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1. Introduction

Motivation for this diploma thesis is a problem of stellar spectra classification.
There are different types of stars with various properties. Each star type produces
a particular spectral signature. The task of stellar spectra classification is to
distinguish these signatures and link them to correct star types. Astronomers
acquire and collect extensive amounts of stellar spectra observations. As the
number of observations is growing, manual data processing and star classification
is not feasible anymore. Therefore, it is necessary to find effective methods for
automation of the process as stellar spectra classification is an important part of
astronomical research.

Generally, tasks in information technology are solved using finely tailored algo-
rithms. These algorithms systematically process input data and converge them
to an expected result. Designing such an algorithm requires deep knowledge of
the input data, the desired output and all required steps in between. However,
complications arise when it is not effectively possible to express all steps in an
explicit algorithm. Let us take as an example a problem of optical recognition
of printed characters captured by a digital camera. It can be hardly imagined
how to efficiently tailor a well performing algorithm to recognize all characters
when quality, skew or light conditions may vary a lot. It would be even harder
to modify such an algorithm for a new font or symbol if needed.

In such a case, a better way to solve this task is to leave the recognition of impor-
tant characteristics and relations in the data to a more general algorithm. Ma-
chine learning algorithms are capable of that. There is a lot of different machine
learning algorithms and even more various implementations of each of them. The
fundamental idea of machine learning algorithm is to learn from training data.
Machine learning algorithms learn by finding characteristics and relations in input
data important with respect to desired output values.

The quantity and quality of data used to train machine learning algorithms is
very important for the performance of a trained algorithm on the real world data.
However, the evaluation of data quality is done by a machine learning algorithm
itself and it often needs to filter and process huge quantities of data to find out
what is and what is not important for good the performance of the resulting
model. Therefore, it would be very useful to have in hand an implementation
that can cope with input data efficiently and produce results fast.

Recently, it has been possible in information technology to utilize various het-
erogeneous devices for high performance computing. For instance, current gen-
erations of GPUs can be used for general purpose computations. It is therefore
appealing to implement machine learning algorithms on such devices and uti-
lize large amounts of simple processing units capable of logical and arithmetic
operations.

This diploma thesis explores possibilities of effective machine learning implemen-
tations for various hardware and software platforms.

Specifically, it deals with the Random Forests machine learning algorithm. Essen-
tially, this algorithm selects and decides what actions to perform by calculating
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and evaluating the information gain these actions would provide. It is an inter-
esting algorithm and it bears certain properties making it an intriguing candidate
for parallelization. Namely, a major section of its execution can be divided into
completely independent parts, which is a very appealing property, and the per-
formance and behaviour of the algorithm is given, apart from some other, by
two input properties, whose both nominal increase can potentially improve al-
gorithm’s performance, while technically one of them influences the number of
executed parts and the other determines how complex these parts are.

This thesis evaluates implementations of the algorithm on multiple platforms.
It deals with CPU, OpenMP CPU, OpenCL GPU and CUDA GPU implemen-
tations. Open Multi-Processing (OpenMP) is a multi-platform API for parallel
shared-memory programming [9]. Open Computing Language (OpenCL) is a
framework for writing parallel applications executing across heterogeneous plat-
forms [3]. Compute Unified Device Architecture (CUDA) is a parallel program-
ming platform and API framework tailored for Nvida GPUs [10].

The second section describes Random Forests algorithm in detail. The third sec-
tion depicts technical aspects and essentials of OpenCL and CUDA frameworks
and pinpoints fundamental differences compared with general CPU programming.
The fourth section outlines complexity of Random Forests and describes a con-
cept OpenCL implementation and evaluates its characteristics. The fifth section
describes and assesses aspects of a fine-grained CUDA implementation. The sixth
section provides details and evaluation of a monolithic CUDA implementation.
The seventh section measures algorithm’s classification performance on various
data. The last section summarizes the thesis and discusses future and related
work.
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2. Random Forests

Random Forests [1] is a machine learning algorithm. Such algorithm is usually
not designed to solve only a single specific problem but it is crafted to be able
to solve a broader group of problems. For instance, it can be utilized to perform
classification or regression tasks. Classification covers a complex class of concrete
problems. It contains, already mentioned optical character recognition, recogni-
tion of speech, people and also stars. Regression carries out value predictions. It
may be used for stock price prognosis, weather forecasts and so on.

2.1 Supervised learning

There are supervised and unsupervised machine learning algorithms. In classi-
fication scope, supervised learning requires a set of data labelled with desired
classes. For instance, a set of character images labelled with corresponding let-
ters can be considered a data set suitable for optical recognition by supervised
learning. In contrast, unsupervised learning does not require any labelled data.
Such an algorithm is left to recognize important differences in input data and
distinct different classes on its own. Random Forests is a supervised machine
learning algorithm.

As mentioned, the goal of the supervised machine learning algorithm is to rec-
ognize important relations and patterns in input data samples’ characteristics
with respect to labelling and create a model that describes these associations.
Characteristic, in case of an image of a letter, is for instance a colour of pixel on
specific coordinates, a height of the image, an average tone of the image and so
forth. Machine learning algorithms usually require sample data to share a com-
mon form. For example, images must be scaled to a certain size. Often, input
data for machine learning algorithms is preprocessed by domain specific tools
capable of data enrichment and addition of more useful attributes than originally
present.

2.2 Decision tree

A decision tree is a structure made of binary tests (split nodes). The binary test is
a function that accepts the value of a certain required attribute (characteristic).
The binary test can result in another binary test or a final decision (final leaf
node).

2.3 Ensemble learning

This algorithm utilizes principles of ensemble learning. The core of this method
is to train multiple predictor models and combine them into a final one. These
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models can be, in fact, fairly primitive as they do not have to solve the problem
across whole data sets but just over a specific subset of it. When used, the
aggregated model evaluates every partial model to retrieve its result and then
uses an aggregate function to produce final results.

For the Random Forests algorithm, the partial predictor model is called a tree,
or a decision tree. These trees are completely independent on each other. The
subset of data the tree model handles is random. In order to combine partial
results from all trees the Random Forests algorithm chooses the most frequent
result as the final result.

2.4 Algorithm

Random Forests definition follows [1, p. 588]

Algorithm 2.4.1 (Random Forests)
• N number of trees to create.

• K bootstrap size to train every tree on.

• L minimum bootstrap size to stop training at

1. For n = 1 to N:

(a) Draw a random bootstrap B∗ of size K from the training data.

(b) Grow a random forests tree Tn to the bootstrapped data, by recursively
repeating following steps for each terminal node of the tree, until the
minimum node size L is reached.

i. Select M variables at random from the P variables.

ii. Pick the best variable/split-point among the M .

iii. Split the node into two daughter nodes.

2. Output the ensemble of trees Tn
N
1

To make a prediction at a new point x:

Let every tree predict a class on its own and the result class is based on majority
vote of all trees.

Bootstrap is a collection of samples generated uniformly with repetition from
a training data set. Every sample has an equal probability to be selected on
every pick and might appear in the bootstrap multiple times. Bootstrap size is
configured on run-time.

During the decision tree training every time a split is made the bootstrap is split
in two. It means that the quantity of samples a node is trained on is decreasing
while the tree is growing to its leafs. It is obvious to stop the training process
when all remaining samples belong to the same class. However, sometimes the
training process continues until the sample collection becomes very small but no
consensus is found yet. It is questionable how long the process should go on
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and what can be gained if splitting happens for just few samples. In such case,
the process is more likely a memorization of presented samples than a training.
Model growths but the gain is doubtful. Thus, it might be preferable to stop the
process and instead of extending the process until only a single class is present
among remaining samples, the most dominant class present is used.

Another important property of the algorithm is the number M of attributes to
be tested and searched for the split-point. Best split point search is the core of
the Random Forests algorithm.

2.5 Entropy and Information Gain

In order to identify the best possible split information gain metric is used to
evaluate and rank tested split points. Information gain is based on entropy com-
parison between the original integral bootstrap and weighted entropies of divided
bootstrap parts.

Entropy [1] describes the measure of disorder in a system. For discrete magni-
tudes, entropy can be expressed as a logarithmic measure of all possible states
and the probability of their occupation.

E = −
∑
i

(pi ∗ log2(pi))

Algorithm 2.5.1 (entropy)
1. S is list of samples to compute entropy for

2. let N be the number of classes represented in S, class is represented in S if
exists at least one sample in S that belongs to the class

3. let < ci >
N
1 be vector representing the number of occurrences for every class

present

4. then entropy E = −
∑

pi ∗ log2(pi), where pi = ci
|S|

Algorithm 2.5.2 (information gain)
1. S is list of samples to be split, SP is the split point

2. compute entropy E of S

3. split S according to SP into SL and SR

4. compute entropy EL and ER of SL and SR

5. G = E − (EL ∗ (|SL|/|S|) + ER ∗ (|SR|/|S|))

2.5.1 Sample set entropy and information gain example

Let there be 12 points belonging to two distinct groups, blue and red, in two
dimensional space in the form of a square. (see Figure 2.1).
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Figure 2.1: Square S of all samples

(a) S1
aup, S

2
adown (b) S1

b left, S
2
b right (c) S1

c left, S
2
c right

Figure 2.2: Possible divisions of square S

Entropy (see Algorithm 2.5.1) for point distribution among various groups in the
square is equal to 1 (see Equation 2.1).

p0 = 6/12, 6 red

p1 = 6/12, 6 blue

ES = −((0.5 ∗ log 2(0.5) + (0.5 ∗ log2(0.5))

ES = −((0.5 ∗ −1) + (0.5 ∗ −1))

ES = 1

(2.1)

There are many possible ways to split this square into two parts.

(a) It can be divided into two identical rectangles (S1
a and S2

a) both composed
of 3 blue and 3 red elements. Entropy is the same for both rectangles,
specifically ES1

a
= 1, ES2

a
= 1 (see Figure 2.2(a)).

(b) Another option is to divide the original set S into two distinct parts, one
(S1

b ) consisting of 4 blue elements, the other (S2
b ) of 2 blue and 6 red ele-

ments. Entropy for each of them is different, namely ES1
b

= 0, ES2
b

= 0.81
(see Figure 2.2(b)).

(c) Yet another option is to split the original set S into one part (S1
c ) made

only of all blue elements and the other (S2
c ) of all red elements. The entropy

of both rectangles is equal to ES1
c

= 0, ES2
c

= 0 (see Figure 2.2(c)).
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ES = 1

ES1
a

= 1

ES2
a

= 1

|S1
a|/|S| = 6/12

|S2
a|/|S| = 6/12

Ga = ES − (ES1
a
∗ (|S1

a|/|S|) + ES2
a
∗ (|S2

a|/|S|))
Ga = ES − (1 ∗ 0.5 + 1 ∗ 0.5)

Ga = 0

(2.2)

Information gain of the first demonstrated division Sa is equal to 0 (see Equation
2.2). Therefore, such a split is not in any way interesting for a machine learning
algorithm as it would not likely add any value to the model.

Gb = 1− (0 ∗ 4/12 + 0.81 ∗ 8/12)

Gb = 0.54
(2.3)

The division Sb has a positive information gain (see Equation 2.3) and therefore
seems to be a better candidate for a split point in a decision tree.

Gc = 1− (0 ∗ 6/12 + 0 ∗ 6/12)

Gc = 1
(2.4)

Clearly, the last example of illustrated possible divisions has the highest informa-
tion gain (see Equation 2.4) of all. It is clear from the figure that this division
splits the original square S into a rectangle of only blue points and another rect-
angle of just red points. This is the best split point to use for a decision tree
node.

This example demonstrates one of the core ideas of Random Forests algorithm.
The Random Forests is a classification algorithm, the data samples it works
with possess certain attributes and belong to various classes. In the presented
example, the samples are represented using elements in two-dimensional space,
the classes are represented using distinct colours and the attributes, two in this
case, are outlined using the coordinate system. There were 3 possible split points
investigated, using both available attributes, and the information gain algorithm
identified the best one of them.
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3. Parallel programming

There is a broad range of various hardware platforms offering different features.
There are central processing units (CPU), graphical processing units (GPU),
configurable field-programmable gate arrays (FPGA) and digital signal processors
(DSP). Each of them has a different philosophy and suites best a different set of
tasks.

For instance, general control intensive applications can benefit from CPUs pro-
vided with data and code cache together with intelligent branch prediction sup-
port. Computation intensive applications targeting high throughput can profit
from vector or many-core hardware that enables execution of many numerical
instructions at once. Ultra low latency applications effectively utilize FPGAs.

3.1 OpenCL

Open Computing Language (OpenCL) [3] is a technology standard framework
for writing parallel programs across heterogeneous computing platforms, possibly
consisting of CPUs, GPUs, FPGAs and DSPs. OpenCL framework is logically
defined in four parts, called models.

The platform model specifies there is one processor (host) in control of the ex-
ecution and one or more co-processors (device) to distribute work on. It also
defines an abstract hardware model for OpenCL representing the work, kernel
(see Section 3.1.1).

The execution model defines how an OpenCL context is set up on the host and
how are OpenCL kernels executed on the devices. It includes kernel concurrency
model and host-device interactions.

The memory model describes an abstract memory hierarchy used on all execution
devices. The abstract memory model is in general common for all device types.
However, the actual mapping of memory model layers to physical memory ar-
chitectures differs highly and so do various related performance properties. Size
of distinct memory model layers might differ considerably across various target
hardware platforms.

Programming model outlines how kernel code concurrency is mapped to physical
devices.

3.1.1 Kernel and work item

Kernel is the central point of the OpenCL execution model. In detail, it is a C99
function prefixed with a kernel marker (see Figure 3.1) and its syntax is enhanced
with special purpose OpenCL functions and keywords [3].

Kernel is implicitly expected to be executed by multiple threads. This is in con-
trast to standard programming practice (see Figure 3.2). The particular number
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__kernel

void kernel_increment( int[] values , int length) {

values[get_global_id (0) ]+= 1;

}

Figure 3.1: Increment array kernel

void increment( int[] values , int length) {

for (int i = 0; i < n; i++) {

values[i]+= 1;

}

}

Figure 3.2: Increment array function

of threads is configured by the host. Each thread must be able to identify itself
to be capable of distinguishing the part of work allocated for it - this is similar
to the standard C fork function where a parent and a child process split paths by
evaluating the return value of fork function. In an OpenCL kernel this purpose is
served by get_global_id(0) function, which returns consequent integral num-
bers, starting from 0, unique for each thread executing an instance of the kernel
(see Figure 3.1).

In the OpenCL terminology, kernel is not called but launched. Every kernel
launch must specify a number of threads it will be processed by. Work item is
the minimal unit of work in OpenCL, it is a term interchangeable with thread.
Standard approach for specifying the number of work items, called range, is to
mimic proportions of input or output data sets. Let there be a kernel (see Figure
3.1) whose function is to increment all elements in an array by one, and an array,
whose values should be incremented. One possibility is to specify the range so
that it fits the to-be-incremented array size (see Figure 3.3). Offset makes the
work items identification start from an artificial number instead of the default
zero. Group parameter specifies the size of work group. It is described in more
detail in the following section. Data sets are not always limited to one dimensional
arrays and to fit the purpose the range can spawn up to three dimensions.

Matrix summation (see Figure 3.4), for instance, can be expressed by two di-
mensional thread indexing. The parameter of the get_global_id function states
the thread dimension in question. This solution is probably more expressive and
readable compared to a custom one to two dimensional addressing.

cl:: NDRange offset = cl:: NullRange;

cl:: NDRange group = cl:: NullRange;

cl:: NDRange range = cl:: NDRange( array_size);

commandQueue.enqueueNDRangeKernel(

kernel_increment , offset , range , group);

Figure 3.3: Increment array kernel launch
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__kernel

void kernel_sum( int [][] a, int [][] b, int [][] c) {

int x = get_global_id (0);

int y = get_global_id (1);

c[x][y] = a[x][y] + b[x][y];

}

cl:: NDRange range = cl:: NDRange( matrix_height , matrix_width);

commandQueue.enqueueNDRangeKernel(

kernel_sum , cl::NullRange , range , cl:: NullRange);

Figure 3.4: Matrix summation

3.1.2 Work group

Work group [3] is an abstraction that groups possibly related work items where
thread cooperation can be required and made more effective. It is tightly linked
with architecture of underlying hardware platforms. There are more strict con-
straints for in work group item execution than for unrelated items. For instance,
one item’s result might be dependent on another item’s result in the same work
group while this does not necessary hold for items from different work groups.

An insight into a sample device architecture can provide the reasons for these
constraints. Otherwise, one could wonder why not all items are executed in one
big work group. NVIDIA Fermi [12] architecture Tesla M2090 [11] GPUs are used
for the evaluation of implementations in this thesis and for this reason they are
used for the explanation as well.

The Fermi architecture GPUs consist of 512 CUDA cores. The CUDA core is
a processor with a fully pipelined logic unit (ALU), a floating point unit (FPU)
and a set of private registers. These cores are organized in groups of 32 and
together form a Streaming Multiprocessor (SMP). There are 16 SMPs on any
Fermi GPU. All cores of a single SMP share 64KB of memory used either for
in work group communication or as an L1 cache, 16 load/store units for cache
and memory access and 4 Special Function Units (SFU). The ratio of explicitly
controlled memory to L1 cache is configurable. The Fermi architecture supports
up to 6GB of GDDR5 DRAM shared by all SMPs.

The Fermi architecture is capable of executing 2048 threads per SMP. In fact,
there can be 32 threads running at once on a SMP, one on each CUDA core. Ker-
nel code is being executed in a single instruction multiple thread (SIMT) manner.
All threads executing on all 32 cores at the moment compute the same instruction
concurrently. CUDA cores are capable of context switch under 25 microseconds.
Therefore, the execution of a substantial number of threads frequently switch-
ing context on a multiprocessor may hide latencies of memory loads/stores or
arithmetic operations.

A kernel launch requires a local and global range to be specified. The global
range determines the total number of threads to be spawned, while the local
range determines the number of threads allocated on a certain SMP in work
group cooperation.
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Work group cooperation allows threads to communicate more effectively using
local memory instead of global memory and also gives them the possibility to
synchronize. In contrast, communication between work groups is slower since
only global memory might be used and synchronization is very tricky or even
impossible in certain scenarios. Generally, there is no guarantee on the order and
timing of work group scheduling to SMPs and as a result when all SMPs are fully
utilized, active threads in all groups are waiting to synchronize with a group that
has not been started yet, but then, the awaited group will not be scheduled at
all.

3.1.3 Memory

There are three types of memory available in the OpenCL kernel [3]. Private
memory is separate for every thread. Referring still to the Fermi architecture, it
is allocated in device registers if provision is sufficient. Local memory is shared
by all threads in a work group. Global memory is shared by all SMPs on the
device. It can offer up to 6GB of available space.

Global memory is usually employed to store most of data structures needed for
computation similarly to CPU main memory. Local memory is often used as an
explicit cache for hot parts of global memory or for thread communication in
work groups. Access to local memory is faster but it is usually much smaller in
size compared with global memory.

3.2 CUDA

Compute Unified Device Architecture (CUDA) is a parallel programming plat-
form and an API framework tailored for Nvida GPUs [10]. It resembles many
OpenCL aspects closely.

Given the level of detail in Section 3.1, most mentioned terms can be considered
generally equal in context of OpenCL and CUDA frameworks, with only certain
differences in terminology.

3.2.1 Kernel

The CUDA kernel [10] is very similar to the OpenCL kernel. The philosophy
holds but the syntax of CUDA API calls differ.

3.2.2 Compute capability

The compute capability is essentially a version of CUDA framework and it states
what CUDA features and constraints are provided by a GPU given the compute
capability it supports.
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3.2.3 Block

A block is the equivalent of the OpenCL work group. It groups individual threads
together and provides means of memory communication and certain execution
guarantees. The Fermi architecture limits block size to 1024 threads [12].

3.2.4 Warp

There are 32 CUDA cores on Fermi architecture GPUs. When a block executes
there are 32 threads of the block running at the same time on an SMP, one on
each CUDA core [12]. These 32 threads are considered a warp. This aspect
can be generally ignored as it does not affect functional correctness but it can be
exploited for performance optimizations. Namely, it can be used to improve mem-
ory access throughput, atomic operation scheduling or there are special intrinsic
instructions for in-warp thread communication [13].

3.2.5 Memory

Fundamentally, there are three memory layers similar to the OpenCL memory
model. There is a private memory dedicated for thread-only operations. There
is a shared memory (OpenCL local memory) common for all threads in block.
There is a global memory shared across all blocks and the host.

3.2.6 Coalesced memory access

Coalesced memory access is a very important performance consideration of a
CUDA capable GPU architecture [10]. Stores and loads of threads within a
single warp accessing the global memory can be coalesced into only single memory
transaction by the device if certain conditions are met.

In the simplest scenario, if all threads in a warp access adjacent 4-byte words there
is only single memory transaction necessary. However, if consecutive threads
access sequential 4-byte words but the memory is not aligned with cache lines
there are two memory transactions performed.

3.2.7 Stream

Fermi architecture GPUs support up to 2048 threads scheduled on an SMP at
the same time. Nevertheless, a block supports up to 1024 threads only. Actu-
ally, there can be multiple blocks scheduled on an SMP at once. The block to
SMP schedule is performed solely by CUDA framework and cannot be explicitly
controlled using CUDA API [10].

Scheduling as many threads as possible can potentially hide or at least lower
memory access latencies. Nonetheless, a kernel might need only a single block
of threads to perform all the work. When launched synchronously, such a kernel
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essentially blocks the device and all other subsequent kernel launches have to wait
for this kernel to finish.

However, in some scenarios various kernel launches can be functionally indepen-
dent, therefore do not require sequential behavior and, in contrast, could profit
from parallel execution by utilizing device’s SMPs more effectively. CUDA pro-
vides streams to launch and execute concurrently multiple kernels on a single
device at once. The Fermi architecture supports up to 16 streams.

Default stream is used for kernel launches that do not specify any stream explic-
itly. In contract to explicit streams, the default stream does not just ensure on
sequential kernel execution but blocks the host program until the kernel execution
is finished.

3.3 OpenCL or CUDA

OpenCL and CUDA frameworks offer two different interfaces for programming
GPUs. OpenCL is a more generic framework with capability to work with a
broad range of different hardware platforms while CUDA is specifically tailored
for NVIDIA GPUs. Naturally, it might be possible for the more specific CUDA
interface to provide more efficient means to operate the hardware and therefore
possibly offer better performance. Measurements [21] show that CUDA, in certain
scenarios, provides better performance for similar kernel execution as well as for
data transfers. However, the tool support, documentation and user friendliness
are other factors for consideration. It is not in scope of this thesis to provide a
comparison of these frameworks but it uses both of them and provides certain
practical experience gained during their usage.

15



4. OpenCL implementation

This section describes the first Random Forests algorithm (see Section 2) par-
allel implementation built on top of OpenCL framework (see Section 3.1). In
the beginning, it deals with a complexity analysis of the algorithm. It describes
algorithm’s input arguments, internal data structure and design details. It evalu-
ates performance of the implementation compared with reference CPU serial and
parallel implementations and discusses results.

4.1 Complexity

The basis for effective algorithm implementation is a complexity analysis. Its
purpose is to identify time and memory constraints with respect to input argu-
ments. The evaluation of algorithm can be performed using divide and conquer
strategy. At first, step granularity is assessed. Then, every step is evaluated
separately and its parameters are determined. In the end, all steps’ constraints
are combined together.

The following analysis is limited to a single decision tree training. Generalization
for the entire algorithm is straightforward.

4.1.1 Bootstrap draw

The first step (see Algorithm 2.4.1(1.a)) of the decision tree training algorithm
(see Algorithm 2.4.1) creates the bootstrap list of train samples drawn from the
input data set. The size of the bootstrap is configured as a parameter K. Samples
are selected using pseudo-random uniform distribution from all available samples.
Let us assume the selection is O

(
1
)

operation then the complexity of the whole
step is O

(
K
)
.

4.1.2 Tree node training

The second step (see Algorithm 2.4.1(1.b)) is more complex.

Its first part (see Algorithm 2.4.1(1.b,i)) is linear with respect to the number of
inspected attributes m.

Its second part (see Algorithm 2.4.1(1.b,ii)) depends on the size of the bootstrap
the specific node is trained on. Let the node bootstrap size be equal to Z.

The best split point selection is performed using the information gain algorithm
(see Algorithm 2.5.2).

It begins with the evaluation of the entropy (see Algorithm 2.5.1) of the whole
node’s bootstrap. Entropy calculation requires summed occurrences of labels of
all samples. Thus, the calculation’s complexity is linear to the bootstrap size
and the number of distinct labels present in the whole input set. Therefore, the
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complexity is bound by O
(
C + Z

)
. The size of bootstrap tends to dominate

number of labels.

Then, for all inspected attributes, every sample’s value present in the bootstrap
is considered a potential split point and its quality is measured. It requires the
computation of entropy of all samples with the value equal or lower to the assessed
value and entropy of all samples with the value higher than the assessed value.
In case of categorical attributes, the entropy of samples with an equal value is
calculated and separately entropy of samples with unequal value is calculated as
well. Finally, information gain is given as the entropy of the whole bootstrap’s
entropy minus the sum of just described entropies weighted by respective sample
counts.

The evaluation of a single potential split point is again bound by O
(
C + Z

)
.

For all inspected attributes and all bootstrap samples it is therefore bound by
O
(
mZ(C +Z)

)
. Thus, the bound for the tree’s root node training is O

(
mZ(C +

Z)
)
.

4.1.3 Complete tree training

The tree node training complexity needs to be generalized for the complete tree
training. When the algorithm trains a node, it splits its bootstrap into two,
possibly uneven, bootstraps it needs to perform training on again. So, while
node’s training complexity is bound by O

(
mZ(C + Z)

)
, its children complexity

is bound by O
(
m(Z − Y )(C + (Z − Y )) + mY (C + Y )

)
, where Y is the size of

one of the children’s bootstraps.

Generally, the algorithm that searches for the best split point, in the simplest
case, evaluates the performance of all possible split points and the evaluation of a
single split point is linear to the size of a bootstrap as well. Therefore, the most
straightforward scenario yields quadratic complexity for each bootstrap division.

The maximum depth of the tree is in the worst case linear to the root’s bootstrap
size. In practice, the depth depends on the training data quality. Plenty of useful
attributes can result in shallow trees and quick training. On the other hand,
attributes lacking relevant information can result in very deep trees and slower
training.

4.2 Input arguments

The algorithm’s input is a set of training samples (see Figure 4.1), a number of
trees to be trained, a bootstrap size and a minimal bootstrap size, where the
training stops. It is an algorithm of supervised machine learning (see Section
2.1) and therefore a sample represents a set of attribute values and a label the
sample belongs to. The set of attributes is the same for all samples in the data
set. Numerical and categorical attributes are supported.
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Figure 4.1: Sample input data

4.3 Implementation overview

The idea of the implementation is to exploit the fact that trees can be, by the
algorithm’s nature, trained completely independent of each other. Also, the im-
plementation minimizes host to device interactions to avoid frequent latencies of
host to device data transfers.

Specifically, every tree is trained by a separate work group (see Section 3.1.2) and
all trees are trained in a single kernel launch. The single kernel launch is used to
minimize mentioned data transfer latencies and it also provides OpenCL runtime
with flexibility for efficient distribution of work groups across devices.

The implementation parallelizes the algorithm not only on the tree level but it
utilizes work group threads effectively for a single tree training.

This leaves mostly only initialization and finalization functions for the host code
while all the rest is a sole responsibility of the device kernel.

4.4 Data structures

There is a global array of all input samples and their attribute values in the global
memory.

Every tree is trained on a distinct bootstrap. Therefore, every work group has an
array of indexes of its bootstrap’s samples. It is allocated in the local memory.

To transfer trained trees to the host, there is a global result buffer used by all
work groups where all trained trees are stored.

Since the whole tree training is performed entirely on the device and the extent of
training is not known a priori the execution, the number of nodes trained depends
on the data quality and pseudo-random selections, work groups must manage a
list of nodes to be trained. In principle, this could be addressed using recursion.
Nonetheless, OpenCL does not currently support recursion on NVIDIA devices.
Therefore, every work group keeps a stack of nodes to train. The stack is an array
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of entries, where each entry contains a start and an end index into the bootstrap
and a pointer to the result buffer to store a trained node in. The stack is allocated
in the local memory.

There are two types of tree nodes in the decision tree. There is a split node
and a final node (see Section 2.2). The final node contains label information.
The split node contains attribute identification, attribute’s split value and two
children node references.

4.5 Split point evaluation

The performance critical part of this implementation is the selection of the best
split value. All threads in the work group are utilized for this operation. The
information gain algorithm requires label occurrences of samples left to and right
to the investigated split point summed up separately. The bootstrap is evenly
divided across available threads in the work group and each thread sums label
occurrences into its private memory (see Section 4.1.2). It is more effective for
threads to save partial results in private memory and reduce final numbers into
a shared array in the end than concurrently update a shared array throughout
the iteration. For instance, if there were only few distinct labels present in the
data, then multiple threads would most probably update the sum of the same
label occurrence at the same time. Therefore, at the same time multiple threads
would access the same part of memory. In order to maintain consistency threads,
would use atomic operation. However, too many atomic update operations in the
same part of memory degrade performance.

4.6 Implementation

Generally, the host allocates and initializes device buffers for input data and kernel
computation. Then, it launches a kernel that trains all trees in parallel. For a
single tree, the kernel generates the bootstrap, initializes stack and trains nodes
until there are no more bootstrap parts to split. When all nodes are trained, the
host reads all created nodes and constructs trees.

Algorithm 4.6.1 (OpenCL device kernel)
1. Generate bootstrap

2. Initialize stack

3. While stack is not empty

(a) Retrieve top entry from stack

(b) If bootstrap’s size is below limit or all samples share common label, add
final node into the result buffer, continue

(c) Select random attribute

(d) Find the best split point

(e) Arrange bootstrap into two parts, separated using best split point’ value
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(f) Add split node into the result buffer

(g) Add two entries onto stack, on for each bootstrap part

4. Retrieve device result buffer and construct trees

Algorithm 4.6.2 (OpenCL host program)
1. Allocate and initialize device buffers

2. Launch tree train kernel 4.6.1, one work group per tree

3. Retrieve device result buffer and construct trees

4.7 Bootstrap size

The bootstrap size each tree is trained on is limited by the size of device’s local
memory the kernel will run on. The available local memory size on Tesla M2090
is by default 49KB, hence the maximum bootstrap size is roughly 12000 samples.
Some parts of the local memory space is allocated for other purposes. The cur-
rent implementation could be enhanced to support bigger bootstraps. Possible
solution is to let the bootstrap reside in the global memory while using the local
memory for temporary caching only or avoid the local memory at all.

4.8 Evaluation

4.8.1 Synthetic data generator

In order to properly test efficiency, correctness and performance of a machine
learning algorithm, there is a need for good testing data sets. It is important to
know the characteristics of the data for proper result interpretation.

It is challenging to find data sets meeting these conditions and hence a simple
data generator for machine learning algorithms has been created. The main
requirements laid follow

• Number of samples.

• Number of attributes.

• Number of output labels.

• Standard deviation of output label count distribution.

• Mean of an attribute quality.

• Standard deviation of attributes quality distribution.

The correlation between the output label and an attribute value is quite simple.
Based on the quality determined for an attribute, the output labels are shuffled
as much as possible for values starting from 0% and almost completely separated
labels for quality closing to 100%. Then, attribute values are generated in an
increasing or decreasing manner to span across all the samples. Therefore, good
(see Figure 4.2) or bad quality (see Figure 4.3) data can be generated on demand.
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Figure 4.2: Good quality attributes.

Figure 4.3: Bad quality attributes.
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Figure 4.4: OpenCL and CPU parallel speedup comparison

4.8.2 Comparison

In order to estimate the quality of the implementation, there are reference serial
and parallel CPU implementations created. The reference serial CPU implemen-
tation (see Algorithm 4.8.1) is in principle very similar to the OpenCL implemen-
tation (see Algorithm 4.6.2). The only difference is that there is no notion of the
host and device program, everything is executed solely on CPU. The reference
parallel CPU implementation is build on top of the serial CPU implementation.
It uses OpenMP [9] framework to train trees in parallel.

Measurements are performed on hardware available at the Department of Soft-
ware Engineering of the Faculty of Mathematics and Physics. The machine used
for this thesis contains 12 Intel Xeon E5645 processor and 4 NVIDIA Tesla M2090
GPUs.

Algorithm 4.8.1 (CPU serial)
1. For all trees

(a) Generate bootstrap

(b) If bootstrap’s is size is below limit or all samples share common label,
create final node, return

(c) Select random attribute

(d) Find the best split point

(e) Arrange bootstrap into two parts, separated using best split point’ value

(f) Create split node

(g) For both bootstrap parts recursively call 1.(b)

The OpenCL implementation performs quite well compared with reference CPU
serial and parallel implementations and provides noticeable performance speed-
up (see Figure 4.4). The OpenCL implementation is more than 20 times faster
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than the reference serial CPU implementation and the reference parallel CPU
implementation is 10 times faster than the serial version.

4.9 Summary

This implementation finishes training of hundreds of trees with thousands of
samples in bootstraps in a matter of minutes. Therefore, the application of this
implementation for bigger sets would last for hours or days at worst. Hence, this
implementation cannot be considered ready for processing of big data sets.

Since almost all the functionality and logic is built entirely in a tightly coupled
device kernel, it makes identification of possibly slow parts of the program on
critical paths complicated. Moreover, there seems to be an issue with performance
profiling with certain OpenCL driver versions on some NVIDIA GPUs. There is
even an open online petition addressing this issue [22].

This implementation omits one possible optimization. The selection of the best
split point among bootstrap samples can be performed more effectively. Boot-
strap samples can be sorted before the best split point search, therefore label
occurrences of the whole bootstrap can be summed just once and for each possi-
ble split point evaluation they need to be updated only once, in constant time.

To summarize, this implementation provides an insight into the algorithm’s per-
formance but still leaves certain questions unanswered and possibilities for im-
provement open.

23



5. Fine-grained CUDA
implementation

This section describes an improved Random Forests implementation. First, it
deals with general aspects of this implementation, differences compared to the
original OpenCL implementation (see Section 4), and motivation behind decisions
made. Then, it describes the implementation in more detail. In the end, it
evaluates the implementation.

This implementation is more fine-grained than the original OpenCL implementa-
tion. It addresses issues experienced with bottleneck identification in the original
implementation built monolithically in a single device kernel. A less coupled
implementation should be simpler to test and the performance evaluation of in-
dividual parts should be possible.

In contrast to the original OpenCL implementation, this one is build on top of the
CUDA framework. Since the hardware available for testing are NVIDIA GPUs,
it makes sense to explore possibilities of the CUDA framework as well. Also,
as mentioned in the OpenCL implementation, there has been experienced issues
with OpenCL profiling on NVIDIA GPUs on recent versions of CUDA drivers.
Therefore, an implementation on top of the framework tailored specifically for
the NVIDIA hardware might give some more insight into the issue and generally
tools available for the CUDA framework might be easier to use.

This implementation also uses the possible optimization of the best split point
search and therefore it is expected to perform significantly better.

Technically, this implementation creates trees and manages the execution mainly
on the host but offloads all computation demanding parts in separately launched
kernels.

5.1 Input arguments

Input (see Figure 5.1) is almost identical to the OpenCL implementation. The
only difference is that this implementation supports only numerical attributes.
This greatly simplifies the implementation as handling of distinct attribute types

newrf ::rf_c*

train(

const int seed ,

const std::vector < std::vector < float > >& input ,

const std::vector < int >& output ,

const int tree_count ,

const int tree_bootstrap_size ,

const int tree_stop_size);

Figure 5.1: Fine-grained CUDA implementation parameters
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// input attributes

// [device ][...]

std::vector < float* > input_d;

Figure 5.2: Input data set

typedef struct sample_t {

// id of the sample in input attribute array

int id;

// the clazz this sample belongs to

int clazz;

} sample_t;

// [device ][tree ][...]

// sample_t holds bootstrap sample ids and labels

// size = bootstrap size (per tree)

std::vector < std::vector < sample_t* > > sample_s_d;

Figure 5.3: Bootstraps for all trees

complicates device kernel code considerably. In fact, this constraint does not
limit the algorithm’s functionality. Categorical attributes can be handled by
input data preprocessing. It removes categorical attributes but adds artificial
numerical attributes that mimic the expected semantics.

5.2 Data structures

Input samples and their attribute values are stored in arrays in the global memory
(see Figure 5.2).

Bootstraps are allocated separately for every tree. Bootstraps do not contain
samples with their attributes but only indexes into the global input array and
labels (see Figure 5.3).

Best split point computation requires arrays to hold values of a single attribute
in size of the bootstrap allocated for every tree in the global memory. The
investigated attribute’s values of the bootstrap’s samples are copied from the
global input array before the best split point search (see Figure 5.4).

Kernel computation results are stored in a structure allocated in the global mem-
ory. Namely, it contains details of the best split point found and the prevailing
label found in the bootstrap (see Figure 5.5).

// holds values of a single attribute for best split point search

// [device ][tree ][...]

// size = bootstrap size (per tree)

std::vector < std::vector < float* > > value_s_d;

Figure 5.4: Temporary attribute array
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// this struct is used to gather computed values from multiple

kernels

// therefore the updates are not always in sync and valid even

though some are

// in question and not present in this struct is the remaining

range of samples evaluated

typedef struct split_t {

// position of samples array that provides the best possible

among remaining samples

int position;

// value of the sample ’s attribute

// splits the attribute according to

// if (x <= value)

// -> left

// else

// -> right

// attribute not specified here

float value;

// the gain of the best split

float gain;

// the most prevalent label among all remaining samples

prevalent_t all;

// the most prevalent label among all remaining samples left to

the best split (inclusive)

prevalent_t left;

// the most prevalent label among all remaining samples left to

the best split (exclusive)

prevalent_t right;

} split_t;

// device to host communication , contains device kernel results

// [device ][ stream ][...]

// size = 1 (per stream)

std::vector < std::vector < split_t* > > split_d;

Figure 5.5: Split result structure

struct node_t {

int attribute;

float value;

node_t *left;

node_t *right;

};

struct interval_t {

int begin;

int end;

int retry;

int tree_id;

newrf :: node_t* node;

bool valid;

};

Figure 5.6: Interval structure
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The host maintains a list of trees that must be trained yet. More precisely, it
stores actual pieces of trees to be trained. There is a list of intervals (see Figure
5.6) into the bootstrap that must be processed and a node must be trained for.

5.3 Implementation

Essentially, the host initializes a list of intervals for all devices. These lists contain
complete bootstraps for tree roots training. Then, the program takes an interval
after another interval, finds the best split point, creates a node and adds new
intervals bounded by the original interval range and the split point. If required,
it removes the original interval and repeats this process until there is no interval
left on any device.

Algorithm 5.3.1 (Fine-grained CUDA)
1. Allocate all device structures (see Section 5.2)

2. Initialize device structures with input samples and generate bootstraps for
all trees

3. Initialize interval list for all trees

4. While there is an interval any device’s list to process:

(a) For all devices, for all streams do:

i. Retrieve interval on top of the device’s interval list

ii. Asynchronously launch kernels:

A. Prepare attribute values of bootstrap samples into the tempo-
rary value array

B. Sort the bootstrap samples according to the temporary value
array

C. Find the best split point among bootstrap samples

D. Detect the most prevailing label among bootstrap samples

(b) For all devices, for all streams do:

i. Wait for all streams to finish

ii. Copy device result buffers

iii. Create nodes and conditionally create new intervals

5.4 Label count frequency

The label count frequency kernel iterates over bootstrap samples in the interval
from its beginning till its end and sums occurrences of each label.

There is a global buffer allocated for label counts. Bootstrap samples are divided
across all threads and each thread summarizes label counts in its part. In the first
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__host__ __device__

void sort_by_key(

const thrust :: detail :: execution_policy_base <DerivedPolicy > &exec

,

RandomAccessIterator1 keys_first ,

RandomAccessIterator1 keys_last ,

RandomAccessIterator2 values_first);

Figure 5.7: Thrust sort by key signature

iteration the first thread inspects the first element, the second thread inspects
the second element and so on. In the second iteration the first thread starts just
after the last thread of the first iteration.

Finally, when all threads process its part of the bootstrap, the most prevailing
label is identified and together with a flag whether there are other labels present
or not, the results are written to the split result structure.

5.5 Data load

The kernel that loads data iterates over bootstrap samples in the interval from
its beginning till its end and every thread copies a single attribute value of a
particular sample into the temporary buffer of values.

5.6 Sort

Sorting is a common algorithm used internally in many other algorithms. There
are some available CUDA libraries implementing sorting algorithm, more specif-
ically a sort by key algorithm.

Two CUDA libraries fulfilling the requirement have been identified. CUDA
Thrust and CUB library have been examined and their performance have been
evaluated. Apart from these, three versions of the bitonic sort algorithm have
been implemented and compared.

5.6.1 CUDA Thrust

CUDA Thrust is an official NVIDIA C++ template utility library based on Stan-
dard Template Library (STL) [14]. It is a header only library with detailed doc-
umentation and comprehensive examples. It was the first library of choice to use
for sorting.

Thrust provides standalone host functions for the radix sort algorithm. Mainly,
it offers means for the sort by key algorithm, where two independent arrays are
sorted. Only one array is used as a source for keys to compare and both arrays
are sorted (see Figure 5.7). Also, it seems to fit the requirement of asynchronous
per stream execution utilized by the implementation (see Algorithm 5.3.1).
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However, measurements revealed a significant drawback. There seems to be a
compelling inefficiency in small data set processing, it is more than 100 times
slower than the STL CPU sort. In contrast, large data sets are processed very
effectively and the speedup is more than 30 times higher compared to the STL
CPU sort. However, such large data sets are infrequently processed in tree train-
ing. Moreover, as the training progresses the data sets are getting smaller but are
growing in numbers. Therefore, the CUDA Thrust’s radix sort could be utilized
in the beginning of the training where bootstraps are still considerably large.

Even though the sort by key function accepts a stream to execute on as an
argument, it does not work asynchronously as expected. Generally, when a CUDA
kernel is launched and a stream is specified, the launching call does not block.
Actually, a kernel launch can block but only due to a technical limitation in
form of a limited kernel launch queue. The CUDA launch queue can hold up
to 1024 prepared kernels [10]. Therefore, first 1024 CUDA kernel launches do
not block while any subsequent kernel launches do block, unless enough queued
kernels have finished already. Measurements showed that calls to the sort by key
function make up almost all of the test run time while synchronization on streams
in the end is practically instant. In contrast, other measurements of asynchronous
kernels over streams usually spend just a fraction of time in the kernel launch
phase but wait considerable amount of time in the final stream synchronization
phase.

5.6.2 CUB

CUB from NVlabs is a library of parallel primitives and utilities. It is designed as
a collection of rather small and isolated functions usable as building blocks for the
maintainable CUDA code without a need to reimplement common functionality
over and over again [15].

The idea was to use device implementation of the radix sort in the CUB library
and tailor a sorting kernel to meet the needs. Unfortunately, even though officially
supported, sorting of floating point data does not behave as expected. Radix sort
of floating point (IEEE 754) values require a lexicographical transformation to be
performed before sorting to yield correct results. But this transformation is not
performed and therefore data is not correctly sorted. The issue has been reported
including a test evidence and a source code to reproduce the issue but there has
been no reply from CUB authors yet.

5.6.3 Bitonic sort

The bitonic mergesort is a parallel algorithm for sorting. It has the worst case
performance of O

(
log n2

)
of parallel time [16]. The algorithm runs in multiple

phases, in each phase every value is accessed and compared to another value and
swapped if needed. This implies that phases cannot be interleaved but a new
phase can be started only when a previous phase has been completely finished.
In principle, there are two ways to implement this in CUDA.
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First, a kernel is implemented as a single phase only. This allows a phase to
be launched with an arbitrary number of threads and blocks to execute on and
therefore achieves great parallelism. All phases are asynchronously launched at
once in a single stream which ensures correct synchronization between phases.

Second, a kernel is implemented to perform all phases in a single invocation. This
requires a single invocation only but limits the number of threads involved to the
technical limit of the GPU. The Fermi architecture limits the block size to 1024
threads [12]. So, while the first option can process larger arrays (more than 1024
elements) using as many threads as there are elements. This option can utilize
1024 at most. Nonetheless, there is less overheard since there are fewer CUDA
API calls and it also allows sorting of data small enough to fit in shared memory
to be possibly more effective.

The bitonic sort requires data of particular lengths to work correctly. Only arrays
in the size of power of two are supported. There is a modified arbitrary bitonic
sorter capable of sorting arrays of any length [17]. The original algorithm is used
in this implementation and the functionality of sorting arbitrary width arrays
is ensured by copying values into a temporary array of the correct size, filled
with infinity values at the end since infinity is not expected to appear in data.
Technically, infinity can be replaced by NAN. The allocation and data copy cause
noticeable performance penalty only for small data sets and in fact it is just
theoretical since small data sets are sorted in shared memory.

5.6.4 Sort algorithms comparison

There are four algorithms measured and compared to provide a comprehensive
insight into the performance of sorting algorithms on GPUs - Single phase bitonic
in global memory, single phase bitonic in shared memory, Thrust radix sort and
GNU GCC parallel sort.

The concept implementation of bitonic arbitrary sort performed considerably
worse than other bitonic sort implementations. It is unclear whether the perfor-
mance degradation is caused by ineffective implementation or the base bitonic
sort algorithm fits CUDA framework better. A detailed analysis is out of scope
of this thesis and is described in more detail in the future work section.

The single phase bitonic sort algorithm for shared memory (see Section 3.2.5) is
limited to 64KB on the Fermi architecture [12]. This algorithm can be applied
to smaller arrays only. It is the best performing algorithm for arrays of size
anywhere between 32 to 8192 elements included (see Figure 5.8). At its peak it
outperforms the C++ STL sort algorithm more than 13 times.

The single phase bitonic sort algorithm for global memory is not limited to arrays
that small. However, its performance in the same range is slightly worse (see
Figure 5.8). It is the best performing algorithm for arrays of size between 8192
and almost 65536 elements. It does not reach the quality of the shared memory
version but it still outperforms the C++ STL sort algorithm at last 5 times in
the mentioned range (see Figure 5.9).
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Figure 5.8: Sort algorithm comparison for small arrays

Figure 5.9: Sort algorithm comparison for big arrays
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Figure 5.10: Bitonic algorithm comparison for various number of streams used

However, bitonic sort algorithms perform better than the C++ STL sort only
when multiple streams are used and the more streams are used, the better (see
Figure 5.10).

The Thrust radix sort algorithm outperforms all other algorithms for arrays bigger
than 65536 elements. The maximum size of an array the performance has been
measured for is 524288 elements and the algorithm outperforms the C++ STL
sort algorithm for this array size more than 33 times (see Figure 5.9).

The bitonic sort algorithm for global memory, launched in 16 parallel streams,
degrades noticeably in performance in the range between 8192 and 16384 elements
(see Figure 5.10).

The fine-grained implementation uses the bitonic sort in shared memory for small
arrays and in global memory for large arrays. The Thrust radix is not used
because it outperforms others only for very large arrays and it does not outweight
the limitation of blocked streams.

5.7 Best information gain

The best information gain kernel (see Algorithm 5.7.1) internally splits the inter-
val into parts a particular thread will process. Every thread is assigned with an
appropriate continuous part of the interval that is to be evaluated. The samples
in the interval must be sorted according to the investigated attribute. There are
two private arrays allocated in size of the total distinct labels present in the whole
input data set. One array for all samples left to the start of thread’s assigned
part and one for the rest of samples.

For example, if there are 16 samples, 4 distinct input labels and 4 threads, then
the first thread evaluates the first 4 samples, the second thread next 4 samples
and so on (see Figure 5.11). Every thread needs separate variables to store
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} } } }
thread #1 thread #2 thread #3 thread #4

Figure 5.11: Sample distribution across 4 threads

thread #1

thread #2

thread #3

thread #4

left right} }

labels: a b c d a b c d

Figure 5.12: Thread label occurrence arrays for 4 threads and 4 labels

information about every label on both sides of the point it evaluates (see Figure
5.12).

Algorithm 5.7.1 (Best information gain)
1. Compute entropy (see Algorithm 2.5.1) of the whole bootstrap

2. ThreadRange = BootstrapSetSize / ThreadCount

3. ThreadPosition = ThreadRange * ThreadId

4. Initialize Left[ClassCount] and Right[ClassCount] arrays

5. For i = 0 to BootstrapSetSize

(a) If i < ThreadPosition

i. Left[BoostrapSet[i].Class] += 1

(b) Else

i. Right[BoostrapSet[i].Class] += 1

6. For i = 0 to ThreadRange

(a) Left[BoostrapSet[ThreadPosition+i].Class] += 1

(b) Right[BoostrapSet[ThreadPosition+i].Class] -= 1

(c) Compute entropy of Left

(d) Compute entropy of Right

(e) Compute information gain (see Algorithm 2.5.2) using Left and Right
entropy

(f) If this information gain exceeds this thread’s previous best information
gain, store it

7. Reduce all thread’s stored best information gains and select the best of them
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Figure 5.13: CUDA API calls total execution time

Figure 5.14: Kernels total execution time
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Figure 5.15: CUDA and CPU comparison with various tree count

Figure 5.16: CUDA and CPU comparison with various bootstrap size

5.8 Summary

The program execution has been profiled using the Visual Profiler [10]. The
program execution profile pinpoints certain performance weak points of this im-
plementation. There are 1421892 CUDA launch calls performed in the sample
instance. The program spent almost 12 seconds (see Figure 5.13) performing ker-
nel launch calls while the whole program execution lasted for 26 seconds totally.
In total, CUDA API calls took more time than all kernel executions lasted for
(see Figure 5.14).

The reference CPU serial and parallel implementation has been updated to use
the applied optimization to more precisely render the performance differences.

This implementation, in contrast to the OpenCL implementation, does not out-
perform the CPU parallel implementation nor does it even perform better than
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Figure 5.17: Kernels average execution time

the serial CPU implementation. There is no sign of an optimistic performance
outlook neither for various values of the tree count parameters (see Figure 5.15)
nor the bootstrap size parameter (see Figure 5.16).

There seems to be a fundamental complication of this fine-grained implementa-
tion. There are too many kernel launches performed for the implementation to
be efficient at all. The root cause is the number of intervals the implementation
has to process in total. In the beginning, there are exactly as many intervals as
there are trees but the bigger the interval, the more probably its processing will
queue two more, smaller intervals for processing. And the smaller the processed
intervals are, the higher the ratio of maintenance work instead of kernel work is
performed.

The label count frequency kernel that sums label occurrences over the bootstrap
takes considerable amount of time, taking into account it consists of only a single
linear iteration over the bootstrap. In total (see Figure 5.14) and on average (see
Figure 5.17), it computes for as long as the sort kernel. Supposedly, it might be
caused by atomic operations performed over only few variables by many threads.
This can be probably fixed by replacing atomic operations over global variables
with private variables for the iteration, and reduction into the global memory at
the end.

This implementation provides performance information in more detail but it re-
quires a serious refactoring to provide competitive efficiency compared to CPU
implementations.
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6. Monolithic CUDA
implementation

This section describes an implementation based on the fine-grained CUDA im-
plementation (see Section 5). Many details in this implementation are identical
to the fine-grained implementation and therefore this section focuses mainly on
describing differences made. In the end, it evaluates effects of these changes.

Main motivation for this monolithic implementation is to diminish the perfor-
mance degradation caused by frequently executed CUDA API calls. In fact,
this implementation is generally a combination of the OpenCL implementation
philosophy and the fine-grained implementation internals. This implementation
performs the whole tree training solely in device kernels but it controls the train-
ing process scheduling more precisely.

6.1 Input arguments

Input arguments are completely identical to the find-grained implementation’s
arguments (see Section 5.1).

6.2 Data structures

There are slightly different data structures compared to the fine-grained imple-
mentation. Since this implementation relies more heavily on device kernels even
for tree building there are more structures needed. This increases memory re-
quirements for a single tree training. Therefore, trees are trained in batches.

Input samples and their attribute values are stored in the global memory.

Bootstraps and temporary arrays for values of an attribute are located in the
global memory. However, this time, it is not allocated for every tree but it is
allocated in size of the batch.

Similarly to the fine-grained implementation there is a list of intervals to process.
However, this time it is not located in the host memory but in the global device
memory. It serves two purposes. It is again a list of intervals that must be
processed and a list of nodes that have already been created in the tree. After a
training is finished, the list is copied to the host memory and trees are constructed.
It is allocated in size of the batch.

There is an array in the global memory with prepared random attribute selection.
It is allocated in size of the batch.

The selection of attributes for tree’s node split points is an important part of
the Random Forests algorithm. Attributes must be selected uniformly from the
whole attribute set. In the OpenCL implementation (see Section 4), there has
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been an issue experienced during development. Attributes have been selected
using a slightly bugged Lehmer random number generator function. The issue
was not obvious to detect and it exhibited itself by only slim but noticeable
classification precision degradation compared to results obtained with a proper
uniform random data source.

To avoid further complications the C++ STL Mersenne Twister 19937 generator
[20] is used as a random data source and the C++ STL uniform integer distri-
bution to span intervals as necessary. Since the whole tree training happens in
device code, the selection of attributes to split on is precomputed on the host and
stored in the device buffer for device kernels to use.

CUDA framework provides similar API for uniform data generation. However,
until version 7.5 [19] released in September 2015 there have been no proper means
to generate random numbers on devices but only on the host which would require
buffers to hold generated numbers anyway.

6.3 Implementation

Generally, the host allocates and initializes device structures to fit trees in size of
the batch. Then, the host launches asynchronous kernels across available streams
to train trees in the batch and waits for all kernels to finish. The host gathers
results of tree training and continues with kernel launches until there are no more
trees to be trained.

Algorithm 6.3.1 (Monolithic CUDA)
1. Chose BatchSize

2. Allocate all device data structures (see Section 6.2)

3. Initialize input data device buffers

4. Let TrainedTrees = 0

5. While TrainedTrees < TreeCount do:

(a) TrainedTrees += BatchSize

(b) Initialize all batch device structures

(c) For all devices, for all trees in the batch do:

i. Asynchronously launch tree train kernel evenly across available
streams

(d) Wait for all streams to finish

(e) Copy device result buffers to the host

(f) Create trees
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Figure 6.1: CUDA API calls total execution time

Figure 6.2: CUDA API calls average execution time

39



Figure 6.3: Performance comparison with various bootstrap size and train stop
size

6.4 Summary

This implementation resolves the problem of considerable performance degrada-
tion caused by frequent CUDA API calls (see Section 5.8). The only outstanding
function is the stream synchronization (see Figure 6.1, 6.2). This is expected
since this call essentially just waits for all launched kernels in a stream to finish.

In contrast to the fine-grained implementation, this implementation runs 8 times
faster compared to a reference serial CPU version (see Figure 6.3). Nevertheless,
there have been more ambitious performance expectations.

Generally, there might be certain fundamental aspects in the approach chosen for
the implementation that practically resulted in technical details that are not in
line with best practices for effective CUDA programming.

First, an input data set is in fact a matrix of attributes and samples where a row
represents values of a single attribute for all samples and column values of every
attribute for a single sample. Tree training requires a list of samples, the boot-
strap. Node training needs the bootstrap and values of samples for a randomly
selected attribute. Therefore, every node training accesses data scattered across
the input data matrix in the global memory. There is, however, a considerable
performance difference between certain memory access patterns. It is usually
much more effective to operate with data located close together than to access
data spread unpredictably across a vast range as in this case (see Section 3.2.6).

This is given by the Random Forests algorithm nature. There can be many
attributes and many samples in an input data set and every bootstrap uses a
random selection of these samples. Theoretically, every bootstrap could be kept
together with copy of attributes. However, this solution requires considerably
more memory and more memory transfers.

Second, the split point search algorithm expects sample labels and selected at-
tribute’s values prepared in two arrays and it needs both these arrays to be sorted
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by these values. The entropy computation requires sums of all label occurrences
calculated. Therefore, to compute the information gain of a certain point, the
algorithm needs sums of label occurrences left to the investigated point and also
sums of label occurrences right to the point. When label occurrences of some point
are known it is a constant operation to determine summed label occurrences of
its neighbour. Therefore, threads in a block are allocated with a separate con-
tinuous part of the bootstrap to process and they independently determine the
partial best split point with the highest information gain located in individual
intervals (see Section 5.7). Unfortunately, this again results in a situation where
threads do not access closely located parts of the memory in a critical part of the
implementation, but are scattered across the whole bootstrap.

Third, the implementation launches kernels to train whole trees. In the beginning,
tree’s nodes are trained using configured bootstrap size. However, the bootstrap
for nodes deeper in the tree gets smaller and smaller as it continuously gets
split. Since the kernel is launched once for a tree, the thread count for the whole
tree training is constant. So, at first, the work for thread can be substantial
but as training progresses, the bootstrap size gets smaller and eventually the
bootstrap might be even smaller than the number of threads, which effectively
wastes thread’s instruction cycles. The minimal bootstrap size can be configured
but it puts produced model’s classification performance in question.

This issue could be addressed by using an adaptive solution, which would process
bootstraps of different sizes in different ways. For example, small bootstraps
could be handled in groups by single kernels or on CPU. This is described in
more detail in the conclusion (see Section 9.1).

To summarize, the implementation is getting into acceptable performance bounds
but does not outstand. It is practically usable though and possibly there can be
found ways to improve the performance as well. Few ideas for future work and
improvements are described in the conclusion.
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7. Classification

Goal of this thesis was to explore and implement tools for classification of stellar
spectra. The implementation is provided and this section evaluates a practical
application on real world data.

The classification performance of the algorithm is tested on a preprocessed and
labelled data set measured in the Ondrejov observatory. The data contains 1565
samples of manually labelled B[e] stars of 5 different types. The data set is a
preprocessed set of raw wavelength intensity refined using Cohen-Daubechies-
Feauveau 5/3 transformation [8].

Bigger data sets are available but their use is not simple and straightforward.
The data must be pulled from remote databases, normalized and converted to
formats suitable for the implementation. This work is beyond the scope of this
thesis. We try to estimate the classification performance on bigger data sets using
measurements performed on the limited data set.

7.1 Training set size

This measurement gives an insight into what difference in the classification per-
formance is provided by ratio of training data set size to verification data set
size.

Measurements have been performed using sets in size of 2% to 80% of all samples
for training, the rest for verification tests. Even for a very small number of
samples the resulting model performs surprisingly well on the verification data
set. For 2% of samples, only 31 in total, used for training the success rate is above
81% and for 10% of samples, 156 in total, used for training the success rate is
above 93%. The classification performance steadily grows for increasing training
data set and success rate reaches 98% for training set in size of 80% (see Figure
7.1).

Apparently, even very small data sets can be used for training and provide feasible
results for recognition of unseen samples. Nevertheless, the richer and bigger
the training data set are, the better recognition results are provided by trained
models.

7.2 Tree count and bootstrap size

The classification performance of a trained model is highly dependent on the
number of trees and bootstrap size a classifier is trained on. One of the benefits
of the Random Forests algorithm is the fact that it is resistant to overfitting
[7]. It means it is not easily possible to train a model that performs well on
training data but its performance for verification data sets degrades. This is an
undesired property of some machine learning algorithms. Such algorithms must
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Figure 7.1: Classification performance for various training set size

Figure 7.2: Classification performance for various tree count and bootstrap size
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be carefully tuned and their parameters must be tweaked thoroughly to avoid
creation of models that memorize presented test samples but cannot successfully
recognize only slightly different samples.

Since Random Forests algorithm is resistant to overfitting, it is safe to increase
input parameters while the classification performance is growing. It means that
unlimited increase of input parameters will provide better performance though.

For instance, training on 80% of 1565 samples provides the best classification
performance for bootstrap size of 750 samples and more. Further increase in
bootstrap or tree count does not provide any relevant gain in classification per-
formance. Interestingly, an increase in a tree count does not seem to improve
recognition of created models (see Figure 7.2).
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8. Related work

Several projects implement a classifier based on Random Forests algorithm and
utilize GPUs for execution. They apply various methods to obtain an effective
classification tool. The projects described and referred to below utilized CUDA
framework for their implementations.

8.1 CudaTree

CudaTree is a comprehensive project [4]. It explores multiple possible implemen-
tation approaches. The tuned implementation available publicly, called Cuda-
Tree, combines multiple approaches to deliver the maximum performance. Ini-
tially, it uses the same method used in the fine-grained implementation (see Sec-
tion 5). There is a kernel launched for every tree’s node while the bootstrap is still
large enough. Then, when the bootstrap gets smaller, the CudaTree processes
the rest of the bootstrap in another kernel in a single launch, which is a contrast
to the fine-grained implementation. Also, it uses a different method to determine
the best bootstrap division, it computes label histograms, Gini impurity scores
over feature tresholds and it evaluates what brings in the highest information gain
[1]. The combination of different execution approaches for distinct bootstrap size
is an interesting idea and probably one of the reasons this project provides an
effective tool for classification.

8.2 CUDA is not meant for training Random

Forests

Another related project from an unknown author provides experience gained from
an implementation of Random Forests in a brief report [5]. The project ap-
proached the problem in a similar fashion the fine-grained implementation did.
The main loop of the program on CPU keeps track of nodes to be trained and
schedules GPU kernels to train these nodes and transfers the results back to host
until there are no more nodes to be trained. The report does not make it en-
tirely clear, how many kernels are launched at once and how streams are used to
schedule particular kernels. This project didn’t succeed in the creation of a GPU
implementation more efficient than a serial reference CPU implementation. The
report suggests the complexity of the kernel and overutilization of GPU memory
as ideal candidates for performance improvement.

8.3 Analytical programming and Random Forests

A different project investigates the use of analytical programming, evolutionary
algorithms together with Random Forests for classification of stellar spectra [6].
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It utilizes analytical programming and evolutionary algorithms to enhance and
reduce the feature set of input data to improve the classification performance.
The article focuses mainly on the description of specifics of analytical program-
ming used. The Random Forests implementation is not described in much detail.
According to the report, it provides relevant results although there is still room
for improvement in matter of execution performance.

8.4 Summary

Random Forests algorithm can be implemented even more efficiently for GPUs
than this thesis achieved. Nevertheless, slightly different and possibly more com-
plex methods would probably have to be used. Moreover, they must be cleverly
combined together into a comprehensive solution to create an effective tool.
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9. Conclusion

The goal of this diploma thesis was to implement a high throughput Random
Forests implementation for GPUs devices and evaluate its performance on real
world data sets. The algorithm was implemented in three different ways using
OpenCL and CUDA frameworks.

The nature of the Random Forests algorithm allows for an obvious parallelism
on the tree level allowing for an easy and efficient parallel CPU implementation.
Essentially, just few lines of OpenMP declarations on top of the serial CPU
version can effectively parallelize the algorithm for an arbitrary number of CPUs
without any performance degradation since the algorithm requires no form of
synchronization, dependency or reduction across any two distinct trees to be
performed.

In contrast, GPU implementations are fairly more complex compared with CPU
implementations while the performance gain is measurable even though not as
high as initially expected. Technically, there are certain aspects (see Section
6.4) of these implementations caused by the chosen approach that can partly
explain the reasons for the, possibly inadequate performance that cannot be easily
addressed without a massive restructuralization and redesign of implementations
that is out of scope of this thesis.

9.1 Future work

There are outlined some ideas for a possible future work that could be generally
beneficial for GPU programming or could help with the provision of a better
Random Forests implementation.

9.1.1 In-place bitonic sort for arbitrary sized arrays

One of the challenging aspects of this thesis was the search for an effective sorting
algorithm for device kernels. There are implementations to use available. Usually,
they are based on the radix sort algorithm that is a good choice for GPU pro-
gramming in general as it offers interesting performance for considerably big data
sets. However, the implementation tested was outperformed on smaller data sets
by the bitonic sort algorithm (see Section 5.6.4). The bitonic sort algorithm is an
in-place sorting algorithm but it generally supports only sequences of a certain
size. There is a generalization of the algorithm for arbitrary big sequences [17].
A concept implementation of this, a more flexible version, was created and eval-
uated but it, most possibly due to the implementation’s limitations, performed
worse than the general version. Nonetheless, more research in this topic and a
fine tuned arbitrary in-place bitonic sort implementation could be generally a
very useful tool.
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9.1.2 Algorithm restructuralization

Described implementations are based on the abstract view of the Random Forests
algorithm and they internally work with tree and node structures. Therefore, they
reach a state where the amount of work associated with training a node becomes
very small. Another approach would be to focus solely on the repetitive division of
the bootstrap. Hence, the size of the processed data by kernels would be constant.
The question is, how the logical division of the data affects the performance
and what are the requirements to implement this and what complications and
constraints can possibly emerge.

9.1.3 Hybrid solution

It might be possible to derive a hybrid implementation by using the parallel CPU
implementation for computation of small bootstraps and the GPU implementa-
tion for bigger ones. This could theoretically yield a better performance than
present solutions.
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A. Contents of the enclosed CD

project

code (thesis source codes)

cmake (CMake utilities)

CxxTinyTest (test framework)

CxxTools (common C++ utilities)

NewRF (Random Forests implementation and resources)

run

release-unix-newrf.sh

thesis

resources (raw measurements, spreadsheets, graphics, ...)
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B. Programming documentation

The fine-grained and the monolithic CUDA implementations (called as NewRF
project) are created in C++. The C++ toolchain used for development and
testing is GCC, version 4.8.5. The build system used is CMake, version 3.2.1.
The CUDA device compute capability required is 2.0 and the CUDA toolkit
version used is 7.5.

The NewRF project source code is divided into multiple modules (see Figure
B.1).

Common

Common module contains the Random Forests data structures, input data struc-
tures and utilities for data loading. The shared Random Forests data structures
used by CPU and CUDA implementations are:

struct node_c {

int attribute;

float value;

node_c *left;

node_c *right;

};

struct rf_c {

std::vector < node_c* > root_s;

};

CPU

CPU module consists of reference CPU serial and parallel implementations. The
parallel implementation reuses most of the serial implementation internal and
utilizes OpenMP macros for parallelization of the algorithm.

CUDA

CUDA module contains both the fine-grained and the monolithic CUDA imple-
mentation. CUB and Thrust header libraries are included with the source code.

Where possible, implementations share common structures and functions. The
distinct parts of the monolithic implementation are marked with ”2nd” as a suffix
of header and source files. The fine-grained implementation has no suffix.

Benchmark

Benchmark module contains code for measurements of sorting algorithms and a
comparison of different Random Forests implementations and various parameters.
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NewRF

source

benchmark

common (code common for CPU and CUDA implementations)

include

cpu

include

cpu-test

cuda

cub (CUB library source code)

include

internal (internal headers for use in CUDA tests only)

thrust (Thrust library source code)

cuda-test

data (test data)

run (CLI interface for CPU and CUDA implementations)

test

CMakeLists.txt

Figure B.1: CPU and CUDA implementations source code structure

Build

In source

The project is described in CMake build file. It can be compiled and built using
standard CMake commands in the NewRF directory. Binaries are installed inside
the ”install” directory.

$ cmake . \

-DCMAKE_BUILD_TYPE=RelWithDebInfo \

-DCMAKE_INSTALL_PREFIX:PATH=install

$ cmake --build . --target install

Script

Another option is to use an included build script in the run directory. The
”release-unix-newrf.sh” shell script compiles the project out of source and installs
binaries into a separate ”../build/NewRF-unix” directory. Moreover, it triggers
the test suite execution.

$ cd project/run

$ ./release -unix -newrf.sh

...

-- The C compiler identification is GNU 4.8.5

-- The CXX compiler identification is GNU 4.8.5

-- Check for working C compiler: /usr/bin/cc

-- Check for working C compiler: /usr/bin/cc -- works

...

[==========] Tests started.

...
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[==========] Tests ended. Summary: successful ...

Provided libraries are located in a new directory.

$ cd ../ build/NewRF -unix/install/bin/

$ ls -lta

total 24860

drwxrwxr -x 4 haas haas 39 Jun 28 22:35 ..

drwxrwxr -x 2 haas haas 128 Jun 28 22:35 .

-rwxr -xr -x 1 haas haas 2252392 Jun 28 22:35 NewRF -run

-rwxr -xr -x 1 haas haas 2818090 Jun 28 22:35 NewRF -test

-rwxr -xr -x 1 haas haas 8933439 Jun 28 22:35 NewRF -cuda -test

-rwxr -xr -x 1 haas haas 3112346 Jun 28 22:35 NewRF -cpu -test

-rwxr -xr -x 1 haas haas 8329366 Jun 28 22:35 NewRF -benchmark
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C. User documentation

The implementation accepts following arguments:

./NewRf-run ...

1. backend - Execution backend, either ”cpu” or ”cuda”.

2. seed - Seed to use for bootstrap generation and attribute selection.

3. tree count - Tree count to train. For ”cuda” backend the tree count is
expected to be divisible by the amount of available devices.

4. bootstrap size - Bootstrap size.

5. split minimum - Minimum bootstrap size to stop training at.

6. data format - Input data format, either ”gen” or ”fv”.

(a) gen - The file is expected to start with three meta data lines. Columns
are comma separated, the first column is expected to contain numerical
integral labels, the rest are numerical real attributes.

# type: OUT , IN, IN, IN

# data: CU32 , NF32 , NF32 , NF32

# name: , , ,

4, -595330.06 , 672084.2 , -111428.57

0, -539251.06 , 94618.77 , -509989.47

3, -634118.44 , 101074.625 , -321004.7

...

(b) fv - The attribute file contains comma separated numerical real at-
tributes. The label file contains numerical integral labels.

7. train samples - Path to train attributes, in the specified data format.

8. train samples - Path to train labels, in the specified data format (same as
path for attributes in ”gen” format).

9. test samples - Path to test attributes, in the specified data format.

10. test samples - Path to test labels, in the specified data format (same as
path for attributes in ”gen” format).

Run

$ ./NewRF -run cuda 42 80 1000 1 fv \

../ data/fv_dwt_cdf53_10_mean.mat \

../ data/fv_titles.txt \

../ data/fv_dwt_cdf53_10_mean.mat \

../ data/fv_titles.txt

train: attributes =9 size =1565 in=... out =...

test : attributes =9 size =1565 in=... out =...

train duration: 509ms

test duration: 4ms

rate : 0.996805

56



$ ./NewRF -run cpu 42 80 1000 1 gen \

../ data/data5 -0-0.txt \

../ data/data5 -0-0.txt \

../ data/data5 -0-1.txt \

../ data/data5 -0-1.txt

train: attributes =30 size =80000 in=... out =...

test : attributes =30 size =10000 in=... out =...

train duration: 48ms

test duration: 36ms

rate : 0.2857
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