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suggestion, for all of the answers to the questions I had and all the comments

he provided, for his willingness to help me and for providing me with the data.



Abstract

This thesis investigates forecasting performance of Quantile Regression Neural

Networks in forecasting multiperiod quantiles of realized volatility and quan-

tiles of returns. It relies on model-free measures of realized variance and its

components (realized variance, median realized variance, integrated variance,

jump variation and positive and negative semivariances). The data used are

S&P 500 futures and WTI Crude Oil futures contracts. Resulting models of re-

turns and volatility have good absolute performance and relative performance

in comparison to the linear quantile regression models. In the case of in-sample

the models estimated by Quantile Regression Neural Networks provide better

estimates than linear quantile regression models and in the case of out-of-sample

they are equally good.
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Abstrakt

V této práci se zkoumá chováńı kvantilové regrese neuronových śıt́ı v odhadováńı

kvantil̊u realizované volatility a kvantil̊u výnos̊u s výhledem v́ıce krok̊u. Záviśı

na realizované varianci a jej́ıch komponentech (realizovaná variance, mediánová

realizovaná variance, integrovaná variance, skoková variance a positivńı a neg-

ativńı semivariance). Použitá data jsou S&P 500 futures a WTI Crude Oil

futures. Výsledné modely výnos̊u a volatility maj́ı dobré absolutńı chováńı a

relativńı chováńı v porovnáńı s modely ohodnocenými lineárńı kvantilovou re-

greśı. V př́ıpadě in-sample má lepš́ı chováńı kvantilová regrese neuronových

śıt́ı a v př́ıpadě out-of-sample maj́ı chováńı stejně dobré.
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for WTI Crude Oil futures return quantiles. . . . . . . . . . . . 38

6.2 Conditional quantile models (LQR) of Žikeš & Baruńık (2016)
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Chapter 1

Introduction

Understanding the volatility is important in the uncertainty of financial mar-

kets. Properly modeling its expected distribution together with the expected

distribution of financial returns is important for managing risk. Some of the

quantiles, usually the tails, of financial returns are already used for risk man-

agement in the Value-at-Risk models. Where Value-at-Risk can be computed

directly through estimation of the corresponding quantile of returns or through

assuming a distribution and forecasting volatility. It is important to forecast the

distribution of volatility and returns not only one-step-ahead but also multi-

step-ahead because not every investment position can be exited in one day.

There are different measures of volatility, one of the few are option implied

volatility and realized volatility. Here the realized volatility its components are

studied.

Using non-linear model, specifically artificial neural network, for forecasting

volatility and returns is not a new idea. There are academic papers on this

topic and it is used in practice. What was done very little, in just few papers,

is forecasting the distribution of returns and volatility using the artificial neural

networks even though the idea is more than one and a half decades old. The

non-linear models can improve the forecasting of the distribution and with the

improved forecast we might be able to show that the distributions are skewed,

where most of the models assume normal distribution or student’s t-distribution

which are symmetrical.

The thesis is structured as follows: Chapter 2 gives the introduction to the

area of modeling quantiles of financial returns and volatility and to the Quan-

tile Regression Neural Network. Chapter 3 covers the theoretical introduction

to the area of artificial neural networks. Chapter 4 explains the methodol-
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ogy of realized measures, estimation techniques and performance evaluation.

Chapter 5 describes the data. In Chapter 6 the results are reported. The final

chapter, Chapter 7, concludes the thesis.



Chapter 2

Previous literature

2.1 Financial returns and volatility

Many papers were published on the topic of financial returns and volatility. In

this thesis the focus will be on forecasting certain quantiles of returns which

is mainly forecasting the Value-at-Risk and forecasting quantiles of volatility

(realized volatility).

Value-at-Risk is complicated to forecast and it is complicated to evaluate

the validity of forecasts due to the fact that it is not observable. What is usu-

ally done is that we evaluate the violaiton of the forecast and its behavior. The

Value-at-Risk is violated when the actual loss is higher than the predicted loss.

When the process of violations satisfies the martingale difference hypothesis

then the model is considered valid (Dumitrescu et al. 2012). Value-at-Risk is

probably the most used measure of portfolio risk in major commercial banks

(Berkowitz et al. 2011). The popularity of this concept among financial prac-

titioners is based on the simplicity of this concept (Engle & Manganelli 2004).

Dumitrescu et al. (2012) emphasize three main problems with evaluating

Value-at-Risk forecasts where the first one is the most important one. The

problem is related to the power of the backtesting test

Power = Pr(Reject H0| H1 is True)

where H0 : model is valid, H1 : otherwise especially in small samples. These

tests usually do not reject the model and its validity as often as it should, hence

they have low power.

The test with one of the best finite-sample size and power properties is the

CAViaR test of the Engle & Manganelli (2004), this was suggested by Berkowitz
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et al. (2011) in their paper where they assesed many different tests. The test

is called DQ (Dynamic Quantile) test and is used in this thesis. Another test

that arises from DQ test is suggested by Dumitrescu et al. (2012) and is based

on Dynamic Binary (DB) regression model.

Measuring variation and prediction of financial returns is important for the

pricing of securities. Volatility is an important input for option pricing and

portfolio allocation (Andersen & Bollerslev 1998). They are also needed for

performance evaluation, managerial decision making and understanding their

distribution is important for the expectations of extreme shifts in portfolio

(Andersen et al. 2003).

For measuring volatility the realized measures are used and the abstract

concept of volatility is quantified through realized volatility. Papers such as

Berkowitz et al. (2011), Andersen et al. (2003) and Comte & Renault (1998)

are important stones in realized measures and specifically volatility. Barndorff-

Nielsen & Shephard (2003) suggested a different way for measuring volatility

and it is power variation, where instead of summing intraday squared returns

to get the realized volatility, the intraday absolute returns are summed.

2.2 Žikeš & Baruńık (2016)

Žikeš & Baruńık (2016) found that for S&P 500 futures prices, both the real-

ized and implied volatility possess significant predictive power when predict-

ing quantiles of future returns. When they decomposed the realized volatility

into realized downside and upside semivariance they found that the downside

semivariance drives both the left and right tale quantiles and the upside semi-

variance does not have such influence. This means that the negative intraday

returns possess more information than the positive intraday returns. In case

of jumps they found that they play small role in forecasting quantiles and that

across considered models they are not consistently significant. The data used

are transaction prices from the front contract traded on the Chicago Mercantile

Exchange (CME) between the main trading hours (9:30 - 16:00 EST), the data

are high-frequency data of S&P 500 futures contract obtained from Tick Data

ranging between January 1996 and December 2012 .

WTI Crude Oil futures are less well behaved (Žikeš & Baruńık 2016) in

sense that there is higher volatility and volatility of realized volatility than

in the case of S&P 500. Žikeš & Baruńık (2016) state that this provides an

oportunity to test the methodology. They use intraday Tick Data with focus
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on the front contract traded on the New York Mercantile Exchange. The data

range from September 2001 until December 2012 for each day between the

main trading hours (9:00 - 15:00 EST). They found that their quantile models

perform equally well in delivering quantile forecasts.

To compare relative performance Žikeš & Baruńık (2016) use benchmarks

such as CAViaR (Engle & Manganelli 2004) and ARFIMA-based lognormal-

normal mixture (Andersen et al. 2003). To compare forecast accuracy they use

tick loss function (Giacomini & Komunjer 2005). They found that no model

outperforms other models across assets or quantiles.

To model the quantiles of volatility they use heterogenous autoregressive

quantile model (HARQ) which is heterogenous autoregressive model (HAR)

(Corsi 2009) estimated as a quantile regression. They specified and report three

models, one with independent variables being previous day realized volatility,

average realized volatility over the last 5 days and last 22 days. In the second

model they split the last day volatility into positive and negative volatility

based on positive and negative semivariances and they add the Volatility Index

(VIX) calculated by the Chicago board of Exchange (CBOE) in case of S&P 500

and Crude Oil Volatility Index (OVX) introduced by CBOE which applies the

same methodology as VIX. In the last (third) specification they use volatilities

based on integrated variance and jump variation (square roots of them), VIX

and 5 and 22 last days average of square root of jump variation.

For quantiles of returns (LQR) they use similar specifications. In the first

specification the independent variable is only one and it is realized volatility. In

the second case the independent variables are volatilites (square roots) based

on integrated variance, jump variation and option implied volatility. In the last

specification they use volatilities based on positive and negative semivariances

with option implied volatility.

2.3 Taylor (2000)

Taylor (2000) uses artificial neural networks to estimate nonlinear quantile

models. The cost function of the neural network corresponds to the cost func-

tion of linear quantile regression with added parameters to penalize complexity

(overfitting) of the neural network.

The historical returns are used for multiperiod returns estimation. Sug-

gested Quantile Regression Neural Network is compared to the GARCH(1,1)

with empirical and gaussion distribution on Deutsche mark and Japanese yen,
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both quoted against U.S. dollar. The datasample starts by July 4th, 1988 and

ends by July 5th, 1996. In case of Deutsche mark the GARCH(1,1) estimator

of volatility with empirical distribution performs well for the 5th, 25th, 75th and

95th quantiles. The quantile regression neural network matches the first method

for 5th and 95th quantile and is better for 99th quantile. The GARCH(1,1) with

gaussian distribution performs best for the 1st quantile. The author states that

interestingly for the 25th quantile all three methods are severly underestimating

it. In case of yen the quantile regression neural network is better than the other

two in the case of 4 out 6 quantiles. GARCH(1,1) with empirical distribution

performs best for 75th quantile and GARCH(1,1) with gaussian distribution for

99th quantile.

For comparison of relative performance of the methods Taylor (2000) calcu-

lated χ2 goodness of fit statistics (Hull et al. 1998). He found that GARCH(1,1)

with Gaussion distribution is best in 4 out of the 7 holding periods. The quan-

tile regression neural network performs best in 2 out of the 7 cases and the

GARCH(1,1) with empirical distribution performs worst. Another measure of

relative performance was used by summing the number of times the method

outperformed the other two. GARCH(1,1) with empirical distribution per-

formed best in case of Deutsche mark and quantile regression neural network

was the best in the case of yen and in total the quantile regression neural

network performed best.

2.4 Other publications with QRNN

Quantile Regression Neural Networks were used on different types of data,

ranging from the strength of concrete (Yeh 2014) to enterprise valuation (Liu

& Yeh 2016) and forecasting of gas consumption in China (Zhu et al. 2014).

Yeh (2014) studies the compressive strength of high performance concrete

and its distribution. 1030 observations were used for evaluation of Quantile

Regression Neural Network and in those observations several variables were

included such as amounts of cement, blast furnace slag, fly ash and so on.

Several conclusions can be taken out of this study: Quantile Regression Neural

Networks can build accurate models of the distribution of compressive strength

of high performance concrete, variance of the error is not constant across the

observations which implies heteroskedasticity in the predictions, normal distri-

bution does not fit the empirical distribution as well as the logarithmic distri-

bution.



Chapter 3

About Neural Networks

3.1 Single Neuron

Single neuron is supposed to mimic the biological neuron (see Figure 3.2). It

consists of several parts. It starts with inputs, there can be one or more of them

and they are supposed to mimic the dendrites in biological neuron (Figure 3.1).

Next is a summing function that is linear and takes the inputs and creates a

weighted sum of inputs with bias

y = b+
∑

(wi ∗ xi) (3.1)

where b is bias, xi is ith input, wi is weight of the ith input and y is the weighted

sum. The sum is then passed through a function that is called activation func-

tion (ϕ(y)). Activation function is usually non-linear, but for example linear

neuron has linear acivation function. Activation function is what differenti-

ates neurons, it is usually non-linear, increasing, bounded and differentiable to

make the learning easier and the optimisation faster, but it is not necessary to

meet all of the criteria. This activation function mimics the axon in biological

neuron. The last is the output that is supposed to mimic the terminal buttons

of biological neuron.

3.1.1 Linear Neuron

Linear neuron is a neuron where the output can be described by a linear func-

tion of input or inputs. In other words the activation function is linear and

it can even be removed or equalled to identity (value of input is equal to the

input). If it is not the case (the activation function is not identity) and the
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Figure 3.1: Artificial neuron

Source: Figure taken from Chrislb (2005)

Figure 3.2: Biological neuron

Source: Figure taken from Dorland (2007)

activation function is still linear, lets say ϕ(y) = α + β ∗ y where y is the out-

put of the summing function (Equation 3.1) in the neuron. Then there exists

a linear neuron with activation function equal to identity that has the same

neuron output given the input. This neuron can be created by transforming

the summing function (Subsection 3.1.1). The output of a neuron is equal to

a function of inputs

output = ϕ(y) = ϕ(b+
∑n

i=1wi ∗ xi) = α + β ∗ (b+
∑n

i=1wi ∗ xi) =

(α + β ∗ b) +
∑n

i=1(β ∗ wi) ∗ xi

where n is the number of inputs, the α+β∗b is the new bias in the summing

function and β ∗ wi is the new weight of ith input.

3.1.2 Binary Threshold Neurons

The activation function of this neuron is equal to the Heaviside step function.

Which is equal to 0 if the argument is negative and 1 otherwise.

H(n) =

0 if n is negative

1 otherwise
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The activation function can be specified as ϕ(y) = H(y − θ) where y is the

result of the summing function of the neuron and θ is a threshold. The threshold

is usually equal to 0, because the summing function can simly increase the bias

(b in Equation 3.1) by the value of θ. It means that under some conditions the

neuron is inactive and otherwise it sends signal that it is active.

3.1.3 Rectified Linear Neuron

This type of neuron is a combinaion of the previous two. It combines a linear

activation function with a threshold value. When the argument of the activa-

tion function is negative then the function is equal to 0 and if not then it is

equal to the argument. Where the 0 works as a threshold as in the previous

type of neuron. To get to a threshold different from 0 we would have to change

the bias in the summing function which is determined by the evaluation or

instead of using ϕ(y) use ϕ(y + δ)

ϕ(y) =

0 if y is negative

y otherwise

We can also specify the activation function as ϕ(y) = y ∗H(y) where the y is

the sum from summing function and H(y) is the Heaviside step function.

3.1.4 Sigmoid Neurons

Sigmoid neuron is a neuron whose activation function satisfies condition of

non-lineararity, it is increasing, bounded and differentiable. Sigmoid function

typically refers to the special case of logistic function

ϕ(y) =
1

1 + e−t
(3.2)

where this function is differentiable, increasing, non-linear and bounded by

0 and 1 on the whole set of real numbers. Another possibility for sigmoid

function can be hyperbolic tangent function

tanh(x) =
ex + e−x

ex − e−x
(3.3)

which is also differentiable, non-linear, increasing and it is bounded by -1 and

1.
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For the purposes of estimation in this thesis the second case will be used.

3.1.5 Stochastic Binary Neurons

Stochastic Binary Neuron is similar to the Sigmoid Neuron with logistic acti-

vation function. The difference between them is that the output of the logistic

activation function is the probability of firing. The output of this neuron can

be 0 (not fire) and 1 (fire). For example when the output of logistic activation

function is equal to 0.74 then there is probability of 74% that the output of the

neuron will be 1 and 26% that it will be 0.

3.2 Neural Network

Neural networks are models that are inspired by brain, its neurons and con-

nections between the neurons. As neurons in models are similar to biological

neurons the neural network models are similar to biological neural networks

especially in the amount of connections between the neurons.

Neural networks can be considered (especially in the case of this thesis) a

generalization of standard linear models. They are able to model non-linearities

and they are especially used for modeling dependencies where there is no ex-

pectation on the type of dependency (the dependency is expected, but the form

is unknown). They are used for modeling over big datasets such as recognition

of what is on a picture, face recognition. They can also be used for recognition

of speech and handwriting, for self driving cars and even for creating poetry.

Each neural network is typically divided into several layers of neurons. Into

input layer, hidden layers and output layer. Input layer consists of neurons

that send the data to the hidden layers. There can be only one, or many more

hidden layers and they might have the same structure or they might not. These

layers transform the input. Output layer gives the results of the transformation

of the input.

For estimating the weights and biases in neurons in a neural network we use

learning algorithms that are typically based on some form of gradient based

non-linear optimization.

Another important part of the neural networks is the cost function which is

minimized and through this minimization and learning we get the weights and

biases in neurons.
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3.2.1 Neural network with one neuron

Using neural networks with only one hidden neuron does not make much sense.

There are better methods for estimation a model in econometrics than this.

The non-linear activation function in neuron could be worked around by trans-

forming the dependent variable of a linear model and the cost function only

sets the apropriate econometric method.

3.2.2 Neural network with more neurons

Standard neural network contains three types of layers:

� Input layer (neurons in this layer are not connected between them selves

but are only connected to all the neurons in the first hidden layer.

� Hidden layer (neurons in each layer are not connected between them selves

but each neuron is connected to every neuron in previous (either input or

hidden layer) and next layer (either hidden or output layer), the previous

layer sends information to this neuron, the information gets transformed

and is send to every neuron in the next layer)

� Output layer (neurons in this layer are not connected between them

selves, but each neuron is connected to every neuron in the previous

hidden layer and usually there is only one neuron in this layer)

Input Layer

Input neurons are used for transfering the input to the neural network and

they are used for standardising the input. Easy way to think about them is

to compare them to explanatory variables in a regression but the effect that

single variable has on the output is more complex than in a simple regression.

Hidden Layers

These layers have a variable number of neurons based on the data, training

process,... . Each neuron in each layer has a number of inputs that corresponds

to the number of neurons in the previous layer (input layer or hidden layer)

and its output works as an input for each neuron in the following layer (hidden

or output layer).
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Output Layer

The output layer can consist of many neurons, but usually there is only one.

It adds outputs from the last hidden layer with assigned weights and then

transforms it by the activation function.

3.3 Learning

There are three main learning ideas that are based on the problem needs, on

the problem that is supposed to be solved.

� Supervised learning - for a given input vector and output, the supervised

learning tries to find function that best fits the data, that minimizes the

cost function.

� Reinforcement learning - data are usually given by the interaction with

the problem that is supposed to be modeled, in each step the model

performs action and the enviroment corresponding reaction and a cost.

The goal is to minimize the sum of individual costs, the goal is to learn

to select the best action for minimizing the cost.

� Unsupervised learning - it differs from supervised learning by not having

an input, output and cost function, but only having input and cost func-

tion to be minimized. It is used for finding internal representation of the

input.

3.4 Similarity between simple neural networks and

classic estimators

The similarity of neural networks and classic estimators exists in some cases

and should be examined. Classic estimators are in a way a subset of neural

networs. They are not a perfect subset, but they are close. For example OLS

is not a subset of neural networks, but we can get results that will converge to

those of OLS.

3.4.1 Similarity between simple neural network and OLS

Linear neuron is build in following way: input, summing function, activation

function and output (Figure 3.1). We can achieve a similar result as in OLS
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when we consider neural network that consists of one linear neuron with acti-

vation function being linear (ψ(x) = x) and cost function of the network being

C(xi, yi) =
∑n

i=1(f(xi)− yi)2 where n is the number of observations, xi is the

ith input, f(x) is summing function and yi is the ith expected output. When we

estimate this network, the parameters in the summing function should converge

to the parametrs estimated by the OLS.

3.4.2 Similarity between simple neural network and MLE

As in the case of OLS, lets assume neural network with one linear neuron.

The difference and what makes the network similar to a Maximum Likelihood

Estimation is the neural network cost function which is

C(y, z) = −Πn
i=1f(yt|zt) (3.4)

where yt is the dependent variable and zt is the output of the neural network

at time t, it corresponds to MLE where the L(θ|y,X) = Πn
i=1f(yt|xt, θ) is

maximized. The zt corresponds to x′tθ.



Chapter 4

Methodology

4.1 Quantile Regression

4.1.1 Quantiles

Quantiles are values that devide a set of values into equally sized subsets. Q-

quantiles are values that devide a set into q subsets that are equal (or almost

equal, depending on a particular case). kth q-quantile of a set X is a value for

which following applies:

P (y<z, y ∈ X) ≤ k

q
(4.1)

P (y ≤ z, y ∈ X) ≥ k

q
(4.2)

where z is the value of the kth q-quantile.

There are special quantiles that are used more often than others, for example

median which is 1st 2-quantile or 2nd 4-quantile and so on. The rule that k = q
2

applies to median and in other words the median is the middle or central value.

Another often used quantile is kth 100-quantile which can be called kth

percentile. In this thesis, only percentiles will be used and they will be denoted

as quantiles. For example 95th 100-quantile will be denoted as 95th quantile.

Median is not the only quantile that is used often in economic literature.

Confidence intervals are based on quantiles too, confidence interval at signifi-

cance level of 5% (or 95% confidence interval) has a lower bound equal to 2.5th

quantile and upper bound equal to 97.5th quantile. Quantiles that are impor-

tant in this thesis are 5th and 10th quantiles of returns, which can be considered

as 5% and 10% VaR, or 5% and 10% probability that the comodity (in the case
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of this thesis S&P 500 and WTI Crude Oil) will fall in value by more than the

VaR.

4.1.2 Quantile Regression

Quantile regression is based on the idea of estimating the conditional quantile

(for example median) in opposite to the OLS where the the conditional mean

is estimated. While estimating the quantile regression we do not make any

assumption about the distribution or about the conditional variance. To esti-

mate (4.3) for qth quantile we are looking for βq such that the equation (4.4)

is satisfied. Estimation is done through minimizining the function defined in

(4.5)

yi = α + x′iβq (4.3)

P (y ≤ x′βq|x) = q (4.4)

Fn(βq|y,X) =
n∑

i:ei,q≥0

q|yi − α− x′iβq|+
n∑

i:ei,q<0

(1− q)|yi − α− x′iβq| (4.5)

where ei,q = yi − α− x′iβq.

4.2 Value-at-Risk

Value-at-Risk is an economic indicator that is used for estimation of the highest

potential loss of a given instrument, investment or portfolio of financial instru-

ments on a given significance level. VaR is basically a 95th or sometimes 99th

quantile of maximum expected loss. Which means that it is expected that only

in 5% or 1% of cases the loss will be higher than the value that VaR gives. For

example in case of 95% VaR and the value of Value-at-Risk being $1 means

that there is 5% probability that there will be a loss of $1 or more. Similarly

the Value-at-Risk can be defined in an opposite way as a α-quantile of profits

or better α-quantile of returns. The α that corresponds to the 95th and 99th

quantile of maximum expected loss is 1st and 5th quantile of returns.

Lets define the Value-at-Risk, let f(xt) be a probability distribution function

of a logarithmic price process in time t and F (xt) be its cumulative distribution
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function. We will consider the cumulative distribution function to be defined on

the interval (−∞, ∞). It is defined on such interval because the logarithmic

price process is not bounded, when the actual price approaches 0, then the

logarithmic price approaches −∞ and the return is this value minus some real

value (logarithm of a real number - real price). It works similarly for the upper

bound in case the real price starts from 0 (which can be for example start-up in

its earliest moment). We will not require the cumulative distribution function

to be strictly increasing, the non-decreasing restriction is enough. This means

that there might be two or more different values xl, xm such that F (xl) =

F (xm) = α.

Lets define function G(xt)

G(xt) =

F (xt) if ∀xm, xm > xt : F (xt) 6= F (xm)

not defined otherwise

by the definition, the G(xt) is invertible and its functional values are in

interval [0, 1]. Now we can finally define the α-VaR

α-VaR =



G−1(1-α) if G−1(1-α) is defined

where αu is such value that G−1(1-αu) is defined,

G−1(1-αu) and @ αl, α > αl > αu such that G−1(1-αl)

is defined.

4.3 Realized measures and forecasting Returns and

Volatility

As in Žikeš & Baruńık (2016) the logarithmic price process (Xt) is used.

Quadratic variation is used as a measure of volatility in the logarithmic price

process. It can be split into the integrated variance and jump variation. Where

the jump variation is there due to the discontinuos part of the logarithmic price

process (Xt) and the integrated variance is there due to the continuous part of

the Xt.

QVt = IVt + JVt
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To split the quadratic variation into integrated variance and jump variation

lets assume data sample of size T*(M+1), which corresponds to T days and

M+1 observations in each day (intraday observations). Lets define ith return

observation in day t as:

∆iXt = Xt−1+ i+1
M
−Xt−1+ i

M

Return can be defined this way due the usage of logarithmic price process,

Xt = log(pt) where pt is the price process, then

∆iXt = Xt−1+ i+1
M
−Xt−1+ i

M
= log(pt−1+ i+1

M
)− log(pt−1+ i

M
) = log(

pt−1+ i+1
M

pt−1+ i
M

)

hence ∆iXt can be understood as logarithmic return.

4.3.1 Realized Variance

A consistent estimator of the overall quadratic variation is realized variance

(Andersen & Bollerslev 1998):

RVt,M =
M−1∑
i=0

(∆iXt)
2

where RVt,M
p−→ QVt with M −→ ∞. To split the quadratic variation into

integrated variance and jump variation we filter the process Xt by using the

median realized variance (Andersen et al. 2012; Žikeš & Baruńık 2016)

MedRVt,M =
π

6− 4
√

3 + π

M

M − 2

M−3∑
i=0

med(|∆iXt|, |∆i+1Xt|, |∆i+2Xt|)2

The median realized variance is a consistent estimator of the integrated vari-

ance and the difference between the realized variance and the median realized

variance is a consistent estimator of the jump variation.

IVt,M = MedRVt,M

JVt,M = RVt,M − IVt,M

The realized variance can be also split into two parts where one is based
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on the positive intraday returns and the second one on the negative intraday

returns (Barndorff-Nielsen et al. 2010; Sévi 2014). Žikeš & Baruńık (2016)

found that the negative semivariance possesses much more information for the

forecasting of future volatility than the negative semivariance.

RS−t,M =
M−1∑
i=0

(∆iXt)
21{∆iXt<0}

p−→ 0.5IVt +
∑

t−1≤s≤t

1{∆Js<0}(∆Js)
2

RS+
t,M =

M−1∑
i=0

(∆iXt)
21{∆iXt>0}

p−→ 0.5IVt +
∑

t−1≤s≤t

1{∆Js>0}(∆Js)
2

4.4 Models for returns

The specification of the following models is the same as Žikeš & Baruńık (2016)

used. These three models will be used for comparison of the estimation tech-

niques of Žikeš & Baruńık (2016) and techniques suggested by this thesis, in

the sense that the same dependent and independent variables will be used for

linear quantile regression estimation and quantile regression neural network

estimation approach.

These models forecast quantiles of returns, specifically they are used to

forecast 5%, 10%, 50%, 90% and 95% quantiles of returns. The first two

quantiles can considered as Value-at-Risk. Generally for α-quantile the model

can be specified as follows

qα(rt+1|Ωt) = β0(α) + βv(α)′vt,M + βz(α)′zt (4.6)

where

rt+1 = Xt+1 −Xt

,

vt,M = (QV
1/2
t,M , QV

1/2
t−1,M , ..., IV

1/2
t,M , IV

1/2
t−1,M , ..., JV

1/2
t,M , JV

1/2
t−1,M , ...)

zt is a vector of other exogenous variables and qα(rt+1|Ωt) is the α-quantile

of returns conditional on the information set Ωt.

More specifically, Žikeš & Baruńık (2016) define three models
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LQR1:

qα(rt+1|Ωt) = β0(α) + β1RV
1/2
t (4.7)

LQR2:

qα(rt+1|Ωt) = β0(α) + β1IV
1/2
t + β2JV

1/2
t + β3ImVt (4.8)

LQR3:

qα(rt+1|Ωt) = β0(α) + β1RS
+
t

1/2
+ β2RS

−
t

1/2
+ β3ImVt (4.9)

4.5 Models for realized volatility

As in Section 4.4 Žikeš & Baruńık (2016) specify three models for quantiles of

realized volatility dependent on the realized measures. The quantiles of realized

volatility that will be used are 50%, 75%, 90% and 95% quantiles. The models

will be estimated with linear quantile regression and corresponding models

will be estimated with quantile regression neural network and then compared.

General α-quantile model can be specified as follows

qα(RVt+1,M |Ωt) = β0(α) + βv1(α)′vt,M + βv5(α)′vt,t−5,M+

βv22(α)′vt,t−22,M + βz(α)′zt
(4.10)

where

vt,t−k,M =
1

k

k−1∑
j=0

vt−j,M

and vt,t−k,M is the average of vt,M over the past k days, zt is a vector of other

exogenous variables and qα(rt+1|Ωt) is the α-quantile of returns conditional on

the information set Ωt. In case of S&P 500 there will be no other exogenous

variables and in the case of WTI Crude Oil there will be dummy for wednesday

(DW
t = 1). The model Equation 4.10 is called heterogenous autoregressive

quantile model (HARQ) and the following specifications suggested by Žikeš &

Baruńık (2016) will be used (without the wednesday dummy variable for the

WTI case)
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HARQ1:

qα(RV
1/2
t+1 |Ωt) = β0(α) + β1RV

1/2
t + β2RV

1/2
t,t−5 + β3RV

1/2
t,t−22 (4.11)

HARQ2:

qα(RV
1/2
t+1 |Ωt) = β0(α)+β1RS

+
t

1/2
+β2RS

−
t

1/2
+β3RV

1/2
t,t−5 +β3RV

1/2
t,t−22 +β4ImVt

(4.12)

HARQ3:

qα(RV
1/2
t+1 |Ωt) = β0(α) + β1IV

1/2
t + β2IV

1/2
t,t−5 + β3IV

1/2
t,t−22 + β4JV

1/2
t + β5ImVt

(4.13)

4.6 QRNN

4.6.1 Taylor (2000)

Selection of appropriate explanatory variables might not be simple task, so

Taylor (2000) uses artificial neural network for estimation of nonlinear quantile

models. Author uses historical returns from different periods and proposes a

quantile regression approach to estimate the multiperiod returns distribution.

He estimates quantile regression neural network model (with one hidden layer)

f(xt,v,w) = g2(
m∑
j=0

vjg1(
n∑
i=0

wjixit)) (4.14)

of the qth quantile by minimizing the following expression:

min
v, w

( ∑
t|yt≥f(xt,v,w)

q|yt − f(xt,v,w)|+
∑

t|yt<f(xt,v,w)

(1− q)|yt − f(xt,v,w)|+

λ1

∑
j,i

w2
ji + λ2

∑
i

v2
i

)
(4.15)

λ1 and λ2 are parameters that penalize the complexity (overfitting) of the

neural network. Taylor (2000) suggests to select the optimal values of λ1, λ2

and the number of neurons in the hidden layer m by cross-validation. Another

suggestion, based on Tang & Fishwick (1993), is to use n neurons, where n is

number or inputs (variables).
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4.6.2 QRNN - implementation in R

The quantile regression neural network estimation used in this thesis was imple-

mented in R by Cannon (2011). The model is based on the standard multilayer

perceptron artificial neural network. The outputs from the model are calcu-

lated in a following way. Each hidden layer node output is calculated by using

hyperbolic tangent function (sigmoidal function) on a weighted sum of inputs

gj(t) = tanh(
l∑

i=1

xi(t)w
h
ij + bhj )

where the bhj is the jth hidden neuron bias, xi(t) is the ith input, l is the

number of inputs and whij is the weight that corresponds to a given neuron and

input.

The output yτ (t) of the neural network (conditional α-quantile) is calculated

as

yτ (t) = f(
J∑
j=1

gj(t)w
(0)
j + c)

where J is number of neurons in hidden layer, gj(t) is the output of jth

neuron, w
(0)
j is the jth output layer weight, b(0) is the output layer bias and

f(.) is the output layer transfer function that is used for left censoring (it is

either identity or ramp function). When the left censoring is applied then the

Huber norm is used to for construction of smooth approximation cost function

then standard gradient-based optimization algorithms are applied. The cost

function is constructed as follows, starting with the Huber norm

h(u) =

u2

2ε
if 0 ≤ |u| ≤ ε

|u| − ε
2

otherwise

tilted absolute value function

ρ(a)
τ =

τh(u) if 0 ≤ u

(τ − 1)h(u) otherwise

ramp function

r(a)(u) =

h(u) if l ≤ u

l otherwise
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and the cost function (in Taylor (2000) error function)

E(a)
τ =

1

N

N∑
t=1

ρ(a)
τ (y(t)− ŷτ (t))

The problem with overfitting is tackled through weight decay regularization

with the addition of penalty to the cost function

E(a)
τ =

1

N

N∑
t=1

ρ(a)
τ (y(t)− ŷτ (t))− λ

1

IJ

I∑
i=1

J∑
j=1

(w
(h)
ij )2

where lambda controls the relative contribution of the penalty and is pos-

itive. As Taylor (2000) says this approach reduces the non-linearity in the

model. The bagging is also used to reduce the overfitting, the model is trained

on resampled datasets and then the result is the average of these models (same

models trained on different subsamples of the dataset).

4.7 How to compare results

As a forecasting measure of accuracy in forecasting quantiles we use percent-

age of observations that fall bellow the estimator. The reason for not using

conventional measures is the unobservable nature of quantiles (Taylor 2000).

To get a good estimate of the qth quantile we need to get the forecasting

measure of accuracy equal to q which is just saying that it is the qth quantile,

this is called the absolute performance. If the model for quantile forecasts is

correctly dynamicaly specified this should be always true.

Second important requirement from quantile models is that the forecasted

distribution should be as narrow as possible. Forecasts of distribution in Fig-

ure 4.1 might fulfil the first requirement (on average) but having the better

forecast gives more precise information. Comparison of this is called compari-

son of the relative performance.

4.7.1 Absolute performance of one-step-ahead forecasts

The approach taken here is only suited for the one-step-ahead forecasts. The

absolute performance of the models is evaluated by the CAViar test (Berkowitz

et al. 2011) (version of DQ test of Engle & Manganelli (2004)). The test is based

on Hit variable
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Figure 4.1: Comparison of quantile forecast
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Hitt+1 = 1{rt+1 ≤ qα(rt+1|Ωt)}

which is a binary variable that is equal to 1 if the rt+1 is below the quantile

prediction and zero when it is above. If the quantiles are correctly specified

they should be i.i.d. with Bernoulli distribution with parameter α. Berkowitz

et al. (2011) suggest to test this by estimating following logistic regression:

Hitt = c+
n∑
k=1

β1,kHitt−k +
n∑
k=1

β2,kqα(rt+1−k|Ωt−k) + ut (4.16)

To show that α-quantile is correctly specified is to have the β coefficients

insignificant and P (Hitt = 1) = ec

ec+1
= α. The critical values for the test

are obtained through Monte Carlo simulation. This test tests that there is

no autocorrelation in Hit and that it is not dependent on lagged α-quantile

forecasts.

4.7.2 Absolute performance of multi-step-ahead forecasts

In the case of multi-step-ahead forecast we have to redefine the Hit variable as

Hitt|t+h = 1{rt+1 + rt+2 + ...+ rt+h ≤ qα(rt+1 + rt+2 + ...+ rt+h|Ωt)}

where the qα(rt+1 +rt+2 + ...+rt+h|Ωt)} is the h-step-ahead α-quantile fore-

cast for cumulative h-period return under the information Ωt that is available

at time t. The cumulative h-period return is a sum of returns due to the fact

that the logarithmic returns are used.

Unlike the one-step-ahead forecast we can not use the Equation 4.16 for

testing correct dynamic specification of quantiles, due to the fact that the

sequence is h-dependent, as is suggested by Žikeš & Baruńık (2016). They

also suggested a way around this problem, but they reported that the test has

poor performance on finite samples. Also they stated that to the best of their

knowledge there is no reliable test for correct dynamic specification of multi-

step-ahead quantile forecasts. Similarly to the best knowledge of the author of

this thesis, there is still no reliable test for absolute performance.
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4.7.3 Relative performance

The relative performance of quantile models is based on the Clements et al.

(2008) and the core idea is comparison of values from a tick loss function

Lα(emt+1) = (α− 1{emt+1 < 0})emt+1 (4.17)

where we look at the expected tick loss:

Lα,m = E((α− 1{emt+1 < 0})emt+1)

where emt+1 = rt+1 − qmα (rt+1|Ωt) and qmα (rt+1|Ωt) is the fitted value of α-

quantile at time t + 1 of model m. If the return is higher than the forecasted

quantile (in case of 50th or higher quantiles) then the penalization is higher

than if the return was below the forecasted quantile. In case of smaller than

50th quantile the situations that are more penalized are those when the returns

are below the forecasted quantiles.

The relative performance compares two models and their tick loss. With

the null hypothesis H0 : Lα,m = Lα,n against a general alternative, where we

test that the two models have equal expected tick loss. The Diebold & Mariano

(1995) test is used.

The test works in a following way. We transform the emt+1 by the tick loss

function (4.17) of both models that we want to compare. Lets say that the

model n is the model we compare to and m is the model we compare. We take

their differences

dt = Lα(emt+1)− Lα(ent+1), for each t in 1, ...T

and we calculate the following statistics

DM =
d̄√

1
T
var(d)

∼ N(0, 1) (4.18)

where d̄ is the mean of dt, T is the number of observations (predictions,

length of the d) and var(d) is in the case of one-step-ahead forecast the variance

of d and in case of multi-step-ahead forecasts the Newey-West variance of d

and DM is distributed by N(0, 1) (Diebold 2015). The Newey-West variance

(Newey & West 1987) for h-step-ahead forecast can be computed by:
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NWvar(x) = var(x) + 2
h−1∑
i=1

cov(xt, xt−i)

where var(x) is the usual variance and cov(xt, xt−i) is covariance.

4.8 Hypothesis 1

First hypothesis states that QRNN provides better quantile estimates than

standard linear quantile regression. This will be tested by comparing the LQR1,

LRQ2, LQR3 (Section 4.4), HARQ1, HARQ2 and HARQ3 (Section 4.5) of

Žikeš & Baruńık (2016) to their generalization through neural networks, in

other words for each of these models the QRNN will be estimated with the

same input data and the same input specification. The predictions of two

corresponding models will be compared. This will be done for both in-sample

and out-of-sample data.

4.9 Hypothesis 2

In the second hypothesis the volatility is expected to be important for predicting

quantile returns. This will be evaluated by comparing models with and without

volatility.

4.10 Hypothesis 3

The hypothesis 3 states that the expected densities of returns are skewed.

Simple example of skewed expected density of returns can be in a situation

when there is the same probability of a good and bad result but one (lets

assume the good result) has limitations and the other one does not. This is an

example of negative skew.

Before constructing the test lets define the skewness. There are different

measures of sample skewness and we will base ours on Equation 4.19 (Cramer

1946; Joanes & Gill 1998).

g1 =
m3

m
3/2
2

(4.19)

mr =
1

n

∑
(xi − x̄)r
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where mr are sample moments, x̄ is the sample mean. But Joanes & Gill

(1998) show that they are biased. Based on their study, we will use two mea-

sures for skewness that work better in small samples. Where first one is G1.

Bias in the sample moments are biased (estimates of the population moments

µr)

E(m2) =
(n− 1)

n
µ2

E(m3) =
(n− 1)(n− 2)

n2
µ3

by making the correction we get

K2 =
n

n− 1
m2

K3 =
n2

(n− 1)(n− 2)
m3

and we can define the G1 as

G1 =
K3

K
3/2
2

=

√
n(n− 1)

n− 2
g1 (4.20)

Second measure that we will use is b1

b1 =

(
n− 1

n

)3/2
m3

m
3/2
2

(4.21)

Both parameters will be tested with null hypothesis of them being equal to

0 against general alternative. It will be done by estimating skewness (b1 and

G1) for each time t from its prediction of distribution and then testing series

of b1 and G1 that they are equal to 0.
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Data

As in Žikeš & Baruńık (2016), data from S&P 500 futures and WTI Crude Oil

futures contracts are used.1

Both S&P 500 futures and WTI Crude Oil futures use tick-data that are

condensed into daily observations of date, logarithmic return, option implied

volatility and components of quadratic variation - realized measures: realized

variance, positive and negative semivariances, median realized variance. Real-

ized measures are obtained from 5-min logarithmic returns where the returns

are based on last tick method. The sampling frequency is the same as in Žikeš

& Baruńık (2016) so corresponding results can be obtained.

The two variables of high importance are returns and realized volatility

which will be used as dependent variables in the models. Explanatory vari-

ables are realized volatility, option implied volatility, square root of integrated

variance and averages of their lags, square root of jump variation and square

root of both positive and negative semivariances.

The option implied volatilities are the volatility indecies calculated by the

Chicago Board of Exchange (CBOE). In the case of WTI Crude Oil futures it

is the crude oil volatility index (OVX) which is the 30-day volatility implied by

oil futures options, but it goes back only to May 2007, so as in Žikeš & Baruńık

(2016) the model free implied volatility index suggested by Carr & Wu (2009)

and Trolle & Schwartz (2010) is used, using the American style futures options

settlement prices of oil traded on the Chicago Mercantile Exchange (CME).

The option implied volatility (September 2001 - August 2008) and the OVX

(September 2008 - December 2012) was spliced together as in Žikeš & Baruńık

(2016) to get the final implied volatility.2

1Data were provided by Josef Baruńık.
2Already calculated implied volatility was provided by Josef Baruńık in the dataset.
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In the case of S&P 500 the problem with option implied volatility is simplier,

the Volatility Index (VIX) index is used (again calculated by the CBOE). This

index (as OVX) measures the one month expected volatility which is implied

by a portfolio of put and call options.

Jumps (jump variation) are detected from the median realized variance

and the realized variance. When their difference for a certain day is signifi-

cantly different from 0 (at 0.1% significance level), then we detected a jump.

When a jump is detected for day t, the integrated variance is set to be equal

to the median realized variance IVt,M = MedRVt,M and the jump variantion

is set as a difference between realized variance and median realized variance

JVt,M = RVt,M −MedRVt,M . When a jump for day t was not detected, then

the integrated variance is equal to the realized variance and the jump variation

is equal to 0 IVt,M = RVt,M , JVt,M = 0.

5.1 WTI Crude Oil futures

The data for WTI Crude Oil futures start by September 4th, 2001 and end

with December 31th, 2012. All together they contain 2829 observations. Basic

statistics are provided in Table 5.1. The average return is 0.04 with standard

deviation 1.87 which gives (under normal distribution) 95% confidence interval

for the return (-0.03; 0.11), the median is above the mean approximately equal

to the upper bound of the confidence interval which suggests slightly skewed

probability density function which is supported by the sample skewness. The

second main variable that will be forecasted is the realized volatility. The

realized volatility mean is equal to 1.73 with standard deviation 0.73 which gives

(under normal distribution) 95% confidence interval (1.7; 1.76). Other variables

that will be used as explanatory variables are positive and negative semivariance

with means 1.8 and 1.71, median realized variance with mean 3.25 and option

implied volatility with mean 40.91. The option implied volatility is higher

than the realized volatility which shows the existence of a negative variance

risk premium (Bollerslev et al. 2009). The positive and negative semivariances

account both for approximately half of the realized variance(48.7% and 51.3%).

Jump Variation is present in 71 days (2.5% of days) and the amount of it

accounts for 0.7% of the realized variance.

Figure 5.1 suggests high volatility clustering as can be seen especially for

the period between 2008 and 2010, whilst other periods experience very little

volatility (after the year 2006). Similar observation can be made for jump
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Table 5.1: Summary statistics for WTI crude oil futures

Mean Std. D. Median Min Max Skewness Kurtosis

rt 0.04 1.87 0.11 -12.54 14.43 -0.15 3.67
RVt 3.51 3.75 2.46 0.23 37.59 3.93 20.65
RV olt 1.73 0.73 1.57 0.48 6.13 2.04 6.02
log(RVt) 0.95 0.73 0.90 -1.45 3.63 0.54 0.74
RSV −t 1.80 2.09 1.18 0.09 21.43 3.86 20.15
RSV +

t 1.71 1.96 1.17 0.10 23.62 4.82 33.76
MedRVt 3.25 3.50 2.29 0.16 43.79 4.04 23.45
V IXt 40.91 12.20 37.42 24.63 106.50 2.09 5.41

All realized measures are calculated from 5-minute prices. The sample period starts
at September 4, 2001 and ends with December 31, 2012, with 2829 observations.

variation which is the highest and most pronounced in 2009, another spike is in

2001. Almost no variation is around the year 2006 and in 2002. The negative

semivariance has higher extreme values prior to the 2008. The returns of WTI

suggest that the process is MA(1) as can be seen in Figure 5.2 in the ACF

of returns with the one significant lag. The realized variance shows signs of

long-memory which is supported by the Ljun-Box test of no autocorrelation

with 20 lags.

5.2 S&P 500

S&P 500 futures data range from January 2nd, 1996 and end with December

31st, 2012. The sample length is higher than in the case of WTI Crude Oil

futures, alltogether it is 4265 observations. The returns have negative mean

of -0.01 with standard deviation of 1.11 which makes it statistically indistin-

guishable from 0 (under assumption of normality) with 95% confidence interval

(-0.04; 0.02). The absolute value of skewness is lower than in the case of WTI

Crude Oil futures returns and is equal to -0.04. The volatility measured with

the realized volatility is also smaller than in the case of WTI Crude Oil futures

and is equal to 0.93 with standard deviation of 0.56 which gives 95% confidence

interval of (0.91; 0.95). The realized variance is split in half into the positive

and negative semivariances (0.60 and 0.59), the median realized variance mean

is equal to 1.10 with 2.22 standard deviation and (1.03; 1.17) 95% confidence

interval.

S&P 500 experiences similar behavior as WTI Crude Oil futures with re-
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Figure 5.1: WTI Crude Oil futures: time series of daily returns, real-
ized volatility, jump variation and median realized volatil-
ity
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Figure 5.2: WTI Crude Oil futures: ACF and PACF of returns and
realized volatility

Table 5.2: Summary statistics for S&P 500 futures

Mean Std. D. Median Min Max Skewness Kurtosis

rt -0.01 1.11 0.04 -8.02 8.38 -0.04 7.11
RVt 1.19 2.33 0.65 0.04 61.35 10.20 167.92
RV olt 0.93 0.56 0.80 0.21 7.83 3.28 19.33
log(RVt) -0.39 0.95 -0.44 -3.14 4.12 0.55 0.65
RSV −t 0.59 1.10 0.32 0.01 19.13 8.08 92.84
RSV +

t 0.60 1.34 0.31 0.02 42.23 13.54 299.2
MedRVt 1.10 2.22 0.58 0.03 55.88 9.96 155.62
V IXt 1.15 0.45 1.08 0.52 4.23 1.93 6.60

All realized measures are calculated from 5-minute prices. The sample period starts
at January 2, 1996 and ends with December 31, 2012, with 4265 observations.
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alized variance, only here the magnitude is higher (Figure 5.3) and it applies

similarly to the median realized variance. The highest peaks of positive semi-

variance are higher than the peaks of negative semivariance in 2009 and before

2000, whereas the WTI Crude Oil experiences opposite effect in the peaks of

semivariances where in 2009 they have similar magnitude and in the beggining

of the sample (year 2001) the peaks of negative semivariance are higher than the

positive ones. In the case of jumps (jump variation) there are very few jumps

in 2009 and they have limited magnitude which suggests that the volatility was

consistently high, whereas in the case of WTI Crude Oil the jumps where more

pronounced and even. Jumps in 2001 are proportionally similar in both cases

of S&P 500 and WTI. Overall jumps are present in 103 days (2.4% of days)

and they account for 2% of realized variance which higher than in the case of

WTI.

The behavior of ACF (Figure 5.4) and PACF of returns is similar to the

WTI Crude Oil, it suggests the MA process with the first lag in ACF being

highly significant and the second and third being small but significant. The

behavior of realized variance suggests long-memory as in the case of WTI which

is supported by the Ljun-Box test of no autocorrelation with 20 lags.
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Figure 5.3: S&P 500 futures: time series of daily returns, realized
volatility, jump variation and median realized volatility
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Figure 5.4: S&P 500 futures: ACF and PACF of returns and realized
volatility



Chapter 6

Results

Here we compare models suggested by Žikeš & Baruńık (2016) with the cor-

responding models estimated by Quantile Regression Neural Network. The

neural networks specification is that all of the neurons have sigmoid activa-

tion function, more specifically the activation function is hyperbolic tangent.

The number of neurons is n, where n corresponds to the number of indepen-

dent variables with the exception of the model that has the specification as

the LQR1 which has only one independent variable but two neurons. The n

number of neurons is suggested by Tang & Fishwick (1993).

� LQR1 - 2 neurons

� LQR2 - 3 neurons

� LQR3 - 3 neurons

� HARQ1 - 3 neurons (4 neurons in the case of WTI)

� HARQ2 - 5 neurons (6 neurons in the case of WTI)

� HARQ3 - 5 neurons (6 neurons in the case of WTI)

The LQR (linear quantile regression) models are models of quantiles of re-

turns with explanatory variables being mainly realized measures. The HARQ

(heterogenous quantile autoregression) models, model quantiles of realized volatil-

ity with similar explanatory variables as LQR models. In the case of HARQ

models and WTI Crude Oil data there is added dummy variable for wednesday.

Out-of-sample forecasts start at July 1st, 2010 and end by December 31st,

2012 which gives 2.5 years for forecasting and almost 10 years for training. The

models are always estimated on the entire previous dataset. The linear models
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are reestimated (in the case of out-of-sample forecasts) for each time t (for each

day) which is over 600 reestimations, the quantile regression neural networks

are reestimated only 5 times on the out-of-sample due to the fact that it is

more time demanding.

6.1 LQR and HARQ models of Žikeš & Baruńık

(2016)

The models of Žikeš & Baruńık (2016) are estimated. These models will be

used as bases of comparison to the neural network models.

6.1.1 LQR

Firstly the models suggested by Žikeš & Baruńık (2016) are estimated to act

as a comparison models for the models suggested by this thesis. The 5%, 10%,

50%, 90% and 95% quantiles of daily returns are estimated, where the first

two quantiles can be interpreted as Value-at-Risk at corresponding levels for

holding long position and the last two for holding short position. The estimated

models are reported in Table 6.1 for WTI Crude Oil futures and in Table 6.2

for S&P 500 futures. The WTI Crude Oil futures starts by September 4, 2001

and ends by December 31, 2012. The S&P 500 starts by January 2, 1996 and

ends by December 31, 2012.

In both cases (WTI and S&P 500) the realized volatility is statistically sig-

nificant and as expected in lower quantiles it is negative and in upper quantiles

positive. In LQR2 the jump variation is statistically insignificant as expected

and volatility based on integrated variance is significant with signs that were

expected, but it is lower in magnitude than the RV in LQR1 which was not

anticipated, but could be due to the implied volatility in the model. In LQR3

the semivariances have expeced signs and in most cases are significant.

6.1.2 HARQ

Similarly as in Subsection 6.1.1 we estimate the HARQ models of Žikeš &

Baruńık (2016) for 50%, 75%, 90% and 95% quantiles where the last two quan-

tiles can be used by traders that are under higher volatility risk. All three

HARQ models were estimated both for WTI Crude Oil futures starting by
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Ž
ik

eš
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September 4, 2001 and ending by December 31, 2012 in Table 6.3 and the S&P

500 starting by January 2, 1996 and ending by December 31, 2012 in Table 6.4.

In both the WTI and S&P 500 the realized volatility and its lags are highly

significant for all of the quantiles. The negative semivariances are high and

highly significant close to the value of RV, whereas the positive semivariance

are close to 0 and insignificant, which suggests that the negative semivariances

possess most of the explanatory power of the realized variance. In LQR3 the

volatility based on the integrated variance is statistically significant and the

jump variation is significant only in few cases (in S&P 500 only for 90% quantile

and in WTI for 50% and 75% quantiles). The option implied volatility is

significant across models and in both instruments.

6.2 Absolute performance

Here the absolute performance of all of the models is reported for one-step-

ahead forecasts. The statistics of unconditional coverage, DQ test statistic

(Berkowitz et al. 2011) of correct dynamic specification with corresponding

(Monte-Carlo based) p-value for the null hypothesis that all of the beta coeffi-

cients in the logistic regression Equation 4.16 are equal to 0. The regression is

estimated with 5 lags.

6.2.1 LQR - Absolute performance

The absolute performance of linear quantile regression models (LQR) with

dependent variable being the returns is reported here for both the linear case

and the neural network case. The dynamic specification is tested for both S&P

500 and WTI Crude Oil, for forecasting horizon being equal to 1 and for both

in-sample and out-of-sample. The forecasted quantiles are 5%, 10%, 50%, 90%

and 95%.

Absolute performance of WTI Crude Oil futures return quantiles is reported

in Table 6.5. In case of in-sample the unconditional coverage (α̂ ) is close to

perfect in all of the cases, in out-of sample case it is shifted from the α values, it

is shifted away from the center (5% α-quantile has lower unconditional coverage

than it should have and 95% α-quantile has higher unconditional coverage than

it should have). All of the models in in-sample case except one (QRNN LQR1

90% quantile) are correctly dynamically specified. In case of out-of-sample the

models for 5%, 10% and 50% are correctly dynamically specified, in case of



6. Results 41
T
ab
le
6.
3:

C
on

d
it

io
n
al

q
u
an

ti
le

m
o
d
el

s
(H

A
R

Q
)

of
Ž
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ń
ık

(2
0
16

)
w

it
h

p
-v

a
lu

es
in

p
ar

en
th

es
is

.

T
h
e

sa
m

p
le

p
er

io
d

st
ar

ts
b
y

J
an

u
ar

y
2,

19
96

an
d

en
d
s

b
y

D
ec

em
b

er
3
1,

20
1
2.



6. Results 43

Table 6.5: Absolute performance of in-sample and out-of-sample fore-
casts for WTI Crude Oil futures return quantiles.

In-sample Out of-sample

α 0.05 0.1 0.5 0.9 0.95 0.05 0.1 0.5 0.9 0.95

LQR1
α̂ 0.050 0.100 0.500 0.900 0.950 0.056 0.091 0.515 0.928 0.978

DQ 2.522 2.104 7.651 11.037 2.357 6.647 5.305 4.021 7.579 16.124
p-value 0.773 0.835 0.177 0.051 0.798 0.355 0.505 0.674 0.271 0.013

LQR2
α̂ 0.050 0.100 0.500 0.900 0.950 0.038 0.072 0.499 0.946 0.981

DQ 1.246 2.160 7.974 10.382 2.920 3.756 7.861 2.443 19.018 20.724
p-value 0.940 0.827 0.158 0.065 0.712 0.710 0.248 0.875 0.004 0.002

LQR3
α̂ 0.050 0.100 0.500 0.900 0.950 0.042 0.070 0.506 0.946 0.981

DQ 2.022 1.705 3.206 3.291 6.192 3.864 8.273 3.428 18.097 20.724
p-value 0.846 0.888 0.668 0.655 0.288 0.695 0.219 0.753 0.006 0.002

QRNN LQR1
α̂ 0.050 0.100 0.500 0.900 0.950 0.067 0.080 0.506 0.938 0.976

DQ 4.103 4.079 8.544 14.397 5.849 5.465 5.962 5.013 12.391 14.319
p-value 0.535 0.538 0.129 0.013 0.321 0.486 0.427 0.542 0.054 0.026

QRNN LQR2
α̂ 0.051 0.101 0.501 0.900 0.950 0.042 0.078 0.490 0.930 0.976

DQ 1.317 1.752 7.502 7.501 2.054 5.981 6.355 5.243 10.912 14.824
p-value 0.933 0.882 0.186 0.186 0.842 0.425 0.385 0.513 0.091 0.022

QRNN LQR3
α̂ 0.050 0.101 0.501 0.900 0.950 0.043 0.075 0.501 0.944 0.978

DQ 1.093 7.114 3.378 5.975 5.824 4.725 7.379 4.137 20.426 16.480
p-value 0.955 0.212 0.642 0.309 0.324 0.580 0.287 0.658 0.002 0.011

Where α is the quantile, α̂ is the unconditional coverage, DQ is the Berkowitz et al. (2011)

test statistic for correct dynamic specification, p-value is the corresponding p-value to the DQ.
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90% half of them is well specified and half is not and in case of 95% quantile

the DQ shows that all of the models are not well specified.

Table 6.6: Absolute performance of models on in-sample and out-of-
sample forecasts for S&P 500 futures return quantiles.

In-sample Out-of-sample

α 0.05 0.1 0.5 0.9 0.95 0.05 0.1 0.5 0.9 0.95

LQR1
α̂ 0.050 0.100 0.500 0.900 0.950 0.034 0.077 0.473 0.929 0.963

DQ 1.734 2.907 15.814 19.869 15.147 11.495 19.082 3.405 17.680 10.775
p-value 0.885 0.714 0.007 0.001 0.010 0.074 0.004 0.757 0.007 0.096

LQR2
α̂ 0.050 0.100 0.500 0.900 0.950 0.029 0.077 0.482 0.936 0.977

DQ 3.801 3.340 13.985 8.351 4.965 9.741 14.517 1.462 24.458 17.088
p-value 0.578 0.648 0.016 0.138 0.420 0.136 0.024 0.962 0.000 0.009

LQR3
α̂ 0.050 0.100 0.500 0.900 0.950 0.029 0.079 0.474 0.937 0.976

DQ 3.815 2.371 13.033 11.101 3.764 12.683 13.395 3.488 23.083 15.524
p-value 0.576 0.796 0.023 0.049 0.584 0.048 0.037 0.746 0.001 0.017

QRNN LQR1
α̂ 0.050 0.100 0.500 0.900 0.950 0.032 0.080 0.474 0.928 0.963

DQ 1.986 3.845 17.538 17.154 15.394 12.548 17.624 2.666 17.840 10.775
p-value 0.851 0.572 0.004 0.004 0.009 0.051 0.007 0.850 0.007 0.096

QRNN LQR2
α̂ 0.050 0.101 0.502 0.901 0.950 0.031 0.080 0.471 0.936 0.973

DQ 3.053 2.198 15.471 23.234 4.128 12.141 15.876 3.343 22.944 13.008
p-value 0.692 0.821 0.009 0.000 0.531 0.059 0.014 0.765 0.001 0.043

QRNN LQR3
α̂ 0.051 0.101 0.500 0.900 0.950 0.031 0.079 0.474 0.941 0.979

DQ 3.129 1.984 22.252 7.677 3.871 13.569 19.454 2.351 23.726 18.875
p-value 0.680 0.851 0.000 0.175 0.568 0.035 0.003 0.885 0.001 0.004

Where α is the quantile, α̂ is the unconditional coverage, DQ is the Berkowitz et al. (2011)

test statistic for correct dynamic specification, p-value is the corresponding p-value to the DQ.

The situation of unconditional coverage for S&P 500 futures (Table 6.6) is

similar to WTI. In in-sample the unconditional coverage is close to perfect, in

out-of-sample it is shifted away from 50% quantile. What changes is the DQ

in in-sample for 50%, 90% and 95% quantiles where the models (in most cases)

are not well dynamically specified. At 5% significance level and in the case of

out-of-sample only the 5% and 50% quantiles seem to be well specified.

6.2.2 HARQ - Absolute performance

The absolute performance of heterogenous quantile autoregression models (HARQ)

where the dependent variable is the realized volatility is reported here for both

the linear case and the neural network. Again the DQ specification is tested

for both S&P 500 and WTI Crude Oil, for only one foresting horizon being
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Table 6.7: Absolute performance of models on in-sample and out-
of-sample forecasts for WTI Crude Oil futures realized
volatility quantiles.

In-sample Out-of-sample

α 0.5 0.75 0.9 0.95 0.5 0.75 0.9 0.95

HARQ1
α̂ 0.501 0.750 0.900 0.950 0.539 0.776 0.906 0.949

DQ 12.464 2.567 2.929 8.581 8.030 7.045 9.894 13.361
p-value 0.029 0.766 0.711 0.127 0.236 0.317 0.129 0.038

HARQ2
α̂ 0.500 0.750 0.900 0.949 0.606 0.838 0.947 0.971

DQ 13.594 3.769 3.149 3.009 36.352 34.684 28.780 11.372
p-value 0.018 0.583 0.677 0.699 0.000 0.000 0.000 0.078

HARQ3
α̂ 0.500 0.750 0.900 0.950 0.616 0.832 0.944 0.976

DQ 17.258 5.628 3.199 2.394 38.996 33.548 27.263 14.681
p-value 0.004 0.344 0.669 0.792 0.000 0.000 0.000 0.023

QRNN HARQ1
α̂ 0.501 0.750 0.900 0.950 0.565 0.784 0.914 0.958

DQ 17.137 6.979 1.642 2.109 16.991 11.574 12.574 14.936
p-value 0.004 0.222 0.896 0.834 0.009 0.072 0.050 0.021

QRNN HARQ2
α̂ 0.501 0.751 0.900 0.949 0.621 0.848 0.944 0.963

DQ 13.340 5.602 1.157 3.597 42.191 40.763 27.643 8.807
p-value 0.020 0.347 0.949 0.609 0.000 0.000 0.000 0.185

QRNN HARQ3
α̂ 0.500 0.751 0.900 0.950 0.635 0.832 0.936 0.958

DQ 15.379 3.147 0.830 4.208 49.169 31.682 13.693 16.146
p-value 0.009 0.677 0.975 0.520 0.000 0.000 0.033 0.013

Where α is the quantile, α̂ is the unconditional coverage, DQ is the Berkowitz et al. (2011)

test statistic for correct dynamic specification, p-value is the corresponding p-value to the DQ.

equal to 1 and for in-sample and out-of-sample. The forecasted quantiles are

50%, 75%, 90% and 95%.

The unconditional coverage in in-sample is again close to perfect and in the

case of out-of-sample it suffers form the same problem as LQR models do. The

dynamic specification of realized volatility models for WTI (Table 6.7) seem

to be incorrectly specified for 50% quantile in both the in-sample and most of

the out-of-sample models - only the HARQ1 is well specified. In in-sample the

75%, 90% and 95% quantiles are well specified. The out-of-sample is in most

cases incorrectly specified, only the HARQ1 seems to be ok.

The S&P 500 (Table 6.8) has close to perfect unconditional coverage in in-

sample and in out-of-sample the unconditional coverages are higher than the

true value. In in-sample the 50% and 75% quantiles are mostly incorrectly spec-

ified and the 90% and 95% are correctly specified. In out-of-sample the HARQ2,
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Table 6.8: Absolute performance of models on in-sample and out-of-
sample forecasts for S&P 500 futures realized volatility
quantiles.

In-sample Out-of-sample

α 0.5 0.75 0.9 0.95 0.5 0.75 0.9 0.95

HARQ1
α̂ 0.500 0.750 0.900 0.950 0.529 0.749 0.907 0.953

DQ 14.682 11.208 3.430 7.667 4.320 1.391 7.070 2.450
p-value 0.012 0.047 0.634 0.176 0.633 0.966 0.314 0.874

HARQ2
α̂ 0.500 0.750 0.900 0.950 0.603 0.790 0.931 0.973

DQ 35.401 13.297 6.692 1.393 31.797 6.355 20.539 11.278
p-value 0.000 0.021 0.245 0.925 0.000 0.385 0.002 0.080

HARQ3
α̂ 0.500 0.750 0.900 0.950 0.601 0.804 0.941 0.973

DQ 39.315 21.389 6.652 5.416 35.077 13.155 19.886 11.278
p-value 0.000 0.001 0.248 0.367 0.000 0.041 0.003 0.080

QRNN HARQ1
α̂ 0.500 0.750 0.900 0.951 0.526 0.744 0.905 0.953

DQ 7.107 12.514 1.814 4.563 5.518 4.703 3.671 5.127
p-value 0.213 0.028 0.874 0.472 0.479 0.582 0.721 0.528

QRNN HARQ2
α̂ 0.501 0.750 0.900 0.950 0.572 0.785 0.924 0.974

DQ 10.276 18.826 2.834 2.249 16.661 6.843 9.274 12.904
p-value 0.068 0.002 0.726 0.814 0.011 0.336 0.159 0.045

QRNN HARQ3
α̂ 0.500 0.750 0.900 0.950 0.590 0.794 0.939 0.982

DQ 15.531 19.540 6.051 1.241 28.763 12.556 18.245 21.029
p-value 0.008 0.002 0.301 0.941 0.000 0.051 0.006 0.002

Where α is the quantile, α̂ is the unconditional coverage, DQ is the Berkowitz et al. (2011)

test statistic for correct dynamic specification, p-value is the corresponding p-value to the DQ.



6. Results 47

HARQ3 and their corresponding QRNN models are in most cases incorrectly

specified. The HARQ1 and QRNN HARQ1 are specified correctly, where these

models are the models with dependent variables being lagged volatility, 5-day

average volatility and 22-day average volatility.
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6.3 Relative performance

Relative performance of two models is compared through the DM test statis-

tic Equation 4.18 which is based on the comparison of the tick-loss function

(Diebold 2015; Clements et al. 2008). The reported values are the unconditional

coverage, mean tick-loss value and the DM test statistic which is reported only

for the models that are compared to the benchmark models, to the correspond-

ing linear models.

6.3.1 LQR - Relative performance

Generally we can say that in in-sample, the QRNN performed better (on 5%

significance level) and on out-of-sample the methods were equivalent, in some

cases linear model was better and in some cases the neural network was better.

For WTI and return quantiles (Table 6.9) there is no case in which the

linear method would outperform the neural net. In most cases the methods are

statistically equivalent, the methods were statistically indistinguishable on 5%

significance level. There is no case where the QRNN has positive DM, which

means that the QRNN are better performing, but the majority is not on the

5% significance level.

In the case of out-of-sample forecasts of WTI return quantiles (Table 6.10),

most of the methods were similarly good. In few cases the linear method

was better and in few cases the neural network method performed better. The

QRNN performed generally better on 5-step-ahead and 10-step-ahead forecasts,

but not significantly enough in most cases. The unconditional coverages are

close to their true values, but not as close as in the case of in-sample.

The case of S%P 500 futures in-sample return quantiles (Table 6.11) work

similarly as WTI, in some cases the neural networks perform statistically better

(at 5%), but there is no situation where they would perform worse, where the

DM is positive. When LQR3 and QRNN LQR3 are compared then the neural

net works in 7 out of 15 cases better then the linear model and in the rest

they are not statistically distinguishable. The unconditional coverage values

are close to perfect.

In S&P 500 return quantiles on out-of-sample (Table 6.12), we can say that

only in 4 cases the neural net is worse than the linear model, but in the rest

of cases (most of them), their performance is similar (on 5% significance level).
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The unconditional coverages follow the true values but they are not as well

behaved as in the in-sample case.

6.3.2 HARQ - Relative performance

For the forecasting of realized volatility we can say that in the in-sample the

neural networks dominate the linear models. 68 out of 72 pairwise comparisons

shows better performance of QRNN, in the rest the difference in performance

is statistically insignificant. In the case of out-of-sample they seem to perform

similarly, in most cases the models do not show statistical difference in relative

performance. Only in few cases QRNN or QR is better.

In the case of WTI Crude Oil in-sample (Table 6.13), the unconditional

coverage is close to perfect and in all cases the QRNN outperforms the linear

models. Whereas for out-of-sample (Table 6.14) the unconditional coverage is

not well behaved especially for the 50% and 75% quantiles of HARQ2, HARQ3

and their corresponding neural network models, across all the forecasting hori-

zons, in the rest of the cases the behavior is better.

S&P 500 realized volatility models in-sample (Table 6.15) has conditional

coverage as every in-sample estimation close to perfect, the out-of-sample is not

well behaved, but it can be tolerated. The relative performance is in favour

of neural network models with 32 out of 36 cases being statistically significant

and 2 out of 36 just not significant at 5%. Three of the cases where the QRNN

is not significantly better is in the case HARQ1 and forecasting horizon being

10 days and one is also in the HARQ1 but for forecasting horizon being 5 days.

In the case of out-of-sample the models perform equally well with one case

where the linear model is better than the neural network model (in HARQ2,

10-step-ahead and 95% quantile).
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6.4 Skewness

Calculation of skewness is based on the Section 4.10 and the estimators G1 and

b1(Equation 4.20 and Equation 4.21). Neural networks for out-of-sample were

trained only once, not 5 times like in the cases above, because of the fact that

the estimation is done for each quantile and it is computationally demanding,

but with the same number of neurons. The calculated skewnesses for S&P 500

futures and WTI Crude Oil futures both for in-sample and out-of-sample are in

Table 6.18 and Table 6.17 (all the results are statistically significantly different

from 0, at 0.1%). The one-step-ahead returns and volatility were estimated.

The distributions of expected returns are negatively skewed for both instru-

ments and both in-sample and out-of-sample with the S&P 500 having higher

magnitude of skewness than the WTI. In case of WTI the out-of-sample cases

are skewed less than the in-sample. The distributions of realized volatility are

positively skewed with WTI having slightly lower magnitude of skewness than

the S&P. In the case of S&P 500 the out-of-sample skewnesses are little higher

in magnitude than the in-sample. The difference between G1 and b1 is posi-

tive across the models (first is higher than the second) but the differences are

negligible.
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Table 6.17: Skewness of WTI Crude Oil futures forecasted distribu-
tions of returns and volatility

In-sample Out-of-sample

b1 G1 b1 G1

QRNN LQR1 -0.130 -0.134 -0.045 -0.046
QRNN LQR2 -0.090 -0.092 -0.067 -0.069
QRNN LQR3 -0.104 -0.108 -0.090 -0.093

QRNN HARQ1 0.905 0.933 0.907 0.935
QRNN HARQ2 0.796 0.820 0.934 0.963
QRNN HARQ3 0.880 0.907 0.851 0.877

All of the estimates of skewness are statistically different

from 0 on significance level 0.1%
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Table 6.18: Skewness of S&P 500 futures forecasted distributions of
returns and volatility

In-sample Out-of-sample

b1 G1 b1 G1

QRNN LQR1 -0.213 -0.219 -0.227 -0.234
QRNN LQR2 -0.235 -0.242 -0.233 -0.240
QRNN LQR3 -0.245 -0.253 -0.217 -0.224

QRNN HARQ1 0.897 0.924 1.013 1.045
QRNN HARQ2 0.951 0.980 1.006 1.038
QRNN HARQ3 0.924 0.952 1.074 1.107

All of the estimates of skewness are statistically different

from 0 on significance level 0.1%



Chapter 7

Conclusion

This thesis applies new approach to the estimation and forecasting of volatility

and return quantiles of financial instruments. Volatility is measured through

realized measures and these measures are also used as explanatory variables.

The approach newly used for modeling volatility and return quantiles is called

Quantile Regression Neural Network, it combines the linear quantile regression

with a feedforward neural network to output the quantiles. Having some quan-

tiles of expected volatility is important for risk management, where we can now

understand the probability distribution of volatility and not only the expected

value. The quantiles of returns are important for risk management from a dif-

ferent perspective, some of the quantiles of returns are used in Value-at-Risk

models and this thesis provides different approach to their estimation.

The models provide a good fit on S&P 500 futures and WTI Crude Oil

futures both in in-sample and out-of-sample. The realized measures and specif-

ically volatilities that are based on realized measures such as realized volatility,

realized semivariance, median realized variance, jump variation and integrated

variance, with option implied volatility were used for modeling the returns and

volatility. It was showed that volatility and its components are important for

predicting the quantiles of returns. Models perform well even though the op-

tion implied volatility and especially realized volatility is not consistent over

time and even though the clustering behavior of jump variation.

The models were compared to the models suggested by Žikeš & Baruńık

(2016) in three different forecasting time horizons - one-step-ahead, five-steps-

ahead and 10-steps-ahead. For both the WTI Crude Oil and S&P 500 and all

forecasting horizons following applies: in the case of returns the QRNN works

as good or better than the linear models on in-sample and in the case of out-
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of-sample it works as good as linear models, but in few cases the QRNN have

inferior performace. For quantiles of realized volatility the models on in-sample

have better performance than the linear models (in few cases their performance

is statistically indistinguishable) on out-of-sample in the case of S&P 500 they

are equally good and for WTI Crude Oil the linear models and neural network

models are in most cases equally good and few cases the QRNN have lower

relative performance.

The distribution skewness of expected (one-step-ahead) returns and volatil-

ity was estimated with two estimators, over both the S&P 500 and WTI Crude

Oil and in-sample and out-of-sample. The skewness of expected distribution

of returns is negative for both instruments and both in-sample and out-of-

sample. The WTI has lower magnitude of the skewness than S&P 500 and the

skewness of out-of-sample is lower than the in-sample. The realized volatility

experiences positive skewness with the WTI being slightly lower in magnitude

than the S&P 500 and in the case of S&P 500 the out-of-sample being little

higher in magnitude.

Overall the models perform well. The linear models and the neural network

models have equal performance, only in the case of realized volatility quantiles

and for in-sample the neural network models dominate the linear models. Not

all techniques and all model specifications were tried so there may be estimation

techniques and specifications that could improve the performance and provide

more precise forecasts.
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