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Introduction
Only an experienced glassmaker knows how to cool down a big piece of glass
quickly and efficiently without cracking it. During the cooling process, there are
very complicated quality changes which are very hard to capture by a physical or
mathematical model. Glass changes its consistency from melted viscous fluid to
elastic solid but the question is how to describe the state of matter in the middle
of this process.

The material property which exhibits both viscous and elastic behaviour is
called viscoelasticity. There are widely used models, for example the Oldroyd
model, that describe the viscoelastic response of a material undergoing deforma-
tion but they do so under the assumption that the temperature is constant. This
isothermal approximation is sufficient in many applications. Yet, there also are
cases in which the influence of temperature is fundamental, for example in glass
industry or in polymer science. The few existing viscoelastic models with temper-
ature dependent material constants that are able to capture experiment data, for
example [6], were developed without paying much attention to the evolution of
temperature reflecting the viscoelastic character of the material, and some models
do not pay attention to the thermodynamic consistency of the model at all. In
this thesis, we show how to derive a thermodynamic consistent viscoelastic model
with general temperature dependent coefficients and the evolution equation for
temperature resulting from the nature of the viscoelastic model. For this purpose,
we use the thermodynamic framework proposed by Rajagopal and Srinivasa (see
[12]) that is based on the notion of natural configuration and the principle of
maximal rate of entropy production, and we extend it with temperature depen-
dent coefficients and derive an appropriate equation for temperature evolution.
At the beginning, we define two scalar functions - the rate of dissipation Ξ and
the thermodynamic potential, e. g. free energy ψ -, insert them in the framework
and obtain constitutive relations for the Cauchy stress tensor T and the heat flux
q, which encloses the system of governing equations.

This framework was used in the doctoral thesis of Karel Tůma [15] with the
assumption that the temperature is constant. He derived the Oldoroy-B model
and also the nonlinear model Quad1 in order to capture data from a torque ex-
periment with asphalt binder. We follow up his work by deriving a temperature
dependent models, T-Oldroyd (thus also T-Maxwell) and T-Quad1, to show that
a generalization of the framework is possible.

Originally, the idea to explore this topic arose from Karel Tůma’s doctoral thesis
and also from a cooperation with a glassmaking company. They suggested to
perform oscillatory tests on a rectangular piece of glass in order to be able to
choose (or develop) an appropriate model and fit the parameters. The method
of determining characteristics of the material undergoing sinusoidal deformation
is called Dynamic mechanical analysis (DMA) and it uses oscillatory material
(complex) constants G∗(ω) and J∗(ω). Hence, in the first chapter, we give an
overview of the basic viscoelastic models including the plots of their oscillatory
constants. The very experiment was - in the end - not carried out but we still
include the overview since it can be useful for further research. The rest of the
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first chapter focuses on the 1D mechanical analogues of viscoelasticity - a linear
spring and a dashpot (or damper) - with the influence of temperature. We look
at the system of springs and dashpots from the thermodynamic point of view,
define its free energy and derive the evolution equation for temperature. Since
we use a very similar approach in the case of real models, the one for mechanical
analogues can serve as an exemplary derivation. The derived models are tested
in oscillatory experiments and can provide an intuitive insight in the behaviour
of thermal viscoelasticity.

The proper derivation for a real fluid (or continuum in general) is done in
the second chapter. It starts from the balance equations and continues with
the derivation of a temperature evolution equation. Using the notion of natu-
ral configuration, we split the deformation on elastic end dissipative part. After
supposing the response of the material to be neo-Hookean (both cases, incom-
pressible and compressible) and defining two different rates of dissipation, we use
the principle of maximal rate of entropy production and obtain three incompress-
ible models mentioned above, T-Oldroyd, T-Maxwell and T-Quad1.

Our goal is also performing numerical simulations with derived models. In
order to do so, the third chapter starts with the weak formulation of T-Oldroyd
and T-Quad1 models. Then we describe the implementation of Finite element
method and is followed by standard benchmark for verification of the code written
in the with aid of the project FEniCS. If we want to simulate deforming objects,
which can be for example oscillating piece of material, and run the simulation
on a static computational mesh, we can use the Lagrange description instead
of Eulerian. However, in the case of larger deformation, more robust approach
should be considered hence we use Arbitrary Lagrangian-Eulerian (ALE) method.
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1. 1D Viscoelastic Toys
In this chapter, we study viscoelastic mechanical analogues undergoing oscilla-
tory deformations and present an overview of basic models together with plots
of the quantities connected with their oscillatory material constants. The sec-
ond section, the system of springs and dashpots is equipped by thermodynamic
quantities in order to get some interesting behaviour for example in oscillatory
tests.

1.1 Spring and Dashpot
Linear viscoelastic models have their origin in mechanical analogues. These are
defined by the relation between the pulling stress σ and relative elongation or
strain ε. Linear spring is characterized by the relation

σ = kε,

where k is stiffness of the spring. Linear dashpot is defined by the relation

σ = νε̇,

where ν is viscosity of the dashpot and ε̇ denotes time derivative of ε. One can link
springs and dashpot in parallel or in series to obtain different viscoelastic models.
The famous ones are Maxwell model and Kelvin-Voigt model which consist of
one spring and one dashpot in series and parallel, respectively. Besides, in this
chapter we are interested in Oldroyd and Burgers models.

There are two basic tests revealing and describing the behaviour of viscoelastic
models and materials.

Creep test is based on applying a step stress σ0 in a specimen at time t = 0
and observing the elongation ε(t) of the specimen in time.

Stress relaxation test is based on subjecting a specimen to step strain ε0 and
observing corresponding stress relaxation curve σ(t).

An overview of these tests for the basic models are properly done for exam-
ple in the book [16] or in doctoral thesis [15] together with description of other
viscoelastic effects, hence we do not present it here. However, we are interested
in small amplitude oscillation tests due to the growing importance of Dynamic
mechanical analysis (DMA)(also known as Dynamic mechanical spectroscopy).
DMA is a method to characterize a material properties. It is based on applying
a sinusoidal strain

ε(t) = ε0sin(ωt)

on a specimen and observing the stress response in the form

σ(t) = σ0sin(ωt+ δ).
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The amplitude of oscillation ε0 is small enough that the material response can be
considered to be in the linear range. The specimen undergoes oscillatory defor-
mation for many different frequencies ω (and possibly at different temperatures
θ) and one can determine the complex modulus G∗(ω, θ). Let us remark, that one
can do it in an opposite way and after applying sinusoidal stress σ(t) can observe
the response in strain ε(t). In this case one obtains other material coefficient
complex compliance J∗(ω, θ). A definition of complex modulus and compliance
as well as their properties can be found in the following. For more details about
DMA, see [11].

1.1.1 Small Amplitude Oscillation
In this section we introduce a material response functions complex modulus G∗(ω)
and complex compliance J∗(ω) widely used in experiments based on small ampli-
tude oscillations and their explicit form for several models. Here, we are dealing
with an isotermal case. More details about this topic such as a proper derivation
of all terms used here can be found in the book [16].

Relaxation function and creep compliance

Assume we have a one-dimensional linear viscoelastic model defined by a consti-
tutive equation 1 - the relation between σ and ε, stress and strain respectively.
Let us denote Heaviside step function as H1(t) with H1(0) = 1. If we then assume
a standard step strain

ε̂(t) := ε0H1(t)
and σ̂(t) is an appropriate stress response given by the considered constitutive
equation, an important function - relaxation function G(t) is defined by

G(t) := σ̂(t)
ε0

.

It can be shown that a response to an arbitrary strain history ε(t) for t ≥ 0 can
be expressed by this ’canonical’ response G(t) as

σ(t) = G(t)ε(0) +
∫ t

0
G(t− s)ε̇(s)ds.

Similarly, if we assume step stress

σ̂(t) := σ0H1(t),

the creep compliance J(t) is defined by

J(t) := ε̂(t)
σ0

,

1For example
σ̇(t)
k

+ σ(t)
ν

= ε̇(t)

with viscosity ν and stiffness k is the constitutive equation for the Maxwell model.
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where ε̂(t) is appropriate strain response. In the same manner, a strain response
to an arbitrary stress history σ(t) for t ≥ 0 can be expressed as

ε(t) = J(t)σ(0) +
∫ t

0
J(t− s)σ̇(s)ds.

It can be shown that G(t) and J(t) are coupled by the relation

1 = G(t)J(0) +
∫ t

0
G(t− s)J̇(s)ds.

Complex modulus

Let us consider a material subjected to oscillatory strain history

εs(t) = ε0sin(ωt) or εc(t) = ε0cos(ωt).

Both strain histories can be regarded as the imaginary and real parts of the
complex strain history

ε(t) = ε0e
iωt = ε0(cos(ωt) + isin(ωt),

where ε0 is the amplitude and ω is the frequency. If we expect the appropriate
sinusoidal stress response in the form

σ(t) := σc(t) + iσs(t),

it can be shown that there exist a function - complex modulus G∗(ω) such as

σ(t) = G∗(ω)ε(t).

Note that the appropriate stress response develops into sinusoidal shape for suffi-
ciently large time t. When performing an experiment it is necessary to wait until
the shape of stress response becomes sinusoidal.

Let us note several facts about complex modulus.

• Complex modulus can be written in algebraic form as

G∗(ω) = G′(ω) + iG′′(ω),

where G′(ω) and G′′(ω) are called storage modulus and loss modulus re-
spectively. Alternatively it can be expressed in polar form

G∗(ω) = |G∗(ω)|eiδ(ω),

where δ(ω) = arctg(G′′(ω)/G′(ω)) performs a phase difference between si-
nuses σ(t) and ε(t) and |G∗(ω)| =

√
G′(ω)2 +G′′(ω)2 describes the ratio of

their amplitudes. One can then write

σ(t) = G∗(ω)ε(t) = ε0|G∗(ω)|ei(ωt+δ(ω). (1.1.1)
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• If we denote G(∞) = lim
t→∞

G(t) and write the relaxation function as G(t) =
∆G(t) +G(∞), complex modulus can be expressed as

G∗(ω) = G(∞) + iω
∫ ∞

0
∆G(s)e−iωsds.

• There is more direct way how to determine G∗(ω). Let us write the consti-
tutive equation in the form

P (D)σ = Q(D)ε,

where P (x),Q(x) are polynomials and D is a symbolic time derivative. It
can be shown that

G∗(ω) = Q(iω)
P (iω) .

Complex compliance

In the same manner, let us consider a material subjected to oscillatory stress
history

σ(t) = σ0e
iωt.

After a sufficient long time, the appropriate strain response becomes sinusoidal
and if we expect it in a form

ε(t) = εc(t) + iεs(t),

there again exist a function - complex compliance J∗(ω) such as

ε(t) = J∗(ω)σ(t),

which again can be expressed in the polar form

J∗(ω) = |J∗(ω)|e−iα(ω).

Complex functions J∗(ω) and G∗(ω) are coupled by the relation

J∗(ω) = 1
G∗(ω) , (1.1.2)

hence it can be also determined directly from a constitutive relation (using the
notation from the previous page) by

J∗(ω) = P (iω)
Q(iω) .

Overview of models
There are several sets of material coefficients, especially in the case of Oldroyd
model. Therefore we present it in the two most common variants. Regarding the
identity (1.1.2), it holds

|J∗(ω)| = 1
|G∗(ω)| and α(ω) = δ(ω).

Thus we do not show graphs of |J∗(ω)| and α(ω) because it seems to be redundant.
The graphs are prepared in the software Mathematica, the script is attached on
CD.
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Table 1.1: Table of material constants.

k stiffness
ν, ν1, ν2 viscosities
λ1 = ν

E
relaxation time for Maxwell and Oldroyd

λ2 = ν1ν2
k(ν1+ν2) retardation time for Oldroyd

η = ν1 + ν2 zero shear viscosity for Oldroyd

Maxwell model
σ̇

k
+ σ

ν
= ε̇

G∗(ω) = kλ2
1ω

2

1 + λ2
1ω

2 + i
kλ1ω

1 + λ2
1ω

2

J∗(ω) = 1
k
− i 1

kλ1ω

Figure 1.1: The dependence of complex modulus of the Maxwell model on fre-
quency.
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Kelvin-Voigt model

σ = νε̇+ kε

G∗(ω) = k + ikλ1ω

J∗(ω) = 1
k + kλ2

1ω
2 − i

λ1ω

k + kλ2
1ω

2

Figure 1.2: The dependence of complex modulus of the Kelvin-Voigt model on
frequency.
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Oldroyd model
ν1

k
σ̇ + σ = (ν1 + ν2)ε̇− ν1ν2

k
ε̈

λ1σ̇ + σ = η(ε̇− λ2ε̈)

G∗(ω) = ηω2 (λ1 − λ2)
1 + λ2

1ω
2 + iηω

1 + λ1λ2ω
2

1 + λ2
1ω

2

J∗(ω) = λ1 − λ2

η(1 + λ2
2ω

2) − i
1 + λ1λ2ω

2

ηω(1 + λ2
2ω

2)

Figure 1.3: The dependence of complex modulus of the Oldroyd model on fre-
quency. There are two types of curves, first for λ1 < λ2 (e. g. for (λ1, λ2, ν) =
(0.8, 2, 1)) and the second for λ1 > λ2 (e. g. for (λ1, λ2, ν) = (1, 0.5, 1). Material
parametr η only scales the graph and makes no difference in the shape.
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Burgers model
ν1ν2

k1k2
σ̈ + (ν1

k2
+ ν2

k2
+ ν1

k1
)σ̇ + σ = ν1ν2

k1
ε̈+ ν1ε̇

Aσ̈ +Bσ̇ + σ = Cε̈+Dε̇

G∗(ω) = ω2(ACω2 +BD − C)
(1− Aω2)2 +B2ω2 + i

BCω3 − ADω3 +Dω

(1− Aω2)2 +B2ω2

J∗(ω) = BD + C(Aω2 − 1)
D2 + C2ω2 − iD +BCω2 − ADω2

D2ω + C2ω3

Figure 1.4: The dependence of complex modulus of the Burgers model on fre-
quency. Graphs are plotted for two sets of material parameters (A,B,C,D),
prm1 = (1.5, 8, 1, 2) and prm2 = (1.2, 0.5, 1, 0.5) .

1.2 The Influence of the Temperature
Now we want to consider the influence of temperature θ via dependent material
coefficients ν = ν(θ) and k = k(θ). We take the system of springs and dashpots

11



from the thermodynamic point of view, define thermodynamic quantities and we
get the evolution equation for the temperature θ. The derivation is rigorous,
although it has no proper connection to the real materials. It is a rather an
instrument for getting some intuition - how different models behaves under the
temperature influence.

1.2.1 Springs and Dashpots as a Thermodynamic System
Let us consider a system of linear mechanical analogues with temperature de-
pendent coefficients which consists of k springs and l dahspots. We have the
constitutive relation for a spring

σeli = ki(θ)εeli , for i = 1, . . . , k (1.2.1)

and for some stiffness functions ki(θ) and for a dashpot

σdisi = νi(θ) ˙
εdisi , for i = 1, . . . , l (1.2.2)

and for some viscosity functions νi(θ). From the physical reasons we assume
νi(θ) and ki(θ) are non-increasing. Further we denote σ and ε as total stress and
total strain of the system, respectively. The assumption is there is a constant
temperature θ in the whole system. It can be modelled by putting all mechanical
analogues into a bath of fluid with infinity heat conduction coefficient.
Let us start the thermodynamic part with defining the free energy of the system

F (θ, εeli ) = F0(θ) +
k∑
i=1

ki(θ)
2 (εeli )2 (1.2.3)

with its thermodynamic part and mechanical one. We proceed by calculating
entropy of the system using the identity

S(θ, εeli ) = −∂F (θ, εeli )
∂θ

= −dF0(θ)
dθ −

k∑
i=1

dki(θ)
dθ

1
2(εeli )2

and its time derivative

˙
S(θ, εeli ) = ∂S(θ, εeli )

∂θ
θ̇ +

k∑
i=1

∂S(θ, εeli )
∂εeli

˙
εeli = cV

θ
θ̇ −

k∑
i=1

dki(θ)
dθ εeli

˙
εeli , (1.2.4)

if we define cV in the standard way (although the subscript V has no meaning
in the system, where in fact no volume is considered). Considering Legendre
transform F = U − θS, where U denotes the total energy of the system, and
using chain rule

˙F (θ, εeli ) = ∂F

∂θ
θ̇ +

k∑
i=1

dF
dεeli

˙
εeli

we obtain
θṠ = U̇ −

k∑
i=1

dF
dεeli

˙
εeli .
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Together with 1.2.4 it leads to

cV θ̇ = U̇ −
k∑
i=1

(
dF
dεeli
− θ ∂2F

∂θ∂εeli

)
˙
εeli = U̇ −

k∑
i=1

(ki(θ)− θk′i(θ)) εeli
˙
εeli , (1.2.5)

if we denote k′i(θ) = dki(θ)
dθ . Now we need to know something about the evolu-

tion of total energy U . This piece of information comes from the first law of
thermodynamics

dU = δQ+ δW,

where δQ denotes the infinitesimal increment of heat supplied to the system from
its surroundings and W infinitesimal increment of work done on the system. In
our case, the work increment reads

δW = σdε.

Taking derivative leads to the balance of internal energy in the form

U̇ = r + σε̇,

if we denote Q̇ = r as a rate of heat flux.
Finally, we can substitute U̇ to 1.2.5 and get the temperature evolution equa-

tion
cV θ̇ = σε̇−

k∑
i=1

(ki(θ)− θk′i(θ)) εeli
˙
εeli + r. (1.2.6)

It can be written in the form

cV θ̇ =
(
σε̇−

k∑
i=1

σeli
˙
εeli

)
+

k∑
i=1

θk′i(θ)εeli
˙
εeli + r, (1.2.7)

where we can see the part of the mechanical energy stored within the springs,
the part which does not turn into heat and hence does not contribute to the
increment of the temperature.

1.2.2 Temperature dependent Models
Constitutive relation for temperature dependent models can differ from the classi-
cal ones. For example, it seen from the derivation for Maxwell model. We denote
it T-Maxwell model to emphasise the difference. Next model presented here is
T-Kelvin-Voigt. These are the simplest linear viscoelastic models, but we can
demonstrate different behaviour of fluid-like model (T-Maxwell) and solid-like
one (T-Kelvin-Voigt).

T-Maxwell model

ε̇ = σ

ν(θ) + σ̇

k(θ) − θ̇
σk′(θ)
k2(θ) , (1.2.8a)

cV θ̇ = σ2

ν(θ) − (k(θ)− θk′(θ)) σ

k(θ)

(
ε̇− σ

ν(θ)

)
+ r (1.2.8b)
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Derivation: In derivation of the model, 1.2.8 we proceed as in the classical
case. Due to the geometry, it holds

ε = εdis + εel and σ = σdis = σel.

From 1.2.1, we have
εel = σ

k(θ) ,

hence
˙εel = σ̇k(θ)− σk′(θ)θ̇

k2(θ)
Similarly from 1.2.2 we have

˙εdis = σ

ν(θ) .

All together leads to

ε̇ = ˙εdis + ˙εel = σ

ν(θ) + σ̇k(θ)− σk′(θ)θ̇
k2(θ) .

For the considered geometry, we can rewrite the evolution equation for the tem-
perature 1.2.7 as

cV θ̇ = σ ˙εdis − (k(θ)− θk′(θ))εel ˙εel + r.

Regarding the first term
σ ˙εdis = σ2

ν(θ) .

Further, ˙εel = (ε̇− ˙εdis) and using 1.2.2 and 1.2.1 leads to

εel ˙εel = σ

k(θ)

(
ε̇− σ

ν(θ)

)
+ r.

T-Kelvin-Voigt model

σ = νε̇+ kε (1.2.9a)
cV θ̇ = ν(θ)(ε̇)2 − (k(θ)− θk′(θ))εε̇+ r (1.2.9b)

Derivation: From the geometry of the model, we have

ε = εdis = εel and σ = σdis + σel

and together with (from 1.2.1 and 1.2.2)

σdis = ν(θ)εdis,
σel = k(θ)εel
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we can conclude that
σ = ν(θ)ε+ k(θ)εel.

Regarding the geometry, we can rewrite the evolution equation for the tempera-
ture 1.2.7 as

cV θ̇ = σdisε̇− (k(θ)− θk′(θ))εε̇+ r,

which directly (using 1.2.2) leads to

cV θ̇ = ν(θ)(ε̇)2 − (k(θ)− θk′(θ))εε̇+ r.

1.2.3 Temperature Dependent Simulations
We compare these two models by considering sinusoidal stress

σ = sin(ωt)

with frequency ω. Then we solve the system of ordinary differential equations
by Runge-Kutta method using function DSolve[] in the Mathematica software.
Initial conditions are

ε(0) = 0,
θ(0) = 273.

Material functions are described by a triplets ~k = (k1, k2, k3) and ~ν = (ν1, ν2, ν3)
and have the exponential form

k(θ) = k1 + k2e
k3(θ−θR),

ν(θ) = ν1 + ν2e
ν3(θ−θR),

where θR = 273 is the reference temperature. Further we set r = 0 and cV = 1.

Figure 1.5 shows relatively steady state of the system. Note the fact that
both systems are cooled by elongation. It is possible due to the second term on
the right hand side in evolution equation of temperature (of both models 1.2.8
and 1.2.9), despite one would intuitively say that elongation of this system must
cause an increment of temperature. We can observe this effect with real elastic
rubber when we stretch it strong enough end apply to lips.

Figure 1.6 shows that T-Maxwell diverges (in the sense of temperature gain)
if we fix k = konst. In the Figure 1.7 we fix ν = konst and observe an interesting
shape of the strain response of the T-Maxwell model.
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Figure 1.5: Comparison of models T-Maxwell (MX) and T-Kelvin-Voigt (KV)
for parameters ~k = (1, 0.5,−1) and ~ν = (0.5, 1,−1) and frequency ω = 10Hz.

Figure 1.6: Comparison of models T-Maxwell (MX) and T-Kelvin-Voigt (KV)
for parameters ~k = (10, 0, 0) and ~ν = (0.5, 0.5,−1) and frequency ω = 1Hz.
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Figure 1.7: Comparison of models T-Maxwell (MX) and T-Kelvin-Voigt (KV)
for parameters ~k = (0.5, 1,−1) and ~ν = (1, 0, 0) and frequency ω = 10Hz.
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2. Constitutive Theory

2.1 Continuum Mechanics
If one wants to describe mechanical or kinematic properties of a body with con-
tinuous mass 1, continuum mechanics can be used. We assume the reader is
familiar with the notion of continuum mechanics hence this section gives only a
brief overview of basic notation used in this thesis. For more details about see
any book concerning continuum mechanics, i.e. [9].

2.1.1 Basic Notation
Let us consider a continuous material body B. In the following we proceed in
the same way as in [15]. In a standard manner we define reference configuration
κR(B) and present configuration κt(B) of the body.
Let X ∈ κR and x ∈ κt denote the material point P ∈ B at the reference and
present configuration, respectively. Then we can define the motion χκR of the
body as one-to-one mapping

x = χκR(X, t).

Assuming its sufficient smoothness allows us to define the velocity v̂ as

v̂(X, t) = ∂χκR(X, t)
∂t

and the acceleration â as
â(X,T ) = ∂v̂(X,T )

∂t

in Lagrangian (material) description. For our purpose it will be more useful to
define the these quantities in Eulerian (spatial) description (for fixed x). Hence
we have the velocity

v(x, t) = v̂(χ−1
κR

(x, t), t)

and the acceleration

a(x, t) = v̇ = dv(x, t)
dt = ∂v

∂t
+ ∂v(x, t)

∂xi

∂xi
∂t

= ∂v
∂t

+ [∇v]v,

where Einstein’s summation convention is employed. In addition, the material
time derivative for arbitrary quantity (scalar, vector of tensor) s reads

ṡ = ds
dt = ∂s

∂t
+ [∇s]v.

Furthermore, we define the deformation gradient

FκR = ∂χκR
∂X

, (or component-wise FκR
i
j =

∂χiκR
∂Xj

)

1In fact nothing consists of continuous mass but it is a sufficient approximation for spatial
scales much greater than the size of atom or molecule.
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and left and right Cauchy-Green tensor

BκR = FκRF
T
κR
, CκR = FTκRFκR ,

respectively. By direct calculation the velocity gradient is equal to

L := ∇v = ˙FκRF−1
κR
,

the symmetric part of the velocity gradient is denoted by

D = 1
2(L + LT )

and the antisymmetric part of the velocity gradient by

W = 1
2(L− LT ).

2.1.2 Balance Equations
In the previous the motion (deformation) χR(X, t) was a given function. Now we
are interested in the question how to compute this function and the evolution of
associated fields such as e.g. density and temperature. A standard way dealing
with this issue is postulating general local balance equation for any quantity
associated with the body B of single-component continuum. Let us consider a
quantity G and its density γ(x, t) associated with a spatial point x in a time t
in Eulerian description 2. There are three admissible mechanisms changing the
value of γ(x, t) in some control volume Ωt

3, and their corresponding densities are

• production π(x, t) of γ inside Ωt,

• supply ζ(x, t) of γ from outside of Ωt,

• flux Φ(x, t) of γ across the boundary ∂Ωt of Ωt.

Hence a balance of γ in Ωt reads

d
dt

∫
Ωt
γ dv = −

∫
∂Ωt

Φ dS +
∫

Ωt
π dv +

∫
Ωt
ζ dv.

Using Reynolds transport theorem, Gauss theorem and localization, the general
local balance equation (for a scalar, vector or tensor quantity) then can be written
as

dγ
dt + γ divv = −divΦ + π + ζ.

Now particular balance equations comes as a consequence of the general one by
setting specific quantities.

2Detailed explanation and motivation for this approach with its assumptions can be found
in [9].

3Control volume Ωt is associated with a fixed set of material points therefore it changes in
time.
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Mass balance

Setting

• density γρ = ρ(x, t), where ρ denotes mass density (or simply "density"),

• production πρ = 0,

• supply ζρ = 0,

• flux Φρ = 0,

we obtain mass balance (or also called continuity equation)

ρ̇+ ρ divv = 0. (2.1.1)

For an incompressible case (which means detF = const = 1), this reduces to the
condition

divv = 0. (2.1.2)

Momentum balance

If we set

• density γρv = ρv,

• production πρv = 0,

• supply ζρv = ρb, where b denotes outer body force,

• flux Φρv = −T, where tensor T is the Cauchy stress tensor,

we can (using mass balance 2.1.1) obtain momentum balance in a form

ρv̇ = divT + ρb. (2.1.3)

Angular Momentum Balance

Making an assumption that the particles in body B do not have internal angular
momentum (spin) and considering

• density γρx×x = x× ρv,

• production πρx×x = 0,

• supply ζρx×x = x× ρb,

• flux Φρx×x = −x×T,

we can show that angular momentum balance does not yield additional differential
equation, but it implies symmetry condition for the Cauchy stress tensor

T = TT . (2.1.4)
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Energy Balance

The first law of thermodynamics states that the mechanical and thermal energy
(and all additional energies present) are not conserved individually but they are
conserved together, hence we set

• density γE = 1
2ρv · v + ρe , kinetic + internal energy,

• production πE = 0,

• supply ζE = ρb · v + ρr, where r denotes the density of energy sources,

• flux ΦE = −Tv + q, where q is the energy flux,

to obtain total energy balance

d
dt

(1
2ρ|v|

2 + ρe
)

+
(1

2ρ|v|
2 + ρe

)
divv = divTv− divq + ρb · v + ρr.

Using mass balance 2.1.1 and momentum balance 2.1.3 we arrive at the internal
energy balance in the form

ρė = T : D− divq + ρr. (2.1.5)

At this point we have three evolutionary differential equations (2.1.1, 2.1.3
and 2.1.5) for three unknowns ρ, v and e. These balance equations represent
general laws independent of the chosen material. If outer sources (r and b) are
set up, it remains to specify the material by providing constitutive relations for
T and q.

For example a standard viscous incompressible Navier-Stokes-Fourier (NSF)
model (for more details about NSF model, see [17]) is defined by constitutive
relation

T = −pI + 2µ(θ)D and q = −k(θ)∇θ, (2.1.6)
where −p = 1

3trT is the mean normal stress and θ denotes thermodynamic tem-
perature, µ(θ) and k(θ) are temperature dependent material parameters (viscosity
and thermal conductivity, respectively). In incompressible case, the mass balance
2.1.1 enforces only

divv = 0
and unknown ρ becomes a parameter 4. Therefore we can compute p as additional
unknown. On the other hand, in a compressible case, a special constitutive
equation for p = p̃(ρ) or p = p̃(ρ, θ) has to be prescribed.

Temperature θ is new unknown without an evolution equation. Hence our
goal is to find a way how to rewrite energy balance as an temperature balance.

4Precisely speaking, it is true only in the case of homogeneous body. But in the case of
heterogeneous body, density ρ is still known due to fact, that its material time derivative
remains zero. If initial density field ρ(x, 0) is given, we can obtain ρ(x, t) at any time t as
ρ(x, 0) wafted by the motion.
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The goal is achieved for an incompressible NSF model by postulating the internal
energy in the form

e = cvθ,

where cv > 0 is a heat capacity at constant volume.
In general, whenever dissipative processes are involved, the continuum me-

chanics framework must be extended for another quantity - entropy.

Entropy Balance

Considering entropy balance is important for fulfilling the second law of thermo-
dynamics. Let us set

• density γS = ρη

• production πS = Ξ

• supply ζS = ρΥ

• flux ΦS = Ψ

which leads to
ρη̇ = −divΨ + Ξ + ρΥ, (2.1.7)

When developing a new material model, one must identify each contribution
to the entropy balance and then guarantee Ξ > 0, so that the second law of
thermodynamics would be satisfied.

2.1.3 Temperature Evolution Equation
In the same manner as in [4], let us assume the internal energy depends on density,
entropy and other quantities, that is e = ẽ(ρ, η, y1, y2, ..., yk), k ∈ N, and define
(positive) thermodynamic temperature as

θ = ∂e

∂η
.

If we define the Helmholtz free energy ψ = ψ̃(ρ, θ, y1, y2, ..., yk) using Legendre
transform with respect to η

ψ = e− θη,
we can rewrite the balance equation for internal energy (2.1.5) as

ρψ̇ + ρθ̇η + ρθη̇ = T : D− divq + ρr. (2.1.8)

The free energy is dependent on density, temperature and other quantities, one
can express its time derivative by the chain rule

ψ̇ = ∂ψ̃

∂ρ
ρ̇+ ∂ψ̃

∂θ
θ̇ +

k∑
i=1

∂ψ̃

∂yi
· ẏi, (2.1.9)

where a multiplication in the last term is chosen appropriate to the tensorial order
of a parameter yi. We proceed by known thermodynamic identities

∂ψ̃

∂ρ
= p

ρ2 and ∂ψ̃

∂θ
= −η. (2.1.10)
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The first one can be understood as a definition of a thermodynamic pressure
p. Finally, using (2.1.10), (2.1.9) and balance of mass (2.1.1), we can rewrite
equation (2.1.8) as

ρθη̇ = T : D− divq + p divv− ρ
k∑
i=1

∂ψ̃

∂yi
· ẏi + ρr (2.1.11)

We would like to identify particular terms in (2.1.11) with terms in the general
entropy balance (2.1.7). But it is not possible at this point because it depends on
the form of the free energy ψ̃ (for example the term ẏi can contribute to entropy
flux). However, in classical thermodynamics entropy flux, entropy production
and entropy supply are mostly used in a form

Φ = q
θ
, Ξ = ξ

θ
, Υ = r

θ
,

where ξ is called rate of entropy production 5. This choice allows us to rewrite
(2.1.11) as

ρη̇ = −div q
θ

+ 1
θ

[
T : D− q · ∇θ

θ
+ p divv− ρ

k∑
i=1

∂ψ̃

∂yi
· ẏi
]

+ ρ
r

θ
, (2.1.12)

although it still can not be identified with general entropy balance.
We can go further to obtain evolution equation for the temperature. From

(2.1.10) and chain rule we have

η = −∂ψ̃(ρ, θ, y1, y2, ..., yk)
∂θ

= η̃(ρ, θ, y1, y2, ..., yk),

η̇ = ∂η̃

∂ρ
ρ̇+ ∂η̃

∂θ
θ̇ +

k∑
i=1

∂η̃

∂yi
· ẏi.

Using (2.1.10), smoothness of ψ̃, mass balance (2.1.1), another thermodynamic
identities and definition of cV as a specific heat at a constant volume

ρ̇
∂η̃

∂ρ
= −ρ̇ ∂

2ψ̃

∂ρ ∂θ
= −ρ̇ 1

ρ2
∂p

∂θ
= 1
ρ

∂p

∂θ
divv,

∂η̃

∂θ
= cv

θ
,

∂η̃

∂yi
= − ∂2ψ̃

∂θ ∂yi
,

one can rewrite (2.1.11) to the temperature evolution equation expressed as

ρcvθ̇ = T : D− divq+ (p− θ∂p
∂θ

) divv− ρ
k∑
i=1

(∂ψ̃
∂yi
− θ ∂2ψ̃

∂θ ∂yi
) · ẏi + ρr. (2.1.13)

5In a lot of literature, Ξ is called rate of entropy production and ξ is called rate of dissipation.
But to be consisten for example with the doctoral thesis [15], we us the notation defined above.
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2.2 Derivation of Temperature Dependent Vis-
coelastic Models

In order to derive thermodynamically consistent models, we use a thermodynamic
framework proposed by Rajagopal and Srinivasa in 2000 [12]. This framework
is based on a notion of natural configuration and the principle of maximal rate
of entropy production (PMREP). In this section we introduce the framework
and derive several incompressible viscoelastic models. In addition, we derive
the viscous incompressible Navier-Stokes-Fourier model as an example. In this
section, we denote d = 2, 3 as a geometric dimension of the problem.

2.2.1 Natural Configuration
In order to derive viscoelastic models we suppose the total deformation χκR is
homogenous and can be divided into a purely elastic part and a purely dissipative
part. Then one can consider a special configuration called natural configuration
κp(t) and state 6

• the deformation χdis : κR → κp(t) is purely dissipative (does not store
energy)

• the deformation χel : κp(t) → κt is purely elastic (does not dissipate energy).

Motivation for this concept is a need to capture microscopical changes in a
material during a process. If there are more microscopical mechanisms within
a material, one should consider multiple natural configuration to capture these
mechanisms separately. For more details see [13].

All kinematics we have defined for the total deformation χR can be defined
for the dissipative χdis and the elastic χel part. For a clarity in understanding,
our notation is consistent with [13].

Elastic part

First we introduce deformation gradient of the elastic part

Fκp(t) = ∂χel(Xp, t)
∂Xp

,

where Xp ∈ κp(t) and x = χel(Xp, t) ∈ κt correspond to a material point X.
We want to quantify the amount of energy stored during en elastic deformation,
hence we introduce left and right Cauchy-Green tensors

Bκp(t) = Fκp(t)FTκp(t), Cκp(t) = FTκp(t)Fkp(t).

6In general, it is not always possible to decompose the total deformation in two one-to-one
mappings. But it can be done locally thus it is possible to define gradients of these mappings,
and that is all we need. The gradients can be thought also as mappings from appropriate
tangent spaces to the configuration manifolds.
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Dissipative part

To hold a consistency assumption let us denote deformation gradient of the dis-
sipative part as G and it holds

G = FF−1
κp(t)

and appropriate velocity gradient of the dissipative part by Lκp(t), which can be
expressed by

Lκp(t) = ĠG−1.

Finally a useful quantity to measure the rate of entropy production (dissipation)
due to evolution of natural configuration is symmetric part of Lκp(t) denoted as

Dκp(t) = 1
2(Lκp(t) + LTκp(t)).

Useful identities

As we will see it is important to know something about time evolution of a
quantity connected with natural configuration. In our derivation this quantity is
Bκp(t) and its material time derivative can be expressed as

Ḃκp(t) = LBκp(t) + Bκp(t)LT − 2Fκp(t)Dκp(t)FTκp(t). (2.2.1)

Unfortunately, under observer transformation

x∗ = Q(t)x + c(t), Q(t)Q(t)T = Q(t)TQ(t) = I

a material time derivative of a second order tensor is not objective (or frame
indifferent)

dA∗

dt = Q̇AQT + Q
dA
dt Q

T + QAQ̇T 6= Q
dA
dt Q

T .

Introducing the upper convected Oldroyd time derivative

O
A:= dA

dt − LA−ALT

as the objective material time derivative, we can rewrite 2.2.1 as
O
Bκp(t)= −2Fκp(t)Dκp(t)FTκp(t). (2.2.2)

It also holds
˙trBκp(t) = 2Bκp(t) : D− 2Cκp(t) : Dκp(t), (2.2.3)

˙detBκp(t) = detBκp(t)B−Tκp(t) : Ḃκp(t) = 2I : D− 2I : Dκp(t) (2.2.4)

and
O
I= −2D.
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2.2.2 Principle of Maximal Rate of Entropy Production
Considering natural configuration the total deformation is split into two parts.
The elastic response is characterized by the choice of the free energy ψ̂. Next
step is defining the rate of entropy production ξ̂ which describes mechanisms
causing the dissipation of energy. We choose this so that it is non-negative to
automatically satisfy the second law of thermodynamics.

At this point, PMREP is applied to obtain constitutive relations for T and q.
According to the principle, we should maximize the rate of entropy production
ξ̂ with respect to constraint ξ̂ = ξ. Motivation for maximization of the rate of
entropy production can be found in [14]. If we assume dissipative or elastic (or
both) part incompressible, we should also consider additional constraints. By a
triple ([IC]3) let us denote (in)compressibility of the total deformation, the dis-
sipative part and the elastic part, respectively. The incompressibility conditions
are detailed in [15], but in our thesis we are interested only in the cases, where
the total deformation is incompressible. There are two possibilities.

• (III) fully incompressible case with constraints trD = 0 and trDκp(t) = 0,

• (ICC) both elastic and dissipative part are compressible with constraint
trD = 0 only for the total deformation.

The maximization is performed with aid of the method of Lagrange multi-
pliers. Constitutive relations for T, q and evolution equations for quantities yi
come from the necessary conditions for the extreme (maximum).

2.2.3 Exemplary Derivation of Viscous Model
For better understanding of the framework, we show as an example derivation
of well known incompressible Navier-Stokes-Fourier model. Let us assume a de-
formation of an incompressible Newtonian (non-elastic) fluid. The free energy of
this material is

ψ̂ = ψ̂0(ρ, θ).
Therefore, we can substitute ψ̂ in 2.1.12, use the incompressibility condition
divv = 0 and obtain

ρη̇ = −div q
θ

+ 1
θ

[
T : D− q · ∇θ

θ

]
+ ρ

r

θ
.

Now we can compare the result with the general entropy balance 2.1.7 and identify
the entropy flux Ψ = q

θ
, the entropy supply Υ = r

θ
and in particular the entropy

production as
ξ = T : D− q · ∇θ

θ
.

Also from 2.1.13 we obtain evolution equation for the temperature as

ρcvθ̇ = T : D− divq + ρr.

Next step is defining the rate of entropy production. In this case, a suitable
choice is the one for a standard viscous material

ξ̂(D,∇θ) = 2µ(θ)D : D + k(θ)
θ
∇θ · ∇θ,
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where µ(θ) ≥ 0 and k(θ) ≥ 0 denotes viscosity and heat conductivity, respectively.
Since we are dealing with an incompressible material, we consider the case (III)
(see subsection 2.2.2) with a trivial elastic part χel, therefore χR = χdis are
identical, specially trD = trDκp(t), and constraints for maximization ξ̂(D,∇θ)
are

ξ̂ = ξ and trD = 0.

In order to find the necessary conditions for an extreme, we define the La-
grange function

L(D,∇θ) = ξ̂(D,∇θ)− λ1(ξ̂(D,∇θ)− ξ)− λ2(trD)

and after substitution

L(D,∇θ) = 2µ(θ)D : D + k(θ)
θ
∇θ · ∇θ

− λ1

(
2µ(θ)D : D + k(θ)

θ
∇θ · ∇θ −T : D− q · ∇θ

θ

)
− λ2(trD).

Evaluating the partial derivatives of L with respect to D and ∇θ 7 and setting
them to zero yields

0 = ∂L
∂D

= 4µ(θ)D− λ1 (4µ(θ)D−T)− λ2I, (2.2.5)

0 = ∂L
∂∇θ

= 2k(θ)
θ
∇θ − λ1

(
2k(θ)
θ
∇θ + q

θ

)
. (2.2.6)

Multiplying 2.2.5 by D and 2.2.6 by ∇θ and summing results in

0 = 2ξ̂ − λ1(2ξ̂ − ξ),

which means (using the constraint)

λ1 = 2.

Taking trace of 2.2.5 leads to

trT = −λ2

λ1
d,

Let us now denote
pm = −λ2

λ1
= 1
d
trT

as mean normal stress. This quantity p does not have the meaning of thermody-
namic pressure. It is just another unknown to be computed. Finally, we obtain
well known Navier-Stokes-Fourier constitutive relations

T = −pmI + 2µ(θ)D, (2.2.7)
q = −k(θ)∇θ. (2.2.8)

7Maximizing is performed only with respect to D and ∇θ. Other quantities as θ or ρ are
thought to be constant during the procedure.
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2.2.4 Derivation of Incompressible Viscoelastic Models
In this subsection, we derive generalizations of several classical viscoelastic mod-
els with temperature dependent material coefficients. We are interested only in
incompressible cases (divv = 0) and we proceed in a very similar way as in [15].
For all further derived models we assume the elastic part of material response can
be modelled as the response of Neo-Hookean solid. Hence we can prepare some
identities resulting from this choice.

Compressible case For a compressible Neo-Hookean solid the free energy has
the form

ψ̂
(
ρ, θ, trBκp(t), detBκp(t)

)
= ψ̂0(ρ, θ) + G(θ)

2ρ
(
trBκp(t) − d− ln

(
detBκp(t)

))
.

(2.2.9)
with G(θ) denoting temperature dependent Young’s modulus. The corresponding
entropy balance (substituting ψ̂ to 2.1.12 and using 2.2.3 and 2.2.4) reads

ρη̇ = −div q
θ

+ 1
θ

[
(T−G(θ)(Bκp(t) − I)) : D +G(θ)(Cκp(t) − I) : Dκp(t) −

q · ∇θ
θ

]
+ ρ

r

θ

and therefore we have identified entropy production as follows

ξ =
(
T−G(θ)(Bκp(t) − I)

)
: D +G(θ)

(
Cκp(t) − I

)
: Dκp(t) −

q · ∇θ
θ

. (2.2.10)

Temperature evolution equation corresponding to the choice of ψ̂ is

ρcvθ̇ =
(
T−

(
G(θ)− θdG(θ)

dθ

)
(Bκp(t) − I)

)
: D

+
(
G(θ)− θdG(θ)

dθ

)
(Cκp(t) − I) : Dκp(t) − divq + ρr. (2.2.11)

Incompressible case In the incompressible case, it seems very similar. The
free energy has the form

ψ̂
(
ρ, θ, trBκp(t)

)
= ψ̂0(ρ, θ) + G(θ)

2ρ
(
trBκp(t) − d

)
(2.2.12)

Analogously as in the compressible case, it can be shown (using 2.2.3) that this
choice of ψ̂ implies the entropy balance in the form

ρη̇ = −div q
θ

+ 1
θ

[
(T−G(θ)Bκp(t)) : D +G(θ)Cκp(t) : Dκp(t) −

q · ∇θ
θ

]
+ ρ

r

θ
.

Hence we identify the production of entropy as

ξ = (T−G(θ)Bκp(t)) : D +G(θ)Cκp(t) : Dκp(t) −
q · ∇θ
θ

. (2.2.13)
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For this choice of ψ̂, the evolution equation for temperature reads

ρcvθ̇ =
(
T−

(
G(θ)− θdG(θ)

dθ

)
Bκp(t)

)
: D

+
(
G(θ)− θdG(θ)

dθ

)
Cκp(t) : Dκp(t) − divq + ρr. (2.2.14)

T-Oldroyd-B Model

The standard viscoelastic model Oldroyd-B can be expressed as

T = −pI + 2µ2D +G(Bκp(t) − I), (2.2.15)
O
Bκp(t) = −G

µ1
(Bκp(t) − I), (2.2.16)

where p is additional unknown and material parameters are G ≥ 0 Young’s mod-
ulus, µ1 ≥ 0 and µ2 ≥ 0 viscosities.

Our goal is to derive the same model but with temperature dependent ma-
terial parameters and appropriate temperature evolution equation. In order to
do so, we consider incompressible case (ICC) and the elastic part of deformation
behaving like a compressible Neo-Hookean solid. Hence an evolution equation for
the temperature is 2.2.11 and an entropy production are expressed as 2.2.10

ξ = (T−G(θ)(Bκp(t) − I)) : D +G(θ)(Cκp(t) − I) : Dκp(t) −
q · ∇θ
θ

.

Further, we prescribe the rate of entropy production as

ξ̂(D,Dκp(t),∇θ) = 2µ2(θ)D : D + 2µ1(θ)Dκp(t)Cκp(t) : Dκp(t) + k(θ)
θ
∇θ · ∇θ,

where k(θ) ≥ 0 is heat conductivity. The second term is non-negative

Dκp(t)Cκp(t) : Dκp(t) = Fκp(t)Dκp(t) : Fκp(t)Dκp(t) ≥ 0,

thus for non-negative material coefficients it holds ξ̂ ≥ 0 and the second law of
thermodynamic is satisfied.

Next step is to maximize ξ̂(D,Dκp(t),∇θ) with respect to all three variables
and considering a constraint ξ̂ = ξ. As we are dealing with the case (ICC) (see
subsection 2.2.2), we should add only one constraint due to the incompressibility
of the total deformation

divv = trD = 0.

After defining Lagrange function

L(D,Dκp(t),∇θ) = ξ̂(D,Dκp(t),∇θ)− λ1(ξ̂(D,Dκp(t),∇θ)− ξ)− λ2(trD),
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necessary conditions for an extreme are

0 = ∂L
∂D

= 4µ2(θ)D− λ1
(
4µ2(θ)D−T +G(θ)(Bκp(t) − I)

)
− λ2I, (2.2.17)

0 = ∂L
∂Dκp(t)

= 4µ1(θ)Dκp(t)Cκp(t) − λ1
(
4µ1(θ)Dκp(t)Cκp(t) −G(θ)(Cκp(t) − I)

)
,

(2.2.18)

0 = ∂L
∂∇θ

= 2k(θ)
θ
∇θ − λ1

(
2k(θ)
θ
∇θ + q

θ

)
. (2.2.19)

Considering 2.2.17 ·D + 2.2.18 ·Dκp(t) + 2.2.19 ·∇θ leads to

0 = 2ξ̂ − λ1(2ξ̂ − ξ),

which means (using the constraint)

λ1 = 2. (2.2.20)

Taking trace of 2.2.17 gives

λ2

λ1
d = −trT +G(θ)(trBκp(t) − d),

Let us now denote
p = λ2

λ1
. (2.2.21)

This quantity has neither the meaning of thermodynamic pressure nor the mean-
ing of mean normal stress. It is just another unknown to be computed. From
2.2.17, 2.2.19, 2.2.20 and 2.2.21 we can get constitutive relations

T = −pI + 2µ2(θ)D +G(θ)(Bκp(t) − I), (2.2.22)
q = −k(θ)∇θ. (2.2.23)

But we need an evolution equation for the quantity Bκp(t). The second necessary
condition can be now rewritten as

2µ1Dκp(t)Cκp(t) = G(θ)(Cκp(t) − I). (2.2.24)

If we consider Fκp(t)· 2.2.24 ·F−1
κp(t), we obtain

2µ1Fκp(t)Dκp(t)FTκp(t) = G(θ)(Bκp(t) − I),

which using 2.2.2 leads directly to

O
Bκp(t)= −

G(θ)
µ1(θ)(Bκp(t) − I). (2.2.25)

The last step in derivation is rewriting temperature evolution equation 2.2.11
to a suitable form. The first term

(T−
(
G(θ)− θdG(θ)

dθ

)
(Bκp(t) − I)) : D
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reduces to
2µ2(θ)D : D + θ

dG(θ)
dθ Bκp(t) : D

due to the incompressibility condition trD = 0. The second term needs a bit
more work. Using 2.2.24 and 2.2.25, we have

G(θ)(Cκp(t) − I) : Dκp(t) = 2µ1(θ)Dκp(t)Cκp(t) : Dκp(t)

= 2µ1(θ)tr
(
Dκp(t)FTκp(t)Fκp(t)Dκp(t)

)
= 2µ1(θ)tr

(
Fκp(t)Dκp(t)Dκp(t)FTκp(t)

)
= 2µ1(θ)tr

(
Fκp(t)Dκp(t)FTκp(t)F−Tκp(t)F

−1
κp(t)Fκp(t)Dκp(t)FTκp(t)

)
= 2µ1(θ)tr

( O
Bκp(t) B−1

κp(t)
O
Bκp(t)

)
. (2.2.26)

We can obtain yet another expression using 2.2.25

2µ1(θ)tr
( O
Bκp(t) B−1

κp(t)
O
Bκp(t)

)
= G2(θ)

2µ1(θ)tr
(
(Bκp(t) − I)B−1

κp(t)(Bκp(t) − I)
)

= G2(θ)
2µ1(θ)tr

(
Bκp(t) + B−1

κp(t) − 2I
)

= G2(θ)
2µ1(θ)

(
trBκp(t) + trB−1

κp(t) − 2d
)
. (2.2.27)

Finally we can express the second term in 2.2.11 as(
G(θ)− θdG(θ)

dθ

)
(Cκp(t) − I) : Dκp(t) =

(
1− θ

G(θ)
dG(θ)
dθ

)
G(θ)(Cκp(t) − I) : Dκp(t)

=
(

1− θ

G(θ)
dG(θ)
dθ

)
G2(θ)
2µ1(θ)

(
trBκp(t) + trB−1

κp(t) − 2d
)

=
(
G(θ)− θdG(θ)

dθ

)
G(θ)

2µ1(θ)
(
trBκp(t) + trB−1

κp(t) − 2d
)
.

(2.2.28)

The third term in 2.2.11 reads

−divq = div (k(θ)∇θ) (2.2.29)

We have derived the complete model with temperature dependent coefficients
and temperature evolution equation
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T = −pI + 2µ2(θ)D +G(θ)(Bκp(t) − I), (2.2.30)
q = −k(θ)∇θ, (2.2.31)

O
Bκp(t) = −G(θ)

µ1(θ)(Bκp(t) − I), (2.2.32)

ρcvθ̇ = 2µ2(θ)D : D + θ
dG(θ)
dθ Bκp(t) : D

+
(
G(θ)− θdG(θ)

dθ

)
G(θ)

2µ1(θ)
(
trBκp(t) + trB−1

κp(t) − 2d
)

+ div (k(θ)∇θ) + ρr.

(2.2.33)

Let us call it T-Oldroyd-B.

T-Maxwell Model

Standard Maxwell model can be written as

T = −pI +G(Bκp(t) − I), (2.2.34)
O
Bκp(t) = −G

µ1
(Bκp(t) − I), (2.2.35)

where p is additional unknown and material parameters are G ≥ 0 Young’s mod-
ulus and µ ≥ 0 viscosity.

The Maxwell model is a special case of the Oldroyd-B model with µ2 = 0.
Hence derivation of the same model with temperature dependent coefficients is
analogous to the previous derivation of the model T-Oldroyd-B with the only one
difference: the rate of entropy production is considered as

ξ̂(Dκp(t),∇θ) = 2µ1(θ)Dκp(t)Cκp(t) : Dκp(t) + k(θ)
θ
∇θ · ∇θ.

All other steps in the derivation are analogous as before and we obtain

T = −pI +G(θ)(Bκp(t) − I), (2.2.36)
q = −k(θ)∇θ, (2.2.37)

O
Bκp(t) = −G(θ)

µ1(θ)(Bκp(t) − I), (2.2.38)

ρcvθ̇ = θ
dG(θ)
dθ Bκp(t) : D +

(
G(θ)− θdG(θ)

dθ

)
G(θ)

2µ1(θ)
(
trBκp(t) + trB−1

κp(t) − 2d
)

+ div (k(θ)∇θ) + ρr. (2.2.39)

We call this model T-Maxwell. Note that the model is very similar to the T-
Maxwell model derived from mechanical analogues in the section.
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T-Quad1 Model

Model Quad1 is a model with purely quadratic rate of entropy production (or
dissipation). It was proposed in [15] and reads 8

T = −pI + 2µ2D +GBd
κp(t), (2.2.40)

O
Bκp(t) = −G(θ)

µ1(θ)Bκp(t)Bd
κp(t), (2.2.41)

where p is additional unknown meaning mean normal stress and material param-
eters are G ≥ 0 Young’s modulus, µ1 ≥ 0 and µ2 ≥ 0 viscosities. The parameters
are the same as for Oldroyd-B. In fact, this model is a generalization of Oldroyd-
B model because Oldroyd-B can be obtained by linearization of Quad1, which
is shown in [15]. The model Quad1 was derived in [15] using the thermody-
namic framework proposed here, specially for the incompressible case (III) with
Neo-Hookean free energy 2.2.12

ψ̂ = ψ̂0(ρ, θ) + G

2ρ
(
trBκp(t) − d

)
and quadratic rate of entropy production

ξ̂(D,Dκp(t)) = 2µ2D : D + 2µ1Dκp(t) : Dκp(t).

We follow the derivation and add temperature dependence to material coeffi-
cients and temperature gradient to the rate of entropy production. Thus we start
with

ψ̂ = ψ̂0(ρ, θ) + G(θ)
2ρ

(
trBκp(t) − d

)
,

ξ̂(D,Dκp(t)) = 2µ2(θ)D : D + 2µ1(θ)Dκp(t) : Dκp(t) + k(θ)
θ
∇θ : ∇θ,

where material parameters are Young’s modulus G(θ) ≥ 0, viscosities µ1(θ) ≥ 0,
µ2(θ) ≥ 0 and heat conductivity k(θ) ≥ 0. Since elastic response is supposed to
be incompressible Neo-Hookean, we can identify entropy production ξ as 2.2.13

ξ = (T−G(θ)Bκp(t)) : D +G(θ)Cκp(t) : Dκp(t) −
q · ∇θ
θ

.

Now we maximize the function ξ̂(D,Dκp(t),∇θ) with respect to all three variables.
Except of omnipresent constraint ξ̂ = ξ, we also have to consider constraints

trD = 0 and trDκp(t) = 0
8Notation

Ad = A− 1
3 trAI

means the deviatoric part of a tensor A (or also called the traceless part).
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due to the case (III) (see 2.2.2). After defining Lagrange function

L(D,Dκp(t),∇θ) = ξ̂(D,Dκp(t),∇θ)
− λ1(ξ̂(D,Dκp(t),∇θ)− ξ)− λ2(trD) + λ3(trDκp(t)),

necessary conditions for an extreme are

0 = ∂L
∂D

= 4µ2(θ)D− λ1
(
4µ2(θ)D−T +G(θ)Bκp(t)

)
− λ2I, (2.2.42)

0 = ∂L
∂Dκp(t)

= 4µ1(θ)Dκp(t) − λ1
(
4µ1(θ)Dκp(t) −G(θ)Cκp(t)

)
− λ3I, (2.2.43)

0 = ∂L
∂∇θ

= 2k(θ)
θ
∇θ − λ1

(
2k(θ)
θ
∇θ + q

θ

)
. (2.2.44)

Considering 2.2.42 ·D + 2.2.43 ·Dκp(t) + 2.2.44 ·∇θ leads to

0 = 2ξ̂ − λ1(2ξ̂ − ξ),

which means (using the constraint)

λ1 = 2. (2.2.45)

Taking trace of 2.2.42 gives

d
λ2

λ1
= −tr(T +G(θ)Bκp(t)), (2.2.46)

Let us now denote
p = 1

d
trT (2.2.47)

mean normal stress. Considering 2.2.45, we get constitutive relation for T from
2.2.42 using 2.2.46, 2.2.47 and constitutive relation for q from 2.2.44

T = −pI + 2µ2(θ)D +G(θ)Bd
κp(t), (2.2.48)

q = −k(θ)∇θ. (2.2.49)

We need en evolution equation for the quantity Bκp(t). Substituting 2.2.45 into
2.2.43 leads to

2µ1Dκp(t) = G(θ)Cκp(t) + λ3

λ1
I. (2.2.50)

By taking trace of 2.2.43 we conclude that

λ3

λ1
= −G(θ)

d
trCκp(t). (2.2.51)

If we consider Fκp(t)· 2.2.50 ·FTκp(t) and substitute 2.2.51, we obtain

2µ1Fκp(t)Dκp(t)FTκp(t) = G(θ)Bκp(t)

(
Bκp(t) −

1
3(trBκp(t))I

)
,

which using 2.2.2 leads directly to
O
Bκp(t)= −

G(θ)
µ1(θ)Bκp(t)Bd

κp(t). (2.2.52)
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The last step in derivation is rewriting temperature evolution equation 2.2.14
to a suitable form. The first term

(T−
(
G(θ)− θdG(θ)

dθ

)
Bκp(t) : D

reduces to
2µ2(θ)D : D + θ

dG(θ)
dθ Bκp(t) : D

due to the incompressibility condition trD = 0. Using 2.2.2 and 2.2.52, we rewrite
the second term as(

G(θ)− θdG(θ)
dθ

)
Cκp(t) : Dκp(t) =

(
G(θ)− θdG(θ)

dθ

)
tr (Fκp(t)Dκp(t)FTκp(t))

= −
(
G(θ)− θdG(θ)

dθ

)
tr

O
Bκp(t)

=
(
G(θ)− θdG(θ)

dθ

)
G(θ)

2µ1(θ)tr (Bκp(t)Bd
κp(t))

=
(
G(θ)− θdG(θ)

dθ

)
G(θ)

2µ1(θ)B
d
κp(t) : Bd

κp(t).

(2.2.53)

The third term in 2.2.11 reads

−divq = div (k(θ)∇θ) (2.2.54)

We have derived the complete model with temperature dependent coefficients
and also with the evolution equation for temperature presented the previous chap-
ter.

T = −pI + 2µ2(θ)D +G(θ)Bd
κp(t), (2.2.55)

q = −k(θ)∇θ, (2.2.56)
O
Bκp(t) = −G(θ)

µ1(θ)Bκp(t)Bd
κp(t), (2.2.57)

ρcvθ̇ = 2µ2(θ)D : D + θ
dG(θ)
dθ Bκp(t) : D

+
(
G(θ)− θdG(θ)

dθ

)
G(θ)

2µ1(θ)B
d
κp(t) : Bd

κp(t) + div (k(θ)∇θ) + ρr. (2.2.58)

We call this model T-Quad1.
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3. Simulations in 2D
For simplicity’s sake we denote B as an abbreviation of Bκp(t) and define D(v) =(
(∇v) + (∇v)T

)
in this chapter.

3.1 Weak Formulation of Derived Models
If we want to use the Finite element method, we have to convert the problem
into a weak formulation with initial and boundary conditions for the initial and
boundary value problem. We have to determine an appropriate space, to which
the weak solution belongs. In order to do so, a consideration about a priori
estimates for sought quantities is carried out.

3.1.1 Initial and Boundary Conditions
We suppose the material is relaxed in time t = 0, therefore

v(t = 0) = 0,
p(t = 0) = 0,
B(t = 0) = I

and the initial state of the temperature is

θ(t = 0) = θ0.

Further, we split the boundary ∂Ω of the computation domain Ω into two disjoint
parts ΓD and ΓN so that ΓD ∪ ΓN = ∂Ω. In a standard way, we prescribe Dirichlet
boundary condition and the traction

v(t) = vD(t), on ΓD,
Tn(t) = t(t), on ΓN ,

respectively. Let us split the boundary of Ω once again into two disjoint parts
ΘD and ΘN so that ΘD ∪ΘN = ∂Ω in order to define the heat flux and Dirichlet
boundary condition for temperature as

q(t) · n = qN(t), on ΩN ,

θ(t) = θD(t), on ΩD,

respectively. We do not prescribe any boundary conditions for B.

3.1.2 A Priori Estimates
A priori estimates (except for the estimate for the temperature) for our models can
be adopted from [15]. We add only non-negative temperature dependent material
coefficients: Young’s modulus G(θ) ≥ 0 and viscosity µ(θ) ≥ 0. We suppose they
belong to the space L∞(0, T ;L∞(Ω)) (this is not a restrictive assumption due
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to their physical interpretation). Hence all estimates hold for all three models
T-Maxwell, T-Oldroyd-B, T-Quad1.

||v||L10/3((0,T )×Ω)d ≤ C, ||B||L∞(0,T ;L1(Ω))d×d ≤ C, ||p||L5/3(0,T ;L1(Ω)) ≤ C.

We need the estimate for the temperature, but it seems like a very hard
problem. An estimate for the Navier-Stokes-Fourier problem, which is close to
our problem, is done in [3] and states that

θ ∈ L∞(0, T ;L1(Ω)) (3.1.1)
∇θ1/2−λ/2 ∈ L2(0, T ;L2(Ω)) for all smallλ > 0, (3.1.2)

under the assumption, that cV θ = e, where e is a specific internal energy. We
do not have explicit constitutive relation between θ and e. We have only en
evolution equation for θ with indefinite terms making estimation harder. This
topic we leave for another research.

3.1.3 Weak Formulation for Initial and Boundary Value
Problem

We can now define the weak formulation of our models. However, we search
a solution in a bit different spaces than the suggested a priori estimates. For
example we need to control the norm ||∇θ(t)|| hence we need to assume θ(t) ∈
W 1,2(Ω). The chosen spaces are

V := L2(0, T ;W 1,2(Ω))d,
P := L2(0, T ;L2(Ω)),
B := L2(0, T ;W 1,2(Ω))d×d,
Θ := L2(0, T ;W 1,2(Ω)),

V0 := L2(0, T ;W 1,2
0,ΓD(Ω))d,

Θ0 := L2(0, T ;W 1,2
0,ΘD(Ω)).

T-Oldroyd-B

Let us define the weak solution of the model T-Oldroyd-B as follows: The quadru-
ple (v, p,B, θ) ∈ V × P × B × Θ, such that v − ṽ ∈ V0 and θ − θ̃ ∈ Θ0, is the
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weak solution of the model T-Oldroyd-B in Ω ⊂ Rd if ∫
Ω
tr(∇v)ϕdx = 0,∫

Ω
ρ

[
∂v
∂t

+ (∇v)v− b
]
·ϕdx +

∫
Ω

T : ∇ϕ dx−
∫

ΓN
t ·ϕ dS = 0,∫

Ω

[
∂B
∂t

+ (∇B)v− (∇v)B−B(∇v)T + G(θ)
µ1(θ)(B− I)

]
: Φdx = 0,∫

Ω

[
ρ

(
cV
∂θ

∂t
+ cV (∇θ) · v− r

)
− µ2(θ)

2
(
(∇v) + (∇v)T

)
:
(
(∇v) + (∇v)T

)
−θ2

dG(θ)
dθ B :

(
(∇v) + (∇v)T

)
−
(
G(θ)− θdG(θ)

dθ

)
G(θ)

2µ1(θ)
(
trB + tr(B−1)− 2d

)]
ϕθ dx

+
∫

Ω
(k(θ)∇θ) · ∇ϕθ dx−

∫
ΘN

qNϕθ dS = 0,

where T = −pI + µ2(θ)
(
(∇v) + (∇v)T

)
+G(θ)(B− I)

is satisfied for all (ϕ, ϕ,Φ, ϕθ) ∈ V0 × P × B × Θ0 and almost all t ∈ (0, T ),
where ṽ|ΓD = vD, θ̃|ΘD = θD and r ∈ L2(0, T ;L2(Ω)), b ∈ L2(0, T ;L2(Ω))d.

T-Quad1

Let us define the weak solution of the model T-Quad1 as follows: The quadruple
(v, p,B, θ) ∈ V × P × B ×Θ, such that v− ṽ ∈ V0 and θ − θ̃ ∈ Θ0, is the weak
solution of the model T-Quad1 in Ω ⊂ Rd if ∫

Ω
tr(∇v)ϕdx = 0,∫

Ω
ρ

[
∂v
∂t

+ (∇v)v− b
]
·ϕ dx +

∫
Ω

T : ∇ϕ dx−
∫

ΓN
t ·ϕ dS = 0,∫

Ω

[
∂B
∂t

+ (∇B)v− (∇v)B−B(∇v)T + G(θ)
µ1(θ)BBd

]
: Φdx = 0,∫

Ω

[
ρ

(
cV
∂θ

∂t
+ cV (∇θ) · v− r

)
− µ2(θ)

2 D(v) : D(v)− θ

2
dG(θ)
dθ B : D(v)

−
(
G(θ)− θdG(θ)

dθ

)
G(θ)

2µ1(θ)
(
B : Bd

)]
ϕθ dx +

∫
Ω

(k(θ)∇θ) · ∇ϕθ dx−
∫

ΘN
qNϕθ dS = 0,

where T = −pI + µ2(θ)D(v) +G(θ)Bd

is satisfied for all (ϕ, ϕ,Φ, ϕθ) ∈ V0 × P × B × Θ0 and almost all t ∈ (0, T ),
where ṽ|ΓD = vD, θ̃|ΘD = θD and r ∈ L2(0, T ;L2(Ω)), b ∈ L2(0, T ;L2(Ω))d.

3.2 Finite Element Method
A weakly formulated problem can be solved by the Finite element method (FEM),
for more details see [2]. We have implemented this method with the aid of a
free software FEniCS Project [10]. We have also used the open source software
ParaView [1] to view the results and GMSH [7] to generate a computational mesh.
The source codes can be found on the attached CD.
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Figure 3.1: A typical element of triangulation with locations of the degrees of
freedom. The crosses stand for P1 elements, the dots for P2 elements.

3.2.1 Discretization
In the previous section we introduced a weak formulation of the problem. The
finite element method is based on the reformulation of an infinite-dimensional
problem into a finite-dimensional one. The spaces where the solution is sought
and the space of the test functions are replaced with their (finite-dimensional)
approximations, also the domain Ω is replaced with its polygonal approximation
Ωh divided by triangulation. A typical element of the triangulation is depicted
on (3.1).

Let us denote

• Pk(Ωh) := {p ∈ C0(Ωh) | p|T ∈ Pk(T ) ; T is an element of a triangulation of Ωh},
where Pk(T ) denotes a set of polynomials of the maximum degree k ∈ N.

and then

• Vh := Pd2(Ωh) as the space of piecewise quadratic d-dimensional vector func-
tions on Ωh,

• Ph := P1(Ωh) as the space of piecewise linear functions on Ωh,

• Bh := Pd×d2 (Ωh) as the space of piecewise quadratic d×d-dimensional tensor
functions on Ωh,

• Θh := P2(Ωh) as the space of piecewise quadratic functions on Ωh,

• Vh0 := {ψ ∈ Vh | ψ|ΓD = 0},

• Θh0 := {ψ ∈ Θh | ψ|ΘD = 0}.

Time discretization is done using the Θ-method, for example the Crank-Nicolson
method for Θ = 0.5 which is implicit and conditionally stable second order finite
difference method. For n ∈ N and ∆t := T/n we split the interval (0, T ) into
equidistant time steps ti := i∆t, i = 0, 1, 2, ... , n and denote fn := f(tn) for
any function f(t). Now we can define the Galerkin system for each model for
Θ ∈ [0, 1].
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T-Oldroyd

Supposing there exist

ṽh ∈ Vh satisfying ṽh|ΓD = vD,

θ̃h ∈ Θh satisfying θ̃h|ΘD = θD,

the problem is to find a quadruple (vh, ph,Bh, θh) ∈ Vh×Ph×Bh×Θh such that
vh − ṽh ∈ Vh0, θh − θ̃ ∈ Θh0 and for all (ϕh, ϕh,Φh, ϕθh) ∈ Vh0 × Ph × Bh × Θh0
and for i = 1, 2, ... , n (considering initial conditions from 3.1.1) satisfying

P n+1 = 0,∫
Ωh
ρ
vn+1
h − vnh

∆t ·ϕh dx + ΘV n+1 + (1−Θ)V n = 0,∫
Ω

Bn+1
h −Bn

h

∆t : Φh dx + ΘBn+1 + (1−Θ)Bn = 0,∫
Ω
ρcV

θn+1
h − θnh

∆t ϕθh dx + ΘT n+1 + (1−Θ)T n = 0,

where we use

Pn :=
∫

Ωh
tr(∇vnh)ϕh dx,

V n :=
∫

Ωh
ρ [(∇vnh)vnh − bn] ·ϕh dx−

∫
Ωh

Tn
h : ∇ϕh dx +

∫
ΓN

tn ·ϕh dS,

where Tn
h = −pnhI + µ2(θnh)

(
(∇vnh) + (∇vnh)T

)
+G(θ) (Bn

h − I) ,

Bn :=
∫

Ω

[
(∇Bn

h)vnh − (∇vnh)Bn
h −Bn

h(∇vnh)T + G(θnh)
µ1(θnh)(Bn

h − I)
]

: Φh dx,

Tn :=
∫

Ω

[
ρ

(
cV (∇θnh) · vnh − rn

)
− µ2(θnh)

2
(
(∇vnh) + (∇vnh)T

)
:
(
(∇vnh) + (∇vnh)T

)
+

G2(θnh)
2µ1(θnh)

(
trBn

h + tr(Bn
h)−1 − 2d

)]
ϕθh dx +

∫
Ω

(k(θnh)∇θnh) · ∇ϕθh dx +
∫

ΘN
qnNϕθh dS.

T-Quad1

Supposing there exist

ṽh ∈ Vh satisfying ṽh|ΓD = vD,

θ̃h ∈ Θh satisfying θ̃h|ΘD = θD,

the problem is to find a quadruple (vh, ph,Bh, θh) ∈ Vh×Ph×Bh×Θh such that
vh − ṽh ∈ Vh0, θh − θ̃ ∈ Θh0 and for all (ϕh, ϕh,Φh, ϕθh) ∈ Vh0 × Ph × Bh × Θh0
and for i = 1, 2, ... , n (considering initial conditions from 3.1.1) satisfying
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P n+1 = 0,∫
Ωh
ρ
vn+1
h − vnh

∆t ·ϕh dx + ΘV n+1 + (1−Θ)V n = 0,∫
Ω

Bn+1
h −Bn

h

∆t : Φh dx + ΘBn+1 + (1−Θ)Bn = 0,∫
Ω
ρcV

θn+1
h − θnh

∆t ϕθh dx + ΘT n+1 + (1−Θ)T n = 0,

where we define

Pn :=
∫

Ωh
tr(∇vnh)ϕh dx,

V n :=
∫

Ωh
ρ [(∇vnh)vnh − bn] ·ϕh dx−

∫
Ωh

Tn
h : ∇ϕh dx +

∫
ΓN

tn ·ϕh dS,

where Tn
h = −pnhI + µ2(θnh)

(
(∇vnh) + (∇vnh)T

)
+G(θ)(Bn

h)d,

Bn :=
∫

Ω

[
(∇Bn

h)vnh − (∇vnh)Bn
h −Bn

h(∇vnh)T + G(θnh)
µ1(θnh)

(
Bn
h(Bn

h)d
)]

: Φh dx,

Tn :=
∫

Ω

[
ρ

(
cV (∇θnh) · vnh − rn

)
− µ2(θnh)

2
(
(∇vnh) + (∇vnh)T

)
:
(
(∇vnh) + (∇vnh)T

)
+

G2(θnh)
2µ1(θnh)

(
Bn
h(Bn

h)d
)]
ϕθh dx +

∫
Ω

(k(θnh)∇θnh) · ∇ϕθh dx +
∫

ΘN
qnNϕθh dS.

3.2.2 Solving the Discrete Problem
The non-linear system arising from the discrete problem is solved by the Newton
method. The block-scheme of the linearised system has a rather general form

A B C D
BT 0 0 0
E 0 F G
H 0 I J

 ,

where columns and rows correspond to v, p, B and θ, respectively. The linear
system in each Newton iteration is solved by the direct solver MUMPS included
in PETSc library.

3.2.3 Verification of Implementation
To verify our implementation, we compare the results of the simulation with the
classical viscoelastic benchmark problem. The test is done for the Oldroyd-B
model hence the temperature is not involved and the material coefficients are
prescribed constants. The implementation of the model Quad1 differs from the
Oldroyd-B only in one term in the evolution equation for extra stress tensor B.
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Figure 3.2: The geometry of the problem.

Problem Description

We consider the planar flow past a cylinder of radius R positioned between two
flat plates separated by a distance H = 4R. Our computation domain is depicted
in (3.2) and consists of a rectangular and a circle in the middle. The width of the
rectangular has to be large enough to let the velocity develop its own steady flow
profile without respect to an inflow boundary condition. In our case, the width
is 20R. No slip boundary condition for the velocity is assumed on the cylinder
and on the walls of the channel and we prescribe parabolic velocity profile of flow
rate Q on inflow. It implies the average velocity U = Q/H.

We can rewrite the governing equations of the Oldroyd-B model into a dimen-
sionless form

divv = 0,
Re v̇ = −∇p̃+ α∆v +∇S,

S + Wi
O
S = 2(1− α)D,

where the dimensionless parameters are the Reynold number, the Weissenberg
number and the viscosity coefficient

Re = ρUH

(µ1 + µ2) = ρUH

(µTot)
,

Wi = µ1U

GR
= τU

R
,

α = µ2

µ1
.

However, it is convenient to prescribe a viscosity ratio

β = µ2

µTot
∈ [0, 1),

instead of α. It is sufficient as the third dimensionless parameter because α =
β/(β − 1). For better orientation in the literature, we present another set of ma-
terial parameters ηs = µ1 as solvent viscosity, ηp = µ2 as polymeric viscosity and
τ = µ1/G as relaxation time (and also µTot = µ1 + µ2). This set of parameters is
used also in our reference article for the benchmark problem [8].

In order to be consistent with the reference article, we set Re = 0 (to neglect
the inertial term), β = 0.59 and run simulation of the problem for different Wi.
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Wi M0 M1 M2 Reference value [8]
0.1 130.195 130.299 130.371 130.36
0.2 126.470 126.562 126.645 126.62
0.3 123.054 123.130 123.217 123.19
0.4 - 120.536 - 120.59

Table 3.1: The results of the stationary benchmark problem. (the sign ”-“ means
that the algoritm diverges)

Wi M0 M1 M2 Reference value [8]
0.1 130.195 130.300 130.372 130.36
0.2 126.469 126.561 126.650 126.62
0.3 123.054 - 123.253 123.19
0.4 120.481 - 120.636 120.59
0.5 118.587 - 118.631 118.83

Table 3.2: The results of the time-evolutionary benchmark problem. For Wi ≥ 0.6
algorithm diverges (also the sign ”-“ means that the algoritm diverges).

The measured quantity is a dimensionless drag coefficient

K = 1
µTotU

∫
ΓC

Tn · ex ds,

where ΓC is the boundary of the cylinder, n the outward unit normal and ex unit
vector in the x direction. Let us note that the resulting drag coefficient does not
depend the choice of Q and µTot. We use Q = 1 and µTot = 1.

Simulation Results

The simulation was done with constant coefficients without any dependence on
the temperature therefore an evolution equation for temperature was removed
from discrete problem. Hence we are testing only the non-temperature part of
our implementation. The computation was performed on three computational
meshes M0, M1 and M2 depicted in (3.3). The computational mesh M2 was
designed in such a way that it has comparable number of elements as M1 but
greater density of elements near the cylinder. The problem is stationary so we set
all time derivatives to zero and solve the boundary value problem. Table (3.1)
shows the results for low Weissenberg numbers. Unfortunately, for Wi ≥ 0.4
the Newton method does not converge (the high Weissenberg number problem
(HWNP) is the well known numerical issue).

We try to get results for some higher Wi by considering initial and boundary
value problem and try to find a stationary state. The time-evolution computation
is more successful and diverges for Wi ≥ 0.6. There is also some difficulty with
the mesh M1 which we cannot fully explain. However, our aim was the quanti-
tative verification and from this point of view the simulations are successful.
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Figure 3.3: Computational meshesM0 (1052 elements),M1 (3744 elements),M2
(5949 elements), respectively from above.
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3.3 Arbitrary Lagrangian-Eulerian Method
Interesting phenomena of viscoelasticity are connected with the deformation of
specimen. So far, our consideration as well as the implementation was done in
the Eulerian (spatial) description. It means the material is flowing through the
computational domain during the computation. If we want to observe the defor-
mation of the rigid body (fixed set of material points), we need to switch to the
Lagrangian description of the motion and connect each point of the computational
domain with a fixed material point.

However, when large material deformation occurs, for instance vortices in
fluids, the computation suffers from a loss in accuracy, and may even be unable
to conclude the calculation, due to excessive distortions of the computational
mesh linked to the material. The difficulties caused by the excessive distortion
of the finite element grid can be overcome by the Arbitrary Lagrangian-Eulerian
(ALE) method.

We present the weak formulation of our models in both Lagrangian and ALE
description. We closely follow the section Computation in the time varying do-
mains in the doctoral thesis [15].

3.3.1 Lagrangian Description
To reformulate the problem from Eulerian to Lagrangian description, we have to
introduce a new variable u as a displacement. Let us denote ΩX the material
(reference) domain, Ωx the spatial (current) domain and ϕ : X → x = X + u as
one-to-one mapping from ΩX into Ωx. The velocity is defined by

v = ∂ϕ

∂t

∣∣∣∣∣
X

= ∂u
∂t
,

the deformation gradient F and its Jacobian J are defined as

F = ∂ϕ

∂X
= I +∇Xu, J = detF.

The mapping ϕ is one-to-one thus there exists its inverse ϕ−1 : x → X = x − u
and F is invertible.

We already have a weak formulation of the problem in the Eulerian descrip-
tion. In order to reformulate the problem to Lagrangian description, we have
to express the time and spatial derivatives of Eulerian quantities in the terms of
derivatives of Lagrangian quantities. Let us first inspect the transformation of
the time derivative of a quantity α (α can be a scalar, vector or tensor - it changes
only the meaning of multiplication arising from the chain rule), using the chain
rule we have

∂α

∂t

∣∣∣∣∣
X

= dα(ϕ(X, t), t)
dt

∣∣∣∣∣
X

= ∂α

∂t

∣∣∣∣∣
x

+ ∂α

∂x

∂ϕ

∂t

∣∣∣∣∣
X

= ∂α

∂t

∣∣∣∣∣
x

+∇xα · v.

Also, we have to transform the gradient of a scalar function1 α

∇X α = ∂α(ϕ(X, t), t)
∂X

= ∂α

∂x

∂ϕ

∂X
= (∇x α)F,

1Note that the gradient of a scalar function can be considered to be a row vector. Hence
matrix multiplication from the right by the tensor F makes sense.
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which directly implies
∇x α = (∇X α)F−1.

By the same derivation it holds for the gradient of a vector function w

∇xw = (∇X w)F−1.

Further, we transform the divergence of the gradient of a scalar function. If
we again denote q = −k(θ)∇θ and q̃ = −k(θ)∇XθF−T , we can write

divx q = ∂qi
∂xi

= ∂qi
∂Xα

: ∂Xα

∂xi
= (∇X q) : F−T ,

and for a tensor quantity A ∈ Rd×d we have

(divxA) =
(
(∇X A) : F−T

)
∈ Rd.

The integrals over Ωx are transformed to the integrals over ΩX by using inte-
gral substitution theorem. We have to take special care of the transformation of
the integrals with the divergence. Let us remind the kinematic identity

divqA = (∇q) : A + q · divA

and Piola identity divX
(
(detF)F−T

)
= divX

(
JF−T

)
= 0. We can now write∫

Ωx
divT · q dx =

∫
ΩX

(
J(∇XT) : F−T

)
· q dX

=
∫

ΩX

(
J(∇XT)F−T + T divX (JF−T )

)
· q dX

=
∫

ΩX
divX (JTF−T ) · q dX

and ∫
Ωx

divx q qθ dx =
∫

ΩX

(
J(∇Xq) : F−T

)
qθ dX

=
∫

ΩX

(
J(∇Xq)F−T + q divX (JF−T )

)
qθ dX

=
∫

ΩX
divX (JqF−T )qθ dX

= −
∫

ΩX
divX

(
Jk(θ)(∇XθF−1)F−T

)
qθ dX.

Now we are prepared to rewrite the weak formulation of the derived models in
the Lagrangian description. We suppose u ∈ L∞(0, T ;W 1,2(ΩX)) and the initial
condition u(t = 0) = 0. For the sake of simplicity let us make abbreviations

U := L∞(0, T ;W 1,2(ΩX)),

DX := 1
2
(
(∇v)F−1 + F−T (∇v)T

)
,

t̃ :=
(
JTF−T

)
nX , onΓN ,

θ̃N := (Jk(θ)∇θF−1F−T ) · nX , onΘN ,
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where t̃ and θ̃N represent standard Neumann boundary conditions prescribed on
the boundary of material domain ΩX . Since we are dealing with an incompressible
deformation, instead of ∫

ΩX
Jtr

(
(∇v)F−1

)
ϕ dX = 0

we can write ∫
ΩX

(J − 1)ϕ dX = 0.

T-Oldroyd-B

The weak formulation for the model T-Oldroyd-B is transformed into the La-
grangian description in ΩX as follows:

The quintuple (v, p,B, θ,u) ∈ V × P ×B ×Θ×U , such that v− ṽ ∈ V0 and
θ − θ̃ ∈ Θ0, is the weak solution of the model T-Oldroyd-B in Ω ⊂ Rd if∫

ΩX

(
∂u
∂t
− v

)
·ϕu dX = 0,∫

ΩX
(J − 1)ϕdX = 0,∫

ΩX
Jρ
[
∂v
∂t
− b

]
·ϕdX −

∫
ΩX

(JTF−T ) : ∇ϕdX +
∫

ΓN
t̃ ·ϕ dS = 0,

T = −pI + 2µ2(θ)DX +G(θ)(B− I),∫
ΩX

J
[
∂B
∂t
− (∇v)F−1B−BF−T (∇v)T + G(θ)

µ1(θ)(B− I)
]

: ΦdX = 0,∫
ΩX

J
[
ρ

(
cV
∂θ

∂t
− r

)
− 2µ2(θ)DX : DX + G2(θ)

2µ1(θ)
(
trB + tr(B−1)− 2d

)]
ϕθ dX+∫

ΩX
(Jk(θ)∇θF−1F−T ) · ∇ϕθ dX +

∫
ΘN

q̃Nϕθ dS = 0,

is satisfied for all (ϕ, ϕ,Φ, ϕθ,ϕu) ∈ V0×P×B×Θ0×U and almost all t ∈ (0, T ),
where ṽ|ΓD = vD, θ̃|ΘD = θD and r ∈ L2(0, T ;L2(Ω)), b ∈ L2(0, T ;L2(Ω))d.

T-Quad1

The weak formulation for the model T-Oldroyd-B is transformed into the La-
grangian description in ΩX as follows:

The quintuple (v, p,B, θ,u) ∈ V × P ×B ×Θ×U , such that v− ṽ ∈ V0 and
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θ − θ̃ ∈ Θ0, is the weak solution of the model T-Oldroyd-B in Ω ⊂ Rd if∫
ΩX

(
∂u
∂t
− v

)
·ϕu dX = 0,∫

ΩX
(J − 1)ϕdX = 0,∫

ΩX
Jρ
[
∂v
∂t
− b

]
·ϕdX −

∫
ΩX

(JTF−T ) : ∇ϕdX +
∫

ΓN
t̃ ·ϕ dS = 0,

T = −pI + 2µ2(θ)DX +G(θ)Bd,∫
ΩX

J
[
∂B
∂t
− (∇v)F−1B−BF−T (∇v)T + G(θ)

µ1(θ)(BBd)
]

: ΦdX = 0,∫
ΩX

J
[
ρ

(
cV
∂θ

∂t
− r

)
− 2µ2(θ)DX : DX + G2(θ)

2µ1(θ)
(
BBd

)]
ϕθ dX+∫

ΩX
(Jk(θ)∇θF−1F−T ) · ∇ϕθ dX +

∫
ΘN

q̃Nϕθ dS = 0,

is satisfied for all (ϕ, ϕ,Φ, ϕθ,ϕu) ∈ V0×P×B×Θ0×U and almost all t ∈ (0, T ),
where ṽ|ΓD = vD, θ̃|ΘD = θD and r ∈ L2(0, T ;L2(Ω)), b ∈ L2(0, T ;L2(Ω))d.

3.3.2 ALE Description
Using the Lagrangian description to solve the problem of deforming a piece of
material is sufficient in many applications, especially in solid mechanics. However,
we are dealing with viscoelastic materials with temperature dependent material
coefficients and for high temperatures the specimen can behave like a fluid and
some problems can arise during the computation due to the large motion of
the material. Therefore we need to use something between the Lagrangian and
Eulerian description and Arbitrary Lagrangian-Eulerian (ALE) description is the
right choice. Details about the ALE method can be found in [5].

The method is based on the arbitrary configuration “somewhere between” the
material and spatial configurations. Precisely speaking, let Ωχ ⊂ Rd and

φ̂ : χ→ x = χ+ û

maps Ωχ into Ωx. The quantity û is called an arbitrary deformation. If the time
derivative of û is equal to v then arbitrary configuration merges with material
configuration, Ωχ = ΩX . Instead of this, we only need to have the material
points on the boundary ∂Ωχ. Inside the domain Ωχ, we just need to have a
unique solution for û. For simplicity’s sake we use a Laplace equation, i.e.

∂û
∂t

= v on ∂Ωχ,

−∆χû = 0 insideΩχ.

In a standard way we define the analogue to the deformation gradient and its
Jacobian by

F̂ = ∂ϕ̂

∂χ
= I +∇χû, Ĵ = det F̂.
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The transformations of all quantities (e.g. ∇χv) are the same as for the La-
grangian description, except for the transformation of the material time deriva-
tive. If we proceeded in the same way as for the Lagrangian description, we would
obtain

∂α

∂t

∣∣∣∣∣
χ

= dα(ϕ̂(χ, t), t)
dt

∣∣∣∣∣
χ

= ∂α

∂t

∣∣∣∣∣
x

+ ∂α

∂x

∂ϕ̂

∂t

∣∣∣∣∣
χ

= ∂α

∂t

∣∣∣∣∣
x

+∇xα ·
∂û
∂t
. (3.3.1)

But we need to have v instead of the time derivation of û in the last term of
(3.3.1). Hence using (3.3.1) and the transformation rule for ∇xα we consider

∂α

∂t

∣∣∣∣∣
x

+∇xα · v = ∂α

∂t

∣∣∣∣∣
χ

+∇xα ·
(
v− ∂û

∂t

)

= ∂α

∂t

∣∣∣∣∣
χ

+ (∇χα)F̂−1 ·
(
v− ∂û

∂t

)

= ∂α

∂t

∣∣∣∣∣
χ

+∇χα ·
(
F̂−1

(
v− ∂û

∂t

))
.

Now we are able to rewrite the weak formulation of the derived models in the
ALE description. As for the Lagrangian description, let us assume the initial and
boundary conditions

û(t = 0) = 0,
∂û
∂t

= v, on ∂Ωχ,

and abbreviate

U := L∞(0, T ;W 1,2(Ωχ)),

Dχ := 1
2

(
(∇v)F̂−1 + F̂

−T (∇v)T
)
,

t̂ :=
(

ĴT̂F̂−T
)
nχ, onΓN ,

θ̂N := (Ĵk(θ)∇θF̂−1
F̂
−T ) · nχ, onΘN ,

Dα
D := ∂α

∂t
+∇α ·

(
F̂−1

(
v− ∂û

∂t

))

where t̂ and θ̂N represent the standard Neumann boundary conditions prescribed
on the boundary of material domain Ωχ.

Penalty term If the boundary condition
∂û
∂t

= v, on ∂Ωχ (3.3.2)

cannot be prescribed, it can be replaced in the week formulation by a penalty
term ∫

∂Ωχ
α

(
v− ∂û

∂t

)
·ϕû dS = 0, (3.3.3)

which can be understood as an auxiliary force trying to keep the condition 3.3.2.
The penalty α determines how strong the force is.

49



T-Oldroyd-B

The weak formulation for the model T-Oldroyd-B is transformed into the La-
grangian description in Ωχ as follows:

The quintuple (v, p,B, θ, û) ∈ V × P ×B ×Θ×U , such that v− ṽ ∈ V0 and
θ − θ̃ ∈ Θ0, is the weak solution of the model T-Oldroyd-B in Ω ⊂ Rd if∫

Ωχ
∇û · ∇ϕû dχ = 0,∫

∂Ωχ
α

(
v− ∂û

∂t

)
·ϕû dS = 0,∫

Ωχ
Ĵtr

(
(∇v)F̂−1)

ϕdχ = 0,∫
Ωχ

Ĵρ
[Dv
Dt − b

]
·ϕdχ−

∫
Ωχ

(ĴT̂F̂−T ) : ∇ϕ dχ+
∫

ΓN
t̂ ·ϕ dS = 0,

T̂ = −pI + 2µ2(θ)Dχ +G(θ)(B− I),∫
Ωχ

Ĵ
[DB
Dt − (∇v)F̂−1B−BF̂−T (∇v)T + G(θ)

µ1(θ)(B− I)
]

: Φdχ = 0,∫
Ωχ

Ĵ
[
ρ

(
cV

Dθ
Dt − r

)
− 2µ2(θ)Dχ : Dχ + G2(θ)

2µ1(θ)
(
trB + tr(B−1)− 2d

)]
ϕθ dχ+∫

Ωχ
(Ĵk(θ)∇θF̂−1F̂−T ) · ∇ϕθ dχ+

∫
ΘN

q̂Nϕθ dS = 0,

is satisfied for all (ϕ, ϕ,Φ, ϕθ,ϕû) ∈ V0×P×B×Θ0×U and almost all t ∈ (0, T ),
where ṽ|ΓD = vD, θ̃|ΘD = θD and r ∈ L2(0, T ;L2(Ω)), b ∈ L2(0, T ;L2(Ω))d.

T-Quad1

The weak formulation for the model T-Oldroyd-B is transformed into the La-
grangian description in Ωχ as follows:

The quintuple (v, p,B, θ, û) ∈ V × P ×B ×Θ×U , such that v− ṽ ∈ V0 and
θ − θ̃ ∈ Θ0, is the weak solution of the model T-Oldroyd-B in Ω ⊂ Rd if∫

Ωχ
∇û · ∇ϕû dχ = 0,∫

∂Ωχ
α

(
v− ∂û

∂t

)
·ϕû dS = 0,∫

Ωχ
Ĵtr

(
(∇v)F̂−1)

ϕdχ = 0,∫
Ωχ

Ĵρ
[Dv
Dt − b

]
·ϕ dχ−

∫
Ωχ

(ĴT̂F̂−T ) : ∇ϕ dχ+
∫

ΓN
t̂ ·ϕ dS = 0,

T̂ = −pI + 2µ2(θ)Dχ +G(θ)Bd,∫
Ωχ

Ĵ
[DB
Dt − (∇v)F̂−1B−BF̂−T (∇v)T + G(θ)

µ1(θ)(BBd)
]

: Φdχ = 0,∫
Ωχ

Ĵ
[
ρ

(
cV

Dθ
Dt − r

)
− 2µ2(θ)Dχ : Dχ + G2(θ)

2µ1(θ)
(
BBd

)]
ϕθ dχ+∫

Ωχ
(Ĵk(θ)∇θF̂−1F̂−T ) · ∇ϕθ dχ+

∫
ΘN

q̂Nϕθ dS = 0,

is satisfied for all (ϕ, ϕ,Φ, ϕθ,ϕû) ∈ V0×P×B×Θ0×U and almost all t ∈ (0, T ),
where ṽ|ΓD = vD, θ̃|ΘD = θD and r ∈ L2(0, T ;L2(Ω)), b ∈ L2(0, T ;L2(Ω))d.
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3.3.3 Verification of the Implementation
For the verification of the code written in Lagrangian or ALE formulation, we
decided to perform uni-axial stress simulation on a rectangular piece of Neo-
Hookean material. Neo-Hookean material can be obtained from the Oldroy-B
model (or also Quad1 model) by considering a limit case µ2 → 0 and µ1 → ∞.
After applying the stress, the rate of elongation ε of the specimen is compared
with an analytic solution. We define ε by the relation

le = ε l, (3.3.4)

where l and le are initial and final length of the specimen, respectively. Inertia
effects are neglected by setting ρ = 0.

Problem description

The considered geometry and boundary conditions are depicted on 3.4. It consists
of the a rectangle of height h = 2 and length l = 4. Let us denote P as the first
Piola-Kirchhoff tensor. Let us recall the relation between the Cauchy stress tensor
T and the first Piola-Kirchhoff tensor P

P = JTF−T . (3.3.5)

On the top and the bottom of the rectangle so called do nothing boundary con-
dition Pn = 0 is prescribed. The right hand side of the specimen is pulled
by a constant force F. Therefore we prescribe a constant boundary condition
Pn = (f, 0) on the right hand side of the rectangle, where fh = F is the desired
pull force. Note that P and n are in the reference configuration. At the wall, we
only demand vx = 0 (instead of v = 0) to allow an uniaxial deformation of the
specimen.

Reduction to Neo-Hookean Material

Let us show that Oldroyd-B model (and also Quad1 model) reduces to Neo-
Hookean material if we consider a limit case µ2 → 0 and µ1 → ∞. Constitutive
relation for both models reduces to

T = −pI +G
(
Bκp(t) − I

)
O

Bκp(t) = 0.

From 2.2.2 we have

0 =
O

Bκp(t)= −2Fκp(t)Dκp(t)FTκp(t).

Hence we conclude that
Dκp(t) = 0,

which implies
Bκp(t) = B.

In other words, extra stress tensor Bκp(t) is the left Cauchy-Green tensor of the
whole deformation. Therefore, we obtain the constitutive relation for an incom-
pressible Neo-Hookean material

T = −pI +G (B− I) . (3.3.6)
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Figure 3.4: Geometry and boundary conditions of the problem.

Analytic solution

From 3.3.6, we obtain the constitutive relation in the Lagrangian description

P = J
(
−pF−T +G(F + F−T )

)
using the transformation rule 3.3.5. Let us denote a displacement as u = (u, v).
Due to the geometry of the problem we can assume an uni-axial deformation
u = (u(x), v(y)), hence the deformation gradient takes the form

F =
[
λ 0
0 1

λ

]
,

where λ = 1+ux and ux denotes the partial derivative u by x. Note that the rate
of elongation ε defined in (3.3.4) and ux are equal in this case because we assume
λ 6= 0 to be constant in the whole domain. This assumption allows us to write

P = −p
[

1
λ

0
0 λ

]
+G

[
λ− 1

λ
0

0 1
λ
− λ

]
(3.3.7)

because J = 1 for an uni-axial deformation. The boundary condition do nothing
Pn = 0 for n = (0,±1) gives us a relation for the pressure

p = G
1− λ2

λ2 . (3.3.8)

We also suppose p to be constant in the whole domain. The second boundary
condition Pn = (f, 0) for n = (1, 0) gives

f = −G1− λ2

λ3 +G
λ2 − 1
λ

,
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which leads to

λ4 = f

G
λ3 + 1. (3.3.9)

Now we are able to analytically compute the rate of elongation ux of the
specimen depending on the density of pulling force f and the Young’s modulus
G by the relation

ux = λ1 − 1,

where λ1 is the positive real root of the equation (3.3.9). This definition is correct
due to the next lemma.

Lemma 3.3.1. For a ∈ R, a ≥ 0 there exist only one positive real root of the
equation

λ4 = aλ3 + 1.

Proof. Let us denote Q(λ) := λ4 − aλ3 − 1. Clearly

Q(0) = −1 and lim
λ→±∞

Q(λ) =∞. (3.3.10)

The derivative of Q(λ) reads

dQ(λ)
dλ = λ2(4λ− 3a),

which means the only stationary points of Q(λ) are λn = 0 and λs = 3a/4.
Furthermore, according to the sign of the derivative, Q(λ) is non-increasing on
the interval [−∞, λs], non-descending on the interval [λs,∞] and also strictly
monotonous for all λ ∈ R{λn, λs}. This monotony, (3.3.10) and Darboux in-
termediate value property of polynomials imply exactly one positive and one
negative root of Q(λ).

Simulation Results

The problem looks like a stationary problem but we need to test time-evolutionary
code. If we start simulation with a relaxed specimen and apply the pulling force
at one moment, the change of length of the specimen is instant because of absence
of dissipation in the Neo-Hookean model. If the pulling force is large, this jump
is bad for a time stepping scheme. One has to either add an auxiliary dissipation
(which does not change the result) or increase the pulling force slowly enough until
it reaches the desired value. We choose the second approach and introduce the
quantity ∆F as the force increment. Let us point out that results do not depend
on the size of computational mesh because the deformation is really uni-axial and
has always a perfect rectangular shape.

Lagrangian Description In the case of Lagrangian description, simulation
results shown in the table (3.3) are satisfactory for the force increment ∆F = 0.01
and Young’s modulus G = 1.
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Force F Elongation rate ε Anal. value of ux
0.01 0.002509 0.002509
0.1 0.025968 0.025970
0.5 0.152701 0.152777
1.0 0.379697 0.380278
2.0 1.101999 1.106919

Table 3.3: Results of the benchmark problem for the force increment ∆F = 0.01
and Young’s modulus G = 1.)

Force F Penalty α ε for ∆F = 0.01 ε for ∆F = 0.001 Anal. value of ux
1.0 10000 0.379518 0.380162 0.380278

1000 0.379135 0.379775 0.380278
100 0.375385 0.375984 0.380278
10 0.344113 0.344399 0.380278

2.0 10000 1.097126 1.105375 1.106919

Table 3.4: Results of the benchmark problem for ALE description for Young’s
modulus G = 1.

ALE Description In comparison with Lagrangian description, our implemen-
tation of ALE description has another parameter - penalty α (defined in (3.3.3)).
The convergence of ε with respect to penalty α is shown in the table (3.4) for the
force F = 1, Young’s modulus G = 1 and two force increment steps ∆F = 0.01
and ∆F = 0.001. Again, the results are satisfactory.

3.4 Temperature Benchmark: Couette Flow
In this section, we verify the implementation of the temperature dependent model
T-Oldroyd-B on the Cylindrical Couette steady flow problem. The influence of
the temperature is demonstrated through temperature dependent Young’s mod-
ulus G(θ). For simplicity’s sake, we assume the temperature dependence to be
exponential

G(θ) = G0e
α(θ−θR),

where G0 > 0, α are constants and θR is a reference temperature. Other material
coefficients µ1, µ2 and κ remain constant.

To find an analytic solution of the problem, the governing equations are trans-
formed into the cylindrical coordinates. We use a numerical integration to eval-
uate a semi-analytic solution and compare results of simulation with it.

3.4.1 Problem description
The Cylindrical Couette flow takes place between two concentric infinite cylinders
of radii R1 < R2. The inner and outer cylinders (and also the fluid on the
boundaries) rotate with the constant angular velocities Ω1 and Ω2, respectively.
The problem is originally 3D, but for a low velocities we can assume the symmetry
in the z axis, hence we are interested in the 2D problem - plane section for any
z = const, which is depicted in Figure (3.5), where gr̂ and gϕ̂ are normed basis
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vectors of the cylindrical coordinates. We solve the full 3D problem analytically
with simplifying assumptions.

r

R2

R1

ϕ

Ω1

Ω2

gr̂

gϕ̂

Figure 3.5: Problem geometry.

3.4.2 System of governing equations in cylindrical coordi-
nates

Let us consider steady flow. We assume that the velocity field takes the form

v = vϕ̂(r)gϕ̂ =

 0
vϕ̂(r)

0

 , (3.4.1)

then the gradient of v is given by the formula

∇v =


0 −vϕ̂

r
0

r d
dr

(
vϕ̂
r

)
+ vϕ̂

r
0 0

0 0 0

 , (3.4.2)

and the symmetric part of the gradient of v is given by the formula

D =


0 1

2r
d
dr

(
vϕ̂
r

)
0

1
2r

d
dr

(
vϕ̂
r

)
0 0

0 0 0

 . (3.4.3)

Matrices representing∇v andD are given with respect to the normed basis. Note
that it is more convenient to set vϕ̂(r) =def ω(r)r. In such a case the formulae
above read

∇v =

 0 −ω 0
r dω

dr + ω 0 0
0 0 0

 (3.4.4)

and

D =

 0 r
2

dω
dr 0

r
2

dω
dr 0 0
0 0 0

 . (3.4.5)

Further

[∇v]v =

−rω
2

0
0

 (3.4.6)
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The temperature field and the pressure field are assumed to be functions of
the radial variable r,

θ = θ(r), (3.4.7)
p = p(r). (3.4.8)

The left Cauchy–Green tensor representing the response from the natural to
the current configuration is assumed to take the form

Bκp(t) =

Br̂
r̂(r) Br̂

ϕ̂(r) 0
Bϕ̂

r̂(r) Bϕ̂
ϕ̂(r) 0

0 0 Bẑ
ẑ(r)

 , (3.4.9)

where the matrix A is expressed with respect to the normed basis, that is if
Bκp(t) = Br̂

r̂(r)gr̂ ⊗ gr̂ + · · ·+ Bẑ
ẑ(r)gẑ ⊗ gẑ, then

divBκp(t) =


1
r

d
dr

(
rBr̂

r̂

)
− Bϕ̂ϕ̂

r

dBϕ̂r̂
dr + Bϕ̂r̂+Br̂ϕ̂

r

0

 , (3.4.10)

where the vector is expressed with respect to the normed basis, that is

divBκp(t) =
1
r

d
dr
(
rBr̂

r̂

)
−

Bϕ̂
ϕ̂

r

gr̂ +
dBϕ̂

r̂

dr +
Bϕ̂

r̂ + Br̂
ϕ̂

r

gϕ̂. (3.4.11)

Further, if Bκp(t) takes the form (3.4.9), then

O

Bκp(t) =

 0 −r dω
drBr̂

r̂ 0
−r dω

drBr̂
r̂ −2r dω

drBϕ̂
r̂ 0

0 0 0

 . (3.4.12)

Consequently, the system of governing equations simplifies to
−ρrω

2

0
0

 =


−dp

dr + d
dr

(
G(θ)

(
Br̂

r̂ − 1
))

+G(θ)Br̂r̂−Bϕ̂ϕ̂
r

1
r2

d
dr

(
r3µ2

dω
dr +G(θ)r2Bϕ̂

r̂

)
0

 (3.4.13a)

and

µ1

 0 −r dω
drBr̂

r̂ 0
r dω

drBr̂
r̂ −2r dω

drBϕ̂
r̂ 0

0 0 0

+G(θ)

Br̂
r̂ − 1 Br̂

ϕ̂ 0
Bϕ̂

r̂ Bϕ̂
ϕ̂ − 1 0

0 0 Bẑ
ẑ − 1

 =

0
0
0

 .
(3.4.13b)

3.4.3 Solution of the steady system
The solution of the transport equation for Bκp(t) (3.4.13b) is the following.

Br̂
r̂ = Bẑ

ẑ = 1, Br̂
ϕ̂ = µ1

G(θ)r
dω
dr , Bϕ̂

ϕ̂ = 1 + 2
(

µ1

G(θ)r
dω
dr

)2

. (3.4.14)
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After inserting (3.4.14) into (3.4.13a) one gets

µ2 + µ1

r2
d
dr

(
r3 dω

dr

)
= 0, (3.4.15)

which together with the boundary conditions ω(R1) = Ω1 and ω(R2) = Ω2 gives

ω(r) = R2
1Ω1 −R2

2Ω2

R2
1 −R2

2
− R2

1R
2
2(Ω1 − Ω2)

r2(R2
1 −R2

2) . (3.4.16)

It is worth mentioning that when G(θ) is the only material parameter depending
on θ, the temperature field does not affect the solution of the velocity field. Upon
substituting (3.4.16) into (3.4.14) one gets

Br̂
r̂ = Bẑ

ẑ = 1,

Br̂
ϕ̂ = µ1

G(θ)
2R2

1R
2
2(Ω1 − Ω2)

r2(R2
1 −R2

2) ,

Bϕ̂
ϕ̂ = 1 + 2

(
µ1

G(θ)
2R2

1R
2
2(Ω1 − Ω2)

r2(R2
1 −R2

2)

)2

. (3.4.17)

Finally, we are interested in the solution for the steady solution for

2µ2Dδ : Dδ + div (κ∇θ) + θ
dG(θ)

dθ
(
Bκp(t)

)
δ

: Dδ

+ 1
2µ1

(
G(θ)2 − θG(θ)dG(θ)

dθ

)(
TrBκp(t) + Tr

(
B−1
κp(t)

)
− 6

)
= 0.

(3.4.18)

Using Cayley-Hamilton Theorem Tr
(
B−1
κp(t)

)
can be written as

Tr
(
B−1
κp(t)

)
=

(TrBκp(t))2 − Tr
(
B2
κp(t)

)
2 detBκp(t)

. (3.4.19)

Since Bϕ̂
ϕ̂ = 1 + 2Br̂

ϕ̂
2 and Br̂

r̂ = Bẑ
ẑ = 1, we get

detBκp(t) =Br̂
r̂B

ϕ̂
ϕ̂ − Br̂

ϕ̂
2 = 1 + Br̂

ϕ̂
2,

(TrBκp(t))
2 − Tr

(
B2
κp(t)

)
=(3 + 2Br̂

ϕ̂
2)2 − (2 + (1 + 2Br̂

ϕ̂
2)2 + 2Br̂

ϕ̂
2) =

9 + 12Br̂
ϕ̂

2 + 4Br̂
ϕ̂

4 − (2 + 1 + 4Br̂
ϕ̂

2 + 4Br̂
ϕ̂

4 + 2Br̂
ϕ̂

2) = 6(1 + Br̂
ϕ̂

2).

Thus,

Tr
(
B−1
κp(t)

)
=

6(1 + Br̂
ϕ̂

2)
2(1 + Br̂

ϕ̂
2) = 3. (3.4.20)

We will now evaluate all terms in (3.4.18) (note that dG(θ)
dθ = αG(θ))

1.

2µ2Dδ : Dδ = µ2

(
r

dω
dr

)2

,
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2.
div(κ∇θ) = κ

(
d2θ

dr2 + 1
r

dθ
dr

)
,

3.

θ
dG(θ)

dθ
(
Bκp(t)

)
δ

: Dδ = θαG(θ) µ1

G(θ)

(
r

dω
dr

)2

= θαµ1

(
r

dω
dr

)2

,

4.

1
2µ1

(
G(θ)2 − θG(θ)dG(θ)

dθ

)(
TrBκp(t) + Tr

(
B−1
κp(t)

)
− 6

)

= G(θ)2

2µ1
(1− θα)2

(
µ1

G(θ)

)2 (
r

dω
dr

)2

= µ1(1− θα)
(
r

dω
dr

)2

.

Summing all together gives

(µ2 + µ1)
(
r

dω
dr

)2

+ κ

(
d2θ

dr2 + 1
r

dθ
dr

)
= 0. (3.4.21)

Upon substituting ω to (3.4.21) one can find a general solution

θ = C1 −
C

4r2 + C2 log r, where C = µ2 + µ1

κ

(
2R2

1R
2
2(Ω1 − Ω2)

R2
1 −R2

2

)2

(3.4.22)

and C1, C2 have to be determined from the boundary condition.
Let us assume that θ(R1) = θR1 and dθ

dr

∣∣∣∣
r=R2

= 0, then the solution is

θ = θR1 + C

4

(
1
R2

1
− 1
r2 −

2
R2

2
log r

R1

)
. (3.4.23)

Since G(θ) is a function of temperature θ which depends on r, G(θ) is a
function of r. Finally, the pressure p(r) is obtained from (3.4.13a)

dp
dr = ρω2r − 2r µ2

1
G(θ)

(
dω
dr

)2

(3.4.24)

by numerical integration. Note that only a gradient of the pressure p is present
in the balance of linear momentum and thus its value is known only up to the
constant C. This constant is fixed by imposing the boundary condition p(r =
R1) = 0 giving

p(r) =
∫ r

R1
ρω2(s)s− 2s µ2

1
G(θ(s))

(
dω(s)

ds

)2

ds. (3.4.25)

Temperature dependence of the model is driven by the factor α. For α = 0
we obtain a standard set of material coefficients without any influence of temper-
ature. We demonstrate the dependence of the model on temperature by plotting
analytical results for α ∈ {0,−1,−2,−3,−4} shown in Figure 3.6.

58



Figure 3.6: The influence of the temperature for different α on quantities p(r),
Br̂

ϕ̂(r) and Bϕ̂
ϕ̂(r), respectively. Other quantities ω(r), Br̂

r̂(r) and θ are not
influenced by the factor α.
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Figure 3.7: A part of the computational mesh for cylinder Couette flow.

3.4.4 Simulation results
We have found a semi-analytic solution of the full 3D problem, but we can get
the same formulas for a semi-analytic solution if we consider the problem to be
only 2D (as depicted in Figure 3.5). Therefore we can compare analytic results
with results of simulation in 2D.

For the simulation we use the weak formulated model T-Oldroyd-B described
in 3.1.3 with material coefficients

ρ = µ1 = µ2 = κ = cV = 1, G(θ) = G0e
α(θ−θR)

for
G0 = 1, α = −0.1, θR = 273.

Angular velocities of the fluid are Ω1 = 0 and Ω2 = 0.5 for radii R1 = 1, R2 = 2,
respectively. We also fixed pressure p(R1) = 0 and θ(R1) = θR on the inner cylin-
der. The computation is done in the Cartesian coordinates, the computational
mesh consists of 9520 elements which are refined near the boundaries, and part
of the mesh is depicted in Figure 3.7.

To compare FEM results with analytic ones we plot the quantities vϕ̂(r) =
rω(r), p(r), θ, Br̂

r̂(r), Br̂
ϕ̂(r), Bϕ̂

ϕ̂(r) in graph 3.8. The FEM results and ana-
lytical are identical up to discretization error therefore we can conclude that our
implementation is all right.

3.5 Small Amplitude Oscillations
In this chapter, we only sketch our recent work. In the first chapter, small ampli-
tude oscillations constants were introduced for models consisting of mechanical
analogues. The oscillatory experiment is now performed with a rectangular piece
of material for model T-Maxwell-B and we want to compare the results with the
1D oscillations constant G∗.
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Figure 3.8: Comparison of analytic and FEM results of vϕ̂(r), p(r), θ, Br̂
r̂(r),

Br̂
ϕ̂(r) and Bϕ̂

ϕ̂(r), respectively.
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Figure 3.9: Geometry and boundary conditions of the oscillatory problem.

3.5.1 Problem Description
The goal is to perform sinusoidal oscillation on a rectangular piece of material and
to capture the response. We prescribe the normal stress σ := Pn and observe the
strain response ε. A geometry of a experiment is very similar to the benchmark
problem for ALE method and is depicted on (3.9). Do nothing Pn = 0 boundary
conditions are prescribed on the top and bottom of the rectangular of length l = 8
and hight h = 2. Left side carries the no slip boundary condition v = 0. Right
side ΓR is forced to oscillate by the condition Pn = f(t), where f(t) = (sinωt, 0)
for some frequency ω ∈ R.
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Conclusion
Derivation of temperature dependent models was successful in the case of the
thermodynamic system consisting of springs and dashpots, but also in the case of
a real material, which was the main part. We have shown that the framework pro-
posed by Rajagopal and Srinivasa can be extended by the temperature influence
and we obtain thermodynamic compatible models T-Oldroyd-B, T-Maxwell and
T-Quad1 which indeed reduces to the models Oldroyd-B, Maxwell and Quad1
presented in [15] thesis. Let us note that the general evolution equation for the
temperature (2.1.13) evaluated for neo-Hookean free energy is identical to the
temperature evolution arising from mechanical analogues (1.2.7) (if we identify
εel = Bκp(t)). Hence the full T-Maxwell model and the 1D one are very similar in
some sense.

We have found out that if we consider a standard geometry for Maxwell el-
ement (in terms of mechanical analogues) and consider temperature dependent
material coefficients, we obtain the T-Maxwell model

ε̇ = σ

ν(θ) + σ̇

k(θ) − θ̇
σk′(θ)
k2(θ) , (3.5.1)

cV θ̇ = σ2

ν(θ) − (k(θ)− θk′(θ)) σ

k(θ)

(
ε̇− σ

ν(θ)

)
+ r (3.5.2)

with one extra term in a constitutive equation in comparison with the standard
one.

During the simulations with mechanical analogues, we observed a cooling of
the system due to increasing strain. One would intuitively say the opposite,
although , at the end, it makes sense and agrees with a real experiment on an
elastic rubber when stretched. It also reveals the meaning of the term with
the second derivation of free energy in the evolution equation of temperature.
And this is one reason, why analogy with simple systems is important - this
phenomenon is not very strong for real materials, since real materials always
exhibit some dissipation.

In the third chapter, weak formulated models were implemented and verified.
The first benchmark was the a classical flow past cylinder benchmark for Oldroyd-
B. Then we develop analytical solution for a uni-axial stretching of a rectangular
piece of neo-Hookean material to verify the implementation of ALE method.
Further we tested the full temperature model T-Oldroyd-B on the steady problem
of Couette flow between two cylinders and compare it with analytical solution.

Recently we are working on the comparison of small amplitude oscillations in
2D with the oscillation constant G∗. Aim is to find out, how big is the error in
fit due to the 2D geometry. We are also work on the oscillatory experiment of
the piece of glass. We want to melt it by its own production of heat due to the
oscillations.
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