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Abstrakt: Tenzor napätia ferrokvapaliny vystavenej vonkaj²iemu magnetickému
po©u podlieha navy²e magnetickým £lenom. Pre lineárne magnetizovate©né médi-
um tieto £leny vedú na magnetickú silu pôsobiacu na hranici ferrokvapaliny.
Táto sila mení charakteristiky mnoºstva javov s vo©ným povrchom ferrokva-
paliny. Cie©om tejto práce je implementova´ túto silu do nestla£ite©ných Navier-
Stokesových rovníc a navrhnú´ numerickú metódu na ich rie²enie. Rozhranie
ferrokvapaliny je sledované s pomocou level-set metódy a dodato£ný krok reini-
cializácie zais´uje zachovanie objemu. Nestla£ie©né Navier-Stokesové rovnice sú
formulované pre rýchlostné polia s nulovou divergenciou pri£om diskrétne sily
na rozhraní sú o²etrené modelom spojitých povrchových síl. Rýchlostno-tlakové
previazanie je dané projek£nou metódou. Z dôvodu kvantitatívnej predpovede
vplyvu magnetickej sily sú pre kaºdý £asový krok rie²ené Maxwellove rovnice mag-
netostatiky. Metóda kone£ných prvkov je pouºitá pre priestorovú diskretizáciu.
Na záver práce sú kvalitatívne porovnané známe experimenty s nasimulovaným
rovnováºnym tvarom ferrokvapalinovej kvapky a javom odkvapávania.
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Abstract: The stress tensor of a ferro�uid exposed to an external magnetic �eld
is subject to an additional magnetic terms. For a linearly magnetizable medi-
um, such terms results in an interfacial magnetic force acting on the ferro�uid
boundaries. This force changes the characteristics of many free-surface ferro�uid
phenomena. The aim of this work is to implement this force into Navier-Stokes
equations and propose a numerical method to solve them. The interface of fer-
ro�uid is tracked with the use of level-set method and additional reinitialization
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are treated with continuous surface force model. Velocity-pressure coupling is
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Introduction

Free surface �uid �ows and processes involved in a �uid behavior fascinated sci-
entists since the very beginning of the scienti�c history. Problems as a breakup of
a liquid jet, droplet formation and merging, rising bubbles etc. still lacks deeper
understanding because of a complex and nonlinear equations governing such phe-
nomena. In addition, they play a role in many industrial processes: fuel injection,
�bre spinning, ink-jet printing, etc. [2]

The equations for the motion of a �uid formulated in the 19th century came
to relevance as computers started to provide number of numerical methods for
�nding their approximate solutions. However, majority of the methods are well
suited for problems involving one-phase �ows or �uid-wall interactions. Multi-
phase �ows, �uid-�uid interactions, surface forces and similar issues still remain
debated and incomplete.

Imagine some usual situation, where a water droplet hanging on a tap is
being pulled down by the gravity. From a physical point of view, the behavior
and evolution is well described. Navier-Stokes equations govern the �uid motion
in each phase, water and air separately, while interfacial surface force is balanced
with the gravitational, volume force.

All these phenomena become even more attractive in terms of ferrohydrody-
namics. Ferro�uid reacts to a magnetic �eld and changes its shape due to an
additional magnetic force. This entirely changes dynamics of the droplet forma-
tion process and it will be the object for our studies.

Figure 1: High-speed image sequence of ferro�uid droplet dripping out of a con-
tainer. In�uence of a magnetic �eld parallel(middle) and perpendicular(bottom)
to the direction of the �ow is clearly visible. Taken from [1].

In the �rst part of the thesis a brief summary of the physical and mathemat-
ical model and numerical methods are given. Interface is represented with the
level-set function, while the conservation of its volume is assured with the reini-
tialization step. Navier-Stokes equations are solved using the projection methods
and spatially approximated in sense of weak derivates and �nite element method.
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1. Ferro�uids

1.1 Introduction

A ferro�uid is a colloidal suspension composed of small (3-15 nm) solid, single-
domain, magnetic particles coated with a molecular layer of a dispersant and
suspended in a liquid carrier(Fig. 1.1). Thermal agitation keeps the particles
suspended(under su�cient stability conditions) because of the Brownian motion
and the coatings prevents the particles from sticking to each other.

Figure 1.1: Coated magnetic particles in ferro�uid. Taken from [3].

The magnetic ferro�uids of the type in general use today are an outgrowth of
discoveries made in the early 1960s.

Because the colloidial ferro�uid is not found in the nature, it must be syn-
thetized. Methods called size reduction and chemical precipitation are used. De-
tails of both methods can be found in [3].

Very important property of ferro�uid is its stability. It ensures the investigator
of well-de�ned material for scienti�c studies and also �uid applications. We mean

• stability in a magnetic �eld gradient,

• stability against settling in a gravitational �eld,

• stability against magnetic agglomeration and

• neccesity to guard against the van der Waals attractive force.

To derive the physicochemical stability dimensionless analysis introduces var-
ious energy terms:

• thermal energy kT ,

• magnetic energy µ0MHV and
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• gravitational energy ∆ρV gL,

where k is Boltzmann's constant, T the absolute temperature in degrees
Kelvin, µ0 is the permeability of free space, V volume of a sperical particle, L the
elevation in gravitational �eld, ∆ρ di�erence in �uid carrier and ferromagnetic
particles densities and M,H magnetization and magnetic �eld intensity.

Such stability analysis leads to inequalities for the particle diameter, for in-
stance, for the magnetite(Fe3O4) particles at the room temperature stability
against magnetic agglomeration requires diameter d ≤ 7.8 nm [3].

1.2 Ferrohydrodynamics

The term ferrohydrodynamics (FHD) was �rst introduced by Ronald E.

Rosensweig. Development of FHD in early to mid- 1960s was motivated by
engineering task of converting heat to work with no mechanical parts.

�Ferrohydrodynamics is an interdisciplinary topic having inherent interest of
a physical and mathematical nature with applications in tribology, separations sci-
ence, instrumentation, information display, printing, medicine, and other areas�
R.E.Rosensweig.

In the begining of this chapter we would like to emphasize the di�erences
between various studies of �uid��eld interactions:

1. electrohydrodynamics (EHD) deals with the in�uence of the electric �eld on
a �uid motion,

2. magnetohydrodynamics (MHD) is the study of the interaction between mag-
netic �eld and �uid conductors of electricity,

3. ferrohydrodynamics (FHD) deals with the mechanics of �uid motion in�u-
enced by forces of magnetic polarization.

This work is mainly concerned with ferrohydrodynamics, because ferro�uids
are non�conducting therefore there is zero Lorentz force acting as body force(in
contrast with MHD). The body force in FHD is due to polarization force which
requires material magnetization in presence of magnetic �eld gradients or discon-
tinuities.

1.2.1 Magnetostatics for non-conducting materials

Here we give very brief summary of physical laws and relations for magnetic �eld
in matter. More details could be found in [4, 5].

Magnetostatics is related to the phenomena, where the electric �eld E, elec-
tric displacement �eld D and currents J are zero. Such assumption is not fully
justi�ed, because the existence of magnetic �eld is a result of currents and cur-
rents are present when charges are moving. Therefore, magnetostatics is only an
approximation.

The existence of magnetic �eld on macroscopic level without currents is based
on the quantum theory. It is mainly the spin magnetic moments that contribute to
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the molecular �elds. Maxwell's equations with the previous assumptions reduce
to the set

∇ ·B = 0, (1.1)

and
∇×H = 0, (1.2)

where B is the magnetic induction and H is the magnetic �eld intensity.
In addition to the equations (1.1, 1.2) so called constitutive relations between

H and B must be provided, formally

H = H(B). (1.3)

The material is said to be linear i� in an index notation

Hi =
∑
j

(µ−1)ijBj,

where (µ−1)ij is the inverse magnetic permeability tensor. In the simplest case,
the linear response is isotropic and the (µ−1)ij tensor is diagonal with all diagonal
elements equal. Thus, for the linear, isotropic media

H = µ−1B, B = µH, (1.4)

with µ the absolute material permeability.
At the macroscopic level, it is reasonable to de�ne themagnetization or macro-

scopically averaged dipole moment of the medium M as

B = µ0(H + M). (1.5)

where µ0 = 4π10−7 H m−1 is the permeability of free space. Expressing M
explicitly and from the equation (1.4) simply follows that

M = χH,

with χ :=
(
µ
µ0
− 1
)
the magnetic susceptibility of the medium.

In this thesis, all of the physical quantities are de�ned and represented in the
International System of Units, so magnetic induction B is measured in teslas T
and magnetic �eld H is measured in amperes per metre, A m−1.

1.2.2 Magnetic stress tensor

As we have mentioned above, understanding the di�erences between several �uid�
�eld interactions play important role in a development of a physical model for
the �ow of a ferro�uid.

The only body force acting from the outside in hydrodynamics is gravitational.
In electrohydrodynamics electrically charged particles are a�ected with electrical
forces while in magnetohydrodynamics conductive �uid is subject to the Lorentz
body force.
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The derivation of the magnetic stress tensor with respect to the thermody-
namic background and conservation of energy leads to [3]

T′m = −

[
p(ρ, T ) +

∫ H

0

µ0

(
∂(νM)

∂ν

)
H̃,T

dH̃ +
1

2
µ0H

2

]
I + B⊗H, (1.6)

where notation from [3] is adopted so B⊗H = BiHj represents dyadic product, p
is thermodynamic pressure, ρ the density, T thermodynamic temperature, H,M
associated magnitude of the magentic �eld and magnetization respectively (H :=
‖H‖, M := ‖M‖), ν = ρ−1 the speci�c volume, I the identity tensor and B
magnetic induction. The notation(

∂(νM)

∂ν

)
H̃,T

means, that derivative is evaluated at constant H̃ and T , because M is also a
function of a magnetic �eld.

Note, that the tensor is symmetric, because B ⊗ H = H ⊗ B follows from
(1.4) and I = IT. This result holds also for nonlinear e�ects, i.e. nonlinear
magnetization M of the ferro�uid.

1.2.3 Classi�cation of �pressures� in ferro�uid

In the expression for the magnetic stress tensor, thermodynamic pressure p =
p(ρ, T ) appeared naturally as a result of the derivation. In order to emphasize
the magnetic aspect of the result we de�ne a new tensor Tm such that

Tm := T′m + p(ρ, T )I

so we separated thermodynamic pressure present also in non�polar �uid. The
new tensor is

Tm = −

[∫ H

0

µ0

(
∂(νM)

∂ν

)
H̃,T

dH̃ +
1

2
µ0H

2

]
I + B⊗H, (1.7)

and the magnetic force per unit volume corresponding to a magnetic stress tensor
Tm is

fm = ∇ ·Tm. (1.8)

There is an arbitrariness in grouping of magnetic terms in (1.7) that has led to
some confusion in the literature. Here, we follow the classi�cation introduced in
[3].

Applying the partial derivative in the term ∂(νM)
∂ν

and in the sense of the
equation f = ∇p, some pressure�like terms in (1.7) are identi�ed.

The magnetostrictive pressure

ps := µ0

∫ H

0

ν

(
∂M

∂ν

)
H,T

dH, (1.9)

and the �uid-magnetic pressure

pm := µ0

∫ H

0

MdH. (1.10)

7



Applying de�nitions (1.9, 1.10) and relation (1.4), expression for the magnetic
stress tensor yields

Tm = −(ps + pm +
1

2
µ0H

2)I + µH⊗H. (1.11)

1.2.4 Reduced magnetic force density form

It could be shown due to Korteweg and Helmholtz that for linearly magnetizable
media magnetic force density reduces to

fm = ∇
[
H2

2
ρ

(
∂µ

∂ρ

)
T

]
− H2

2
∇µ.

For media with absolute permeability constant within each phase separately,
∂µ
∂ρ
≡ 0 almost everywhere, therefore the magnetic force density is

fm = −H
2

2
∇µ. (1.12)

This force vanishes everywhere except for the phase interfaces, where non�zero
jump in the absolute permeability µ is present.

Such analysis is crucial in the experiments, where constant permeability is
assumed everywhere except for the phase interfaces. The magnetic force acts on
the boundaries with the e�ect similar to the surface tension force.

1.2.5 Equation of motion for a ferro�uid

Very important part of ferrohydrodynamics is devoted to the formulation and
study of equation of motion for a ferro�uid. A momentum equation was �rst
proposed by Neuringer and Rosensweig (1964) [6]. In order to satisfy the contin-
uum mechanics assumptions, it is assumed, that the dynamic equilibrium holds
for an �in�nitesimal element�, which is large enough to contain a large number of
colloidial magnetic particles comparing to the dimensions of the �ow �eld.

The Newton's law for such �in�nitesimal� element yields

ρ (∂tu + (u · ∇)u) = fp
Pressure force

+ fv
Viscous force

+ fg
Gravity force

+ fm
Magnetic force

+ fs
Surface tension force

(1.13)

The equation (1.13) with the magnetic force density expression (1.12) simply
unfolds the e�ect of a magnetic �eld on an incompressible linearly magnetiz-
able ferro�uid, but more formal and rigorous problem de�nition with appropriate
simpli�cations is given in the form of the Navier-Stokes equations in the chapter
4.
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2. The Finite element method

In the following sections we give a very brief introduction into the �nite element
method. We also refer more advanced reader who seeks more detail to [7] and for
mathematical insight to [8].

2.1 Problem de�nition

We are interested in a solution of a partial di�erential equations of the type

L(u(x)) = f(x), ∀x ∈ Ω (2.1)

on a given domain Ω, where L is a linear di�erential operator, u = u(x1, . . . , xn) =:
u(x) and f = f(x1, . . . , xn) =: f(x) is some known right hand side.

It is necessary to impose boundary conditions on the boundary ∂Ω of the
domain. These conditions are usually of type Dirichlet, so that

u = bD(x), ∀x ∈ ∂Ω

where bD is a prescribed function. Another type of the boundary condition is so
called Neumann, where

∇u · n(x) = bN(x), ∀x ∈ ∂Ω

where n is unit normal to the boundary.

2.2 Weak solution and basis, variational formula-

tion

Yet, we didn't de�ne function spaces for the functions in the problems like (2.1).
This is very important part and plays signi�cant role in the �nite element method.

Let us �nd such solutions to our problem, that the desired function u is in
some space S. It is reasonable, to suppose, that the space is rich enough, to
contain all the solutions.

We de�ne the inner product of two functions on Ω

(f(x), g(x)) :=

∫
Ω

fg dx

and norm induced by the inner product

||f ||:=
√

(f, f).

We say, that u is a weak solution to the problem (2.1), if

(L(u)− f, s) = 0, ∀s ∈ S. (2.2)

Function s = s(x) is often refered as a test function. It is clear, that the space
S is not of �nite dimension. This is a very restrictive condition. One might try
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to �nd an approximation of a solution, ũ(x) in a �nite dimensional subspace, say
Sn, where n ∈ N1 is a dimension of this space. Let then {si(x)}, i = 1, . . . , n be
the basis of this space, so each function from our subspace Sn can be expressed
as a linear combination of the basis functions

ũ = cisi,

where summation convention is used.
The equation (2.2) could be written in terms of the variational formulation.

If we let
L(s) :=

∫
Ω

sfdx

and
a(ũ, s) :=

∫
Ω

L(ũ)sdx,

the problem (2.1) becomes an equality of the (uni)linear and bilinear form. The
linearity of the forms is clear from the linearity of the Lebesgue integral.

2.3 Principles and algorithm

We are thus interested in seeking a solutions of (2.2). This can be rewritten
taking sj(x) as the test function

(L(ũ), sj) = (f, sj)

and decomposing approximate solution into the �nite basis

(L(cisi), sj) = (f, sj),

ci(L(si), sj) = (f, sj).

We let
A := Aij := {(L(si), sj)},

b := {(f, sj)}
and

c := {ci}
set of the coe�cients we are interested in. This is clearly a system of the equations
known from linear algebra, Ac = b.

We have derived the set of the equations that solves our problem in sense of
a weak solution given by the condition (GALERKIN).

Let suppose, for the sake of simplicity, that Ω ⊂ R2. Integral over Ω induced
by the inner product is decomposed into the sum of integrals over subdomains of
Ω. In sense of FEM, such decomposition is done into triangles, e.g. a triangu-
lation in R2 into M cells.

We write

Ω =:
M⋃
k=1

Tk,

so the matrix elements become

Aij =

∫
Ω

L(si)sjdx =
M∑
k=1

∫
Tk

L(si)sjdx.
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2.4 Finite element spaces

The basis functions si were not yet speci�ed.
Because the system Ac = b is solved, we would like them to vanish almost

everywhere, i.e. to have non-zero value only on some element(triangle) with its
neighbours. This implies, that the inner product Aij = (L(si), sj) forms a sparse
matrix.

In the following, we refer to the type of the element. A type is simply a
class of basis functions. Most common choice of this class is so called Lagrange
polynomials.

The order is roughly the order of the interpolation polynomial.
The shape of the �nite element is the geometry that de�nes the decomposition

of Ω.
For instance the �nite element of type Lagrange, third order and triangular

shape means continuous functions on the domain Ω such that on each triangle
Tk of the triangulation of Ω the functions are cubic polynomials, i.e. continuous
and piecewise cubic polynomials.

We introduce the notation from [9]. Summary of �nite element spaces is in
table (2.1).

W1
c linear continous
W2

c quadratic continous
W1

vc linear vector, continous, W1
c ×W1

c

Table 2.1: Finite element spaces used in this thesis.

2.5 Automated FEM, FEniCS project

Assembly of linear algebra system and process of its solving is the heart of the
�nite element method. However, matrix systems become bulky and a quest for
the solution could be time demanding. On the other hand, matrices are sparse
and in many cases iterative Krylov solvers could decrease computational time.

Together with a problem de�nition, construction of basis function and, bound-
ary conditions speci�cation �nite element method becomes ample tool and au-
tomatization of these routines is neccessary.

In this thesis, all of these routines are implemented with the ease of FEniCS
Project.

�FEniCS has an extensive list of features for automated, e�cient solution
of di�erential equations, including automated solution of variational problems,
automated error control and adaptivity, a comprehensive library of �nite elements,
high performance linear algebra and many more.� FEniCS Project.

For more detail on FEniCS, we refer to [10].

11



3. The Level-Set method

Our main goal is the simulation of two-phase �ow. It is therefore evident, that a
method for interface tracking must be implemented.

The level-set method (LSM) is simple and straightforward mathematical
construction that represents the interface as a cross section of some implicit hy-
persurface. Recent studies [11] improved the level-set method and reduced several
drawbacks of original formulation. The level-set method presented in our work
conserves volume of �uid. This improvement is important, especially if we would
like to analyse the volume of droplets, jets, etc.

Several other methods for the interface tracking are common, namely VOF
(volume-of-�uid), VOSET (a coupled volume-of-�uid and level-set), Particle Level-
Set, Phase-�eld etc. [12].

One of the most agreedable bene�t of the level-set method is absence of the
internal boundary conditions, boundary conditions between multiple phases at
their interface. In fact, since interface is captured implicitly, from the mathemat-
ical point of view there is no internal boundary. Phase transition occurs smoothly,
so as other physical quantities.

Another very important attribute is its simplicity. Even for very complex
and topologically bont domains and interfaces. An ordinary problem - multiple
circular bubbles merging together would formally require arduous parametriza-
tions dramatically changing as time evolves. In addition, if two bubbles merge,
parametrization changes in its very profoundness. Level-set method meets these
topological issues in smooth and e�ective way.

3.1 Mathematical formulation

Let say, domain Ω ⊂ Rn. We choose a domain Ω1 ⊂ Ω that represents one �uid
phase. Let then Ω2 = Ω\Ω1. We de�ne the interface between two phases as the
�nite intersection of all closed sub-domains,

Γ = {x : x ∈ ∩Ωi}.

Ω1

Ω2Γ

Figure 3.1: Decomposition of domain Ω into subdomain Ω1 and Ω2 for each �uid
phase. The interface Γ is the object for our studies.

General idea of LSM is to introduce the level-set function1 φ(x) : Ω 7→ R,
1We refer to the level-set function often simply as level-set, e.g. to de�ne the level-set, to

transport the level-set, etc.
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K ∈ R constant, so that the interface is

Γ = {x : φ(x) = K}.

The name level-set is derived from the fact, that surface is represented with the
K-level plane cross section of some hypersurface.

Standard level-set function, often refered as the distance level-set function
is de�ned such that

|φd(x)| := min
x̃∈Γ
|x− x̃|, K := 0,

with φ(x) > 0 on the one side of the interface and φ(x) < 0 on the other.
The speci�c property of this function is, that value at each point x ∈ Ω is the
minimal distance from x to the interface Γ.

In this thesis, an interface is tracked with the characteristic level-set func-
tion. It is an adjustment introduced in [11]. The speci�c property for this func-
tion is, that it is being smoothed characteristic function of one �uid phase. Char-
acteristic function could be mathematically reformulated as ζ(x) ≡ 1⇔ (x ∈ Ω1)
and ζ(x) ≡ 0⇔ (x ∈ Ω2).

There are numerous ways of regularization of the characteristic function. We
use

φc(x) :=
1

1 + e(φd(x)/ε)
, K := 0.5, (3.1)

with ε ∈ R as the �thickness� of the interface. Indeed, on the interface φd = 0⇒
φc = 0.5.

For instance, to constitute a 2D bubble centered in xc ∈ Ω1 with the radius
r ∈ R, we take the distance level-set φd(x) := ‖x − xc‖ − r and substitute into
(3.1). Wireframe plot of this level-set is in Fig. (3.2).

Level-set de�ned analytically as in (3.1) is essential only in process called
initialization. Later on, level-set is advected and reinitialized as described below
and it amends its shape. In contrast, the �thickness� parameter ε plays important
role also in reinitialization process.

3.2 Level-set advection

Let assume velocity �eld u(x, t) : Ω × R+ 7→ Rn is given. Let also assume, that
the interface is given as described above, represented with the level-set φ(x, t). In
order to transport the level-set, i.e. to transport the interface, so called transport
equation must be solved,

∂tφ+ u · ∇φ = 0, x ∈ Ω. (3.2)

Explicit solution for this equation could be found. This solution transports the
initial level set φ(x, 0) with the velocity �eld u without change in its pro�le.
Unfortunately, it is not possible to solve this equation numerically and preserve
the pro�le as expected. Depending on the time discretization scheme, several
drawbacks are signi�cant (dissipation, dispersion, etc.)[13].

These e�ects are not desired, because the level-set property(the distance func-
tion, the characteristic function) is not retained. To overcome this drawback, it
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Figure 3.2: The characteristic level-set function that represents 2D bubble, i.e.
circle, with the center at (0.5, 0.5) and radius r = 0.2. Contours of this function
for di�erent levels are depicted in Fig. (3.3).

was suggested by Smereka et al. in [14] to reinitialize the level-set function in
each time step.

Reinitialization is a simple matter of solving some advection�like equation for
each physical time t. Say, we would like to reinitialize the level-set at the time t0.
We therefore solve reinitialization equation for some tentative level-set ϕ(x, τ) in
sub�time variable τ with the initial condition

ϕ(x, 0) = φ(x, t0), ∀x ∈ Ω. (3.3)

The reinitialization is solved until steady-state, until some steady-state criteria is
satis�ed.

The original suggestion in [14] succeeds in restoration of the level-set prop-
erty, but it moves the pro�le. Such displacement results in the loss of volume
conservation.

In addition, improved reinitialization proposed by Olsson and Kreiss [15] ad-
vances in volume conservation [9]. This method considers characteristic level-set
function φc described above and de�nes the reinitialization equation2 as

∂τϕ+∇ · [ϕ(1− ϕ)nΓ(x, t0)] = ε∇ · [nΓ(x, t0)(∇ϕ · nΓ(x, t0))] , (3.4)

with the inital condition (3.3), where nΓ = nΓ(x, t), ∀x ∈ Ω is the inner unit
normal to the interface Γ pointing into the area surrounded by this interface. The
parameter ε is the thickness constant, same as in the de�nition (3.1).

2It is an advection-like equation for the transport of level-set in normal vector �eld. Because
the normal is inner, pointing into the interface, it concentrates the level set to the interface,
retaining characteristic property.
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Figure 3.3: Contours of the characteristic level-set function at three di�erent
values, 0.05, 0.5 and 0.95.

In the sense of the level-set, the unit normal is given as3

nΓ(x, t) :=
∇φ(x, t)

‖∇φ(x, t)‖
. (3.5)

3.3 FEM for the level-set advection

As stated before, we are interested in phenomena of incompressible �uid �ow.
Such motion neccesarily satis�es volume conservation. Incompressibility con-
straint is governed by so called divergence�free velocity �eld

∇ · u = 0, ∀x ∈ Ω.

Under such circumstances, transport equation (3.2) could be rewritten as

∂tφ+∇ · (φu) = 0. (3.6)

Now, take s ∈ W1
c as a test function, multiply (3.6) with s and integrate over Ω,

so that weak formulation is obtained as

(∂tφ, s) + (∇ · (φu), s) = 0. (3.7)

With the use of the Gauss divergence theorem the weak formulation yields∫
Ω

s∂tφdx +

∫
Ω

s∇ · (φu)dx =∫
Ω

s∂tφdx +

∫
Ω

∇ · (sφu)dx−
∫

Ω

(φu) · ∇sdx =∫
Ω

s∂tφdx +

∫
∂Ω

sφ(u · n∂Ω)dS −
∫

Ω

(φu) · ∇sdx = 0.

3Note, that such normal �eld is de�ned for all x ∈ Ω, not only at the interface Γ. Also note,
that in the equation (3.4), normal �eld nΓ(x, t0) is independent on the sub�time variable τ , so
reinitialization step is solved with nΓ constant in sub�time.
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The middle term,
∫
∂Ω
sφ(u · n∂Ω)dS has meaning of net level-set transport into

domain Ω. Assuming

u · n∂Ω ≡ 0, ∀x ∈ ∂Ω (3.8)

the weak formulation arrives at

(∂tφ, s)− (φ,u · ∇s) = 0. (3.9)

The condition u · n∂Ω ≡ 0, ∀x ∈ ∂Ω is so�called free�slip boundary condition,
meaning the matter is free to slip on walls but must not pass through it. Other-
wise, we have to take care of original weak formulation (3.7).

3.3.1 Time discretization

In the following, level-set advection is discretized in time. Say, we are seeking a
solution for the advection weak formulation (3.9) ∀t ∈ (0, T ). This time interval
is uniformly divided into N sub�intervals of equal length, ∆t, and tn+1 := tn+∆t.
We also write

φn ≈ φ(x, tn), un ≈ u(x, tn).

The Crank-Nicholson schema4 applied also in [9] is second order in time and
states

1

∆t

(
φn+1 − φn, s

)
=

1

2

(
φn+1 + φn,un · ∇s

)
. (3.10)

3.4 FEM for the level-set reinitialization

With the same puprpose as in the section (3.3), take the reinitialization (3.4),
multiply with s ∈ W1

c . Integrating over Ω leads∫
Ω

s∂tϕdx +

∫
Ω

s∇ · [ϕ(1− ϕ)nΓ] dx = ε

∫
Ω

s∇ · [nΓ(∇ϕ · nΓ)] dx. (3.11)

Again, we rewrite the divergence terms so we can apply the Gauss theorem. It
results in ∫

Ω

s∂tϕdx +

∫
Ω

∇ · [ϕ(1− ϕ)nΓs] dx−
∫

Ω

ϕ(1− ϕ)nΓ · ∇sdx =

ε

∫
Ω

∇ · [nΓ(∇ϕ · nΓ)s] dx− ε
∫

Ω

(∇ϕ · nΓ)nΓ · ∇sdx⇒∫
Ω

s∂tϕdx +

∫
∂Ω

sϕ(1− ϕ)(nΓ · n∂Ω)dS −
∫

Ω

ϕ(1− ϕ)nΓ · ∇sdx =

ε

∫
∂Ω

s(∇ϕ · nΓ)(nΓ · n∂Ω)dS − ε
∫

Ω

(∇ϕ · nΓ)nΓ · ∇sdx.

Repeatedly, integrals over ∂Ω vanish if level-set vanish on the boundary. With
this premise we have

(∂tϕ, s)− (ϕ(1− ϕ),nΓ · ∇s) = −ε(nΓ · ∇ϕ,nΓ · ∇s). (3.12)
4The Crank-Nicholson schema could be viewed as a speci�c case of more general θ-schema

with θ := 1
2 [PDE]. Simply, instead of taking �spatial� terms(terms without time derivate) fully

implicit, φn+1, or fully explicit, φn, we take the average of both, (φn+1 + φn)/2.
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3.4.1 Time discretization

The Crank-Nicholson schema for the weak formulation (3.12) is

1

∆τ
(ϕk+1 − ϕk, s)−

(
ϕk+1 + ϕk

2

[
1− ϕk+1 + ϕk

2

]
,nΓ · ∇s

)
= (3.13)

−ε
(
nΓ · ∇

ϕk+1 + ϕk

2
,nΓ · ∇s

)
. (3.14)

We wrote k-th time level to accentuate, that reinitialization takes place on sub-
time scale. This weak formulation is nonlinear(in ϕ).

3.5 The advection step summary

We formulated advection and reinitialization for the characteristic level-set func-
tion in the sence of weak formulation. Whole procedure could be summarized in
the following

1. Initialize the level for the initial interface pro�le at time t = 0. That is,
project the function (3.1) into chosen function space on the triangulation
of the Ω.

2. Solve the advection equation (3.10) with given φn and un to get φ̃n+1. This
function is consequently reinitialized so we write ϕ0 := φ̃n+1.

3. With ϕ0 from the previous step solve (3.14) until the steady state criteria
leading to the level-set at the physical time tn+1. Start again from step 2
to advance into next time layer.

The choice of the level-set thickness constant ε and reinitialization subtime
step ∆τ is not trivial. We use the choice from [15]

∆τ :=
(
∆x1+d

)
/2,

ε :=
(
∆x1−d) /2, (3.15)

with the d := 0.1 and ∆x is the spatial resolution, approximately the inverse of
number of triangles in the smaller dimension, e.g. 100× 100 triangles in domain
has ∆x = 1/100.

A domain Ω is triangulated into random-like structure of elements using
gmsh.5

5http://geuz.org/gmsh/
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4. The ferro�uid Navier-Stokes

equations

The goal of this chapter is to formulate the equations governing ferro�uid �ow, the
equations of ferrohydrodynamics. In the beginning we introduce the postulates
and simpli�cations. With the help of these we derive the dimensionless form of
the Navier-Stokes equations and add force present in a magnetic �eld.

At the end we formulate the equations in terms of the �nite element method,
i.e. a weak formulation of our problem is proposed.

It is important to note, that the local-in-time existence of unique strong so-
lution to the Cauchy problem for the system of equations of ferrohydrodynamics
is given in [16]. Under the assumption that the initial data and the external
magnetic �eld are small they also prove a global existence of strong solutions.

Let the following assumptions and simpli�cations hold

• ferro�uid is a newtonian �uid. Its stress tensor without magnetic �eld is

Tn = −pI + 2ηD (4.1)

with
D =

1

2

(
∇u + (∇u)T

)
, (4.2)

the rate of deformation tensor,

• ferro�uid is linearly magnetizable, izotropic and homogenous media, (1.4),

• there are no electric currents and ferro�uid is non-conductive medium, we
work in the �eld of magnetostatics,

• the only e�ect of magnetic �eld on a ferro�uid is additional magnetic stress
tensor Tm (1.11). The �nal stress tensor is

T := Tn + Tm = −
(
p+ ps + pm +

1

2
µ0H

2

)
I + 2ηD + µH⊗H, (4.3)

• additionaly, the ferro�uid is incompressible, so ∇ · u = 0. By the means of
incompressibility, magneto-strictive pressure ps ≡ 0, ∀x ∈ Ω.

4.1 The equations and continuous surface force

approach

Let Ω be a domain. The ferro�uid domain Ω1 ⊂ Ω and Ω2 := Ω\Ω1 the second
phase domain.
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The incompressible Navier-Stokes equations for a ferro�uid motion are

D(ρu)

Dt
= ∇ ·T + fs + fg,

∇ · u = 0,

(4.4)

(4.5)

with appriopriate boundary and initial conditions.1 In the equation, ρ = ρ(x, t),u =

u(x, t) and D(ρu)
Dt

:= ∂(ρu)
∂t

+u ·∇(ρu) is the material derivative. The gravitational
body force

fg = geg (4.6)

and the surface tension interfacial force

fs = σκδ∗(xΓ)nΓ, (4.7)

where σ is the surface tension coe�cient measured in N m−1, κ = κ(x, t) is the
curvature of the interface, nΓ(x, t) unit normal to the interface Γ and δ∗(xΓ) is
an approximation of Dirac delta distribution �settled� at the interface Γ.

The equations formulated in (4.4, 4.5) refer to physical quantities ρ, η and µ
as continuous functions of space variable x. In contrast, it is the very nature of
an interface between two di�erent immisible �uid phases, that discontinuity in
these quantities occur(at macroscopic level). To address this, discontinuities are
smoothed with the help of the characteristic level set φc

ρ(x, t) := ρ2 + (ρ1 − ρ2)φc(x, t),

η(x, t) := η2 + (η1 − η2)φc(x, t),

µ(x, t) := µ2 + (µ1 − µ2)φc(x, t).

(4.8)
(4.9)
(4.10)

We can clearly see the advantage of characteristic level set over distance level
set. Characteristic level set serves directly to regularize discontinuities. In case
of distance level set one must construct new smoothed function and therefore
introduces unasked inaccuracies.

We also adopt the notation ρ = ρ(φc(x, t)), meaning that the density, viscosity,
etc. are given by level-set as in (4.8).

Now, we focus on formulation of the surface tension force and the magnetic
force, both interfacial forces, in the sense of continuous surface force approach.

4.1.1 The continuous surface tension force

With the help of the level-set function φc, the approximation of Dirac delta is

δ∗ = ‖∇φc‖. (4.11)

Taking unit normal as de�ned in (3.5) and substituting into (4.7) yields for surface
tension force

fs = σκ∇φc. (4.12)

1We do not specify them here, because they di�er from experiment to experiment.
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Comprehensive derivation of the expression (4.7) is found in [17]. The technique,
where discrete surface tension force is approximated with some smoothed alter-
native is called continuous surface tension (CST) model. There is a plenty of
mathematical papers with thoughtful interest in CST, its accuracy and conver-
gence.

There is still pending some discussion about the curvature κ. In the standart
level-set literature, the curvature is de�ned as κ(x) = −∇·nΓ. Instead, if we write
the surface tension force as a divergence of some tensor, �nite element formulation
encourages us to �per-partes� the divergence onto a test function. This tensor is
[18]

Ts = σ(I− nΓ ⊗ nΓ)δ∗,

fs = ∇ ·Ts,

(4.13)
(4.14)

where δ∗ is computed from (4.11). Advantage of this surface tension representa-
tion is the absence of curvature computation.

4.1.2 The continuous magnetic force

It was discussed in the section 1.2.4, that for linearly magnetizable ferro�uid with
the absolute permeability µ̃ = µ̃(x, t) constant within each phase separately, i.e.
piecewise constant function, the magnetic force reduces to

fm = −1

2
H2∇µ̃. (4.15)

Since µ = µ(φc(x, t)), de�ned in (4.10) is an approximation of such piecewise
constant permeability µ̃, we use the expression (4.15) with µ(φc). The same
spirit is applied in [23].

4.2 Dimensionless form

Take the Navier-Stokes equation from (4.4) and substitute gravitational force
from (4.6), surface tension from (4.14), magnetic force from (4.15) and physical
quantities density, viscosity and magnetic permeability from (4.8, 4.9, 4.10).

We get

∂t(ρ(φc)u) + u · ∇(ρ(φc)u) = −∇p+∇ · (2η(φc)D)− 1

2
H2∇µ(φc) +∇ ·Ts + geg.

(4.16)

Let introduce dimensionless variables

x∗ :=
x

x0

, u∗ :=
u

u0

, t∗ :=
t

x0/u0

, ρ∗ :=
ρ

ρ0

, η∗ :=
η

η0

, µ∗ :=
µ

µ0

, H∗ :=
H

H0

.

The derivatives ∂t and ∇ must be also non-dimensionalized. Note that after
few simple arrangements, left-hand side of the equation (4.16) has dimension u20ρ0

x0
,

so we divide whole expression with this factor. Because the exact dimensional
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value of the thermodynamic pressure p is not in our interest, we write p∗ to note
it is dimensionless and multiplied with some factor. This yields

∂t∗(ρ∗u∗) + u∗ · ∇∗(ρ∗u∗) = −∇∗p∗ +
1

Re
∇∗ · (2η∗D∗)

− 1

Mg

1

2
(H∗)2∇∗µ∗ +

1

We
∇∗ ·T∗s +

1

Fr2eg,
(4.17)

with the Reynolds number Re := ρ0u0x0
η0

as the ratio of intertial forces to viscous

forces, the Weber number We :=
ρ0u20x0
σ

as the ratio of inertial forces to surface
tension forces, the Froude number Fr := u0√

x0g
representing the importance of

inertial forces over gravitational, and the Magnetic number Mg :=
u20ρ0
µ0H2

0
as the

ratio of inertial forces to the magnetic �eld forces.
In the following, we omit the asterisk for brevity and work always with di-

mensionless quantities.

4.3 Numerical solution and projection methods

A di�culty for the numerical simulation of the incompressible Navier-Stokes equa-
tions is, that the velocity and pressure are coupled by incompressibility constraint.
To overcome this di�culty, Chorin and Temam [19] proposed in the late 1960s
idea of so called projection methods. The advantage of projection methods is that
at each time one only needs to solve a sequence of decoupled elliptic equations
for the velocity and the pressure. It is not our goal, to analyze the projection
methods, because it is far beyond the scope of bachelor thesis. We refer more
advanced reader to original paper and for overview of projection methods for
incompressible �ows to [20].

In this work, projection method similar to [15] is used2.
As said, process of solution reduces to solving sequence of decoupled equations.

First, we discretize the Navier-Stokes equation in time only. Spatial discretization
with the help of FEM is given in the following section.

The �rst step is to �nd a tentative velocity un+1
∗ that does not satis�es (4.5)

but un+1
∗ ≡ 0, ∀x ∈ ∂Ω. That is

1

∆t

(
ρn+1un+1

∗ − ρnun
)

+∇ ·
(
ρn+1un ⊗ un+1

∗
)

= −∇pn

+
1

Re
∇ ·
(
ηn+1

(
∇un+1

∗ + (∇un)T
))

− 1

Mg

1

2
(Hn+1)2∇µn+1 +

1

We
∇ ·Tn+1

s +
ρn+1

Fr2 eg.

(4.18)

The second step is to solve Poisson equation for the unknown pressure pn+1 with
un+1
∗ from the �rst step. This is also called pressure correction

1

∆t
∇ · un+1

∗ = ∇ ·
[
∇(pn+1 − pn)

ρn+1

]
. (4.19)

2In [15] there is no magnetic term, so addition of this term is new aspect of this thesis.
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Finally, the velocity correction is the matter of solving

un+1 = un+1
∗ − ∆t

ρn+1
∇(pn+1 − pn). (4.20)

We used ρn+1 = ρ(φn+1
c ) to denote density, viscosity, etc. at (n+ 1)-th time level

given by corresponding level-set.
Important note on the magnetic force term is, that it is not a function of

velocity u. Therefore, from mathematical point of view, it plays a role similar
to the surface tension force and belongs to the �group forces (surface tension,
gravity)� which do not change a type of equation. The only di�culty that comes
with this force is the magnitude of magnetic �eld Hn+1. This value is not trivial
and must be computed separately for each time step. We present whole section
[eqshape] to meet this.

4.3.1 Finite element formulation

Let v ∈ W2
vc be a vector test function and write the L2(Ω) inner product of v

and the equation (4.18). We would like to �per-partes� spatial derivatives onto
test function so the similar technique as in section 3.4 is adopted.

1

∆t

∫
Ω

(
ρn+1un+1

∗ − ρnun
)
· vdx +

∫
∂Ω

ρn+1(un · n∂Ω)(un+1
∗ · v)dS

−
∫

Ω

(un · ∇v) · (ρn+1un+1
∗ )dx = −

∫
∂Ω

(pnv) · n∂ΩdS +

∫
Ω

pn∇ · vdx

+
1

Re

∫
∂Ω

ηn+1
(
∇un+1

∗ + (∇un)T
)
· n∂ΩdS

− 1

Re

∫
Ω

ηn+1
(
∇un+1

∗ + (∇un)T
)

: ∇vdx

+

∫
Ω

(
1

Mg

1

2
(Hn+1)2∇µn+1 +

1

We

∫
Ω

(∇ ·Tn+1
s ) +

1

Fr2

∫
Ω

ρn+1eg

)
· vdx.

(4.21)

Because we seek un+1
∗ ≡ 0, ∀x ∈ ∂Ω, previous equation �nally leads to FEM

formulation for the �rst projection step omitting integrals over ∂Ω.

The second, pressure correction step, is the scalar equation and pressure is
approximated within space W1

c , so we take q ∈ W1
c , multiply and integrate over

Ω,

1

∆t

∫
Ω

q∇ · un+1dx =

∫
∂Ω

q

[
∇(pn+1 − pn)

ρn+1

]
· n∂ΩdS −

∫
Ω

[
∇(pn+1 − pn)

ρn+1

]
· ∇qdx,

(4.22)

and similarly for the velocity correction with v ∈ W2
vc∫

Ω

un+1 · vdx =

∫
Ω

un+1
∗ · vdx−∆t

∫
Ω

[
∇(pn+1 − pn)

ρn+1

]
· vdx. (4.23)

In the equation (4.22), the boundary term is zero, if corrected pressure pn+1 is
sought to ful�l ∇(pn+1−pn) ·n∂Ω ≡ 0, ∀x ∈ ∂Ω. This is the unphysical boundary
condition discussed in [15, 20]. It originates from the projection method and must
be enforced although it can reduce the accuracy.
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5. Equilibrium ferro�uid droplet

shape

Complex method for a numerical simulation of ferro�uid �ow is described. We
would like to utilize it for prediction and simulation of equillibrium ferro�uid
droplet shape.

With the equilibrium we refer to a state, where all forces are in balance and
there is no �uid �ow, so u = 0. However, such state is hard to achieve within
numerical approximation.

5.1 Problem de�nition

Ω1

Ω2

rc

H · n∂Ω = 0H · n∂Ω = 0
u ≡ 0,

u ≡ 0, H · n∂Ω = h

u ≡ 0,

u ≡ 0, H · n∂Ω = −h

r0

top

right

bottom

left

Figure 5.1: Geometry, initial and boundary condition for equilibrium droplet
shape.

We have a geometry as depicted in (5.1). A ferro�uid phase Ω1 and surround-
ing �uid Ω2. The initial shape of ferro�uid droplet is circle centered at rc = 0.5
with the radius r0 = 1/6 so the droplet diameter takes one third of computational
domain. Homogenous magnetic �eld of intensity g is imposed from bottom to
top, i.e. in vertical direction.

Because we are interested in the equilibrium state, i.e. u = 0, we set the
viscosity of the ferro�uid equal to the viscosity of the surrounding �uid and large
enough to supress time consuming droplet oscillations. We set η1 = η2 = 1
with referential η0 = 0.1 Pa s. Surface tension is set to match surface tension of
water, σ = 72 mN m−1. Densities are ρ1 = 1, ρ2 = 0.001 and ρ0 = 1000 kg/m3.
Dimensional referential length scale is x0 = 1 cm. Surrounding �uid is assumed
to be non-magnetizable, so its permeability is set to µ0, the permeability of free
space. Susceptibility of the ferro�uid phase is χ = 1.

The gravity is zero in this model.
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The dimensionless numbers are Re ≈ 30, We ≈ 13, Mg ≈ 8.
Domain Ω was triangulated into approximately 100 × 100 triangles. Dimen-

sionless time step is set to ∆t = 0.005 and spatial resolution to ∆x = 0.02.
A problem remains to compute magnetic �eld magnitude H. It is expected,

from experiments in [1] and few devoted papers [21, 22, 23], that magnetic �eld
di�ers on the �uid interface. Because the magnetic force (4.15) is proportional to
H2, this di�erence results in non-homogenous intefrace force distribution. Mag-
netic force acts in the direction of applied magnetic �eld and elongates a droplet
so it reaches ellipsoid-like shape. Ellipsoid shape with conical ends is acquired
where magnetic susceptibility is large enough [24].

5.2 FEM for magnetostatics

A quest to obtain magnetic �eld in domain Ω and especially on the interface Γ is
necessarily connected with solution of the equations of magnetostatics.

We recap them,

∇ ·B = 0, ∇×H = 0, B = µH.

It should be noted, that magnetic �elds simulated in this thesis are low enough,
so the ferro�uid is linearly magnetizable. Roughly, according to [21], this is valid
for H < 6 kA m−1.

Boundary conditions imposed on the boundaries and interfaces - the normal
component of B and the tangential component ofH are required to be continuous.
These conditions are simply derived from equations of magnetostatics and general
Stokes theorem.

The ferro�uid interface Γ is represented with level-set, so boundary conditions
on this interface are naturally ful�lled, because level-set represents the jump in
permeabilities. Well-known magnetic scalar approach should be used, because
there are no currents in ferro�uid and Ω is simply connected domain. Poisson
equation is therefore solved, but simple adjustment derived in [22] helps to reduce
approximation errors that originates from level-set non-zero thickness .

Boundary conditions on the interface are hence naturally ful�lled by solving
the equation for an unknown magnetic scalar potential-like function ξ = ξ(x, t) :
Ω× R+ 7→ R,

∆ξ + µ(φc)

(
1

µ2

− 1

µ1

)
δ∗(xΓ)(−nΓ) · ∇ξ = 0. (5.1)

Note carefully, that we changed sign before normal Γ in contrast to original
formulation. We have normal de�ned in (3.5) as inner normal.

Magnetic �eld induction is then obtained as

B = ex

(
∂ξ

∂y

)
− ey

(
∂ξ

∂x

)
. (5.2)

Since we are concerned with magnetic �eld magnitude H := ‖H‖, using the linear
constitutive relation and (5.2) we have

‖H‖ =
1

µ(φc)
‖B‖ =

1

µ(φc)

√(
∂ξ

∂x

)2

+

(
∂ξ

∂y

)2

. (5.3)
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Again, delta approximation is used as in the previous section, normal to the
interafce is given as normalized level-set gradient and absolute permeability is
smoothed in familiar way with the use of level-set.

Although boundary conditions on the interface Γ are naturally included in this
equation, it is still required to discuss boundary ∂Ω. Magnetic �eld H is applied
vertical, so its normal component vanish on the right and left boundaries. This
is resolved with the FEM's natural boundary conditions - Neumann's.

Weak formulation for the equation (5.1) is achieved multiplying with r ∈ W1
c ,

thus∫
∂Ω

r∇ξ · n∂ΩdS −
∫

Ω

∇r · ∇ξdx +

(
1

µ2

− 1

µ1

)∫
Ω

rµ(φc)‖∇φc‖(−nΓ) · ∇ξdx = 0.

(5.4)

In the paper [22] �nite di�erence method is used to solve (5.1) so implementation
of (5.2) for boundary conditions is straightforward. It is now our task to solve
the equation with the help of FEM.

We have noted, that �rst term in our weak formulation could be utilized to set
boundary conditions at bottom and top. Bottom, left, top and right boundaries
are denoted (∂Ω)b, (∂Ω)l, etc.

If we de�ne
B⊥ := ∇ξ

we see from (5.2), that B⊥ is orthonormal to B, thus ‖B⊥‖ = ‖B‖. This allows
us to solve (5.1) with boundary conditions for our orthonormal vector �eld and
obtain B⊥. The reason, why we are reformulating boundary conditions for B⊥ is
the presence of natural Neumann's term for ξ in (5.4).

First term is rewrited into∫
∂Ω

r∇ξ · n∂ΩdS =

∫
(∂Ω)r

rB⊥ · n∂ΩdS +

∫
(∂Ω)l

rB⊥ · n∂ΩdS, (5.5)

where integral over bottom and top are zero. Although original boundary condi-
tions are H·n(∂Ω)b = −h andH·n(∂Ω)t = h, orthonormal reformulation �switches�
the importance to the right and left part.

Now we use the simplicity of geometry, especially ∂Ω and express the outer
normal. On the ∂Ω is also µ = µ2. Weak formulation of (5.1) is �nally

µ2

∫
(∂Ω)r

rhdS − µ2

∫
(∂Ω)l

rhdS −
∫

Ω

∇r · ∇ξdx+(
1

µ2

− 1

µ1

)∫
Ω

rµ(φc)‖∇φc‖(−nΓ) · ∇ξdx = 0.

(5.6)

5.2.1 Magnetic �eld of ferro�uid droplet

To test the equations and method developed above, we solve a magnetic �eld H
for some simple geometries. In �gure 5.2 we can see magnetic �eld intensity is
larger at bottom and top, comparing to the left and right sides of droplet. This
demonstrates the e�ect responsible for the change in ferro�uid droplet shape.
Magnetic force is dominant at the bottom and top and elongates the droplet.

To show the di�erence in magnetic force on the interface, its vector �eld is
plotted into �gure 5.3.
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Figure 5.2: Contours of magnetic �eld intensity H in A m−1 of circular ferro�uid
droplet with susceptibility χ = 1 placed in non magnetic medium. Magnetic �eld
at bottom and top is set to h = 1kA m−1. Contours of the level-set are drawn for
values 0.05(dashed), 0.5(solid), 0.95(dashed).

5.2.2 Evolution to the equilibrium shape

Time evolution of initially circular ferro�uid droplet after imposing external mag-
netic �eld is numerically simulated. The geometry and physical parameters are
de�ned above. The external magnetic �eld intensity h is varied.

Results for two di�erent magnetic �elds are shown in �gures 5.4 and 5.5. The
expected droplet elongation e�ect is apparent.

In the �rst sub�gures, ferro�uid droplet is depicted before elongation. We
can see non-structured velocity �eld u in the vicinity of the interface. That is,
because the magnetic force is not yet dominant. Dominant force is surface tension
force which is in the direction normal to the interface. The surface tension force is
responsible for the di�erence in pressures, in Ω1 and Ω2, well known from Laplace-
Young equation. This di�erence is within projection method slowly established
through pressure correction step, so the onset of pressure is very sensitive to the
time step, ∆t.

Consequently, �ow of �uid gets oriented and well-structured so the elongation
process is initiated.

Interface changes and approaches equilibrium state. However, such state is
hard to accomplish in numerical simulations. We clearly see, that although in-
terface ceases from any further movement, velocity �eld u 6= 0. There are several
spurious oscilations and parasitic components, which grows fast thus we are un-
able to solve linear system.

Comparing equilibrium state in �g. 5.4 to �g. 5.5 simple hoped-for phe-
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Figure 5.3: Magnetic force distribution for ferro�uid droplet with susceptibility
χ = 1, h = 1kA m−1. Contours of the level-set are drawn for values 0.05(dashed),
0.5(solid), 0.95(dashed). Length of vectors are scaled relatively to the �gure
proportions.

nomenon can be observed. The greater external magnetic �eld is applied, the
more ferro�uid droplet elongates. This qualitative result is in accordance with
[22, 24, 23].
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(d) t = 9 ms

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(e) t = 12 ms
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Figure 5.4: Evolution of ferro�uid droplet in external magnetic �eld h =
4 kA m−1. The initial diameter of droplet is 1/3 cm. Velocity �eld u is plot-
ted, scaled relatively to the �gure dimensions.
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Figure 5.5: Evolution of ferro�uid droplet in external magnetic �eld h =
5 kA m−1. The initial diameter of droplet is 1/3 cm. Velocity �eld u is plot-
ted, scaled relatively to the �gure dimensions.
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6. Ferro�uid dripping phenomenon

Equilibrium droplet shape was simulated in previous section. Because we have
tested the numerical method at least in qualitative terms, it can be employed to
predict the dynamics and evolution of droplet in dripping process. Dripping is
simply a process, where droplet is hanging in the balance of surface tension and
gravity force and consequently, gravity overcomes surface tension and separate
droplet falls.

Since we formulated equations of motion with gravity, it is considered in the
following examples.

Results given are of qualitative character. We compare observed e�ects with
experiments in [1].

6.1 Problem de�nition

Ω1

Ω2

rc

H · n∂Ω = 0H · n∂Ω = 0
u ≡ 0,

u ≡ 0, H · n∂Ω = h

u ≡ 0,

u ≡ 0, H · n∂Ω = −h

r0

top

right

bottom

left

fg

Figure 6.1: Geometry, initial and boundary condition for ferro�uid dripping phe-
nomenon.

The geometry is depicted in (6.1). Ferro�uid initiates its motion with u =
0, ∀x ∈ Ω as half circle at the top boundary with diameter r0 = 1/6 centered at
(0.5, 1.0).

It is our aim, to de�ne the geometry and physical parameters to match the
water-air simulation, so results can be compared with water-based ferro�uid ex-
periments. Unfortunately, it is not a simple job.

Viscosities are set to η1 = 1, η2 = 1 and η0 = 1× 10−3 Pa s. Note, that actual
physical viscosities of water-air model are of order 10−3 for water and 10−5 for
air. Such con�guration is very sensitive to spatial and time step because of high
Reynolds number, and in practice tremendously computationaly costly.
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Surface tension is again set to match the waters, σ = 72 mN m−1. Lower
surface tension would reduce spurious oscilations in the vicinity of the interface,
but we found this value to be stable enough, for our spatial and time resolution.
Densities are ρ1 = 1, ρ2 = 0.001 and ρ0 = 1000 kg/m3.

If we set dimensional referential length scale to x0 similar for what we have in
the equilibrium shape section, we cannot observe desired dripping phenomenon.
That is simply the result of too big surface tension forces comparing to gravi-
tational forces. From these reasons, length scale is set x0 = 3 cm. Referential
velocity is uo =

√
gx0.

The dimensionless numbers are Re ≈ 1500, We ≈ 120,Fr ≈ 1, Mg ≈ 20.
Ferro�uid phase have susceptibility χ = 1 and surrounding �uid is non-

magnetizable.
Domain Ω was triangulated into approximately 100 × 100 triangles. Dimen-

sionless time step is set to ∆t = 0.005 and spatial resolution ∆x = 0.015.

6.2 Qualitative comparison

Similarly to the previous section we compute the magnetic �eld for initial fer-
ro�uid droplet position. It is shown in Fig. (6.2). Such magnetic �eld will result
in magnetic force pulling the droplet in the same direction as gravitational force.
It is the e�ect discussed in [1].
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Figure 6.2: Magnetic �eld intensity H contours in A m−1 of circular ferro�uid
droplet with susceptibility χ = 1. Magnetic �eld at bottom and top is h =
3kA m−1. Contours of the level-set are drawn for values 0.05(dashed), 0.5(solid),
0.95(dashed).
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We have included the Fig. (1) to show the experimental results. Comparing
to our simulations in the �gures (6.3, 6.4) we can conclude, that magnetic �eld
leads to detachment of a droplet in earlier times. In case without magnetic �eld,
droplet is detached at time t ≈ 80 ms whereas for magnetic �eld t ≈ 70 ms.

If we have a closer look at the �gures at the time of droplet separation we
might note asymmetric and undulated ferro�uid interface. The origin of this
inaccuracies is the low spatial resolution. So called neck, a very thin portion of
�uid, reduces to a few triangular mesh elements and denser mesh is becoming
inevitable. However, adaptive mesh re�nement is beyond the scope of this thesis.

After the separation process neck retracts and bounces to the droplet. This
is conspicuous in the last sub�gures.
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Figure 6.3: Dripping of ferro�uid droplet without external magnetic �eld.

33



0.3 0.5 0.7
0.0

0.2

0.4

0.6

0.8

1.0

(a) t = 5.5 ms,

0.3 0.5 0.7
0.0

0.2

0.4

0.6

0.8

1.0

(b) t = 11 ms,

0.3 0.5 0.7
0.0

0.2

0.4

0.6

0.8

1.0

(c) t = 22 ms,

0.3 0.5 0.7
0.0

0.2

0.4

0.6

0.8

1.0

(d) t = 33 ms,

0.3 0.5 0.7
0.0

0.2

0.4

0.6

0.8

1.0

(e) t = 44 ms,

0.3 0.5 0.7
0.0

0.2

0.4

0.6

0.8

1.0

(f) t = 55 ms,

0.3 0.5 0.7
0.0

0.2

0.4

0.6

0.8

1.0

(g) t = 66 ms,

0.3 0.5 0.7
0.0

0.2

0.4

0.6

0.8

1.0

(h) t = 77 ms,

0.3 0.5 0.7
0.0

0.2

0.4

0.6

0.8

1.0

(i) t = 88 ms,

0.3 0.5 0.7
0.0

0.2

0.4

0.6

0.8

1.0

(j) t = 99 ms.

Figure 6.4: Dripping of ferro�uid droplet with applied magnetic �eld h =
2 kA m−1 at the top and bottom in the vertical direction.
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Conclusion

The main goal of this thesis was to formulate the equations of ferrohydrodynamics
and to put together advanced mathematical techniques, so simple free-surface
ferro�uid �ows can be simulated.

In the beginning, physical properties of ferro�uids are summarized and the
e�ect of magnetic �eld in terms of magnetostatics is given. The in�uence of
magnetic �eld is compiled into magnetic stress tensor. The magnetic force in
this work acts where the permeability discontinuities are present, so this force is
implemented into momentum equation as interfacial force, playing similar role to
the surface tension.

In the second chapter, the heart of many modern-day numerical simulations,
�nite element method is brie�y abstracted. Because of the complexity of the �nite
element method, FEniCS as the automated and e�cient �nite element library is
used.

The third chapter is devoted to an interface tracking methods, especially to the
level-set method. General mathematical formulation for characteristic level-set
function is presented, together with the advection partial di�erential equation.
Numerical de�ciency of �nite di�erence advection schemes is discussed and so
called reinitialization process is included to overcome the volume of conservation
inaccuracies. Advection and reinitializaion equations are discretized in time with
the use of �nite di�erence method, while weak formulation for �nite element
method serves for spatial discretization.

Ferro�uid Navier-Stokes equations with additional magnetic force are present-
ed in the fourth chapter. Interfacial forces and discontinuous physical quantities
are continuously approximated with the help of level-set function, i.e. continuous
surface force model is adopted. The equations are non-dimensionalized, so ge-
ometry scaling becomes a simple matter of changing referential values. Velocity-
pressure coupling is assured with the projection method and the �nal equations
are spatially discretized in the sense of �nite elements.

In the last chapters, necessity to solve magnetostatics Maxwell's equation is
dealt with the �nite element method. Some simple numerical tests are performed
to validate the model and known experimental results are compared to the sim-
ulation.

We can clearly see, that applying magnetic �eld elongates the ferro�uid droplet
because of the di�erence in magnetic �eld intensity on the droplet interface. Since
interfacial magnetic force is proportional to the magnetic �eld intensity, droplet
stretches until it is balanced with the surface tension force.

Dynamics of dripping process changes substantially. Without magnetic �eld,
ferro�uid droplet gets slowly detached, because gravity takes a major time un-
til droplet accelerates. In contrast, applied magnetic �eld stretches the droplet
on relatively small time scale. Such stretched droplet is then detached earlier
comparing to the case without magnetic �eld.

This work utilizes many numerical advancements, so solving becomes easily
monstrous coupled mechanism, composed of advection, reinitialization, navier-
stokes and maxwell's equations in each time step. It therefore takes a lot com-
putational power to meet the experimental results.
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The �eld of ferrohydrodynamics is nowadays attractive because of an out-
growth of numerical methods and progress in computational �uid dynamics. The
combination of methods presented in this work is according to our best knowledge
unique and not yet published.

There are also numerous possibilities to extend this work, from non-linearly
magnetizable ferro�uid through implementation of asymmetric magnetic stress
tensor, more accurate velocity-pressure coupling schemes to quantitative com-
parison with experiments.
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