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Introduction

Resonant collisions of electrons with molecules play a significant role in different
areas of physics. In applications one usually makes use of the cross sections of
various inelastic processes (e.g. vibrational excitations, dissociative attachment
or associative detachment). The main goal of this thesis is determination of the
cross sections of vibrational excitations of the oxygen molecule O2. This is done in
two main steps, first of which is obtaining potential energy curves and parameters
of O2 and the O−

2 ion, the second is the calculation of the nuclear dynamics and
cross sections.

To obtain the potential energy curves, standard ab initio quantum chemistry
methods are used. This includes the multi-configurational self-consistent field
method (MCSCF) and multireference configuration interaction, which are per-
formed using their implementations in the Molpro package. Energies of the
ion for internuclear distance, at which the additional electron is not bound, are
calculated using the R-matrix method, covered with the UKRmol suite of codes.
The nuclear dynamics and the cross sections are then handled within the local
complex potential approximation.

This approach has already been applied for electron-dioxygen collisions [1, 2],
but without any further discussion of the effects of individual models on the re-
sults. This work therefore aims at calculating the cross sections with several
variations of used settings and comparing them with experimental data.

Unless stated otherwise the atomic units are used in the whole thesis. That
means

me = 1, ~ = 1, e = 1,
1

4πε0
= 1,

where me is the mass of an electron, ~ is the reduced Planck constant, e is the
elementary charge and 1/4πε0 is the Coulomb’s constant.
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1. Theoretical methods

1.1 Quantum chemistry calculation methods

The main goal of quantum chemistry (or molecular quantum mechanics) is to
predict properties of molecules in a reliable way. The description of a molecule
begins with determining the electronic structure of a molecule, which is usually
done by solving the Schrödinger equation, i.e. obtaining the electronic wave
function. However the exact solution can only be obtained for the hydrogen
atom. To solve for the many-electron wave function, one must therefore reach for
approximate methods. This chapter covers several common approximate methods
used for solving the many-electron problem, in a brief overview. A more detailed
description can be found for example in [3].

Let us consider a system consisting of M nuclei and a total of N electrons.
Before writing down the Hamiltonian, we take into account two major approxi-
mations:

1. Born-Oppenheimer approximation: the nuclei are considered slow in com-
parison with the electrons, hence their movement is neglected.

2. At first, all relativistic effects are left aside, but will be partially considered
later.

Therefore the Hamiltonian of the system

H = −1

2

N
∑

i=1

∇2
i −

N
∑

i=1

M
∑

j=1

Zj

ρij
+
∑

i<j

1

rij
+
∑

i<j

ZiZj

Rij

, (1.1)

where ρij denotes the distance between the i-th electron and the j-th nucleus,
rij , Rij distance between two electrons, nuclei respectively, Zj is the number of
protons in the j-th nucleus. The first term is the kinetic energy of electrons, the
second term is electron-proton interaction and the last two terms represent the
electronic and protonic repulsion. The problem is now reduced to finding the
wave function of N electrons in a fixed potential.

If a system is in a state described by a vector |ψ〉, i.e. it is the solution of the
time-independent Schrödinger equation

Ĥ |ψ〉 = E |ψ〉 , (1.2)

then the mean energy of the system is given by the expression

E =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 .

1.1.1 Wave function construction

The wave function of electrons in a molecule is usually expanded in terms of one
electron wave functions calledmolecular orbitals. When accompanied by the spin-
part, the term molecular spin-orbital is used. Since electrons are fermions, the
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wave function must respect the spin statistics, i.e. it has to be fully antisymmetric
with respect to an exchange of any two electrons. It is natural to write such a
wave function in the form of a Slater determinant, which for a N electron problem
looks like this

SD(x1, . . .xN ) = 〈x|SD〉 = 1√
N !

∣

∣

∣

∣

∣

∣

∣

χ1(x1) . . . χN(x1)
...

. . .
...

χ1(xN) . . . χN(xN )

∣

∣

∣

∣

∣

∣

∣

, (1.3)

where xi denotes the position of the i-th electron and 1/
√
N ! is the normaliza-

tion factor. Expression χj(xi) then means, that the i-th electron occupies the
j-th molecular spin-orbital. Of course a linear combination of several Slater de-
terminants can also be taken as the wave function of the system

ψ(x1, . . .xN ) =

K
∑

i=1

ciSDi(x1, . . .xN).

The following methods are meant to optimize molecular orbitals for the lowest
energy.

1.1.2 Hartree-Fock method

In this method every electron is thought to move in an effective field of all the
other electrons, which is constructed in a self consisted way, hence the often seen
name self-consistent field method, or SCF for short. The Hartree-Fock method
presumes that the total wave function can be expressed as a single Slater deter-
minant. In such case the mean energy is

E = 〈SD|Ĥ|SD〉 . (1.4)

The molecular orbitals minimizing energy (1.4) are found variationally with an
additional demand of orthogonality. That leads to the Hartree-Fock equation

F̂ |χi〉 =
∑

j

εji |χj〉 , (1.5)

where F̂ is called the Fock operator and εji is a energy matrix. One further
assumption is often taken into account, and that is that all the molecular orbitals
are considered doubly occupied. The method is then called restricted Hartree-
Fock method or RHF, otherwise it is unrestricted Hartree-Fock method or UHF.

In practice the molecular orbitals are expanded into a certain basis {|φi〉}Ki=1

as
|χi〉 =

∑

j

cij |φj〉 . (1.6)

The Hartree-Fock method thus produces K molecular orbitals, or 2K spin or-
bitals, N of which are occupied by electrons. The remaining 2K − N are called
virtual orbitals.

The assumption of the wave function in the form of a single Slater determinant
is however not correct and it does not involve the electron correlation. Because
HF is a variational method, it gives only the upper bound for energy:

E ≤ EHF .
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The correlation energy is defined as the difference between real and HF energy

Ecorr = E − EHF

and is therefore non positive (is zero for one-electron systems).

1.1.3 CI and MCSCF methods

To obtain better results, one may consider using several post-Hartree-Fock meth-
ods. One way to obtain correlation energy is to take a linear combination of
different Slater determinants as the wave function

ΨCI = d0(SDHF ) +
∑

k

dIk(SD
I
k) +

∑

k,l

dIIk,l(SD
II
k,l) + . . . , (1.7)

where d0, d
I
k, d

II
k,l are numbers, SDHF is the Hartree-Fock Slater determinant from

the previous step and SDI
k, SD

II
k,l, . . . are single, double,. . . excitations of SDHF .

By a single excitation it is meant that one of molecular orbitals in considered
Slater determinant is replaced by one of the virtual orbitals. The sum

∑

k in
expression (1.7) means, that all possible excitations are made. Double excitation
then makes two substitutions in the Slater determinant. Coefficients d0, d

I
k, d

II
k,l

are then obtained variationally by minimizing the energy. By this approach the
mixing (interaction) of different configurations (i.e. specific orbital occupations)
is considered, therefore this method is called configuration interaction (CI). If all
possible excitations are used in (1.7), one usually refers to full CI or FCI. The
number of possible excitations grows rapidly with the number of electrons and
basis size, and FCI quickly becomes computationally demanding. For practical
calculations only single and double excitation are typically used (CI-SD).

Another option is the multi-configurational self-consistent field method (MC-
SCF). It assumes the same form of the wave function but in contrast to CI the
molecular orbitals are optimized too. That means that the energy is minimized by
varying the coefficients d0, d

I
k, d

II
k,l and cij at the same time. Particularly impor-

tant special MCSCF method is the complete active space SCF method (CASSCF),
in which the linear combination (1.7) includes only selected number of orbitals,
that span the active space. On this active space FCI and variation of cij coef-
ficients is performed. CASSCF can be viewed as a combination of CI and HF
methods.

Sometimes more then one state is considered for molecular orbitals optimiza-
tion. State-averaged CASSCF (SA-CASSCF) minimizes a weighted average of
energies of several chosen states. The advantage of this method is, that the
optimized orbitals are also suitable for describing all of the chosen states.

Finally, the multireference configuration interaction (MRCI) uses a combina-
tion of references or reference states (Slater determinants, CASSCF wave func-
tions), from which the excitation are then made.

1.1.4 Davidson correction

A better approximation of the correlation energy can be obtained by consider-
ing higher excitations. CI with triple and quadruple excitations (CI-SDTQ) is
estimated to give 98 % to 99 % for 20 electron molecules. However CI-SDTQ

5



method in a basis big enough gets computationally very demanding to be practi-
cally useful. But the effect of quadruple excitation on the correlation energy can
be approximated by Davidson correction

∆ED ≈ (1− d0)(ECI−SD − EHF ), (1.8)

where d0 is the coefficient from expansion (1.7), EHF is energy obtained by a
Hartree-Fock method and ECI−SD is the CI-SD energy. That is quite a good
approximation of CI-SDTQ energy

ECI−SDTQ ≈ ECI−SD +∆ED.

1.2 Scattering

This section is a brief summary of the description of scattering in [4, 5]. The
scattering of an incident electron on a molecule can be schematically written as

e− +Mα → e− +Mβ ,

where Mα denotes the molecule in an initial state, Mβ in final state. Let M be
a molecule with N electrons. The scattering is then described with the time-
independet Schrödinger equation

ĤN+1ψE (x1, x2, . . . , xN , xN+1) = EψE (x1, x2, . . . , xN , xN+1) , (1.9)

where the energy E = Eα + Ee is the total energy of the system - that means
the energy of the molecule in the initial state Eα and the energy of the incident
electron Ee. The Hamiltonian can be written in the following form;

ĤN+1 = ĤN + Ĥint, (1.10)

where ĤN is precisely the previously mentioned Hamiltonian (1.1), while Ĥint

covers the (N+1)-th electron

Ĥint = −∇2
N+1

2
+

N
∑

i=1

1

ri(N+1)

−
M
∑

i=1

Zi

ρi(N+1)

. (1.11)

A scattering channel is defined as the quantum state of the whole system
before or after the collision. It is fully determined by a set of numbers, such
as the angular momentum of the projectile electron or the state of the target
molecule α. In further discussion, the scattering channels will be denoted simply
by lowercase latin letters (i, j,. . .).

There is an useful ansatz to the form of the wave function, when the electron is
far from the molecule, which leads to a natural form of the boundary conditions.
The incident electron and the molecule parts are separated:

ψ(rN+1, ξ) =

nt
∑

i=1

nc,i
∑

j=1

Φi(ξ)γij(xN+1). (1.12)

The functions γij(xN+1) and Φi(ξ) are the incident electron and target molecule
wave functions respectively, rN+1 are the spherical coordinates of the electron and
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ξ denotes all relevant degrees of freedom of the target molecule. The sum goes
through nt target states and nc,i channels for target state. Clearly, the function
Φi(ξ) obeys the Schrödinger equation

ĤNΦi(ξ) = EiΦi(ξ)

All the observable information about the collision can be retrieved from the wave
function γ̃(rN+1), which describes the radial behaviour of the scattered electron.
The boundary condition then has the form

ψ̃(rN+1, ξ) ∼
rN+1→∞

eikizΦi(ξ) +

nch
∑

j=1

fi,j(θ, ϕ)
eikjrN+1

rN+1

Φj(ξ), (1.13)

where expressions eikiz, eikjrN+1 are the incoming plane wave and the outgoing
spherical wave with momenta ki obeying

E − Ei =
k2i
2
, ki =

√

2(E −Ei) (1.14)

1.2.1 R-matrix

The R-matrix method is an approach to solving the Schrödinger equation for a
scattering problem. The main idea of this method lies in separating two parts
of the configuration space - the inner and the outer region. In both regions the
solution is usually obtained numerically, but in the outer region the calculation
is much simpler. The R-matrix is then constructed on the boundary of the
two regions (The R-matrix sphere with radius a) and it provides the boundary
conditions for the solution of the outer region.

The full scattering wave function ψΓ
E is the common eigenfunction of Hamil-

tonian ĤN+1 and operators representing symmetry operations of the irreducible
representation Γ of the point group of the molecule. The wave function ψΓ

E is
expanded in a complete set of states

ψΓ
E(x1, x2, . . . , xN , xN+1) =

∑

k

AE
k ψ

Γ
k (x1, x2, . . . , xN , xN+1). (1.15)

The energy dependence of ψΓ
E is supposed to be fully contained only in the coeffi-

cients AE , the energy-independent functions {ψΓ
k }k are taken as the eigenfunctions

of the Hamiltonian
Ĥ ′ = ĤN+1 + L̂, (1.16)

where L̂ is the Bloch operator, which ensures the hermiticity of Ĥ ′ in the R-matrix
sphere and has the form

L̂ =
1

2

N+1
∑

i=1

nch
∑

j=1

|i〉 δ(ri − a)

(

d

dri
− b− 1

ri

)

〈i| , (1.17)

where a is the R-matrix radius, b is an arbitrary constant and |i〉 is a state
corresponding to the i-th channel. For a more thorough discussion see [4].
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The basis functions are called the R-matrix states and can be written in the
following form

ψΓ
k (x1, . . . , xN+1) = A

nb
∑

i=1

nc,i
∑

j=1

Φi(x1, . . . , xN )γij(xN+1)aijk+

+
m
∑

i=1

χΓ
i (x1, . . . , xN+1)bik. (1.18)

Here the Φi(x1, . . . , xN ) are the bound electronic states of the molecule (target)
of which nb are included in the calculation. The functions γij(xN+1) describe the
scattered electron, which are the only functions nonzero outside the R-matrix
sphere. Finally the functions χΓ

i (x1, . . . , xN+1) are the L2 integrable functions,
zero outside the sphere. The operator A provides the proper antisymmetrization
of the resulting basis function, while functions χΓ are assumed to be already an-
tisymmetrized. The superscript Γ indicates, that the wave function tramsforms
according to the irreducible representation of the molecule point group. Natu-
rally, only such combinations of functions Φi and γij that respect the irreducible
representation Γ are considered. Note, that a single channel is labeled by two
indices, specifying the target and the electron state. Below, the channels will be
again denoted by a single index. The total number of channels is nch =

∑nb

i=1 nc,i.
Close to the R-matrix radius the function γij can be written as

γi(xN+1) =
rN+1→a

Fi(rN+1)

rN+1
Yli,mi

(ΩN+1), (1.19)

where Yli,mi
are the spherical harmonics, ΩN+1 are the angular variables of rN+1.

The R-matrix is defined on the boundary of the inner and outer region, i.e. on
the previously mentioned R-matrix sphere. It has the form

Rij(E) =
1

2a

∑

k

wik(a)wjk(a)

Ek −E
, (1.20)

where parameter a is the R-matrix sphere radius and wik = 〈i|ΨΓ
k〉 are projections

of the scattering channels on the R-matrix states. The meaning of the R-matrix
can be seen from the expression

Fi(a) =

nch
∑

j=1

Rij(E)

(

dFj

dr
|a − bFj(a)

)

,

which demostrates, that the R-matrix links the inner and the outer region.
The asymptotical behaviour of the reduced radial wave function Fi(r) is sim-

ilar to (1.13) - a linear combination of an incoming (R−) and an outgoing (R+)
solution

Fj(r) = δi,jR
−

i (r) +KΓ
i,jR

+
j (r), r → ∞,

where KΓ
i,j are the elements of the so-called K-matrix. By diagonalizing the

K-matrix one receives an important quantity - the eigenphase sum:

δΓsum(E) =

nch
∑

i=1

arctan[(KΓ
D)ii(E)]. (1.21)
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In electron-molecule collisions the resonance behaviour is often encountered,
which is important for the nuclear dynamics of the process (described in the
next section). The presence of a resonance results in a typical dependece of the
eigenphase sum on the incident electron energy - a sudden increase by π around
the resonance energy, which can be described by the Breit-Wigner formula:

δsum(E) = δr + δbg = − arctan

(

Γ/2

E −Er

)

+ δbg, (1.22)

where the parameters Er and Γ are the energy (position) and the width of the
resonance and δbg is a non-resonant contribution, typically with only a weak
energy dependence.

The calculation is carried out in the so-called ”Close-coupling approximation”.
This means, that in the expansion (1.18) only energetically closely-coupled states
are taken into account. A specific closely-coupled R-matrix model is then deter-
mined by selecting a number of target and L2 states. Both of these are usually
obtained by a standard CAS (CI) calculation for an N electron problem in the
case of Φi and (N + 1) electrons for L2 functions χi. The structure of these L2

configurations can be schematically written as

χCC
i : (core)Nc(CAS)N−Nc+1, (1.23)

where (core) represents Nc electrons frozen in doubly occupied target orbitals
and (CAS) are the orbitals of the active space. In this kind of model it is also
possible to consider occupations of a virtual orbital. In such case the structure is
as follows

χCC
i : (core)Nc(CAS)N−Nc(virtual)1. (1.24)

Sometimes models even allow excitations of the target molecule electrons into
the virtual orbitals, which can be a good benefit to the resulting target electronic
wavefunction, but it can also be the source of computational trouble.

1.3 LCP and cross section

Local complex potential (LCP) approximation [6] is a simple approach to treat-
ing the nuclear dynamics of the negative molecular anion, based on the Born-
Oppenheimer approximation. For large internuclear distances, there is typically
only one bound electronic state of the molecular anion, that for distances lower
than a certain point Rc becomes a resonance state. This point Rc is the crossing
point of the potential curves of the neutral molecule and the molecular anion. In
practical calculations the resonant part of the potential curve (i.e. the resonance
energies) are obtained together with their widths by fitting the eigenphase sum
(1.21) with the Breit-Wigner formula (1.22).

The dynamics of the anion state is within the LCP approximation described
by the equation

(E − TR − Vres(R)) ξE(R) = ζνi(R)χνi(R), (1.25)

Vres(R) = Er(R)−
i

2
Γ(R). (1.26)
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ζνi denotes the entry amplitude for capture of the electron in the resonance with
the molecule in the initial vibrational state χνi. It is usually taken to be inde-
pendent of the vibrational state and is determined by the resonance width

ζv(R) =

√

Γ(R)

2π
. (1.27)

The resonant vibrational excitation νi → νf cross section is then given by the
expression

σVE
vi→vf

(E) =
4π3

k2ei

∣

∣

∣

∣

∫

∞

0

dRχvf(R)ζvf(R)ξE(R)

∣

∣

∣

∣

2

, (1.28)

with ζvf being the exit amplitude which is again given by (1.27).
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2. Potential energy curves

This section describes the calculation of the potential energy curves of O2 and
its ion. For reasons outlined in the theoretical section, the calculation is divided
into two steps:

1. the potential curve of O2 and the bound part of O−

2 curve are obtained via
the quantum chemistry methods,

2. the resonant part of O−

2 curve is then obtained with the R-matrix method.

2.1 Quantum chemistry calculations

2.1.1 Molpro

All the following calculations are performed using the quantum chemistry package
Molpro [7, 8], which is a system of ab initio programs used in molecular electonic
structure calculations. The Hartree-Fock method (HF), multi-configurational
self-consistent field method (MCSCF) and multireference configuration interac-
tion (MRCI), described above in the theoretical section, are implemented as pro-
grams HF, MULTI [9, 10] and MRCI [11] respectively.

2.1.2 Symmetry and basis

The molecular spin-orbitals used to construct the molecular electronic wave func-
tion are usually obtained by the LCAO method, i.e. taking a linear combination
of atomic orbitals (AOs) located on individual atoms. For the sake of numerical
calculations a finite set of basis functions must be taken. Hydrogen-like (some-
times Slater type orbitals or STOs) atomic orbitals (i.e. ∝ exp(−ξr)) are not a
good choice, because their integrals (in matrix elements etc.) are difficult to eval-
uate. Because of that, so called Gaussian type orbitals or GTOs (∝ exp(−ξr2))
are usually taken instead. To approximate STOs, linear combinations of GTOs
for a few different values of parameter ξ are made. In the context of Molpro

calculations basis elements (GTOs) are called primitive AOs, their linear combi-
nations (≈STOs) are called contractions.

Once the symmetry point group of the moecule is identified, linear combina-
tions of basis functions, which transform according to individual irreducible rep-
resentations are made. These symmetry adapted linear combinations (SALCs)
form a new basis, which is then used to construct the molecular orbitals. Such
basis brings a great advantage - thanks to the Wigner-Eckart theorem, only lin-
ear combinations of basis functions of one irreducible representation are relevant,
because matrix elements between states transforming according to different irre-
ducible representations are identically zero.

Symmetry operations of the oxygen molecule form the D∞h point group, but
that one is not implemented in Molpro . Instead, the largest available subgroup
D2h ⊂ D∞ is used. Irreducible representations of D∞h are generally reducible in
D2h group and therefore their reduction in terms of D2h irreducible representa-
tions has to be used.
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In upcoming calculations the ground state of O2 (X
3Σ−

g ) and four lowest terms
of O−

2 (2Πg,
4Σ−

u ,
2Σ−

u ,
2Πu) are included. The D∞h representations assigned

to these terms and their corresponding D2h reductions are in Table 2.1. The
important thing is that the representations of the states 2Πg and 2Πu are both
doubly degenerate in the D2h point group, which leads to a total of six O−

2 states
included in potential curves calculations.

D∞h D2h conf.

X3Σ−

g
3B1g [core]1π4

u1π
2
g

2Πg
2B2g +

2B3g [core]1π4
u1π

3
g

4Σ−

u
4Au [core]1π4

u1π
2
g3σu

2Σ−

u
2Au [core]1π4

u1π
2
g3σu

2Πu
2B2u +

2B3u [core]1π3
u1π

4
g

Table 2.1: The lowest O2 and four lowest O−

2 state term symbols and their molec-
ular electron configurations; [core] = 1σ2

g1σ
2
u2σ

2
g2σ

2
u3σ

2
g

2.1.3 Quantum chemistry calculations

The aim of this part is to calculate potential curves for O2 molecule and O−

2

ion. One way to make sure that the resulting curves are relevant to reality is to
check for the electron affinity (EA) of O and O2 or the dissociation energy (DE),
because these were already determined by experiment. The EA(O) is defined as
the amount of energy released when an electron is added to the atom, i.e.

O + e− → O− + EA(O).

The EA(O2) has the same meaning, but for the molecule:

O2 + e− → O−

2 + EA(O2).

The dissociation energy is the amount of energy that needs to be added to the
molecule to dissociate

O2 +DE(O2) → 2O.

The O2 molecule is thought to be in the lowest vibrational state, therefore DE
is the difference between the asymptotic energy of the potential curve and the
lowest vibrational level, not the bottom of the potential well.

The desired values of these energies are [12]:

EA(O)= 1.4611096± 0.0000007 eV,

EA(O2)= 0.450± 0.002 eV,

DE(O2)= 5.165± 0.002 eV.

All calculations had a common structure

1. Hartree-Fock for one fixed geometry to get an initial guess for molecular
orbitals,

12



2. CASSCF for a range of internuclear distances to optimize the molecular
orbitals,

3. MRCI for the same geometries as CASSCF to get a better variational en-
ergy.

When starting a new calculation, Molpro uses the results of previous calcula-
tions, hence the first Hartree-Fock calculation is done only to get some rough idea
of the molecular orbitals. The purpose of CASSCF is to estabilish suitable molec-
ular orbitals and the MRCI then improves the energy. Throughout all quantum
chemistry calculations the bases cc-pVXZ and aug-cc-pVXZ were used [13, 14].

To reduce the computational cost some orbitals were kept closed, that means
that excitations from these orbitals were forbidden in the whole calculation. In
Molpro the closed orbitals and CAS are specified by choosing the number of
orbitals for each irreducible representation. In all CASSCF calculations the core
orbitals 1σ2

g1σ
2
u with 4 electrons were kept closed, but the CAS varied.

2.1.4 Weighted states calculations

Although this work covers only low energy electron-molecule collisions (i.e. within
2.5 eV range), for future calculations with higher energies, the molecular orbitals
were optimized with respect to four lowest O−

2 states: 2Πg,
4Σ−

u ,
2Σ−

u , and
2Πu.

Note, that since the representations of 2Πg and 2Πu are both doubly degenerate
in the D2h point group, one comes to the total of six O−

2 states. The molecular
orbitals were therefore optimized using the SA-CASSCF method.

Without further specification, Molpro treats all considered state energies
equally, i.e. with the same weight, while optimizing the molecular orbitals. This
however resulted in an unwanted bump on the 2Πg curve, as can be seen in
Figure 2.1, top panel. The reason behind this bump is probably that the CASSCF
calculation is not reliable for internuclear distances, where the (N+1)-th electron
bound state becomes a resonance.

To eliminate the rise of 2Πg energy, the weights of the states were set to change
dynamically with internuclear distance. For shorter internuclear distances only
the 2Πg state is taken into account with weight 0.5 (because it is degenerate in
D2h point group), for greater distances all states were weighted equally with 1/6.
Inbetween the weights changed smoothly according to a 3rd degree polynomial
shown in Figure 2.2. This eliminated the bump succesfully, see Figure 2.1, bottom
panel.

Another option to eliminate the bump would be optimizing the molecular
orbitals with respect to the 2Πg only, but this resulted in rather bad affinities and
was therefore discarded.

Figure 2.1 still shows bad behaviour of 2Σ−

u state for internuclear distance
around 5 a.u. and MRCI calculations for 4Σ−

u tend to fail. Since this work’s
objective is to cover only the lower energy colisions, the higher states of O−

2 ,
namely 4Σ−

u ,
2Σ−

u , and
2Πu (degenerate), are from this point involved only in

the CASSCF calculation to obtain relevant molecular orbitals, and the MRCI is
preformed only for the X3Σ−

g and 2Πg states.
Because for scattering calculations the absolute position of O2 and O−

2 po-
tential curves is irrelevant and only their correct relative position is important, a
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Figure 2.1: SA-CASSCF energies of lowest O−

2 states with CASSCF energy of
X3Σ−

g . Top panel: all six states treated with equal weigths; Bottom panel:
calculation with dynamically changing weights; The X3Σ−

g is shown only for
better illustration. Its precise position is not consistent with O−

2 curves of SA-
CASSCF calculation.
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better agreement of the EAs with experimental values can be achieved by shifting
the O−

2 potential. If the calculations of potential curves are consistent and their
shape is in good agreement with reality, the EAs should agree.

To calculate EA(O2) energies of vibrational levels in the potential curves were
needed. These were calculated with program [15], which is later in this work used
also for the cross sections calculations.

Series of calculations with different CAS settings in different bases and with
and without Davidson correction (DC) were carried out in order to find a setting
with the best affinities. Results for the aug-cc-pVQZ basis are listed in Table
2.2. Two values of EA(O−

2 ) are missing, because the calculation of the vibra-
tional levels failed for unresolved reasons. The best results were obtained with
CAS= {2σg2σu3σg1πu1πg3σu2πu2πg} in bases aug-cc-pVXZ, slightly improving
with growing bases (i.e. increasing X), as can be seen in Table 2.3. The largest
base available is aug-cc-pV6Z, however the resulting energies can be extrapolated
in terms of basis size (in detail in [16]):

En =
(n− 1)3En−1 − (n− 2)3En−2

(n− 1)3 − (n− 2)3
, (2.1)

where n denotes the basis (e.g. n = 4 denotes the aug-cc-pVQZ basis).
Two curves with the best results are listed in Table 2.4. The extrapolated

curve in aug-cc-pV7Z with DC was then deformed to match the experimental
affinities and taken as a third curve. All three curves can be seen in Figure 2.3.
At first sight they seem very close to each other, but further calculations show
that these differences are crucial.
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CAS (. . .)2πu2πg (. . .)4σg2πg (. . .)4σg2πu2πg (. . .)4σg2πu5σg DC

EA(O2) 0.776 0.366 × 0.372 ×
EA(O) 1.264 0.971 1.045 1.019 ×
EA(O2) 0.963 0.856 × 0.814 ×
EA(O) 1.461 1.461 1.461 1.461 ×
EA(O2) 0.412 0.330 0.331 0.336 X

EA(O) 1.380 1.232 1.287 1.268 X

EA(O2) 0.493 0.559 0.505 0.529 X

EA(O) 1.461 1.461 1.461 1.461 X

Table 2.2: Electron affinities of O and O2 for different CAS settings in aug-cc-
pVQZ basis. All affinities are in eV, highlighted rows display affinities after 2Πg

curve was shifted so that EA(O) agreed with the experimental value 1.461 eV.
(. . .) = 2σg2σu3σg1πu1πg3σu, DC - Davidson correction.

aug-cc-pV QZ 5Z 6Z 7Z DC

EA(O2) 0.442 0.460 0.470 0.484 ×
EA(O) 1.241 1.258 1.268 1.280 ×
EA(O2) 0.663 0.663 0.663 0.664 ×
EA(O) 1.461 1.461 1.461 1.461 ×
EA(O2) 0.412 0.427 0.434 0.444 X

EA(O) 1.357 1.376 1.385 1.398 X

EA(O2) 0.516 0.512 0.510 0.507 X

EA(O) 1.461 1.461 1.461 1.461 X

Table 2.3: Electron affinities of O and O2 for CAS = {2σg2σu3σg1πu1πg3σu
2πu2πg} for bases aug-cc-pV(QZ-6Z) and extrapolated to aug-cc-pV7Z. All affini-
ties are in eV, highlighted rows display affinities after 2Πg curve was shifted so
that EA(O) agreed with experimental value 1.461 eV, DC - Davidson correction.

curve basis DC EA(O) EA(O2) EAshift(O2) DE(O2)

I aug-cc-pV6Z × 1.268 0.470 0.662 5.101
II aug-cc-pV7Z X 1.398 0.444 0.506 5.161
III aug-cc-pV7Z def. X 1.461 0.450 × 5.162

Table 2.4: Molpro results, EAshift(O2) denotes the electronic affinity of O2 after
the EA(O) has been shifted to its experimental value of 1.461 eV, DC - Davidson
correction.
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Figure 2.3: Resulting Molpro curves, as listed in Table 2.4

2.1.5 Spin-orbital splitting

For the final comparisson with the experimental data, it was necessary to com-
pute the spin-orbital (SO) splitting of the 2Πg state. The spin-orbital splitting
calculation was done by diagonalizing the spin-orbital matrix using Molpro’s
implementation within the MRCI program, using a smaller basis [17] cc-pVTZ
basis (comparison with experimental data shows that this is sufficient). The split-
ting magnitude, i.e. the energy difference between these split states, is in Figure
2.4. To obtain SO splitting values for all needed geometries a Gaussian fit was
performed,

f(x) = a exp(−b(x − c)2) + d,

with resulting values a = 6.985, b = 0.1253, c = 2.460, d = 12.266.
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2.2 R-matrix calculations

2.2.1 R-matrix suite of codes

For all the R-matrix calculations in this thesis the UKRmol suite of codes [18]
was used. The structure of the calculations within this implementation looks like
this

1. Target calculation

2. Inner region calculation

3. Outer region calculation

In the first step the Φi functions of the molecule are produced through Molpro’s
implementation of CASSCF. The model is set by choosing frozen, CAS and virtual
orbitals, which is done, as in the case of Molpro, by marking number of states of
each irreducible representation of the symmetry point group. In the inner region
calculations coefficients aijk, bik are obtained by diagonalizing the Hamiltonian.
In the last step the R-matrix is constructed, the K-matrix and the eigenphase
sums are obtained.

2.2.2 R-matrix models

The molecular orbitals were optimised with respect to the energy of the O2 ground
state 3Σ−

g in cc-pVTZ basis. At present, it is practically impossible to use a larger
basis since scattering calculations are computationally too demanding. The core
and active space remained unchanged throughout all the calculations:

(core) = 1σg1σu
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(CAS) = 2σg2σu3σg1πu1πg3σu

The model was then varied only by choosing different subsets of possible target
states and different number of virtual states. From all possible target states
of O2, only those lying energetically under the O(P ) + O(P ) asymptote were
considered, namely X3Σ−

g ,
1∆g,

1Σ+
g ,

1Σ−

u ,
3∆u and 3Σ+

u . Since the ∆ irreducible
representations are doubly degenerate in the D2h point group, it leads to the
maximum of 8 possible target states. Each R-matrix model will therefore be
denoted by the number of target and virtual states. In all R-matrix calculations
the R-matrix sphere radius was set to 10 a0, which is sufficient for R-matrix
calculations with short internuclear distances.

Let us introduce a shorthand notation for the R-matrix models: an R-matrix
model with k virtual orbitals and l target states will be denoted as kv, lt R-matrix
model, or just kv, ltmodel. For exampleMolpro curve I and the R-matrix model
with 8 virtual orbitals and 5 target states becomes Molpro curve I with 8v, 5t
R-matrix model.

With quantum chemistry methods the potential curves of O2 and O−

2 are
obtained, but for internuclear distances lower than the crossing point of the X3Σ−

g

and 2Πg curves the calculation of the 2Πg is not reliable and does not provide any
information about the resonance width. This resonant part is obtained from the
R-matrix calculation since it produces the (N + 1)-electron wave function, the
energy of which is exactly the energy of 2Πg state of O

−

2 . An R-matrix model for
which the potential energy curve of 2Πg was a smooth continuation of Molpro

curve in the lower internuclear distance would be an ideal one. To find the best
R-matrix model the resulting potential energy curves for X3Σ−

g state obtained by
Molpro and R-matrix method were shifted to overlap and the R-matrix models
resulting in best continuation of 2Πg curve were chosen. The effect of changing
the number of virtual orbitals or target states on the resulting R-matrix energy is
illustrated in Figure 2.5. Selected satisfactory models for the three curves chosen
in the previous section are listed in Table 2.5. Note, that there is one R-matrix
model that suited acceptably for all three Molpro curves.

The spin-orbital split was considered in two ways:

1. The R-matrix model was found for the unsplit curve and the SO split was
then performed on the resulting R-matrix+Molpro curve.

2. The Molpro curve was split and for each curve R-matrix model was found.
However the split is very small and each curve ended up with the same R-
matrix model.

The first approach is inconsistent, because the split curves are then accompanied
by the same resonance widths while they should be different. The cross section
calculations however revealed negligible difference between these two approaches.
All following results were obtained through the second approach.
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Figure 2.5: Molpro curve III with potential energy curves for various numbers
of virtual and target states.

curve R-mat. model

I 8 virtual orb., 5 target st.
9 virtual orb., 3 target st.
9 virtual orb., 4 target st.

II 7 virtual orb., 8 target st.
8 virtual orb., 4 target st.
9 virtual orb., 3 target st.

III 7 virtual orb., 8 target st.
8 virtual orb., 5 target st.
9 virtual orb., 3 target st.

Table 2.5: Molpro calculated curves with their best R-matrix models
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3. The cross sections calculations

The vibrational excitation (VE) cross sections were calculated using the local
complex potential approximation implemented in program [15], based on numeri-
cal grid method introduced in [19, 20]. For LCP calculations the resonance width
and energies are needed. These are also produced by the UKRmol suite of codes
by fitting the eigenphase sums (1.21) with the Breit-Wigner formula (1.22). The
typical energy dependence of the eigenphase sum for various internuclear dis-
tances is in Figure 3.1, for one fixed distance but different R-matrix models in
Figure 3.2. The behaviour in both cases is expected: with growing internuclear
distance the resonance energy and width decrease and by increasing the number
of the virtual orbitals or target states more correlation gets considered and the
resonce energy therefore decreases.
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Figure 3.1: The energy dependence of the eigenphase sum with resonances for
several internuclear distances for 9v, 3t R-matrix model.

3.1 Models comparison

The LCP calculations were performed for all models listed in Table 2.5 above.
The vibrational excitation cross sections calculated for a specific Molpro curve
with different R-matrix models can be seen in Figures 3.3, 3.4 and 3.5. The cross
sections for all the curves with the common R-matrix model are in Figure 3.6.

From these figures one can see, that the position of a peak can move by up to
10 meV just by choosing the Molpro curve or changing the R-matrix model. A
10 meV shift is already comparable to the spin-orbital split magnitude. Another
visible effect is the different spacing between individual peaks seen for different
R-matrix models. This is visible for example for curve I for 8v, 5t and 9v, 4t
R-matrix models. Their peaks are very close for lower energies, but with growing
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Figure 3.2: The energy dependence of the eigenphase sum for resonances for
several different R-matrix models at a fixed internuclear distance 2 (a.u.).

energy they become distant. This plays an important role in choosing the final
models in the next section.

3.2 Experiment comparison

As experimental data for comparison, measurements of Allan [21] were taken.
Allan presents series of measurements of the cross sections for excitation of vi-
brational levels of X3Σ−

g state of O2 through 2Πg resonances.
The absolute heights of peaks measured by Allan come with quite a big uncer-

tainty (about 35 %). Therefore Allan’s cross sections are plotted in arbitrary units
and scaled for a convenient comparison in all here presented graphs. Because of
that, only the positions of peaks and their relative heights were considered rel-
evant while comparing the results. Also the peak positions are accurate within
±30 meV range, which is larger than the spin-orbital splitting.

Furthermore the measurement is influenced by equipment’s limited resolution,
which was 10 meV for excitations ν = 1, 2, 3, and 15 meV for the other. The
resolution of the equipment was assumed to be Gaussian and all the calculated
cross sections were convoluted

σα(E) =

Emax
∫

Emin

σ(ε)g(α, ε−E)dε, (3.1)

where σ(ε) is the calculated exact cross section, σα(E) the convoluted cross sec-
tion to be compared to a measured one and g(α, ε−E) is the Gaussian distribution
with α being the resolution (standard deviation)

g(α, ε−E) =
1√
2πα

exp

(

−(ε −E)2

2α2

)

.

The importance of this step can be seen in Figure 3.7, which depicts the effect
of convolution on the calculated cross section for 0 → 1 vibrational excitation,
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Figure 3.3: The LCP calculated cross section for VE 0 → 1 for Molpro curve I
with several R-matrix models.
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Figure 3.4: The same as in Figure 3.3, but for Molpro curve II.
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Figure 3.5: The same as in Figure 3.3, but for Molpro curve III.
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Figure 3.6: The LCP calculated cross section for VE 0 → 1 for the 9v, 3t R-matrix
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compared to Allan’s data. From now on, all presented data are convoluted with
the finite resolution

The LCP calculations were performed for all the models listed in Table 2.5
for vibrational excitations 0 → ν for ν = 1− 7. Positions of peaks are compared
in Figures 3.8, 3.9 and 3.10 to Allan’s data only for VE 0 → 1, because these
were presented in a graph with higher resolution than the other excitations.

For further evaluation a single model was chosen in two steps. First, the best
model for each Molpro curve was selected, second, the best one of these three
models was chosen. In the first step the folowing models seemed to be the most
suitable:

curve I: 8 virtual orbitals, 5 target states,

curve II: 7 virtual orbitals, 8 target states,

curve III: 8 virtual orbitals, 5 target states.

These were chosen with respect to the uncertainty of experimental peak positions
and are compared in Figure 3.11. The model with Molpro curve III, 8 virtual
and 5 target states was the one with the most consistent peak spacing, in the
second step.

For all channels, i.e. vibrational excitations 0 → 1 . . . 7, the cross sections
measured by Allan are depicted in Figure 3.12, the cross sections calculated with
Molpro curve III and 8v, 5t R-matrix model are in Figure 3.13. In these figures,
one important aspect is visible. Near the threshold energy of each channel there
is a significant peak in the calculated cross sections, which is missing in Allan’s
measurements. The reason for this effect is probably the failure of the LCP
approximation, which tends to produce very large cross sections just near the
threshold energy, as demostrated for models of e− + N2 and e− + NO systems
[22].

Allan integrated the cross sections through incident electron energy for each
individual peak. As mentioned before, his data carry big uncertainty for peak
heights and this uncertainty naturally persits through the integration. Relative
areas of individual peaks with respect to the largest one are therefore taken for
consideration. His results are in Table 3.1. The same was done with the cross
sections calculated here. The positions of the peaks correspond to the energy
gap between vibrational ground level of X3Σ−

g state and the excited vibrational
levels of 2Πg. Midpoints of these positions were taken as integral interval bounds.
Results for Molpro curve III and 8v, 5t R-matrix model are in Table 3.2. For
the sake of readability the relative peak areas lower than 0.01 % were omitted in
both tables.

While comparing the data one can see that the position of the highest peak
agrees up to the vibrational level ν = 3 of the X3Σ−

g state. However the relative
heights of the peaks agree poorly, again probably due to failure of the LCP
approximation.

Better results could be obtained with different models of the nuclear dynamics,
but that would reach beyond the extent of this work.
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Figure 3.7: Comparison of the calculated VE 0 → 1 cross section (Molpro

curve II, 8v, 4t R-matrix model) to the experimental result of Allan [21], left
panel - without convolution, right panel - convoluted with 10 meV Gaussian
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Figure 3.8: The cross section for VE 0 → 1, calculation results for Molpro

curve I compared to the experimental data.
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Figure 3.9: The same as in Figure 3.8, but for Molpro curve II.
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Figure 3.10: The same as in Figure 3.8, but for Molpro curve III.
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Figure 3.11: The cross section for vibrational excitation 0 → 1, the best three
selected models compared to the experimental data.
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Figure 3.12: The experimental cross sections for vibrational excitation 0 → 1 . . . 7,
threshold energies are marked with vertical lines, c© M. Allan, 1995 [21]
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Figure 3.13: The LCP calculated cross sections for vibrational excitation 0 →
1 . . . 7 for Molpro curve III with 8v, 5t R-matrix model; threshold energies are
marked with vertical red lines.
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ν ′

5 6 7 8 9 10 11 12 13 14

ν = 1 0.009 0.458 0.979 1.000 0.713 0.413 0.201 0.090 0.042 0.019
ν = 2 - - 0.005 0.120 0.263 0.284 0.228 0.141 0.075 0.036
ν = 3 - - - - - 0.017 0.048 0.063 0.054 0.036
ν = 4 - - - - - 0.001 0.001 0.001 0.006 0.010
ν = 5 - - - - - - - 0.001 0.001 -
ν = 6 - - - - - - - - - 0.001

15 16 17 18 19 20 21 22 23 24
ν = 1 0.008 0.005 - - - - - - - -
ν = 2 0.017 0.007 0.003 0.002 - - - - - -
ν = 3 0.021 0.011 0.006 0.003 0.001 0.001 - - - -
ν = 4 0.009 0.007 0.004 0.003 0.001 0.001 - - - -
ν = 5 0.001 0.002 0.002 0.002 0.001 0.001 - - - -
ν = 6 - - - - - - - - - -
ν = 7 - - - - - - - - - -

Table 3.1: Experimental areas [21] of resonance peaks in the cross sections for
vibrational excitation of X3Σ−

g state of O2 to level ν via the ν ′ level of the 2Πg

state of O−

2 , relative to the highest one - for ν = 1 and ν ′ = 8.

ν ′

5 6 7 8 9 10 11 12 13 14

ν = 1: 0.752 0.865 0.964 1.000 0.922 0.744 0.514 0.301 0.150 0.064
ν = 2: - - 0.327 0.444 0.530 0.549 0.483 0.358 0.224 0.119
ν = 3: - - - 0.018 0.071 0.135 0.184 0.191 0.158 0.106
ν = 4: - - - - - 0.002 0.011 0.030 0.043 0.042
ν = 5: - - - - - - 0.006 0.004 0.001 0.003
ν = 6: - - - - - - - - 0.011 0.003

15 16 17 18 19 20 21 22 23 24

ν = 1: 0.024 0.009 0.003 0.001 0.001 - - - - -
ν = 2: 0.054 0.021 0.008 0.003 0.001 0.001 - - - -
ν = 3: 0.059 0.027 0.011 0.004 0.001 - - - - -
ν = 4: 0.031 0.018 0.008 0.003 0.001 - - - - -
ν = 5: 0.005 0.005 0.003 0.001 - - - - - -
ν = 6: - - - - - - - - - -
ν = 7: 0.003 0.001 - - - - - - - -

Table 3.2: Calculated areas of resonance peaks in the cross sections for vibrational
excitation of X3Σ−

g state of O2 to level ν via the ν ′ level of the 2Πg state of O−

2

for curve III with 8v, 5t R-matrix model (the same as in Figure 3.13), relative to
the highest one - for ν = 1 and ν ′ = 8.
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Conclusion

In this work the resonant colisions of electrons with dioxygen were investigated.
The potential energy curves of O2 and O−

2 were obtained with standard quantum
chemistry methods and the R-matrix method using several different models. The
nuclear dynamics and the cross section for vibrational excitation were calculated
within the local complex potential approximation and compared with experimen-
tal data.

We have shown that potential curves obtained in above described way can
lead to the prediction of the resonance peaks within experimental uncertainty,
however the local complex potential approximation seems to be insufficient, since
it resulted in an unsatisfactory behaviour of the vibrational excitation cross sec-
tions, such as bad relative heights of individual peaks, especially near the channel
threshold energies due to incorrect threshold behaviour of the LCP model.

In the future, different models of the nuclear dynamics will be tested, primarily
the nonlocal resonance model [23] and its validity will be tested using a two-
dimensional model presented in [22].
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