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Autor: Michal Habera
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Abstrakt: Tenzor napétia ferrokvapaliny vystavenej vonkaj$iemu magnetickému
polu podlieha navyse magnetickym ¢lenom. Pre linedrne magnetizovatelné meédi-
um tieto ¢leny vedd na magneticku silu posobiacu na hranici ferrokvapaliny.
Tato sila meni charakteristiky mnoZstva javov s volnym povrchom ferrokva-
paliny. Cielom tejto préace je implementovat tuto silu do nestlacitelnych Navier-
Stokesovych rovnic a navrhnitf numericki metédu na ich rieSenie. Rozhranie
ferrokvapaliny je sledované s pomocou level-set metody a dodato¢ny krok reini-
cializacie zaistuje zachovanie objemu. Nestlac¢ielné Navier-Stokesové rovnice s
formulované pre rychlostné polia s nulovou divergenciou pricom diskrétne sily
na rozhrani st oSetrené modelom spojitych povrchovych sil. Rychlostno-tlakoveé
previazanie je dané projek¢nou metoédou. 7 dovodu kvantitativnej predpovede
vplyvu magnetickej sily st pre kazdy c¢asovy krok riesené Maxwellove rovnice mag-
netostatiky. Metoda konecnych prvkov je pouzita pre priestorovi diskretizaciu.
Na zaver prace si kvalitativne porovnané zname experimenty s nasimulovanym
rovnovaznym tvarom ferrokvapalinovej kvapky a javom odkvapavania.

Kli¢ova slova: ferrohydrodynamika, ferrokvapalina, level-set, odkvapéavanie
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Abstract: The stress tensor of a ferrofluid exposed to an external magnetic field
is subject to an additional magnetic terms. For a linearly magnetizable medi-
um, such terms results in an interfacial magnetic force acting on the ferrofluid
boundaries. This force changes the characteristics of many free-surface ferrofluid
phenomena. The aim of this work is to implement this force into Navier-Stokes
equations and propose a numerical method to solve them. The interface of fer-
rofluid is tracked with the use of level-set method and additional reinitialization
step assures conservation of its volume. Incompressible Navier-Stokes equations
are formulated for divergence free velocity fields while discrete interfacial forces
are treated with continuous surface force model. Velocity-pressure coupling is
given by projection method. To predict the magnetic force effect quantitatively,
Maxwell’s equations for magnetostatics are solved in each time step. Finite el-
ement method is utilized for the spatial discretization. At the end of the work,
equilibrium droplet shape and dripping phenomenon are qualitatively compared
to known experimental results.
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Introduction

Free surface fluid flows and processes involved in a fluid behavior fascinated sci-
entists since the very beginning of the scientific history. Problems as a breakup of
a liquid jet, droplet formation and merging, rising bubbles etc. still lacks deeper
understanding because of a complex and nonlinear equations governing such phe-
nomena. In addition, they play a role in many industrial processes: fuel injection,
fibre spinning, ink-jet printing, etc. 2]

The equations for the motion of a fluid formulated in the 19th century came
to relevance as computers started to provide number of numerical methods for
finding their approximate solutions. However, majority of the methods are well
suited for problems involving one-phase flows or fluid-wall interactions. Multi-
phase flows, fluid-fluid interactions, surface forces and similar issues still remain
debated and incomplete.

Imagine some usual situation, where a water droplet hanging on a tap is
being pulled down by the gravity. From a physical point of view, the behavior
and evolution is well described. Navier-Stokes equations govern the fluid motion
in each phase, water and air separately, while interfacial surface force is balanced
with the gravitational, volume force.

All these phenomena become even more attractive in terms of ferrohydrody-
namics. Ferrofluid reacts to a magnetic field and changes its shape due to an
additional magnetic force. This entirely changes dynamics of the droplet forma-
tion process and it will be the object for our studies.
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Figure 1: High-speed image sequence of ferrofluid droplet dripping out of a con-
tainer. Influence of a magnetic field parallel(middle) and perpendicular(bottom)
to the direction of the flow is clearly visible. Taken from [I].

In the first part of the thesis a brief summary of the physical and mathemat-
ical model and numerical methods are given. Interface is represented with the
level-set function, while the conservation of its volume is assured with the reini-
tialization step. Navier-Stokes equations are solved using the projection methods
and spatially approximated in sense of weak derivates and finite element method.



1. Ferrofluids

1.1 Introduction

A ferrofluid is a colloidal suspension composed of small (3-15 nm) solid, single-
domain, magnetic particles coated with a molecular layer of a dispersant and
suspended in a liquid carrier(Fig. . Thermal agitation keeps the particles
suspended (under sufficient stability conditions) because of the Brownian motion
and the coatings prevents the particles from sticking to each other.

Polar head

Figure 1.1: Coated magnetic particles in ferrofluid. Taken from [3].

The magnetic ferrofluids of the type in general use today are an outgrowth of
discoveries made in the early 1960s.

Because the colloidial ferrofluid is not found in the nature, it must be syn-
thetized. Methods called size reduction and chemical precipitation are used. De-
tails of both methods can be found in [3].

Very important property of ferrofluid is its stability. It ensures the investigator
of well-defined material for scientific studies and also fluid applications. We mean

stability in a magnetic field gradient,

stability against settling in a gravitational field,

stability against magnelic agglomeration and

e neccesity to guard against the van der Waals attractive force.

To derive the physicochemical stability dimensionless analysis introduces var-
ious energy terms:

o thermal energy kT,

e magnetic energy oM HV and



e gravitational energy ApV gL,

where k is Boltzmann’s constant, 7" the absolute temperature in degrees
Kelvin, p is the permeability of free space, V' volume of a sperical particle, L the
elevation in gravitational field, Ap difference in fluid carrier and ferromagnetic
particles densities and M, H magnetization and magnetic field intensity.

Such stability analysis leads to inequalities for the particle diameter, for in-
stance, for the magnetite(Fe3O4) particles at the room temperature stability
against magnetic agglomeration requires diameter d < 7.8 nm [3].

1.2 Ferrohydrodynamics

The term ferrohydrodynamics (FHD) was first introduced by Ronald E.
Rosensweig. Development of FHD in early to mid- 1960s was motivated by
engineering task of converting heat to work with no mechanical parts.

“Ferrohydrodynamaics is an interdisciplinary topic having inherent interest of
a physical and mathematical nature with applications in tribology, separations sci-
ence, instrumentation, information display, printing, medicine, and other areas”
R.E.Rosensweig.

In the begining of this chapter we would like to emphasize the differences
between various studies of fluid-field interactions:

1. electrohydrodynamics (EHD) deals with the influence of the electric field on
a fluid motion,

2. magnetohydrodynamics (MHD) is the study of the interaction between mag-
netic field and fluid conductors of electricity,

3. ferrohydrodynamics (FHD) deals with the mechanics of fluid motion influ-
enced by forces of magnetic polarization.

This work is mainly concerned with ferrohydrodynamics, because ferrofluids
are non—conducting therefore there is zero Lorentz force acting as body force(in
contrast with MHD). The body force in FHD is due to polarization force which
requires material magnetization in presence of magnetic field gradients or discon-
tinuities.

1.2.1 Magnetostatics for non-conducting materials

Here we give very brief summary of physical laws and relations for magnetic field
in matter. More details could be found in [4 [5].

Magnetostatics is related to the phenomena, where the electric field E, elec-
tric displacement field D and currents J are zero. Such assumption is not fully
justified, because the existence of magnetic field is a result of currents and cur-
rents are present when charges are moving. Therefore, magnetostatics is only an
approximation.

The existence of magnetic field on macroscopic level without currents is based
on the quantum theory. It is mainly the spin magnetic moments that contribute to



the molecular fields. Maxwell’s equations with the previous assumptions reduce
to the set
V-B =0, (1.1)

and
VxH=0, (1.2)

where B is the magnetic induction and H is the magnetic field intensity.
In addition to the equations (L.1] so called constitutive relations between
H and B must be provided, formally

H=H(B). (1.3)
The material is said to be linear iff in an index notation

Hy=> (1 ")iB;,
j

where (u71);; is the inverse magnetic permeability tensor. In the simplest case,
the linear response is isotropic and the (u=');; tensor is diagonal with all diagonal
elements equal. Thus, for the linear, isotropic media

H=,"'B, B=yH, (1.4)

with p the absolute material permeability.
At the macroscopic level, it is reasonable to define the magnetization or macro-
scopically averaged dipole moment of the medium M as

B = io(H + M). (1.5)
where 119 = 471077 Hm™! is the permeability of free space. Expressing M
explicitly and from the equation (1.4 simply follows that

M = xH,

with y := <li—‘0 — 1) the magnetic susceptibility of the medium.
In this thesis, all of the physical quantities are defined and represented in the
International System of Units, so magnetic induction B is measured in teslas T

and magnetic field H is measured in amperes per metre, Am™?.

1.2.2 Magnetic stress tensor

As we have mentioned above, understanding the differences between several fluid—
field interactions play important role in a development of a physical model for
the flow of a ferrofluid.

The only body force acting from the outside in hydrodynamics is gravitational.
In electrohydrodynamics electrically charged particles are affected with electrical
forces while in magnetohydrodynamics conductive fluid is subject to the Lorentz
body force.



The derivation of the magnetic stress tensor with respect to the thermody-
namic background and conservation of energy leads to [3]

a o(vM -1
Mmﬂ+/)m((y))~dH+§mH2
0 H,T

T, =— I+BoH, (1.6

ov

where notation from [3] is adopted so B@H = B;H; represents dyadic product, p
is thermodynamic pressure, p the density, T' thermodynamic temperature, H, M
associated magnitude of the magentic field and magnetization respectively (H :=
|H||, M := |[M]|), v = p~! the specific volume, I the identity tensor and B
magnetic induction. The notation

(5,

means, that derivative is evaluated at constant H and T, because M is also a
function of a magnetic field.

Note, that the tensor is symmetric, because B @ H = H ® B follows from
and I = I'. This result holds also for nonlinear effects, i.e. nonlinear
magnetization M of the ferrofluid.

1.2.3 Classification of “pressures” in ferrofluid

In the expression for the magnetic stress tensor, thermodynamic pressure p =
p(p,T) appeared naturally as a result of the derivation. In order to emphasize
the magnetic aspect of the result we define a new tensor T, such that

T, =T, +plp,T)I

so we separated thermodynamic pressure present also in non—polar fluid. The
new tensor is

H
0 al/ H,T 2

and the magnetic force per unit volume corresponding to a magnetic stress tensor
T,, is

I+BoH, (1.7)

£, =V T,. (1.8)

There is an arbitrariness in grouping of magnetic terms in that has led to
some confusion in the literature. Here, we follow the classification introduced in
13l

Applying the partial derivative in the term % and in the sense of the
equation f = Vp, some pressure-like terms in (|1.7)) are identified.

The magnetostrictive pressure

H oM
= r— dH 1.
P MO/O Y ( ov )H,T 7 (1.9)

and the fluid-magnetic pressure

H
Pm 1= Mo MdH. (1.10)
0



Applying definitions (1.9} [1.10) and relation (1.4)), expression for the magnetic
stress tensor yields

1
Ty = = (ps + pm + poH)T+ pH © H. (1.11)

1.2.4 Reduced magnetic force density form

It could be shown due to Korteweg and Helmholtz that for linearly magnetizable
media magnetic force density reduces to

H?> [(0u H?
f,=V|—p|—=— ——Vu.
[ 2 g (8P)T:| 2 :
For media with absolute permeability constant within each phase separately,

g—‘; = 0 almost everywhere, therefore the magnetic force density is

£ =~ V. (1.12)

This force vanishes everywhere except for the phase interfaces, where non—zero
jump in the absolute permeability p is present.

Such analysis is crucial in the experiments, where constant permeability is
assumed everywhere except for the phase interfaces. The magnetic force acts on
the boundaries with the effect similar to the surface tension force.

1.2.5 Equation of motion for a ferrofluid

Very important part of ferrohydrodynamics is devoted to the formulation and
study of equation of motion for a ferrofluid. A momentum equation was first
proposed by Neuringer and Rosensweig (1964) [6]. In order to satisfy the contin-
uum mechanics assumptions, it is assumed, that the dynamic equilibrium holds
for an “infinitesimal element”, which is large enough to contain a large number of
colloidial magnetic particles comparing to the dimensions of the flow field.

The Newton’s law for such “infinitesimal” element yields

pOut+(u-Vju)y= f, + [+ [,
Pressure force ~ Viscous force  Gravity force
+ fm F s (1.13)
Magnetic force Surface tension force

The equation (1.13) with the magnetic force density expression (1.12)) simply
unfolds the effect of a magnetic field on an incompressible linearly magnetiz-
able ferrofluid, but more formal and rigorous problem definition with appropriate

simplifications is given in the form of the Navier-Stokes equations in the chapter
4.



2. The Finite element method

In the following sections we give a very brief introduction into the finite element
method. We also refer more advanced reader who seeks more detail to [7] and for
mathematical insight to [8].

2.1 Problem definition
We are interested in a solution of a partial differential equations of the type
L(u(x)) = f(x), Vx € Q (2.1)

on a given domain €2, where £ is a linear differential operator, v = u(x1,...,x,) =:
w(x) and f = f(xy,...,2,) = f(x) is some known right hand side.

It is necessary to impose boundary conditions on the boundary 0f) of the
domain. These conditions are usually of type Dirichlet, so that

u=bp(x), Vx € 00

where bp is a prescribed function. Another type of the boundary condition is so
called Neumann, where

Vu-n(x) =by(x), Vx € 00

where n is unit normal to the boundary.

2.2 Weak solution and basis, variational formula-
tion

Yet, we didn’t define function spaces for the functions in the problems like (2.1).
This is very important part and plays significant role in the finite element method.
Let us find such solutions to our problem, that the desired function u is in
some space S. It is reasonable, to suppose, that the space is rich enough, to
contain all the solutions.
We define the inner product of two functions on €2

(). 9(x) 1= [ g dx
Q
and norm induced by the inner product

F1l:= V(S ).
We say, that u is a weak solution to the problem (2.1), if
(L(u)— f,s) =0, Vs € S. (2.2)

Function s = s(x) is often refered as a test function. It is clear, that the space
S is not of finite dimension. This is a very restrictive condition. One might try

9



to find an approximation of a solution, %(x) in a finite dimensional subspace, say
Sn, where n € Ny is a dimension of this space. Let then {s;(x)},7 =1,...,n be
the basis of this space, so each function from our subspace S, can be expressed
as a linear combination of the basis functions

U = ¢;Si,

where summation convention is used.
The equation (2.2)) could be written in terms of the variational formulation.
If we let

L(s) = /Q s fdx
" a(t, s) ::/Qﬁ(ﬂ)sdx,

the problem ([2.1) becomes an equality of the (uni)linear and bilinear form. The
linearity of the forms is clear from the linearity of the Lebesgue integral.

2.3 Principles and algorithm

We are thus interested in seeking a solutions of (2.2). This can be rewritten
taking s;(x) as the test function

(L(w),s5) = ([, 55)

and decomposing approximate solution into the finite basis

(L(cisi), s5) = (f,55),
ci(L(si), s5) = ([ 85)-
We let
A= Ay = {(L(s1), 55)},
b= {(f.s;)}
and
c:={¢}

set of the coefficients we are interested in. This is clearly a system of the equations
known from linear algebra, Ac = b.

We have derived the set of the equations that solves our problem in sense of
a weak solution given by the condition (GALERKIN).

Let suppose, for the sake of simplicity, that @ C R2. Integral over ) induced
by the inner product is decomposed into the sum of integrals over subdomains of
Q. In sense of FEM, such decomposition is done into triangles, e.g. a triangu-
lation in R? into M cells.

We write

M
Q= U Tk,
k=1

so the matrix elements become

M
Aij = / [,(Si)deX = Z L(Si)deX.
Q k=1 YTk

10



2.4 Finite element spaces

The basis functions s; were not yet specified.

Because the system Ac = b is solved, we would like them to vanish almost
everywhere, i.e. to have non-zero value only on some element(triangle) with its
neighbours. This implies, that the inner product A;; = (£(s;), s;) forms a sparse
matrix.

In the following, we refer to the type of the element. A type is simply a
class of basis functions. Most common choice of this class is so called Lagrange
polynomials.

The order is roughly the order of the interpolation polynomial.

The shape of the finite element is the geometry that defines the decomposition
of €.

For instance the finite element of type Lagrange, third order and triangular
shape means continuous functions on the domain €2 such that on each triangle
T} of the triangulation of €2 the functions are cubic polynomials, i.e. continuous
and piecewise cubic polynomials.

We introduce the notation from [9]. Summary of finite element spaces is in

table (2.1)).

wl linear continous
W2 | quadratic continous
WL | linear | vector, continous, W! x W!

Table 2.1: Finite element spaces used in this thesis.

2.5 Automated FEM, FEniCS project

Assembly of linear algebra system and process of its solving is the heart of the
finite element method. However, matrix systems become bulky and a quest for
the solution could be time demanding. On the other hand, matrices are sparse
and in many cases iterative Krylov solvers could decrease computational time.

Together with a problem definition, construction of basis function and, bound-
ary conditions specification finite element method becomes ample tool and au-
tomatization of these routines is neccessary.

In this thesis, all of these routines are implemented with the ease of FEniCS
Project.

“FEniCS has an extensive list of features for automated, efficient solution
of differential equations, including automated solution of variational problems,
automated error control and adaptivity, a comprehensive library of finite elements,
high performance linear algebra and many more.” FEniCS Project.

For more detail on FEniCS, we refer to [10].

11



3. The Level-Set method

Our main goal is the simulation of two-phase flow. It is therefore evident, that a
method for interface tracking must be implemented.

The level-set method (LSM) is simple and straightforward mathematical
construction that represents the interface as a cross section of some implicit hy-
persurface. Recent studies [I1] improved the level-set method and reduced several
drawbacks of original formulation. The level-set method presented in our work
conserves volume of fluid. This improvement is important, especially if we would
like to analyse the volume of droplets, jets, etc.

Several other methods for the interface tracking are common, namely VOF
(volume-of-fluid), VOSET (a coupled volume-of-fluid and level-set), Particle Level-
Set, Phase-field etc. [12].

One of the most agreedable benefit of the level-set method is absence of the
internal boundary conditions, boundary conditions between multiple phases at
their interface. In fact, since interface is captured implicitly, from the mathemat-
ical point of view there is no internal boundary. Phase transition occurs smoothly,
so as other physical quantities.

Another very important attribute is its simplicity. Even for very complex
and topologically bont domains and interfaces. An ordinary problem - multiple
circular bubbles merging together would formally require arduous parametriza-
tions dramatically changing as time evolves. In addition, if two bubbles merge,
parametrization changes in its very profoundness. Level-set method meets these
topological issues in smooth and effective way.

3.1 Mathematical formulation

Let say, domain 2 C R™. We choose a domain §2; C {2 that represents one fluid
phase. Let then Qy = Q\Q;. We define the interface between two phases as the
finite intersection of all closed sub-domains,

F:{XXEHQZ}

Figure 3.1: Decomposition of domain €2 into subdomain €2; and €2, for each fluid
phase. The interface I' is the object for our studies.

General idea of LSM is to introduce the level-set function] ¢(x): Q — R,

'We refer to the level-set function often simply as level-set, e.g. to define the level-set, to
transport the level-set, etc.

12



K € R constant, so that the interface is

I'={x:9¢(x)=K}.

The name level-set is derived from the fact, that surface is represented with the
K-level plane cross section of some hypersurface.
Standard level-set function, often refered as the distance level-set function
is defined such that
|¢a(x)] := min|x — x|, K :=0,
xel

with ¢(x) > 0 on the one side of the interface and ¢(x) < 0 on the other.
The specific property of this function is, that value at each point x € €2 is the
minimal distance from x to the interface I'.

In this thesis, an interface is tracked with the characteristic level-set func-
tion. It is an adjustment introduced in [I1]. The specific property for this func-
tion is, that it is being smoothed characteristic function of one fluid phase. Char-
acteristic function could be mathematically reformulated as ((x) =1 < (x € )
and ((x) =0 & (x € Q).

There are numerous ways of regularization of the characteristic function. We

use
1

fe(x) = 7 T e@a)/e)’
with € € R as the “thickness” of the interface. Indeed, on the interface ¢y = 0 =

K :=0.5, (3.1)

¢ = 0.5.
For instance, to constitute a 2D bubble centered in x. € {2; with the radius
r € R, we take the distance level-set ¢4(x) := |[|x — x.|| — 7 and substitute into

(3.1). Wireframe plot of this level-set is in Fig. (3.2)).
Level-set defined analytically as in (3.1)) is essential only in process called

iatialization. Later on, level-set is advected and reinitialized as described below
and it amends its shape. In contrast, the “thickness” parameter € plays important
role also in reinitialization process.

3.2 Level-set advection

Let assume velocity field u(x,t) : Q x R — R" is given. Let also assume, that
the interface is given as described above, represented with the level-set ¢(x,t). In
order to transport the level-set, i.e. to transport the interface, so called transport
equation must be solved,

op+u-Vop=0, xel (3.2)

Explicit solution for this equation could be found. This solution transports the
initial level set ¢(x,0) with the velocity field u without change in its profile.
Unfortunately, it is not possible to solve this equation numerically and preserve
the profile as expected. Depending on the time discretization scheme, several
drawbacks are significant (dissipation, dispersion, etc.)[13].

These effects are not desired, because the level-set property(the distance func-
tion, the characteristic function) is not retained. To overcome this drawback, it

13
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Figure 3.2: The characteristic level-set function that represents 2D bubble, i.e.
circle, with the center at (0.5,0.5) and radius = 0.2. Contours of this function
for different levels are depicted in Fig. (3.3).

was suggested by Smereka et al. in [I4] to reinitialize the level-set function in
each time step.

Reinitialization is a simple matter of solving some advection-like equation for
each physical time ¢. Say, we would like to reinitialize the level-set at the time tg.
We therefore solve reinitialization equation for some tentative level-set p(x, 7) in
sub-time variable 7 with the initial condition

o(x,0) = o(x,1p), Vx € Q. (3.3)

The reinitialization is solved until steady-state, until some steady-state criteria is
satisfied.

The original suggestion in [I4] succeeds in restoration of the level-set prop-
erty, but it moves the profile. Such displacement results in the loss of volume
conservation.

In addition, improved reinitialization proposed by Olsson and Kreiss [15] ad-
vances in volume conservation [9]. This method considers characteristic level-set
function ¢, described above and defines the reinitialization equationP] as

Orp + V- [p(1 = )nr(x, to)] = eV - [nr(x, o) (Ve - np(x, 1)1 (3-4)

with the inital condition (3.3), where np = nr(x,t), Vx € Q is the inner unit
normal to the interface I' pointing into the area surrounded by this interface. The
parameter ¢ is the thickness constant, same as in the definition (3.1)).

2Tt is an advection-like equation for the transport of level-set in normal vector field. Because
the normal is inner, pointing into the interface, it concentrates the level set to the interface,
retaining characteristic property.
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Figure 3.3: Contours of the characteristic level-set function at three different
values, 0.05, 0.5 and 0.95.

In the sense of the level-set, the unit normal is given ag’|

_ Vo(x,1)
nr(x,t) := Vo Dl (3.5)

3.3 FEM for the level-set advection

As stated before, we are interested in phenomena of incompressible fluid flow.
Such motion neccesarily satisfies volume conservation. Incompressibility con-
straint is governed by so called divergence—free velocity field

V-u=0, Vx e Q.
Under such circumstances, transport equation (3.2)) could be rewritten as

Now, take s € W! as a test function, multiply (3.6) with s and integrate over (2,
so that weak formulation is obtained as

(O, s) + (V - (¢pu), s) = 0. (3.7)

With the use of the Gauss divergence theorem the weak formulation yields

/Qsatgbdx + / sV - (pu)dx =

Q

/st)gbdx + /Q V- (spu)dx — /Q(gzﬁu) - Vsdx =
/ sOppdx + / so(u - ngg)dS — /(gbu) - Vsdx = 0.
Q o9 Q

3Note, that such normal field is defined for all x € €, not only at the interface I'. Also note,
that in the equation (3.4)), normal field nr(x, () is independent on the sub—time variable 7, so
reinitialization step is solved with nr constant in sub—time.
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The middle term, [, s¢(u - nyo)dS has meaning of net level-set transport into
domain . Assuming

u-ngg =0, Vx € 00 (3.8)
the weak formulation arrives at
(019, 5) — (¢,u-Vs) =0. (3.9)

The condition u - ngg = 0, Vx € 09 is so—called free—slip boundary condition,
meaning the matter is free to slip on walls but must not pass through it. Other-
wise, we have to take care of original weak formulation ({3.7)).

3.3.1 Time discretization

In the following, level-set advection is discretized in time. Say, we are seeking a
solution for the advection weak formulation Vt € (0, 7). This time interval
is uniformly divided into /N sub-intervals of equal length, At, and t,,,, := t,, + At.
We also write

O" & P(x,t,), Ut ~u(x,t,).

The Crank-Nicholson schemd[l| applied also in [9] is second order in time and
states

(¢"* +¢" u" - Vs) . (3.10)

N[ —

1
(@ —e"s) =

3.4 FEM for the level-set reinitialization

With the same puprpose as in the section (3.3), take the reinitialization (3.4)),
multiply with s € W!. Integrating over (2 leads

/Qsatgadx—i—/ﬂsv~[g0(l—<p)np] dx—s/QsV- (Ve np)ldx.  (3.11)

Again, we rewrite the divergence terms so we can apply the Gauss theorem. It
results in

/ sOppdx + / V- [e(l — p)nps]dx — / o(1 —p)np - Vsdx =
0 Q 0
5/ V- [nr(Ve-nr)s|dx — 5/(V<p -np)nr - Vsdx =
Q Q

/ sOypdx + / sp(1 — p)(nr - ngg)dS — / o(1 —p)nr - Vsdx =
Q o9

Q

5/ s(Ve -nr)(nr - ngg)dsS — 5/(V<p -np)nr - Vsdx.
o0 0

Repeatedly, integrals over 0€) vanish if level-set vanish on the boundary. With
this premise we have

(Orp, ) — (p(1 — ¢),nr - Vs) = —e(nr - Vi, nr - Vs). (3.12)

4The Crank-Nicholson schema could be viewed as a specific case of more general -schema
with 0 := % [PDE]. Simply, instead of taking “spatial” terms(terms without time derivate) fully
implicit, ¢"*1, or fully explicit, ¢", we take the average of both, (¢"+1 + ¢™)/2.
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3.4.1 Time discretization

The Crank-Nicholson schema for the weak formulation (3.12) is

L k P+ oF O 4 o
— - (T - : - 1
AT (()0 2 5) 2 9 , p Vs (3 3)
k1 k
—& (nr . V%, nr - Vs) . (3.14)

We wrote k-th time level to accentuate, that reinitialization takes place on sub-
time scale. This weak formulation is nonlinear(in ¢).

3.5 The advection step summary

We formulated advection and reinitialization for the characteristic level-set func-
tion in the sence of weak formulation. Whole procedure could be summarized in
the following

1. Initialize the level for the initial interface profile at time ¢ = 0. That is,
project the function (3.1 into chosen function space on the triangulation
of the Q.

2. Solve the advection equation (3.10f) with given ¢™ and u” to get gg”“. This
function is consequently reinitialized so we write ©° := ¢!

3. With ¢° from the previous step solve (3.14) until the steady state criteria
leading to the level-set at the physical time ¢,,,. Start again from step
to advance into next time layer.

The choice of the level-set thickness constant € and reinitialization subtime
step A7 is not trivial. We use the choice from [15]

AT = (Az't9) /2,

e:= (Az'"7) /2 (3.15)

with the d := 0.1 and Az is the spatial resolution, approximately the inverse of
number of triangles in the smaller dimension, e.g. 100 x 100 triangles in domain
has Az = 1/100.

A domain €2 is triangulated into random-like structure of elements using
gmshf]

Shttp://geuz.org/gmsh/
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4. The ferrofluid Navier-Stokes
equations

The goal of this chapter is to formulate the equations governing ferrofluid flow, the
equations of ferrohydrodynamics. In the beginning we introduce the postulates
and simplifications. With the help of these we derive the dimensionless form of
the Navier-Stokes equations and add force present in a magnetic field.

At the end we formulate the equations in terms of the finite element method,
i.e. a weak formulation of our problem is proposed.

It is important to note, that the local-in-time existence of unique strong so-
lution to the Cauchy problem for the system of equations of ferrohydrodynamics
is given in [I6]. Under the assumption that the initial data and the external
magnetic field are small they also prove a global existence of strong solutions.

Let the following assumptions and simplifications hold
o ferrofluid is a newtonian fluid. Tts stress tensor without magnetic field is
T, = —pl+ 27D (4.1)

with

D = <Vu + (Vu)T) : (4.2)

N | —

the rate of deformation tensor,
e ferrofluid is linearly magnetizable, izotropic and homogenous media, ((1.4)),

e there are no electric currents and ferrofluid is non-conductive medium, we
work in the field of magnetostatics,

e the only effect of magnetic field on a ferrofluid is additional magnetic stress
tensor Ty, (L.11). The final stress tensor is

1
T:=T,+ T, =— (p—|—ps—|—pm+§,u0H2)I—|—277D—|—;LH®H, (4.3)

e additionaly, the ferrofluid is incompressible, so V - u = 0. By the means of
incompressibility, magneto-strictive pressure p, = 0, Vx € Q.

4.1 The equations and continuous surface force
approach

Let Q be a domain. The ferrofluid domain ©Q; C Q and Q5 := Q\Q_l the second
phase domain.

18



The incompressible Navier-Stokes equations for a ferrofluid motion are

D(pu)

—V-T+f+f, 4.4
s V-T+f +f1, (4.4)
V-u=0, (4.5)

with appriopriate boundary and initial Conditions.ﬂ In the equation, p = p(x,t),u =
u(x,t) and %:‘) = % +u-V(pu) is the material derivative. The gravitational
body force

fy = gey (4.6)

and the surface tension interfacial force
fs = O'I<05*<X1">Il1", (47)

where o is the surface tension coefficient measured in Nm™!, x = s(x,t) is the
curvature of the interface, nr(x,¢) unit normal to the interface I" and 0*(xr) is
an approximation of Dirac delta distribution “settled” at the interface I'.

The equations formulated in refer to physical quantities p,n and pu
as continuous functions of space variable x. In contrast, it is the very nature of
an interface between two different immisible fluid phases, that discontinuity in
these quantities occur(at macroscopic level). To address this, discontinuities are
smoothed with the help of the characteristic level set ¢,

/O<X’ t) =p2t+ (Pl - p2)¢C(X, t)? (48)
n(X7 t) =1+ (771 - n2>¢c<xa t)7 (49)
pu(x,t) = pa + (pn — pi2) Pe(x, 1). (4.10)

We can clearly see the advantage of characteristic level set over distance level
set. Characteristic level set serves directly to regularize discontinuities. In case
of distance level set one must construct new smoothed function and therefore
introduces unasked inaccuracies.

We also adopt the notation p = p(¢.(x, t)), meaning that the density, viscosity,
etc. are given by level-set as in (4.8).

Now, we focus on formulation of the surface tension force and the magnetic

force, both interfacial forces, in the sense of continuous surface force approach.

4.1.1 The continuous surface tension force

With the help of the level-set function ¢., the approximation of Dirac delta is
0" = [Vl (4.11)

Taking unit normal as defined in (3.5)) and substituting into (4.7)) yields for surface
tension force

f, = 0kVo,. (4.12)

'We do not specify them here, because they differ from experiment to experiment.
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Comprehensive derivation of the expression (4.7)) is found in [I7]. The technique,
where discrete surface tension force is approximated with some smoothed alter-
native is called continuous surface tension (CST) model. There is a plenty of
mathematical papers with thoughtful interest in CST, its accuracy and conver-

gence.
There is still pending some discussion about the curvature . In the standart
level-set literature, the curvature is defined as k(x) = —V-nr. Instead, if we write

the surface tension force as a divergence of some tensor, finite element formulation
encourages us to “per-partes” the divergence onto a test function. This tensor is
18]

Ts = O’(I —nr® HI‘)(S*, (413)
f,=V-T,, (4.14)

where 0* is computed from (4.11)). Advantage of this surface tension representa-
tion is the absence of curvature computation.

4.1.2 The continuous magnetic force

It was discussed in the section that for linearly magnetizable ferrofluid with
the absolute permeability 1 = ji(x,t) constant within each phase separately, i.e.
piecewise constant function, the magnetic force reduces to

1
f, = —§H2Vﬁ. (4.15)

Since p = p(pe(x,t)), defined in (4.10) is an approximation of such piecewise
constant permeability i, we use the expression (4.15) with pu(¢.). The same
spirit is applied in [23].

4.2 Dimensionless form

Take the Navier-Stokes equation from (4.4) and substitute gravitational force
from (4.6)), surface tension from (4.14), magnetic force from (4.15)) and physical
quantities density, viscosity and magnetic permeability from (4.8} [4.9] [41.10).

We get

0p(6:)) + - V(p(6.)u) = ~Vp+ V- (21(8.)D) ~ SH'Vu(6,) + - T, + ge

(4.16)
Let introduce dimensionless variables
X u t H
)(>|< = —, u* =, t* = , p* = ﬁ, 77* = E’ /“L* = ﬂ’ H* [ pp—
Zo U To /g Po 7o fo Hy

The derivatives 0, and V must be also non-dimensionalized. Note that after

few simple arrangements, left-hand side of the equation (4.16) has dimension "ig e

so we divide whole expression with this factor. Because the exact dimensional
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value of the thermodynamic pressure p is not in our interest, we write p* to note
it is dimensionless and multiplied with some factor. This yields

1
O (p*u’) +u" - V*(p*u*) = —V*p* + ——V* - (2'D")
Re
. . (4.17)

1 * ok * *
g HVm +wv T2

with the Reynolds number Re := po”j]—gzo as the ratio of intertial forces to viscous

2
forces, the Weber number We := %5022 a5 the ratio of inertial forces to surface

tension forces, the Froude number Fr := \/Z—%q representing the importance of
inertial forces over gravitational, and the Magnetic number Mg := MO—[ZDQ as the
0

ratio of inertial forces to the magnetic field forces.
In the following, we omit the asterisk for brevity and work always with di-
mensionless quantities.

4.3 Numerical solution and projection methods

A difficulty for the numerical simulation of the incompressible Navier-Stokes equa-
tions is, that the velocity and pressure are coupled by incompressibility constraint.
To overcome this difficulty, Chorin and Temam [19] proposed in the late 1960s
idea of so called projection methods. The advantage of projection methods is that
at each time one only needs to solve a sequence of decoupled elliptic equations
for the velocity and the pressure. It is not our goal, to analyze the projection
methods, because it is far beyond the scope of bachelor thesis. We refer more
advanced reader to original paper and for overview of projection methods for
incompressible flows to [20].

In this work, projection method similar to [15] is used?]

As said, process of solution reduces to solving sequence of decoupled equations.
First, we discretize the Navier-Stokes equation in time only. Spatial discretization
with the help of FEM is given in the following section.

The first step is to find a tentative velocity u™*! that does not satisfies
but u?™! =0, ¥x € 9. That is

1

N (pnﬂufﬂ _ p"u”) 1V ( gt @ uizﬂ) = _—Vp"
PRV (7 (VT () g
n+1
1 1( n+1) V n+1 LvTTL-f—l_‘_ P eg‘

~ Mg?2 We 3 Fr?

The second step is to solve Poisson equation for the unknown pressure p"*! with
u™! from the first step. This is also called pressure correction

V(p"tt —p")
e } . (4.19)

1
—v.utlt=v.
Atv u, \Y% [

2In [15] there is no magnetic term, so addition of this term is new aspect of this thesis.
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Finally, the wvelocity correction is the matter of solving

At n n
* Wv(p —p ). (4.20)

un+1 — un+1 .

We used p" ™! = p(¢7*1) to denote density, viscosity, etc. at (n+ 1)-th time level
given by corresponding level-set.

Important note on the magnetic force term is, that it is not a function of
velocity u. Therefore, from mathematical point of view, it plays a role similar
to the surface tension force and belongs to the “group forces (surface tension,
gravity)” which do not change a type of equation. The only difficulty that comes
with this force is the magnitude of magnetic field H™. This value is not trivial
and must be computed separately for each time step. We present whole section
[eqshape] to meet this.

4.3.1 Finite element formulation

Let v € W2, be a vector test function and write the L?(Q2) inner product of v
and the equation (4.18). We would like to “per-partes” spatial derivatives onto
test function so the similar technique as in section is adopted.

1

A_ (pn-l-lulb—i-l _ pnun) - vdx _'_/ pn—i-l(un i naﬂ)(uf-i-l . V)dS
t Jo 0
—/(u” -Vv) - (p" Tt dx = —/ (p"v) - ngodS + / p"V - vdx
Q o0 Q
1
+— [ " (Va4 (Vu™)T) - ngedS (4.21)
Re a0
1
—— / "t (Vultt + (V™)) s Vvdx
Re Q

11 1 1
el Hn-‘rl QV n+1 _/ V X Tn+1 _/ n+1 - vdx.
+/Q(Mg2( ) /‘L +We Q( S )+Fr2 Qp eg vax

Because we seek u”™! = 0, Vx € 01, previous equation finally leads to FEM
formulation for the first projection step omitting integrals over 0f2.

The second, pressure correction step, is the scalar equation and pressure is
approximated within space W!, so we take ¢ € W, multiply and integrate over

Q,

1 V(pn—l-l _ pn) v(pn—l-l _ pn)
- atHdx = ¥ F. ds — ¥ T .V
At Jo VT /asz ! { pr noodS /Q prt Vb

(4.22)

and similarly for the velocity correction with v € W2,

n+l _ n
u"vdx = [ ult o vdx — At Vo =p| vdx. (4.23)
Q Q 0 prt

In the equation , the boundary term is zero, if corrected pressure p"*! is
sought to fulfil V(p" ™! —p") -ngq = 0, Vx € 9. This is the unphysical boundary
condition discussed in [I5] 20]. It originates from the projection method and must
be enforced although it can reduce the accuracy.
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5. Equilibrium ferrofluid droplet
shape

Complex method for a numerical simulation of ferrofluid flow is described. We
would like to utilize it for prediction and simulation of equillibrium ferrofluid
droplet shape.

With the equilibrium we refer to a state, where all forces are in balance and
there is no fluid flow, so u = 0. However, such state is hard to achieve within
numerical approximation.

5.1 Problem definition

top
UEO, H'H@Q:h

Qs
left right
u=0, {y u=0,
H'H@Q:O 7o H'H@Q:O

u=0, H-nyo=—-h
bottom

Figure 5.1: Geometry, initial and boundary condition for equilibrium droplet
shape.

We have a geometry as depicted in (5.1)). A ferrofluid phase € and surround-
ing fluid €25. The initial shape of ferrofluid droplet is circle centered at r. = 0.5
with the radius 7o = 1/6 so the droplet diameter takes one third of computational
domain. Homogenous magnetic field of intensity ¢ is imposed from bottom to
top, i.e. in vertical direction.

Because we are interested in the equilibrium state, i.e. u = 0, we set the
viscosity of the ferrofluid equal to the viscosity of the surrounding fluid and large
enough to supress time consuming droplet oscillations. We set 777 = 1o = 1
with referential g = 0.1 Pas. Surface tension is set to match surface tension of
water, 0 = 72 mNm~'. Densities are p; = 1,p = 0.001 and py = 1000 kg/m?>.
Dimensional referential length scale is zp = 1 cm. Surrounding fluid is assumed
to be non-magnetizable, so its permeability is set to ug, the permeability of free
space. Susceptibility of the ferrofluid phase is y = 1.

The gravity is zero in this model.
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The dimensionless numbers are Re ~ 30, We ~ 13, Mg ~ 8.

Domain () was triangulated into approximately 100 x 100 triangles. Dimen-
sionless time step is set to At = 0.005 and spatial resolution to Az = 0.02.

A problem remains to compute magnetic field magnitude H. It is expected,
from experiments in [I] and few devoted papers |21} 22], 23], that magnetic field
differs on the fluid interface. Because the magnetic force (4.15)) is proportional to
H?, this difference results in non-homogenous intefrace force distribution. Mag-
netic force acts in the direction of applied magnetic field and elongates a droplet
so it reaches ellipsoid-like shape. Ellipsoid shape with conical ends is acquired
where magnetic susceptibility is large enough [24].

5.2 FEM for magnetostatics

A quest to obtain magnetic field in domain €2 and especially on the interface I is
necessarily connected with solution of the equations of magnetostatics.
We recap them,

V-B=0, VxH=0, B=_yH.

It should be noted, that magnetic fields simulated in this thesis are low enough,
so the ferrofluid is linearly magnetizable. Roughly, according to [21], this is valid
for H <6 kAm™*.

Boundary conditions imposed on the boundaries and interfaces - the normal
component of B and the tangential component of H are required to be continuous.
These conditions are simply derived from equations of magnetostatics and general
Stokes theorem.

The ferrofluid interface I' is represented with level-set, so boundary conditions
on this interface are naturally fulfilled, because level-set represents the jump in
permeabilities. Well-known magnetic scalar approach should be used, because
there are no currents in ferrofluid and 2 is simply connected domain. Poisson
equation is therefore solved, but simple adjustment derived in [22] helps to reduce
approximation errors that originates from level-set non-zero thickness .

Boundary conditions on the interface are hence naturally fulfilled by solving
the equation for an unknown magnetic scalar potential-like function & = £(x, 1) :
Q xRt — R,

1 1
8¢+ (o) (1 = ) 87 (x) () - V€ =0 (5.1
M2 M1
Note carefully, that we changed sign before normal I' in contrast to original
formulation. We have normal defined in as inner normal.
Magnetic field induction is then obtained as

5o (%) o (). o

Since we are concerned with magnetic field magnitude H := ||H||, using the linear
constitutive relation and (5.2)) we have

I - 1Bl - u<;c>\/(%)2 () 5
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Again, delta approximation is used as in the previous section, normal to the
interafce is given as normalized level-set gradient and absolute permeability is
smoothed in familiar way with the use of level-set.

Although boundary conditions on the interface I" are naturally included in this
equation, it is still required to discuss boundary 9). Magnetic field H is applied
vertical, so its normal component vanish on the right and left boundaries. This
is resolved with the FEM’s natural boundary conditions - Neumann'’s.

Weak formulation for the equation is achieved multiplying with » € W,
thus

/ rVE - ngodS — / Vr - Védx + (i — i) / r(oe)||Voe| (—nr) - VEdx = 0.
o9 0 0

M2
(5.4)

In the paper [22] finite difference method is used to solve so implementation
of for boundary conditions is straightforward. It is now our task to solve
the equation with the help of FEM.

We have noted, that first term in our weak formulation could be utilized to set
boundary conditions at bottom and top. Bottom, left, top and right boundaries
are denoted (09),, (09);, etc.

If we define

BJ_ = Vf

we see from (5.2), that B, is orthonormal to B, thus |B || = ||B]|. This allows
us to solve with boundary conditions for our orthonormal vector field and
obtain B, . The reason, why we are reformulating boundary conditions for B, is
the presence of natural Neumann’s term for £ in (5.4)).

First term is rewrited into

/ rV&’ : nanS = / T‘BL : Ilagds +/ T’BJ_ : H@st, (55)
0 (09)r (09);

where integral over bottom and top are zero. Although original boundary condi-
tions are H-n(sq), = —h and H-nsq), = h, orthonormal reformulation “switches”
the importance to the right and left part.

Now we use the simplicity of geometry, especially 0€2 and express the outer
normal. On the 99 is also u = py. Weak formulation of (5.1)) is finally

,ug/ rhdS — ,ug/ rhdS — / Vr . Védx+
(99), (29), )

1 1

<E - Z) [ (@l (—ne) - Veax o

5.2.1 Magnetic field of ferrofluid droplet

To test the equations and method developed above, we solve a magnetic field H
for some simple geometries. In figure 5.2] we can see magnetic field intensity is
larger at bottom and top, comparing to the left and right sides of droplet. This
demonstrates the effect responsible for the change in ferrofluid droplet shape.
Magnetic force is dominant at the bottom and top and elongates the droplet.

To show the difference in magnetic force on the interface, its vector field is
plotted into figure [5.3]
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Figure 5.2: Contours of magnetic field intensity H in Am™! of circular ferrofluid
droplet with susceptibility x = 1 placed in non magnetic medium. Magnetic field
at bottom and top is set to h = 1kAm~!. Contours of the level-set are drawn for
values 0.05(dashed), 0.5(solid), 0.95(dashed).

5.2.2 Evolution to the equilibrium shape

Time evolution of initially circular ferrofluid droplet after imposing external mag-
netic field is numerically simulated. The geometry and physical parameters are
defined above. The external magnetic field intensity h is varied.

Results for two different magnetic fields are shown in figures and The
expected droplet elongation effect is apparent.

In the first subfigures, ferrofluid droplet is depicted before elongation. We
can see non-structured velocity field u in the vicinity of the interface. That is,
because the magnetic force is not yet dominant. Dominant force is surface tension
force which is in the direction normal to the interface. The surface tension force is
responsible for the difference in pressures, in €2; and €25, well known from Laplace-
Young equation. This difference is within projection method slowly established
through pressure correction step, so the onset of pressure is very sensitive to the
time step, At.

Consequently, flow of fluid gets oriented and well-structured so the elongation
process is initiated.

Interface changes and approaches equilibrium state. However, such state is
hard to accomplish in numerical simulations. We clearly see, that although in-
terface ceases from any further movement, velocity field u # 0. There are several
spurious oscilations and parasitic components, which grows fast thus we are un-

able to solve linear system.
Comparing equilibrium state in fig. to fig. simple hoped-for phe-
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Figure 5.3: Magnetic force distribution for ferrofluid droplet with susceptibility
X = 1,h = 1kAm™~'. Contours of the level-set are drawn for values 0.05(dashed),
0.5(solid), 0.95(dashed). Length of vectors are scaled relatively to the figure
proportions.

nomenon can be observed. The greater external magnetic field is applied, the
more ferrofluid droplet elongates. This qualitative result is in accordance with
[22, 24, 23].
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Figure 5.4: Evolution of ferrofluid droplet in external magnetic field h =
4 kAm~!. The initial diameter of droplet is 1/3 cm. Velocity field u is plot-
ted, scaled relatively to the figure dimensions.
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Evolution of ferrofluid droplet in external magnetic field h

5 kAm~!. The initial diameter of droplet is 1/3 cm. Velocity field u is plot-
ted, scaled relatively to the figure dimensions.
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6. Ferrofluid dripping phenomenon

Equilibrium droplet shape was simulated in previous section. Because we have
tested the numerical method at least in qualitative terms, it can be employed to
predict the dynamics and evolution of droplet in dripping process. Dripping is
simply a process, where droplet is hanging in the balance of surface tension and
gravity force and consequently, gravity overcomes surface tension and separate
droplet falls.

Since we formulated equations of motion with gravity, it is considered in the
following examples.

Results given are of qualitative character. We compare observed effects with
experiments in [I].

6.1 Problem definition

top
u= 0, H- npn = h
Te
0N\
>
fg
left right
u =0, u=0,
H'I’laQ:O H~n3920

UEO, H'l’laQ:—h
bottom

Figure 6.1: Geometry, initial and boundary condition for ferrofluid dripping phe-
nomenon.

The geometry is depicted in . Ferrofluid initiates its motion with u =
0, Vx € Q as half circle at the top boundary with diameter ro = 1/6 centered at
(0.5, 1.0).

It is our aim, to define the geometry and physical parameters to match the
water-air simulation, so results can be compared with water-based ferrofluid ex-
periments. Unfortunately, it is not a simple job.

Viscosities are set to 7, = 1, g = 1 and 1y = 1 x 1072 Pas. Note, that actual
physical viscosities of water-air model are of order 10~3 for water and 10~° for
air. Such configuration is very sensitive to spatial and time step because of high
Reynolds number, and in practice tremendously computationaly costly.
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Surface tension is again set to match the waters, ¢ = 72 mNm™!. Lower
surface tension would reduce spurious oscilations in the vicinity of the interface,
but we found this value to be stable enough, for our spatial and time resolution.
Densities are p; = 1, po = 0.001 and py = 1000 kg/m?.

If we set dimensional referential length scale to xg similar for what we have in
the equilibrium shape section, we cannot observe desired dripping phenomenon.
That is simply the result of too big surface tension forces comparing to gravi-
tational forces. From these reasons, length scale is set g = 3 cm. Referential
velocity is u, = /9.

The dimensionless numbers are Re ~ 1500, We ~ 120, Fr ~ 1, Mg ~ 20.

Ferrofluid phase have susceptibility x = 1 and surrounding fluid is non-
magnetizable.

Domain () was triangulated into approximately 100 x 100 triangles. Dimen-
sionless time step is set to At = 0.005 and spatial resolution Ax = 0.015.

6.2 Qualitative comparison

Similarly to the previous section we compute the magnetic field for initial fer-
rofluid droplet position. It is shown in Fig. . Such magnetic field will result
in magnetic force pulling the droplet in the same direction as gravitational force.
It is the effect discussed in [1].

3640
3440
3240
3040
2840
2640
2440
2240

2040

1840

1

Figure 6.2: Magnetic field intensity H contours in Am™" of circular ferrofluid
droplet with susceptibility y = 1. Magnetic field at bottom and top is h =
3kAm~!. Contours of the level-set are drawn for values 0.05(dashed), 0.5(solid),
0.95(dashed).
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We have included the Fig. to show the experimental results. Comparing
to our simulations in the figures (6.3 we can conclude, that magnetic field
leads to detachment of a droplet in earlier times. In case without magnetic field,
droplet is detached at time ¢ ~ 80 ms whereas for magnetic field ¢t ~ 70 ms.

If we have a closer look at the figures at the time of droplet separation we
might note asymmetric and undulated ferrofluid interface. The origin of this
inaccuracies is the low spatial resolution. So called neck, a very thin portion of
fluid, reduces to a few triangular mesh elements and denser mesh is becoming
inevitable. However, adaptive mesh refinement is beyond the scope of this thesis.

After the separation process neck retracts and bounces to the droplet. This
is conspicuous in the last subfigures.
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Figure 6.3: Dripping of ferrofluid droplet without external magnetic field.
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Figure 6.4: Dripping of ferrofluid droplet with applied magnetic field A

2 kAm™! at the top and bottom in the vertical direction.
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Conclusion

The main goal of this thesis was to formulate the equations of ferrohydrodynamics
and to put together advanced mathematical techniques, so simple free-surface
ferrofluid flows can be simulated.

In the beginning, physical properties of ferrofluids are summarized and the
effect of magnetic field in terms of magnetostatics is given. The influence of
magnetic field is compiled into magnetic stress tensor. The magnetic force in
this work acts where the permeability discontinuities are present, so this force is
implemented into momentum equation as interfacial force, playing similar role to
the surface tension.

In the second chapter, the heart of many modern-day numerical simulations,
finite element method is briefly abstracted. Because of the complexity of the finite
element method, FEniCS as the automated and efficient finite element library is
used.

The third chapter is devoted to an interface tracking methods, especially to the
level-set method. General mathematical formulation for characteristic level-set
function is presented, together with the advection partial differential equation.
Numerical deficiency of finite difference advection schemes is discussed and so
called reinitialization process is included to overcome the volume of conservation
inaccuracies. Advection and reinitializaion equations are discretized in time with
the use of finite difference method, while weak formulation for finite element
method serves for spatial discretization.

Ferrofluid Navier-Stokes equations with additional magnetic force are present-
ed in the fourth chapter. Interfacial forces and discontinuous physical quantities
are continuously approximated with the help of level-set function, i.e. continuous
surface force model is adopted. The equations are non-dimensionalized, so ge-
ometry scaling becomes a simple matter of changing referential values. Velocity-
pressure coupling is assured with the projection method and the final equations
are spatially discretized in the sense of finite elements.

In the last chapters, necessity to solve magnetostatics Maxwell’s equation is
dealt with the finite element method. Some simple numerical tests are performed
to validate the model and known experimental results are compared to the sim-
ulation.

We can clearly see, that applying magnetic field elongates the ferrofluid droplet
because of the difference in magnetic field intensity on the droplet interface. Since
interfacial magnetic force is proportional to the magnetic field intensity, droplet
stretches until it is balanced with the surface tension force.

Dynamics of dripping process changes substantially. Without magnetic field,
ferrofluid droplet gets slowly detached, because gravity takes a major time un-
til droplet accelerates. In contrast, applied magnetic field stretches the droplet
on relatively small time scale. Such stretched droplet is then detached earlier
comparing to the case without magnetic field.

This work utilizes many numerical advancements, so solving becomes easily
monstrous coupled mechanism, composed of advection, reinitialization, navier-
stokes and maxwell’s equations in each time step. It therefore takes a lot com-
putational power to meet the experimental results.
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The field of ferrohydrodynamics is nowadays attractive because of an out-
growth of numerical methods and progress in computational fluid dynamics. The
combination of methods presented in this work is according to our best knowledge
unique and not yet published.

There are also numerous possibilities to extend this work, from non-linearly
magnetizable ferrofluid through implementation of asymmetric magnetic stress
tensor, more accurate velocity-pressure coupling schemes to quantitative com-
parison with experiments.
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