
MASTER THESIS

David Ligr

Parallel Evaluation of Numerical
Models for Algorithmic Trading

Department of Software Engineering

Supervisor of the master thesis: RNDr. Martin Krulǐs, Ph.D.

Study programme: Computer Science

Study branch: Software Systems

Prague 2016

I declare that I carried out this master thesis independently, and only with the

cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act

No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the

Charles University has the right to conclude a license agreement on the use of

this work as a school work pursuant to Section 60 subsection 1 of the Copyright

Act.

In date signature of the author

i

Title: Parallel Evaluation of Numerical Models for Algorithmic Trading

Author: David Ligr

Department: Department of Software Engineering

Supervisor: RNDr. Martin Krulǐs, Ph.D., Department of Software Engineering

Abstract: This thesis will address the problem of the parallel evaluation of al-

gorithmic trading models based on multiple kernel support vector regression.

Various approaches to parallelization of the evaluation of these models will be

proposed and their suitability for highly parallel architectures, namely the Intel

Xeon Phi coprocessor, will be analysed considering specifics of this coprocessor

and also specifics of its programming. Based on this analysis a prototype will

be implemented, and its performance will be compared to a serial and multi-core

baseline pursuant to executed experiments.

Keywords: parallelization, GPU, Xeon Phi, algorithmic trading, support vector

machines

ii

First of all, I would like to express my gratitude to my supervisor RNDr. Martin

Krulǐs, PhD. for his comments, remarks and support. Further, I am very grateful

to all my friends, who read this work and helped me with corrections.

Last but not least, I would like to thank my family for supporting me during the

studies, especially my wife Eva for her patience and encouragement.

iii

Contents

1 Introduction 4

1.1 Performance and Parallelism . 5

1.2 Objectives . 6

2 OpenCL 7

2.1 Structure of OpenCL . 7

2.1.1 Language Specification . 7

2.1.2 Platform Layer and Runtime API 8

2.2 Platform Model . 8

2.3 Execution Model . 9

2.3.1 Kernel Execution on a Compute Device 9

2.3.2 Host Program . 11

2.4 Memory Model . 15

2.4.1 Accessing Shared Memory Simultaneously 17

2.5 Best Practices . 18

2.5.1 Work Decomposition . 18

2.5.2 Synchronization . 18

2.5.3 Reusing of Data . 18

2.5.4 Data Layout . 18

3 Intel Xeon Phi 20

3.1 Architecture . 20

3.1.1 Vector Processing Units 21

3.1.2 Memory Architecture . 22

3.2 OpenCL Programming . 24

3.2.1 Kernel Execution on Intel Xeon Phi Coprocessor 24

3.2.2 Local Memory . 26

3.2.3 Comparison with GPUs 26

4 AT Model 28

4.1 Technical Analysis . 28

4.1.1 Technical Indicators . 29

4.1.2 Univariate Analysis . 29

4.1.3 Multivariate Analysis . 30

4.1.4 Supervised Learning Algorithms 30

4.2 Support Vector Machine . 32

4.2.1 Theory of SVMs . 33

1

4.2.2 Kernel Function . 35

4.2.3 SVM in Regression . 37

4.3 Existing AT Model . 37

5 Implementation 40

5.1 Analysis . 40

5.1.1 Preprocessing . 41

5.1.2 Approaches to Parallelization 41

5.2 Architecture Specific Parallelization 44

5.2.1 Multi-Core Parallelization 44

5.3 Many-Core Parallelization . 45

5.3.1 Evaluating Kernel Method In Parallel 46

5.3.2 Evaluating Multiple Blocks Simultaneously 48

5.3.3 Parallel Aggregation . 49

5.3.4 Preprocessing . 51

5.3.5 Data Layout . 51

5.3.6 Command-Queues and Kernel Synchronization 52

5.4 Programming Language, Data Formats, and Libraries 52

5.4.1 Data Types . 53

5.4.2 Parallel Programming in .NET 53

5.4.3 OpenCL Host Bindings in .NET 54

5.5 Implementation for GPUs . 55

6 Experimental Results 57

6.1 Experimental Methodology . 57

6.1.1 Execution Time . 58

6.1.2 Correctness of Measured Times 58

6.1.3 Hardware Specification . 59

6.1.4 Test Data . 60

6.1.5 Testing Configuration . 60

6.2 Performance . 60

6.2.1 Measured Times . 61

6.2.2 Scalability . 63

6.3 Cost of Modifications . 65

7 Conclusion 67

7.1 Future Work . 67

Bibliography 69

List of Figures 72

2

List of Tables 73

List of Abbreviations 74

Attachments 75

3

1. Introduction

Trading on stock markets mainly consists of selling and buying trading in-

struments, such as shares, obligations, or derivatives. All these operations are

performed pursuant to many aspects, which can be grouped into two disjoint

sets: rational aspects and irrational aspects. The examples of rational aspects

include a progression of a price of the given trading instrument, progressions of

prices of trading instruments related to the given trading instrument, or a due

date of the corresponding obligation. The irrational aspects are for example in-

tuition and feelings of the trader.

Up to the 1950s, all activities concerning buying and selling instruments were

carried out by traders. Consequently, decisions could have been influenced by

irrational aspects as well as rational aspects. Thanks to that, an unexpected

drop of price of owned trading instrument might have led to a lossy decision,

which was based on fear and nervosity of the trader rather than indicias coming

from an analysis of rational aspects. This was one of the most important reasons

why Harry Markowitz came in his dissertation thesis [1] with the idea of applying

mathematical concepts to stock markets. This idea combined with computers

development led to emergence of algorithmic trading (AT). From that time on,

trading operations can be assisted by algorithmic trading or fully executed by it.

In algorithmic trading, mathematical models are transformed into computer

algorithms. This allows processing of enormous amount of data in a short period

of time and therefore it is possible to quickly react to occurring situations. This

is one of the most important reasons why algorithmic trading was utilized in up

to 63% of all trades done on the US stock markets in 2011 (this number was

published in The Economist [2]). However, it is important to note that even

though a trader leaves part of their activities to a computer program, certain

decisions can still be made by the trader themselves. These activities typically

include an execution of trading instructions (algorithmic execution), while the

trader still makes a decision about their issuing.

High-frequency trading (HFT) is the primary form of algorithmic trading

on financial markets. High-frequency trading represents so-called algorithmic

decision-making. In algorithmic decision-making, a computer is also responsible

for issuing trade requests in contrast to algorithmic execution, in which a trader

is responsible for this issuing. The main characteristics of high-frequency trading

include a fast reaction to events occurring on the market and also hundreds to

thousands of orders and messages issued to the market per seconds.

4

1.1 Performance and Parallelism

Companies dealing with algorithmic trading utilize so-called co-location, i.e.

they place their servers right into the buildings where the stock markets are

situated. A close physical proximity leads to shorter communication paths and

to lower communication latency.

Another technique being used to improve performance is utilization of more

powerful hardware. Until the beginning of the 21st century, the power of con-

temporary processors could have been easily improved by the frequency increase.

In that time, the frequency of processors reached a limit of about 3 GHz, be-

yond which processors consume too much energy and consequently produce too

much heat. In order to solve this problem, processor developers had to adopt

a new approach to improve the performance. Therefore they shifted their focus

on optimizing hardware architecture and on creating multi-core and many-core

architectures.

Even though general-purpose processors include a wide range of functional

units to respond to any computational demand, only some of these units are

utilized in common computation. The problem concerning idle units is that

they are still powered, even though far less than utilized ones. Besides general-

purpose processors, there are specialized processors, such as graphic cards or

parallel accelerators, which are optimized for processing of large blocks of data

in parallel. Thanks to this, these processors do not contain such a wide range of

functional units, and therefore have better performance per watt than general-

purpose processors.

Graphic cards and parallel processors are representatives of so-called many-

core architectures. Such architectures allow executing 10-1000 of threads in par-

allel, and eventually deliver an enormous amount of raw performance. In order

to utilize this performance, we have to adopt new ways of designing algorithms,

developing applications, and thinking about problems. Applications that utilize

that performance are rated both by criteria applicable to single-threaded appli-

cations (such as their efficiency or the time complexity) and by scalability with

more threads or cores.

Although parallelism can improve throughput in orders of magnitude, it in-

troduces many new issues (such as thread management or synchronization) that

do not concern us in single-threaded applications. All these problems have to be

addressed properly, in order to create flawless and efficient applications.

In contrast to the fact that parallelism can improve overall computation

throughput, it might deteriorate computation latency. Thanks to this, paral-

lelism is not suitable for simple computations, as in these computations latency

5

interests us more than overall throughput.

1.2 Objectives

In this work we will analyze an existing model for high-frequency trading,

which predicts future prices of a trading instrument on the basis of multiple indi-

cators, from the perspective of parallel programming. Based on this analysis, we

will implement a prototype, which will efficiently utilize a highly parallel architec-

ture, namely Intel Many Integrated Core (MIC) Architecture, and compare the

performance of this prototype implementation to a baseline serial and multi-core

CPU algorithm.

In Chapter 2, we will describe OpenCL, which allows us to implement our

prototype for the Intel MIC Architecture. Chapter 3 will explain specifics of

programming for Intel Xeon Phi, which is the first product based on that ar-

chitecture. The description of the existing algorithmic trading model and its

analysis will follow in Chapter 4. Chapter 5 will be dedicated to the explanation

of implementation techniques and details. The empirical results of our research

and their interpretation will be presented in Chapter 6.

6

2. OpenCL

OpenCL (Open Computing Language) [4] is open, royalty-free standard for

cross-platform, parallel programming of diverse processors found in personal com-

puters, servers etc. A primary benefit of OpenCL is substantial improvement of

speed and responsiveness of a wide spectrum of applications from various market

categories, e.g., gaming, scientific and medical software, etc. A second benefit is

cross-vendor software compatibility.

When we wish to utilize OpenCL we have to perform even several tasks per-

mitting this utilization. For now, we will describe these tasks at the highest

possible level of abstraction. A more elaborate description of the terms stated in

the rest of this paragraph is the subject of next subchapters that briefly intro-

duce models constituting OpenCL. The first step to using OpenCL is querying the

platform, i.e. vendor specific OpenCL implementation, from the host program for

available devices and selecting a subset of them to be utilized for a computation.

After that, a context containing selected devices is created. The created context

is after here utilized for creating a command-queue, through which the host pro-

gram orchestrates a single device within the context, a kernel, i.e. a function to

be executed on the devices contained in the context, and memory objects, which

hold input or output data of a kernel invocation. When the command-queue, the

kernel, and memory objects are created, the host program submits commands to

transfer memory objects onto the device, execute the kernel, and transfer yielded

data back onto the host to the command-queue.

2.1 Structure of OpenCL

The OpenCL development framework comprises 2 parts:

• Language specification

• Platform layer and runtime API

2.1.1 Language Specification

The language specification describes the syntax and programming interface

for writing kernels, i.e. functions to be executed on supported devices in parallel.

7

1 k e r n e l void add matr i ces (

2 constant f loat ∗ const matrix a ,

3 constant f loat ∗ const matrix b ,

4 g l o ba l f loat ∗ const matr ix c)

5 {

6 int r = g e t g l o b a l i d (0) ;

7 int c = g e t g l o b a l i d (1) ;

8 int n = g e t g l o b a l s i z e (0) ;

9 int index = n∗ r +c ;

10 matr ix c [index] = matr ix a [index] + matr ix b [index] ;

11 }

Listing 2.1: Source code of kernel performing addition of matrices.

The kernels are written in the OpenCL C [5] programming language. OpenCL

C is based on the ISO C99 specification with added extensions and restrictions.

Additions include vector data types, vector operations, address space qualifiers

and a kernel function qualifier, which denotes a kernel function. The source

code of a simple kernel function, which encompasses the kernel qualifier and

the address space qualifiers, is depicted in Listing 2.1. Restrictions contain the

absence of support for function pointers, bit fields, recursion, and variable-length

arrays.

2.1.2 Platform Layer and Runtime API

The platform layer API permits the programmer query the system for the

existence of OpenCL supported devices. Using this API, a programmer could

also control which subset of available devices will constitute the context in any

OpenCL application.

The OpenCL runtime API provides the functions to manage objects such as

command-queues, memory objects and kernel objects, as well as functionality for

executing kernels on one or more devices defined in the context.

2.2 Platform Model

The OpenCL platform model defines a high-level abstraction of any hetero-

geneous platform used with OpenCL. An OpenCL platform always incorporates

a single host which has a general-purpose CPU and one or more OpenCL devices.

A schema of such a platform is depicted in Figure 2.11.

An OpenCL device can be a CPU, a GPU, or any other accelerator device that

1Figures presented in this chapter are based on figures contained in OpenCL Programming

Guide [6].

8

Figure 2.1: A schema of the OpenCL platform model.

is supported by OpenCL. The device is where kernels are executed. Therefore,

an OpenCL device is often referred to as a compute device.

An OpenCL device consists of at least one compute unit, which itself is com-

posed of one or more processing elements. These elements execute computational

work that is to be executed on a relevant compute device. For instance, in case

a compute device is a multi-core CPU, then each of its cores corresponds to

a compute unit and slots in SIMD registers correspond roughly to processing

elements.

2.3 Execution Model

An OpenCL application consists of two main execution units: host program

and kernels. As we mentioned earlier, kernels are basic unit of executable code

that runs on one or more OpenCL devices. The host program executes on the

host system and uses the runtime API to interact with objects defined within

OpenCL.

2.3.1 Kernel Execution on a Compute Device

Before we will describe, how kernels execute on compute devices, we have to

introduce data parallelism inasmuch as OpenCL utilizes this kind of parallelism

when executing these kernels. Data parallelism refers to scenarios in which the

same function executes on different elements of a some collection in parallel.

Note that this programming model requires elements in this collection to be

independent of each other.

Since data parallelism is about executing a given function on multiple elements

of some collection a work associated with execution of that function on a single

element conforms to the base unit of work. In OpenCL, this unit of work is

9

called a work-item. The total number of work-items, which execute on processing

elements, to be executed is defined by the size of an index space, which is called

a global index space. This index space is defined when a kernel is queued for

execution by the host program.

Work-items are aggregated into work-groups. All work-items in the same

work-group are executed together on the processing elements of a single compute

device. The reason for execution on a single compute unit is to allow work-items

to share resources and synchronize their execution. It is particularly important

to realize that the work-items in different work-groups cannot be synchronized,

and therefore, accessing the same data by work-items belonging to different work-

groups may lead to a malfunction.

Index spaces

As stated, the size of the global index space defines the total number of work-

items that require execution. In other words, a work-item is executed for each

point in the global index space and, therefore, coordinates of a point uniquely

identifies both this point and the associated work-item. These coordinates are

commonly referred to as a global ID of a work-item.

Since a work-group encompasses related work-items, it provides a more coarse-

grained decomposition of the global index space. OpenCL requires all the work-

groups to have the same size, i.e. the number of contained elements that divides

the global size without a residue. Besides this, a work-group is, just like each

work-item, assigned a unique group ID.

Figure 2.2: An example of how the global IDs, the local IDs, and work-group
IDs are related. The shaded block has the global ID of (gx,gy) = (6,5) and the

local ID of (lx,ly) = (2,1).

Besides the global ID, a work-item is assigned a local ID, which is unique

10

within the work-group containing this work-item. Hence, a work-item can be

uniquely identified by its global ID or by a combination of its local ID and its

work-group ID. The relation between the local ID and the global ID of a work-

item is illustrated in Figure 2.2.

In fact, OpenCL supports up to 3-dimensional index spaces. The supported

dimensions correspond to dimensions of entities, e.g., vectors, images, 3D models,

whose processing provides opportunities to utilizing data parallelism.

When work-items of a multidimensional index space should be executed by

processing elements a mapping of them to these processing elements, i.e. a map-

ping from a multidimensional space into a one-dimensional space has to be uti-

lized. OpenCL uses the function f(x, y, z) = x+ y · sizex + z · sizex · sizey , where

x corresponds to index in the first dimension and sizex corresponds to the size

of the original index space in the first dimension and so on, for this mapping.

2.3.2 Host Program

The host program is responsible for setting up and managing the execution

of kernels on OpenCL devices.

In order to dispatch a kernel for execution, the host program has to do fol-

lowing:

1. select an OpenCL platform encompassing devices to be employed in the

computation

2. initialize a context using a subset of devices from the selected platform

3. initialize command-queues, program objects, kernels, and memory objects

associated with the context

Command-queues, program objects, kernels, and memory objects are essential

for any OpenCL application, and therefore, they will be described thoroughly in

the rest of this chapter.

Program Object and Kernel

An OpenCL program comprises kernels, data constants and other functions

that are non-invokable by the host. A program object encapsulates the program

source code or a binary file containing the program executable along with the list

of devices for which the executable is built.

When a program object is successfully created, it may be built for one or

more devices that are encapsulated by the program object. The reason, why the

program objects are built only at runtime, is based on the fact that an OpenCL

11

programmer writes an application for an end user and does not know on which

CPUs, GPUs, or other parallel devices the end user may run the application on.

In the other words, a programmer only knows that the target devices conform the

OpenCL specification. Therefore, only after defining devices the program is to be

executed on, the program object can be appropriately compiled for these devices.

In addition, the knowledge of target devices enables the OpenCL compiler to

optimize the code in a way suitable for these devices.

1 var p la t fo rm = ComputePlatform . Platforms [0] ;

2 var context = new ComputeContext (

3 ComputeDeviceTypes .Gpu ,

4 new ComputeContextPropertyList (p la t fo rm) ,

5 nul l ,

6 IntPtr . Zero) ;

7 var program = new ComputeProgram (context , c lSourceCode) ;

8 program . Bui ld (nul l , nu l l , nu l l , IntPtr . Zero) ;

9 var ke rne l = program . CreateKernel (”addKernel ”) ;

Listing 2.2: Initialization of a general OpenCL application.

A kernel object, i.e. an object encapsulating a kernel function, is created after

the executable has been successfully built in a program object.

All steps required for a creation of a kernel object are stated in Listing 2.2,

which contains a snippet of the host source code.

Command-Queues

OpenCL does not support direct communication of the host with devices,

instead of this the host communicates with devices by submitting commands to

command-queues. A command-queue is created by the host and attached to

exactly one OpenCL device.

The order commands submitted to a single command-queue execute is deter-

mined by the type of the command-queue. There are 2 types of command-queues:

• In-order command-queue: Commands are launched and completed in

the same order in which they placed onto the command-queue. In other

words, this type guarantees that a command begins only after the preceding

commands are finished.

• Out-of-order command-queue: Commands are launched in the order

that is based on synchronization constraints placed on these commands.

As we have explained above, commands in an in-order command-queue can

begin only after all previously enqueued commands are completed. This can de-

crease performance because of underutilized compute units. Utilization of com-

12

pute units can be significantly improved by using an out-of-order command-queue,

since a command can be launched regardless of whether previously enqueued com-

mands are completed or not. So when a compute unit finishes its work, it can

immediately fetch a new command and start its execution. This is called auto-

matic load balancing and it is a well know technique used in the design of parallel

algorithms driven by command queues [3].

Regrettably, support of the out-of-order mode is optional, and therefore not

implemented on certain platforms. On these platforms, multiple command-queues

can be employed to utilize compute units more efficiently. Commands in differ-

ent command-queues may run concurrently, and only the host can synchronize

execution of these commands.

OpenCL supplies three types of commands:

• Kernel execution: a command that invokes a kernel for execution on

a device, it also specifies the global index space over which the kernel is to

be executed

• Memory transfer: a set of commands that transfer data between the host

and the memory objects, copy the memory objects, or manage memory

mappings

• Synchronization: a set of commands that constrain order of command

execution or synchronize the host execution with a device execution

Memory transfer commands and synchronization commands may be blocking

and non-blocking. The OpenCL function call for a non-blocking command returns

immediately after the command is enqueued regardless of whether the command

is completed or not. On the other hand, the OpenCL function call for a blocking

counterpart returns once the command is completed.

The kernel execution commands and the memory transfer commands are used

in each OpenCL application. A basic usage of these commands is depicted in

Listing 2.3. On the lines 1-2, a command-queue associated with the first device

within the context is initialized. The lines 3-5 contain initialization of memory

objects. These memory objects are set to the arguments of the kernel, on the

following 3 lines. The lines 9-10 include enqueuing of writing of input data,

which are obtained elsewhere, to the input memory objects. This implies that

buffers bufferA and bufferB represent input memory objects while the last buffer

represents an output memory object. On the line 11, the kernel is submitted to

the command-queue for execution. On the last line, reading of data yielded by

the kernel execution is enqueued.

13

1 var commandQueue = new ComputeCommandQueue(context ,

2 context . Devices [0] , . . .) ;

3 var bufferA = new ComputeBuffer<f loat > (. . .) ;

4 var buf fe rB = new ComputeBuffer<f loat > (. . .) ;

5 var buf fe rC = new ComputeBuffer<f loat > (. . .) ;

6 ke rne l . SetMemoryArgument(0 , bufferA) ;

7 ke rne l . SetMemoryArgument(1 , buf fe rB) ;

8 ke rne l . SetMemoryArgument(2 , buf fe rC) ;

9 commandQueue . WriteToBuffer (matrixA , bufferA , . . .) ;

10 commandQueue . WriteToBuffer (matrixB , bufferB , . . .) ;

11 commandQueue . Execute (kerne l , . . .) ;

12 commandQueue . ReadFromBuffer (bufferC , r e f matrixC , . . .) ;

Listing 2.3: Source code of an application submitting a kernel for execution.

Synchronization commands are used to constrain the order of execution of

multiple commands or of the host and a device. Emphasize that the order of

execution of commands issued to the same in-order command-queue is fixed by

the order in which commands were enqueued, and thus, it is meaningless to

constrain it further using synchronization commands.

The first command that can be used to synchronize execution of multiple

commands is clEnqueueBarrier. This command enqueues a synchronization point

ensuring that all commands enqueued to the same command-queue before have

finished execution before following commands begin execution.

As stated, using clEnqueueBarrier we are able to synchronize execution of

neither commands issued to different command-queues nor of the host and a com-

mand. Therefore, OpenCL provides a clFinish command, which blocks the host

until all previously enqueued OpenCL commands in an appropriate command-

queue have finished. Therefore, future commands will not begin execution inas-

much as they will be neither submitted to command-queues until the previous

ones have finished. The fact that this command is blocking makes it unsuitable

when only execution of multiple commands need to be synchronized, since it also

blocks a calling thread on the host despite it is not required.

To synchronize commands in different command-queues defined in the same

context while not stalling a calling thread on the host we have to use so-called

event-objects. An event object is generated when a command is submitted to

a command-queue and communicates the status of the associated command.

A clEnqueueWaitForEvents command, which accepts a collection of event-object

as one of its parameters, ensures that all commands to which passed event-objects

are associated have finished before any future commands queued to the command-

queue begin execution. This means that the clEnqueueWaitForEvents command,

in contrast to the clEnqueueBarrier, may be used to synchronize commands in

14

multiple command-queues and moreover allows to specify commands that have

to complete before future commands can begin execution. State that OpenCL

provides even a blocking counterpart of this command, namely clWaitForEvents,

that may be used to synchronize the host execution with execution of commands

forming a subset of previously submitted commands.

The last way how to synchronize execution of multiple commands in different

command-queues defined in the same context is also based on utilizing event-

objects. In this case, a collection of event-objects is passed to a command to be

synchronized as one of its parameters. This command then can begin its exe-

cution only when each event-object in the passed collection communicates that

the associated command has finished. This means that this way of synchroniza-

tion provide much more fine-grained control than utilizing the clEnqueueWait-

ForEvents command, since this way constrains the execution order of a particular

command and not of all future commands.

2.4 Memory Model

The OpenCL memory model defines 2 types of the memory objects: buffer

objects and image objects, which are not usable for the purposes of this work, and

therefore, will not be further described. A buffer object stores a one-dimensional

collection of elements of a scalar data type, vector data type, or a user-defined

structure. Elements of a buffer object can by accessed using a pointer by a kernel

executing on a device.

The OpenCL memory model defines, besides memory objects, 5 distinct mem-

ory regions:

• Host memory: This memory region resides in the host RAM, and there-

fore, is visible only to the host. As in the case of the host program, OpenCL

only defines how the host memory interacts with the OpenCL objects.

• Global memory: This memory region is accessible by the host, and per-

mits reads and writes to all work-items in all work-groups. Reads and writes

to the global memory may be cached depending on the capabilities of the

device. This memory region and the host memory is in case a device is

GPU, Xeon Phi or another coprocessor independent of each other. Due to

this, data stored on the host needs to be transferred to the global memory

or vice versa.

• Constant memory: This memory is a region of global memory that re-

mains constant during the execution of a kernel. Thanks to this, this mem-

ory is better cached than the global memory.

15

• Local memory: This memory region is associated with a work-group and

is accessible only by work-items in this work-group. The time needed to

access variables in this memory region is guaranteed not to be greater than

the time needed to access variables in global memory. Hence, a common

optimization technique utilized in data-intensive applications is based on

copying hot data to this memory region.

• Private memory: This memory belongs to a work-item, and therefore, is

used to store its local variables.

Compute unit 1

Private

memory 1

PE 1

Private

memory N

PE N

Local

memory 1

Compute unit M

Private

memory 1

PE 1

Private

memory N

PE N

Local

memory M

Global/constant memory data cache

OpenCL device

Global/constant memory

OpenCL device memory

Host memory

Host

Figure 2.3: The mapping of the OpenCL memory model to the OpenCL
platform model.

When we described the global memory, we stated that data has to be trans-

ferred between this memory and the host memory, unless the host and a device

share memory and caches. Transferring of data can be performed in one of the

two ways: by explicit copying of data or by mapping and unmapping regions

of memory objects.

The mapping allows the the host to map a region of a memory object into its

address space. Once the region from the memory object has been mapped, the

host can access this region directly. The host has to unmap the region after use

to propagate changes back to the devices.

In case of the device connected to the host by a bus, transferring data be-

tween the host memory and the global memory has to be done via this bus.

16

Consequently, such transferring is usually slower in order of units than access-

ing data in memory. This is determined by the fact that currently buses do not

provide such throughput as memories. Hence, utilizing OpenCL is primarily con-

venient for applications in which the computation time is at least roughly equal

to the time the host or the device wait for data being transferred.

Transfer

inputs
Execute

Transfer

outputs

Transfer

inputs
Execute

Transfer

outputs

Transfer

inputs
Execute

Transfer

outputs

Time

Figure 2.4: An example of transfers and executions pipelining.

However, some OpenCL devices support pipelining, i.e. simultaneous data

transfers in both direction and computations, as illustrated in Figure 2.4. There-

fore, the slowdown introduced by transferring data may be reduced by parti-

tioning the input data into several parts to be processed independently. Such

partitioning yields the following consequences:

• the time the device is waiting data is reduced since only a part of the original

data is transferred

• the other parts of the original data may be transferred to the device while

it executes on the preceding parts.

2.4.1 Accessing Shared Memory Simultaneously

When concurrent execution is introduced, a special attention has to be paid

to the consistency of shared memory to avoid potential race conditions.

The first issue that must be addressed is concurrent manipulating the same

memory location. For this purposes, OpenCL implements a few atomic oper-

ations, which only apply to integers and longs except for a single function for

floats. These operations guarantee that an operation on a given memory location

is thread-safe, which means no other work-item can access to that location while

the atomic operation is executing.

Another issue to be addressed is the visibility of changes made by a single

work-item to other work-items. This is essential especially in case when multiple

work-items cooperate in computation. OpenCL guarantees that changes made by

a work-item are visible to other work-items in the same work-group only at work-

group synchronization point. For example, a work-group barrier forces all stores

17

defined before it to complete before any work-items in the work-group proceed

past it. On the other hand, OpenCL does not provide any way of enforcing

consistency of shared memory between work-items belonging to different work-

groups.

2.5 Best Practices

To conclude this chapter we will present several programming rules and rec-

ommendations that are based on the previously stated facts.

2.5.1 Work Decomposition

The peak performance of an arbitrary device is possible to achieve only when

all its computation resources are utilized. Therefore, a computation has to be

partitioned to at least as many independent parts as the number of processing

elements of a device this computation runs on, since otherwise some processing

elements of the device will be idle. Therefore, devices equipped with up 1000

of processing elements, e.g., GPUs or other highly-parallel devices, necessitate

partitioning of computations to be executed on them to an enormous number of

independent parts.

2.5.2 Synchronization

Synchronization forces some processing elements to wait until a specific event

occurs, e.g., all work-items in a work-group reach a synchronization point, or

a command is communicated as finished, and therefore, it is expensive. Hence,

synchronization should be avoided as much as possible.

2.5.3 Reusing of Data

Data should be kept on a device as long as possible. This means that programs

that run multiple kernels on the same data should favor leaving the data on the

device between kernel invocations, rather than reading intermediate results to

the host and then sending them back to the device for subsequent calculations.

Reusing of data thus improves the performance, since it reduces the number of

transfers, which are fairly costly.

2.5.4 Data Layout

Every time when a computation executes on a collection, which will be further

referred to as a source collection, of structures comprising multiple fields, a serious

18

attention should be paid to the selection of the data layouts in which the source

collection will be arranged. Because this choice may have a large impact on overall

computation performance. Although OpenCL supports an array of a structure

we will arrange the source collection into an array of a simple data type, which

we will be denoted as a destination array. There are 3 different data layouts that

are being used to arrange such a collection into a destination array.

The first data layout is referred to as the Array-of-Structures (AoS). This

data layout arranges fields of a single item of the source collection to consecutive

indices of the destination array. However, using this data layout once multiple

threads access the same field of consecutive items results in using of scatter and

gather instructions, since these fields occupy indices with the stride sized the

number of the fields of the structure. On this account, such memory access is

termed as a strided memory access. Due to the hardware capabilities, scatter and

gather instructions are typically less efficient than simple vector load and store

instructions.

Another layout is called Structure-of-Arrays (SoA). In this case, consecutive

indices of the destination array are occupied by the same field of consecutive

items. Such access corresponds to a so-called coalesced memory access. Hence,

using this data layout does not require usage of scatter and gather instructions

in case when consecutive threads execute on consecutive elements of the source.

On the other hand, this data layout suffers from poor spatial locality.

The last layout is referred to as Array-of-Structures-of-Arrays (AoSoA). This

layout arranges items to an array of structures of small arrays. So, this layout

provides a simple vector loads and stores, while does not suffer from poor spatial

locality. The problem of AoSoA is readability of the code.

19

3. Intel Xeon Phi

Intel Xeon Phi Coprocessor is the brand name for all Intel Many Integrated

Core (MIC) Architecture [7], based products. This architecture is targeted for

highly parallel, High-Performance Computing workloads.

The Intel Xeon Phi coprocessor is connected to a CPU, which is referred to as

a host, through a PCIe bus. This implies that data could be transferred between

the host and the coprocessor with a nominal transfer speed 16 GB/s in each

direction. This means that data transfers incur some overhead, and therefore,

one should reduce data transfers as much as possible.

A single host system can contain multiple Intel Xeon Phi devices, which can

communicate with each other through PCIe peer-to-peer interconnect without

any intervention from the host.

3.1 Architecture

The Intel Xeon Phi coprocessor is composed up to 61 cores, each of which is

derived from an Intel Pentium core, augmented by Intel 64 ISA, 4-way simulta-

neous multithreading, i.e. it can execute instructions from 4 hardware threads

simultaneously, and a powerful vector processing unit (VPU). These cores are all

connected through on-die wire interconnect, as shown in Figure 3.1.

Figure 3.1: The Intel Xeon Phi processor microarchitecture [8]
.

The VPU, which is 512-bit wide, is fully pipelined and can execute most

instructions with 4-cycle latency and single-cycle throughput. The cores do not

20

support any previous Intel SIMD extensions like MME, SSE, or AVX. Instead of

these, a novel instruction architecture set is implemented to utilize the VPU.

The interconnection is implemented as a bi-directional ring, which carries data

and instructions to various agents including cores, memory controllers providing

a direct interface to GDDR5 memory on the device, and a globally distributed

tag directory. These agents are connected to the ring through ringstops.

Each direction comprises three independent rings, which carry data, addresses,

and acknowledgements. The data ring is 64 bytes wide, so it permits transferring

data occupying a single cache line, which is also 64 bytes wide, simultaneously.

The second ring is used to send read/write commands and memory address, and

thus, is denoted as the address ring. The last one transfers flow control and

coherence messages.

3.1.1 Vector Processing Units

A key hardware feature that dictates the performance of highly-parallel com-

puting on Intel Xeon Phi is the VPU working on 512 bits, i.e. it can execute 16

single-precision or 8 double-precision operations at a time. It can execute most

vector operations with four cycle latency and provides the maximal throughput

of 1 instruction per cycle, what corresponds to the facts that the VPU is fully

pipelined and the core is able to execute instructions from up to 4 hardware

threads simultaneously. The VPU can read/write one vector per cycle from/to

the vector registers file or data cache simultaneously with one vector operation.

Each VPU has 128 512-bit vector registers divided among the threads, thus,

each thread is provided by 32 registers. Besides these vector registers, there are

16 mask registers per thread, which are part of the vector register file.

Vector Mask Registers

Employing the mask registers one can make the update of the target register

element conditional on the bit content of a vector mask register, otherwise, all

the destination elements are updated. For this reasons, these registers help to

vectorize short conditional branches, as illustrated in Figure 3.2, where elements

in m1 register are values to which a predicate evaluates. For this reason, only

the v3 register elements corresponding to 1 bit in the m1 register get updated.

VPU Pipeline

Each VPU instruction passes through one or more of the following pipelines

to completion:

21

1 2 4 5 6 7 8 9 0 1 2 3 4 53 6

7 8 0 1 2 3 4 5 6 7 8 9 0 19 2

1 0 0 0 1 0 0 0 0 1 0 0 0 00 1

8 x x x 8 x x x x 8 x x x xx 8

v1

v2

v3

m1

=

+

Figure 3.2: An example of conditional updating (x represents an unchanged
value).

• Double-precision pipeline: Used to execute float64 arithmetic, conver-

sion from float64 to float32, DP-compare instructions.

• Single-precision pipeline: Executes most of the instructions including

64-bit integer loads, float32/int32 arithmetic and logical operations, shuf-

fle/broadcast etc.

• Mask pipeline: Executes mask instructions with one-cycle latencies.

• Store pipeline: Executes the vector store operations.

• Scatter/gather pipeline: Executes the vector register read/writes from

sparse memory locations.

It should be noted that interleaving of pipelines and execution of dependent

instructions incur time penalties. For this reason, the pipeline can throughput

one instruction per cycle only when two independent SP or DP instructions are

being executed.

3.1.2 Memory Architecture

The memory architecture of Intel Xeon Phi coprocessors, which is depicted

in Figure 3.3, resembles the memory architecture of CPUs. This means that

there is multilevel, hardware managed, coherent cache hierarchy on the top of

the memory architecture.

Cache

Each core is equipped with a 32 kB L1 instruction cache and 32 kB L1 data

cache and a 512 KB L2 cache. The L2 cache is inclusive of the L1 cache, that is,

L1 cache lines have to be also included in the L2 cache. Unlike the L1 cache, the

L2 cache is unified, so, it caches both data and instructions.

The coherency of data residing in both the L1 cache and the L2 cache among

the cores on the ring is maintained by a MESI protocol. In addition to the MESI

22

CPU Core and

Vector Register

L1 Data Cache

L1 Instruction Cache

L2 Cache

Interconnected

Main Memory

32x64 B

32+32kB, 1 cycle

512 kB, 11 cycles

16 GB, 100+ cycles

Figure 3.3: The memory architecture of the Intel Xeon Phi coprocessor.

protocol [11], the Intel Xeon Phi coprocessor implements a physically distributed

tag directory TD along with a TD-based globally owned, locally shared (GOLS3)

protocol. The reason for this is that the supplementing the MESI protocol with

the GOLS3 protocol locates the potential performance bottleneck of the MESI.

Tag Directory

The TD is attached to each core and gets an equal portion of the whole address

space. Each physical address is uniquely mapped to TD through a reversible

function. A TD entry, which is called a TD tag, contains the address, state and

an ID of the owner of the cache line.

On an L2 cache miss, a core references a TD that is uniquely determined by

the address, and therefore, it is not necessarily located on the core that generates

the miss.

The TD is also responsible for initiating communication with the memory

controllers. This communication is initiated on an L2 cache miss when a request

is sent to a memory controller from the TD maintaining the requested cache line.

Once the memory controller retrieves the requested cache line, it is returned to

the requesting core.

State that the L1 cache has lower latency than the L2 cache, which has lower

latency than the memory. For this reason, reusing of data residing as close as

possible to the core is essential to achieving good performance.

Memory Controller

The Intel Xeon Phi coprocessor contains up to 8 memory controllers, which

are evenly interleaved around the ring. Each of them has 2 channels, which

communicate with GDDR5 memory at 5,5 GT/s. This is, the aggregate memory

bandwidth equals to 352 GB/s.

The addresses are evenly distributed among the memory controllers to reduce

23

bottlenecks, and to provide optimal bandwidth. This implies that the consecutive

memory locations are distributed among the memory modules and there is no way

to place memory close to a core in order to provide optimal memory bandwidth.

Applicability of the Intel Xeon Phi Coprocessor

The utilization of the Intel Xeon Phi coprocessor could be beneficial only when

the code to be run on the coprocessor has the following characteristics that fit

the Intel Xeon Phi architecture:

• The code utilizes all available cores without keeping them idle and even

scales with the number of available cores.

• The code is vectorizable and thus utilizes the VPUs efficiently.

• The communication with the host is minimized and overlapped with the

computation as much as possible.

3.2 OpenCL Programming

As stated in Chapter 2, OpenCL is a framework for cross-platform, parallel

programming. Although OpenCL applications may run on various platforms,

their performance may vary on these platforms. This is caused by the fact that

these platforms may have rather different HW design, and therefore, benefit from

different application optimizations. For this reason, the remainder of this chapter

will be devoted to the description of optimizations specific for the Intel Xeon Phi

coprocessors.

3.2.1 Kernel Execution on Intel Xeon Phi Coprocessor

At initialization time, OpenCL creates as many software threads as the Intel

Xeon Phi coprocessor contains logical cores, i.e. OpenCL creates 244 software

threads in case the coprocessor comprises 61 cores, and pins each of them to one

logical core.

After that, when a kernel is submitted for execution, each work-group is as-

signed to one software thread, which executes all work-items in this work-group.

Combining this fact together with the fact that software threads are pinned to

logical cores yields that logical cores correspond to compute units.

24

Parallelism among Work-Groups

Since different work-groups are executed by different logical cores they may

execute in parallel. This means that utilizing all logical cores at a time necessi-

tates at least as many work-groups as the number of logical cores, otherwise, some

of the logical cores will not be utilized. Generally, employing a larger number of

work-groups results in more flexibility in scheduling.

Despite the previous recommendation, the execution of work-groups should

take at least 100 000 clock cycles in order to keep the proportion of thread switch-

ing overhead to actual work reasonably small.

Work-Group Level Parallelism

OpenCL on the Intel Xeon Phi coprocessor achieves parallelism also at a work-

group level by executing a vectorized kernel, since such a kernel may be partly

executed by the VPU. A kernel vectorization, which is done automatically by

an implicit vectorization module1, consists of unrolling a routine executing a work-

group. Such an optimized routine is depicted in Listing 3.1.

1 kerne l wrapper (. . .)

2 #pragma un r o l l 16

3 for (int l o c a l i d = 0 ; i < WORKGROUP SIZE; ++l o c a l i d)

4 kerne l body (. . .)

Listing 3.1: Pseudocode of an optimized routine executing a work-group.

Although the routine executing a work-group comprises up to 3 loops, what

corresponds to the maximal supported dimension of index spaces 2.3.1, only the

innermost loop that corresponds to the first dimension of the NDRange may be

unrolled.

Implicit Vectorization

The implicit vectorization module automatically vectorizes the work-group

routine in the innermost loop, i.e., the code is unrolled by the vector size, which

is 16 regardless of the type of data used in the kernel [10].

Nevertheless, the vectorized kernel is used only if the local size of the first

dimension is not less than 16. Otherwise, the OpenCL runtime runs the scalar

kernel for each of the work-items. This may introduce a significant performance

penalty for work-groups having a small size in the first dimension. Therefore, it

is recommended to round up the size in the first dimension to the closest multiple

of 16.

1An implicit vectorization module is a part of the program build process.

25

Branch Statements

We distinguish two kinds of control flows, namely uniform and non-uniform

control flow. A branch is uniform if it is guaranteed that all work-items within

a single work-group will execute the same block of this branch. In the context of

the Intel Xeon Phi coprocessor, that is, the branch predicate has to be constant.

1 uint mask = get mask () ;

2 int r e s i f = i f b l o c k () ;

3 int r e s e l s e = e l s e b l o c k () ;

4 int r e s = (r e s i f & mask) | (r e s e l s e & not (mask)) ;

Listing 3.2: An example of the masked execution.

In the latter case, a branch is non-uniform. Non-uniform control flows have

worse performance than uniform ones since both blocks of the branches have to

be executed using masked execution. An example of such execution is contained

in Listing 3.2.

3.2.2 Local Memory

For the Intel Xeon Phi coprocessors, all OpenCL memory objects are implicitly

cached by the hardware. Hence, the commonly used optimization technique based

on employing the local memory for caching hot data is beneficial only in case of

data scattered in the global memory but compacted in the local memory. In

the other case, employing the local memory for caching hot data only introduces

unnecessary overhead caused by redundant data copy and management. In other

words, utilizing locality of data provides effective memory access on Intel Xeon

Phi coprocessors. achieving the peak performance.

3.2.3 Comparison with GPUs

In conclusion of this chapter, we will briefly compare OpenCL programming

for Intel Xeon Phi coprocessors with OpenCL programming for GPUs. The reason

why we opted for GPUs and not for another kind of OpenCL devices is based

on the fact that GPUs are suited for data-intensive computations just like Intel

Xeon Phi coprocessors and moreover OpenCL programmers are typically familiar

with programming for them.

26

Both Intel Xeon Phi coprocessors and GPUs have many cores and data to

execute on kernels have to be transferred to or from them. Therefore, there

are aspects that improve performance of OpenCL applications both on these

coprocessors. These aspects include:

• Include enough work-groups, which themselves comprise enough

work-items, within each NDRange.

• Employ consecutive data accesses or at least good data locality.

• Reduce data transfers from and to the host.

• Overlap data transfers and computations.

• Reduce synchronization on any level and usage of atomic operations.

On the other hand, there are aspects that improve performance of OpenCL

applications on the Intel Xeon Phi coprocessors but not on GPUs:

• Avoid small work-groups, i.e. those whose execution takes significantly less

than 100 000 clock cycles.

• Do not use local memory for caching data that occupy a block of global

memory.

27

4. AT Model

Algorithmic trading uses a well-defined set of rules based on timing, price,

quantity, and other mathematical models for identifying favorable opportunities.

Such way of identifying favorable opportunities is also known as amarket analysis.

We distinguish two kinds of the market analysis: a fundamental analysis and

a technical analysis.

Fundamental Analysis The fundamental analysis uses fundamental factors

related to an underlying asset in question to predict its future price. These factors

can be grouped into two categories [12]:

• Quantitative: factors capable of being measured or expressed in numerical

terms,

• Qualitative: factors related to or based on the quality or character of

something, often as opposed to its size or quantity.

In fact, the fundamental analysis is more based on qualitative factors. Beside

the fact that these factors are hard to be analysed automatically, they also have

slow update frequency as most these factors are linked to quarterly reports. This,

combined with the time needed to perform a thorough fundamental analysis,

makes this analysis convenient predominantly for trades lasting at least weeks.

From the previous paragraph we conclude that the fundamental analysis is not

suitable for HFT, and hence, it will not be described here any further. Instead

of this, we will shift our attention to the thorough description of the technical

analysis, which, unlike to the fundamental analysis, is convenient for HFT.

4.1 Technical Analysis

The technical analysis uses only historical data of trading instruments, such as

previous prices and volumes, to predict the future price of the trading instrument.

The prediction of the price is also referred to as financial time series forecasting.

Financial time series are inherently noisy and non-stationary, as introduced by

Yaser [13]. These facts outline that there is no complete information that could

be obtained from the previous behaviour of financial markets to fully capture

the dependency between the future price and historical data. Due to this, quite

sophisticated approaches have to be used for forecasting of financial time series.

28

4.1.1 Technical Indicators

To smooth out financial time series, technical indicators, e.g., simple moving

average, weighted moving average, or exponential moving average, that are derived

from historical data are used. The mentioned indicators are defined as follows,

where p denotes all data of a single time series, pt denotes the latest, i.e. current

value of this series, and pt−i denotes the i-th newest value.

Simple Moving Average

A simple moving average (SMA) is calculated, as its name suggests, as the

average value over a defined number of time periods. The defined number of time

is often called the order of the model and will be denoted by τ .

SMA(p, τ) =
pt + . . .+ pt−τ

τ

A weighted moving average (WMA) is derived from the SMA by assigning weights

to items. Therefore, a WMA can emphasize recent data rather than old data.

Exponential Moving Average

An exponential moving average (EMA) decreases the weighting of data ex-

ponentially with its age. It weights new data with 1/τ and old data, i.e. the

previous EMA, with the remainder (τ − 1)/τ . This implies, the weighting of

any item never reaches 0, and therefore the effect of any item is never entirely

removed.

EMA(pt, τ) =
pt
τ
+

τ − 1

τ
EMA(pt−1, τ)

Each model used for financial time series forecasting may utilize one or more

these indicators. The utilized indicators determine into which of two disjoint

categories is the model classified:

• Univariate analysis uses only indicators restricted to the time series being

predicted as the input variables,

• Multivariate analysis uses any indicators as the input variable.

4.1.2 Univariate Analysis

General, commonly used univariate models are based on AutoRegressive In-

tegrated Moving Average (ARIMA) model. As the name suggests, this model

combines an autoregressive model and a moving average model to predict future

trends. The autoregressive model specifies that the output variable depends lin-

early on its own previous values and on a stochastic, i.e. imperfectly predictable,

term.

29

ARIMA is based on the assumption that the time series are linear and station-

ary1. Regrettably, these assumptions are not compliant with the characteristics

of financial time series, as stated in [14].

4.1.3 Multivariate Analysis

To model non-linear behavior, non-linear time series models, such as a Thresh-

old Autoregressive model [15], an Autoregressive Conditional Heteroscedastic

model [16], have been developed. These models and all models that will be

introduced in the rest of this chapter perform the multivariate analysis since

their inputs are not restricted to indicators derived from the time series being

predicted.

However, the non-linear time series models are still limited in the sense of that

these models are explicitly defined pursuant to the knowledge of relationships

among underlying assets just as the linear time series models are. However,

acquirement of the complete knowledge of these relationships is quite difficult,

since there are too many non-linear patterns that should be taken into account.

Consequently, these models may not be general enough to capture all important

relationships.

Both linear and non-linear time series models are representatives of so-called

model-base methods of predicting time series. From facts stated in previous

paragraphs, it is obvious that these methods are not adequate for problems,

whose solution requires knowledge difficult to obtain. Nevertheless, if we have

enough historical data we can utilize so-called data-driven models for solving

these problems.

The data-driven methods require only a few assumptions about models for

problems to be predicted. A data-driven method corresponds to a function that

is inferred from a given set of historical data, which are also called training data.

State that this function inferring is known as a supervised learning task in the

context of machine learning, and thus, the data-driven methods may be also

referred to as supervised learning models. Construction of a supervised learning

model based on the training data is being performed by an associated supervised

learning algorithm.

4.1.4 Supervised Learning Algorithms

Supervised learning algorithms take a set of N training data T = {(~xi, yi)}
N
i=1,

such that ~xi ∈ R
D is the vector of features, in our case of indicators, of the i-th

input and yi ∈ R is its label, i.e. the desired value. Based on this training set

1A time series is stationary if its statistical properties are all constant over time.

30

these algorithms seek a function g that is an element of a set of possible functions

G ⊂ R
D → R.

There are two basic approaches for choosing the desired function g: Empirical

Risk Minimization and Structural risk Minimization. Both these approaches use

a loss function L : R × R → R in order to measure how well functions fit the

training data. For each training data (~xi, yi) the loss of predicting ȳi = g(~xi)

equals to L(yi, ȳi). This function is utilized by a risk function RT : G → R that

is defined as the expected loss of g.

RT (g) =
1

|T |

∑

(~x1,y1)∈T

L(yi, g(~xi))

Empirical Risk Minimization

In empirical risk minimization, the associated algorithm seeks a function g

that minimizes the risk functions, that is, the supervised learning algorithm pri-

oritizes functions that fit well to the training data but do not take into account

their ability of generalization. Note that functions well fitting the training data

and having poor generalization are denoted as overfitted. An example of such

function is depicted in Figure 4.1, where the dots represent training data, the

solid line represents the true function, and the dotted line denotes this unction.

y

x

Figure 4.1: An example of overfitting.

Structural Risk Minimization

Structural risk minimization [17] seeks a function g that minimizes the upper

bound of the generalization error rather than training error. This is done by

incorporating a regulation penalty that prefers simple functions over complex

ones into optimization.

Overfitting

Overfitting generally occurs when a model is excessively complex, such as

having too many parameters relative to the number of the training data. Such

a model usually has a poor level of generalization, i.e. ability to predict the correct

31

output values for data that were not seen during training, since it describes not

only underlying relationships but also random errors and noise. In other words,

overfitting occurs when a model begins to memorize the training data rather than

generalize from the trend.

4.2 Support Vector Machine

A Support Vector Machine (SVM), which was proposed by Vapnik [18], is

supervised learning model used for classification and regression analysis.

Although SVMs may be utilized for multiclass classification we will, for sake of

simplicity, restrict our description only to SVMs executing binary classification.

A SVM model of binary classification represents a set of N independent

and identically distributed training data T = {(~xi, yi)}
N
i=1 ⊂ R

D × {−1, 1} by

a hyperplane separating entries of training data belonging one category, i.e.

{~xi | (~xi, yi) ∈ T ∧ yi = −1} from entries belonging to the other category and

withal has the maximal largest distance to the nearest entries of both classes.

Such a hyperplane is in Figure 4.2 denoted by H2 whereas white dots represent

entries of the training data belonging to one category, black dots represent entries

of the training data belonging to the other category. We will denote a space con-

taining all points distant from the separating hyperplane maximally as the closest

points in the training data as a gap. Margins of this gap, which are denoted by

g1, g2 in that figure, will be referred to as gutters.

x

H1

H2

u
_

y

w
_

g
2

g
1

Figure 4.2: An instance of SVM.

The separating hyperplane splits the vector space of the training data to two

32

nonoverlapping parts. These parts are used for classifying new data since they

are predicted to belong to one category pursuant to which of these parts includes

it.

Maximizing the gap conforms to the fact that the SVMs are based on struc-

tural risk minimization, unlike most of supervised machine learning models that

are based on empirical risk minimization. Thanks to this, SVMs are less prone to

overfitting and thus provide good generalization with a much bigger probability

than traditional models.

4.2.1 Theory of SVMs

SVMs carry out binary classification of data ~u ∈ R
D pursuant to a decision

rule fT : RD → {−1, 1}. The form of this rule will be expressed in terms of

a vector ~v ∈ R
D and a scalar value o ∈ R. The vector ~v represents a so-called

decision vector that has to be perpendicular to the separating hyperplane and

the o corresponds to the offset of the separating hyperplane from the origin of

the coordinate system in the direction of the vector ~v. In other words, the offset

allows classifying data that are separable by a hyperplane that does not pass

the origin inasmuch as it moves the separating hyperplane in a direction of the

decision vector. Now, the decision rule should be defined as follows:2

fT (~u) =

1 if ~v · ~u+ o ≥ 0

−1 otherwise
(4.1)

In the rest of this subsection, we will describe how ~v and o are defined based

on the training data. The main outcome of this description will be the fact that

both ~v and o may be expressed as a linear combination of the training data, and

therefore, even the decision rule may be rewritten as a linear combination of the

training data. This also means that the decision rule is easy to calculate using

the training data and the scalar product.

Firstly, we have to define additional constraints for each entry of the training

data. This constraint has the following form for each i ∈ {1, . . . , N}:

yi(~v · ~xi + o)− 1 ≥ 0 (4.2)

Furthermore, we constrain the left side of the preceding equation to be equal

to 0 only if ~xi is in the gutters of the gap.

Now, the width of the gap wT can be computed using two points ~x+, ~x−, each

2In all equations in this subsection · represents the scalar product.

33

lies in a different gutter, as:

w = (~x+ − ~x−) ·
~v

‖ ~v ‖
=

(~x+ · ~v)− (~x− · ~v)

‖ ~v ‖
=

(1− o)− (−1 − o)

‖ ~v ‖
=

2

‖ ~v ‖
(4.3)

In the preceding equation, the second equation utilizes distributivity of the

scalar product. The third equation conforms to replacing 1 − b for ~x+ · ~v and

−1 − b for ~x+ · ~v, where these operations are compliant with Equation (4.2) and

with the previous constraint.

Note that SVMs maximize the width of the gap. However, maximizing

2/ ‖ ~v ‖ is quite complicated, so we are going to convert this expression to

a mathematically more convenient form.

max
2

‖ ~v ‖
 max

1

‖ ~v ‖
 min‖ ~v ‖ min

1

2
‖ ~v ‖2 (4.4)

Maximization of the gap with respect to the constraints defined in Equa-

tion (4.2) conforms to solving a so-called quadratic programming problem. For

solving this problem we will incorporate the Lagrangian dual function, which

yields the following dual formulation:

L =
1

2
‖ ~v ‖2 −

N
∑

i=1

αi(yi(~v · ~xi + o)− 1) (4.5)

where {αi}
N
i=1 are Lagrange multipliers.

By computing the first derivation of that expression with respect both to ~v and

o and setting these expressions equal to 0 we can calculate the desired extrema.

∂ L

∂~v
= ~v −

N
∑

i=1

αiyi~xi = 0 ⇒ ~v =
N
∑

i=1

αiyi~xi (4.6)

We just proved that the decision vector ~v is a linear combination of a subset

of the training data. This subset, which will be referred to as TS in the rest of

this chapter, comprises only the training data ~v associated αi that do not equal

to 0. Entries included in TS are called support vectors.

∂ L

∂ o
= −

N
∑

i=1

αiyi = 0 ⇒
N
∑

i=1

αiyi = 0 (4.7)

Substitution of ~v and
∑N

i=1 αiyi with their expressions stated in 4.6 and 4.7,

conduct equation 4.5 to the following form:

34

L =
1

2
(

N
∑

i=1

αiyi~xi) · (
N
∑

j=1

αjyj ~xj)−
N
∑

i=1

αiyi((
N
∑

j=1

αjyj ~xj) · ~xi + o)− 1)

L =
1

2
(

N
∑

i=1

αiyi~xi) · (

N
∑

j=1

αjyj ~xj)−

N
∑

i=1

αiyi(

N
∑

j=1

αjyj ~xj) · ~xi −

N
∑

i=1

αiyio+

N
∑

i=1

αi

L =
1

2
(

N
∑

i=1

αiyi~xi) · (

N
∑

j=1

αjyj ~xj)− (

N
∑

i=1

αiyi~xi) · (

N
∑

j=1

αjyj ~xj)− o

N
∑

i=1

αiyi +

N
∑

i=1

αi

L =
N
∑

i=1

αi −
1

2
(

N
∑

i=1

N
∑

j=1

αiαjyiyj ~xi · ~xj).

(4.8)

Solving the preceding equation falls into the theory of mathematical analysis

and so it is out of the scope of this work. We reached this point in order to

prove that for solving this equation the only operation that is to be performed on

the training data is required, namely the scalar product. This fact outlines that

solving this equation is computationally manageable since the scalar product is

easy to compute.

In addition the fact that the decision vector ~v is a linear combination of the

TS subset of the training data, let us rewrite the decision rule (4.1) as follows:

fT (~u) =

1 if
∑

~xi∈TS
αiyi~xi · ~u+ o ≥ 0

0 otherwise
(4.9)

This means that even the decision rule depends only on the scalar product,

so, we just proved the second part of our statement that was mentioned at the

very beginning of this subsection.

Until now, we have tacitly assumed that the training data are linearly separa-

ble. However, SVMs are also capable of performing classification of non-linearly

separable data. This is done by utilizing a so-called kernel function.

4.2.2 Kernel Function

To separate non-linearly separable input data, these data are mapped to

a higher dimensional space, in which they are linearly separable. The mapping

is done using a function φ : RD → R
F , where F > D. An example of such

mapping is depicted in Figure 4.3, where the outline box depicts the separation

hyperplane. The target vector space is called a feature space and image of input

vector is known as a feature vector, in the context of SVMs.

35

x

y

x

y

Figure 4.3: An example of mapping of non-separable inputs to a feature space.

However, we proved that we do not need to compute the image of a new data in

order to classify it but rather compute the scalar product between this image and

the images of all support vectors. That is, we seek a function K : R
D×R

D → R

conforming K(~xi, ~xj) = φ(~xi) · φ(~xj) for any pair of (~xi, ~xj) ∈ R
D × R

D. Such

a function is called a kernel function and its utilization transforms the decision

rule to the following form:

fT (~u) =

1 if
∑

~xi∈TS
αiyiK(~xi, ~u) + o ≥ 0

0 otherwise
(4.10)

Note that machine learning methods utilizing the kernel functions are called

kernel methods. More information about the kernel methods and constraints the

kernel methods have to fit are provided in Vapnik [18].

Recently, multiple kernel learning (MKL) methods have been proposed, as

stated in Gönen [19]. In this case, we use multiple kernels instead of selecting

one particular kernel and its parameters:

kη(~xi, ~xj) = fη({kp(~xi, ~xj)|p ∈ {1, . . . , P}}) (4.11)

where a combination of functions fη : RP → R, can be any linear or nonlinear

function.

There are two main cases of usage of MKL:

• Various kernels correspond to various notations of similarity and instead

of trying to find which works best, a learning method does the picking or

a combination of them for us.

• Different kernels may use inputs from various representations or even var-

ious sources. Hence, these inputs have various measures of similarity cor-

responding to various kernels. Therefore, combining kernels is one possible

way of computing the overall similarity.

36

Up to now, we have described SVM in the context of binary classification,

because it is easier to show how the desired function is derived from the training

data than in the context of functions approximations. Since this work is not

aimed to provide a deep description of the theory of functions approximations

using SVMs we are going to explain this topic at a very high-level in the following

subsection.

4.2.3 SVM in Regression

In 1996, Vapnik [20] proposed a version of SVM for regression, which is called

Support Vector Regression (SVR) that is dedicated to approximating an unknown

function.

Similarly to the binary classification, the approximation of unknown function

is based on a subset of independent and identically distributed training data

T = {(~x1, d1), . . . , (~xN , dN)} ⊂ RD × R, where di represent the desired values.

The SVRs approximate a function as follows:

fT (~u) =
∑

~xi∈TS

αiK(~xi, ~u) + o (4.12)

Note that we followed notation introduced in Section 4.2.1 and Section 4.2.2,

and thus, TS denotes a subset of the support vectors, αi denote the weights of

the support vectors, and K resembles the kernel function.

Note that we can also put additional constraints to the desired function, such

as the maximal deviation from the actually obtained targets di for all entries of

the training data or restrict its complexity.

4.3 Existing AT Model

In the preceding parts of this chapter, we have laid the theoretical foundation

for the description of an algorithmic trading model in question.

The model is based on multiple kernel SVR, that is, it provides quite a so-

phisticated approach to approximating financial time series. Such approach is

compliant to the fact that correctness of decision sent to the market is essential.

Remind ourselves that this work is intended to inspect whether the evaluation

of this model may be accelerated by employing highly parallel architectures. And

since we are not concerned with the construction of this model, all variables

forming the model are constants or randomly generated values.

In the following lines, the meaning of separate variables that are forming the

model along with their particular values, when defined, will be provided. In a case

37

when we are not concerned with the form of kernels the model Km, where the

subscript m is used to identify a separate model, has the following form:

Km(~u) = βm +

Sm
∑

s=1

αm,s

Dm
∏

d=1

(

Km,d(~γm,s, ~u) + δm,d

)

(4.13)

Realize that this equation is an instance of Equation (4.12), since βm corre-

sponds to o, ~γm,s corresponds to ~xs, and K is substituted with the product of

Km,d. This means that this model represents a multiple kernel model 4.2.2, which

accepts the vector ~u ∈ R
10 as input.

The variable Sm represents the number of support vectors. The value of this

variable equals 1000 for testing purposes. The variable Dm that denotes the

number of the kernel methods to be aggregated equals 10 and the vectors ~γm,s

encompass 10 elements, just like the input vector.

In order to define the form of the kernel methods Km,d, we have to define

so-called transformation functions tm,d first. These functions restrict separate

values of the input vectors, and therefore, may be seen as sort of preprocessing.

In this work, only transformation functions having one of the following notations

are allowed:

• identity, i.e.

tm,d(x) = x.

• restriction to the constant value in one or both directions, i.e.

tm,d(x) =

x for x < am,d

am,d for x ≥ am,d

• continuous restriction, i.e.

tm,d(x) =

am,d+bm,d

2
for x ≤ am,d

b2
m,d

2(bm,d−am,d)
−

am,d

bm,d−am,d
x+ x2

2(bm,d−am,d)
for am,d < x ≤ bm,d

x for bm,d < x ≤ cm,d

c2
m,d

2(cm,d−dm,d)
−

dm,d

cm,d−dm,d
x+ x2

2(cm,d−dm,d)
for cm,d < x ≤ dm,d

cm,d+dm,d

2
for dm,d

The variables am,d, bm,d, cm,d, cm,d represent constants of the kernel method.

Now, we will take a look at the description of the kernel methods. Each kernel

38

method Km,d conforms to the following notation:

Km,d(γ1, . . . , γDm
, u1, . . . , uDm

) = fm,d

∑

i∈Sm,d⊆{1,...,Dm}

gm,d(γi, tm,d(ui))

(4.14)

The choice of the function fm,d directly determines the choice of the function

gm,d. In this work only following combinations of these functions are allowed:

• fm,d(y) = y, gm,d(γi, yi) =
γi∗yi
σm,d,i

• fm,d(y) =
1

1+y
, gm,d(γi, yi) =

γi−yi
2

σm,d,i

The variable yi accepted by the functions gm,d represents the value ui trans-

formed using the function tm,d, i.e yi = tm,d(ui).

Note that function gm,d is performed on a subset S of all the kernel method

parameters, that is, each kernel method considers only of some dimensions of the

feature space. This subset contains from 1 up to 3 elements according to the

following probabilities: P (|S| = 1) = 0.5, P (|S| = 2) = 0.3, and P (|S| = 3) =

0.2.

When we put all the previous facts together we get that the models have the

following form:

Km(u1, . . . , uDm
) =

= βm +
Sm
∑

s=1

αm,s

Dm
∏

d=1

fm,d

∑

i∈Sm,d⊆{1,...,Dm}

gm,d (γm,s,i, tm,d(ui))

+ δm,d

(4.15)

From the previous equation it ensues that the evaluation of our model is pri-

marily composed of three nested loops, where separated iterations of each of these

loops are independent each other since they have no side effects. Consequently,

the evaluation of our model on a single input might be parallelized on the level

of any of these loops.

39

5. Implementation

The first part of this chapter is dedicated to the analysis of possible approaches

to parallelization of the evaluation of our AT models on one or more inputs.

Afterwards, an implementation for each of the considered architectures, namely

a multi-core architecture (commodity CPUs), and a many-core architecture (Intel

Xeon Phi), will be proposed based on this analysis. Most attention will be paid

to an implementation utilizing the Intel Xeon Phi coprocessor using OpenCL.

Due to this, each of these implementations will be tailored to the corresponding

architecture, and thus, will maximally utilize features of this architecture.

Besides the above-mentioned, this chapter will provide the description of im-

portant architectural decisions, e.g. the choice of programming language and

utilized libraries. To conclude this chapter, we will describe how our many-core

implementation fit for another many-core device, namely GPUs, and what mod-

ifications would be required to fine-tune our implementation for this device.

5.1 Analysis

Parallelization of an arbitrary computation requires partitioning of this com-

putation into tasks, i.e. units of work that can run concurrently. Although tasks

yielded by such partitioning might not be necessarily independent of each other,

the degree of dependency between them should be as small as possible. Foras-

much as dependencies between tasks introduce the need for synchronization that

is expensive and might deteriorate the overall performance. Therefore, we will

describe only approaches to partitioning the evaluation of one or more models on

one or more inputs into tasks that exhibit a reasonably small amount of depen-

dencies.

Partitioning of computations into tasks, which allows utilization of all logi-

cal cores, is necessarily but not sufficient for achieving the peak performance on

contemporary hardware. In order to get the maximum from this hardware, vec-

tor operations have to be also employed during the tasks execution, since these

operations provide higher throughput than scalar operations.

Before we list and analyze approaches exhibiting a reasonably small amount

of dependencies, we will propose one optimization that substantially influences

the amount of work assigned to a task for all these approaches.

40

5.1.1 Preprocessing

The kernel methods Km,d perform transformation of their parameters by ap-

plying the functions that were denoted as tm,d in Section 4.3. These functions

are executed with the same parameters within each iteration of the outermost

loop, which iterates through support vectors, and therefore, it is valid to extract

these transformations from these iterations, store yielded values to a new array

and change the kernel methods to operate on this array. The array holding trans-

formed values typically contains more elements than the array of original values,

since kernel methods operate on multiple (2.1 in average) parameters.

Utilizing this preprocessing noticeably reduces the computational complexity

of each iteration and thus even the computation complexity of the whole evalu-

ation of one model on one input. In an average case, this processing reduces the

work associated with the evaluation of one model on one input roughly by 30%.

The considered transformation functions have no side effects, and therefore,

they may execute in parallel without any restrictions.

5.1.2 Approaches to Parallelization

As stated in Section 4.3, the evaluation of our model on a single input can be

parallelized on the level of any of the nested loops:
∑Sm

s=1,
∏Dm

d=1,
∑

i∈Sm,d⊆{1,...,Dm}.

Moreover, the evaluation of any model Km has no side effects, so these models or

even a single model on multiple inputs may evaluate in parallel. The following

list summarizes the levels on which the evaluation of one or more models on one

or more inputs may be parallelized.

1. the evaluation of models Km on a collection of inputs,

2. the evaluation of iterations of the outermost loop
∑Sm

s=1, which iterates the

support vectors γm,s,

3. the evaluation of iterations of the loop
∏Dm

d=1 iterating the kernel methods

Km,d,

4. the evaluation of iterations of the innermost loop
∑

i∈Sm,d⊆{1,...,Dm}, i.e the

loop iterating relevant elements of the array of transformed values.

Parallelization on the level of the evaluation of models Km itself may be

achieved by multiple approaches. The first of them conforms to assigning the

evaluation of multiple models on multiple inputs to a task. This approach con-

forms to partitioning inputs into chunks and assigning the evaluation of each

of these chunks to tasks that together encompass the evaluation of all models.

41

This approach yields quite large tasks since the evaluation of a single model on

a single input takes approximately 500 000 instructions under conditions, e.g.,

the number of support vectors, the number of kernel methods, etc., defined in

Section 4.3.

Another approach lays in assigning the evaluation of a single model on multiple

inputs to a task. Although this approach might seem identical to the previous

approach, it is preferable in terms of reusing data, since only the constants of

a single model, e.g., an array holding the weights of support vectors αm, or

an array encompassing the support vectors themselves γm, are accessed during the

task execution. Therefore, these constants can be loaded from memory only when

evaluating the first input and hereafter reused from the cache. There is important

to note that these constants are represented by approximately 11 000 values while

a single input is represented by 10 values, therefore it is more convenient to reuse

these constants than inputs.

Both the previous approaches could be modified in such a way that a single

input would have been evaluated within a task. Nevertheless, these approaches

would not provide any option for reusing the constants of models.

The following approach partitions the evaluation of a single model on a single

input, which conforms to calling the function Km depicted in Listing 5.1, on the

level of the outermost loop, i.e the only loop shown in this listing. The function

Km depicted in this listing represents the multiple kernel method used by the

model Km.

1 pub l i c f loat Km (f loat [] t rans fo rmed input)

2 {

3 f loat r e s u l t = βm ;

4 for (int s = 0 ; s < Sm ; ++s)

5 {

6 r e s u l t += αm [s] ∗ Km (γm [s] , t rans fo rmed input) ;

7 }

8 return r e s u l t ;

9 }

Listing 5.1: A snippet of source code of the m-th model.

All iterations of the loop depicted in the preceding listing modify the shared

variable result, which serves as an accumulator. Due to this, modifications of this

accumulator would have to be done using atomic operations or in a critical section

in order to preserve data consistency of this variable when multiple iterations

would be executed in parallel. Nevertheless, utilization of both atomic operations

and critical sections might deteriorate the improvement obtained by utilizing

multiple computational units, and thus, is not recommended. Therefore, this

function had to be modified in order to be efficiently parallelizable.

42

The mentioned modification laid in partitioning of this function into 2 phases

when the first phase encompasses the evaluation of the function Km on all the

support vectors storing the yielded values to a new array, which will be further

referred to as tmp results. This means that this array at index s contains a value

computed as αm[s] ∗Km(γm[s], transformed input). The second phase then in-

cludes aggregation of values stored in that array to form the result. The important

fact is that both these parts are well parallelizable.

The function Km, has no side effects, and thus, can be evaluated on mul-

tiple support vectors simultaneously. This is, parallelism within the first phase

can be achieved by assigning the evaluation of the function Km on one or more

support vectors to a task. This approach to achieving parallelism conforms to

data parallelism since the same function is applied to diverse data concurrently.

Due to this, this approach is suited primarily for architectures targeted for highly

parallel workloads. Note that the evaluation of this method on a single support

vector takes roughly 500 instructions under conditions defined in Section 4.3.

To parallelize the second phase, we may take advantage of the fact that the

sum is a commutative and associative operation, hence, it does not require one

particular order in which it has to be applied on the values. Thanks to this

feature, we can partition the original collection into independent subcollections,

compute partial sums of these subcollections in parallel, and then aggregate the

partial sums to form the result. Such an approach is commonly referred to as

a parallel reduction and will be more thoroughly described later in the section

dealing with the many-core parallelization.

The function Km is formed by the loop
∏Dm

d=1 iterating the kernel methods

Km,d, as stated in Equation (4.13). Therefore, the evaluation of this function can

be parallelized in the same way as the evaluation of the function Km. Neverthe-

less, such an approach would yield too small tasks, inasmuch as the evaluation

of each of the kernel methods Km,d takes maximally tens instructions. Besides,

this approach would not correspond to the data parallelism, because different

kernel methods Km,d might differ in their form. Both mentioned facts yields that

utilizing of this approach is suited for none of the considered architectures.

Although the loop
∏Dm

d=1 is not suitable for parallelization it is well vector-

izable, since each kernel method Km,d evaluate the same function gm,d on up

to three elements. In other words, the kernel method Km,d may evaluate the

method gm,d on multiple elements simultaneously using vector operations. This

also means that even all the preceding approaches may utilize vector operations

if the evaluation of the methods Km,d is vectorized.

From above-stated facts we conclude that even the last stated approach to

achieving parallelism, i.e. assigning the evaluation of one or more iteration of the

43

loop
∑

i∈Sm,d⊆{1,...,Dm} to a task would also yield too small tasks. Therefore, we

will not discuss this approach in more depth.

5.2 Architecture Specific Parallelization

In this and the following section, we will propose an implementation for both

of the considered parallel architectures. These architectures are equipped with

different numbers of computational units, and therefore, benefit from various

approaches to partitioning the evaluation of one or models on one or more inputs

to tasks.

5.2.1 Multi-Core Parallelization

Multi-core architectures, which are represented by commodity CPUs, are

equipped with up 10 cores, each of them comprises 1 or 2 hardware threads.

This fact combined with the fact that utilizing computational unit introduces

management overhead determines that these architectures are not tailored for

execution of an enormous number of small tasks.

In Section 5.1, we proposed 2 approaches yielding quite large tasks. Both

these approaches do not assign a part of the evaluation of one model on a single

input to a task, but on the contrary, they assign the evaluation of one or more

models on multiple inputs to a task. These approaches differ just by the number

of models whose evaluation is assigned to a task. In the above-mentioned section,

we also stated that the approach of assigning the evaluation one model on one or

more inputs is much more cache-friendly than the other one is. Based on this fact

we decided to use this approach to achieving concurrency on this architecture.

As it is also stated in the above-referenced section, the selected approach

results in accessing only the constants of a single model within the task execution.

That is, these constants have to be loaded from the memory only when the first

input is evaluated and hereafter can be reused from the cache. This means that

the more inputs are evaluated by single task the fewer data transfers are required.

Despite the previous assertion, assigning the evaluation of one model on all

inputs, which would require the least data transfers, to a task is not a convenient

approach. Because even though we assume that all the models should evaluate

the same number of inputs, they might take different times to complete. This is

based on the fact that diverse models different kernel methods, and therefore,take

different times to evaluate. In other words, this approach is predisposed to result

in an uneven decomposition of the work.

When we put together the facts stated in the previous paragraphs, we get

44

that assigning the evaluation of one model on multiple inputs to a task is the

most convenient approach as it ensures that a unit of work assigned to a task is

complex enough while preserving the possibility to distribute the total work into

tasks evenly.

Data Parallelism

Different iterations of the outermost loop
∑Sm

s=1 might be executed simulta-

neously using data parallelism, as stated in Section 5.1. Nevertheless, utilization

of data parallelism on the considered architectures using the selected program-

ming language, whose choice will be discussed in Section 5.4, is quite challenging,

forasmuch as it requires writing of explicitly vectorized code [21]. Therefore, we

did not utilize data parallelism on these architectures.

5.3 Many-Core Parallelization

Many-core architectures, which are in our case represented by the Intel Xeon

Phi coprocessor, have hundreds of logical cores and thus are equipped with sig-

nificantly more computational units than multi-core architectures. Consequently,

these architectures require partitioning of work into much more tasks than multi-

core architectures do for utilizing all their computational units. On the other

hand, a unit of work assigned to a single computational unit still has to be

complex enough so that the improvement obtained by its utilization surpass its

management overhead.

Related Works

Although SVMs are commonly used for solving classification/regression prob-

lems, we found only two works [23], [24] dealing with parallelization of the classi-

fication/estimation phase. Both these works partition the evaluation of a single

input into two phases, as described in Section 5.1. These works moreover assume

the kernel method has the form of the vector multiplication, and therefore, the

first phase, within which the kernel method executes on all support vectors and

yielded values are stored to a new array for further processing, can be paral-

lelized using the vendor specific Single precision floating General Matrix Multiply

routine. However, the form of our kernel methods does not conform to the vec-

tor multiplication, and consequently, we had to propose our own approach to

achieving parallelism within this phase.

Catanzaro, Sundaram, and Keutzer [23] also state that in the second phase,

which was also defined in the above-referenced section, they aggregate values

45

yielded within the first phase using parallel reduction.

5.3.1 Evaluating Kernel Method In Parallel

In Section 5.1, we proposed several approaches to parallelizing the evaluation

of one or more models on one or more inputs, nevertheless, the only one of these

yields task conforming to data parallelism. Hence, we decided to adopt this

approach as it seemed to be the best suited for these architectures.

The selected approach utilizes partitioning of the evaluation of a model on one

input into two phases. In the first phase, whose implementation will be discussed

in this and the following subsections, the multiple kernel method Km is evaluated

on all the support vectors and yielded values are stored to the array tmp results,

which resides in the global memory. Values stored in this array are thereafter

aggregated within the second phase, whose implementation will be discussed in

a standalone subsection.

In the above-referenced section, it was also stated that parallelism within the

first phase can be achieved by assigning the evaluation of Km on one or more

support vector to a task, which is referred to as a work-item in the context of

OpenCL, as stated in Section 2.3.1. We decided to assign the evaluation of the

kernel method on a single support vector to a work-item, since this approach

leads to utilization of more work-items, and thus even to utilization of more

work-groups, than approaches assigning the evaluation of the kernel method on

multiple support vectors to a task.

The preceding decision was based on recommendation stated inSection 3.2.3

that the more work-groups participate within a kernel invocation the better.

When this recommendation reflects the fact that different work-groups execute on

different logical cores. Hence, utilization of more work-groups results in utilizing

more logical cores, and thus, even in more efficient utilization of the coprocessor.

The selected approach ensures parallelism among work-groups since multiple

work-groups participate in the evaluation of the kernel method on all support

vectors. Nevertheless, to achieve the peak performance the VPU, which was

described in Section 3.1.1, providing parallelism at the work-group level has to be

utilized as well. To utilize the VPU it is not needed to write explicitly vectorized

code, because the OpenCL compiler contains implicit vectorization module, which

automatically vectorizes scalar code yielding the vectorized kernel, as described

in Section 3.2.1. This vectorized kernel is then used if the local size in the first

dimension is divisible by 16. Because of this, we decided to round up the global

index size, which conforms to the total number of work-items to be executed, to

the closest multiple of 32 and set the size of work-groups to 32. This number

46

ensures that the mentioned condition is always fulfilled, and whilst yields a more

convenient amount of work assigned to a work-group than it would have been

provided by 16.

Even though the selected approach is efficient in terms of parallelization, it

provides no opportunity to reuse the model constants (γm, αm) within a single

kernel invocation. Therefore, these constants, which are immutable within mul-

tiple kernel invocations, have to be always loaded from the constant memory.

Nevertheless, accessing data residing in the constant/global memory is notice-

ably slower than accessing cached data, and therefore, reusing of data is favor-

able for achieving the peak performance, as stated in Section 3.1.2. Considering

these facts, we adapted the work assigned to a single work-item in a way that

it evaluates the same support vector against a collection of multiple consecutive

inputs, which will be further referred to as a block. This modification converts

the corresponding kernel to the form depicted in Listing 5.2. In this listing, the

parameter transformed inputs holds transformed inputs arranged as Array-of-

Structures (AoS), when this data layout was described in Section 2.5.4, IPB

represents the total number of inputs to be evaluated, BS conforms to the num-

ber of work-items participating in the evaluation of one block, and EPTI stands

for the number of elements per a transformed input.

1 k e r n e l void Km (constant f loat ∗ t rans fo rmed inputs , g l o ba l f loat ∗

tmp re su l t s)

2 {

3 int g i d = g e t g l o b a l i n d e x (0) ;

4 for (int i = 0 ; i < IPB ; ++i)

5 {

6 tmp re su l t s [g i d + i ∗ BS] = αm [g i d] ∗ Km (γm [g i d] ,

t r ans fo rmed input s [i ∗ EPTI]) ;

7 }

8 }

Listing 5.2: Source code of the adapted kernel.

As noted in Section 3.1, Intel Xeon Phi coprocessor core is equipped with

32 kB L1 data cache and is capable of running 4 hardware threads to which

work-groups are assigned. These facts combined with the fact that each work-

item accesses 11 constant values, where 10 values represent a single support vector

and the remaining value represents its weight that are not accessed by any other

work-item in the same work-group gives that maximally 5632 B = 4 · 32 · 44 B,

where 32 conforms to the number of work-items in each work-group, are occupied

by these constants during the execution of appropriate work-groups. Due to this,

these constants along with units of constants that are accessed by all work-items

in these work-groups fit to the L1 data cache altogether, and thus may be cached

47

during the whole kernel execution.

Moreover, this approach even provides a better ratio of the work assigned to

a work-group to overhead of its management and management of associated data

transfers than the original approach that evaluates a single input within a single

kernel invocation.

5.3.2 Evaluating Multiple Blocks Simultaneously

Using the previous approach, only a subset of compute units, whose cardinality

equals to BS/32, is utilized in a single kernel invocation. However, such utiliza-

tion of the Intel Xeon Phi coprocessor does not comply with the recommendation

that the number of work-groups should not be smaller than the number of com-

pute units, as stated in Section 3.2.1. Based on this recommendation, we adopted

an approach of evaluating multiple blocks in parallel within a single kernel invoca-

tion. This means that we define the global size of a kernel invocation as BS ·NB,

where NB denotes the number of blocks that execute concurrently within a sin-

gle kernel invocation, and assign the evaluation of the iteration i = Gi%BS of

the block b = Gi/BS to a work-item with the global ID Gi. Thanks to this, all

compute units may be utilized by a single kernel invocation.

Since all inputs submitted for the evaluation are no more evaluated by a single

block, their mapping to these block has to be specified. We decided for mapping

consecutive inputs to a single block, as depicted in Figure 5.1, since such an

approach provides better data locality than an approach of mapping consecutive

inputs to consecutive blocks.

Figure 5.1: Mapping of inputs to blocks in case of 4 blocks where each of these
blocks processes 2 inputs.

The execution of multiple blocks within a single kernel invocation is not the

only way how to execute several blocks concurrently. Another way how to do it

is submitting kernel execution commands to an out-of-order command-queue or

to multiple command queues, as noted in Section 2.3.2. Nevertheless, execution

of many small kernels is predisposed to provide worse performance than execu-

tion of fewer larger kernels, since all these kernels and associated data transfers

necessitate the management.

48

5.3.3 Parallel Aggregation

In this section, we will follow up on the facts stated in Section 5.1 and de-

scribe how to aggregate the values yielded from the first phase in parallel using

the reduction, which is a preferred way of aggregating values in highly-parallel

environments1.

Decomposition of a collection to be aggregated into independent subcollections

may be depicted by a so-called reduction tree. Each reduction tree has a form of

a rooted tree, where leaves represent separate items of the original collection and

inner nodes on the level i constitute the aggregation of appropriate nodes on the

level i+ 1. This implies that there is no dependency between nodes on the same

level, and therefore, computations represented by nodes on the same level may

be executed concurrently.

There are both commutative and associative reduction trees, whose applica-

bility is determined by the features of the aggregation function. And since the

sum is both a commutative and associative operation, its reduction tree may be

any of them.

Commutative Reduction Tree

Commutativity permits reordering of operands. Hence, inner nodes are not

restricted to aggregate only consecutive nodes on the lower level. This may be

used in such a way that consecutive work-items in a single work-group may access

consecutive operands at the same time using vector load/store operations which

provide better memory bandwidth than scalar load/store operations. Due to this,

the commutative reduction, whose tree is depicted in Figure 5.2, is more appro-

priate for data parallel execution than the associative reduction, which utilizes

just regrouping of its operands.

Figure 5.2: An example of a commutative reduction tree.

1The reduction was also used by Catanzaro, Sundaram, and Keutzer [23].

49

Synchronization Between Phases

The second phase can begin only after the first one, which is executed by

multiple work-groups, has finished, i.e. only after values to be aggregated have

been stored to the array tmp results for further processing. Nevertheless, work-

groups cannot synchronize between each other, as stated in Section 2.3.1, and

therefore, execution of these phases has to be synchronized at the command-

queue level. Hence, we defined each of these phases as standalone kernels and

launched them separately.

Synchronization Between Different Levels of Reduction Tree

Launching of a separate kernel for the second phase permits different map-

ping of the work to work-items. Before we define it, remind ourselves that the

reduction of values whose aggregation yields the result of the evaluation on a

single input involves synchronization between execution of nodes on different lev-

els. Therefore, the work on each level has to be executed using separate kernel

invocation or the work on all levels has to be executed by work-items in a single

work-group, since only the work-items in the same work-group may be synchro-

nized using OpenCL C functions, as shown in Listing 5.3. We adopted the second

approach, since the other one would result in assigning only the aggregation of

two values to a work-item, which is a too small task.

However, synchronization between the work-items is also quite an expensive

operation, and therefore, it makes sense to do as much of the reduction serially

as possible. Based on this, we adjusted the way in which the reduction is com-

puted so each work-item first computes the sum of a subcollection of the original

collection serially and writes out the result into another array stored in the local

memory. Only after the values stored in this array are reduced using the commu-

tative reduction, as depicted in Listing 5.3, where the variable size has the value

equal to the length of the array inputs divided by WORK GROUP SIZE. This

means that when the reduction is completed the overall result is stored in this

array at index 0.

50

1 k e r n e l void sum(constant f loat ∗ inputs , int const s i z e , g l o ba l

f loat ∗ outputs)

2 {

3 int l Index = g e t l o c a l i d (0) ;

4 f loat part ia lSum = 0 ;

5 for (int i = 0 ; i < s i z e ; ++i) {

6 part ia lSum += inputs [l Index + i ∗ WORK GROUP SIZE] ;

7 }

8 l o c a l f loat part ia lSums [WORK GROUP SIZE] ;

9 part ia lSums [l Index] = part ia lSum ;

10 for (int o f f s e t = WORK GROUP SIZE / 2 ; o f f s e t > 0 ; o f f s e t >>= 1) {

11 ba r r i e r (CLK LOCALMEMFENCE) ;

12 i f (l Index < o f f s e t) {

13 part ia lSums [l Index] += partia lSums [l Index + o f f s e t] ;

14 }

15 }

16 i f (l Index == 0) {

17 outputs [0] = part ia lSums [0] ;

18 }

19 }

Listing 5.3: Source code of the commutative reduction.

5.3.4 Preprocessing

In Section 5.1.1, we stated that the considered transformation functions can

run in parallel without any restriction. The most fine-grained decomposition

of preprocessing of multiple inputs that yields data parallel tasks conforms to

assigning preprocessing of a single input to a task. In the same time, preprocessing

of a single input conforms to calling maximally 30 functions, each of which takes

100 instructions in the worst case 5.1.1. This means that we would have to

preprocess thousands of inputs within a single kernel invocation in order to benefit

from utilization of this coprocessor. Considering these facts, we decided to execute

these transformations on the host and only then move the already transformed

data onto the device.

5.3.5 Data Layout

In Section 5.1 we observed that the evaluation of the model in the question

on a single input conforms to data parallelism since different iterations evaluate

the same function on different constants. This fact combined with the fact that

the coalesced memory access has a huge performance impact, as mentioned in

Section 2.5.4, determines that these constants have to be arranged in a convenient

51

way in order to achieve peak performance.

Each work-item accesses only one αm
s . This implies that even if we concatenate

these values to an array, then consecutive work-items in a single work-group will

access this arrays at consecutive indices at the same time. This means that such

arrangement of these values permits coalesced memory access.

1X

2X
1X 2X

Figure 5.3: Arrangement of an array of structures/arrays as AoSoA with the
small arrays sized 2.

Each work-item also accesses its own collection γm,s. Therefore, these collec-

tions have to be arranged in a much more sophisticated way, because elementary

concatenation of them would result in strided memory access. To permit coa-

lesced memory access, we have to arrange these collections either as Structure-

of-Arrays (SoA) or Array-of-Structures-of-Arrays (AoSoA), whose example is de-

picted in Figure 5.3. We have opted for arranging these collections as AoSoA

with the small arrays sized 32, since this layout provides better spatial locality

then the other one.

5.3.6 Command-Queues and Kernel Synchronization

In Section 2.3.2, we stated that multiple commands may be executed at the

same time only when they were submitted to an out-of-order command-queue or

multiple command-queues. From these options, we decided for a single out-of-

order command-queue since this option does not require initialization of a new

command-queue whenever a new batch of inputs is about to be evaluated.

Due to utilizing an out-of-order command-queue we had to utilize event ob-

jects 2.3.2 to synchronize execution of dependent commands.

5.4 Programming Language, Data Formats, and

Libraries

The choice of programming language is essential for any implementation. In

order to select the most suitable programming language our requirements and

priorities have to be specified first.

52

In our case, the major requirement is low evaluation latency. Due to this, we

omitted all interpreted languages. The target application is also mission critical,

therefore, we looked for a commonly used and well-known programming language

that is robust and well maintainable. In addition, we consider explicit memory

management to be quite error-prone, and therefore, we did not want to utilize

languages without automatic memory management, such as C and C++.

With respect to the presented requirements, the most suitable languages were

Java and C#. From these languages, we selected C# due to the fact that a com-

pany that is interested in parallelization of our AT model on the Intel Xeon Phi

coprocessor has its trading model also written in C#. Consequently, an imple-

mentation written in C# will be most relevant for them.

5.4.1 Data Types

Our model approximates a function from a vector space over real numbers

to real numbers and all the model constants are real numbers as well. OpenCL

and .NET share 2 data types representing real numbers: single-precision and

double-precision floating points. We decided for single-precision floating points,

inasmuch as processing single-precision data requires fewer computation resources

(RAM, cache, and bandwidth) than processing double-precision data and while

still preserves a sufficient level of accuracy for this type of problems.

5.4.2 Parallel Programming in .NET

Multi-core parallelization can be achieved using both OpenCL and mecha-

nisms provided by the selected programming language. However, we wanted to

obtain a baseline that is not dependent on using OpenCL, and thus, we decided

for the way of mechanisms provided by the selected language.

Three low-level mechanisms are provided by .NET to run code in parallel:

Thread, ThreadPool and Task.

Thread represents an actual OS thread, with its own stack and kernel re-

sources. The problem associated with using the threads is that they are costly

because each of them consumes a non-trivial amount of memory for its stack.

Moreover, utilization of too many threads adds CPU overhead as the processor

has to perform context-switching.

ThreadPool is a wrapper around a pool of threads maintained by the Common

Language Runtime (CLR)2, whose count conforms to the number of logical cores.

Using ThreadPool avoids both the overhead of creating new threads and the

overhead of utilizing too many threads since it assigns tasks to threads from the

2The virtual machine that manages the execution of .NET programs.

53

pool of available threads. If all the threads are busy, tasks are enqueued until they

can be served as threads become again available. On the other hand, ThreadPool

provides no straightforward way of finding out when a task finished.

Task from the Task Parallel Library [22] combines the best of the preceding

mechanisms. Tasks are assigned to threads from the thread pool by a task sched-

uler. Nevertheless, unlike ThreadPool, Task allows to find out when it finishes

and to return a result.

We decided to use Task because it provides a higher level of abstraction, and

therefore is easier to use and manage while its usage does not necessitate such

management overhead as Thread.

Task Scheduler

A task scheduler manages how tasks are scheduled to run on thread pool

threads. The default task scheduler does not provide any possibility how to spec-

ify the maximum number available threads. This means that we would not have

been able to investigate how our implementation scales with this number if we had

used this scheduler. Therefore, we implemented our own task scheduler (Limited-

ConcurrencyLevelTaskScheduler) that allows us to restrict the number of available

threads.

5.4.3 OpenCL Host Bindings in .NET

In order to take advantage of the OpenCL framework, we need to call functions

of the OpenCL API. The default API is written in C, therefore, a .NET wrapper

built on the top of C API has to be utilized.

Although writing of our own wrapper should not be too complicated, we

decided to use an already implemented and well-tested open-source one.

The most popular open-source wrappers are OpenCL.NET3 and Cloo4. The

main difference between them is that Cloo, unlike to OpenCL.NET, which is just

a thin wrapper around C API, provides an object-oriented API, whose usage

is illustrated in Listing 5.4. This API allows communicating with OpenCL by

instance methods of objects that represent parameters passed to functions of the

underlying OpenCL API. Thanks to this, Cloo provides a much more C#-like

API than OpenCL.NET does. Due to this fact, we decided to use Cloo.

3https://openclnet.codeplex.com/
4http://sourceforge.net/projects/cloo/

54

https://openclnet.codeplex.com/
http://sourceforge.net/projects/cloo/

1 // i n i t i a l i z e s b u f f e r s

2 var bufferMatr ixA = new ComputeBuffer<f loat>(context ,

i nputBu f f e r sF lag s , matrixA) ;

3 var bufferMatr ixB = new ComputeBuffer<f loat>(context ,

i nputBu f f e r sF lag s , matrixB) ;

4 var bufferMatr ixC = new ComputeBuffer<f loat>(context ,

outputBuf fe rFlags , matrixCLength) ;

5 // s e t s ke rne l arguments

6 ke rne l . SetMemoryArgument(0 , bufferMatr ixA) ;

7 ke rne l . SetMemoryArgument(1 , bufferMatr ixB) ;

8 ke rne l . SetMemoryArgument(2 , bufferMatr ixC) ;

9 // launches a ke rne l f o r execut ion

10 queue . Execute (kerne l , nu l l , g lobalWorkSize , loca lWorkSize , events) ;

11 // reads the r e s u l t back

12 queue . ReadFromBuffer (bufferMatrixC , r e f matrixC , true , events) ;

Listing 5.4: Source code of an application that communicates with OpenCL

using Cloo.

5.5 Implementation for GPUs

In this section, we will describe how the selected approach to achieving par-

allelism on many-core architectures is suited for GPUs and what modifications

would be required to reach their peak performance. We decided for GPUs based

on the fact that they are commonly used for data-intensive computations, as

stated in Section 3.2.3.

From suitability of GPUs for data-intensive computations implies that the

approach to achieving parallelism utilized by our implementation is convenient

even for GPUs inasmuch as it conforms to data parallelism.

Despite the previous statement, it was also stated that there are two aspects

that distinguish OpenCL programming for these devices since these aspects im-

prove the performance of OpenCL applications just on the Intel Xeon Phi co-

processors. The first of them is that the Intel Xeon Phi coprocessors do not

benefit from using the local memory for caching hot data that occupy a block of

the global memory. This difference is based on the fact that the Intel Xeon Phi

coprocessors cache data implicitly, whereas GPUs do not. In case of our imple-

mentation, the only hot data occupying a block of the global memory that are

not cached in the local memory are support vectors. That means that in order

to fine-tune our implementation for GPUs we would have to add caching of these

support vectors in the local memory.

The second aspect is that Intel Xeon Phi coprocessors require work-groups to

take at least 100 000 clock cycles to reach the peak performance whilst GPUs

55

do not require such large work-groups. In case of our implementation, utiliza-

tion of smaller work-groups would correspond to evaluating fewer inputs within

a single block. However, evaluating fewer inputs within a block would reduce the

improvement obtained by caching hot data in the local memory. Due to this, our

optimization consisting in assigning the evaluation of the same support vector

against a collection of inputs to a work-item is suitable even for GPUs. However,

GPUs would probably require a smaller value of BS, i.e. smaller blocks in terms

of included inputs than the Intel Xeon Phi coprocessor in order to reach the peak

performance.

The Intel Xeon Phi coprocessor contains much more compute units than

GPUs. On the other hand, compute units of GPUs contain much more process-

ing elements than compute units of the Intel Xeon Phi coprocessor. This means

that we would have to use larger work-groups in terms of contained work-items

in order to efficiently utilize GPUs.

Finally, the fact that GPUs do not require such large work-groups indicates

that it could be beneficial to perform the preprocessing on them. However, this

hypothesis would have to be empirically validated.

56

6. Experimental Results

Utilization of the Intel Xeon Phi coprocessor can, on one hand, lead to higher

throughput of data-intensive computations, on the other hand, it might dete-

riorate latency of these computations, as stated in Section 1.1. Therefore, the

prototype utilizing this coprocessor, which was described in the preceding chap-

ter, as well as the serial and multi-core prototypes, were submitted to tests in

order to verify to what extent and under what conditions, e.g., the number of

inputs to be evaluated, or the number of blocks executed in parallel within a sin-

gle kernel invocation, utilization of this coprocessor might accelerate evaluation

of our AT models.

In case of applications utilizing multiple computational units we are interested

not just in the factors that interest us in case of serial applications, e.g., latency

and throughput, but even in scalability with these units, as stated in Section 1.1.

Therefore, the many-core and multi-core prototypes were submitted to tests in

multiple configurations that differ from each other by the number of utilized units

in order to examine how these prototypes scale with these units. In case of the

multi-core prototype, these units correspond to threads in the thread pool 5.4.2,

while in case of the many-core prototype, these units correspond to work-groups

utilized within a kernel invocation. Remind ourselves that the number of work-

groups utilized within a kernel invocation is determined by the number of blocks

executed simultaneously within this invocation.

Constraining the number of blocks executed in parallel within a single kernel

invocation does not restrict the total number of blocks that may execute in par-

allel since multiple kernels may execute on a device simultaneously, as stated in

Section 5.3.2. Consequently, we will not be able to determine the scalability of

our prototype with more computational units but rather the benefit obtained by

running fewer large kernels.

6.1 Experimental Methodology

Although there are many measurable characteristics that could be investigated

via testing, characteristics that interest us are solely based on the execution

time. Nevertheless, even the execution time is rather a general term that may be

perceived in several ways, and therefore, what it corresponds to in the remainder

of this chapter has to be specified.

57

6.1.1 Execution Time

Applications utilized in AT act as server applications, i.e. their major re-

sponsibility is to react on occurrences of desired events. This also means that

the performance of such applications should not be compared using the wall time

but rather the time that they need to react to an occurrence of such event. For

applications utilizing OpenCL this implies that we are not interested in the time

footprint of steps that could be done only during the start-up, e.g., the context

initialization and compilation of source code.

To measure the time needed to complete steps that concern us we used a real-

time clock. We start to measure time right before the first input is about to be

evaluated and stop right after all results are obtained.

Besides the execution time, we will also examine the time needed to modify our

AT model in case of the many-core implementation. Since the modification might

be required when the model has to be adapted to reflect new events occurring

in the market. We will assume that the required modifications affect only the

parameters of the model and not its form, i.e. the notation of its kernel method

or the number of support vectors.

6.1.2 Correctness of Measured Times

Times measured by the selected method are, unfortunately, predisposed to

be influenced by hardware interruptions or other processes running on the same

system. Consequently, a testing methodology was proposed in order to reduce an

error caused by these influences as much as possible.

Each test comprised the evaluation of one or more models on multiple inputs.

Each such a test was executed 10× yielding measured times {ti}
10
i=1. When sep-

arate executions were performed in separate applications runs and within each

of these runs, the test was performed twice. The objective of the first run was

warming up of the hardware the test runs on, and therefore, only the execution

time of the second run was measured. Using the measured times the average

execution time t̄ was computed as arithmetic average:

t̄ =
1

10

10
∑

i=1

ti

Utilizing the raw average a new set T that contains only times less than or

equal to 1.1 · t̄ was constructed, i.e. T = {ti|i ∈ {1, . . . 10}∧ ti ≤ t̄}. Times larger

than t̄ were omitted as they were considered to be distorted.

In the set T , we looked for a subset of cardinality 3 that includes times that

differ from the raw average of this subset maximally by 1%. If there was such

58

a subset, we appointed the execution time t as the raw average of contained times.

If multiple subsets satisfied that condition, one exhibiting the smallest variance

was picked out. Finally, new measurements were executed in case that the desired

subset could not be constructed.

The execution time of one model on a single input is influenced by the total

number of inputs to be evaluated since the evaluation of more inputs might,

for example, enable overlapping of data transfers and computations on a device

and thus provides better performance. Therefore, we had to specify the minimal

number of inputs after which the execution time of one model on a single input is

declared to be stable. We defined this number as the minimal number of inputs

yielding the execution time of one model on a single input differing maximally

by 10% from times yielded by two preceding tests, i.e. tests evaluating the same

number of models on fewer inputs. Numbers of inputs that were evaluated within

consecutive tests formed a geometric sequence with the common ratio 2.

The measured times were not subjected to extensive statistical analysis, since

we focused solely on characteristics that are computable using basic statistical

methods. However, we published all triplets used to compute the execution times

on the enclosed DVD, so anyone can analyze them further.

6.1.3 Hardware Specification

All tests of the serial and multi-core prototypes were performed on a computer

equipped with Intel Xeon Processor E5-2630 clocked at 2.3 GHz and with 128 GB

of RAM organized in 2-node NUMA1. Red Hat Enterprise Linux Server (version

7.1) was used as the operating system.

Tests were run using Mono runtime (version 3.12.0), which had to be patched

since it malfunctioned when utilizing OpenCL. The malfunction, which caused

freezing up of an application, was a consequence of the fact that Mono and

OpenCL conflicted throughout using the same signal 2.

Intel Xeon Phi Coprocessor 7120P with 61 cores clocked at 1.333 GHz was used

as an OpenCL device. The coprocessor was equipped with 16GB of RAM and

was connected to the host via PCI-E 2.0 x16, so data could be transferred with

a nominal bit rate of 8 GB/s in each direction. The above-mentioned computer

was used as the host.

1Non-uniform memory architecture
2For more information about the patch see http://stackoverflow.com/questions/

17879292/cpu-killed-by-sigxcpu-using-opencl-and-mono

59

http://stackoverflow.com/questions/17879292/cpu-killed-by-sigxcpu-using-opencl-and-mono
http://stackoverflow.com/questions/17879292/cpu-killed-by-sigxcpu-using-opencl-and-mono

6.1.4 Test Data

As we lacked access to any historical data, we performed all tests against

synthetic data. Besides test data, we also generated constants used by models or

used for their definition, e.g., the number of their parameters.

Test data and constants used by models were generated from a uniform dis-

tribution of an interval 〈0, 1) utilizing the Mersenne Twister generator, which

is a pseudo-random number generator. An implementation of this generator is

also contained on the enclosed DVD, so anyone can generate other testing data

or even models in order to verify that our conclusions, which will be hereafter

presented, are not subject to the use of appropriate values.

6.1.5 Testing Configuration

As mentioned in Section 5.3, a configuration of the many-core prototype de-

fines the number blocks executed within a single kernel invocation. However, the

number of inputs forming a single block has not been defined yet. Remind our-

selves that the more inputs are evaluated within a single block the better ratio

of the work assigned to a work-group to its management overhead, and withal,

the more inputs are required to saturate all blocks that execute in parallel within

a single kernel invocation. Considering these facts, we decided to evaluate 128

inputs within a single block. Forasmuch as this value ensures that maximally

1024 inputs are required to saturate all blocks executed within a single kernel

invocation and withal the work assigned to a work-group to be complex enough.

Since our kernels do not take the number of inputs as a parameter, they always

evaluate the fixed number of inputs. Therefore, the minimal number of inputs

to be evaluated within a single kernel invocation equals to the number of inputs

forming a single block times the number of the blocks executed simultaneously

within this invocation.

Finally, note that the number of inputs evaluated within a single task in case

of the multi-core prototype equals to 16.

6.2 Performance

As stated at the very beginning of this chapter, all three prototypes in var-

ious configurations were submitted to tests that consisted of the evaluation of

a specified number of inputs by one or more models in order to compare the per-

formance, which is evaluated only in the execution time, of diverse configurations

of these prototypes depending on the number of models to be evaluated and the

number of inputs.

60

6.2.1 Measured Times

Following tables contain measured times along with optimal speed up, which is

derived from the stable times, to the serial prototype for 1, 64, and 128 models. In

those tables, columns titled with s contain values for the serial prototype, columns

titled with ti contain values for the multi-core prototype utilizing maximally

i threads and columns bi contain values for the many-core prototype executing

i blocks simultaneously, which conforms to utilizing 32 · i work-groups. We have

to highlight that emphasized values represent times derived from the stable times.

Tables containing values for 2, 4, 8, 16, and 32 models will not be presented

here since these tables would contain fairly similar values referenced to the num-

ber of models times the number of inputs as tables for 1 or 64 models. Likewise,

times for the multi-core prototype utilizing maximally 2 threads will not be pre-

sented, since it turned out that the multi-core prototype scales nearly linearly up

to 4 threads, and hence, these times would not have provided us any valuable

information.

Testing a configuration on a number of inputs that does not saturate con-

figurations utilizing fewer computational units would not have provided us any

meaningful information. Therefore, we did not start testing any configuration on

the minimal number of inputs defined above but rather on the number of inputs

that saturate the closest previous configuration in terms of the number of utilized

computational units.

All three presented tables indicate that for the corresponding numbers of

models our prototype in any configuration performs better than the multi-core

prototype utilizing up to 8 threads. Moreover, when we consider only config-

urations executing 2 and more blocks in parallel then our prototype performs

even better than the multi-core prototype utilizing 16 threads. The way in which

the multi-core prototype scales foreshadows that our prototype utilizing 8 blocks

would outperform even the multi-core prototype utilizing 32 threads.

The presented tables also indicate that a configuration of our prototype is sat-

urated by one-quarter of the work that saturates a configuration of the multi-core

prototype that provides the roughly same speed up as the considered configura-

tion of our prototype.

61

Inputs s t4 t8 t16 b1 b2 b4 b8

8 0.004

16 0.007

32 0.014

64 0.029

128 0.057 0.007

256 0.115 0.011 0.009

512 0.230 0.230 0.022 0.014 0.013

1024 0.459 0.238 0.043 0.028 0.020 0.019

2048 0.919 0.403 0.085 0.057 0.041 0.037

4096 1.837 0.560 0.560 0.171 0.112 0.080 0.073

8192 3.675 0.920 0.818 0.341 0.223 0.149 0.143

16384 7.349 1.892 1.309 1.307 0.683 0.446 0.293 0.250

32768 14.698 3.783 1.911 1.669 1.365 0.893 0.582 0.481

65536 29.397 7.565 3.826 2.415 2.731 1.786 1.165 0.936

131072 58.794 15.131 7.730 4.205 5.461 3.571 2.329 1.872

262144 117.588 30.262 15.461 8.403 10.923 7.142 4.659 3.744

524288 235.176 60.524 30.921 16.771 21.846 14.284 9.318 7.488

Speedup 1× 3.89× 7.61× 14.02× 10.77× 16.46× 25.24× 31.41×

Table 6.1: Evaluation times for 1 model in seconds.

Inputs s t4 t8 t16 b1 b2 b4 b8

8 0.238

16 0.476 0.240

32 0.954 0.359

64 1.905 0.537

128 3.812 0.957 0.356

256 7.624 1.910 1.151 0.735 0.472

512 15.248 3.920 1.983 1.474 0.946 0.581

1024 30.496 7.841 3.962 2.457 2.948 1.812 1.117 0.946

2048 60.993 15.681 7.921 4.367 5.896 3.625 2.267 1.922

4096 121.985 31.363 15.843 8.705 11.791 7.249 4.535 3.721

8192 243.971 62.725 31.686 17.402 23.582 14.498 9.069 7.441

Speedup 1× 3.89× 7.7× 14.02× 10.35× 16.83× 26.9× 32.79×

Table 6.2: Evaluation times for 64 models in seconds.

62

Inputs s t4 t8 t16 b1 b2 b4 b8

8 0.480 0.222

16 0.964 0.322

32 1.921 0.511

64 3.845 0.961

128 7.688 1.922 1.139 0.848

256 15.376 3.841 1.987 1.649 1.058

512 30.752 7.682 3.974 2.595 3.373 2.158 1.320

1024 61.505 15.363 7.971 4.376 6.747 4.382 2.612 1.898

2048 123.010 30.726 15.942 8.731 13.493 8.764 5.193 3.749

4096 246.019 61.452 31.883 17.483 26.986 17.527 10.387 7.622

Speedup 1× 4× 7.72× 14.07× 9.12× 14.04× 23.69× 32.28×

Table 6.3: Evaluation times for 128 models in seconds.

The last table provides slightly different values referenced to the number of

inputs evaluated multiplied by the number of models than the other presented

tables. Along with this, we had repeated the whole tests for the corresponding

number of models many times, since measured times often did not fulfil con-

ditions determined by our testing methodology. Both these facts might indicate

restricted usability of our prototype in terms of the number of models to evaluate.

Therefore, our prototype was submitted to tests that consist of the evaluation of

256 models in order to validate this hypothesis.

The measured times for this number of models validate this hypothesis inas-

much as obtained stable times were equal approximately to 1.3× of the stable

times for 128 models. Besides, even the tests had to be executed more times than

in case of 128 models.

Restricted usability of our prototype is most likely caused by the fact that

data accessed within the evaluation of models, i.e. the constants of these models,

and transformed inputs, do not fit into cache when a large number of models

should be evaluated. It is also possible that even overhead of scheduling grows

with the number of models to evaluate.

6.2.2 Scalability

Now, we will take a more thorough look at measured times for our prototype

from the perspective of scalability with the number of blocks executed within

a single kernel invocation.

To determine this feature of our prototype we will consider only the stable

times, which were defined in Section 6.1.2. Due to this, results that will be further

63

20 21 22 23 24 25 26 27 28
10

20

30

40

50

60

70

80

Number of Models

S
ta
b
le

T
im

e
[µ
s]

b = 1
b = 2
b = 4
b = 8

Figure 6.1: Stable times of different configurations.

presented are valid only when a sufficient number of inputs is evaluated, since

different configurations reach their stable times for different numbers of inputs.

From Figure 6.1, where the value of b denotes the number of blocks executed

in parallel within a single kernel invocation, we can deduce that the more blocks

are executed in parallel the better performance is provided. In other words,

launching fewer kernels evaluating larger batches of inputs is more efficient than

the opposite approach of launching many kernels processing smaller batches of

inputs. In fact, this ascertainment is fully compliant with the recommendation

stated in Section 3.2.1 to execute as many work-groups in a single kernel invo-

cation as possible. On the other hand, it shows that employing all logical cores

at once is not sufficient to reach the peak performance since multiple invocations

of a configuration that utilizes only a subset of all logical cores could employ all

logical cores at once as they are executed out-of-order.

Factors contributing to better performance of configurations executing more

blocks in parallel are necessarily a smaller ratio of the management of the ker-

nel execution to the actually executed work and withal a larger data transfer

throughput. Table 6.4, which includes times required to transfer data represent-

ing a relevant number of inputs along with speed up referenced to the time of

transferring 128 inputs, i.e. the smallest batch of inputs executed within a single

kernel invocation is presented in order to illustrate the impact of transferring data

in larger batches.

64

Inputs 128 256 512 1024
Time 589.2 592.77 641.07 705.83
Speedup 1× 1.99× 3.67× 6.67×

Table 6.4: Transfer times for relevant numbers of inputs in microseconds.

6.3 Cost of Modifications

In this section, we will examine how costly in terms of time the modifications

of our model are. Note that the considered modifications alter only parameters

of our model, e.g., support vectors, or their weights, as stated in Section 6.1.1.

Parameters to be modified are immutable within multiple kernel invocations,

and hence, it is favorable to locate these parameters to the constants memory,

since this memory is better cached than the global memory 2.4. To place param-

eters into the constant memory they have to be:

• defined as compile time constants,

• received as parameters specified with the constant address qualifier.

Defining parameters of our model as compile time constants forces the kernel

source code to be modified and rebuilt in order to modify our model. Receiving

these parameters as parameters of a kernel invocation requires initializing new

buffers and setting these buffers to appropriate kernel arguments. Times required

to modify our model using both these approaches are provided in Table 6.5.

Approach Recompilation Switching buffers
Time 707.16 2

Table 6.5: Times required to modify parameters of our model in milliseconds.

The above-referenced table indicates that the second approach that modifies

our model using new buffers allows much faster modification than the other one.

On the other hand, both these implementations may not provide the same

performance. In order to compare their performance, we decided to submit even

the implementation of the second approach in a configuration executing 8 blocks

in parallel to tests. These tests conformed to evaluating 1 to 64 models on

numbers of inputs that were used to define the stable times for these numbers of

models in the preceding section.

From Figure 6.2, which presents measured times for both implementations,

ensues that the implementation utilizing hard-coded constants outperforms the

second implementation when more than two models are evaluated, and even more,

that difference in performance between these implementation increases with the

65

20 21 22 23 24 25 26
12

14

16

18

20

Number of Models

T
im

e
[µ
s]

Recompilation
Switching buffers

Figure 6.2: Evaluation times of a single model on one input for different
approaches.

number of models. This phenomenon is likely caused by the fact that accessing

hard-coded constants is more easily optimized than accessing parameters residing

in constant memory. Realize that this assumption is compliant with the fact that

this phenomenon occurred only when multiple models were evaluated, i.e. when

accessing to parameters of multiple models should have been optimized.

66

7. Conclusion

The main objective of the presented thesis was to analyze existing models

for algorithmic trading from the perspective of parallel programming and based

on this analysis design and implement a prototype intensively utilizing a highly

parallel architecture, namely the Intel Xeon Phi coprocessor.

Before we started dealing with the analysis of the AT models in question, we

had described the form of these models and briefly introduced the theory behind

them. This introduction was primarily focused on highlighting advantages of our

AT models in comparison with other commonly used AT models.

Thereafter, we proposed several approaches to the parallel evaluation of one

or more our AT models on one or more inputs. For each of these approaches,

we discussed its suitability for the selected coprocessor considering provided facts

about OpenCL programming for highly parallel architectures, the Intel Xeon Phi

architecture, and specifics of OpenCL programming for this coprocessor.

The best-suited approach was implemented in our prototype, which was sub-

mitted to tests just as a serial and multi-core baseline. The results indicate that

the proposed solution would perform roughly as the multi-core prototype utilizing

32 threads, and moreover, it would require approximately one-quarter of the work

compared to the multi-core prototype to reach the peak performance. The results

also indicate that utilization of this solution would be beneficial even when evalu-

ating just tens of inputs, which means that the overhead introduced by offloading

the evaluation to the coprocessor is negligible compared to the performance gain.

The results furthermore indicate that performance of the proposed solution

decreases when more than 64 models are evaluated at once. We stated factors

that most likely cause this phenomenon, nevertheless, further research on this

phenomenon would be required when such a number of models should be com-

monly evaluated.

Even though there are a few questions concerning the usability of our proto-

type, we have successfully achieved our objectives and proved that the evaluation

of the AT models based on multiple kernel support vector regression is a highly

parallelizable problem.

7.1 Future Work

Since our implementation partitions the evaluation of one model on one input

to two phases, the first of them is being perfectly parallelizable while the second

phase achieves parallelism using a well-established approach, it is quite likely that

67

there are no options for improving this implementation in terms of parallelization.

Hence, possible improvements would lay in fine-tuning parameters of our imple-

mentation to maximize its performance when evaluating the expected number of

models on the expected number of inputs. In other words, improvements would

correspond to fine-tuning the number of inputs evaluated within a single block

and the number of blocks executed in parallel within a single kernel invocation

to reach the peak performance under common conditions.

It should be also investigated how beneficial could it be to utilize other

OpenCL devices, primarily GPUs. Note that we proposed modifications required

to adapt our implementation for GPUs in Section 5.5. When investigating per-

formance of the adjusted implementation, it should be also examined whether it

would be beneficial to perform preprocessing on GPUs or not, as suggested in the

above-referenced section.

68

Bibliography

[1] Portfolio Selection on JSTOR. [online] [Accessed: 6. 5. 2016]

http://www.jstor.org/stable/2975974

[2] The fast and furious | The Economist. The Economist. [online] 2. 2012 [Ac-

cessed: 6. 5. 2016]

http://www.economist.com/node/21547988

[3] T. G. Mattson, B. A. Sanders, B .A. Massingill. Patterns for Parallel

Programming. 1st edition. Boston: Addison-Wesley Professional, 2004. ISBN

0321940784

[4] The OpenCL Specification Version 1.2. [online] [Accessed: 6. 5. 2016]

https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

[5] The OpenCL C Specification Version 2.0. [online] [Accessed: 6. 5. 2016]

https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.

pdf

[6] A.Munshi, B.Gaster, T. G..Mattson, J. Fung, D.Ginsburg.OpenCL

Programming Guide. 1st edition. Boston: Addison-Wesley Professional ,

2011. ISBN 0321749642

[7] R. Rezaur. Intel Xeon Phi Coprocessor Architecture and Tools, The Guide

for Application Developers New York: Apress, 2013. ISBN 978-1-4302-5926-8

[8] Ch. Demerjian. Intel details Knights Corner architecture at long last -

SemiAccurate [online] 9. 2012 [Accessed: 6. 5. 2016]

http://semiaccurate.com/2012/08/28/intel-details-knights-

corner-architecture-at-long-last/

[9] S. Li. Memory Management for Optimal Performance on Intel R©Xeon

PhiTMCoprocessor: Alignment and Prefetching [online] 3. 2014 [Accessed:

6. 5. 2016]

https://software.intel.com/en-us/articles/memory-management-

for-optimal-performance-on-intel-xeon-phi-coprocessor-

alignment-and

[10] OpenCL* Design and Programming Guide for the Intel R©Xeon

PhiTMCoprocessor — Intel R©Software 2. 2014 [Accessed: 7. 7. 2016]

https://software.intel.com/en-us/articles/opencl-design-and-

programming-guide-for-the-intel-xeon-phi-coprocessor

69

http://www.jstor.org/stable/2975974
http://www.economist.com/node/21547988
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf
http://semiaccurate.com/2012/08/28/intel-details-knights-corner-architecture-at-long-last/
http://semiaccurate.com/2012/08/28/intel-details-knights-corner-architecture-at-long-last/
https://software.intel.com/en-us/articles/memory-management-for-optimal-performance-on-intel-xeon-phi-coprocessor-alignment-and
https://software.intel.com/en-us/articles/memory-management-for-optimal-performance-on-intel-xeon-phi-coprocessor-alignment-and
https://software.intel.com/en-us/articles/memory-management-for-optimal-performance-on-intel-xeon-phi-coprocessor-alignment-and
 https://software.intel.com/en-us/articles/opencl-design-and-programming-guide-for-the-intel-xeon-phi-coprocessor
 https://software.intel.com/en-us/articles/opencl-design-and-programming-guide-for-the-intel-xeon-phi-coprocessor

[11] M. S. Papamarcos,J. H. Patel. A low-overhead coherence solution for

multiprocessors with private cache memories. ACM SIGARCH Computer

Architecture News 12(3), 1998. 284-290

[12] B. McClure. Fundamental Analysis: What Is It? — Investopedia [online]

[Accessed: 6. 5. 2016]

http://www.investopedia.com/university/fundamentalanalysis/

fundanalysis1.asp

[13] S. A .M. Yaser, A. F. Atiya. Introduction to financial forecasting. Applied

Intelligence, 1996. 6: 205–213

[14] L.Cao, F. E. H.Tay. Financial Forecasting Using Support Vector Machines.

Neural Comput & Applic 2001. 10: 184–192

[15] H.Tong, K. S. Lim. Threshold Autoregression, Limit Cycles and Cyclical

Data. Journal of the Royal Statistical Society, Series B (Methodological),

1980. 42.3: 245–292

[16] R. F. Engle. Autoregressive conditional heteroskedasticity with estimates of

the variance of UK inflation. Econometrica 50, 1982. 987–1008

[17] C. Sammut, G.Webb. Encyclopedia of Machine Learning. Boston: Springer

US, 2010. ISBN 978-0-387-30164-8

[18] V. N. Vapnik. The Nature of Statistical Learning Theory. New York,

Springer-Verlag. 1995

[19] M. Gonen, E. Alpaydın. Multiple Kernel Learning Algorithms. Journal of

Machine Learning Research 12, 2011. 2211-2268

[20] V. N. Vapnik, S. E. Golowich, A. J. Smola. Support vector method for

function approximation, regression estimation, and signal processing. Ad-

vances in Neural Information Processing Systems, 1996. 9: 281–287

[21] I. Landwerth. The JIT finally proposed. JIT and SIMD are getting

married. — .NET blog [online] 5. 2014 [Accessed: 7. 7. 2016]

https://blogs.msdn.microsoft.com/dotnet/2014/04/07/the-jit-

finally-proposed-jit-and-simd-are-getting-married/

[22] G. C. Hillar. Professional Parallel Programming with C#: Master Parallel

Extensions with .NET 4. Birmingham: Wrox, 2010. ISBN 978-0-470-49599-5

70

http://www.investopedia.com/university/fundamentalanalysis/fundanalysis1.asp
http://www.investopedia.com/university/fundamentalanalysis/fundanalysis1.asp
https://blogs.msdn.microsoft.com/dotnet/2014/04/07/the-jit-finally-proposed-jit-and-simd-are-getting-married/
https://blogs.msdn.microsoft.com/dotnet/2014/04/07/the-jit-finally-proposed-jit-and-simd-are-getting-married/

[23] B. Catanzaro, N. Sundaram, K .Keutzer. Fast Support Vector Machine

Training and Classification on Graphics Processors. International conference

on Machine learning, 2008. 104-111

[24] S. Herrero-Lopez, J. R. Williams, A. Sanchez. Parallel Multiclass

Classification using SVMs on GPUs. Proceedings of the 3rd Workshop on

General-Purpose Computation on Graphics Processing Units, 2010. 2-11

71

List of Figures

2.1 A schema of the OpenCL platform model. 9

2.2 An example of how the global IDs, the local IDs, and work-group

IDs are related. The shaded block has the global ID of (gx,gy) =

(6,5) and the local ID of (lx,ly) = (2,1). 10

2.3 The mapping of the OpenCL memory model to the OpenCL plat-

form model. 16

2.4 An example of transfers and executions pipelining. 17

3.1 The Intel Xeon Phi processor microarchitecture [8] 20

3.2 An example of conditional updating (x represents an unchanged

value). 22

3.3 The memory architecture of the Intel Xeon Phi coprocessor. . . . 23

4.1 An example of overfitting. 31

4.2 An instance of SVM. 32

4.3 An example of mapping of non-separable inputs to a feature space. 36

5.1 Mapping of inputs to blocks in case of 4 blocks where each of these

blocks processes 2 inputs. 48

5.2 An example of a commutative reduction tree. 49

5.3 Arrangement of an array of structures/arrays as AoSoA with the

small arrays sized 2. 52

6.1 Stable times of different configurations. 64

6.2 Evaluation times of a single model on one input for different ap-

proaches. 66

72

List of Tables

6.1 Evaluation times for 1 model in seconds. 62

6.2 Evaluation times for 64 models in seconds. 62

6.3 Evaluation times for 128 models in seconds. 63

6.4 Transfer times for relevant numbers of inputs in microseconds. . . 65

6.5 Times required to modify parameters of our model in milliseconds. 65

73

List of Abbreviations

AoS Array-of-Structures. 19, 47

AoSoA Array-of-Structures-of-Arrays. 19, 52, 72

ARIMA AutoRegressive Integrated Moving Average. 29, 30

AT Algorithmic Trading. 4, 40, 57, 58, 67

CLR Common Language Runtime. 53

EMA Exponential Moving Average. 29

HFT High-Frequency Trading. 4, 28

MIC Many Integrated Core. 6, 20

MKL Multiple Kernel Learning. 36

SIMD Single Instruction, Multiple Data. 9

SMA Simple Moving Average. 29

SoA Structure-of-Arrays. 19, 52

SVM Support Vector Machine. 32–35, 37, 72

SVR Support Vector Regression. 37

TD Tag Directory. 23

VPU Vector Processing Unit. 20, 21, 24, 25, 46

WMA Weighted Moving Average. 29

74

Attachments

The directory on the enclosed DVD has following structure:

• /doc

– /thesis - contains this document in PDF and PostScript format and

the corresponding source files

– /results - provides all triplets of measured times that were used to

compute the execution time for every test

– /Documentation.chm - reference documentation of code generated by

Sandcastle Help File Builder1 from source code

• /src - contains source code of our implementation, the serial and multi-

core prototype, the Mersenne Twister generator, and the Cloo library with

project files for Microsoft Visual Studio 2015

• /Mono.3.12.0.tar.gz - packed source code of the patched Mono (3.12.0)

• /ReadMe.txt - provides instructions on installing Mono from source code

on Linux and instructions on repeating/performing other tests

1https://shfb.codeplex.com/

75

https://shfb.codeplex.com/

	Introduction
	Performance and Parallelism
	Objectives

	OpenCL
	Structure of OpenCL
	Language Specification
	Platform Layer and Runtime API

	Platform Model
	Execution Model
	Kernel Execution on a Compute Device
	Host Program

	Memory Model
	Accessing Shared Memory Simultaneously

	Best Practices
	Work Decomposition
	Synchronization
	Reusing of Data
	Data Layout

	Intel Xeon Phi
	Architecture
	Vector Processing Units
	Memory Architecture

	OpenCL Programming
	Kernel Execution on Intel Xeon Phi Coprocessor
	Local Memory
	Comparison with GPUs

	AT Model
	Technical Analysis
	Technical Indicators
	Univariate Analysis
	Multivariate Analysis
	Supervised Learning Algorithms

	Support Vector Machine
	Theory of SVMs
	Kernel Function
	SVM in Regression

	Existing AT Model

	Implementation
	Analysis
	Preprocessing
	Approaches to Parallelization

	Architecture Specific Parallelization
	Multi-Core Parallelization

	Many-Core Parallelization
	Evaluating Kernel Method In Parallel
	Evaluating Multiple Blocks Simultaneously
	Parallel Aggregation
	Preprocessing
	Data Layout
	Command-Queues and Kernel Synchronization

	Programming Language, Data Formats, and Libraries
	Data Types
	Parallel Programming in .NET
	OpenCL Host Bindings in .NET

	Implementation for GPUs

	Experimental Results
	Experimental Methodology
	Execution Time
	Correctness of Measured Times
	Hardware Specification
	Test Data
	Testing Configuration

	Performance
	Measured Times
	Scalability

	Cost of Modifications

	Conclusion
	Future Work

	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments

