannis Patras.
VERGE: A Multimodal Interactive Video Search Engine, pages 249–254.
Springer International Publishing, Cham, 2015. ISBN 978-3-319-14442-9.
doi: 10.1007/978-3-319-14442-9 23. URL http://dx.doi.org/10.1007/

978-3-319-14442-9_23.

[54] Anastasia Moumtzidou, Theodoros Mironidis, Evlampios Apostolidis, Foteini
Markatopoulou, Anastasia Ioannidou, Ilias Gialampoukidis, Konstantinos
Avgerinakis, Stefanos Vrochidis, Vasileios Mezaris, Ioannis Kompatsiaris, and
Ioannis Patras. VERGE: A Multimodal Interactive Search Engine for Video
Browsing and Retrieval, pages 394–399. Springer International Publishing,
Cham, 2016. ISBN 978-3-319-27674-8. doi: 10.1007/978-3-319-27674-8 39.
URL http://dx.doi.org/10.1007/978-3-319-27674-8_39.

[55] Thanh Duc Ngo, Vu Hoang Nguyen, Vu Lam, Sang Phan, Duy-Dinh Le,
Duc Anh Duong, and Shin’ichi Satoh. NII-UIT: A Tool for Known Item Search
by Sequential Pattern Filtering, pages 419–422. Springer International Publish-
ing, Cham, 2014. ISBN 978-3-319-04117-9. doi: 10.1007/978-3-319-04117-9
50. URL http://dx.doi.org/10.1007/978-3-319-04117-9_50.

[56] Thanh Duc Ngo, Vinh-Tiep Nguyen, Vu Hoang Nguyen, Duy-Dinh Le,
Duc Anh Duong, and Shin’ichi Satoh. NII-UIT Browser: A Multimodal
Video Search System, pages 278–281. Springer International Publishing,
Cham, 2015. ISBN 978-3-319-14442-9. doi: 10.1007/978-3-319-14442-9 28.
URL http://dx.doi.org/10.1007/978-3-319-14442-9_28.

[57] David Novak and Michal Batko. Metric index: An efficient and scalable
solution for similarity search. In Proceedings of the 2009 Second Interna-
tional Workshop on Similarity Search and Applications, pages 65–73. IEEE
Computer Society, 2009.

[58] David Novak, Michal Batko, and Pavel Zezula. Large-scale similarity data
management with distributed metric index. Information Processing & Man-
agement, 48(5):855–872, 2012.

[59] David Novak, Michal Batko, and Pavel Zezula. Large-scale image retrieval
using neural net descriptors. In Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Information Retrieval,
pages 1039–1040. ACM, 2015.

[60] Paul Over, Jon Fiscus, Greg Sanders, David Joy, Martial Michel, George
Awad, Alan Smeaton, Wessel Kraaij, and Georges Quénot. Trecvid 2014–an
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Attachment – DVD

We attach a DVD with the following contents:

• ESBVB application in binary form compiled for 64bit Windows operating
system equipped with .NET Platform version 4 or higher.

• ESBVB application sources in a form of MS Visual Studio 2015 project.

• User video guide to ESBVB.

81


	Preface
	Introduction
	Our contribution
	Thesis Structure

	Preliminaries
	Metric and Vector Spaces
	Similarity Search
	Indexing Metric Spaces

	Image Retrieval and Similarity Search
	Image Retrieval
	Image Descriptors
	Image Convolution

	Deep Learning as Frontier in Image Retrieval

	Known-item Search Tools
	KLU team
	NII-UIT team
	HTW team
	IMOTION team
	UU team
	DCU team
	NUS team

	Sketch-based Video Browser
	Feature Signatures
	Extraction Algorithm
	Feature Signatures Video Retrieval Model
	Towards Higher Efficiency of FS Retrieval Model

	Results Presentation
	Interactivity

	Summary

	Enhanced Sketch-based Video Browser
	Edge-based Features
	Similarity Search with Edge Histograms

	Similarity Search with DeCAF
	Querying with Natural Language
	External Image Search Engine
	ImageNet Labels

	Combining Modalities
	Multi-modal Sketches
	Composite Query Ranking

	Sketch Sequences
	Summary of Searching Features
	Enhancing Results Browsing
	Scene detection and compacting
	Coarse to Fine Results Presentation
	Interactive Navigation Summary
	Additional Video and Scene Filtering
	Thumbnails Caching

	User Interface

	Implementation Architecture
	Components
	Back-end
	Video Pre-processor
	Video Index
	Query Ranking Engine

	Front-end
	Search Filter
	Results Display


	Performance Evaluation
	VBS 2014
	VBS 2014 Results

	VBS 2015
	VBS 2015 Results

	VBS 2016
	VBS 2016 Results

	Summary

	User Studies
	Analysis of SBVB at VBS 2014
	Search Initialization with Textual Queries
	Summary

	Conclusions
	Future Work

	Bibliography
	List of Figures
	List of Tables
	Attachment DVD

