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Abstract

This paper examines statistical properties of crypto-currencies’ price variations

in comparison with statistical properties of price variations in common financial

markets. Price data of Bitcoin, ripple and Litecoin have been directly compared

with price data of euro currency and stock index S&P500. Additionally, and

compared with set of stylized facts of asset returns. The properties in scope of

this work include an autocorrelation of day-to-day returns, a shape of return

distributions, a volatility clustering, a leverage effect and a volume/volatility

correlation. To answer the question of this thesis, we have tried to find unique

differences in the way prices of crypto-currencies behave. After every point of

the data analysis has been checked, we have concluded that the only major

difference is in the shape and the significance of autocorrelation in day-to-

day returns. While crypto-currencies seem to autocorrelate, there has been

no such a cross-autocorrelation found in the benchmark values. Therefore, we

argue that it is the most distinctive sign of crypto-currencies and the reason

for crypto-currencies to be regarded as separate asset class.
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Abstrakt

Tato práce zkoumá statistické vlastnosti cenových variaćı kryptoměn, ve srovnáńı

se statistickými vlastnostmi koĺısáńı cen na běžných finančńıch trźıch. Data o

změnách cen kryptoměn Bitcoin, ripple a Litecoin byla př́ımo srovnávána se

změnami cen evropské měny euro a akciového indexu S&P500. Zároveň byla

data srovnávána se sadou stylizovaných fakt̊u výnos̊u finančńıch aktiv. Vlast-

nosti zkoumané v této práci jsou: autokorelace denńıch výnos̊u, tvar rozděleńı

výnos̊u, shlukováńı volatility, pákový efekt a korelace objemu a volatility. K

tomu, aby jsme mohli odpovědět na otázku této práce, jsme se snažili naj́ıt

unikátńı rozd́ıly v chováńı výnos̊u kryptoměn. Poté, co byl zkontrolován každý

bod této analýzy, jsme dospěli k závěru, že jediný zásadńı rozd́ıl je ve tvaru a

významnosti autokorelace denńıch výnos̊u. Zat́ımco výsledky analýzy ukazuj́ı,

že kryptoměny autokoreluj́ı, ostatńı finančńı aktiva tuto vlastnost obecně nevykazuj́ı.

Závěrem tedy konstatujeme, že autokorelace jako nejvýrazněǰśı statistická odlǐsnost

denńıch výnos̊u kryptoměn je dostatečným d̊uvodem považovat kryptoměny za

samostatnou tř́ıdu aktiv.
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Introduction

There are 178 different circulating currencies all over the world1. Some of them

are more valuable and some of them are less. Some of them are used more than

the others and some of them rarely ever change hands. But still, they all share

similar characteristics. They are backed by credible institution — a state, which

ensures the value of those currencies and at the same time creates artificial

demand for the currency itself by accepting it as means of payment. Alternative

currencies might be backed by another institution such as a company, but there

is still an assurance of value provided by this entity (the company ensures users

that it will accept the currency for predetermined number of days). Widely used

currencies also tend to be tangible, which increases the trust even more. That

is why it came as a shock when news about success of a new crypto-currency

named Bitcoin (BTC) started to emerge in early 2013.

Crypto-currency is a specific type of currency, which uses cryptography to

control its supply, its security, and functioning of its transaction processes.

Those currencies are mostly internet based and rarely exist in other form than

intangible. That allows for nearly instant transactions between any two places

in the world (under condition of internet access). Although there are hundreds

of such currencies, BTC is the most used one and also the first one to be known

among wide public23. It has been created in 2008 by an individual or a group

of people going by the name of Satoshi Nakamoto4. Originally, it was meant

as a response to common internet payments, which force buyers to tell more

information about themselves just to cover the risk of fraud and have relatively

high transaction costs which make small casual transactions unattractive.

On August 15, 2008 encryption patent5 application number 20100042841

1http://www.currency-iso.org/en/home/tables/table-a1.http
2http://www.forbes.com/forbes/2011/0509/technology-psilocybin-bitcoins-gavin-

andresen-crypto-currency.html
3http://cryptocoincharts.info/
4https://bitcoin.org/bitcoin.pdf
5http://www.google.com/patents/US20100042841
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has been filed and created basis on which BTC was going to be later built on.

Three days later internet domain bitcoin.org has been registered. And finally,

on October 31, 2008 famous paper named Bitcoin: A Peer-to-Peer Electronic

Cash System has been published (anonymously, under the Satoshi Nakamoto

pseudonym). In this work, Nakamoto (2008) solved notorious double-spending

problem which haunts digital currencies (issue of possible multiplication of a

unit of currency), described the cryptographic process behind the transactions

and questions of privacy, and allowed the whole system to start working in

January 2009. First transaction has been made on January 12, 2009. First

real-world transaction then on 22 May, 20106. At that time the value of one

BTC was not even 0.01$. One year later it was around 8$ and on November

27, 2013 the currency broke 1000$ per BTC. At the time of writing this thesis

(July 2015), the price is at around 200 – 300$ per BTC. (Prices vary between

the inividual exchanges, as there is no official exchange rate.)

When BTC was originally created in 2008, it was nothing in terms of value

compared to its boom days of post 2013 period. People were cautious and

name of the currency was spreading slowly. And actually for a good reason:

BTC is not backed by any organization, state, nor firm. Its value is based

on the trust of its users and its supply is constrained solely by process called

mining and rules which it entails; built in the way that it reflects behaviour

of rare assets, so that the rate of supply converges to zero. The fact that it

had been (and still is) mostly used on deep web — parts of internet which

are not widely accessible (not accessible through standard search engines nor

standard internet browsers) and have very bad reputation, mostly for trade

with narcotics, weapons and other illegal activities, does not help either.

Controversially, it was its security flaws and high volatility which brought

attention to the currency. There were many articles involving BTC circulating

during year 2013 and as name was mentioned more and more often the value

of BTC grew. Obviously, people who wanted to try BTC were not scared by

possible failure and even some of big e-commerce companies started to accept

the crypto-currency. High volatility linked to the relationship between the

currency’s value and user’s trust lured in investors who saw a possibility of

high returns in short term and new way of differentiating their portfolios.

Other crypto-currencies followed the trend that BTC started, and some of

them were able to grow quite big themselves. The biggest ones by market

value and therefore those which are subject of this thesis, next to the BTC are

6https://bitcointalk.org/index.php?topic=137.msg1195#msg1195
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ripple (XRP) and Litecoin (LTC). XRP was created mainly to compete with

BTC with its super-fast transactions. Transaction on XRP typically takes only

couple of seconds7, which is compared to BTC transactions that take in average

5 – 10 minutes8, rather big difference. Main disadvantage is, of course, still

relatively low market capitalization compared to BTC. LTC, third and last

of the observed currencies, has been created in 20119 and is very similar in

the cryptographic mechanisms behind the currency to BTC. It also enables

faster transactions than BTC, but it is even further from being as used as

BTC is. (Market capitalization10 as of May 8, 2015: BTC $3,356,134,992; XRP

$236,144,980; LTC $56,282,044)

From all of the above comes the main question of this thesis. If BTC, and

crypto-currencies generally seem so different, are statistical properties of their

returns also different from regularly used fiat currencies? Are they different

from other financial assets? And could they therefore form a whole new asset

class? Even if none of the above is true, there still might be some unusual char-

acteristics in the way the returns occur. One of the ways that these questions

can be answered is by observing the asset’s behaviour and using statistical pro-

cedures to compare observed behaviour with stylized facts of other investment

assets (Cont 2001). This method covers quite broad spectrum of different sta-

tistical views on the shape of the distribution and, to our knowledge, no article

that would already use this approach has been written yet.

Cont (2001) argues that even though it is not very obvious at the first

glance, return data of various financial assets (stocks, commodities, indexes)

share similar properties. Therefore crypto-currencies will not be any different

from statistical point of view, or at least the associate returns, than regular

currencies and investment assets in case that those properties hold even for

them. In this thesis, we perform a statistical analysis parallel to the one of

Cont (2001) to show whether BTC shares these properties with other assets or

whether it differs significantly.

This thesis is structured as follow: Chapter 1 informs on research which has

already been done in subject of this thesis. Chapter 2 describes the process of

data collection and presents collected data and the reasoning behind the data

selection. Chapter 3 presents the methodology used, process of analysis and its

results. This chapter is also divided into eight subsections — stylized facts, ab-

7https://ripple.com/knowledge-center/understanding-ripple/
8https://blockchain.info/charts/avg-confirmation-time
9https://bitcointalk.org/index.php?topic=47417.0

10http://coinmarketcap.com/
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sence of autocorrelation, heavy tails, gain/loss asymmetry, aggregational gaus-

sianity, volatility clustering, slow decay of autocorrelation in absolute returns,

leverage effect, volume/volatility correlation. Finally, Chapter 4 recapitulates

the major findings of this thesis. Graphs and tables that are not included in

the text, can be found in Appendix A and Appendix B.



Chapter 1

Literature review

There are many papers on the BTC currency, as the topic is rather popular, but

only a few works which would examine behaviour of crypto-currencies generally

from the statistical point of view and the differences between them and other

broadly used financial assets as fiat currencies or stocks.

One of such is Wilson-Nunn & Zenil (2014). The authors argue that BTC

shares similarities with stock and precious metal markets and that LTC has sim-

ilar, even though not exactly the same and more currency-like, characteristics

as BTC. They draw such a conclusion after they observe mean, standard dis-

tribution, kurtosis, skewness and generally the shape of distribution functions

of various financial assets, and after they apply more advanced information-

theoretic, algorithmic and fractal measures (Shannon’s entropy, compressibility,

algorithmic probability. theory of roughness). This research has been initiated

by decision of Internal Revenue Service to consider BTC a property rather than

currency for tax purposes, and authors show that BTC indeed behaves more

like a property. However, according to this paper, with such complex patterns

of behavior, and displaying signs of both property and currency, BTC could be

classified as a hybrid instrument.

Very interesting approach showed, in their work, Cocco et al. (2014). They

created an artificial agent-based market for BTC which simulated the real one.

The model is quite complex and covers various trading strategies and Pareto-

law wealth distribution among the virtual participants. It entails two kinds

of actors — Random traders and Chartists (speculators), who participate on

trade with different approaches and strategies using crypto-currency, which is

modeled in the way that reflects real world BTC supply, and fiat currencies. It

also accounts for an increase in the number of traders in the artificial society.
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On this quite complicated model they were able to observe BTC’s absolute

returns, their autocorrelation and cumulative distribution function and they

reproduced characteristics, which were very similar to that of real markets:

power-law behavior in tails of complementary cumulative distribution function,

low autocorrelation and volatility clustering.

Kristoufek (2013) studies relationship between BTC prices and number of

Google respectively Wikipedia search queries. Google and Wikipedia search

queries were chosen are used as a measure of interest in BTC and as expected,

paper describes high correlation between the queries and BTC prices. Addi-

tionally, it finds out that the correlation goes both directions — it is not only

the search trends that influence price of BTC but also the price itself influ-

ences number of queries involving the currency (aka bidirectional relationship).

Which was expected, due to nature of BTC. The fact that there is no state

or any institution that could investors watch to predict movements in price

means that the price will be influenced mostly by speculators trying to catch

a wave of profit. Moreover the number of searches, which denotes interest in

the currency, drags the price further from the trend. Meaning that in case

that price is below the trend, higher number of search queries causes price to

dip even lower and in case that the price is above the trend, it will grow even

more with higher number of visits on BTC Wikipedia or number of times BTC

is searched for via Google search engine. In another work of his, Kristoufek

(2015) performs a wavelet coherence analysis to determine which of the most

often claimed drivers of its price are really behind the BTC’s price movements.

The most important finding of this work is that BTC currency exhibits prop-

erties of both speculative and standard financial assets and therefore its price

is also, mainly in the long term, determined by trade usage, supply and price

level. It also takes a look at a belief that the United States’ BTC market is

influenced by Chinese BTC market. However, it does not find any hard evidence

that would support such a claim.

Other articles which should be mentioned here are Valstad & Vagstad

(2014), and Baek & Elbeck (2015). Authors of the first publication have ob-

served intraday volatility and have constructed intraday exchange risk mea-

surement (Intraday Value at Risk based on Monte Carlo simulation and log-

Autoregressive Coditional Duration (ACD)-Autoregressive Moving Average (ARMA)-

Exponential Generalized Autoregressive Conditional Heteroskedasticity (EGARCH)

model) of BTC, euro (EUR) and gold using ultra-high-frequency data. The re-

sults have shown that BTC is by far the riskiest of those three in an intraday
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horizon and has Intraday Value at Risk around 10 times higher than the other

two assets.

Second publication also observes BTC’s volatility and its returns. Authors

do so in order to find out whether BTC is more suited to be a long term in-

vestment or short term speculation and their question is motivated by lack of

studies that would work with BTC as with an investment vehicle. They have

chosen Standard & Poor’s 500 (S&P500) index as a benchmark, to find out

how BTC price data fare in comparison with stock market data. Finally, the

work concludes that BTC’s volatility is for most part internally driven (volatil-

ity is created by individual decisions of the trade participants and not by any

macroeconomic fundamentals) and it is way too volatile and therefore not suit-

able to be used as an investment asset. It is 26 times more volatile than S&P500

stock market index. Nevertheless, authors of both above mentioned papers do

not discourage potential BTC users and mention possible drop in the crypto-

currency’s volatility in case of future rise in number of BTC users.

Works that study BTC and other similar crypto-currencies from broader

perspective are more frequent. Yermeck (2013), in his working paper, takes

the issue from basics and describes the fact that BTC does not even fulfill the

main functions of currency. For an asset to be considered a money, it has to,

according to the traditional economic definition, serve as medium of exchange,

store of value, and unit of account1. Main problems, as stated in the paper, lie in

the second and third functions. That is because of the currency’s high volatility

and virtually zero correlation of BTC’s prices and other big currencies’ (namely

EUR, Japanese yen (JPY), franc (CHF) and pound sterling (GBP)) exchange

rates with United States dollar (USD). Additionally, it does not correlate with

exchange rate between USD and gold either. He also tries to come up with

some ideas that could help BTC to become a real currency — introduction of

consumer protection, and stronger connection to current banking and payment

systems.

To come up with ideas how to improve the currency and to warn before

possible gaps in the design was an idea behind a work of Barber et al. (2012).

The broad study that has been created deals with the currency’s structural

problems — deflationary characteristics and history-revision attack; as well as

it deals with possibility of theft/loss of BTC and technical scalability of the

currency. Finally, they describe BTC’s anonymity problems, as the currency

still exposes their users to a weak form of linkability (Barber et al. 2012) and

1according to the traditional economic definition
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therefore is not ideal in cases where the user does not want to be associated

with the receiver or the transaction itself. Anonymity in case of BTC is a huge

issue and is a topic of many articles. The most important work on anonymity is

probably that of Reid & Harrigan (2012), observing structure of the currency’s

networks and structure of transaction history. By performing such investigation

they were able to find the specific gaps in the currency’s anonymity. They also

mention that anonymity is not a main focus of the currency’s design and they

warn before misinformation among BTC’s user that often think about BTC as

strongly anonymous currency.



Chapter 2

Data

Downloading data is not a big problem for BTC, as the currency has every single

transaction recorded, exchanges’ rates are mostly public and there are many

people which are keen on completing those data. Slightly more problematic is

gathering data for lesser known crypto-currencies than BTC. Those data are

much harder to come by and the few sources which gather them usually do not

provide day to day prices for longer periods than one year, or do not provide

their datasets at all. But for consistency reasons it is always better to use one

source for the currencies’ prices. Finally, after searching for the right source of

the data, website called Coinplorer was the best for the purposes of this thesis,

as it is possible to download .json data for historical exchange rates of all BTC,

XRP and LTC to USD and it is possibly the only source which covers these three

currencies in the desirable format and time range.

BTC data is originally from webpage Bitstamp1; XRP exchange rate is com-

puted using daily XRP to EUR exchange rate from The Rock Trading Ltd2 and

then recomputed for USD prices using data from Open Exchange Rates3. LTC

data is generated similarly, using Bitstamp for BTC/USD exchange rate and

BTC-E4 for BTC/LTC exchange rate.

Logarithmic day-to-day returns on each of the aforementioned currencies

have been then derived by deducting logarithmic exchange rate from any given

day from logarithmic exchange rate measured on the day after. That can be

rewritten as:

x(t) = lnS(t)

1https://www.bitstamp.net/
2https://www.therocktrading.com/
3https://openexchangerates.org/
4https://btc-e.com/
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where S is a function of value in USD at time t. The returns R then have form

of:

R(t) = x(t+ 1)− x(t)

For BTC, we will use only data between June 29, 2011, which is date of

BitPay launch and is just before the top of first BTC price peak that has been

coming a week later on July 8 2011, and March 1, 2015. March 1 was chosen

so the dataset is as large and relevant as possible, relatively to the date of

writing this thesis. This way, the sample has 1,339 values and is large enough

for conclusions to be reliable. Three missing values from November 29, 2013

(peak day), December 1, 2013 and January 15, 2015 do not play significant role

in the analysis, as the omitted values are relatively low to the sample volume.

Additionally, those values were not taken into consideration when returns were

computed and day-to-day return was not computed if value from any of the

two days in question was missing. Therefore from 1,339 BTC/USD exchange

rate values, we obtain 1,336 day-to-day return values. This approach has been

used for all the data involved and also for computation of returns over more

than two days (e.g. four day return has not been computed if value for first or

fourth day in the sequence was missing).

The rest of datasets will not be as big, due to lower overall accessibility

of data relating to crypto-currencies other than BTC. As beginning of the ob-

served period has been used September 26, 2013 when Ripple payment protocol

became open-source and free to use. Dataset ends on March 1, 2015 as in case

of BTC currency. This way dataset of 469 daily XRP prices and 452 day-to-day

returns is generated. Quite unlucky is that there is 53 days for which the values

are missing, that is approximately 10.15% of the original period. Although it

should not have a high impact due to the way we handle and adjust our return

data for missing values, it is still important to take this fact into a consideration

when conclusions are based specifically on XRP data.

LTC data have been also restricted. In this case by November 1, 2013 and

March 1, 2015. March 1, 2015 has been chosen for consistency and relevancy

purposes, and November 2013 was a month when LTC has started to be more

widely used and recognized due to boom in popularity of BTC. There are

470 daily price values in the dataset and values for total of 16 days are missing

(3.29%) — subsequently, dataset of 458 logarithmic day-to-day values has been

generated.

For parts of the thesis, where comparison with EUR/USD exchange rate
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or S&P500 index has been needed, return data were gathered and modeled

in similar fashion as for the crypto-currencies (finance.yahoo.com5 and coin-

plorer.com6 respectively have been used as source for the data). Time range

has been adjusted so the time range over which the data are gathered is the

same as for BTC (i.e. June 29, 2011 – March 1, 2015). There are 67 missing

values in dataset of 1,342 return values (4.99%) for EUR/USD exchange rate.

S&P500 index data are the least complete, with 370 missing values out of total

1,292, due to missing values for weekends. However, it should not affect the

analysis, as return values are strictly day-to-day and are not heavily influenced

by missing index price values.

There was also a need for trade volumes for the crypto-currencies due to the

nature of the last stylized fact — correlation of volume and volatility. Those

data has been gathered from website coinmarketcap.com which gathers statis-

tics for approximately 560 crypto-currencies. And although the time range over

which the data has been stored is not the best (reason why this website has

not been used for the exchange rates) it is sufficiently large to give a decent

picture. Only data after November 1, 2013 and before February 16, 2015 has

been used for all the currencies in question, because of the limited time range

and need for consistency and comparability. Volume time series for each of

the crypto-currencies has been obtained for one out of every three days. Al-

though, this approach made volume data not as frequent, it is still able to

pair the data with return data and obtain datasets large enough to take the

correlations as an appropriate reflection of the real state of things. This way it

was possible to collect 181 observations for BTC, 174 observations for XRP and

192 observations for LTC. All volume data have been then converted to USD

values for the purpose of comparability. The data in this form were obviously

not stationary (Dickey-Fuller test does not reject presence of a unit root) and

for that matter, volume data has been transformed by de-trending the time

series using natural logarithm and differences. And even though, the data for

trading volume has been collected irregularly — for one out of two or three

days, it should not change much in the analysis, as the focus is more on the

great scale of things. Thus, trading volume has been transformed by taking

natural logarithms and then taking differences in trading volume since the last

measurement. That ultimately creates changes in logarithmic volumes over two

or three day periods.

5https://finance.yahoo.com/q/hp?s=%5EGSPC+Historical+Prices
6https://coinplorer.com/Charts?fromCurrency=EUR&toCurrency=USD



Chapter 3

Methodology & Analysis of Results

3.1 Stylized Facts

Our aim is to generally compare the statistical behavior of various crypto-

currencies with other financial assets. For that purpose, we have chosen an

approach based on work of Cont (2001), who has created a list of stylized

empirical facts and so far has been the most succesful in creating such a list

based on empirical observations of financial markets. The presented stylized

facts, serve as a uniform set of characteristics, which hold across a wide range

of instruments, markets and time periods (Cont 2001) and therefore they have

been taken as a status quo and expectation for the way in which financial assets

generally behave. From here, we have been trying to find any discrepancies

between the stylized facts as described by Cont (2001) and the data obtained

for BTC, XRP and LTC crypto-currencies. That has helped us to identify the

regions in which crypto-currencies differ. Originally, Cont (2001) has described

eleven of such stylized facts, but for simplicity only eight of them have been

used in this thesis, due to the more complicated nature of the three. Those

that are in scope of this thesis are:

� Absence of autocorrelation — tendency of asset returns to exhibit

insignificant (linear) autocorrelations.

� Heavy tails — asset returns’ distribution tails display a power-law or

Pareto-like shapes. Heavy tails are also defined by Asmussen (2003) as

distribution tails heavier than those of an exponential distribution.

� Gain/loss asymmetry — extremely low prices and extremely low index

values are more frequent than extremely high values.
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� Aggregational Gaussianity — with increase in time scale, shape of

return distribution looks more and more as normal distribution.

� Volatility clustering — unusually high returns and unusually low re-

turns tend to clump together and contrast with regions of moderately

high/low returns (volatility measures has positive autocorrelation).

� Slow decay of autocorrelation in absolute returns — the auto-

correlation function of absolute returns as a function of time lag decays

slowly to zero.

� Leverage effect — measures of volatility tend to be negatively correlated

with returns.

� Volume/volatility correlation — volatility is correlated with trading

volume.

To check for the differences or similarities between the data and stylized em-

pirical facts, we have used multiple statistical approaches, which are described

in each of the section. For comparison, the same approach has been applied on

data on EUR/USD exchange rate and S&P500 index. Stata 13 has been use for

all the computations in this thesis.

3.2 Absence of Autocorrelations

According to Cont (2001), returns of various investment assets usually do not

exhibit autocorrelation (serial correlation); meaning, that the returns do not

correlate with their past values. And although Cont (2001) argues that in case

of very small time scales (within minutes) there might be an autocorrelation

due to occurrence of price and time micro-structure effects, it is not in scope

of this work due to the data availability issues. Therefore, the first question

of this thesis is whether or not crypto-currencies’ returns correlate with past

returns and what do their autocorrelation functions look like.

To find this out, it is necessary to compute a correlation of different time

lags on the initial value of returns. We have decided to compute the correla-

tion at seven lags to capture possible weekly influences. One of the suitable

tools is correlogram as described by Box et al. (2008), who present us with

values of autocorrelation function (auto-covariance function at given time over

auto-covariance function at origin of the time series) at different lags, partial
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autocorrelations, respective portmanteau Q statistics and p-values. If data

exhibit autocorrelation then we can observe significant statistical relationship

between different time lags shown by appropriate constant being statistically

different from zero. Q test statistics and their p-values are also used in Ljung-

Box Q test, also known as white-noise test, which is another way to detect

absence of autocorrelation.

In case of BTC, it is quite straightforward and obvious from Figure 3.1

and Table A.1 which is placed in Appendix A. For the first lag, the returns

are strongly autocorrelated with constant 0.1198. Following lags are not signifi-

cantly different from zero. Also Ljung-Box Q test’s low p-value, which is 0.0000

for all lags except for the second where it is 0.0001, confirms the observed be-

haviour of the autocorrelation function and rejects the null hypothesis of no

autocorrelation on 0.01 significance level. From the above comes the conclusion

that in case of BTC autocorrelation is present and therefore, BTC’s autocorre-

lation does not fulfil first of R. Cont’s stylized facts, which is a significant sign

of BTC’s difference.

Figure 3.1: Autocorrelation and Partial autocorrelation of BTC

One would expect the other crypto-currencies to exhibit generally similar

properties to BTC. That is the case only partially. Even though there is
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again high influence of first lag, the autocorrelation functions’ coefficients are

essentially zero for the rest of the lags — Figure 3.2, Table A.2. The first one is

the only lag for which the autocorrelation function spikes out of 0.99 confidence

bands.

Figure 3.2: Autocorrelation and Partial autocorrelation for XRP

In case of XRP (documented on Figure 3.2 and in Table A.2) the coefficient

is -0.2950 and therefore XRP exhibits negative autocorrelation (while BTC’s

autocorrelation is positive); meaning that, positive returns generally do not

tend to be followed by gains, rather they are followed by losses. As in the

previous cases, the autocorrelation functions is not significantly different from

zero at higher lags.

In case of LTC it is a similar story. Again, there is only one spike in the

autocorrelation function, which would significantly differ from zero while using

0.99 confidence band. And as for XRP, the spike is negative — see Table 3.1and

Figure 3.3. Correlation for the rest of LTC’s lags is, again, insignificant.

The Ljung-Box Q test rejects no autocorrelation on 0.01 significance level,

mainly due to the effect of first lag, for all three currencies. Although, we can

reject the stylized fact that describes absence of autocorrelation, we can argue
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Figure 3.3: Autocorrelation and Partial autocorrelation for LTC

that the autocorrelations are decaying to zero and the effect is caused mainly

by the correlation of two successive returns.

Table 3.1: Correlogram for LTC

Lag AC PAC Q Prob > Q

1 -0.3696 -0.3776 62.974 0.0000

2 0.0019 -0.1606 62.976 0.0000

3 -0.0130 -0.0825 63.055 0.0000

4 0.0060 -0.0419 63.071 0.0000

5 0.1076 0.1653 68.46 0.0000

6 -0.0786 0.0259 71.34 0.0000

7 0.0712 0.0615 73.709 0.0000

Now when we see how the correlations do behave, it is relevant to be able to

determine whether it is an anomaly in a world of finance. To better see what is

really happening here, and to have an idea of how much correlated the returns

really are, it is necessary to also look at other financial time series.

Firstly, the same process is applied on EUR/USD exchange rate returns
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(Figure 3.4). What is seen, is that the biggest difference is actually in the

way the first lag correlation behaves. In case of crypto-currencies, first lag is

hugely correlated; first lag autocorrelation coefficient for BTC is 0.1198, it is

-0.2950 for XRP and -0.3696 for LTC.

Figure 3.4: Autocorrelation and Partial autocorrelation for EUR

We can conclude, that the correlation of first lag is present in EUR/USD

example too, but the correlation is much lower with coefficient of -0.0760. When

we take in account all 7 lags, p-values for Ljung-Box Q test do not even allow

us to reject no autocorrelation hypothesis on 0.1 significance level (p-value of

0.1330). This is better seen in detailed Table A.3.

Secondly, the same is done with S&P500 index data (Figure 3.5). What is

interesting is the observation that S&P500 index returns do not seem to exhibit

no autocorrelation. And even though first lag autocorrelation is statistically

indifferent from zero and the correlations are lower than for EUR/USD rate,

there are other lags which do quite significantly differ — especially fifth and

seventh lags. Additionally, Ljung-Box Q test rejects its null hypothesis for

S&P500, rejecting absence of autocorrelation for the stock index (p-value of

0.0005). Detailed results can again be seen in Appendix A, Table A.4.

All in all, according to the gathered data, crypto-currencies generally exhibit
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Figure 3.5: Autocorrelation and Partial autocorrelation for S&P500

higher level of correlation among lags of their returns than both S&P500 and

the EUR. Having said that, the difference is the most significant in case of the

first lag, which is so strong it practically dismiss any chance the autocorrelation

being absent. Another important conclusion is the fact that BTC is the only of

the observed assets that has positive significant correlation between its returns

and returns on the last trading day. Characteristic that indicates that returns

of a given sign are mostly followed by returns of the same sign. This indicates

that returns are usually followed by returns and losses are more likely to be

followed by more losses, creating clusters of returns with the same sign.

3.3 Heavy Tails

Next stylized fact to take care of is that of heavy tails. Financial time series,

according to Cont (2001), exhibit heavy tails. The probability of outliers, or the

probability of very extreme values is generally higher than it would be under

the normal distribution. Although those very extreme values are appearing

more often it does not necessarily mean that the distribution will have higher

variance. The stylized fact also specifies that the tails of common financial
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series are similar to those of power-law distribution and that their tail index is

usually between 2 and 5.

Figure 3.6: Histograms for BTC, XRP, LTC and EUR currencies

From the distribution of BTC (Figure 3.6) it seems, that its tails are indeed

heavier than if BTC’s returns were normally distributed.

To support such a claim, the data have been used for computation of kur-

tosis for each of the currencies and their Hill’s tail index estimators (Hill 1975).

Estimator for right tails, which has been used, can be rewritten as:

ξHill(k(n),n) =
1

k(n)

n∑
i=n−k(n)+1

ln(X(i,n))− ln(X(n−k(n)+1,n)),

where n denotes number of variables in the original sample and k(n) is number

of tail variables, which are to be used in the computation of the tail index.

Unfortunately the right choice of k(n) is very complicated and incorrect values

might reproduce faulty tail indices. Nevertheless, for k(n) = 65, which has

been chosen, based on graphical representation of the distribution, BTC has

Hill’s tail index of 2.5103011. For XRP the Hill’s tail index has been computed

as 2.8704092 using k(n) = 15. The same value of k(n) has been also used in

case of LTC, due to the similar sample sizes. Hill’s tail index for LTC came up
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as 1.8396171 (k(n) = 15) and 1.3712198(k(n) = 35), depending what value of

k(n) has been used (first choice was based on the sample size, second choice

on the shape of the distribution). Those indicate that LTC has the heaviest

tails of the crypto-currencies and that generally all of them have quite heavy

tails, compared to estimate of Cont (2001), who estimates tail estimator to be

usually in-between 2 and 5. Mind that k(n) might have been chosen incorrectly.

Moreover, the highest kurtosis has been also found observing behaviour of

LTC which exhibits kurtosis of 15.18995, while normal distribution has kurtosis

equal to 3. Kurtosis of BTC currency is not far off as it seems to be also around

15; it is 15.06433 with the above described data. Kurtosis of XRP, even though

lower than the others, was also very high at 11.20429. Although, kurtosis of

the EUR/USD rate data is little bit higher at 20.45168, kurtosis of S&P500 is

much lower at 7.01612. Measured kurtosis is still high enough to support the

initial hypothesis of crypto-currencies’ distribution being heavy tailed. Normal

distribution has kurtosis of 3.

The kurtosis has been computed using formula:

g2 =

1
n

n∑
i=1

(xi − x̄)4

( 1
n

n∑
i=1

(xi − x̄)2)2
,

where n is a number of values in the observed sample.

It is also possible to use quantile-normal plot comparing distribution of

BTC vis-à-vis normal distribution — Figure 3.7. It graphically shows, that the

actual distribution of crypto-currencies’ day to day returns is most distinctively

different from normal distribution in the tail areas. The same applies for the

other two currencies as can be seen on their respective quantile-normal plots

on Figure B.2.

Alternative would be normal probability plot but it focuses more on the

peak and shoulders of the distribution and therefore is less suited1. From these

three tests, it is possible to conclude that the crypto-currencies do exhibit heavy

tails and that their shape is quite similar to that of S&P500, which can be seen

in Figure B.1, and possibly other stock indices.

1http://www.stata.com/manuals13/rdiagnosticplots.pdf
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Figure 3.7: Quantile-normal plot for BTC

3.4 Gain/Loss Asymmetry

According to our hypothesis, one observes higher number of downward moving

extremes in financial time series of market returns than is the number of ex-

tremes going in the opposite direction. It would mean that the above discussed

tails would also be asymmetric and therefore shapes and density of right and

left tails would differ. That is quite important characteristics as it is directly

linked to computation of Value-at-Risk (a measure of how risky a given invest-

ment is) that is widely used in determination of an investment strategy. Taken

how often crypto-currencies are used only for investment purposes, this is one

of the more useful stylized facts. In context of this stylized fact, Cont (2001)

notes that gain/loss asymmetry generally does not hold for currencies. That

is due to the tendency to explain value of any given currency in terms of an

another currency. In case of regular fiat currencies, participants on foreign ex-

change market are usually able to buy any of those two given currencies using

the other one. Decrease in price (negative return) of EUR denoted in USD is

then accompanied by increase in price (and positive return) of USD denoted

in EUR. Every movement on foreign exchange market is then composed from
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those two contradictory moves and therefore, the stylized fact can not hold true

for currencies generally.

Nevertheless, crypto-currencies are not intertwined as tightly with one an-

other and we can take them as a separate group. They are rarely than not

traded for other crypto-currencies and the largest exchanges operate on USD

basis. Meaning that decrease in value of BTC in terms of USD increases value

of USD in terms of BTC, but it does not directly influence value of LTC.

Although in case of BTC the difference is not as evident as in case of S&P500

index, basic symmetry plot shows that downward movements in return function

are much more probable to happen. Even though the trend decreases as the

observed data time frame is shortened (i.e. if we take into an account only data

from last year), the most extreme values are still more often below the median

than above it.

Figure 3.8: Symmetry plot for BTC and XRP

For XRP currency, similar behaviour can be observed on. Data of EUR/USD

exchange rate also show, albeit very slight, asymmetry in a direction of loss.

Symmetry plots of those four assets can be seen on Figure 3.8 and Figure B.3.

On the other hand, gain/loss asymmetry in case of LTC — Figure B.4 seems to
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be the other way around. According to the dataset used, LTC currency exhibits

gain/loss return asymmetry in a favor of gain.

Although this observation could mean that, unlike other financial assets,

which do tend to have significant negative returns more often than positive

significant positive returns (and data from the benchmark time series used in

this thesis do not differ), returns on LTC behave in an opposite way, after taking

into a consideration only second half of available data the above mentioned

observation did not hold true any more. Conclusion is that gain/loss asymmetry

held for LTC in favour of gain in the period of last two months of year 2013

and first half of 2014, but it does not seem to hold for this crypto-currency

universally. Finally, we can conclude that negative movements in prices of

crypto-currencies are generally more frequent and that crypto-currencies are

in this stylized fact more similar to S&P500 index and possibly to other stock

indices.

3.5 Aggregational Gaussianity

Generally, financial time series exhibit a property of aggregational gaussianity,

which is defined as a tendency of their returns’ distribution to resemble normal

distribution with increase of time over which are the returns computed — τ .

Formula for computation of the returns can be therefore rewritten in context

of this section to:

R(t) = x(t+ τ)− x(t)

where

x(t+ τ) = lnS(t+ τ)

.

Due to large number of observations, aggregational gaussianity of crypto-

currencies’ returns is the most effectively tested on BTC data. After adjusting

the data by creating 2-day, 4-day, 8-day, 16-day and 32-day returns, it is pos-

sible to show how much distribution functions changes with increase in time

scale. What one finds out, by simple graphical observation of data, is that the

main difference is quite significant decrease in kurtosis with increase in τ . The

problematic part in observing these changes on graphs is rather big difference

in number of values.

For more concrete evidence, it is possible to use test of normality introduced

by Shapiro & Wilk (1965) and adjusted for higher number of observations
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(Royston 1992a). Another option, which also has been used is skewness and

kurtosis test for normality in sense of Jarque & Bera (1987), introduced by

D’Agostino et al. (1990) and its respective adjustment by Royston (1992b). In

Shapiro-Wilk test, the null hypothesis is that the sample is taken from normally

distributed population, therefore if p-value coming from Shapiro-Wilk test’s z

score is less than pre-selected alpha level, the null hypothesis can be rejected

and it is safe to assume that the sample is not taken from normally distributed

population (Shapiro & Wilk 1965). In Jarque-Bera test, the null hypothesis

is based on value of skewness being equal to zero and value of kurtosis being

equal to three, this the test checks whether those two values are in accordance

with normal distribution (Jarque & Bera 1987).

Until now it was safe to omit missing values on the basis of their relatively

low impact. Unfortunately, it is not possible to omit them during Shapiro-Wilk

and Jarque-Bera tests, due to the fact, that value of sample used gets lower

and that omitting them would lead to time spans in individual tests being

inconsistent, as omitted values would create larger jumps between daily rates.

To mitigate the error, returns has been computed only at those periods for

which we have price data available for both first day and last day of the period.

Obviously, it will make our dataset smaller, but completely omitting the values

would lead to distribution tails being heavier than they really are and that

could possibly influence the analysis much more.

Using this test, we are able to compute W — Shapiro-Wilk test statistics,

V — transformation of the aforementioned test statistics, which is equal to one

for normal distribution, and z — standard score, which allows us to compute

the p-values. The result is that generally, p-values are increasing with increase

in time scale. As time over which the returns are computed increases, the

return values get closer to normal distribution. Nevertheless, in the case of

BTC, p-values are still rather small — 0.00009 and 0.00016 respectively over

time intervals of eight and sixteen days, but increase to 0.02049 for period of

thirty two days — Table 3.2. That implies that the distributions is getting

closer to normal, as one cannot reject the null hypothesis of thirty two day

BTC returns being out of normal distribution while using the 0.01 significance

level.

We get similar outcomes for the skewness-kurtosis test (Table 3.3), which

is not able to reject the null hypothesis on 0.01 significance level for thirty two

day periods either. Similarly, it is also rejecting the null hypothesis for all the

other time periods.
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Table 3.2: Shapiro-Wilk Test for BTC

Variable Obs W V z Prob > z

two-day log. return 667 0.86811 57.568 9.867 0.00000

four-day log. return 334 0.90562 22.120 7.306 0.00000

eight-day log. return 166 0.95906 5.197 3.756 0.00009

sixteen-day log. return 83 0.92744 5.133 3.591 0.00016

thirty-two-day log. return 41 0.93454 2.637 2.044 0.02049

Table 3.3: Skewness-Kurtosis Test for BTC

Variable Obs Pr(Skewness) Pr(Kurtosis) adj χ2 (2) Prob > χ2

two-day log. return 667 0.0000 0.0000 . 0.0000

four-day log. return 334 0.0003 0.0000 50.49 0.0000

eight-day log. return 166 0.0006 0.0005 19.25 0.0001

sixteen-day log. return 83 0.0000 0.0001 24.43 0.0000

thirty-two-day log. return 41 0.0113 0.0976 7.97 0.0186

Fortunately, both tests work well even for a smaller sample sizes and there-

fore, it is safe to use them and the same two to and thirty two day periods on

the other crypto-currencies as well. Shapiro-Wilk test (results in Table 3.4) on

eight day returns of XRP currency comes up with a p-value of 0.05186 while the

test on thirty two day returns comes up with a p-value of 0.06701. Compared

to one day or the two day returns which results in a p-values of 0.0000, it is

safe to say that XRP returns do begin to resemble a normal distribution with

increase in the variable τ .

Table 3.4: Shapiro-Wilk Test for XRP

Variable Obs W V z Prob > z

two-day log. return 227 0.93609 10.649 5.477 0.00000

four-day log. return 110 0.93569 5.751 3.901 0.00005

eight-day log. return 56 0.95852 2.134 1.627 0.05186

sixteen-day log. return 27 0.90719 2.728 2.062 0.01961

thirty-two-day log. return 11 0.86509 2.184 1.498 0.06701

Additionally, the skewness-kurtosis test confirms those results and cannot

reject the null hypothesis of skewness/kurtosis being normal-like for both six-

teen and thirty two day returns on the 0.01 significance level. Detailed results

from the test are summed up in Table 3.5.
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Table 3.5: Skewness-Kurtosis Test for XRP

Variable Obs Pr(Skewness) Pr(Kurtosis) adj χ2 (2) Prob > χ2

two-day log. return 227 0.0137 0.0000 26.32 0.0000

four-day log. return 110 0.0012 0.0006 17.60 0.0002

eight-day log. return 56 0.0196 0.0202 9.22 0.0099

sixteen-day log. return 27 0.0103 0.0681 8.40 0.0150

thirty-two-day log. return 11 0.1033 0.6958 3.38 0.1844

The Shapiro-Wilk test of sixteen day returns on the LTC currency comes

up with a p-value of 0.00241 and on thirty two day returns with a p-value of

0.0002, shown in Table 3.6. Therefore, there is a very weak resemblance of a

normal distribution.

Table 3.6: Shapiro-Wilk Test for LTC

Variable Obs W V z Prob > z

two-day log. return 230 0.87331 21.354 7.093 0.00000

four-day log. return 112 0.86542 12.218 5.587 0.00000

eight-day log. return 54 0.85435 7.279 4.253 0.00001

sixteen-day log. return 27 0.86582 3.945 2.819 0.00241

thirty-two-day log. return 12 0.51396 8.121 4.081 0.00002

The skewness-kurtosis test shows similar results — Table 3.7 — with even

lower p-values indicating that the LTC’s skewness and kurtosis are far from

values which characterize a normal distribution. Therefore, it is possible, to

reject the null hypothesis of normality on a 0.01 significance level for all of the

observed values of τ , and LTC is the only of the three crypto-currencies that

does not seem to converge to a normal distribution with an increase in time

over which we have measured its returns (τ). In case that it converges, then

we can say that it converges only very slowly.

Table 3.7: Skewness-Kurtosis Test for LTC

Variable Obs Pr(Skewness) Pr(Kurtosis) adj χ2 (2) Prob > χ2

two-day log. return 230 0.0000 0.0000 46.75 0.0000

four-day log. return 112 0.0002 0.0000 24.91 0.0000

eight-day log. return 54 0.0014 0.0002 18.31 0.0001

sixteen-day log. return 27 0.0016 0.0056 13.49 0.0012

thirty-two-day log. return 12 0.0000 0.0002 19.91 0.0000

However, both tests on LTC did not show any movement towards normal

distribution, there might have been possibly influence of the chosen data. Tests
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performed on XRP and BTC did show some changes for higher time frame

returns and therefore crypto-currencies generally might exhibit tendency to

approach normal distribution as variable τ increases. Yet, they do so rather

slowly.

Because the above described results alone do not show enough about crypto-

currencies comparison vis-à-vis returns on other financial assets, the same tests

have been applied on EUR/USD exchange rate returns and S&P500 index return

data. For the EUR currency, Shapiro-Wilk test shows p-value of 0.00018 for

four day returns and 0.95080 for eight day returns (Table 3.8). Then there is

a drop in p-value for sixteen day returns to 0.11413 and to 0.05908 in case of

the thirty-two day returns. Nevertheless, values for all measured returns with

τ ≥ 8 are still above 0.01 and therefore, fore them, we cannot reject the null

hypothesis - sample being from normally distributed population.

Table 3.8: Shapiro-Wilk test for EUR

Variable Obs W V z Prob > z

two-day log. return 633 0.96336 15.254 6.619 0.00000

four-day log. return 317 0.97964 4.556 3.569 0.00018

eight-day log. return 157 0.99601 0.483 -1.653 0.95080

sixteen-day log. return 78 0.97420 1.734 1.205 0.114131

thirty-two-day log. return 38 0.94458 2.106 1.563 0.05908

Again, similar story shows also the skewness-kurtosis test summarized in

Table 3.9. Altogether, it is obvious that those p-values are generally higher

than in case of crypto-currencies and that distribution of returns on EUR cur-

rency (denominated in USD) converge to normality faster than distributions on

returns of the three crypto-currencies.

Table 3.9: Skewness-Kurtosis Test for EUR

Variable Obs Pr(Skewness) Pr(Kurtosis) adj χ2 (2) Prob > χ2

two-day log. return 633 0.0000 0.0000 57.66 0.0000

four-day log. return 317 0.0011 0.0039 16.07 0.0003

eight-day log. return 157 0.4940 0.3379 1.41 0.4951

sixteen-day log. return 78 0.1640 0.0860 4.86 0.0880

thirty-two-day log. return 38 0.2803 0.0322 5.50 0.0640

Also for the S&P500 index the aggregational gaussianity shows up quite

nicely and p-values increase from 0.00000 for four-day returns, through 0.00197
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for eight-day returns up to 0.43149 for returns over sixteen day periods. Results

for both tests can be seen in Table 3.10 and Table A.5 respectively.

Table 3.10: Shapiro-Wilk Test for S&P500

Variable Obs W V z Prob > z

two-day log. return 276 0.94506 10.871 5.579 0.00000

four-day log. return 139 0.92474 8.205 4.753 0.00000

eight-day log. return 92 0.95211 3.689 2.882 0.00197

sixteen-day log. return 35 0.96957 1.086 0.173 0.43149

thirty-two-day log. return 17 0.88704 2.386 1.734 0.04142

Finally, we can see that both XRP and LTC seem to converge to normal

distribution at much lower rate than the typical financial time series, while

BTC’s returns converge at approximately the same rate as those of S&P500.

3.6 Volatility Clustering

Volatility clustering is a tendency of extreme values (both, above and below

mean) to group up. In our case creating periods of time with extremely high

and extremely low returns per day on one side and then creating periods of

time with mild returns moving just relatively slightly around the mean. This

phenomena has been described by Mandelbrot (1963) (on an example of cotton

prices) so that large changes tend to be followed by large changes - of either

sign - and small changes tend to be followed by small changes.

In first part of this thesis we have described how crypto-currencies, com-

pared to other financial assets, do exhibit autocorrelation. To show and mea-

sure volatility clustering, it is possible to follow more or less the same steps,

with the the only difference being their returns modified into absolute or square

returns. This approach will measure autocorrelation of absolute and square re-

turns on the financial assets and therefore show how absolute values of past

returns influence absolute values of returns in the current period. We have

also, in this and the following section, broadened the number of observed lags

to thirty — so the maximum difference in correlated days is approximately one

month instead of a week. That way we are able to better see actual shape of

autocorrelation functions and possible longer-term trends.

In his works Cont (2001; 2007) strongly argues in favor of appearance of
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this phenomenon in most financial time series and this time, to support his

claim, we have begun by observing correlation of EUR and S&P500 data first.

When EUR data are transformed into absolute values and correlogram is

created, it is already clear that there is a strong and positive correlation among

different lags. Estimated autocorrelations leave 99% confidence bands in thir-

teen out of thirty observed lags and Ljung-Box Q test’s p-values are at 0.0000

for all the lags, as can be seen in Table A.6. It is also possible to see weekly

trend in autocorrelation (Figure 3.9), where the highest correlation is between

absolute returns, which are seven, fourteen, twenty one or twenty eight (mul-

tiples of seven) lags from each other. Little bit difficult is explanation of the

negative autocorrelation, which should theoretically not happen, while there

are no negative absolute returns. This could be explained by data from Sat-

urdays on which the absolute returns are generally zero, as foreign exchange

market is closed. If we delete those days from our dataset we obtain slightly

different version of the original results — Figure 3.10. In this way, we do not

see as much of negative autocorrelation any more, but the weekly trend is still

present.

When squared values were observed instead of absolute values the estimates

came out quite bit differently (Table A.7), although with the same conclusion.

Autocorrelation functions are now positive and significant only at first lag and

there is no weekly trend. Additionally, the autocorrelation is so high (coefficient

estimate of 0.40004 and 0.3945 after the adjustment) that even though other

lags are not significantly different from zero, it still indicates relatively high

amount of volatility clustering present in the data only due to the influence of

this first lag.

Also for S&P500 the volatility clustering is quite clearly present. In the case

of absolute returns, partial autocorrelation function is significantly different

from zero (using 0.01 significance level) and positive for thirteen lags — Ta-

ble A.10. Even here, it is possible to see a trend of higher correlation between

returns which are approximately one week apart, but the influence is not as

strong as in case of EUR.

Similar picture can be reproduced using the squared values, where autocor-

relation function is positive and significantly different from zero for eleven out

of thirty (Table A.11). Both autocorrelation functions are also positive and

mostly significant — Figure 3.11.

When we take absolute values and squared values of returns on BTC and

apply the same process (results in Table A.12 and Table A.13) — creating
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Figure 3.9: Autocorrelations of Absolute and Squared Returns for
EUR

correlogram with thirty lags — we see that the correlation is even stronger.

Autocorrelation function of the absolute values statistically differs from zero in

all but six lags and autocorrelation function of the squared values statistically

differs in ten lags, while the correlation coefficients are generally higher. From

the correlograms it seems that BTC exhibit even higher volatility clustering on

its returns then do EUR or S&P500 index. Both autocorrelation functions of

BTC are displayed in Figure B.5.

In the case of the XRP, the autocorrelation graphs are not as dramatic and

in both of them (for absolute and squared values) the most decisive is the first

lag (estimates of 0.3607 and 0.4221) (Figure B.7). Estimates of autocorrelation

at other lags are not statistically different from zero. This description holds for

both correlograms which are presented in Table A.14 and Table A.15.

The last of our crypto-currencies — LTC, does not differ much in autocorre-

lation properties of its absolute and squared returns from XRP and the shape of

their autocorrelation functions is very similar. The main factor stays the first

lag as the estimates came out at 0.4216 and 0.4614 for absolute and squared

values respectively. After that, the autocorrelation functions decrease and stay
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Figure 3.10: Autocorrelations of Absolute and Squared Returns for
EUR after adjustment

statistically indifferent from zero. Also, in case of LTC, we present the whole

results in Table A.16, Table A.17 and Figure B.6.

From the generated correlograms, autocorrelation and partial autocorrela-

tion functions, one can see that in the same fashion as usual financial time series

also returns on crypto-currencies tend to have quite distinctive clusters of high

volatility. Nevertheless, volatility clustering of BTC and other crypto-currencies

seems to be slightly different.

Initially, the clustering might seem stronger, as the coefficient estimates

of correlations are much higher for first lags, but then the autocorrelation

functions tend to decay a lot faster in case of XRP and LTC than they do

in case of EUR or S&P500. BTC has overall high autocorrelation with high first

lag autocorrelation coefficient and slower rate of decay than S&P500. Also, we

do not see any weekly trend in case of crypto-currencies.
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Figure 3.11: Autocorrelations of Absolute and Squared Returns for
S&P500

3.7 Slow Decay of Autocorrelation in Absolute Re-

turns

As described in previous section, decay of absolute returns’ autocorrelation is

slower in case of crypto-currencies than in case of EUR currency. The difference

can be seen especially when looked at data of BTC, which absolute values’

autocorrelation decays at the lowest rate of the observed crypto-currencies.

On the other hand, we were not able to recognize decay for autocorrelation

in absolute returns on S&P500 with all seven lags taken into an account. It

is most probable that we would find a decay, if we have taken more lags into

consideration, but it is definitely slower then for crypto-currencies.

To be more specific and accurate in our description, there is autocorrelation

estimate of 0.3607 for XRP’s first lag and second highest estimate is 0.1375 (12th

lag). Similarly in LTC’s case there is first lag autocorrelation estimate of 0.4216,

while the second highest correlation estimate is 0.1447 (8th lag). These show

quite fast decay in the autocorrelation function, due to large difference between

the first and second highest observed values. Besides that, both function are
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statistically indifferent at other than first lag. All in all, if it is safe, as we

assume, to take data from S&P500 as a benchmark for time series of stock indices

generally, then XRP and LTC seem to not exhibit slow decay of autocorrelation

in their absolute returns. The difference between the correlation of first lag and

the rest is quite high for both XRP and LTC and their autocorrelation functions

(as well as that of BTC) have only one peak (at first lag). Meanwhile, for

EUR the autocorrelation functions (with adjusted data) decays from 0.1795 at

first lag to 0.0171 (not significantly different from zero) at second lag and then

sharply recovers to 0.1836 at seventh lag. Similarly, S&P500’s autocorrelation

functions recover and have multiple peaks.

Figure 3.12: Decay of autocorroletaion of day-to-day absolute returns
on BTC

Although BTC’s autocorrelation in absolute returns decays slower than

XRP’s or LTC’s, it is still quite fast in comparison with data of EUR. It seems

that crypto-currencies, other than BTC, have faster decay of autocorrelation

than stock indices and common fiat currencies. Assuming that, they do not

fulfil the stylized fact.

We wanted to look even deeper into this issue and therefore the next step

was to determine approximate pace at which the autocorrelation functions de-
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Figure 3.13: Decay of autocorrelation of day-to-day absolute returns
on XRP

cay. For that we have used log-log regression of autocorrelation values on

their respective lags. This approach has been chosen specifically due to the

assumption of the relationship between the given function and respective lags

being closer to power-law rather than linear. The assumed model for crypto-

currencies has the following form:

log ACBTC,XRP,LTC = α + β log Lag +ε

, where AC represents the autocorrelations in question, LAG is a time interval

between the two points between which we have computed the autocorrelation

(in days), α and β are constants, and ε describes the error term of our model. A

graphical representation can be seen in Figure 3.12, Figure 3.13 and Figure 3.14.

Coefficients from the regressions can be found in Table 3.11, Table 3.12 and

Table 3.13. For BTC the performed regression shows power-law relationship

with coefficient of approximately -0.356 between variables AC and Lag, which

represents a 35.6% decrease in autocorrelation function with any 100% increase

in lag variable (also 3.56% decrease for 10% increase in lag etc.). For XRP the

coefficient is higher at -0.496, showing faster decay in case of the XRP currency.
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Figure 3.14: Decay of autocorrelation of day-to-day absolute returns
on LTC

As expected, results for LTC show the highest coefficient of all three (-0.756).

However Std. Err. is biased, we can still take the coefficient estimates as and

indicator of the actual shape and especially pace of decay.

Table 3.11: Linear Regression for BTC

Variable Coefficient (Std. Err.)

log LAG -0.356 (0.043)

Intercept -0.967 (0.114)

N 30

R2 0.708

F (1,28) 67.915

We can not use the same model for EUR currency nor S&P500 index. Shape

of their autocorrelation functions is no power-law (Figure 3.9 and Figure 3.11)

and therefore log-log regression does not represent the decay well enough. The

actual shape is quite complicated and does not seem to decrease at exponential
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Table 3.12: Linear Regression for XRP

Variable Coefficient (Std. Err.)

log LAG -0.496 (0.144)

Intercept -1.595 (0.375)

N 29

R2 0.304

F (1,27) 11.803

Table 3.13: Linear Regression for LTC

Variable Coefficient (Std. Err.)

log LAG -0.756 (0.198)

Intercept -1.098 (0.493)

N 25

R2 0.388

F (1,23) 14.573

rate at any point (not even for low lags), additionally, the function’s tendency

to recover makes the modelling even more difficult.

From both approaches, it is obvious that the decay in autocorrelation func-

tions of the three crypto-currencies is hardly as slow as that of EUR, which

autocorrelation function does not even seem to decay when we observe first

thirty lags. S&P500 currency seems to decay slightly faster but it changes at

twelfth lag, where the autocorrelation function starts to rise again and actually

surpass the initial first-lag value. This behaviour is due to the weekly trend in

S&P500’s and EUR’s absolute returns’ autocorrelation functions (the same trend

can be seen even for GBP, which has been tested to check for possibly similar

shape of autocorrelation function to EUR’s). From all of the above, we can

claim that crypto-currencies generally do not fulfil this stylized fact because we

have found two crypto-currencies (XRP and LTC) where autocorrelation func-

tions of their absolute return decay at much higher rate than those of regular

financial assets. On the other hand, BTC’s data are in accordance with the

stylized fact. The difference is also in the shape of decay as there are no weekly

trends (higher positive correlation of absolute returns which are approximately
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one week from each other) or generally any upward spikes in autocorrelation

of crypto-currencies’ absolute returns.

3.8 Leverage Effect

Leverage effect, firstly noted is a negative correlation between a given asset’s

past returns and squared subsequent returns of the same asset (Black 1976).

This effect is also a cause of gain/loss asymmetry, because assets which is

under the leverage effect generally have higher returns in times of low volatility

and relatively lower returns in wilder periods of high volatility. Bouchaud &

Potters (2001) claim that the low and high prices respectively, influence the

future volatility and therefore specify the direction in which the influence goes.

Based on that, we will take value of day-to-day returns as our independent

value and the square values representing volatility as dependent.

In this section, a cross-correlation measure has been used to check whether

crypto-currencies really have higher than zero correlation between its volatility

and returns and therefore to check for presence of leverage effect. Moreover,

computation of the cross-correlation at different lags, gives us more information

about the specific correlations and paints a better picture about the actual

shape of cross-correlation function. Obtaining p-values is technically more

difficult, but software was able to reproduce them using calculation of individual

pairwise correlations. Finally, we listed and focused on the positive lags only,

whereas it is the past returns which influence current volatility.

For BTC, the correlation that is significantly different from zero is only for

second lag, and computed at -0.1242. Correlation at fourth lag of 0.0701 is

positive and might show absence of the leverage effect, but the first value is

higher in absolute values and p-value of the fourth lag’s correlation is, although

quite low, above the significance level of 0.01. That is sufficient for us to

claim that the data are in an agreement with the aforementioned stylized fact.

Complete results can be seen in Table 3.14.

The stylized fact holds true for XRP in a similar fashion (Table 3.15). How-

ever, there are, two significant values of correlation, one being positive and one

negative, the positive one is as in the previous case larger and has lower p-value.

LTC seems to go with the other two crypto-currencies and leverage effect seems

to be present too. Negative correlation of -0.2230 between its squared logarith-

mic returns and logarithmic returns on the day before has been measured using

the cross-correlation. Litecoin’s cross-correlation results are in Table 3.16.
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Table 3.14: Cross-Correlation Between BTC’s Lagged Value of Re-
turns and Its Square Returns

Lag CORR Sig

1 -0.0305 0.2656

2 -0.1242 0.0000

3 -0.0109 0.6922

4 0.0701 0.0105

5 0.0078 0.7757

6 0.0239 0.3847

7 0.0462 0.0920

Table 3.15: Cross-Correlation Between XRP’s Lagged Value of Re-
turns and Its Square Returns

Lag CORR Sig

1 -0.2836 0.0000

2 0.0125 0.7961

3 0.1349 0.0053

4 -0.0325 0.5051

5 -0.0416 0.3978

6 0.0447 0.3657

7 0.0568 0.2521

Table 3.16: Cross-Correlation Between LTC’s Lagged Value of Re-
turns and Its Square Returns

Lag CORR Sig

1 -0.2230 0.0000

2 0.0293 0.5377

3 0.0368 0.4399

4 0.0897 0.0603

5 0.0452 0.3456

6 -0.0225 0.6389

7 0.0660 0.1706
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Now, both EUR’s and S&P500’s cross-correlations — of volatility measure

(squared returns) and regular returns — also came up with significant negative

values (summed up in Table 3.17 below). Because of that, it is possible to

accept the statement that the leverage effect is an usual phenomenon which

holds for all financial assets, including crypto-currencies.

Table 3.17: Cross-Correlation Between EUR’s and S&P500’s Lagged
Values of Returns and Their Respective Square Returns

Lag CORREUR SigEUR CORRSP500 SigSP500

1 -0.1701 0.0000 -0.0470 0.2700

2 -0.0047 0.8688 -0.0055 0.9164

3 0.0115 0.6861 -0.0227 0.7597

4 -0.0197 0.4876 -0.1495 0.0428

5 -0.0212 0.4562 -0.2430 0.0000

6 -0.0640 0.0246 -0.1074 0.0117

7 -0.0378 0.1860 -0.0315 0.3937

3.9 Volume/Volatility Correlation

The last stylized fact, which is in scope of this thesis is generally positive

correlation between change in trading volume and volatility of returns. Mostly,

financial returns increase in absolute value with increase in volume traded.

This fact is supported and nicely described (besides Cont (2001)) by Zolotoy &

Melenberk (2009), who finds a relationship between increase in lagged values

of volume and current variance in returns of stocks and stock indices. The

link between those two is most probably due to appearance of information flow

(Clark 1973). The relationship and forces behind it in case of stocks is also

well described by Darrat et al. (2007).

For purposes of this thesis, less sophisticated approaches have been applied

to find out how crypto-currencies fare in comparison and in similar fashion to

the previous section about Leverage effect, sample cross-correlation function

has been used. Independent variable is in this case a change in logarithmic

volume (log V(t), where V (t) is change in trading volume) and dependent vari-

able is the volatility — represented by absolute values of logarithmic returns

(|log R(t)|. From the previously mentioned studies, it would be most intuitive
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to expect crypto-currencies to also have positive correlation between volatility

and trading volume.

What is important to note, is that due to the fact that trading volume data

are not daily, an unit of lag in this subsection is not exactly one day. The

lags are not periodical in any way (although, usually two or three days) either.

Therefore, 4th lag might not be exactly two times further from zero than 2nd

lag etc. Lags play rather indicative role in this section.

Basically, both BTC’s and LTC’s sample cross-correlation functions are mostly

positive and are negative only at lags where the results are at the same time

not significantly different from zero (significance level = 0.01). The highest cor-

relation, in case of BTC, can be seen at 2nd and 4th lags — Table 3.18. Also,

in case of LTC it is in 2nd and 4th lags where the cross-correlation function is

positive and significantly different from zero — Table 3.19.

Table 3.18: Cross-Correlation Between BTC’s Lagged Values of
Change in Trading Volume and BTC’s Absolute Returns

Lag CORR Sig

1 -0.0966 0.1971

2 0.2271 0.0022

3 0.1049 0.1636

4 0.2157 0.0039

5 0.1611 0.0327

6 0.1584 0.0362

7 0.1394 0.0665

Table 3.19: Cross-Correlation Between LTC’s Lagged Values of
Change in Trading Volume and LTC’s Absolute Returns

Lag CORR Sig

1 0.0595 0.4138

2 0.2078 0.0040

3 -0.0170 0.8167

4 0.2686 0.0002

5 -0.0402 0.5852

6 -0.0819 0.2667

7 0.1664 0.0236
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If we take a look at XRP’s cross-correlation function between volume and

volatility measures (Table 3.20), we see that although it deviates far less from

zero and that there are no results significantly different from zero at 0.01 signif-

icance level. There are still two lags where correlation is significantly positive

using 0.05 significance level. It seems that even in case of XRP its volume does

correlate positively with its volatility, but the relationship seems to be much

weaker than in case of BTC or LTC.

Table 3.20: Cross-Correlation Between XRP’s Lagged Values of
Change in Trading Volume and XRP’s Absolute Returns

Lag CORR Sig

1 0.1893 0.0126

2 0.0550 0.4735

3 0.1533 0.0452

4 -0.0844 0.2739

5 -0.1039 0.1786

6 -0.0212 0.7853

7 0.0576 0.4599

To follow up on the previous finding and to better see how correlation

between volume and volatility behaves, Granger causality Wald test has been

used on the crypto-currencies. Aim of this test has been to find out how the

two variables influence each other and in which direction the influence actually

goes. The idea similar to that used by Brooks (1998). To apply the test,

Vector Autoregression (VAR) models with 2 lags has been used first to see the

interdependence between the two variable for each crypto-currency.

For BTC, the interdependence is seen already from the VAR, which shows

multiple significant relationships between the volume and volatility variables.

Additionally, Granger causality Wald test, depicted in Table 3.21, does reject

the null hypothesis for both of the two variables, meaning that lagged values

of one do cause the other and vice versa. The test is significant with p-values

of 0.000 for both volume and volatility measures.

LTC data also show some level of interdependence, although not as high and

R-squared is quite low (R-squared of 0.0507 for volume equation and 0.0685

for volatility equation; adjusted R-squared for BTC’s VAR is 0.1362 and 0.2539

respectively) compared to the BTC’s model. There is a significant influence of

second lag of volatility changes on volume increases values. There is also visible
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Table 3.21: Granger Causality Wald Test for BTC

Equation Excluded χ2 df Prob > χ2

log ∆ V(t) |log R(t)| 21.354 2 0.000

log ∆ V(t) ALL 21.354 2 0.000

|log R(t)| log ∆ V(t) 23.202 2 0.000

|log R(t)| ALL 23.202 2 0.000

some level of autocorrelation in the return data, which is already covered in

the first section of this thesis and quite high, although insignificant, influence

of two-lagged change in volume on absolute returns.

The Granger test results, shown in Table 3.22 describe causality in the direc-

tion from absolute logarithmic returns towards logarithmic change in volume,

with significant p-value of 0.008, therefore significant on 0.01 significance level.

Causality in the opposite direction is insignificant and with p-value of exactly

0.050.

Table 3.22: Granger Causality Wald Test for LTC

Equation Excluded χ2 df Prob > χ2

log ∆ V(t) |log R(t)| 9.7066 2 0.008

log ∆ V(t) ALL 9.7066 2 0.008

|log R(t)| log ∆ V(t) 5.9849 2 0.050

|log R(t)| ALL 5.9849 2 0.050

VAR model in the case of XRP fits even worse and there are, as in case

of cross-correlation, no significant relations. As seen in Table 3.23, Granger

causality Wald test does not recognize any significant influence either. Only

after we loose significance level to 0.05, there are signs of possible influence of

change in volume on XRP’s absolute returns - its volatility.

Table 3.23: Granger Causality Wald Test for XRP

Equation Excluded χ2 df Prob > χ2

log ∆ V(t) |log R(t)| 0.68769 2 0.709

log ∆ V(t) ALL 0.68769 2 0.709

|log R(t)| log ∆ V(t) 6.4266 2 0.040

|log R(t)| ALL 6.4266 2 0.040
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Basically, the three currencies differ quite a lot in the way VAR model fits

their data as well as in the outcomes of Granger test. From the results, it seems

that generally, the crypto-currencies’ volume and volatility positively correlate

and especially in cases of BTC/LTC. The causality goes both ways for BTC but

in LTC and XRP, there is not enough evidence for causality to be determined

on 0.01 significance level. Relationship going in way of volume influencing the

volatility, can be seen if we loose our significance level to 0.05, but we do not

consider that sufficient for us. XRP stands out from the others as the one with

least correlated volume and volatility and there seems to be none when we

accept the 0.05 significance level as insufficient. Therefore, in the case of XRP,

it is not safe to assume anything just on an outcome of this exact VAR model.

Other than that, for both LTC and BTC, it is possible to see the link between

volume and volatility.



Chapter 4

Conclusions

Although, it is possible to see differences between data of day-to-day returns

on crypto-currencies in question — BTC, XRP and LTC, and data of day-to-day

returns on EUR and S&P500, there is barely any hard hitting difference which

would go straight against the stylized facts (Cont 2001). The biggest difference

can be seen in the way autocorrelation of return data behaves. Cont (2001)

claims that financial time series generally lack autocorrelation, but in the first

section of this thesis we have come to a conclusion that crypto-currencies tend

to exhibit higher levels of autocorrelation than benchmark assets. This corre-

lation is then mostly in the form of an influence of first-lagged returns on the

current values. There is no such a strong influence found in the benchmark

values and therefore we find this to be the most distinctive sign of crypto-

currencies covered by this thesis. The possible explanation behind this fact

might be that people rely on today’s change in value of crypto-currencies to

predict its future values more than they do so in other cases of financial as-

sets. That could be caused by lack of real life events which directly influence

values of crypto-currencies. It is important to note is that both ripple and Lite-

coin exhibit negative autocorrelation, while Bitcoin showed significant positive

autocorrelation.

On the other way, crypto-currencies seem to lack weekly trends in autocor-

relation of absolute returns, which we have found in data for both EUR and

S&P500 (also in data for GBP to reduce possibility of bad calculations on our

side). This fact influences a behavior of volatility clustering. While crypto-

currencies have higher first lag autocorrelation in their absolute values, their

absolute value autocorrelation does not significantly stretch below the first Al-

though, present in autocorrelation of absolute returns, weekly trends do not
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seem to be present in autocorrelation of regular returns.

Another differences found during the analysis of crypto-currencies’ data are

less disrupting for the initial idea of crypto-currencies fulfilling Cont’s stylized

facts. Crypto-currencies seem to have statistical properties closer to that of

stock indices than to properties of fiat currencies? data. That can be seen in

distribution tails of logarithmic day-to-day returns, which seem to be heavier

and in aggregation gaussianity, which is not as strong as in case of EUR currency

and also resembles more the way in which S&P500 returns converge to normal

distribution.

For easier overview of the topic we attach a summary in Table 4.1 on next

page.
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Table 4.1: Summary

� Absence of autocorrelation — Crypto-currencies BTC, XRP and LTC dis-
play higher levels of autocorrelation in their return data than benchmark assets
EUR and S&P500. This is most noticeable for the first lag, where autocorre-
lation coefficient is higher than 0.1 and significantly different from zero for all
of the currencies. BTC seems to be the only one of the three crypto-currencies
to have positive autocorrelation. Not in accordance with stylized fact.

� Heavy tails — BTC, XRP and LTC all have heavier tails than normal distribu-
tion. That said, tails of their return distribution functions are approximately
as heavy as tails of S&P500 stock index’ return distribution. In accordance
with stylized fact.

� Gain/loss asymmetry — Gain/loss asymmetry holds in case of crypto-
currencies too. Only difference has been found in data of LTC, but after
sample from a more recent period had been taken the difference in gain/loss
asymmetry was no more present. In accordance with stylized fact.

� Aggregational Gaussianity — Although at slower rate than benchmark
financial assets, crypto-currencies’ return distribution function tends to con-
verge to normal distribution with increase in time span over which returns are
computed. The pace at which they do so is closer to that of S&P500 than EUR,
as EUR converges a lot faster. In accordance with stylized fact.

� Volatility Clustering — Volatility clustering has been measured by auto-
correlation in absolute and squared returns. This autocorrelation is higher at
first lag, but lower as the lags increase. Especially in cases of XRP and LTC,
where autocorrelation is not significantly different from zero in all lags but the
first. Big difference is absence of a periodicity which can be seen in data for
both EUR and S&P500. In accordance with stylized fact.

� Slow Decay of Autocorrelation in Absolute Returns — As mentioned in
previous point, crypto-currencies’ autocorrelation in absolute returns decays
really fast for XRP and LTC. Decay in case of BTC currency is slower and
comparable to that of S&P500, but thanks to the other crypto-currencies two
we can reject the null hypothesis of slow decay. Not in accordance with stylized
fact (exceptions).

� Leverage Effect — Leverage effect is clearly present in crypto-currencies’
data as all three of them display significant negative correlation between their
returns and absolute returns (volume). Analysis of benchmark data confirms
the hypothesis. In accordance with stylized fact.

� Volume/Volatility Correlation — On one hand, BTC shows strong signif-
icant correlation between its volume and volatility, and LTC shows weaker,
but still significant correlation. On the other one, XRP’s data do not display
such characteristic while using 0.01 significance level. While the XRP’s vol-
ume/volatility correlation is significant using significance level of 0.05, we do
believe that in context of this thesis it is appropriate to use 0.01 significance
level. Not in accordance with stylized fact (exceptions).
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Appendix A

Tables

Table A.1: Correlogram for BTC

Lag AC PAC Q Prob > Q

1 0.1198 0.1204 19.206 0.0000

2 0.0137 0.0002 19.458 0.0001

3 -0.0625 -0.0679 24.691 0.0000

4 0.0696 0.0875 31.184 0.0000

5 0.0632 0.0532 36.554 0.0000

6 0.0538 0.0341 40.44 0.0000

7 -0.0594 -0.0641 45.182 0.0000

Table A.2: Correlogram for XRP

Lag AC PAC Q Prob > Q

1 -0.2950 -0.3003 39.6 0.0000

2 0.0101 -0.0683 39.646 0.0000

3 -0.0649 -0.0910 41.573 0.0000

4 0.0056 -0.0525 41.587 0.0000

5 0.0575 0.0412 43.104 0.0000

6 -0.0401 -0.0084 43.845 0.0000

7 0.0284 0.0419 44.216 0.0000



A. Tables II

Table A.3: Correlogram for EUR

Lag AC PAC Q Prob > Q

1 -0.0760 -0.0762 7.3229 0.0068

2 -0.0001 -0.0058 7.3229 0.0257

3 0.0180 0.0176 7.7318 0.0519

4 -0.0134 -0.0104 7.9592 0.0931

5 -0.0338 -0.0372 9.4101 0.0938

6 0.0363 0.0338 11.082 0.0859

7 -0.0062 -0.0032 11.132 0.1330

Table A.4: Correlogram for S&P500

Lag AC PAC Q Prob > Q

1 -0.0385 -0.0502 1.098 0.2947

2 0.0146 0.0228 1.2568 0.5334

3 0.0346 0.1189 2.1437 0.5431

4 -0.0005 . 2.1438 0.7093

5 -0.0962 . 9.0343 0.1077

6 0.0155 . 9.2131 0.1619

7 -0.1510 . 26.217 0.0005

Table A.5: Skewness-Kurtosis Test for S&P500

Variable Obs Pr(Skewness) Pr(Kurtosis) adj χ2 (2) Prob > χ2

two-day log. return 276 0.0000 0.0000 35.80 0.0000

four-day log. return 139 0.0001 0.0000 28.61 0.0000

eight-day log. return 92 0.0006 0.0056 15.55 0.0004

sixteen-day log. return 35 0.0917 0.2592 4.26 0.1187

thirty-two-day log. return 17 0.0197 0.0931 7.20 0.0273
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Table A.6: Correlogram for EUR’s Absolute Values

Lag AC PAC Q Prob > Q

1 0.2334 0.2340 68.992 0.0000

2 -0.0075 -0.0658 69.064 0.0000

3 -0.0479 -0.0330 71.979 0.0000

4 -0.0491 -0.0323 75.037 0.0000

5 -0.0037 0.0144 75.055 0.0000

6 0.1258 0.1270 95.195 0.0000

7 0.2378 0.2163 167.18 0.0000

8 0.1102 0.0609 182.64 0.0000

9 -0.0204 -0.0474 183.17 0.0000

10 -0.0342 0.0004 184.66 0.0000

11 -0.0554 -0.0395 188.57 0.0000

12 -0.0629 -0.0655 193.63 0.0000

13 0.0971 0.0972 205.7 0.0000

14 0.2282 0.2057 272.36 0.0000

15 0.1282 0.0487 293.43 0.0000

16 -0.0114 -0.0361 293.6 0.0000

17 -0.0454 -0.0331 296.24 0.0000

18 -0.0586 -0.0191 300.65 0.0000

19 -0.0340 0.0067 302.14 0.0000

20 0.1060 0.0865 316.6 0.0000

21 0.2447 0.1915 393.7 0.0000

22 0.0966 -0.0103 405.71 0.0000

23 0.0000 0.0181 405.71 0.0000

24 -0.0258 0.0059 406.57 0.0000

25 -0.0282 0.0389 407.59 0.0000

26 -0.0581 -0.0658 411.96 0.0000

27 0.1108 0.1029 427.84 0.0000

28 0.2115 0.1029 485.77 0.0000

29 0.1103 0.0197 501.52 0.0000

30 0.0218 0.0370 502.14 0.0000
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Table A.7: Correlogram for EUR’s Squared Values

Lag AC PAC Q Prob > Q

1 0.4004 0.4006 203.17 0.0000

2 -0.0032 -0.1949 203.19 0.0000

3 -0.0092 0.0872 203.29 0.0000

4 -0.0025 -0.0422 203.3 0.0000

5 0.0049 0.0264 203.33 0.0000

6 0.0391 0.0327 205.28 0.0000

7 0.0386 0.0106 207.17 0.0000

8 0.0126 0.0088 207.38 0.0000

9 -0.0031 -0.0219 207.39 0.0000

10 -0.0014 0.0095 207.39 0.0000

11 -0.0057 -0.0306 207.43 0.0000

12 -0.0081 -0.0265 207.52 0.0000

13 0.0131 0.0789 207.74 0.0000

14 0.0255 0.0838 208.57 0.0000

15 0.0246 0.0726 209.35 0.0000

16 -0.0016 -0.0574 209.35 0.0000

17 -0.0021 0.0208 209.36 0.0000

18 -0.0060 -0.0367 209.4 0.0000

19 -0.0074 -0.0147 209.47 0.0000

20 0.0291 0.1585 210.57 0.0000

21 0.0456 0.1344 213.24 0.0000

22 0.0135 -0.0352 213.47 0.0000

23 0.0008 0.0300 213.47 0.0000

24 0.0044 0.0225 213.5 0.0000

25 -0.0010 -0.0101 213.5 0.0000

26 -0.0123 -0.0694 213.7 0.0000

27 0.0205 0.1353 214.24 0.0000

28 0.0259 0.0031 215.1 0.0000

29 0.0162 0.0520 215.45 0.0000

30 0.0042 -0.0084 215.47 0.0000
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Table A.8: Correlogram for EUR’s Absolute Values (adjusted)

Lag AC PAC Q Prob > Q

1 0.1795 0.1995 35.037 0.0000

2 0.0233 -0.0300 35.629 0.0000

3 0.0314 0.0334 36.702 0.0000

4 0.0171 0.0309 37.021 0.0000

5 0.0331 0.0153 38.215 0.0000

6 0.0676 . 43.207 0.0000

7 0.1836 . 80.08 0.0000

8 0.0520 . 83.039 0.0000

9 0.0162 . 83.329 0.0000

10 0.0332 . 84.54 0.0000

11 0.0169 . 84.853 0.0000

12 -0.0279 . 85.709 0.0000

13 0.0409 . 87.553 0.0000

14 0.1748 . 121.21 0.0000

15 0.0684 . 126.37 0.0000

16 0.0238 . 126.99 0.0000

17 0.0144 . 127.22 0.0000

18 0.0088 . 127.31 0.0000

19 0.0021 . 127.31 0.0000

20 0.0476 . 129.82 0.0000

21 0.1912 . 170.34 0.0000

22 0.0336 . 171.59 0.0000

23 0.0395 . 173.33 0.0000

24 0.0367 . 174.83 0.0000

25 0.0408 . 176.68 0.0000

26 -0.0223 . 177.23 0.0000

27 0.0545 . 180.55 0.0000

28 0.1568 . 207.98 0.0000

29 0.0529 . 211.1 0.0000

30 0.0531 . 214.25 0.0000



A. Tables VI

Table A.9: Correlogram for EUR’s Squared Values (adjusted)

Lag AC PAC Q Prob > Q

1 0.3945 0.3986 169.36 0.0000

2 -0.0033 -0.2090 169.38 0.0000

3 0.0047 0.2074 169.4 0.0000

4 0.0097 0.0115 169.5 0.0000

5 0.0051 0.0042 169.53 0.0000

6 0.0307 . 170.56 0.0000

7 0.0321 . 171.69 0.0000

8 0.0048 . 171.71 0.0000

9 -0.0018 . 171.72 0.0000

10 0.0087 . 171.8 0.0000

11 0.0040 . 171.82 0.0000

12 -0.0064 . 171.86 0.0000

13 0.0058 . 171.9 0.0000

14 0.0196 . 172.32 0.0000

15 0.0165 . 172.62 0.0000

16 -0.0007 . 172.62 0.0000

17 0.0067 . 172.67 0.0000

18 0.0033 . 172.68 0.0000

19 -0.0062 . 172.72 0.0000

20 0.0218 . 173.25 0.0000

21 0.0398 . 175.01 0.0000

22 0.0056 . 175.04 0.0000

23 0.0028 . 175.05 0.0000

24 0.0137 . 175.26 0.0000

25 0.0086 . 175.34 0.0000

26 -0.0112 . 175.48 0.0000

27 0.0133 . 175.68 0.0000

28 0.0201 . 176.13 0.0000

29 0.0087 . 176.21 0.0000

30 0.0047 . 176.24 0.0000
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Table A.10: Correlogram for S&P500’s Absolute Values

Lag AC PAC Q Prob > Q

1 0.1792 0.2234 23.773 0.0000

2 0.1912 0.3682 50.873 0.0000

3 0.0518 0.1078 52.865 0.0000

4 0.0659 . 56.092 0.0000

5 0.1465 . 72.053 0.0000

6 0.1885 . 98.522 0.0000

7 0.2558 . 147.33 0.0000

8 0.2056 . 178.9 0.0000

9 0.1315 . 191.84 0.0000

10 0.0869 . 197.5 0.0000

11 0.0467 . 199.13 0.0000

12 0.1147 . 209.02 0.0000

13 0.1562 . 227.39 0.0000

14 0.3056 . 297.72 0.0000

15 0.1470 . 314.02 0.0000

16 0.1366 . 328.12 0.0000

17 0.0500 . 330.01 0.0000

18 0.0481 . 331.76 0.0000

19 0.1387 . 346.35 0.0000

20 0.0384 . 347.47 0.0000

21 0.1702 . 369.5 0.0000

22 0.1298 . 382.34 0.0000

23 0.1168 . 392.75 0.0000

24 0.0697 . 396.46 0.0000

25 0.0429 . 397.87 0.0000

26 0.1010 . 405.68 0.0000

27 0.1301 . 418.67 0.0000

28 0.1321 . 432.07 0.0000

29 0.1254 . 444.16 0.0000

30 0.0638 . 447.29 0.0000
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Table A.11: Correlogram for S&P500’s Squared Values

Lag AC PAC Q Prob > Q

1 0.2428 0.2769 43.63 0.0000

2 0.2125 0.4435 77.078 0.0000

3 0.0284 0.0474 77.675 0.0000

4 0.0301 . 78.348 0.0000

5 0.1916 . 105.68 0.0000

6 0.1869 . 131.69 0.0000

7 0.3202 . 208.18 0.0000

8 0.2184 . 243.82 0.0000

9 0.1765 . 267.12 0.0000

10 0.0685 . 270.63 0.0000

11 0.0224 . 271.01 0.0000

12 0.0919 . 277.36 0.0000

13 0.1432 . 292.79 0.0000

14 0.3191 . 369.48 0.0000

15 0.1144 . 379.35 0.0000

16 0.1308 . 392.28 0.0000

17 0.0403 . 393.51 0.0000

18 0.0203 . 393.83 0.0000

19 0.1607 . 413.42 0.0000

20 0.0035 . 413.43 0.0000

21 0.1199 . 424.36 0.0000

22 0.1015 . 432.2 0.0000

23 0.0808 . 437.18 0.0000

24 0.0645 . 440.36 0.0000

25 0.0278 . 440.95 0.0000

26 0.0789 . 445.73 0.0000

27 0.0991 . 453.26 0.0000

28 0.1324 . 466.72 0.0000

29 0.1467 . 483.28 0.0000

30 0.0511 . 485.29 0.0000
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Table A.12: Correlogram for BTC’s Absolute Values

Lag AC PAC Q Prob > Q

1 0.3408 0.3422 155.47 0.0000

2 0.3251 0.2417 297.06 0.0000

3 0.2759 0.1340 399.14 0.0000

4 0.2137 0.0461 460.44 0.0000

5 0.2267 0.0880 529.48 0.0000

6 0.1804 0.0347 573.25 0.0000

7 0.2044 0.0749 629.45 0.0000

8 0.1494 -0.0038 659.48 0.0000

9 0.1914 0.0799 708.85 0.0000

10 0.1448 0.0037 737.13 0.0000

11 0.1779 0.0663 779.84 0.0000

12 0.1455 0.0152 808.42 0.0000

13 0.1370 0.0041 833.77 0.0000

14 0.1825 0.0635 878.83 0.0000

15 0.1619 0.0290 914.29 0.0000

16 0.1645 0.0212 950.93 0.0000

17 0.1814 0.0514 995.55 0.0000

18 0.1292 -0.0521 1018.2 0.0000

19 0.1490 0.0142 1048.3 0.0000

20 0.1773 0.0699 1091 0.0000

21 0.1361 0.0041 1116.2 0.0000

22 0.1450 0.0095 1144.8 0.0000

23 0.1115 -0.0259 1161.7 0.0000

24 0.0826 -0.0271 1171 0.0000

25 0.0703 -0.0301 1177.8 0.0000

26 0.0887 0.0118 1188.5 0.0000

27 0.1113 0.0184 1205.4 0.0000

28 0.1630 0.0619 1241.7 0.0000

29 0.1248 0.0095 1263 0.0000

30 0.1134 -0.0143 1280.6 0.0000



A. Tables X

Table A.13: Correlogram for BTC’s Squared Values

Lag AC PAC Q Prob > Q

1 0.1465 0.1467 28.727 0.0000

2 0.2936 0.2813 144.24 0.0000

3 0.2070 0.1519 201.71 0.0000

4 0.1188 0.0071 220.66 0.0000

5 0.1578 0.0585 254.08 0.0000

6 0.0601 -0.0190 258.95 0.0000

7 0.1325 0.0642 282.56 0.0000

8 0.0440 -0.0150 285.17 0.0000

9 0.1222 0.0701 305.27 0.0000

10 0.0425 -0.0150 307.71 0.0000

11 0.0704 0.0154 314.39 0.0000

12 0.0541 0.0058 318.34 0.0000

13 0.0445 0.0116 321.02 0.0000

14 0.0597 0.0095 325.85 0.0000

15 0.0460 0.0115 328.71 0.0000

16 0.0637 0.0091 334.2 0.0000

17 0.0583 0.0260 338.82 0.0000

18 0.0429 -0.0241 341.31 0.0000

19 0.1123 0.0642 358.43 0.0000

20 0.0931 0.0683 370.19 0.0000

21 0.0707 0.0149 376.98 0.0000

22 0.1183 0.0582 396.02 0.0000

23 0.0465 -0.0219 398.96 0.0000

24 0.0469 -0.0356 401.95 0.0000

25 0.0204 -0.0415 402.52 0.0000

26 0.0123 -0.0227 402.73 0.0000

27 0.0305 -0.0049 404 0.0000

28 0.0797 0.0419 412.68 0.0000

29 0.0346 0.0024 414.32 0.0000

30 0.0481 -0.0052 417.48 0.0000



A. Tables XI

Table A.14: Correlogram for XRP’s Absolute Values

Lag AC PAC Q Prob > Q

1 0.3607 0.3669 59.194 0.0000

2 0.0706 -0.0460 61.466 0.0000

3 0.0871 0.0867 64.93 0.0000

4 0.1060 0.0575 70.081 0.0000

5 0.0310 -0.0115 70.521 0.0000

6 0.0643 0.0560 72.422 0.0000

7 0.0757 0.0169 75.065 0.0000

8 0.1216 0.0258 81.903 0.0000

9 0.0806 -0.0292 84.913 0.0000

10 0.1107 0.0823 90.604 0.0000

11 0.1026 0.0348 95.501 0.0000

12 0.1375 0.1075 104.32 0.0000

13 0.0403 -0.0529 105.08 0.0000

14 0.0727 0.0307 107.55 0.0000

15 0.0442 -0.0252 108.47 0.0000

16 0.0795 0.0837 111.45 0.0000

17 0.0340 -0.0033 111.99 0.0000

18 0.0738 0.0723 114.57 0.0000

19 0.0176 -0.0521 114.72 0.0000

20 0.0433 0.0162 115.61 0.0000

21 0.0496 0.0297 116.78 0.0000

22 0.0937 0.0047 120.97 0.0000

23 0.1143 0.0448 127.22 0.0000

24 0.1140 0.0243 133.45 0.0000

25 0.0303 0.0121 133.89 0.0000

26 0.0452 0.0356 134.87 0.0000

27 0.0359 0.0398 135.49 0.0000

28 0.0115 -0.0297 135.56 0.0000

29 -0.0121 -0.0288 135.63 0.0000

30 0.0100 -0.0211 135.68 0.0000



A. Tables XII

Table A.15: Correlogram for XRP’s Squared Values

Lag AC PAC Q Prob > Q

1 0.4221 0.4234 81.077 0.0000

2 -0.0025 -0.1753 81.08 0.0000

3 0.0257 0.1179 81.383 0.0000

4 0.0501 -0.0142 82.532 0.0000

5 0.0182 0.0162 82.684 0.0000

6 0.0161 0.0057 82.803 0.0000

7 0.0142 -0.0005 82.896 0.0000

8 0.0841 -0.0018 86.166 0.0000

9 0.0630 -0.0314 88.006 0.0000

10 0.0244 0.0251 88.284 0.0000

11 0.0568 0.0607 89.783 0.0000

12 0.0549 0.0267 91.191 0.0000

13 -0.0078 -0.0246 91.219 0.0000

14 0.0038 0.0093 91.226 0.0000

15 0.0217 0.0180 91.447 0.0000

16 0.0328 0.0324 91.953 0.0000

17 -0.0054 -0.0221 91.967 0.0000

18 0.0251 0.0394 92.266 0.0000

19 0.0033 -0.0325 92.271 0.0000

20 0.0015 0.0096 92.272 0.0000

21 0.0140 0.0153 92.365 0.0000

22 0.0429 0.0009 93.245 0.0000

23 0.0629 0.0242 95.138 0.0000

24 0.0700 0.0445 97.489 0.0000

25 0.0137 0.0020 97.579 0.0000

26 0.0088 0.0202 97.617 0.0000

27 0.0028 0.0036 97.62 0.0000

28 -0.0173 -0.0232 97.765 0.0000

29 -0.0233 -0.0199 98.027 0.0000

30 -0.0073 0.0042 98.053 0.0000



A. Tables XIII

Table A.16: Correlogram for LTC’s Absolute Values

Lag AC PAC Q Prob > Q

1 0.4216 0.4302 81.953 0.0000

2 0.1037 -0.0879 86.919 0.0000

3 0.0796 0.1029 89.856 0.0000

4 0.0563 -0.0064 91.329 0.0000

5 0.1044 0.1321 96.397 0.0000

6 0.0731 -0.0345 98.89 0.0000

7 0.1212 0.1605 105.75 0.0000

8 0.1447 0.0588 115.55 0.0000

9 0.0920 0.0018 119.52 0.0000

10 0.0959 0.0235 123.84 0.0000

11 0.1019 0.0410 128.74 0.0000

12 0.1210 0.0764 135.65 0.0000

13 0.0817 0.0024 138.81 0.0000

14 0.0707 0.0541 141.18 0.0000

15 0.1172 0.0364 147.71 0.0000

16 0.0393 -0.0842 148.44 0.0000

17 -0.0042 0.0389 148.45 0.0000

18 0.0104 -0.0350 148.5 0.0000

19 0.0261 0.0024 148.83 0.0000

20 0.0406 0.0147 149.62 0.0000

21 0.0377 0.0184 150.31 0.0000

22 0.0024 -0.0368 150.31 0.0000

23 -0.0213 -0.0460 150.53 0.0000

24 0.0193 0.0365 150.71 0.0000

25 0.0122 -0.0460 150.79 0.0000

26 0.0617 0.0717 152.64 0.0000

27 0.0610 -0.0167 154.46 0.0000

28 -0.0032 -0.0099 154.47 0.0000

29 -0.0111 -0.0362 154.53 0.0000

30 -0.0366 -0.0234 155.19 0.0000



A. Tables XIV

Table A.17: Correlogram for LTC’s Squared Values

Lag AC PAC Q Prob > Q

1 0.4614 0.4644 98.15 0.0000

2 0.0377 -0.2298 98.806 0.0000

3 0.0288 0.1572 99.191 0.0000

4 0.0236 -0.0713 99.448 0.0000

5 0.0751 0.1582 102.07 0.0000

6 0.0367 -0.1083 102.7 0.0000

7 0.0377 0.1304 103.36 0.0000

8 0.0698 -0.0073 105.64 0.0000

9 0.0338 0.0010 106.18 0.0000

10 0.0589 0.0232 107.81 0.0000

11 0.0617 0.0177 109.61 0.0000

12 0.0486 0.0366 110.72 0.0000

13 0.0330 -0.0028 111.24 0.0000

14 0.0201 0.0333 111.43 0.0000

15 0.0812 0.0353 114.56 0.0000

16 0.0340 -0.0498 115.11 0.0000

17 -0.0218 0.0198 115.34 0.0000

18 -0.0087 -0.0405 115.38 0.0000

19 -0.0044 0.0322 115.39 0.0000

20 0.0060 -0.0209 115.4 0.0000

21 -0.0068 -0.0089 115.43 0.0000

22 -0.0252 -0.0135 115.73 0.0000

23 -0.0183 -0.0172 115.9 0.0000

24 -0.0074 0.0008 115.92 0.0000

25 -0.0020 -0.0136 115.92 0.0000

26 0.0200 0.0038 116.12 0.0000

27 0.0044 -0.0150 116.13 0.0000

28 -0.0192 -0.0166 116.31 0.0000

29 -0.0204 -0.0117 116.51 0.0000

30 -0.0205 -0.0141 116.72 0.0000



A. Tables XV

Table A.18: VAR for BTC

Variable Coefficient (Std. Err.)

Equation 1 : log ∆ V(t)

1st Lag of log ∆ V(t) -0.1473405∗ (0.0722836)

2nd Lag of log ∆ V(t) 0.1877619∗∗ (0.0724446)

1st Lag of |log R(t)| 0.7164479∗∗ (0.1694261)

2nd Lag of |log R(t)| 0.0487642 (0.1770715)

Intercept -0.0256593∗∗ (0.0087954)

Equation 2 : |log R(t)|
1st Lag of log ∆ V(t) -0.1053222∗∗ (0.0305879)

2nd Lag of log ∆ V(t) 0.0942769∗∗ (0.030656)

1st Lag of |log R(t)| 0.3783418∗∗ (0.0716951)

2nd Lag of |log R(t)| 0.1666404∗ (0.0749304)

Intercept 0.0144897∗∗ (0.0037219)

N 179

Log-likelihood 542.7405

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%



A. Tables XVI

Table A.19: VAR for LTC

Variable Coefficient (Std. Err.)

Equation 1 : log ∆ Volume

1st Lag of log ∆ V(t) 0.0520198 (0.0728686)

2nd Lag of log ∆ V(t) -0.0664955 (0.0724421)

1st Lag of |log R(t)| -0.0260652 (0.0897247)

2nd Lag of |log R(t)| 0.2788267∗∗ (0.0895332)

Intercept -0.0180667 (0.0141913)

Equation 2 : |log R(t)|
1st Lag of log ∆ V(t) 0.036742 (0.0587468)

2nd Lag of log ∆ V(t) 0.1367027∗ (0.058403)

1st Lag of |log R(t)| 0.0413287 (0.0723363)

2nd Lag of |log R(t)| 0.1458086∗ (0.0721818)

Intercept 0.0645154∗∗ (0.0114411)

N 190

Log-likelihood 247.3436

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%



A. Tables XVII

Table A.20: VAR for XRP

Variable Coefficient (Std. Err.)

Equation 1 : log ∆ Volume

1st Lag of log ∆ Volume 0.4600027 (0.6246843)

2nd Lag of log ∆ Volume -0.3286515 (0.6358771)

1st Lag of |log R(t)| 0.4982969 (0.8579283)

2nd Lag of |log R(t)| 0.491426 (0.8413331)

Intercept -0.2217062 (0.1801991)

Equation 2 : |log R(t)|
1st Lag of log ∆ V(t) 0.1319151∗ (0.0549993)

2nd Lag of log ∆ V(t) 0.0273143 (0.0559848)

1st Lag of |log R(t)| 0.0092369 (0.0755349)

2nd Lag of |log R(t)| 0.1302045† (0.0740738)

Intercept 0.0963356∗∗ (0.0158653)

N 172

Log-likelihood -214.011

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%



Appendix B

Figures

Figure B.1: Histogram for S&P500



B. Figures XIX

Figure B.2: Quantile-normal plot for XRP, LTC, EUR and S&P500

Figure B.3: Symmetry plot for EUR and S&P500



B. Figures XX

Figure B.4: Symmetry plot for LTC

Figure B.5: Autocorrelations of Absolute and Squared Returns for
BTC



B. Figures XXI

Figure B.6: Autocorrelations of Absolute and Squared Returns for
LTC



B. Figures XXII

Figure B.7: Autocorrelations of Absolute and Squared Returns for
XRP
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