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Department: Institute of Theoretical Physics

Supervisor: Dr. Alexander Vikman, Institute of Physics ASCR

Abstract: We consider a novel extension of the recently proposed mimetic gravity.
The latter is a scalar-tensor theory which is able to describe dark matter on
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of propagation for the gravitational waves. The appearance of the anisotropic
stress and the consequent nontrivial speed of propagation of the gravity waves
are new phenomena which were not present in the previously studied mimetic
models. Furthermore, we demonstrate that the effective Newton’s gravitational
constant in the background Friedmann equations is shifted in the presence of the
novel couplings of the mimetic scalar field. We calculate the quadratic action for
scalar and tensor perturbations and briefly discuss possible instabilities. Finally
we consider the current observational bounds on the model.

Keywords: mimetic gravity, modified gravity, gravitational waves, tensor-scalar
theory
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Abstrakt:

V této práci zkoumáme dvě nová rozš́ı̌reńı nedávno objevené mimetické gra-
vitace. Mimetická gravitace je tensorová-skalárńı teorie schopná popisu temné
hmoty na kosmologických škálách. Tato teorie lze být povážovánu za ńızko-
energetickou limitu projektovatelné Hařavovy-Lifshitzovy gravitace. Tato nová
rozš́ı̌reńı představuj́ı př́ımou vazbu gradientu mimetického pole na tenzor křivosti.
Tyto vazby jsou zdrojem anizotropńıho napět́ı v tenzoru energie a hybnosti, který
je nenulový i v prvńım řádu perturbaćı na kosmologickém pozad́ı. Dále ukážeme,
že nově zavedené členy ovlivńı rychlost zvuku skalárńıch kosmologických pertur-
baćı, ale předevš́ım ovlivńı i rychlost š́ı̌reńı gravitačńıch vln. Anizotropńı napět́ı
a netriviálńı rychlost propagace gravitačńıch vln jsou nové vlastnosti, které se v
předchoźıch modelech mimetické hmoty nevyskytovaly. Dále demonstrujeme, že
př́ıtomnost mimetické hmoty změńı effektivńı Newtonovu konstantu na úrovni
Friedmanových rovnic pro kosmologické pozad́ı. Odvod́ıme kvadratickou akci pro
skalárńı i tenzorové perturbace a krátce diskutujeme možné nestability. Též dis-
kutujeme omezeńı našeho modelu z pozorováńı.
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Introduction

Despite the fact that Einstein’s general relativity has been a tremendous success,
it has been clear for some time that it cannot be the final theory of gravity. In
the face of extremely high energies and matter densities that were present in the
early universe, one cannot ignore the quantum nature of the world, and thus is
in need of a unified theory of quantum gravity. General relativity breaks down
at Planck scale, and therefore it is only natural that we seek out alternatives to
general relativity as the theory of gravity. While this is fairly obvious, probing
such high energies does not seem to be in our reach in near future. However,
there is another strong evidence that puts Einstein’s theory in question. To de-
scribe the universe, general relativity requires a substantial portion (95%) of its
matter content to be made of the so called dark sector, which consists of dark
energy (69%) and dark matter (26%)[1]. While we cannot dismiss the existence
of such substances, it leads many to speculate whether this is a signal that gene-
ral relativity has reached its limits. Note that the behavior in question concerns
low energies and extremely large scales corresponding to billions of light-years as
opposed to the high energetic limit mentioned above. These hints gave rise to a
plethora of modified theories of gravity that are able to produce the effects similar
to dark energy and dark matter. A big motivation for such studies nowadays is
the advancement in observational cosmology which allows us to test such theories
or constrain possible parameters.

A large class of modified theories of gravity consists of models where general
relativity is supplemented by additional degrees of freedom that are usually made
of scalar fields non-trivially coupled to standard gravity. Such theories are called
tensor-scalar theories (TeS) [2] and mimetic gravity [3] falls within such category.
Even though scalars are relatively rare in nature so far (first observed scalar
particle is the Higgs boson discovered only few years ago [4]), there are numerous
reasons why their addition to the gravitational sector is desirable. For example,
scalar fields satisfy the cosmological principle and can have homogeneous and
isotropic classical backgrounds relevant to cosmology. Furthermore, such fields
can form condensates, which is desirable for a classical configuration applicable
to the very large scales. Scalar fields also provide a natural framework for the
description of accelerated expansion of the Universe as it was realized through the
study of inflation [5], [6] and dark energy (the quintessence) [7], [8]. In quintessence
models scalar fields showed much promise as they offer a possible answer to the
coincidence problem [8].

Famous progenitor to TeS theories is the theory of Brans and Dicke [9], which
sought to reconcile Mach’s principle with general relativity by adding a scalar field
in a non-trivial way. One of the required properties of such theory is the varying
Newton’s gravitational constant. At first this seems as a downside; however, such
behavior was hypothesized by Dirac in the last century following his observation
of the apparent coincidence of the ratio of the electric and gravitational force
between an electron and a proton and the age of the universe (multiplied by
the speed of light) to the diameter of an electron [10]. This, as it turns out,
is not a very special feature because many TeS theories produce some effective
modifications of gravitational constant. Further motivation for scalars in gravity
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comes from the realm of string theory, where gravitons are partnered up with
a scalar field called the dilaton [11]. Unfortunately, the effective 4-dimensional
theory predicted by the string theory is not yet known in detail.

An interesting possibility, which makes the landscape of various TeS much ri-
cher, is to add HD (higher derivative) terms into the Lagrangian. Such extensions
often result in addition of a new degree of freedom which is typically unstable as
is described in the Ostrogradsky’s theorem [12]. The need to avoid these instabi-
lities leads to severe limitations of the space of theories that can be considered.
However, there are special cases where this lethal fate can be avoided. Well known
examples include the Galileon models in Minkowski space [13] and their covariant
extension [14], which have later been expanded by additional Lagrangians [15] to
give a set of TeS theories that give rise to second order equations of motion in
both the scalar and the gravitational sector. After that, it was proven [16] that
these extended Galileons are equivalent to the most general theories with second
order equations of motion introduced by Horndeski [17]. Later it has been realized
that there are other options that bypass the Ostrogradsky instability, namely de-
generate or constrained Lagrangians. Degeneracies in physics naturally arise from
gauge symmetries. A system with such symmetry reduces to the constrained case
after gauge fixing. Mimetic gravity falls within such category.

The original idea of mimetic matter was proposed in [3] and since then it has
attracted considerable attention we e.g. [18], [19], [20], [21], [22]. The name origi-
nates from the fact that it was able to mimic dark matter by modifying standard
gravity. Later it has been shown that such model can be reformulated as irrotati-
onal pressureless fluid [23], [21], [22]. Another important feature of the mimetic
gravity is that it allows for a manifestly Weyl-invariant formulation. Moreover,
it turned out [24] mimetic gravity is closely related to the low energy limit of a
branch of the projectable Horava-Lifshitz gravity [25], [26]. The latter is a power
counting renormalizable but not Lorentz-invariant theory of gravity. Furthermore
a modification of such model (in general any model of irrotational pressureless
fluid) allows us to mimic any type of matter on the background level [27]. Such
versatility of course comes with a price and therefore mimetic gravity has some un-
fixed parameters and in principle an unfixed shape of its potential term. However,
the present parameters correspond to measurable quantities, and thus the theory
can be constrained. Inclusion of higher derivative terms in the action allowed mi-
metic matter to obtain non-zero sound speed in the background of FRW universe
as was shown in [18]. Our work builds upon these ideas and it probes similar
possible modifications that contain non-minimal couplings to curvature, in hopes
that new effects will reveal interesting possibilities for the future of this model.
In [19] it was explained that the higher derivatives (HD) would naturally appear
in a gradient expansion formalism. Indeed, original mimetic matter corresponds
to a pressureless perfect fluid whereas the HD correspond to departures from this
simple perfect fluid picture. Thus mimetic matter with HD can be considered
as imperfect DM [19] and the latter can be phenomenologically interesting [28].
Our setup considers further departures from the perfect fluid DM description. We
achieve this by introducing HD operators of a more general structure and allow
for a direct coupling of the mimetic field to curvature. The latter coupling would
break the weak equivalence principle, but this breakdown was already present on
the level of EoM in the previous constructions.
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The first chapter of this thesis aims to lay out some very basic concepts of
standard cosmology like the Friedmann models as well as to give a review of the
machinery for analyzing cosmological perturbations. A short review of key aspects
of dark matter is also included. Much of the notation conventions are developed
throughout this chapter.

In the second chapter, we give an introduction to concepts like inflation and
quintessence to give the reader some context to extensions of the standard model
of cosmology.

Third chapter is fully fledged to the actual subject of mimetic gravity (or
mimetic matter). In this chapter we review much of the major features and pro-
perties of the model based on the latest research prior to this thesis.

In the fourth and final chapter, we introduce our modifications and derive
their effects on the behavior of mimetic matter and gravity itself. We also discuss
how these modifications expand the preceding model. Much of the work behind
this thesis lies in lengthy calculations of technical nature. For that reason, we
have decided not to include much of the details of the calculations in the final
chapter and instead move them to the appendixes.

We work in the mostly negative signature (+,−,−,−). Space-time indeces
are denoted by lowercase Greek letters while space indeces are lowercase Latin.
We follow Einstein’s summation convention. Note that we will often sum over
two covariant Latin indeces as it is more convenient to work with only covariant
objects. To simplify equations we work in reduced Planck units in which

c = 8πG = ~ = 1. (1)
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1. Standard model of cosmology

Physical cosmology studies the universe at its largest scales. It aims to describe
its dynamics, origin and its ultimate faith. Contemporary cosmology lies on the
shoulders of Einstein’s general relativity that allowed a dynamic description of
the universe. Building upon this framework Friedmann discovered an expanding
solution of Einstein’s equations that was later shown to be unique by Robertson
and Walker. This solution was then correctly connected with the observations of
Hubble by Geoger Lemâıtre. This metric is now called FLRW metric (or FRW
model) in their honor.

FRW model has become the backbone of cosmology as it accurately describes
the coarse grained structure of the universe. Another ingredient to cosmology is
thermodynamics. Combined with the standard model of particle physics, it has
been able to provide accurate predictions of the chemical elements found in the
universe based on the hot early universe that is predicted by the FRW models.
The last major constituent is the study of cosmic perturbations, which studies
the growth of inhomogenities and thus provides a framework to address the issue
of formation of galaxies and larger objects (clusters, supercluster etc.).

Having all these tools, it has become clear that our universe does not really fit
the description. Not unless one adds additional types of matter and energy now
called dark matter [29],[30] and dark energy [31]. One of the first signals toward
their existence lies with the discovery of inconsistencies of the galactic motion [32].
To clear this discrepancy scientists have postulated the existence of dark matter
to make up for it. At the end of the 20th century a major breakthrough occurred
when it was discovered that the universe’s expansion is accelerating, which called
for dark energy [31]. While it is unclear where this dark sector originates, it was
fairly easy to incorporate its basic features into the existing models. Namely a
nonzero cosmological constant was posed and a non-specified dust-like matter
was added into the theory. Together with the above ingredients, this constitutes
Λ-CDM model (Λ - cold dark matter) often refered to as the standard model of
cosmology.

In the following sections, we will introduce the FRW models and the subject
of cosmological perturbations since they are relevant to our research. Our intro-
duction is mainly based on the textbook of Mukhanov [6] supplemented by other
sources that are cited throughout the chapter. For a more detailed introduction
to cosmology please refer to this book or other textbooks [33], [34].

1.1 FRW metric

FRW models describe a universe which is completely homogeneous and isotro-
pic. Moreover it contains a privileged class of time-like world-lines (fundamental
observers), that define an integrable foliation of the space-time into space-like
hypersurfaces that are everywhere orthogonal to the world-lines. In accord with
the assumption of isotropy and homogeneity, these hypersurfaces are of constant
curvature.

Construction of a metric with the above properties is fairly easy. Let us go
through the steps. There exists a time-like coordinate t which measures the proper
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time of the fundamental observers. We can always shift the time coordinate so that
the spatial slices are hypersurfaces of constant t. These slices are 3-dimensional
manifolds of constant curvature, and as such they can be covered by standard
polar coordinates. Thanks to the orthogonality condition mentioned above, the
mixed spatial and time components of the metric vanish in these coordinates.
Metric constructed in this way has the following general form

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2(θ)dϕ2)

]
, (1.1)

where a(t) is the so called scale factor, whose dynamics will be determined from
EFE (Einstein field equations). (r, θ, ϕ) are polar coordinates of the spatial slices
and k measures the spatial curvature, while its sign +1, 0 and −1 corresponds to
closed, flat and opened universes respectively [35].

For future reference let us write down two other forms of the metric that are
commonly used in literature and will be used in the rest of this work. First of
these can be obtained by introducing a new spatial variable dχ = dr/

√
1− kr2.

ds2 = dt2 − a2(t)

[
dχ2 + fk(χ)2(dθ2 + sin2(θ)dϕ2)

]
, (1.2)

where

fk(χ) =

 sin(
√
kχ)/

√
k for k > 0

χ for k = 0

sinh(
√
−kχ)/

√
−k for k < 0.

Another important coordinate is the conformal time

dη = dt/a, (1.3)

in which the metric has the following form

ds2 = a2(η)

[
dη2 − dχ2 − fk(χ)2(dθ2 + sin2(θ)dϕ2)

]
. (1.4)

Using conformal time the metric takes the form of conformal transformation
of maximally symmetric 4-dimensional metric. While using conformal time it is
customary to use ′ to denote time derivatives as opposed to the standard overdot
for the above forms of the metric. Often we will work in flat FRW universe (k = 0)
in such case we will use Cartesian coordinates

ds2 = dt2 − a2(t)dxidxjδij (1.5)

instead of polar ones.
The next step is to determine the dynamics. Let us focus on the curvature

side of the Einstein’s equation. The Einstein tensor for this metric is

G0
0 = 3H2 +

3k

a2
,

Gi
j = 2Ḣ + 3H2 +

k

a2
,

(1.6)
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where H = ȧ/a is the Hubble parameter.
The matter sector of EFE has to possess the same symmetries as the metric

(1.1). This severely restricts all matter fields that can be present in the theory.
First of all, no field can have any spatial dependence once expressed with respect
to the coordinates (1.1). Vectors can only point in direction of uµ (coordinate
vector of time t), and tensors of rank 2 exist only in diagonal form with all
spatial entries equal. This constrains the form of the stress-energy tensor to be

T µν = ρuµuν + (uµuν − δµν )p. (1.7)

Quantities ρ and p are functions of time, and for the fundamental observers they
play the role of energy density and pressure respectively.

From EFE we get the Friedmann equations

3H2 +
3k

a2
= ρ,

2Ḣ + 3H2 +
k

a2
= −p.

(1.8)

There is another Friedmann equation (fluid equation) that can be readily obtained
from the conservation law for stress-energy tensor:

ρ̇+ 3H(ρ+ p) = 0. (1.9)

This does not provide a new information about the system as the above formula
is not independent from the set (1.8); however, its form is fairly useful.

Since we have three unknown functions of time and only two independent
equations, we deal with an under-determined system. In order to close it, we
need one additional piece of information that would characterize the type of
matter involved. This is the equation of state for matter. Let us consider a linear
barotropic equation of state that is characteristic for different cosmic fluids.

p

ρ
= w =


1
3

for radiation or relativistic matter
0 for dust
-1 for cosmological constant

(1.10)

Using assumption (1.10), we can integrate equation (1.9) to obtain

ρ = ρ0

(a0

a

)3(1+w)

. (1.11)

The factors a0 and ρ0 correspond to the scale factor and energy density at some
reference time. In our universe the energy density is composed of a mixture of
matter types

ρ = ρR + ρM + ρΛ, (1.12)

where R and Λ stand for radiation and cosmological constant respectively. The
subscript M marks ordinary baryonic matter and cold dark matter, which are
both characterized by the equation of state for dust. Using this decomposition, one
can rewrite the first Friedmann equation (1.8) in terms of the density parameters.

1 +
k

H2a2
=

ρR
3H2

+
ρM
3H2

+
ρΛ

3H2

1− Ωk = ΩR + ΩM + ΩΛ

(1.13)

Current measurements yield the value Ωk = 0.000 ± 0.005 [1] suggesting that
universe is flat to a high degree of accuracy.
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1.1.1 Solutions for universe dominated by different mat-
ter fields

We consider a universe that is filled by matter with equation of state (1.10)
characterized by w that dominates over other energy contributions, that is we
neglect the others.

As a first case let us consider a flat space k = 0. Using the first Friedmann
equation (1.8) and the result (1.11) we obtain an equation for the scale factor
that has the following solution (assuming w 6= −1)

a(t) = a0

(1

2
ρ0(1 + w)2t2

) 1
3(1+w)

. (1.14)

For w = −1 this formula breaks down, and we need to treat this case separately.
The solution is

a(t) = a(0)eHt, (1.15)

where H =
√
ρ0/3 is the Hubble parameter, which is constant in this case.

For the case of k 6= 0, the analysis is a little bit more involved since the solution
cannot be expressed in a closed form. Instead, we will find a parametric solution
parametrized by the conformal time η introduced earlier. Let us rewrite the first
Friedmann equation (1.8) and the fluid equation (1.11) in terms of conformal time

a′2 + ka2 =
ρ

3
a4, (1.16)

ρ′ + 3H(ρ+ p) = 0. (1.17)

By differentiating the first equation with respect to conformal time and expressing
the derivative of energy density from the second equation, we get

a′′ + ka =
1

6
(ρ− 3p)a3. (1.18)

For radiation the pressure is 3p = ρ, and the right side vanishes, which makes the
equation easy to solve. The solutions are

a(η) = Cr

{
sin(
√
kη) for k > 0

sinh(
√
−kη) for k < 0,

(1.19)

where Cr is an integration constant that depends on the energy density of radi-
ation at some reference time. For the time t we get

t(η) = Cr

{
(1− cos(

√
kη))/

√
k for k > 0

(1 + cosh(
√
−kη))/

√
−k for k < 0.

(1.20)

For dust we have the equation of state p = 0. From integration of the fluid
equation (1.9), we obtain ρ(η) ∝ a−3, and therefore the right hand side of (1.18)
is some constant Cd. With that in mind, the solution can be easily found to be

a(η) =
Cd
k

{
1− cos(

√
kη) for k > 0

1− cosh(
√
−kη) for k < 0.

(1.21)

For the time t we get

t =
Cd
k

{
η − sin(

√
kη)/
√
k for k > 0

η − sinh(
√
−kη)/

√
−k for k < 0.

(1.22)
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For the cosmological constant w = −1 the solution is just the de Sitter space.
The parametric solutions for closed universe describe a circle for radiation and
a cycloid for matter. Therefore, in such scenarios the universe expands and then
re-collapses. Important fact about all of these solutions is that they can be traced
back in time to a → 0. Except for the cosmological constant domination, a = 0
occurs in finite past. This suggests that the universe was once very small and
therefore very hot.

1.1.2 Cosmic distances and horizons

In cosmology there are several noteworthy horizons and distances that are im-
portant in understanding the cosmos.

Particle horizon is the maximal distance that particles could have traveled
since the beginning of the universe. If we fix the angular coordinates θ and ϕ and
assume that no particle can move faster then light (dt2 = dχ2), we obtain

dp(t) = a(t)χH = a(t)

∫ χp

0

dχ = a(t)

∫ t

t0

dt

a(t)
. (1.23)

We define a similar type of horizon specially for photons, the so called optical
horizon. We have to keep in mind that photons could not move freely until the
recombination occurred. Thus the lower bound of the integral (1.23) has to be
changed to the time of recombination

do(t) = a(t)

∫ t

tr

dt

a(t)
. (1.24)

Event horizon surrounds the region that will ever be able to receive signals from
us. That is

de(t) = a(t)

∫ tmax

t

dt

a(t)
. (1.25)

tmax corresponds to the final moment of time. If the universe will expand forever,
then tmax =∞.

Two points lying on a single spatial slice have a proper distance equal to
their physical distance given by the metric (1.1). The comoving distance is the
same with the factor a divided out. Unlike proper distance, comoving distance
does not change with time. Note that galaxies in cosmology play the role of the
fundamental observers, they move along the fundamental geodesics, and thus
their relative comoving distance remains unchanged.

The Hubble parameter has the units of speed per distance, and thus its reci-
procal value defines one of the characteristic scales of FRW model, the so called
Hubble scale or Hubble distance H−1. This distance defines a boundary (Hubble
horizon) between points that recede slower and faster then the speed of light at
a given time for a given observer. Let us discuss this in a little more detail. Once
a galaxy crosses the Hubble horizon (with us in the center), any light signal it
releases after that point in time will never reach as. This does not mean that
such galaxy disappears from our telescope since the light that already travels to
us will not vanish. However, we will not be able to receive any information about
it from the period after it crosses.
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1.2 Cosmological perturbations

While the universe is homogeneous and isotropic on the largest scale, it produ-
ces nonlinear structures on smaller scales in the form of galaxies, clusters and
superclusters of galaxies and so on. These structures are formed from slight inho-
mogenities in the early universe and are then amplified by the gravitational in-
stability. Gravitational instability is a central feature of gravity that is already
present in the Newtonian limit. However, in order to study how the large scale
structure forms from the initial inhomogenities in a relativistic theory, we have
to understand the theory of cosmological perturbations.

In the original FRW model, there is a preferred choice of coordinates that is
given by the nature of the underlying geometry. If we consider small perturbations
around this metric, this seizes to be the case, and we have to consider a larger class
of coordinates that can be obtained by small changes of the coordinate system.
As we will see, these small coordinate transformations can account for some of
the perturbations. If this happens, it means that the original perturbation was
fictitious and unphysical. So we see that the physical meaning of perturbation
gets a little obscured by the diffeomorphism invariance, on the other hand it
gives us freedom to choose coordinates (gauge) that is tailored to address certain
problems, thus making the calculations easier.

Let us now look closer at this problem. We consider two sets of coordinates
xµ and yµ, which are connected by an infinitesimal coordinate change

yµ = xµ + εξµ, (1.26)

where ε is an infinitesimal parameter. We will denote tensors with respect to the
yµ coordinates with a tilde above. Additionally we have a perturbed metric gµν
around the FRW metric fµν . Its components can be expressed with respect to
both coordinates and are related by the standard formula

g̃µν(y) =
∂xρ

∂yµ
∂xσ

∂yν
gρσ(x(y)). (1.27)

Now we can expand the metric gµν to a linear order in ε on both sides of the
equation

f̃µν(y) + εh̃µν(y) =
∂xρ

∂yµ
∂xσ

∂yν
(fµν(x(y)) + εhµν(x(y))). (1.28)

Using (1.26) and the fact that at the zeroth order the metric does not change
(f̃ = f), we get the following gauge rule

h̃µν(y) = hµν(x(y))− ∂ρfµνξρ(y)− fµρ∂νξρ(y)− fνρ∂µξρ(y).
(1.29)

Note that h does not transform as a tensor. This should not come as a surprise
since defining it as the first order perturbation in particular coordinate system is
not a covariant definition.

Let us derive gauge rule (1.29) again in more geometrical terms. The metric
gµν is a tensor, and thus it is a notion that does not depend on any choice of
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coordinates. It is the same tensor whether it is expressed in terms of xµ or yµ

coordinates. Hence
gµν(y) = gµν(x(y)) (1.30)

Plugging the coordinate transformation (1.26) and expanding the metric gµν on
both sides, we get

g̃µν(y) = fµν(y − εξ) + εhµν(x(y)),

fµν(y) + εh̃µν(y) = fµν(y)− εLξfµν(y) + εhµν(x(y)),

h̃µν(y) = hµν(x(y))− Lξfµν(y),

(1.31)

where we have again used the invariance of zeroth order with respect to the
transformation (1.26). Expressing the lie derivative (L) by the standard definition,
one obtains the same gauge rule (1.29).

By the same line of reasoning, we learn that perturbations of scalars also
transform. This sounds quite odd at first since scalars by definition should not
transform under coordinate changes. The catch is hidden again in the fact that the
notion of dividing the scalar into its background value and the perturbation is not
a covariant notion. Let us derive the transformation rule for a scalar ϕ→ ϕ+ επ.

ϕ̃(y) = ϕ(x(y)),

ϕ(y) + επ̃(y) = ϕ(y − εξ) + επ(x(y)),

π̃(y) = π(x(y))− Lξϕ(y).

(1.32)

This rule will hold in general for any perturbed tensor quantity Tµ.. → Tµ..+ δTµ..

δT̃µ..(y) = δTµ..(x(y))− LξTµ..(y). (1.33)

One of our basic assumptions for construction of the FRW models is the exis-
tence of a privileged 3+1 decomposition of space-time. Such decomposition allows
us to break down all 4-dimensional tensor quantities into 3-dimensional ones (sca-
lar, vector and tensor). These quantities transform as 3-dimensional tensors and
do not mix among themselves when we restrict ourselves to diffeomorphisms of
the spatial slices alone. We will use this to decompose perturbations since on the
level of equations of motion different types decouple, and thus can be studied se-
parately, which simplifies the calculations significantly (we will discuss why that
is later in this section). Before we decompose the metric perturbations in this
manner, let us show how this works for vectors.

The first step is to separate the time component of the vector. This compo-
nent acts as a scalar since the restrictions to the transformations of spatial slices
effectively set all mixed time and space components of the Jacobian to zero. The
rest of the components already look very much like a three vector; however, we can
still separate an additional scalar from them. The assertion is that any 3-vector
can be uniquely written as

vi = ṽi + ∂iϕ, (1.34)

where ṽ is divergenceless. For this to be true, we have to restrict ourselves to
quantities that vanish in spatial infinity. By doing so, we effectively eliminate the
kernel of the Laplacian operator, and thus making it invertible. Such assumption
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is very common in physics since physical quantities should be localized. This
allows us to uniquely calculate ϕ, which then defines the decomposition

ϕ =
1

∆
∂ivi. (1.35)

The geometrical way to see this is from the Hodge decomposition theorem. By
the restriction above, we effectively compactify our manifold, and by doing so the
theorem gives a unique decomposition

v = dϕ+ δα + γ,

= dϕ+ ṽ.
(1.36)

Here v is a 1-form, α is a 2-form, γ is a harmonic 1-form and delta is the co-
differential. Thus, we get for a 4-vector

v0 = v0,

vi = ∂iϕ+ ṽi.
(1.37)

Applying this to the 4-vector ξ that generates the infinitesimal coordinate trans-
formation (1.26), we get

ξ0 = ξ0,

ξi = ξi⊥ + ∂iζ.
(1.38)

Here ξi⊥ has zero divergence.
The decomposition of metric perturbations of the FRW metric in conformal

form (1.4) proceeds in a similar manner (there is no Hodge theorem for symmetric
tensors though)

δg00 = 2a2φ,

δg0i = a2(Si − ∂iB),

δgij = a2(2δijψ + 2∂i∂jE + ∂iFj + ∂jFi + hij).

(1.39)

The vectors S and F are divergenceless, and the tensor h is transverse traceless:

H i
j = ∂iH

ij = 0. (1.40)

Now we consider the gauge transformation (1.29) to see how the perturbati-
ons change when they are decomposed. This will allow us to construct gauge
invariants. For the coordinate change (1.26) in its decomposed form (1.38), scalar
perturbations transform as follows (transformed quantities will be denoted here
by tilde):

φ̃ = φ− 1

a

(
aξ0
)′
, (1.41)

B̃ = B − ζ ′ + ξ0, (1.42)

ψ̃ = ψ +Hξ0, (1.43)

Ẽ = E + ζ. (1.44)

(1.45)
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Here we have defined the conformal Hubble parameter H = a′/a. There are two
simple independent gauge invariants that can be constructed out of the 4 scalar
perturbations

Φ = φ+
1

a

[
a
(
B + E

)′]′
, (1.46)

Ψ = ψ −H
(
B + E ′

)
. (1.47)

For future reference let us consider a case where there is a 4-scalar function ϕ = t.
Its perturbation π follows the gauge rule (1.32)

π̃ = π − aξ0. (1.48)

Since we have another scalar in play, we can construct additional gauge invariant

R = ψ +
H
a
π. (1.49)

Scalar perturbations play a crucial role in cosmology as they are responsible
for large structure formation and gravitational instability. The gauge invariants
correspond to physical inhomogenities and they can be used to distinguish from
fictitious perturbations.

For vector perturbations we get the transformations

S̃i = Si + ξ′⊥i, (1.50)

F̃i = Fi + ξ⊥i. (1.51)

The obvious gauge invariant here is

Vi = Si − F ′i . (1.52)

Vector perturbations describe the rotational motion of the cosmic fluid; however,
as they decay very quickly, they are not of much interest to cosmology.

Tensor perturbations are surprisingly the simplest among the others. Since
there is no tensor part to the transformation (1.26), they are already gauge in-
variant. Furthermore, they describe the gravitational waves which carry gravity’s
own degrees of freedom.

1.2.1 Examples of gauge choices

As we mentioned earlier, the gauge invariance of gravity allows us choose a gauge
that is advantageous for a particular problem. There are several gauges that are
widely used in literature. We will focus only on two which are most important to
our work.

The first example is the Newtonian gauge, sometimes also referred to as lon-
gitudinal gauge. It is defined by two conditions

B = E = 0. (1.53)

One of the advantages of this choice is that it fixes the gauge freedom completely.
One can see that from the transformation rules (1.45). Any non-zero ζ violates the
condition for E, and any non-zero ξ⊥ violates the condition for B. We do not have
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to worry about ξi⊥ since it is a vector quantity. Furthermore, the gauge invariant
quantities (1.47) become very simple, and the metric is easily expressible in their
terms. If we consider only scalar perturbations, the metric in this gauge has the
following diagonal form

ds2 = a2(t)
[
(1 + 2Φ)dη2 − (1− 2Ψ)δijdx

idxj
]
. (1.54)

The gauge invariant function Φ has a somewhat clear physical interpretation.
In Newtonian limit, it becomes the gravitational potential. So Φ generalizes the
Newtonian potential.

Similarly, using time t we can get the form

ds2 = (1 + 2Φ)dt2 − a2(t)(1− 2Ψ)δijdx
idxj. (1.55)

Another useful gauge is the spatially flat gauge. In the case with an additional
scalar field, one can encode all the information about spatial inhomogenities into
the field perturbation π [20] by setting the perturbations of spatial part of the
metric to zero (ψ = E = 0). This is particularly useful when expanding the
Einstein-Hilbert action in the ADM formalism, because one does not have to
expand the spatial scalar curvature. Again this choice fixes the gauge completely.
The metric takes the form

ds2 = a2(η)
[
(1 + 2φ)dη2 − 2∂iBdtdx

i − δijdxidxj
]
. (1.56)

1.2.2 Equations for perturbations

Dynamics of the scalar perturbations are encoded within Einstein’s equations. By
plugging the perturbed metric inside of them and expanding to the first order, one
obtains dynamical equations for perturbations. Note that since we are expanding
around a solution of these equations, the zeroth order vanishes. The perturbed
Einstein’s equations are

δGµ
ν = δT µν . (1.57)

Note that neither δT nor δG are gauge invariant; however, their transformations
can be compensated by adding a suitable combination of metric perturbations.
The corresponding gauge invariants are

δG
0

0 = δG0
0 − (G0

0)′(B − E ′), (1.58)

δG
0

i = δG0
i − (G0

0 −G
j
j/3)′∂i(B − E ′), (1.59)

δG
i

j = δGi
j − (Gi

j)
′(B − E ′). (1.60)

Gauge invariant for the stress-energy tensor perturbations has the same form.
The perturbed Einstein’s equation can be rewritten in gauge invariant manner as

δG
µ

ν = δT
µ

ν . (1.61)

Notice that in Newtonian gauge these quantities are equal to the original pertu-
rbations. The possibility of inspecting each type of perturbation (scalar, vector,
tensor) alone becomes very fruitful while solving these equations. The perturbati-
ons of the stress-energy tensor on the right hand side of the equation must be
categorized in the same manner.
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Expansion of the Einstein’s tensor for scalar perturbations yields

∆Ψ− 3H(Ψ′ +HΦ) =
1

2
a2δT

0

0, (1.62)

∂i(Ψ
′ +HΦ) =

1

2
a2δT

0

i , (1.63)[
Ψ′′ +H(2Ψ + Φ)′ + (2H′ +H2)Φ+

1

2
∆(Φ−Ψ)

]
δij−

− 1

2
∂i∂j(Φ−Ψ) = −1

2
a2δT

i

j.
(1.64)

Note that this is an equality of components not a tensor equation. We us this
convention [6] since it simplifies the resulting form of the equations. This will be
done often in the rest of the work for spatial tensors since the metric there is
almost Minkowski.

For vector perturbations we obtain

∆Vi = 2a2δT
0

i (1.65)(
a2(∂iVj + ∂jVi)

)′
= −2a4δT

i

j, (1.66)

and finally for tensor perturbations we get

h′′ij + 2Hhij −∆hij = 2a2δT
i

j. (1.67)

Let us revisit our reasoning of the decoupling of various types of perturbations
on the level of equations of motion. There is a simple reason how to see this.
We can derive equations (1.57) by first expanding the action about the classical
solution to the second order in perturbations and then varying with respect to
them. Any possible quadratic term containing two different kinds of perturbations
will have at least one index contracted with a derivative. Since the zeroth order
quantities do not depend on spatial coordinates, such derivative can be always
integrated by parts to hit a vector or tensor term, and thus eliminating it by
definition (vectors are divergenceless and tensors are transverse). Therefore, only
nonzero quadratic terms contain perturbations of the same type.

1.2.3 Dust energy perturbations

Let us demonstrate how can one use the above equations to study the evoluti-
on of density inhomogenities. Consider a pressureless dust characterized by the
equation of state p = 0. From the equations (1.64) for i 6= j, we obtain

∂i∂j(Φ−Ψ) = 0 for i 6= j, (1.68)

since pressureless dust has vanishing anisotropic stress (δT
i

j = 0 for i 6= j). The
only solution consistent with Φ and Ψ being perturbations is Φ = Ψ. The diagonal
terms then give us

Φ′′ + 3HΦ′ + (2H′ +H2) = 0. (1.69)
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From (1.14) we can calculate that in dust dominated FRW universe a ∝ η2 and
H = 2/η. Moreover, Friedmann equations (1.8) give us 2H′ + H2 = p = 0.
Therefore the equation above simplifies to

Φ′′ +
6

η
Φ′ = 0. (1.70)

The general solution to this equation is

Φ = C1(x) +
C2

η5
, (1.71)

where C1 and C2 are arbitrary functions of comoving coordinates consistent with
Φ being a perturbation. We now take this solution and plug it into (1.62) to
obtain

δρ

ρ
=

1

6

[(
∆C1η

2 − 12C1

)
+
(
∆C2η

2 + 18C2

) 1

η5

]
, (1.72)

where ρ is the unperturbed energy density. We see that the perturbations have
a non-decaying part that is given by C1 and a decaying part given by C2. The
behavior of solutions (1.72) depends strongly on the Hubble scale. To see this
consider a plane wave expansion of the functions C1,2 ∝ exp(ikx). We will first
analyze the long wavelength solutions. Note that the wavenumber k is related
to the comoving coordinates, and therefore the physical wavelength is λk = a/k.
Long wavelength corresponds to λ = a/k � H−1 ∝ aη. Equation (1.72) becomes

δρ

ρ
' −2C1 + 3

C2

η5
. (1.73)

So we see that (neglecting the decaying mode) inhomogenities on super-Hubble
scales remain in proportion to the average energy density. The short wavelength
solutions are characterized by λk � H−1 and yield the solution

δρ

ρ
' −k

2

6

(
C1η

2 + C2η
−3
)

= C̃1t
2
3 + C̃2t

−1. (1.74)

Again there is a decaying mode; however, now the second mode is actually
growing. Note that this growth is not very fast.

1.3 Dark Matter model

Dark matter was introduced into physics in order to explain the motion of spiral
galaxies [29],[30], [32]. Their rotational motion was way too fast to be held to-
gether by the gravity of visible matter content. In particular, the velocity curves
(velocity of stars as a function of radial distance from the center of galaxy) were
expected to behave as V (r) ∝ r−1/2. This behavior follows from the Newtonian
gravity for a galaxy whose mass is concentrated in its center as it is the case for
ordinary matter. These curves; however, have been measured to have a different,
more flat shape on the outskirts of galaxies (see 1.1).

The shape of velocity curves is tightly connected to the matter distribution
inside the galaxy, and simply put, there is not enough luminous matter in the
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Figure 1.1: Rotational curves of galaxy M33. Classical prediction (dashed line).
Adapted from [36]

galaxies to account for the measured shape of the curves. In order to explain
the mass deficit, it was hypothesized that there is additional matter present that
does not interact electromagnetically and therefore is invisible to our telesco-
pes. Further evidence for dark matter comes from the weak gravitational lensing
effects, which allow us to map the distribution of non-luminous matter in the
universe.

Another piece of information is the formation of large scale structure of the
Universe. In a universe where only baryonic matter is present structure formation
can begin after recombination since photons keep the matter from clustering
prior to recombination. Because of this delay, baryonic matter would not form
structures that we observe simply because it did not have enough time to do so.
Dark matter remedies this since it does not interact with photons, its structure
formation could have started much earlier and grow into what we see today.
Luminous matter to follow then follows its gravitational pull. Observations of
the large scale structure showed that dark matter is distributed in a web like
structures composed of filaments voids and walls with characteristic sizes of 100
Mpc. Around galaxies, dark matter is distributed in form of halos without which
galaxies would be unstable [37].

Dark matter can be categorized into two distinct groups based on their equati-
on of state: cold DM and hot DM corresponding to non-relativistic and relativistic
matter respectively. From the models of structure formation, one can infer that
most of dark matter is cold since hot dark matter moves too fast and is capable
of escaping overdense regions and thus dissolving them.

One of the most obvious candidates for dark matter are ordinary neutrinos,
who have just the right characteristics. Due to their tiny rest mass, they would
fall to the category of hot DM and thus cannot be responsible for the majority
of dark matter. Another possible candidates are primordial black holes (black
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holes that formed in the earliest stages of the universe). They obviously have a
lot of the right properties; however, such black holes would have to be quite small
otherwise their gravitational lensing would be too apparent. But they could have
been produced in numbers large enough to explain cold dark matter. Unfortuna-
tely, searches for any evidence of such black holes have been so far unsuccessful
[38]. For the lack of other candidates, the prevailing opinion nowadays is that
dark matter is constituted by some exotic particles. Various supersymmetric the-
ories and other extended particle models provide us with a plethora of possible
candidates including the most favored weakly interacting massive particles. Un-
fortunately, such particles have not been observed. However, by definition dark
matter has to be very difficult to observe, therefore the lack of detection is not yet
a reason to dismiss it. However, as it has been foreshadowed in the introduction,
another possibility is that gravity itself is responsible for dark matter. Since this
is one of the upshots of mimetic gravity, we will analyze this possibility in the
third chapter.
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2. Beyond standard cosmology

Even though the standard model have performed amazingly well in the description
of the cosmos, it has its problems and limitations. Apart from the issue with very
high energies at the earliest stages (t < 10−43s) of the universe that call for a
theory of quantum gravity, there are questions that seem to be within our reach.
In this chapter, we will discuss some of these questions and their possible solutions
that go beyond the standard model and have not been verified by experiments.
Specifically, we will lay out the basic ideas of inflation (following the introduction
[35]) and quintessence, which share a similar idea.

2.1 Cosmological inflation

Let us first quickly review the problems that originally inflation sought to solve.

2.1.1 Initial condition problems

Flatness problem - Let us recall the first Friedmann equation (1.13) and rewri-
te it in the following form:

|Ω− 1| = k2

a2H2
. (2.1)

During the matter or radiation dominated epoch the combination (aH)2

decreases as follows

matter domination : ∝ t−2/3,

radiation domination : ∝ t−1.

So after the Big Bang (for most of the time) the expansion has driven Ω
away from 1 (given that k 6= 0). Given that Ω is now within an order
of 1 (which it is according to current measurements [1]), it is possible to
extrapolate how much it had to be early in the universe. By doing so, we
obtain values like |Ω−1| < 10−27. This is an immense precision that requires
some serious fine tuning of the initial conditions with which the universe
began.

The horizon problem - One of the premises of the FRW models is homoge-
neity and isotropy at large scales. This has since been verified by direct
observation of the distribution of galaxies and of the CMB. Variations in
temperature in the CMB are of order 10−4, which suggests that matter in the
universe was in thermal equilibrium before recombination. This, however, is
impossible, since given the age of the universe as predicted by the Big Bang
theory, various regions of space could not have been in causal contact. Or
in more quantitative language, the size of the particle horizon during the
decoupling was much smaller then the optical horizon today.

dp(tr)� do(t). (2.2)
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The inequality is so large that any two regions separated by as little as 2
degrees were causally separated during recombination.

Relics of the Big Bang - Particle physics predicts that at very high tempera-
tures (such as were present in the early universe) a variety of exotic objects
such as magnetic monopoles, domain walls and cosmic strings is produced
in abundance. Such objects dilute slower than ordinary matter and would
soon dominate the universe. However, we do not observe anything like that
in the universe.

2.1.2 Inflation as a solution

The main idea of inflation is that there was another phase early in the universe
during which the universe expanded in a manner such that

d

dt

1

Ha
< 0. (2.3)

This condition is equivalent with

ä > 0 ⇐⇒ 3p < −ρ. (2.4)

Here we assumed a > 0 and Friedmann equations. Notice that the first definition
does exactly what we want to solve the flatness problem. It drives Ω to one. The
only thing we need to ensure is that inflation lasts long enough to obtain high
enough precision. Typically, this is not a problem in various inflationary scenarios.

The other important thing is that the condition (2.3) actually describes the
comoving Hubble distance, and it is getting smaller. Even though the universe
is getting larger, the amount of matter that one could observe after inflation is
getting smaller in comparison to the era prior to inflation. In other words, when
pictured in comoving coordinates, the patch of universe that was in causal contact
before inflation was much larger than it is today. So if this patch came to thermal
equilibrium before inflation, then it would have had the same temperature in
regions that are causally disconnected today.

How inflation solves the problem of relics is less clear. Since the universe
gets stretched very rapidly, the density of these relics decreases; however, so does
the density of ordinary matter, and it does so even faster. Fortunately, there
is a natural solution to this problem in the inflationary scheme. As we will see
later, the driving force for inflation is usually somewhat constant energy density
(similar behavior as the cosmological constant). In order for inflation to end,
this energy has to dissipate into some other form of energy, possibly ordinary
matter and radiation, in a process known as reheating. If, during reheating, the
temperature of the universe does not exceed the values needed for creation of the
aforementioned exotic objects, then their density remains low as it was diluted
by the inflation. On the other hand, the density of ordinary matter and radiation
gets a significant boost. Thus, we are able to recover the hot big bang with all its
successes. The mechanics of reheating vary from model to model and are beyond
the scope of this thesis.
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Figure 2.1: Solution to the horizon problem. At the start of inflation, the horizon
is large. A patch inside comes to a thermal equilibrium and smooths out. Then
the Hubble distance shrinks, and the consequent non-inflationary expansion is
not strong enough to enlarge it beyond the smooth patch. [39]

2.1.3 Basics of inflation

One of the most beautiful things about inflation is that it can be realized by very
simple object: the scalar field. Consider a scalar field φ (usually referred to as
inflaton) in FRW model universe given by the action

S =

∫
d4x
√
−g
(1

2
∂µφ∂

µφ− V (φ)
)
. (2.5)

Since we restrict ourselves only to solutions that have the symmetries of the FRW
model, the stress-energy tensor becomes

T µν = uµuνφ̇
2 + δµν (V (φ)− 1

2
φ̇2), (2.6)

or equivalently

ρ =
1

2
φ̇2 + V (φ), (2.7)

p =
1

2
φ̇2 − V (φ). (2.8)

The Friedmann equations take the form

3H2 = V (φ) +
1

2
φ̇2, (2.9)

φ̈+ 3Hφ̇ = −∂φV (φ). (2.10)

The second equation exactly coincides with the equation of motion for φ. Condi-
tions for inflation (2.3) give us the following constraint

φ̇2 < V (φ). (2.11)
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So we see that inflation takes place whenever the potential energy of the field
dominates over its kinetic energy. In order for inflation to end, we also require
that there is a stable point where such condition is violated. Furthermore, the
model must provide us with a ”graceful” exit to a radiation dominated epoch.

To solve these equations, one usually employs the so called slow roll approxi-
mation given by

φ̇2 � V (φ). (2.12)

In this approximation the Friedmann equations become

3H2 ' V (φ), (2.13)

3Hφ̇ ' −∂φV (φ). (2.14)

Notice that the order of the equations is lower then the order of the original
set (2.10). Therefore, we need one less initial condition to give a unique soluti-
on. This sounds like we are doing something wrong, but it works thanks to the
existence of an attractor solution of the original set (2.10). For more details on
this, please refer to [40]. If the scalar field satisfies the slow roll conditions, then
inflation is guaranteed. The shape of the potential is often characterized by slow
roll parameters that are defined bellow [41]

ε(φ) =
1

2

(∂φV
V

)
, η(φ) =

∂2
φV

V
. (2.15)

ε measures the slope of the potential, and η measures the curvature. Necessary
conditions for the slow roll approximation are

ε� 1, |η| � 1. (2.16)

As we mentioned, inflation has to last long enough in order to bring Ω suffici-
ently close to 1. A standard measure of the amount of expansion during inflation
is the number of e-foldings, which is given as

N = log
a(tend)

a(tini)
. (2.17)

Using the slow roll approximation, this number can be expressed without the
need to solve the equations of motion

N = −
∫ φend

φini

V

∂φV
dφ. (2.18)

The minimum amount of inflation needed to obtain the desired result is about 70
e-foldings.

While inflation solves the original problems, which it has set out to solve,
its even more profound feature is that it can produce cosmological perturbations
from quantum fluctuations [42]. Therefore it is able to give rise to the structure
formation in universe.
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2.2 Quintessence

As we have seen in the above section, a scalar field can naturally provide us with
a cosmic fluid with negative pressure that can drive accelerated expansion. It
is quite obvious that one could consider applying the same mechanisms to give
account of the observed dark energy. Such models are usually called quintessence.
In this section, we will explore only a very basic model, in which the scalar field
has only a standard kinetic term. However, we should stress that the variety of
quintessence model is much richer. For example, there are models that derive the
nontrivial behavior from various nontrivial kinetic terms. Such models are usually
referred to as k-essence. Our discussion follows the review [41].

Let us consider a standard scalar field Q described by the following action

S =

∫
d4x
√
−g
(1

2
∂µQ∂

µQ− V (Q)
)
. (2.19)

Similarly to the inflation the non-trivial behavior stems from the choice of the
shape of the potential. In a flat FRW model universe (k = 0) the equations of
motion are

Q̈+ 3HQ̇ = −∂QV (Q), (2.20)

where the spatial derivatives are eliminated since Q has to respect the symmetries
of the model. The energy momentum tensor is of the form (1.7) with

ρ =
1

2
Q̇2 + V (Q), (2.21)

p =
1

2
Q̇2 − V (Q), (2.22)

which yields
p

ρ
= wQ =

Q̇2 − 2V (Q)

Q̇2 + 2V (Q)
. (2.23)

It is clear that w ∈ [−1, 1]. The lower bound corresponds to the slow roll ap-
proximation. The fluid equation (1.9) can be expressed in an integrated form
as

ρ = ρ0 exp
(
−
∫

3(1 + wQ)
da

a

)
, (2.24)

where ρ0 is a constant of integration. Since we are interested in modeling accele-
rated expansion, it is of interest to derive what kind of shape should a potential
have to satisfy this condition. The border between accelerated and decelerated
expansion is

a(t) ∝ t. (2.25)

It is no extra work to derive the potential in a more general case where the scale
factor obeys a power law

a(t) ∝ tp. (2.26)

From Friedmann equations (1.8) we obtain:

Ḣ = −1

2
Q̇2, (2.27)
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which allows us to express the field Q and the potential V in terms of H:

V = 3H2
(

1 +
Ḣ

3H2

)
, (2.28)

Q =

∫
dt
(
− 2Ḣ

) 1
2
. (2.29)

Substituting into these formulas from (2.26), we obtain

V =
p

t2

(
3p− 1

)
, (2.30)

Q = ±
√

2p log(t). (2.31)

Expressing t from the positive branch of the second equation and plugging it in
the first, we get

V (Q) = p(3p− 1) exp
(
− Q√

2p

)
. (2.32)

For p = 2 this represents a border between potentials that can and cannot lead
to accelerated expansion.

The major difference between inflaton and quintessence is that the potential
is chosen to achieve accelerated expansion in late times, while inflaton needs to
enter such phase and exit it in the early universe.

One of major features of many quintessence models is so called tracking be-
havior that gives a possible explanation to the minuscule value of density of dark
energy. For details about this please refer to [41].
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3. Introduction to mimetic
gravity

General relativity enjoys a very strong symmetry, the diffeomorphism invariance,
which among other things, allow us to parametrize the physical metric gµν by
means of an auxiliary metric g̃µν and a scalar field ϕ in the following way [19]:

gµν = C(ϕ,X)g̃µν +D(ϕ,X)∂µϕ∂νϕ, (3.1)

where X = g̃µν∂µϕ∂νϕ/2 is the standard kinetic term for scalar field defined
through the auxiliary metric. C and D are free functions. Varying the Einstein-
Hilbert action for the physical metric with respect to ϕ and g̃µν gives the same
equations of motion for gµν as long as the reparametrization is not singular. In
that case there are no new degrees of freedom in such theory. In the opposite case,
new degrees of freedom are introduced, and the theory does not have an equi-
valent physical content. Singular transformations satisfy the following condition
introduced in [43]:

D(ϕ,X) = f(ϕ)− C(ϕ,X)

2X
, (3.2)

where f is an arbitrary function. Reparametrizations of the type (3.1) (introdu-
ced by Bekenstein in 1993 [44]) are called disformal transformations, and they
lie in the heart of the original mimetic dark matter as introduced in [3]. More
specifically, mimetic dark matter is obtained by a particular singular disformal
transformation of the physical metric gµν . This transformation has the following
form:

gµν = g̃αβ∂αϕ∂βϕg̃µν . (3.3)

Note that g̃µν is defined as the inverse auxiliary metric while the remaining indeces
are raised by the physical metric. One can easily check that transformation (3.3)
satisfies the singularity condition with f(ϕ) = 1, C(ϕ,X) = 2X and D(ϕ,X) = 0.
The two metrics are related by a conformal rescaling

gµν = P g̃µν , (3.4)

and therefore the inverse metrics are related by the reciprocal value of P =
g̃αβ∂αϕ∂βϕ

gµν =
1

P
g̃µν . (3.5)

Contracting this equation with ∂µϕ∂νϕ yields the mimetic constraint

gµν∂µϕ∂νϕ = 1. (3.6)

Dynamics are given by the standard Einstein-Hilbert action

S[ϕ, g̃µν ] = −1

2

∫
d4x
√
−g(X, g̃µν)R(gµν(X, g̃µν)) (3.7)

with the exception that we now treat ϕ and g̃µν as the independent variables. If
we consider an addition of some matter fields in the form of Lagrangian Lm, the
variation of the auxiliary metric gives us the following equations of motion:

Gµν − T µν − (G− T )∂µϕ∂νϕ = 0, (3.8)
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where G and T are the traces of the Einstein tensor and the stress-energy tensor
respectively. Tensors Gµν and T µν depend on ϕ and g̃µν only through the physical
metric gµν . Trace of this equation yields

(G− T )(1− g̃µν∂µϕ∂νϕ) = 0. (3.9)

Thanks to the mimetic constraint, this equation is satisfied automatically. The
equations (3.8) are therefore equivalent to the traceless Einstein’s equations. The
Euler-Lagrange equation for ϕ is

∇µ

(
(G− T )∂µϕ)

)
= 0, (3.10)

which becomes equation relatingG with T (after one solves for ϕ from the mimetic
constraint (3.6)). These equations hold non-trivial solutions for ϕ even when there
is no matter Tµν = 0, and thus gravity obtains an additional degree of freedom
[3].

3.1 Mimetic dark matter

To better understand this model let us treat (3.8) as the standard Einstein’s
equation by grouping the novel terms together with matter contributions. We do
this by introducing an energy tensor for mimetic matter T̃ µν as

T̃ µν = (G− T )∂µϕ∂νϕ. (3.11)

Note that this stress-energy tensor (3.11) has the same form as pressureless fluid:

T̃ µν = ρuµuν (3.12)

with energy density ρ = G − T and velocity uµ = ∂µϕ. When there is no exter-
nal matter, the energy density becomes −R, which does not vanish for generic
solutions [3]. Let us further analyze the similarity between the two cases. First of
all, the mimetic constraint (3.6) takes the form of normalization condition for a
four-velocity uµ

gµνuµuν = 1. (3.13)

Secondly, note that the tensor T̃ µν is conserved as a consequence of the equations
of motion for ϕ (3.10) and the constraint (3.6)

∇µT̃
µ
ν = ∂νϕ∇µ

(
(G− T )∂µϕ)

)
+

1

2
(G− T )∇ν(∂

µϕ∂µϕ) = 0. (3.14)

Here we have used the fact that covariant derivatives commute when they act
upon a scalar. Now consider the metric (1.1). Taking into account its symmetries,
ones finds a unique solution of the constraint (3.6) (up to shifts in time)

ϕ(t) = t. (3.15)

Plugging this into (3.10), we find

(∂t + 3H)(G− T ) = 0 =⇒ ρ = G− T =
C

a3
, (3.16)
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where C is an integration constant and plays the role of a reference energy density.
To make the parallel even more obvious, let us rework the action (3.7) into a

more familiar form. From (3.3) it is clear that a theory of gravity parametrized
by ϕ and g̃µν is manifestly invariant with respect to the transformation (Weyl
transformation)

g̃µν → Ω2g̃µν (3.17)

of the auxiliary metric, where Ω is an arbitrary function of space-time. This is an
additional gauge invariance that is not present in the standard theory of gravity.
We fix this freedom by choosing a gauge where

gµν = g̃µν , (3.18)

which can be realized by
Ω−2 = g̃µν∂µϕ∂νϕ. (3.19)

This gauge eliminates the ϕ dependence of the Lagrangian (3.7); however, the field
ϕ is still an independent variable of the action that is subjected to the constraint
(3.6). We can include this external information to the action by introducing a
Lagrange multiplier λ. The resulting action has the form [18]

S[ϕ, gµν , λ] =

∫
d4x
√
−g(X, gµν)

(
− 1

2
R(X, gµν) + λ(gµν∂µϕ∂νϕ− 1)

)
. (3.20)

The equations of motion for gµν are now

Gµν − T µν + 2λ∂µϕ∂νϕ = 0. (3.21)

Taking the trace of this equation yields an expression for λ:

λ = −1

2
(G− T ), (3.22)

and thus we recover the previous case. The procedure introduced in the beginning
of this chapter is a little exotic to a reader who is not acquainted with the subject;
however, the resulting action (3.20) is actually quite familiar. Usually, it is also
more convenient to work with and therefore we will prefer it over (3.7) in the rest
of this work.

3.2 Potential for mimetic matter

It is important to note that while the procedure involving disformal transfor-
mation gives us a neat starting point and a possible explanation where a theory
like (3.20) could originate, the following analysis is much more phenomenologi-
cally motivated. As we will soon see, we can achieve very interesting behaviors
of this model by extending it through addition of further terms in the action.
These terms; however, do not follow from the underlying scenario of mimetic
dark matter and are added by hand.

The following sections follow the works [18], [19]. So far this new ”mimetic
matter”, which we have plucked by a clever trick from the gravity itself, has all
the right properties to play the role of cold dark matter. In what follows we will
see that we can do even better.
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Consider adding a potential term V (ϕ) to the action (3.20):

S[ϕ, gµν , λ] =

∫
d4x
√
−g
(
− 1

2
R + λ(gµν∂µϕ∂νϕ− 1)− V (ϕ)

)
. (3.23)

The equation (3.22) becomes

λ = −1

2
(G− T − 4V )., (3.24)

and the equation of motion for ϕ is

∇µ

(
(G− T − 4V )∂µ

)
= 0. (3.25)

Varying the action with respect to gµν provides us with the stress-energy tensor
for mimetic matter:

T̃µν = (G− T − 4V )∂µϕ∂νϕ+ gµνV (ϕ). (3.26)

By a similar inspection as in previous section, we find that corresponding energy
density and pressure are

ρ = G− T − 3V, (3.27)

p = −V. (3.28)

Continuing the parallel, we consider flat FRW metric (1.1), and we solve the
mimetic constraint (3.6) to obtain

ϕ(t) = t+ t0. (3.29)

We will, unless specified otherwise, use the choice t0 = 0. This result allows us to
integrate (3.25) to find

ρ = V − 1

a3

∫
a3V̇ dt =

3

a3

∫
a2V da. (3.30)

So we see that we can control the behavior of the energy density by cleverly
choosing the potential V (ϕ) = V (t). Note that in action (3.20) the choice of
V = const is equivalent to inclusion of cosmological constant. In agreement with
this note, the above equation yields for V = const.,

ρ = const. (3.31)

Before we move to other examples, let us simplify the above equation. From the
first Friedmann equation (1.8), we obtain

H2 =
1

a3

∫
a2V (t(a))da ⇐⇒ 2Ḣ + 3H2 = V. (3.32)

Using a substitution
y = a

2
3 , (3.33)

one can simplify this equation to a linear second order equation

ÿ − 3

4
V (t)y = 0, (3.34)

which is easily solvable.
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3.2.1 Cosmological solutions

Let us analyze an interesting potential given by the following expression:

V (ϕ) =
α

ϕ2
. (3.35)

The mimetic field satisfies (3.29), and therefore (3.34) becomes

ÿ − 3α

4t2
y = 0. (3.36)

Fundamental solutions for this equation can be obtained by substituting a power
law y = tp, which in turn gives us a quadratic equation for p. For α ≥ −1/3 there
are two real solutions for p, while for α < −1/3 the solutions are complex. In
the second case scale factor oscillates with ever increasing amplitude [18] and the
resulting fluid is unlike anything we know. For that reason we will not discuss it
any further. The solution for y in the first case α ≥ −1/3 is

y = C1t
( 1
2

+
√

1+3α) + C2t
( 1
2

+
√

1+3α), (3.37)

where C1 and C2 are constants of integration. Since the scale factor a is defined
up to an overall normalization, we can get rid of one of these constants and write

a(t) = t
1
3

(1+
√

1+3α)
(
1 + At−

√
1+3α

)
, (3.38)

where we defined A = C2/C1. Using equations (3.30) and (3.28), we find

p

ρ
= w(t) = −3α

(
1 +
√

1 + 3α
1− At−

√
1+3α

1 + At−
√

1+3α

)
. (3.39)

We see that the equation of state depends on time; however if one expands for
large or small times w(t) becomes constant. By inspection of this formula, we
find that α = 0 corresponds to pressureless dust for all times, which is consistent
with the fact that nonexistent potential corresponds to the original mimetic dark
matter scenario. The case α = −1/4 corresponds to radiation in late times, but
at early times it describes matter with w = 3. One other interesting case is α� 1
for which w = −1, and thus describes cosmological constant.

3.2.2 Mimetic matter as quintessence

Let us consider a similar case as above (we keep the same potential), but this time
we drop the condition that mimetic matter dominates. Instead, let the universe
be dominated by some other type of matter characterized by w = constant. In
such case, the scale factor behaves as

a(t) ∝ t
2

3(1+w) . (3.40)

Using equation (3.30), we find that

ρmim = − α

wt2
. (3.41)
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Since
pmim = −V = −α

t2
, (3.42)

the mimetic matter mimics the dominant matter and acquires wmim = w. However,
this applies only when the mimetic matter is subdominant. The energy density
of the external matter is given by

ρext = 3H2 =
4

3(1 + w)2t2
, (3.43)

and therefore the subdominance condition is satisfied only when α/w � 1.
We can consider more general solutions for ϕ, namely

ϕ = t+ t0. (3.44)

In such case, the subdominant mimetic matter behaves as a cosmological constant
for t < t0 and then mimics the external matter for t0 < t.

3.3 Cosmological perturbations

Let us analyze the behavior of cosmological perturbations in Newton gauge in
a flat FRW universe dominated by mimetic matter. The stress tensor (3.26) has
vanishing anisotropic stress, and therefore by means of the off-diagonal terms of
equation (1.64) we can write the perturbed metric in the following form:

ds2 = (1 + 2Φ)dt2 − a2(1− 2Φ)dxidxjδij. (3.45)

We consider perturbations of the mimetic matter about the solution (3.29) as
follows:

ϕ = t+ π(t, x). (3.46)

The perturbed mimetic constraint (3.6) expanded to first order in perturbations
fixes

Φ = π̇, (3.47)

So we are left with only one independent scalar field, which we will take to be
π. To derive an equation for this mode we will only need the 0-ith Einstein’s
perturbed equation (1.63), which in these coordinates take the form

∂i(Φ̇ +HΦ) = δT 0
i. (3.48)

Perturbing the tensor (3.26) gives

δT 0
i =

1

2
(ρ+ p)∂iπ (3.49)

= −Ḣ∂iπ, (3.50)

where the second line was obtained by using the Friedmann equation (1.8). Con-
sidering (3.48) and that π is a perturbation, we obtain

π̈ +Hπ̇ + Ḣπ = 0. (3.51)
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A general solution to this equation is

π =
A

a

∫
adt, (3.52)

where A is a constant of integration depending only on comoving spatial coordi-
nates x. Solving for Φ, we get

Φ = A
(

1− H

a

∫
adt
)
. (3.53)

The above solution is normally obtained for long wavelength perturbations, where
the terms containing the speed of sound are negligible. However, since there are
no spatial derivatives in (3.51), this solution is valid for all wavelengths. So the
mimetic matter behaves as a pressureless dust in this respect while it still retains
pressure. This introduces problems for defining quantum perturbations and thus
makes the mimetic inflationary scenario fail since it would not be able to produce
initial inhomogenities that would seed the large scale structure. This; however,
can be remedied by yet another modification of the mimetic action (3.20).

3.3.1 Speed of sound for mimetic matter

We add a higher derivative term in the action (3.20) and show that the mimetic
matter obtains a non-trivial speed of sound [18]. Consider a modified action

S[ϕ, gµν , λ] =

∫
d4x
√
−g
(
− 1

2
R+λ(gµν∂µϕ∂νϕ−1)−V (ϕ)+

γ

2

(
�ϕ
)2
)
, (3.54)

where γ is an arbitrary parameter. The equation of motion for gµν has the stan-
dard form

Gµν = T̃µν , (3.55)

where the stress-energy tensor is now

T̃ µν =

(
V + γ

(
∂αϕ∂

α�ϕ+
1

2

(
�ϕ
)2
))

δµν+

+2λ∂µϕ∂νϕ− γ
(
∂νϕ∂

µ�ϕ+ ∂µϕ∂ν�ϕ
)
.

(3.56)

The solution to (3.6) in FRW universe is as always ϕ = t. Evaluating the energy
tensor for this solution and plugging into Friedmann equations (1.8), we obtain

3H2 = V +
3

2
(3H2 − 2Ḣ) + 2λ, (3.57)

V =
2

2− 3γ
(2Ḣ + 3H2), (3.58)

which allows us to solve for λ

λ = Ḣ(3γ − 1). (3.59)

Note that the equation (3.58) differs from the previous case only by a numerical
factor multiplying V . This means that inclusion of the new term does not spoil
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the cosmological solutions we have described above. Let as analyze the behavior
of scalar perturbations to see how it gets modified. Our approach is the same as
in the modified case. The tensor (3.56) still has vanishing anisotropic stress, and
thus we have again

g = (1 + 2Φ)dt2 − a2(1− 2Φ)dxidxjδij, (3.60)

ϕ = t+ π, (3.61)

Φ = π̇. (3.62)

By perturbing the stress-energy tensor, we obtain

δT 0
i = 2λ∂iπ − 3γḢ∂iπ − γ∂iδ(�ϕ), (3.63)

where the perturbation of �ϕ is

δ�ϕ = −4Φ̇− 6HΦ + π̈ + 3Hπ̇ − ∆

a2
π. (3.64)

Substitution of the perturbed energy tensor into (3.48) yields the following equati-
on for π:

π̈ + Ḣπ +Hπ̇ − c2
s

∆

a2
π = 0, (3.65)

with
c2
s =

γ

2− 3γ
. (3.66)

We see that the equation for scalar perturbations developed a nontrivial speed
of propagation. To solve this equation we switch to conformal time and make
a plane wave expansion π = πk(η) exp(ikx). Plugging this ansatz to (4.46), we
obtain

π′′k +

(
c2
sk

2 +H′ −H2

)
= 0. (3.67)

For short wavelengths, a/k � csH
−1, the solution is

πk ∝ e±icskη, (3.68)

while for the long wavelengths, a/k � csH
−1, we obtain

πk ∝
1

a

∫
a2dη, (3.69)

which is the same as (3.52).
As we have foreshadowed earlier, addition of higher time derivatives is not

always safe as one might introduce new degrees of freedom that suffer from Os-
trogradski instability. A simple reason to see why new degrees of freedom appear
is that introducing higher time derivatives increases the order of resulting equati-
ons of motion. Such equations then require more initial conditions to define a
unique solution. In our case, the solution for ϕ is determined by the mimetic
constraint, which is unaffected by the addition of higher derivatives, and thus no
new information is needed, and no additional degrees of freedom are introduced.

It is of interest to calculate the action for these perturbations by expanding
the action (3.54) to second order in linear perturbations. Such action allows us to
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analyze the stability of the system. Moreover, it provides a check to the argument
above about the number of propagating degrees of freedom. This was done in [20]
in spatially flat gauge and in [24] without gauge fixing. Here we will only state
the result of [20] since the calculation is a little cumbersome, and we will work
out a similar analysis for a more general case in the following chapter. The action
for scalar modes in spatially flat gauge is

δ2S =

∫
a3

(
− 1

c2
s

(
∂t(Hπ)

)2

+
(
∂i(Hπ)

)2
)
. (3.70)

We see that the system suffers from a ghost instability for c2
s > 0 and from a

gradient instability when c2
s < 0. It is important to mention that this behavior is

already present in the original Einstein-Hilbert action; however, in the basic case
when γ = 0 (such action cannot be obtained by simply evaluating this action for
γ = 0) this instability is constrained and cannot grow [20]. In our case, this is no
longer true.

Let us briefly discuss the problems that arise with ghosts. Ghosts are particles
with a wrong sign of kinetic energy. If such particles are coupled to any ordinary
matter, a spontaneous production of particle-ghost pairs occurs. This destabilizes
any physical state. Since gravity couples to everything, this is bound to happen.
As a result physical states decay divergently [45]. This problem can be in principle
evaded by sacrificing Lorentz invariance. Consider a ghost- particle nucleation
event characterized by four momentum of the ghost kµ. The particle then has
momentum pµ = −kµ. The decay rate of vacuum per unit volume must depend
on pµ only through the invariant s = pµp

µ. The full rate is given by an integral
over all s and over all pµ constrained by s = pµp

µ [45]:

Γ =

∫
dsF (s)

∫
d3p√
|~p|2 + s

, (3.71)

where the weight F (s) characterizes the given model. The latter integral is clearly
divergent. However, it was argued that both integration in (3.71) should be sub-
jected to an effective cut-off due to modifications of physical laws above certain
energy scale µ [46]. Such cut-off inevitably breaks Lorentz invariance of the model.
In cosmology Lorentz invariance is already broken by the presence of fundamental
observers, and therefore such solution becomes more plausible.

Furthermore, in [24] it is suggested that the instability in our case is mild.
Following [47] we can even find new canonical variables that are ghost free.

We find that there is really only one degree of freedom.

3.4 Ideal tracking

Let us now analyze the model (3.23) when the potential vanishes (V = 0) and
there is external matter present characterized by some energy density and pressure
[19]. As usual, we consider the flat Friedmann universe. Thanks to the vanishing
potential, the theory is invariant to the shifts of the mimetic field

ϕ→ ϕ+ c, (3.72)
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and therefore there is a conserved current

Jµ = 2λ∂µϕ− γ∂µ�ϕ. (3.73)

For ϕ = t such current has only one nonvanishing component

J0 = n = 2λ− 3γḢ, (3.74)

which allows us to express λ in terms of the conserved charge density n. Due to
the symmetries of the model, this charge density is constant on any spatial slice.
Since the charge does not flow, we find that

d

dt
(na3) = 0, (3.75)

and therefore
n ∝ a−3. (3.76)

We see that this density describes CDM-like fluid. The energy density and pres-
sure of mimetic matter based on (3.56), with λ eliminated using (3.73), is

ρ = n+
9

2
γH2, (3.77)

p = − 3γ

2− 3γ

(
2Ḣ + 3H2

)
. (3.78)

The Friedmann equations (1.8) are therefore

3H2 = ρ+ ρext, (3.79)

2Ḣ + 3H2 = −p− pext, (3.80)

which gives us

ρ =
2

2− 3γ
n+

3γ

2− 3γ
ρext, (3.81)

p =
3γ

2− 3γ
pext. (3.82)

We see that the mimetic matter in this case has two parts. One is a CDM-like
(pressureless) component characterized by the shift charge density n, and the
second part that tracks the external matter. To understand the effects of the
mimetic matter on the cosmological dynamics, we restore the dependence on
Newton’s gravitational constant. The general Friedmann equations are

3H2 = 8πGNρ, (3.83)

2Ḣ + 3H2 = −8πGNp. (3.84)

By substituting from (3.82), these become

3H2 = 8πGN
3γ

2− 3γ
ρext + 8πGN

2

2− 3γ
n, (3.85)

2Ḣ + 3H2 = −8πGN
3γ

2− 3γ
pext. (3.86)

We see that the effects are twofold: mimetic matter provides us with a possible
candidate for dark matter, and it effectively re-scales the Newton’s gravitational
constant:

Geff =
(

1 + 3c2
s

)
GN . (3.87)
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4. Extended mimetic matter

Our research is motivated by the modification in action (3.54). If we allow our-
selves to include higher derivative terms, then there is nothing to hold us from
including terms of similar nature. Namely, we consider adding the following term
to the Lagrangian (3.54) as was suggested in [19]:

σ

2
∇µ∇νϕ∇µ∇νϕ. (4.1)

By integrating this term by parts, we can get the original (�ϕ)2 term with an
addition of a direct coupling of the mimetic matter to curvature:∫

d4x
√
−g∇µ∇νϕ∇µ∇νϕ =

∫
d4x
√
−g
(

(�ϕ)2 −Rµν∇µϕ∇νϕ
)
. (4.2)

Keeping this in mind, we add another term with similar nature

ζ

2
R∇µϕ∇µϕ. (4.3)

Our complete mimetic Lagrangian density has the following form:

L = −1

2
R + λ((∂ϕ)2 − 1)− V (ϕ) + γ

1

2
(�ϕ)2+

+ σ
1

2
∇µ∇νϕ∇µ∇νϕ+ ζ

1

2
R(∂ϕ)2.

(4.4)

Building upon the ideas of [19], we can analyze an equivalent Lagrangian

L = −1

2
R + λ((∂ϕ)2 − 1)− V (ϕ)−

− Cµναβ
(
∇νϕ∇µθαβ +

1

2
θµνθαβ

)
+ ζ

1

2
R(∂ϕ)2,

(4.5)

where θµν is an auxiliary tensor field and

Cµναβ = γgµνgαβ + σgµαgνβ. (4.6)

The equation of motion for θµν gives

Cµναβ(∇µ∇νϕ− θµν) = 0. (4.7)

Taking the trace and then plugging the result back to this equation gives us

∇µ∇νϕ = θµν . (4.8)

Since equation (4.8) fully determines the field θµν , it can be plugged back into
the action, and thus we recover can recover the Lagrangian (4.4).
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4.1 Energy-momentum tensor and Friedmann

equations

In order to derive the energy-momentum tensor, we will use the Lagrangian (4.5).
To simplify our calculation (more detailed calculation can be found in Appendix
A), we will break up the whole energy momentum tensor into 5 parts:

T µν = λT(λ)
µ
ν

+ γT(γ)
µ
ν

+ σT(σ)
µ
ν

+ ζT(ζ)
µ
ν

+ V δµν . (4.9)

These parts are given by

T(X)µν
=

2√
−g

δ

δgµν
∂S

∂X
, (4.10)

where S is an action corresponding to (4.4) and X ∈ {λ, γ, σ, ζ}. By varying the
corresponding parts of the Lagrangian (4.5), we obtain

T(λ)
µ
ν

= ∂µϕ∂νϕ, (4.11)

T(γ)
µ
ν

= −∂µθ∂νϕ− ∂µϕ∂νθ + δµν
(
∂αθ∂

αϕ+
θ2

2

)
, (4.12)

T(σ)
µ
ν

= θθµν +∇αθ
µ
ν∂

αϕ−∇αθ
µα∂νϕ−∇αθ

α
ν ∂

µϕ− δµν
1

2
θαβθαβ, (4.13)

T(ζ)
µ
ν

= Gµ
ν +R∂µϕ∂νϕ, (4.14)

where we introduced θ = θµµ. In flat Friedmann universe (k = 0) the mimetic
constraint (3.6) gives again the solution

ϕ(t) = t. (4.15)

For the field θµν we get
θij = Hδij, (4.16)

with all the other components vanishing. The parts of the total stress-energy
tensor evaluated on this solution are

T(λ)
0
0

= 2,

T(γ)
0
0

=
9

2
H2 − 3Ḣ,

T(σ)
0
0

=
9

2
H2,

T(ζ)
0
0

= −9H2 − 6Ḣ,

T(λ)
i
j

= 0,

T(γ)
i
j

=
(9

2
H2 + 3Ḣ

)
δij,

T(σ)
i
j

=
(3

2
H2 + Ḣ

)
δij,

T(ζ)
i
j

=
(
3H2 + 2Ḣ

)
δij.

(4.17)

The mixed space and time components are all zero.
Plugging these expressions into the formula (4.9) and the result into the

Friedmann equations, we obtain a set of two equations

2V = (2− 3γ − 2ζ − σ)(2Ḣ + 3H2), (4.18)

2λ = 3H2(4ζ − σ) + Ḣ(6γ + 8ζ + σ − 2). (4.19)

We see that the inclusion of the new terms does not change the nature of the first
equation (the potential just gets re-scaled by a numerical factor), and thus in this
scenario we can again mimic cosmological expansions as we desire by choosing
proper potential V .
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4.2 Equations of motion for mimetic matter

Apart from the potential term, the Lagrangian (4.5) is invariant with respect
to constant shifts in ϕ, thus the equations of motion for ϕ can be written as a
continuity equation with the right hand side being proportional to the derivative
of V instead of 0.

∇µJ
µ = −V ′ (4.20)

Jµ = 2λ∂µϕ+ ζR∂µϕ− γ∂µθ − σ∇νθ
µν (4.21)

We can plug in the solution ϕ = t to obtain

∇µJ
µ = Ḧ + 3HḢ(3γ + 2ζ + σ − 2), (4.22)

where we used (4.19) to eliminate λ. By differentiating (4.18), we can verify that
the right hand side vanishes, and therefore we see that ϕ = t is indeed a solution
to its equation of motion.

4.3 Fluid picture

Any solution to the mimetic constraint (3.6) provides us with a non-vanishing
time-like vector uµ = ∂µϕ. Such vector defines a privileged local rest frame, which
in turn defines a splitting of tensor quantities. In this section, we will decompose
the stress-energy tensor (4.9) and the four current (4.21) as was done in [19].
Note that we perform this analysis while the EoM are satisfied; however, we do
not assume any specific solution. The four current (4.21) in this rest frame can
be written as

Jµ = nuµ+ ⊥νµ Jν , (4.23)

where
⊥νµ= δνµ − uµuν . (4.24)

It follows that
n = 2λ− γθ̇ + ζR + σθµνθ

µν (4.25)

and
⊥νµ Jν = −γ(∂µθ − uµθ̇)− σ

(
uµθαβθ

αβ +∇αθ
α
µ

)
. (4.26)

The dot over a letter now signifies covariant derivative along uµ. The energy
momentum tensor can be decomposed in a similar manner as the four current:

Tµν = uµuνρ+ qµuν + qνuµ+ ⊥αµ⊥βν Tαβ, (4.27)

where

qµ =⊥αµ uβTαβ, (4.28)

ρ = uµuνTµν . (4.29)

Before we move on, let us take a closer look on the contribution (4.14). The term
that is directly proportional to the Einstein tensor does not behave very nicely
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under the decomposition (4.27); however, its effect on the level of equations of
motion is simple. Let us consider EFE for our system

Gµν = ζGµν + T rest
µν

=
1

1− ζ
T rest
µν .

(4.30)

We see that it effectively re-scales the remaining terms in the energy tensor by a
factor of 1/(1− ζ). For that reason, we shall not decompose it but rather re-scale
everything else. With this in mind, we obtain

ρ =
1

1− ζ

(
2λ− γ

(
θ̇ − 1

2
θ2
)

+
3

2
σθαβθ

αβ + ζR
)
, (4.31)

qµ =
1

1− ζ
⊥νµ Jν , (4.32)

⊥αµ⊥βν Tαβ =
1

1− ζ

(
σ
(
θθµν + θ̇µν− ⊥µν

1

2
θαβθ

αβ
)

+ γ ⊥µν
(
θ̇ +

1

2
θ2
))
. (4.33)

Important quantities we can calculate are the pressure, defined as

p = −1

3
⊥µν T µν

=
1

1− ζ

(
− γ
(
θ̇ +

1

2
θ2
)

+ σ
(1

2
θαβθ

αβ − 1

3
(θ2 + θ̇)

))
,

(4.34)

and anisotropic stress

Πµν =⊥µα⊥νβ Tαβ+ ⊥µν p

=
σ

1− ζ

(
θ
(
θµν −

1

3
⊥µν θ

)
+ uα∇α

(
θµν −

1

3
⊥µν θ

))
.

(4.35)

While we introduced the field θµν as an auxiliary field to help us with calculations,
it turns out that it has a rather nice kinematical interpretation. Namely θµν is
exactly the expansion tensor for the congruence defined by uµ. The trace θ is the
expansion. Tthe shear tensor σµν ,as we can notice, enters the anisotropic stress

Πµν =
σ

1− ζ

(
θσµν + σ̇µν

)
. (4.36)

As we shall see in the next section, this anisotropic stress does not vanish at first
order of perturbations around flat FRW universe. This signals a modification of
propagation of gravitational waves [48].

An extensive survey of various of various imperfect fluid models of dark matter
was carried out in [49].

4.4 Scalar perturbations

The most exciting prospect of extending the mimetic matter is the effect of new
terms on the behavior of perturbations. Let us first analyze them on the level of
perturbed Einstein equations of motion in the Newtonian gauge

ds2 = (1 + 2Φ)dη2 − a2(t)
[
(1− 2Ψ)δijdx

idxj
]
. (4.37)
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To calculate equations for the perturbations we will only need the 0-ith (1.63)
and off-diagonal i-jth (1.64) Einstein’s equations, which in these coordinates take
the form

∂i(Ψ̇ +HΦ) = δT 0
i, (4.38)

∂i∂j(Φ−Ψ) = a2δT ij for i 6= j. (4.39)

The mimetic matter field perturbation is as in the previous chapter

ϕ = t+ π(t, x). (4.40)

The perturbed mimetic constraint (3.6) again fixes

Φ = π̇, (4.41)

and the second equation gives us

∂i∂j(Φ−Ψ) =
σ

ζ − 1
∂i∂j(π̇ +Hπ), (4.42)

Ψ =
σ

1− ζ
(π̇ +Hπ) + Φ, (4.43)

where we have integrated out the derivatives. This can be done free of integration
constants since such terms would not be consistent with Φ and Ψ being pertur-
bations. Note that the auxiliary field θµν has to be perturbed as well; however,
such perturbations can be reduced to perturbations of ϕ by means of the equation
of motion (4.8). For the details of these calculations please refer to the Appendix
B. Using the above expression, we can eliminate Ψ from the first equation (4.38),
which is

∂i(Ψ̇ +HΦ) = ∂i

(
− Ḣπ +

γ + σ

2− 3γ − 2ζ − σ
∆

a2
π
)
, (4.44)

Ψ̇ +HΦ = −Ḣπ +
γ + σ

2− 3γ − 2ζ − σ
∆

a2
π, (4.45)

where we again used the consistency conditions for perturbations. Combining
equations (4.41), (4.43) and (4.45) and using π as an independent variable, we
obtain

π̈ + Ḣπ +Hπ̇ − c2
s

∆

a2
π = 0, (4.46)

where

c2
s =

γ + σ

(2− 3γ − 2ζ − σ)

1− ζ
(1 + σ − ζ)

. (4.47)

Current constraints of such speed for cold dark matter in late times is provided
by the CMB lensing that gives an upper bound [50]

c2
s < 10−5.9. (4.48)

In order to study instabilities of the system, we have to calculate the action for
scalar perturbations (for a detailed calculation please refer to Appendix C). We do
this in spatially flat gauge (1.56) following the example of [20]. For simplicity, we
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set the potential V = 0. This introduces a certain freedom to the result because
we can freely use (4.18):

2H′ +H2 = 0. (4.49)

This freedom can be fixed using the result of [20] for the unextended case σ =
ζ = 0. We will again break the calculation to the respective contributions of
terms that are directly multiplied by our three parameters γ, σ, ζ. Note that the
perturbation of Lagrange multiplier δλ is again a Lagrange multiplier that fixes

Φ =
π′

a
, (4.50)

which can be used to eliminate Φ from the expansion. The second order of the
expanded action yields

2a2

γ
δ2Lγ =

[
∆
(
B +

π

a

)]2

+ 3∆B
(

2Hπ
′

a
− 3H2π

a

)
+

15

2
H2
(∂iπ
a

)2

+ 9H2
(π′
a

)2

,

(4.51)

2a2

σ
δ2Lσ =

[
∆
(
B +

π

a

)]2

+ ∆B
(

2Hπ
′

a
− 3H2π

a

)
+

5

2
H2
(∂iπ
a

)2

+ 3H2
(π′
a

)2

,

(4.52)

2a2

ζ
δ2Lζ = 2∆B

(
2Hπ

′

a
− 3H2π

a

)
+ 3H2

(∂iπ
a

)2

+ 6H2
(π′
a

)2

,

(4.53)

2a2δ2LEH = 2∆B
(

2Hπ
′

a
− 3H2π

a

)
+ 3H2

(∂iπ
a

)2

+ 6H2
(π′
a

)2

.

(4.54)

The last term corresponds to terms that are not multiplied by any of the para-
meters (for example the Einstein-Hilbert term). The variation with respect to B
yields

2∆
(
B +

π

a

)
=

2− 3γ − 2σ − ζ
γ + σ

(
2Hπ

′

a
− 3H2π

a

)
. (4.55)

This equation is not dynamical, and therefore it acts as a constraint of the field
B and can be substituted back into the action given by the above Lagrangians
[51]. By doing so, we obtain

δ2S = (1− ζ)

∫
d4xa2

[
− 1

c2
s

(
∂η
(
πHa−1

))2

+
(
∂i
(
πHa−1

))2
]
, (4.56)

where c2
s is given by (4.47). Note that this action will not simply reproduce

equation (4.46) because we are working in a different gauge.
The above analysis also gives us a solid check that there is indeed only one

scalar degree of freedom propagating in our model, despite the inclusion of higher
order time derivatives in the Lagrangian (4.4).

A noteworthy feature of this model is that depending on the sign of 1− ζ this
action possesses a ghost instability. This seems to be encouraging since the action
derived in [20] has ghost instabilities for any non-trivial choice of the parameter
γ. In this extension we obtained control over this problem. Unfortunately, as we
eliminate ghosts here, a new instability pops out elsewhere. We will show this in
the following section.

41



4.5 Tensor perturbations

The new terms have had effect on the speed of scalar perturbations; however,
this effect did not bring anything crucially new to the model apart from having
more free parameters to play with. However, there is a much more significant
novel effect of these terms on the behavior of gravitational waves. For a detailed
calculation please refer to Appendix D.

Considering only the tensor perturbations, one finds that

δT(γ)
µ
ν

= 0, (4.57)

and thus we see that in the original model such behavior is nonexistent.
Transforming the perturbed equations of motion (1.67) to normal time t yields

ḧij + 3Hḣij −
∆

a2
hij = 2δT ij. (4.58)

After we calculate the perturbed energy tensor, we obtain the following equation
for tensor modes

ḧij + 3Hḣij − c2
T

∆

a2
hij = 0, (4.59)

where

c2
T =

1− ζ
1− ζ + σ

. (4.60)

We see that the novel terms in the mimetic action allow us to model different
speeds of propagation of gravitational waves. Thus the imperfect DM can have
a nontrivial refractive index for the gravitational waves. This speed is related to
the speed of scalar mode by a simple relation:

c2
s =

γ + σ

2− 3γ − 2ζ − σ
c2
T . (4.61)

Current observational bounds on the speed of gravitational waves are very mild,
but we expect them to improve as soon as the first electromagnetic signals ac-
companying gravity waves are detected. The current upper bound from the first
detections [52], [53] are

cT < 1.7. (4.62)

A lower bound is provided from the pulsar timing [54]

1− cT < 10−2. (4.63)

In order to check whether or not the perturbations suffer from some sort of
instability, we derive the quadratic action for such perturbations. This is done by
expanding the action corresponding to the Lagrangian (4.4) to second order in
linear perturbations. Since we are expanding about the solution of the classical
equations of motion, the first order perturbations vanish. Including the second
order only and making a similar decomposition as (4.9) for respective Lagrangian
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densities we obtain

δ2Sγ = −
∫
d4x

3

2
γa3H

(3

4
Hhijhij + hijḣij

)
, (4.64)

δ2Sσ =

∫
d4x

σ

2
a3
(1

4
ḣijḣij −Hhijḣij −

3

4
H2hijhij

)
, (4.65)

δ2Sζ = −
∫
d4x

ζ

8
a3
(
ḣijḣij − ∂khij∂khij − 4Hhijḣij − 6(Ḣ + 2H2)hijhij

)
,

(4.66)

δ2Sλ = 0, (4.67)

δ2SV =

∫
d4x

V

4
hijhij, (4.68)

δ2SEH =

∫
d4x

1

8
a3
(
ḣijḣij − ∂khij∂khij − 4Hhijḣij − 6(Ḣ + 2H2)hijhij

)
,

(4.69)

where δ2SEH is the perturbation of the Einstein-Hilbert action. By integrating
by parts and using the first Friedmann equation (4.18), we obtain

δ2ST =
1

8

∫
d3xdt a3

(
(1− ζ + σ)ḣijḣij − (1− ζ)∂khij∂

khij

)
. (4.70)

The above action reproduces the correct equations of motion (4.59). We see that,
while both (1− ζ + σ) and (1− ζ) are positive, gravitational waves do not suffer
from ghost instabilities neither from gradient instability. Therefore, if we eliminate
ghosts in the action (4.56) by setting 1 − ζ < 0, we create at least a gradient
instability for tensors.

4.6 Tracking behavior

Following the example of [19], we want to confirm whether the mimetic matter has
the same tracking properties as it had before the modifications we introduced. We
also derive how the effective Newton’s constant changes. Therefore, we consider
our model with no potential in the presence of external matter, in flat Friedmann
universe. From the current (4.21) we obtain

J0 = n = 2λ− 6ζ(Ḣ + 2H2)− 3γḢ + 3σH2. (4.71)

Since this is the only nonzero component of the four-current, it follows that this
charge density dissipates as

n ∝ a−3. (4.72)

The stress-energy tensor (4.17) gives

ρ = n+
3

2
H2
(
3γ + 2ζ + σ

)
, (4.73)

p =
(
3H2 + 2Ḣ

)3γ + 2ζ + σ

2
. (4.74)
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From Friedmann equations (1.8) we then obtain

ρ =
2

2− 3γ − 2ζ − σ
n+

3γ + 2ζ + σ

2− 3γ − 2ζ − σ
ρext, (4.75)

p =
3γ + 2ζ + σ

2− 3γ − 2ζ − σ
pext. (4.76)

We see that qualitatively the tracking behavior does not change; however, we do
see a difference in the modification of Newton’s constant. In the previous case, it
was (apart from a factor of 3) the speed of sound of scalar mode. In our model
this is no longer true. The effective Newton’s constant is

Geff =
(

1 +
3γ + 2ζ + σ

2− 3γ − 2ζ − σ

)
GN. (4.77)

44



Conclusion

In order to set the stage for our research, we first laid down some basic concepts
from cosmology and tools from general relativity. In particular, we reviewed the
Friedmann-Robertson-Walker models and their elementary solutions. We discus-
sed several noteworthy physical horizons that are present in these models and are
relevant for understanding the cosmos. After that we continued with an intro-
duction to the gauge problem of cosmological perturbations and their dynamics
as given by standard general theory of relativity. We also briefly mentioned dark
matter, quintessence and inflation to provide the reader with a surface knowledge
of related ideas in contemporary cosmology that go beyond the standard model
of cosmology.

Our research focused on mimetic matter, a recently proposed model that intro-
duces a minimal modification of general relativity [3]. This modification provides
us with a pressureless fluid (described by a scalar field). This fluid can mimic cold
dark matter on cosmological scales. We showed how such modification works, and
how mimetic matter arises from it. We continued to review research of extensions
of this scenario prior to this thesis [19], [18]. Firstly, we discussed the possibilities
of adding a potential for mimetic matter, which allows us to mimic other types of
matter (apart from pressureless dust) like various cosmic fluids and quintessen-
ce. Secondly, we showed how addition of higher derivatives introduced in [18] of
mimetic matter allows us to deviate from perfect fluid to an imperfect fluid with
non-vanishing speed of sound for cosmological perturbations.

In this thesis we introduced a novel higher derivative terms of more general
structure and terms that couple directly to curvature. We found that such ex-
tensions provide us with further changes of the speed of sound for cosmological
perturbations as well as changes of the speed of propagation of gravity waves.
Thus imperfect dark matter can have a nontrivial refractive index for gravity
waves. The current bounds on this refractive index are mild [53]. But now af-
ter the discovery of the gravitational waves [52] by the LIGO collaboration one
can expect that the constraints will drastically improve. This will happen when
the first electromagnetic signal accompanying GW is observed. Furthermore, the
additional terms renormalize Newton’s constant in Friedmann equations. Lastly,
we investigated the stability of this system on the level of linear perturbations.
In particular, we derived quadratic action for scalar and tensor perturbations to
analyze a potential ghost instability. On the level of linear perturbations in the
usual variables the system either exhibits ghost instabilities in the scalar or in
the tensor sector. However, following the previous discussion in [24] these insta-
bilities can be rather mild and phenomenologically acceptable. Moreover, there
correct canonical variables where there no ghost instabilities around cosmological
solutions at all [47]. Finally we analyse the observational bounds on the parame-
ters of our model arising from the constraint on the speed of gravitational waves
etc. We think the models of imperfect DM with anisotropic stress are very inte-
resting because their parameters can be constrained in near future by the GW
observations. Thus from GW observations one can infer mechanical properties of
DM. This opens up a new exciting opportunity to learn about the origins of the
dark sector.
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A. Energy-momentum tensor for
flat FRW universe

In this appendix we derive the energy momentum tensors (4.9), and then we
evaluate them for the flat FRW solution of EFE. We consider the Lagrangian
density with the auxiliary field θµν (4.5) and break it up to contributions from
different parameters:

Lγ = −γ
(
∂µϕ∂

µθ +
1

2
θ2
)
, (A.1)

Lζ = ζ
(
R∂µϕ∂

µϕ
)
, (A.2)

Lσ = σ
(
∇µ∇νϕθ

µν − 1

2
θµνθ

µν
)
. (A.3)

Note that the σ contribution is obtained from (4.5) by integrating by parts. The
rest of the terms in (4.5) are trivial to vary so we will not discuss them here. The
variation of (A.3) is

δLγ = γ∂µϕ∂νθδgµν , (A.4)

δLσ = σ
(
∂ν∇ρθ

µρ − 1

2
θθµν − 1

2
∂ρ∇ρθ

µν
)
δgµν , (A.5)

δLζ = −ζ
(
R∂µϕ∂νϕ+Rµν

)
. (A.6)

Note that we omitted total derivatives and we used the equations of motion (4.8)
and the mimetic constraint (3.6) after the variation. We also used the standard
formulas for variation of the Christoffel symbol and of the Ricci tensor

δΓρµν =
1

2
gρι
(
∇µδgιν +∇νδgιµ −∇ιδgµν

)
, (A.7)

δRµν = ∇ρδΓ
ρ
µν −∇µδΓ

ρ
ρν . (A.8)

Our sign convention for the Einstein-Hilbert term gives us the following expression
for the energy-momentum tensor

Tµν =
2√
−g

δS

δgµν
. (A.9)

Combining the above, we the energy momentum tensor

T µν = λT(λ)
µ
ν

+ γT(γ)
µ
ν

+ σT(σ)
µ
ν

+ ζT(ζ)
µ
ν

+ V δµν ., (A.10)

T(λ)
µ
ν

= ∂µϕ∂νϕ, (A.11)

T(γ)
µ
ν

= −∂µθ∂νϕ− ∂µϕ∂νθ + δµν
(
∂αθ∂

αϕ+
θ2

2

)
, (A.12)

T(σ)
µ
ν

= θθµν +∇αθ
µ
ν∂

αϕ−∇αθ
µα∂νϕ−∇αθ

α
ν ∂

µϕ− δµν
1

2
θαβθαβ, (A.13)

T(ζ)
µ
ν

= Gµ
ν +R∂µϕ∂νϕ. (A.14)
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In flat FRW universe the solution for mimetic field isϕ = t from (3.6)and the
Christoffel symbols are

Γ0
ij = δija

2H, Γi0j = Hδij, (A.15)

with all the others components vanishing. For the θ fields we obtain

θ = 3H, θij = δijH. (A.16)

(A.17)

The other components of θµν are 0. The derivatives of θµν are:

∇µθ
µ

0 = −3H2, (A.18)

∇µθ
µ
i = 0, (A.19)

∇0θ
i
j = δijḢ, (A.20)

∇0θ
0
µ = 0. (A.21)

(A.22)

The Einstein tensor and scalar curvature are:

R = −6
(
Ḣ + 2H2

)
, (A.23)

G0
0 = 3H2, (A.24)

Gi
j = 3H2 + 2Ḣ. (A.25)

Combining the above results we obtain

T(λ)
0
0

= 2

T(γ)
0
0

=
9

2
H2 − 3Ḣ

T(σ)
0
0

=
9

2
H2

T(ζ)
0
0

= −9H2 − 6Ḣ

T(λ)
i
j

= 0

T(γ)
i
j

=
(9

2
H2 + 3Ḣ

)
δij

T(σ)
i
j

=
(3

2
H2 + Ḣ

)
δij

T(ζ)
i
j

=
(
3H2 + 2Ḣ

)
δij.

(A.26)

Hence the equations

2V = (2− 3γ − 2ζ − σ)(2Ḣ + 3H2), (A.27)

2λ = 3H2(4ζ − σ) + Ḣ(6γ + 8ζ + σ − 2). (A.28)
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B. First order scalar
perturbations

We perturb the system around flat FRW universe in the Newtonian gauge to the
first order in linear perturbations:

ds2 = (1 + 2Φ)dη2 − a2(t)
[
(1− 2Ψ)δijdx

idxj
]
. (B.1)

The variation of the mimetic field is ϕ→ t+ π. From the mimetic constraint we
obtain π̇ = Φ. The zero order quantities are calculated in the Appendix A. The
relevant perturbed Christoffel symbols are

δΓµ0ν =

(
Φ̇ ~∇Φ

a−2~∇Φ −Ψ̇I

)
, δΓ0

µν =

(
Φ̇ ~∇Φ
~∇Φ −a2

(
2HΨ + Ψ̇ + 2HΦ

)
I

)
,

(B.2)

δΓνµν = ∂µ
(
Φ− 3Ψ), δΓiµi = −3∂µΨ, (B.3)

where we have expanded the indexes µ and ν into matrices. ~∇ is the standard gra-
dient operator from 3-dimensional vector analysis and I is a 3x3 identity matrix.
Using the above results it follows that for i 6= j

δ(θθij) = −3Ha−2∂i∂jπ,

δ(∇αθ
i
j∂

αϕ) = −a−2∂i∂j(π̇ − 2Hπ),

δ(∇αθ
iα∂jϕ) = 0,

δ(∇αθ
α
j ∂

iϕ) = 0,

δ(R∂iϕ∂jϕ) = 0,

and for 0, i

δ(θθ0
i) = −3H2∂iπ,

δ(∇αθ
0
i∂
αϕ) = −Ḣ∂iπ,

δ(∇αθ
0α∂iϕ) = −3H2∂iπ,

δ(∇αθ
α
i ∂

0ϕ) = −Ḣ∂iπ − 3H2∂i, π − ∂i(Ψ̇ +HΦ)− ∂i
∆

a2
π,

δ(R∂0ϕ∂iϕ) = −6(Ḣ + 2H2)∂iπ.

The variation of the Einstein tensor can be inferred from equations (1.63), (1.64)

δGi
j = a−2∂i∂j(Φ−Ψ) for i 6= j,

δG0
i = 2∂i(Ψ̇ +HΦ).
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Substituting these into the perturbation of (A.10) we obtain for i 6= j

δT i
(γ) j = 0, (B.4)

δT i
(σ) j = −a−2∂i∂j(π̇ +Hπ), (B.5)

δT i
ζ j = a−2∂i∂j(Φ−Ψ), (B.6)

(B.7)

and for 0, i

δT 0
(γ) i = ∂i

(
− 3Ḣπ + 3(Ψ̇ +HΦ) +

∆

a2
π
)
, (B.8)

δT 0
(σ) i = ∂i

(
3H2π + (Ψ̇ +HΦ) +

∆

a2
π
)
, (B.9)

δT 0
(ζ) i = ∂i

(
2(Ψ̇ +HΦ)− 6(Ḣ + 2H2)π

)
. (B.10)

(B.11)

Substituting the above results into (1.63) and (1.64) we obtain

Ψ =
σ

1− ρ
(π̇ +Hπ) + Φ, (B.12)

(Ψ̇ +HΦ) = −Ḣπ +
γ + σ

(2− 3γ − 2ρ− σ)

∆

a2
π. (B.13)

(B.14)

Note that a direct substitution yields only derivatives of the above formulas. Our
result follows from the fact that Φ, Ψ and π are perturbations (any other solution
does not decay properly in spatial infinity). Furthermore we have π̇ = Φ and
therefore we can eliminate Ψ and Φ to obtain

π̈ + Ḣπ +Hπ̇ − c2
s

∆

a2
= 0, (B.15)

where

c2
s =

γ + σ

(2− 3γ − 2ζ − σ)

1− ζ
(1 + σ − ζ)

. (B.16)
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C. Second order perturbations
for scalars

We perturb the system (4.4) around a flat FRW universe in spatially flat gauge
to second order in linear perturbations with vanishing potential. Let us start by
defining the basic perturbations:

ds2 = a2(η)
[
(1 + 2φ)dη2 − 2∂iBdtdx

i − δijdxidxj
]
, (C.1)

ϕ = t+ π, (C.2)

λ =
1

2

(
H2(4ζ − 4σ − 6γ + 2) + Ḣ(6γ + 8ζ + σ − 2)

)
+ δλ. (C.3)

The only term in the action that contains δλ is

2δλ
(π
a
− φ
)
, (C.4)

and therefore it is a Lagrange multiplier and enforces π = aφ. For the time being,
we will not eliminate φ from our calculations just because of the inconvenient
factor of a; however, keep in mind that we can always switch to π. The zero order
quantities are the same as in Appendix A except that now we work in conformal
time. Relevant objects defined by the perturbed metric are: the inverse metric

g00 = a−2
(
(1− 2φ− ∂iB∂iB + 4φ2)

)
, (C.5)

g0i = a−2
(
∂iB(1− 2φ)

)
, (C.6)

gij = a−2
(
∂iB∂jB − δij), (C.7)

the volume element

√
−g = a4

(
1 + φ+

1

2
(∂iB∂iB − φ2)

)
, (C.8)

and the Christoffel symbols of the first kind

Γiµν = −a2

(
2H∂iB + ∂iB

′ − ∂iφ H~δi
H~δi 0

)
, (C.9)

Γ0µν = a2

(
H(1 + 2φ) + φ′ ~∇φ

~∇φ HI− ~∇~∇B

)
, (C.10)

where we have again expanded the indeces µ and ν into matrices.~δi is a 3-vector
whose ith entry is equal to 1 and the rest to 0. For the second covariant derivatives
of ϕ we have

∇µ∇νϕ = ∂µ∂νϕ− Γρµν∂
ρϕ. (C.11)

The covariant and contravariant gradient of ϕ is

∂µϕ =

(
a(1 + φ)
~∇π

)
, (C.12)

∂µϕ = a−1

(
1− φ− ∂iB∂i(B + π/a) + 2φ2

−~∇(B + π/a) + ~∇Bφ

)
. (C.13)
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Combining the above results, we obtain

∇0∇0ϕ = a
(

(B′ +HB + φ)∆(B + π/a) + φφ′
)
, (C.14)

∇0∇iϕ = a
(
Hφ∂iB + φ∂iφ−H∂i(B + π/a)

)
, (C.15)

∇i∇jϕ =
(
−H(1 +B∆(B + π/a)− φ+ 2φ2)

)
δij + ∂i∂j(B + π/a)− φ∂i∂jB.

(C.16)

The second order perturbation of some of the terms in the action corresponding
to (4.4) can be obtained from the above results by contraction with the inverse
metric.

δ2

√
−g∇µ∇νϕ∇µ∇νϕ = a2

([
∆(B + π/a)

]2
+

3

2
H2∂iB∂iB+

+6B∆(B + π/a)− 2
H
a2
∂iπ∂iπ + 2∆BHφ

)
,

(C.17)

δ2

√
−g(�ϕ)2 = a2

([
∆(B + π/a)

]2
+ 6B′∆(B + π/a) +

21

2
∂iB∂iBH2+

+24B∆(B + π/a)H + 12H2∂iB∂iπa
−1 + 6∆BHφ+

+6Hφ∆(B + π/a) +
45

2
H2φ2 + 6Hφφ′

)
,

(C.18)

δ2

√
−gλ(∂µϕ∂

µϕ− 1) =
a2

2

(
H2(4ζ − 4σ − 6γ + 2) + Ḣ(6γ + 8ζ + σ − 2)

)
(
φ2 − ∂i

(
B + π/a

)
∂i
(
B + π/a

))
.

(C.19)

Note that we have omitted several total derivatives. The second order perturbati-
on of the Einstein-Hilbert term was calculated in [20]:

δ2

√
−gR = a2

(
2∆B

(
2Hφ− 3H2π/a

)
− 3H2∂iπ∂iπa

−2 − 6H2φ2+

+2(H2 −H′)
(
φ2 − ∂i

(
B + π/a

)
∂i
(
B + π/a

)))
.

(C.20)

This result allows us to simply calculate the perturbation of the last term in our
action since the first order perturbation of ∂µϕ∂

µϕ vanishes:

δ2

(√
−gR∂µϕ∂µϕ

)
= δ2

(√
−gR

)
+
√
−gRδ2∂µϕ∂

µϕ

= δ2

(√
−gR

)
− 6a2(H2 +H′)

(
φ2 − ∂i

(
B + π/a

)
∂i
(
B + π/a

))
.

(C.21)
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Substituting the above expressions into the perturbation of (4.4) and decom-
posing the result with respect to the various parameters we obtain

2a2

γ
δ2Lγ =

[
∆
(
B +

π

a

)]2

+ 3∆B
(

2Hπ
′

a
− 3H2π

a

)
+

15

2
H2
(∂iπ
a

)2

+ 9H2
(π′
a

)2

(C.22)

2a2

σ
δ2Lσ =

[
∆
(
B +

π

a

)]2

+ ∆B
(

2Hπ
′

a
− 3H2π

a

)
+

5

2
H2
(∂iπ
a

)2

+ 3H2
(π′
a

)2

(C.23)

2a2

ζ
δ2Lζ = 2∆B

(
2Hπ

′

a
− 3H2π

a

)
+ 3H2

(∂iπ
a

)2

+ 6H2
(π′
a

)2

(C.24)

2a2δ2LEH = 2∆B
(

2Hπ
′

a
− 3H2π

a

)
+ 3H2

(∂iπ
a

)2

+ 6H2
(π′
a

)2

,

(C.25)

where we have again omitted total derivatives. The last Lagrangian density corre-
sponds to terms that have no parameter dependence. Variation of resulting action
with respect to B yields

2∆2
(
B +

π

a

)
=

2− 3γ − 2σ − ζ
γ + σ

∆
(

2Hπ
′

a
− 3H2π

a

)
. (C.26)

We again invoke the consistency of perturbations (kernel of ∆ does not decay
properly in spatial infinity, and therefore is inconsistent with perturbations) to
find a unique solution

2∆
(
B +

π

a

)
=

2− 3γ − 2σ − ζ
γ + σ

(
2Hπ

′

a
− 3H2π

a

)
. (C.27)

Now we substitute back into the above Lagrangians to eliminate any B depen-
dence. One final intermediate result before conclusion is∫

dηd3x
(
3H2π − 2Hπ′

)2
=

∫
dηd3x4H2(π′)2

=

∫
dηd3xa2

(
∂η
(
Hπ/a

))2

,

(C.28)

which follows from (4.18) for vanishing potential. For the final perturbed action
at second order we obtain

δ2S = (1− ζ)

∫
d4xa2

[
− 1

c2
s

(
∂η
(
πHa−1

))2

+
(
∂i
(
πHa−1

))2
]
, (C.29)

where

c2
s =

γ + σ

(2− 3γ − 2ζ − σ)

1− ζ
(1− ζ + σ)

. (C.30)
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D. Tensor perturbations at 1st
and 2nd order

The analysis of perturbations is much easier for tensors since there is only one
gauge invariant field that enters the problem. Namely the 3-tensor hij. The basic
setup is

ds2 = dt2 − a2(δij − hij)dxidxj, (D.1)

where hij is transverse and traceless. Such metric defines the following composite
objects: the inverse metric

g00 = 1, (D.2)

g0i = 0, (D.3)

gij = −a−2(δij + hij + hikhkj), (D.4)

the volume element √
−g = a3

(
1− 1

4
hijhij

)
, (D.5)

and the Christoffel symbols

Γ0
ij = a2

(
H(δij − hij)−

1

2
ḣij

)
, (D.6)

Γi0j = Hδij −
1

2

(
ḣij + hikḣkj

)
. (D.7)

The components Γ0
0i and Γ0

00 vanish and Γijk does not appear anywhere in our
calculations. For the auxiliary field θµν = ∇µ∇νt we obtain

θij = Hδij −
1

2

(
ḣij + hikḣkj

)
, (D.8)

θ = −1

2
hijḣij, (D.9)

θ00 = θ0i = 0. (D.10)

Now we will perturb the i-jth components of energy-momentum tensor (4.9) to
first order. The perturbation of relevant terms is

δ(θθij) = −3

2
Hḣij, (D.11)

δ(∇αθ
i
j∂

αϕ) = −1

2
ḧij. (D.12)

(D.13)

From (1.67) we have

δGi
j =

1

2

(
ḧij + 3Hḣij −

∆

a2
hij

)
. (D.14)
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Substituting the above results into the perturbation of (4.9) we obtain

δT(γ)
i
j

= 0, (D.15)

δT(σ)
i
j

= −σ
2

(
ḧij + 3Hḣij

)
, (D.16)

δT(ζ)
i
j

=
ζ

2

(
ḧij + 3Hḣij −

∆

a2
hij

)
. (D.17)

(D.18)

Substituting these results into (1.67) we find

ḧij + 3Hḣij − c2
T

∆

a2
hij = 0, (D.19)

where

c2
T =

1− ζ
1 + σ − ζ

. (D.20)

Now we keep perturbations to second order. Perturbed terms from action corre-
sponding to (4.4) are

δ2

(√
−gθijθ

j
i

)
= a3

(1

4
ḣ2
ij − hijḣij −

3

4
H2hijhij

)
, (D.21)

δ2

(√
−gθ2

)
= −3a3

(
hijḣij +

3

4
H2hijhij

)
, (D.22)

δ2

(
V
√
−g
)

=
2− 3γ − 2ζ − σ

2
(2Ḣ + 3H2)

1

4
hijhij. (D.23)

The second order perturbation of the Einstein-Hilbert term has been calculated
in [6]:

δ2

√
−gR = −1

4
a3
(
ḣijḣij − ∂khij∂khij − 4Hhijḣij − 6(Ḣ + 2H2)hijhij

)
. (D.24)

From which it follows:

δ2

√
−gR(∂µϕ∂

µϕ) = −1

4
a3
(
ḣijḣij − ∂khij∂khij − 4Hhijḣij − 6(Ḣ + 2H2)hijhij

)
.

(D.25)
Now we substitute into perturbation of the action (4.4). Terms with no derivatives
and with one derivative all vanish as they combine with contribution from the
potential V . The resulting action is

δ2ST =
1

8

∫
d3xdt a3

(
(1− ζ + σ)ḣijḣij − (1− ζ)∂khij∂

khij

)
. (D.26)
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List of Abbreviations

HD - higher derivatives
FLRW - Friedman-Lemâıtre-Robertson-Walker
FRM - Friedman-Robertson-Walker
EoM - equation of motion
EFE - Einstein field equation
DM - dark matter
TeS - Tensor-Scalar
CDM - cold dark matter
ADM - Arnowitt-Deser-Misner
CMB - cosmic microwave background
GW - gravitational wave
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