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Preface
Continua are compact, connected, and second countable topological spaces. They
can be thought of as metric spaces and have many interesting properties. The
topic of this thesis are particular kinds of continua called dendroids, which are
arcwise connected and hereditarily unicoherent continua.

Continuum is unicoherent if it cannot be written as a union of two subcontinua
whose intersection is not connected. Circle is a typical nonexample of such
continuum, but even continua such as the topological sine curve with its end
connected to the beginning (see [8, 1.6]) which resemble a circle, but do not
actually contain a circle, can fail to have this property. If all subcontinua are
unicoherent, the continuum is called hereditarily unicoherent; this property can
be thought of as a generalization of not containing a circle.

A subset S of a continuum can have the property that the whole continuum is
approached by subcontinua lying the complement of S. Such subsets are called
shore sets, and are part of an active area of reseach. It is known (see [5]) that a
union of disjoint shore continua in a dendroid is a shore set, and that disjointness
is necessary. Here, the key theorem of the proof is generalized and its proof is
simplifed. Additionally, another example of a dendroid with intersecting shore
continua which fail to form a shore set is provided.

It has been recently shown (see [0]) that in dendroids, the union of disjoint closed
shore sets can fail to be a shore set. There is a question whether it can hold for
some particular classes of dendroids, see [0, Table 1, p. 213] for a nice summary.
In this thesis, an affirmative answer is given in the case of dendroids with finitely
many branch points (meeting points of three otherwise disjoint arcs), even for
intersecting shore sets. In particular, this answers the case of fans, which are
dendroids with just one branch point.
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0 Preliminaries
The mathematical framework is the ZFC set theory. The natural numbers include
zero.

In general, established terms are given in bold, and made-up terms are given in
bold italic.

Definition. A nonempty topological space is connected if it cannot be decom-
posed into two nonempty separated subsets.

Note that this means the empty space is neither connected, nor disconnected.0

A homeomorphism h : [a, b]→ [a′, b′], a< b and a′<b′, is called orientation pre-
serving if h(a)= a′ and h(b)= b′.

Definition. Let X be a topological space. Continuous functions p : [0, 1]→X
up to a homeomorphism of the interval [0, 1] are called unoriented paths. If
the homeomorphism is orientation preserving, they are called oriented paths.
An arc is a path which is also an embedding.

Paths and arcs are assumed to be oriented, unless otherwise stated. A subpath
of a path p is p ↾[a,b] composed with an orientation preserving homeomorphism
of [0, 1] and [a, b] where 0≤ a< b≤ 1. It is called a left subpath if a=0, and a
right subpath if b=1. This also gives the definition of a subarc.

Note that an unoriented path represented by p has exactly two orientations, one
is given by p itself and the other, called the opposite of p, is given by p(1− t).

This also makes it possible to say that a path p starts in p(0) and ends in p(1).
These are called the endpoints and the path connects them. Points of the
form p(t), where 0<t< 1, are called the inner points of p. Arcs use the same
terminology.

Observation. Unoriented arcs are completely determined by their image.

So, in a topological space, subspaces homeomorphic to [0, 1] can be identified
with arcs, provided the start and the end are specified. This identification is
implicitly assumed throughout the text.

Definition. A nonempty topological space is pathwise or arcwise connected
if any two distinct points can by connected by a path or an arc, respectively.

Fact.[8, 8.18 + 8.23] Pathwise connected Hausdorff spaces are arcwise connected.

0Some authors consider it to be connected.
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Let X be a metric space, x∈X, A,B⊆X. Define the distance between x and
A as d(x,A)= inf{d(x, a) | a∈A}, and also the distance between A and B as
d(A,B)= inf{d(a, b) | a∈A, b∈B}; the convention is inf∅=∞ and sup∅=0.

For a real ε> 0, Bε(x)= {y ∈X | d(x, y)<ε} and Bε(x)= {y ∈X | d(x, y)≤ ε} are
called the open and closed balls of radius ε (or ε-balls) with center x, respec-
tively. Also, Bε(A)= {x∈X | d(x,A)<ε} and Bε(A)= {x∈X | d(x,A)≤ ε} are
called the open or closed ε-neighborhoods of A, respectively. A is ε-dense
if X ⊆Bε(A).

Open balls are open sets and closed balls are closed sets, but note the closure of
an open ball is not necessarily the corresponding closed ball. The same applies
to ε-neighborhoods.

Definition. A continuum is a connected second countable compact topological
space. A continuum is trivial or degenerate if it is a one point set.

Second countability can be replaced by metrizability (see [4, 4.28]). In this text,
it is implicitly assumed that continua are metric spaces with some unspecified
metric d.
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1 Dendroids and shore sets
1.0 Introduction
Definition.[7, 1.7.19] A continuum is decomposable if it can be covered by two of
its proper subcontinua. It is hereditarily decomposable if all nondegenerate
subcontinua are decomposable.

Not all nondegenerate continua are decomposable, see [8, 1.10] and [8, 1.23] for
some examples.

Definition.[7, 1.7.30] A continuum is unicoherent if whenever it is covered by two
of its subcontinua A and B, it holds that A∩B is a continuum. It is hereditarily
unicoherent if all subcontinua are unicoherent.

Note that A∩B is always nonempty, otherwise the nonempty closed sets A,B
separate the space, which cannot happen.

Not every unicoherent space is hereditarily unicoherent, see [6, Figure 14, p. 51]
for a simple example.

Definition.[7, 6.9.1] A dendroid is an arcwise connected hereditarily unicoherent
continuum.

Fact.[8, 11.58] Every subcontinuum of a dendroid is arcwise connected.

Corollary. Subcontinuum of a dendroid is a dendroid.

Fact.[8, 11.54] Dendroids are hereditarily decomposable.

Observation. A topological space is hereditarily unicohent, if and only if the
intersection of every two of its intersecting subcontinua is connected.

Proof. Let X be the space and let A,B be two of its intersecting subcontinua.
Then A∪B is a continuum covered by A and B, so if X is hereditarily unico-
herent, A∩B is a continuum and must be connected.

For the other direction, let C be a nondegenerate subcontinuum of X, and sup-
pose C is covered by two of its subcontinua A and B. It has been already noted
that A∩B must be nonempty, hence it is connected by the assumption. Clearly,
A∩B is compact, so A∩B is indeed a continuum. ■

Observation. Let a,b be distinct points in a dendroid. Then there is a unique
arc from a to b.

3



Proof. By arcwise connectedness, there is at least one such arc f , so let g be
another arc from a to b. g ∩ f contains a and b, so it must be connected by
the hereditary unicoherence. But the only connected subset of g containing its
endpoints is the whole g and similarly for f . Therefore, g= g ∩ f = f . ■
The arc from the above observation is denoted ab. In addition to this, let aa be
the set {a}.

Corollary. Let C and D be disjoint subcontinua of a dendroid. Then there is a
unique arc starting in C and ending in D such that none of its inner points are
in C or D.

Proof. Let a∈C and b∈D be arbitrary. From the compactness of C, there is
the last point c on ab such that c∈C. Similarly, there is the first point d∈D on
ab such that d∈D. The continua C and D are arcwise connected and disjoint,
so ac⊆C, db⊆D, and c lies before d on the arc ab. Hence, cd is an arc starting
in C, ending in D, and with no inner points in C or D.

Suppose there is another arc c′d′ with such properties. Clearly, c′c∩ cd= {c} and
cd∩ dd′ = {d} since c′c⊆C and dd′ ⊆D. This means c′d′ contains cd because C
and D are disjoint. So, cc′ and dd′ are degenerate since c′d′ does not contain
points from C or D as its inner points. Therefore, c′d′ = cd. ■
The arc from the above observation is denoted CD. If C = {p} or D= {q}, the
arc can be written as pD or Cq, respectively.

1.1 Unions of Shore Continua
Definition.[5] A subset S of a dendroid X is a shore set if for all ε> 0, there
is a continuum C ⊆X \S which is ε-dense in X.

The following lemma is a slight modification of [5, Lemma 1] which is easily seen
to be equivalent.

Lemma 0. Let X be a dendroid and let ab be an arc with points x0, . . . , xn−1 in
this order. Then for all ε> 0, there is δ > 0 such that all arcs pq, where p∈Bδ(a)
and q ∈Bδ(b), have points y0, . . . , yn−1 in this order so that yk ∈Bε(xk) for all k.

Definition.[9, p. 178] Let X be a dendroid, p∈X, and A⊆X. Define Qp(A) to be
the set {x∈X | px∩A ̸=∅}. If A= {a}, it can be written as Qp(a).

This means Qp(A) are the points unreachable from p when passing through A is
forbidden.
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Theorem 1. Let X be a dendroid, p∈X, and A,B⊆X closed. It holds that(
Qp(A)∩Qp(B)

)◦
=
(
Qp(A)∩Qp(B)

)◦.
Proof. The inclusion

(
Qp(A)∩Qp(B)

)◦ ⊆ (
Qp(A)∩Qp(B)

)◦ is trivial, so only the
other inclusion is discussed. Let U ⊆

(
Qp(A)∩Qp(B)

)◦ be open.

Construct a sequence (qn) of points of U , a sequence (cn) of points of A∪B, and
a sequence (εn) of positive reals such that:

(0) q0 ∈U ∩Qp(A) and c0 ∈ pq0 ∩A,
(1) Bε0(q0)⊆U , Bεn+1(qn+1)⊆Bεn(qn), and εn → 0,
(2) for all x∈Bεn(qn), Bεn(cn)∩ px ̸=∅,
(3) qn+1 ∈Bεn(qn)∩Qp(B) and cn+1 ∈ pqn+1 ∩B when n is even,

qn+1 ∈Bεn(qn)∩Qp(A) and cn+1 ∈ pqn+1 ∩A when n is odd.

(1) can be satisfied by choosing εn sufficiently small in each step, and it implies
that Bεm(qm)⊆Bεn(qn) for all m>n. Particularly, Bεn+1(qn+1)⊆Bε0(q0)⊆U for
all n. Additionally, εn→ 0 ensures that the sequence qn is Cauchy, so it has a
limit q ∈

∩
n∈N Bεn(qn)⊆U .

(0) and (3) can be satisfied because Qp(A) and Qp(B) are dense in U . Lemma 0
ensures that (2) holds if εn is sufficiently small (and it holds trivially if qn = p).

For all n∈N, q ∈Bεn(qn). So, (2) implies Bεn(cn)∩ pq ̸=∅, hence d(pq, cn)<εn.
Even n give d(pq, A)= 0 and odd n give d(pq, B)= 0. Since A, B, and pq are
compact, it must be the case that pq ∩A ̸=∅ and pq ∩B ̸=∅. This means that
q ∈Qp(A)∩Qp(B).

Therefore, U ∩ (Qp(A)∩Qp(B)) ̸=∅ because it contains the point q. From the
arbitrary choice of U , it follows that Qp(A)∩Qp(B)⊇

(
Qp(A)∩Qp(B)

)◦. Hence,(
Qp(A)∩Qp(B)

)◦⊇ (
Qp(A)∩Qp(B)

)◦. ■
This theorem is more general and with a simpler proof than [5, Theorem 2]
because

(
Qp(a−1)∩Qp(a1)

)◦
=
(
Qp(a−1)∩Qp(a1)

)◦
=
(
∅
)◦
=∅ for any choice of

p∈ a−1a1 \ {a−1, a1}, and Qp(a−1), Qp(a1) correspond to L(a−1, a1), R(a−1, a1) in
the paper, respectively. A consequence is that for dendroids, a finite union of
pairwise disjoint shore subcontinua is a shore set, as shown in [5, Theorem 3].

Observation. Let X be a dendroid with a subset A. If X \A has an arc com-
ponent which is dense in X, then A is a shore set.

Proof. Let D be the dense component and let ε> 0. By compactness, there are
ε
2
-balls B0, . . . , Bn−1, n≥ 1 which cover X. For all i, there is a point pi ∈D∩Bi,

then
∪n−1

i=0 p0pi⊆D⊆X \A is the required ε-dense continuum. ■
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Compare the following example with [5, Example 5], which also contains shore
continua with the specified property.

Example 2. A dendroid X with a shore point s such that no arc component of
X \ {s} is dense in X. Moreover, there are two shore continua whose union is
not a shore set.

a0

a1

s

C0

C1

The points at the bottom form two Cantor sets joined by the point s in the
middle. X =

∪
n∈N Cn.

For any n∈N, each half of Cn (including the arc san) is homeomorphic to the
product C × I of the Cantor set and the unit interval, which is a compact. So,
if X is embedded in R3 like in the picture, it is a union of closed sets tending to
{s} in the Hausdorff metric. Hence, X is a closed subset of R3, and it is compact
because it is also bounded.

It is clear that any point pn ∈Cn \Cn+1 is connected to Cn+1 by an arc. Let
pn+1 be its end and continue in the same manner. Concatenating all such arcs
yields an arc ending in {s} since Cn tend to {s} in the Hausdorff metric. That
means X is arcwise connected, so it is a continuum. It is also easy to see that
Cn contracts to Cn ∩Cn+1, and concatenating them all yields a contraction of X
to {s}.

For metrizable compacts, the inductive and the covering dimension coincide (see
[4, 7.3.3]). Note that dimC × I ≤[4, 7.4.10] dimC + dim I =0+1=1. So the closed
halves mentioned above have dimension 1, and since X is their countable union,
it is the case that dimX ≤ 1 by [4, 7.2.1]. It is clear that indX ≥ 1, therefore
dimX =1.
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This means X is a 1-dimensional contractible continuum, so it is a dendroid by
[2, Proposition 1].

Let An be the arc component of an in X \ {s}. From the picture, it is easy to
see that (An \ san)∪{an}) is a continuum in X \ {s}, which becomes increasingly
dense as n increases. Hence, s is a shore point. But none of the components
An is dense in X, and

∪
n∈N san divides X into two open halves, therefore no

arc component of X \ {s} is dense in X. It is also clear that
∪

n∈N sa2n and∪
n∈N sa2n+1 are shore continua, but

∪
n∈N san cannot be.
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2 Main Result
2.0 Introduction
Let X be a topological space, and let p∈X. The arc order of p is the supremum
of the cardinalities of all collections A of arcs starting in p such that f ∩ g= {p}
for all f, g ∈A , f ̸= g. Points of order 1 are called endpoints, points of order at
least 3 are called branch points. See [1, p. 230].

Definition.[7, 6.9.1] A fan is a dendroid with exactly one branch point.

Let U be an open cover of a topological space X. The nerve of U , de-
noted by N(U ), is the abstract simplicial complex on U , whose faces are all
{U0, . . . , Un−1}⊆U satisfying

∩n−1
i=0 Ui ̸=∅. If X is a metric space, define mesh

of U , denoted by mesh U , to be supU∈U diamU .

Every simple undirected graph can be viewed as an abstract simplicial complex.
If such graph is a tree, the corresponding abstract simplicial complex is also
called a tree. If N(U ) is a tree, U is said to be a tree cover.

Definition.[6, 55.1]+[7, 2.5.13] A continuum X is treelike if for all ε> 0, there is a
tree cover U of X satisfying mesh U <ε.

Fact.[3] Dendroids are treelike.

2.1 Key Proposition
A walk in an abstract simplicial complex is a sequence of vertices v0, . . . , vn−1,
where n≥ 1, such that {vi, vi+1} is a face for all 0≤ i <n− 1. The walk starts
in v0, ends in vn−1, and the walk vi, . . . , vj−1, where 0≤ i < j≤n, is called a
subwalk. A path is a walk with all vertices distinct.

Lemma 3. Let X be a topological space with an open cover U satisfying
dimN(U )≤ 1, and let p be an path starting in U ∈U , ending in V ∈U . Then
there is a walk U =U0, U1, . . . , Un−1=V in N(U ) such that for any subwalk
Ui, . . . , Uj−1, there is a subpath p′ of p starting in Ui, ending in Uj−1, and con-
tained in

∪j−1
k=i Uk, which is a left subpath if i=0, and a right subpath if j=n.

Moreover, p′ actually visits each of Ui, . . . , Uj−1.

Proof. Set t0 =0 and U0 =U , then p(t0)∈U0. Whenever p([ti, 1])⊈Ui, it is pos-
sible to choose the smallest ti+1 ∈ (ti, 1] such that p(ti+1) /∈Ui, because X \Ui is
closed. In that case, choose Ui+1 so that p(ti+1)∈Ui+1.
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This inductively defines two sequences t0, t1, . . . and U0, U1, . . .. From the continu-
ity, ti+1 ∈ [ti, ti+1) implies p(ti+1)∈ p([ti, ti+1))⊆U i. Moreover, p(ti+1)∈Ui+1 \Ui,
hence Ui ̸=Ui+1 and Ui ∩Ui+1 ̸=∅.

Suppose the sequences are infinite. Set t= supi∈N ti, then there is W ∈U such
that p(t)∈W . Since p is continuous, there is s∈ [0, t) such that p([s, t])⊆W .
Choose i∈N so large that ti≥ s, then Ui ̸=W because ti+1 /∈Ui, and similarly,
Ui+1 ̸=W . But Ui+1 ∩W is a neighborhood of p(ti+1)∈U i, so Ui ∩Ui+1 ∩W ̸=∅
and dimN(U )≥ 2, which is a contradiction.

So, the sequences are finite. Let n′ ∈N be their length, then U0, . . . , Un′−1 form a
walk in N(U ). Also, p([ti, ti+1))⊆Ui for all 0≤ i <n′ − 1 and p([tn′−1, 1])⊆Un′−1.

Let 0≤ i′ <j′ ≤n′. First, if i′=0 and j′ =n′, the path p itself starts in U0, ends in
Un′−1 and is contained in

∪n′−1
k=0 Uk. Else, if j′− i′ =1, then p ↾[ti′ ,ti′+ε] (or p ↾[1−ε,1]

if j′ =n′) gives a path contained in Ui′ for some sufficiently small ε> 0. And if
j′− i′ > 1, then p ↾[ti′ ,tj′−1]

(or p ↾[ti′ ,1] if j′ =n′) gives a path starting in Ui′, ending
in Uj′−1, and contained in

∪j′−1
k=i Uk. All the given paths are left subpaths of p

when i′ =0, right subpaths when j′ =n′, and visit each of Ui′ , . . . , Uj′−1.

If Un′−1 =V , set n=n′ and the proof is done. Otherwise, set n=n′ +1 and
Un′ =V ; this extends the walk since p(1)∈Un′−1 ∩V . Additional subwalks of the
form Ui, . . . , Un′, 0≤ i≤n′, need to be checked. If i <n′, then the path previously
constructed for i′ = i and j′ =n′ has all the required properties. If i=n′ (̸=0),
then p ↾[1−ε,1] gives a left subpath contained in Un′ for some sufficiently small
ε> 0. ■
Let X be a metric space, and ε> 0. A sequence of points c0, . . . , cn−1, where
n≥ 1, is called an ε-chain if d(ci, ci+1)<ε for all 0≤ i <n− 1. A set A⊆X
is called ε-chained if for all a, b∈A, there is an ε-chain a= c0, c1, . . . , cm−1 = b.
Clearly, if c0, . . . , cn−1 is a chain, then {c0, . . . , cn−1} is ε-chained.

Fact.[8, 4.13 + 4.16] Let X be a compact metric space, and let (Cn) be a sequence
of compacts such that Cn is εn-chained. If εn → 0, then (Cn) has a subsequence
converging to a subcontinuum of X (in the Hausdorff metric).

Proposition 4. Let X be a dendroid, and let ab be an arc such that none of
its inner points are branch points. Then for any ε> 0, there is δ > 0 such that
all arcs pq, where p∈Bδ(a) and q ∈Bδ(b), have a subarc p′q′ so that p′ ∈Bε(a),
q′ ∈Bε(b), and p′q′ ⊆Bε(ab).

Proof. Suppose it is not the case. Then there is ε> 0 such that for all δ > 0, there
is an arc pq, p∈Bδ(a), q ∈Bδ(b), whose every subarc p′q′, p′ ∈Bε(a), q′ ∈Bε(b),
fails to satisfy p′q′ ⊆Bε(ab). Without loss of generality, suppose that ε< 1

2
d(a, b).
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Suppose U is a tree cover of X with mesh U < ε
2 . Choose U, V ∈U such that

a∈U and b∈V , then Lemma 3 gives a walk U =U0, U1, . . . , Un−1 =V . Pick the
largest i such that Ui⊆Bε(a), and then the least j > i such that Uj−1 ⊆Bε(b).
Now, Ui, . . . , Uj−1 is a subwalk, so the lemma says there is a subarc cd of ab such
that c∈Ui, d∈Uj−1, cd⊆

∪j−1
k=i Uk, and cd∩Uk ̸=∅ for each i≤ k < j.

j− i > 2 because Bε(a)∩Bε(b)=∅. Moreover, Ui, Uj−1 /∈{Ui+1, . . . , Uj−2} since
Uk is not contained in Bε(a) or Bε(b) for all i < k < j− 1. So, let C be the
component of {Ui+1, . . . , Uj−2} in N(U ) \ {Ui, Uj−1} and C ′ the component in
N(U ) \ {W ∈U |W ⊆Bε(a)∨W ⊆Bε(b)}. Clearly, C ′⊆C .

By the construction of C ′, all W ∈U \C ′ neighboring C ′ in N(U ) (i.e. inter-
secting a member of C ′) are contained either in Bε(a), or in Bε(b). Let E be
the set of such W for Bε(a), and F for Bε(b). Clearly, Ui ∈E and Uj−1 ∈F .
Applying the initial assumption for δ > 0 so small that Bδ(a)⊆U and Bδ(b)⊆V
yields an arc pq, p∈U , q ∈V , whose every subarc p′q′, p′ ∈Bε(a), q′ ∈Bε(b), fails
to satisfy p′q′ ⊆Bε(ab).

Since N(U ) is a tree, C divides U into 2 components, one contains U and
connects to C through Ui and the other contains V and connects through Uj−1.
So, any walk from U to V must go through Ui ∈E , and then through Uj−1 ∈F .
For pq, Lemma 3 gives a walk U =U ′

0, U
′
1, . . . , U

′
n′−1 =V . Pick the largest i′ such

that U ′
i′ ∈E , and then the least j′ > i′ such that Uj′−1 ∈F . Now, U ′

i′ , . . . , U
′
j′−1

is a subwalk, so the lemma says there is a subarc p′q′ of pq such that p′ ∈U ′
i′,

q′ ∈U ′
j′−1, and p′q′ ⊆

∪j′−1
k=i′ U

′
k. Also, j′− i′ > 2 because Bε(a)∩Bε(b)=∅.

U ′
i′ ⊆Bε(a) and U ′

j′−1 ⊆Bε(b), hence, p′q′ \Bε(ab) ̸=∅ by the properties of pq.
This means there is a point c0 ∈W \Bε(ab) for some W ∈{U ′

i′ , . . . , U
′
j′−1}, but

U ′
i′ , U

′
j′−1⊆Bε(a, b)⊆Bε(ab), so W ∈{Ui′+1, . . . , Uj′−2}⊆C ′. Note that the walk

U ′
i′+1, . . . , U

′
j′−2 ∈U \ (E ∪F ) connects U ′

i′ ∈E with U ′
j′−1 ∈F in N(U ) and so

does C ′. But C ′ is a maximal connected subset of U \ (E ∪F ), so, since N(U )
is a tree, it must be the case that U ′

i′+1, . . . , U
′
j′−2 ∈C ′.

Ui+1,W ∈C ′, therefore, there is a path W =W0,W1, . . . ,Wl−1 =Ui+1 contained in
C ′. Choosing ci ∈Wi for all 1≤ k < l yields a (2mesh U )-chain c0, . . . , cl−1. Set
C = {c0, . . . , cl−1}, then C ⊆

∪
C ′ ⊆X \Bε−mesh U (a, b)⊆X \B ε

2
(a, b). Note that

C is compact for it is finite, C \Bε(ab) ̸=∅ because of c0, and d(C, ab)<mesh U
since cl−1 ∈Ui+1 and Ui+1 ∩ cd ̸=∅ (a property of cd).

X is treelike, so there is a sequence (Un) of tree covers such that mesh Un → 0.
Let (Cn) be a sequence of the corresponding C’s constructed above. (Cn) is
a sequence of (2mesh U )-chained compacts in a compact space X \B ε

2
(a, b).

Hence, by the fact above this proposition, there is a subsequence (C ′
n) converging
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to a continuum C ′ ⊆X \B ε
2
(a, b). Now, C ′

n \Bε(ab) ̸=∅ by the properties of C ′
n,

therefore, d(C ′, X \Bε(ab))= 0, which implies that C ′ \Bε(ab) ̸=∅. Similarly,
d(C ′

n, ab)<mesh Un, hence, d(C ′, ab)= 0, and C ′ ∩ ab ̸=∅.

Let x∈C ′ \Bε(ab). C ′ is arcwise connected and intersects ab, so there is an
arc xy⊆C ′, y ∈ ab. From the closedness of ab∩C ′, it may be assumed that
xy ∩ ab= {y}. Then y ̸= a, b since y ∈C ′⊆X \B ε

2
(a, b), so y is an inner branch

point of ab, which is a contradiction. ■

Corollary 5. Let X be a dendroid with a subcontinuum C and let aC be an arc
such that none of its inner points are branch points. Then for any ε> 0, there is
δ > 0 such that all arcs pC, where p∈Bδ(a), have a subarc p′q′ so that p′ ∈Bε(a),
q′ ∈Bε(c), and p′q′ ⊆Bε(aC), where c is the end of aC.

Proof. Choose any b∈ (aC \ {c})∩B ε
2
(c). Then ab∩C =∅, so there is ε′ ∈ (0, ε

2
)

such that Bε′(ab)∩C =∅. By the proposition, there is δ′ > 0 such that for all
arcs pq, p∈Bδ′(a), q ∈Bδ′(b), there is a subarc p′q′, p′ ∈Bε′(a), q′ ∈Bε′(b), such
that p′q′ ⊆Bε′(ab). Without loss of generality, δ′ ≤ ε′.

Using Lemma 0 for the point b on ac yields δ > 0 such that all arcs pc, p∈Bδ(a),
have a point q ∈Bδ′(b)⊆Bε′(ab). Without loss of generality, δ≤ δ′. Note that
q /∈C, which implies pq ∩C =∅ since q ∈ pc and C is arcwise connected. So,
pq is a subarc of pC such that p∈Bδ(a)⊆Bδ′(a), q ∈Bδ′(b). Then, by the above
usage of the proposition, there is a subarc p′q′ of pC such that p′ ∈Bε′(a)⊆Bε(a),
q′ ∈Bε′(b)⊆B ε

2
(b)⊆Bε(c), and p′q′ ⊆Bε′(ab)⊆Bε(ac). ■

2.2 Unions of Closed Shore Sets
Definition. Let X be a dendroid with a subcontinuum C, and let A⊆X \C.
Define RA(C) to be the set of all p∈X \C such that pC ∩A=∅.

Let X and C be as above. Additionally, let S(C) be the set of all p∈X \C such
that no inner point of pC is a branch point. C is a core if no point of C is a
shore point. A core C is simple core if S(C)◦ is dense in X \C.

Lemma 6. Let X be a dendroid with a core C, and let A⊆X \C. Then A is a
shore set, if and only if RA(C) is dense in X \C.

Proof. Suppose A is a shore set. Let U be a nonempty open subset of X \C, and
pick any c∈C. Since c is not a shore point, any sufficiently dense subcontinuum
of X must contain it. Therefore, because A is a shore set, there is a continuum
D⊆X \A such that c∈D and D∩U ̸=∅. Then for any p∈D∩U , it holds that
pC ⊆D⊆X \A, so p∈RA(C)∩U .

11



For the other direction, suppose RA(C) is dense in X \C, and let ε> 0. By
compactness, there are finitely many ε

2
-balls (Bi)i∈I which cover X. Let J be the

set of all i∈ I such that Bi⊆X \C. Then for each j ∈ J , by the density of RA(C),
Bj contains a point pj such that pjC ∩A=∅. Let D=C ∪

∪
j∈J pjC, that is a

continuum disjoint from A, and X ⊆
∪

i∈I Bi ⊆Bε(C)∪
∪

j∈J Bε(pj)⊆Bε(D). ■
Let X be a metric space. A path p is said to be n-wiggly around (A, ε), where
A⊆X and ε> 0, if there exist 0≤ t0 ≤ . . .≤ t2n−1≤ 1 such that p(tk)∈Bε(A) for
even k’s, and p(tk) /∈B2ε(A) for odd k’s. All paths are 0-wiggly around any (A, ε)
for there are no points to be checked. If A= {p}, the path is said to be n-wiggly
around (p, ε).

Lemma 7. Let X be metric space, p be a path, A⊆X, and ε> 0. Then there
is a maximum n such that p is n-wiggly around (A, ε).

Proof. If it is not the case, then for all n≥ 1, there are 0≤ t0≤ . . .≤ t2n−1≤ 1
such that p(tk)∈Bε(A) for even k’s, and p(tk) /∈B2ε(A) for odd k’s. Pick an
even k such that tk+1− tk is the least possible. Set un = tk and vn = tk+1, then
p(un)∈Bε(A), p(vn) /∈B2ε(A), and |un − vn| ≤ 1

n
.

The sequence (un) has a convergent subsequence (unk
) with limit u∈ [0, 1]. And

since |un − vn|→ 0, the sequence (vnk
) has the same limit. But p(u)∈Bε(A)

because p is continuous and p(un)∈Bε(A) for all n≥ 1. Similarly, p(u) /∈B2ε(A)
because p(vn) /∈B2ε(A). That is a contradiction. ■
The number n from the above lemma is called the wiggliness around (A, ε) of
the path p.

Lemma 8. Let X be a dendroid, ab an arc, A⊆X, and ε> 0. Then there is
δ > 0 such that around (A, ε), the wiggliness of all arcs pq, where p∈Bδ(a) and
q ∈Bδ(b), is at least the wiggliness of ab.

Proof. Let n be the wiggliness of ab around (A, ε). Then there are points
x0, . . . , x2n−1 in this order on ab such that xk ∈Bε(A) for even k’s, and xk /∈B2ε(A)
for odd k’s.

Let ε′ > 0 be so small that Bε′(xk)⊆Bε(A) for even k’s, and Bε′(xk)⊆X \B2ε(A)
for odd k’s. Then, by Lemma 0, there is δ > 0 such all arcs pq, p∈Bδ(a), q ∈Bδ(b),
have points y0, . . . , y2n−1 in this order so that yk ∈Bε′(xk)⊆Bε(A) for even k’s,
and yk ∈Bε′(xk)⊆X \B2ε(A) for odd k’s. ■

Theorem 9. Let X be a dendroid with a simple core C. Then the union of
finitely many closed shore sets is a shore set.
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Proof. It is sufficient to prove it for two closed shore sets A, B. Suppose that
A∪B is not a shore set. A,B⊆X \C, so by Lemma 6, RA∪B(C) is not dense in
X \C. The set S(C)◦ is dense in X \C, so there is an open set U ⊆S(C) disjoint
from RA∪B(C).

There is λ> 0 such that B2λ(C)∩ (A∪B)=∅ because C and A∪B are disjoint
compact sets. Construct a sequence (pn) of points of U , and sequences (δn), (εn)
of positive reals such that:

(0) p0 ∈U ∩RA(C), B2δ0(p0)∩ (A∪B)=∅, and Bε0(p0C)∩A=∅,
(1) Bδ0(p0)⊆U , Bδn+1(pn+1)⊆Bδn(pn), and δn → 0,
(2) pn+1 ∈Bδn(pn)∩RB(C) \RA(C) and Bεn+1(pn+1C)∩B=∅ when n is even,

pn+1 ∈Bδn(pn)∩RA(C) \RB(C) and Bεn+1(pn+1C)∩A=∅ when n is odd,
(3) around both of (p0, δ0) and (C, λ), the wiggliness of all arcs pq, p∈Bεn(pn),

q ∈Bεn(cn), is at least the wiggliness of pnC,
(4) any arc pC, where p∈Bδn(pn), has a subarc p′q′ such that p′ ∈Bεn(pn),

q′ ∈Bεn(cn), and p′q′ ⊆Bεn(pncn);
where cn denotes the end pnC.

A, B are closed shore sets, so they are nowhere dense. Hence, A∪B is also
nowhere dense. Moreover, RA(C) is dense in U by Lemma 6, so there is a point
p0 such that the first two conditions of (0) are satisfied. The last condition is
fulfilled when ε0 is sufficiently small since A and p0C are disjoint compact sets.

(1) can be satisfied by choosing δn sufficiently small in each step, and it implies
that Bδm(pm)⊆Bδn(pn) for all m>n. Particularly, Bδn+1(pn+1)⊆Bδ0(p0)⊆U for
all n. Additionally, δn → 0 ensures that the sequence (pn) is Cauchy, so it has a
limit pω ∈

∩
n∈N Bδn(pn)⊆U .

Let n be even. Note that U ∩RA(C)=U ∩RA(C) \RB(C) because U is disjoint
from RA∪B(C)=RA(C)∩RB(C). And since RA(C) is dense in U by Lemma 6,
there is a point pn+1 ∈Bδn(pn)∩RB(C) \RA(C). The sets pn+1C and B are dis-
joint and compact, so if εn+1 is sufficiently small, Bεn+1(pn+1C)∩B=∅. The
case of n being odd is similar, hence (2) can be satisfied.

Clearly, (3) can be satisfied by Lemma 8, assuming εn are sufficiently small. For
each n, pn ∈U ⊆S(C), so pnC contains no inner branch points. Hence, if δn is
sufficiently small, Corollary 5 says that (4) holds. This finishes the construction.

Let n be even. The arc pn+1C has a subarc p′q′ satisfying the conditions in
(4) because pn+1 ∈Bδn(pn). It follows from (2) (and (0) for n=0) that pn+1cn+1

contains a point a∈A, while Bεn(pncn) is disjoint from A. The point a lies either
on pn+1p

′, or on q′cn+1 since p′q′ ⊆Bεn(pncn).
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It follows from (3) that the wiggliness of p′q′ around (p0, δ0) is at least the wig-
gliness of pncn. This means that if a∈ pn+1p

′, the wiggliness of pn+1cn+1 around
(p0, δ0) is strictly greater than the wiggliness of pncn because pn+1 ∈Bδ0(p0) and
a /∈B2δ0(p0). If a∈ q′cn+1, then the wiggliness of pn+1cn+1 around (C, λ) is strictly
greater than the wiggliness of pncn because cn+1 ∈Bλ(C) and a /∈B2λ(C).

Similar reasoning applies when n is odd. Therefore, around either (p0, δ0) or
(C, λ), the wiggliness of the arcs pnC increases without bound. But pω ∈Bεn(pn)
for all n, so (3) applies, and the wiggliness is bounded by the wiggliness of pωC.
That is a contradiction. ■

Corollary 10. Let X be a dendroid with finitely many branch points. Then the
union of finitely many closed shore sets is a shore set.

Proof. If X is degenerate, then X itself is a simple core. If X is an arc, then any
of its inner points are a simple core. Otherwise, X has at least one branch point
because it contains a maximal arc by [10, Lemma 3].

Hence, let b0, . . . , bn−1, n≥ 1, be the branch points, T the continuum
∪n−1

i,j=0 bibj,
Ai the union of all arcs bip, p∈X, such that bip∩T = {bi}, and B the set of all
bi such that (Ai)

◦ ̸=∅.

Suppose that T ◦=∅. Then B is nonempty because X =T ∪
∪n−1

i=0 Ai, therefore
C =

∪
pq∈B pq is a continuum. Let D be the union of all Ai which intersect C. By

the construction,
(
X \ (C ∪D)

)◦
=∅, which implies that D is dense in X since

C◦ ⊆T ◦=∅.

If
(
X \ (C ∪D)

)◦ ̸=∅, then
(
X \ (T ∪C ∪D)

)◦ ̸=∅ since T is nowhere dense.
Note that X \ (T ∪C ∪D) is contained in the union of all Ai such that bi /∈C.
Because the union of nowhere dense sets is nowhere dense, there is i, bi /∈C, such
that

(
Ai

)◦ ̸=∅. D is dense in X, so
(
Ai ∩D

)◦ ̸=∅. Similarly, from the definition
of D, there is j, Aj ∩C ̸=∅, such that

(
Ai ∩Aj

)◦ ̸=∅. Then Ai ∩C =∅ since
bi /∈C, so i ̸= j. But that contradicts Theorem 1 for any p∈ bibj \ {bi, bj} because
Ai⊆Qp(bi), Aj ⊆Qp(bj), and Qp(bi)∩Qp(bj)=∅.

This means that
(
X \ (C ∪D)

)◦
=∅, which can be rewritten as (C ∪D)◦ =X.

Therefore, S(C)◦ ⊇D◦ is dense in X \C, and even in X since C◦=∅. Any
sufficiently dense subcontinuum of X intersects all Ai for which (Ai)

◦ ̸=∅. Hence,
if |B| ≥ 2, it must contain all arcs bibj, and so the whole C. In that case no point
of C can be a shore point, and C is a simple core.

So, suppose that B= {b}, then C = {b}. All dendroids are decomposable, which
means there are proper subcontinua C0, C1 such that X =C0 ∪C1. If C0 does
not intersect T , it must be a subset of some arc starting in T . An arc is still a
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proper subcontinuum of X, so C0 can by replaced by such arc, and similarly for
C1. Hence, it can be assumed that C0 and C1 intersect T .

Note that C0 \C1 =X \C1 and C1 \C0 =X \C0 are nonempty open sets, and D
has dense interior, so any sufficiently dense subcontiuum C ′ of X must intersect
D∩C0 \C1 and D∩C1 \C0 at some points c0, c1, respectively. Then Tc0= bc0
because c0 ∈D and C = {b}. Moreover, C0 is arcwise connected and intersects T ,
so c1 ∈ bc0=Tc0 =⇒ c1 ∈C0. Hence, c1 /∈ bc0, and similarly, c0 /∈ bc1. Therefore,
bc0 ∩ bc1= {b} since no point of bc0 or bc1 other than b is a branch point. So,
b∈ c0c1 ⊆C ′, which means b cannot be a shore point, and C = {b} is a simple
core.

Now look at the case T ◦ ̸=∅. Then is an arc bibj with no inner branch points
such that (bibj)

◦ ̸=∅. Clearly, n≥ 2, so assume that all dendroids with less than
n branch points have a simple core.

Choose a subarc pq of bibj such that pq⊆ (bibj)
◦ \ {bi, bj}. Then U = pq \ {p, q} is

an open subset of X. Subcontinua of dendroids are arcwise connected, so X \U
cannot be a continuum for there would be another arc between p and q. That
means X \U breaks into 2 closed components X0 and X1 containing p and q,
respectively. X0 and X1 are dendroids containing bi and bj, respectively. That
means they have less than n branch points, and therefore, by the assumption,
they contain simple cores C0 and C1.

Pick any c0 ∈C0 and c1 ∈C1, and let C be any ε-dense subcontinuum of X. By
unicoherence, C ∩X0 is an ε-dense subcontinuum of X0. Hence, c0 ∈C ∩X0⊆C
if ε> 0 is sufficiently small since c0 is not a shore point in X0, and similarly for
c1. Therefore, c0c1⊆C for a sufficiently small ε> 0, which means no point of
c0c1 is a shore point in X. Additionally, no points of C0 and C1 are shore points
from the arbitrary choice of c0 and c1.

That means the continuum C =C0 ∪C1 ∪ c0c1 is a core. Let U ⊆X \C be open,
then U ∩X0 ̸=∅ or U ∩X1 ̸=∅ since pq⊆ c0c1 ⊆C. Therefore, without loss of
generality, U ⊆X0. Then in X0, S(C0)

◦ ∩U ̸=∅ because C0 is a simple core.
Hence, S(C)◦ ∩U ̸=∅ in X because all branch points of X in X0 are already
branch points of X0. ■
In particular, this answers the questions posed by [0, Table 1, p. 213] for fans.
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The following example shows some limitations of the simple core approach.

Example 11. A dendroid X with two different shore points s0 and s1 (whose
union must be a shore set) containing no simple core.

s0 s1

p0 p1

It it easy to see that X is a dendroid. Any simple core must intersect s0s1 in a
nonempty closed subset disjoint from {s0, s1}, but that prevents it from reaching
both p0 and p1 without crossing a branch point.

A hairy tree is a dendroid, whose all branch points are contained in a subcon-
tinuum T which is a union of finitely many arcs. For instance, T = s0s1 in the
above example.

Question. Is a union of two closed shore sets again a closed shore set in hairy
trees? If not, what about the disjoint case?
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Conclusion
[0, Example 14] shows than even for planar dendroids with just countably many
branch points, a union of disjoint closed shore sets can fail to be a shore set.
Therefore, Corollary 10 is a nice complement of that result.

Example 11 shows some limitations of the simple core approach. An extension
to hairy trees seems worth investigating. The problem is that one cannot simply
omit the closedness of simple core.

While Theorem 1 nicely simplifies the original [5, Theorem 2], the generalization
part is not used anywhere. It was originally devised for an attempt to prove that
the union of disjoint closed shore sets is a shore set in a dendroid, which was
doomed to fail. It may be worth investigating if it is of any help in some other
special cases of dendroids.

Speaking of which, the table [0, Table 1, p. 213] still shows some gaps for smooth
dendroids (there is a point p such that for all sequences qn → q, the sequence
pqn converges to pq in the Hausdorff metric). These results will probably not
be of much help for λ-dendroids (where arcwise connectedness is replaced by
hereditarily decomposability).
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