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1. Introduction

Photographers are struggling with noise in pictures since the beginning of a dig-
ital photography itself. Nowadays, when the size of image capturing devices is
decreasing at the expense of noise corruption, fast and effective image denoising
algorithms are necessary for preserving the image quality.

Human eye can see noise in an image as random speckles on an otherwise
smooth surface. These speckles are not commonly desirable and can significantly
degrade the image quality. More precisely, we can define image noise as undesired
random information added to the expected image.

Noise in photographs generally originates in circuits of image sensors. It
is mostly caused by the omnipresent thermal noise [1] that is unavoidable at
common temperatures. Even though the level of noise generated by circuits of
image sensors is constant on average, the level of noise in the produced image
differs based on light conditions. At low illumination, digital cameras are forced
to set the sensor to be more sensitive in order to produce as bright pictures as at
normal light. Image sensor is then more sensitive to the collected light as well as
to the noise, which is therefore more visible in the image. Moreover, the level of
noise inversely depends on the physical size of a pixel of the sensor [2]. Because
consumer electronics tends to be smaller or tighter, image sensors in these devices
have to follow that trend too. As a consequence, employment of some kind of
noise reduction is necessary.

Basic methods of image denoising are based on suppression of large differences
in adjacent pixels. However, this approach encounters problems with edges. The
edges are considered as large differences and they are suppressed which results
in a blurry output. The same applies to small details. Unfortunately, a human
eye considers a blurry image often less pleasant than the sharp noisy original.
Although there are simple filters that are able to detect edges and preserve them,
they commonly fail in preserving details and often produce artefacts. The main
objective of advanced denoising methods is the noise reduction that preserves
edges and detail.

One of the best image denoising methods is the Block-Matching and 3D
Filtering (BM3D) [3] [4]. It effectively combines two main denoising approaches.
The first is based on the fact, that noiseless image has much more sparse represen-
tation after some decorrelating transform as Fourier, Cosine, or Bior transform.
The noise is then easier to detect and attenuate. The second approach is based
on the block-matching concept that is commonly used for motion estimation in
video compression algorithms. Each pixel is estimated from image fragments that
are found to be similar to the neighbourhood of this pixel.

Briefly, BM3D finds the similar image fragments and then use this similarity to
enhance the denoising in transform domain. This whole process is both memory
and computationally intensive. It could be one of the reasons why it is not
massively employed in photo editing tools.



1.1 Parallelization

Algorithms are traditionally constructed to be executed in a serial manner. The
processing time of these algorithms, especially the computationally intensive ones,
is often limited by clock-rate of the core. Unfortunately, the growth of clock-rate
rapidly slowed down at the very beginning of the 21st century and since then,
the growth of CPU computational power has been maintained mainly by adding
new cores. This resulted in quick development in the area of parallel computing,
which is focused on algorithms that utilize more compute units.

Parallel algorithms are based on the fact that the mutually independent parts
of a problem can be processed at the same time. The number of simultaneously
processed parts is limited by the number of cores in the system.

Although the number of cores in CPUs is growing, even the high-end proces-
sors contain only up to tens of them. It is mainly due to the complexity, related
power consumption and heat production of a CPU core. The complexity of each
core is determined by the ability to run an operating system. However, for many
computing tasks, complex and independent cores are not necessary. One group
of these tasks are data parallel tasks, where the same routine is performed over
many data elements. A straightforward example of these data parallel tasks are
image processing methods including image denoising where each pixel or set of
pixels can be processed independently.

Data parallelism is so common that current CPU cores contain SIMD (Single
Instruction Multiple Data) instructions that can process several data elements
simultaneously. Still, even with the use of these instructions, the total number of
concurrently processed data is very limited. Many data parallel problems offers
numerous times higher parallelization than can be achieved on a single CPU. For
such cases, we may use specialized parallel accelerators such as Xeon Phi cards
and GPUs (Graphic processing units) that support GPGPU (General-purpose
computing on GPU).

Unlike the Xeon Phi card, the GPU is available in almost every computer
including notebooks, tablets, and mobile phones. For small tasks performed by
end users (as image denoising) it is far more logical to adjust the software to the
available hardware than vice versa; hence we will focus on the GPGPU platform.

GPU cores are not as complex, independent, nor large as their CPU counter-
parts; therefore, the current desktop GPUs can contain thousands of them. This
does not imply that we will achieve thousands of times faster implementations
compared to the serial version. There are several issues the GPU implementations
have to deal with.

e Data transfers: The GPU often resides on graphic card that is connected
with the host computer via a PCle bus. Since this bus has limited band-
width and since the data we want to process are often in the computer
memory, we have to take into account the time to transfer the data to the
GPU and back.

e Memory hierarchy: There are several types of memory on a GPU. They
differs according to the purpose, latency, bandwidth, size, and locality.
Their performance is often influenced by access patterns, we use. Therefore,
we have to take some care to optimally utilize all these memories.



e SIMT execution model: Unlike a CPU, threads of a GPU are executed
according to the SIMT (Single Instruction Multiple Thread) model. This
restricts the tasks that can be efficiently solved on a GPU mainly to those
that are massively data-parallel.

GPU cores are few times slower than current high-end CPU cores. Never-
theless, crucial for GPUs is the quantity. Therefore, the GPU can be a suitable
platform for many data parallel algorithms, especially the compute intensive ones.
Image processing algorithms are not an exception.

1.2 Related Work

Image denoising is nowadays a very common task. Since it is by definition data-
parallel, various denoising algorithms has been accelerated using GPUs. Simple
smoothing kernels, where each pixel is computed as a weighted average of its
direct neighbours, are almost model examples of problems suited for GPUs.

Among the advanced denoising methods, the mostly studied in terms of GPU
acceleration are those based on non-local similarities as Non Local Means (NL-
means) [5]. Due to their high denosing effectivity and related high computational
costs, several algorithms were developed [6] [7] [8]. GPU-accelerated NL-means
based algorithms are nowadays widely used and they are contained in libraries as
OpenCV.

Other GPU-accelerated denoising algorithms are based on sliding-window fil-
ters [9] or wavelet tranforms [10]. There are also algorithms that were created for
specific (mostly medicine) purposes with specific noise models [11] [12]. Intensive
research has been also made in fast or real-time denoising [12] [13]. These algo-
rithms mostly do not offer the best denoising performance, however, due to their
short processing times, they are often employed in video denoising.

Although some of these algorithms provide good denoising performance, in
general neither of them offer better denoising qualities than BM3D. For more

accurate comparison of denoising algorithms we refer to the work of Marc Lebrun
[14].

1.3 Objectives

The main objective of this thesis is to design a GPU accelerated version of the
BM3D method. We focus on the defining parts of this method - the block-
matching and the 3D filtering. Transformation algorithms used by the method
are not covered by this thesis. A prototype implementation which addresses the
fundamental basics of this method is developed and compared with the existing
implementations.

GPU accelerated BM3D algorithm might be a solution for users that do not
have high performance computers, that are demanded by current implementations
of this method. Furthermore, with the growing GPU performance, such algorithm
might be used even in small electronic devices as mobile phones or tablets for
immediate denoising of captured pictures.

The BM3D method itself is revised in Chapter 2. The basic ideas of this
method are described and clarified as well as all the theoretical basis necessary

5



for understanding it. Chapter 3 presents the GPU architecture fundamentals with
all the benefits and restrictions. It describes GPUs memory model and problems
arising from the low bus bandwidth between the GPU and CPU. It also briefly
introduces the programming platform. Chapter 4 discusses the design of a GPU
accelerated version of the BM3D algorithm. The reasons leading to the selected
design are discussed for each significant part of the algorithm. Finally, Chapter
5 empirically evaluates the prototype implementation against the existing imple-
mentations comparing their performance, efficiency, and denoising effectiveness.



2. Block-Matching and 3D
Filtering

BM3D is one of the most advanced algorithms for image denoising. Despite the
fact, that BM3D has been published in 2006, according to the work of Marc Le-
brun [15] it still has comparable results to other contemporary denoising methods.
It effectively combines two successful denoising approaches non-local filtering
and transform based filtering. To properly understand any of these approach-
es we first present the theory of denoising in general and the model of the noise we
are working with. Later on, we sumarize both of the above mentioned approaches
and finally we reveal the BM3D algorithm itself.

2.1 Noise

In this thesis we assume pictures that are captured by image sensors. Noise that
appears in these pictures has several properties that are essential for the field of
image denoising.

Despite the fact, that we are talking about the noise produced by image
sensors, in order to simplify a notation we will use the notation that illustrates the
simulation of noise corruption. First we have an image, that we denote original
image, we corrupt it by noise with similar properties to the noise produced by an
image sensor. Hence, we get a noisy image. Applying the denoising algorithm
on it we obtain an image estimate. By comparing this estimate with the original
image we can measure quality of denoising algorithms.

Before we present a mathematical model of the noise, we first define our
conception of an image. We consider only grayscale images represented as matrix
of pixels intensities. Nevertheless, an extension to the colour images is often very
simple.

The properties of the noise produced by image sensor are essential for its
elimination or simulation. Observations proves that this noise appears to be an
Additive White Gaussian Noise (AWGN), which is defined by the following

properties.

e Additive means that the noise is added to the original image. Hence, by
subtracting the noise n from a noisy image g we can get the desired original
picture f. The following formula is then valid:

g=/f+n
where + is element-wise addition operator.

e White stands for the fact, that the level of the noise on each pixel is
independent of the others and the mean value is zero.

e (GGaussian denotes, that the values the noise n can take follow Normal
distribution.



There are more noise models, which we would have to take into account for
some specific images (e.g., very low intensity images). This and other models are
well described in the Hnadbook of Image and Video Processing [16]. In general,
the AWGN model well approximates most of the noise that appears in common
images; hence, we shall consider this model only.

Because the noise n is additive, knowing the n we could reconstruct the orig-
inal image f from the noisy image g by this formula:

f=g9—n

Unfortunately, due to the randomness of the noise, for general images, the only
thing we know is the noisy image g and the fact that n is AWGN.

Consequently, not all images we are even able to denoise. For example if the
original image exhibit the same properties as the noise, we would not distinguish
what is the noise and what the original. Therefore, regardless the denoising
algorithm, the original image has to expose some level of order to be successfully
denoised. For natural or any human-readable images, some level of order is
guaranteed, because these images are generally made of finite number of geometric
shapes. In this thesis, we shall consider these images only.

2.2 Non-Local Means

Generally, if we shoot more photographs of the exactly same scene and make an
average of them, we shall get the best result in terms of noise attenuation and
detail preservation. This is true due to the randomness of the noise. While the
situation we want to shoot remains the same, the noise is changing with each
picture we take. Consequently, the noise can be simply attenuated by averaging
these pictures. The more pictures we take the less noticeable the noise will be.
This approach is called time-averaging.

However, the situation not always allows us to take more pictures of a scene
and when it does, it is often better to take one picture with a longer shutter speed
and lesser sensitivity. Henceforth, we consider only the situation, where we have
one noisy image.

NL-means [5] method is also employing the idea of time-averaging, but it
operates only with one noisy image. It uses the fact, that images are usually
made of geometric shapes and therefore they contain lots of repetitive areas.
When it finds all these areas it uses a concept similar to time-averaging. More
precisely, for each reference pixel and its neighbourhood NL-means searches the
pixels with a similar neighbourhood and the pixel of image estimate is computed
as an average of the found pixels.

The process of searching for the areas that are similar is long known in the
field of video compression under the term block-matching. It is used for coding
the displacements of objects between consecutive frames and it is a key part of
algorithms as MPEG 1,2, and 4 as well as many others.

Even though we are using the term block-matching in this thesis, we will
denote the areas of a picture that are subject of matching as patches instead of
blocks. By this notation, we avoid the ambiguity between blocks as we would
have known them from this chapter and thread blocks which are presented in
GPU chapter.



2.3 Transform Based Denoising

Transform based denoising methods are very popular. They first transform the
noisy image by some decorrelating unitary transform and then they filter the
coefficients of this transformed image. Finally, they transform the image back to
obtain the image estimate. The point of this approach is that while an original
image after this transform has much more sparse representation, the noise does
not and therefore it can be more easily attenuated.

There are several suitable transforms that can be used for this task. There
are for example Fourier, Cosine, Bior and Walsh-Hadamard transform. We will
not cover all these transforms in this thesis, but we will focus on the first one of
them, the Fourier transform (FT).

2.3.1 Fourier Transform

Form mathematical point of view, the picture can be taken as a discretely sampled
continuous 2D signal. The 2D FT applied to this signal decomposes it into the
spatial frequencies that make it up. Although the continuous FT is easier to
understand, for computers it is faster to work with traditional discrete images
and transform them using the 2D Discrete Fourier Transform (DFT).

Here, we present only the basis of the DFT, More about the FT, DFT and
their application in image denoising can be found in the book 'Digital Image
Processing’ [17].

2D DFT decomposes an image f of size M - N into a finite set of discretely
sampled spatial frequencies. The result is a matrix of complex coefficients F,
which has the same size as the image we transform. Coefficient located at F, ,
defines the phase and amplitude of discretely sampled spatial frequency g, .:

(z.9) 2riuj 2mivk 2mug n 2mv Visi 2muk . 2mv
wolZ,y) =e e = cos — 181 —
Qu\ > Y M TN M N

The domain of these complex sinusoids is of the same size as the image. Values
u,v practically give number of cycles per image in each dimension. Figure 2.1
visualize one of these discretely sampled complex sinusoids.

|

Figure 2.1: Sine and Cosine component of a sinusoid ¢4




Every coefficient is a complex value. The phase and amplitude match the
phase and absolute value of this complex number in their geometric representa-
tion.

The DFT transforming the image f of width M and height N into the matrix
of coefficients F' is defined as follows:

M—-1N-1

1 ccux | VY
qu{O..N—l},UE{O..M—l}Fu,v = \/m Z Z fw,y€72wz(ﬁ+ﬁ)

z=0 y=0

The DFT is invertible, which is necessary for transform based denoising. The
Inverse Discrete Fourier Transform (IDFT) is defined as follows:

M-1N-1

1 (YL 4 2y
VxG{O..N—l},yG{O..M—l}fm,y = m Z Z Fu,v€2 G +3)

u=0 v=0

An image, as we have defined it before, is a real-valued matrix. If such a matrix
is transformed using the F'T, the result satisfies the Hermitian symmetry, defined
as F, = Fy;_, vy, Where the star denotes complex conjunction. Therefore, it
is not necessary to store all the coefficients. The same applies to the IDFT. If
we pass it any complex matrix that satisfies Hermitian symmetry, the resulted
matrix is always real. Consequently, we have to make symmetric changes to the
transformed image in order to get valid image after the IDFT.

2.3.2 Power Spectrum and Noise Reduction

We use the FT for the noise reduction because the AWGN has some important
characteristics in frequency basis. To understand and exploit these characteristics
we define a power spectrum of an image as |F,,|?. This is also called an energy.

The most important characteristic of AWGN is that its power spectrum is
constantly equal to its variance o?. This also explains why this noise is called
white. It is due to the analogy with white light, which has constant energy in the
whole spectrum.

On the other hand, the original image often consists of low frequencies with
higher amplitudes than ¢?. Figure 2.2 shows an original and noisy image and
their respective power spectra.

Consequently, we can attenuate the noise simply by a low-pass filter (can-
celling the coefficients of high frequencies) or by hard-thresholding (cancelling the
coefficients below some threshold). The low-pass filter assumes that natural im-
ages have most of the information in low-frequencies, while the hard-thresholding
presumes that these images consists of a small set of frequencies which high ener-
gy. Experimental results as well as figure 2.2 shows that the second presumption
is more accurate.

The main problem of both of these approaches is that the information about
an original image that was contained in the cancelled coefficients is now lost.
In other words, an image looses detail and, because sharp edges are composed
from many sinusoids with declining energy, after the IDF'T the ringing effect can
appear around edges.
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Figure 2.2: Original and noisy image and their respective power spectra, the zero
coordinates are in the middle and the intensity is logarithmically scaled

2.4 BM3D Algorithm

The BM3D algorithm consists of three essential consecutive parts Grouping,
Collaborative Filtering, and Aggregation.

e Grouping uses the block-matching concept to find similar patches for each
reference patch. It groups the reference patch with the similar patches into
a 3D array.

e Collaborative filtering is the main denoising procedure of the algorithm.
It employ the fact, that each fragment has sparse representation in 2D
transform basis. It exploits the similarity between stacked fragments by
applying a 3D transform on the whole array which results in even sparser
representation of the original image. Transformed image is then filtered by
hard-thresholding. After an inverse transform the fragment estimates are
returned to their original locations.

e Aggregation part computes the denoised image as a weighted average of
all overlapping fragments.

11



We present only the simplified version of BM3D. The original BM3D method
consists of two steps. First based on hard-thresholding and second based on
wiener filtering. In this thesis we present only the first step of the algorithm;
however, most of the developed processes can be reused in the second step as
well.  Although BM3D can use various transforms, we employ only the above
mentioned Fourier transform. To simplify the reading, the notation used in this
thesis is similar to the notation used in the paper by Marc Lebrun [14].

2.4.1 Grouping

For the first, grouping, part of the BM3D method we employ the above mentioned
concept of block-matching. We define a patch as any square area of k - k pixels
in image. Patches defined in this way can overlap.

For each reference patch P of a noisy image, the noisy image is searched in
a n - n neighbourhood of this patch for patches that are similar to the reference
one. An example result of block-matching on a single image is shown in figure
2.3.

Figure 2.3: Block-matching with overlapping patches, Source:[3]

To define a similarity between patches, first we have to define a distance d
between two arbitrary patches P and (). We use the normalized squared Lo

distance: 1P 02
_ — 2

where | - |2 is Lo norm. Patches P and ) are considered similar if the distance
between them is lower than threshold .

d(P,Q) <7

Because the image is affected by the presence of the noise, for images where
this noise is expected to have the variance o > 40, the original paper extends the
distance definition. It compares coarsely denoised patches instead of the original
noisy ones. To do so, it employs simple hard thresholding in transform basis on
every patch.
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Patches similar to the reference patch P are grouped into a three dimensional
array P(P):
P(P)={Q:d(P,Q) <7}

We can notice that one patch of the image can be in more than one array.

Due to the performance issues, only the N most similar patches to the refer-
ence patch are kept in the array. However, if we restrict the number of patches in
3D group, we have to ensure, that each 3D group contains at least the reference
patch. This is important for the Aggregation part.

2.4.2 Collaborative Filtering

Collaborative filtering is a special procedure developed for filtering of the 3D
groups, that were obtained from the grouping step. Standard transform based
image filtering employs 2D transforms. Collaborative filtering, on the other hand,
employs 3D transform and filters the coefficients of the whole 3D array at once.
Due to the similarity between the patches, the 3D transform results in even
sparser representation of the original patches than the 2D transforms whereas
the noise still has a constant power spectrum. Hence, more details of the original
image are preserved.
Colaborative filtering consists of the following steps.

1. Apply the 3D transform 73p to the 3D group.
2. Filter the coefficients by hard-thresholding to attenuate the noise.

3. Apply the inverse 3D transform 7'3}} to obtain estimates for all patches in
the group.

This procedure is expressed by the following formula:

P(P) = 735 (¥(msp(P(P))))

where v is a hard thresholding operator with threshold Aspo:

0 ifzx S )\3DO'
v(x) =

x otherwise

2.4.3 Aggregation

Once the collaborative filtering produces all the patch estimates, the Aggregation
procedure returns the denoised patches to their original locations and compute
an average of the overlapping pixels.

During the block-matching one patch could have gotten into more than one
3D group; therefore, the collaborative filtering can produce different estimates
of one patch. Moreover, patches can overlap. Consequently, there can be many
various pixel estimates for each pixel. In order to obtain a final image estimate,
we have to aggregate all those patches into a single 2D image.

Aggregation will result in continuous image if and only if we obtain estimate
for each pixel. This is ensured, because each 3D group contains at least the
reference patch.
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The final image estimate is computed as an weighted average of all overlapping
pixels. Weight of each pixel is defined by homogenity of its patch. Homogeneous
patches are prioritized over the patches containing edges and corners. The main
objective is to avoid the ringing effect around the edges, which is typical for
transform based denoising methods.

Homogeneous patches have much more sparse representation after the trans-
form than the patches with edges; thus, homogeneous patches have more coeffi-
cients that do not pass the threshold in the filtering step. Therefore, we can use
the number of coefficients that pass the threshold as a metric of homogeneity.

Consequently, aggregation uses an inverse number of retained (non-zero) co-
efficients of a 3D group after hard thresholding as a weight to each pixel. If we
define the number of non-zero coefficients of 3D group P(P) as Np, we use the
following weight:

w { (Np)_l if Np > 1
Pl otherwise

To reveal the aggregation equation, we define indicator function X, which
indicates if pixel z is contained in patch Q.

1 fze@
XQ(I){ 0 otherwise
Also we define ug p(x) as the value of the pixel z belonging to the patch @
belonging to the denoised stack P(P)
Each pixel x of the final image estimate u is then computed as:

Yw, Y Xo(w)ugr(w)
P QEP(P)

2wy Y Xg(r)

P QEP(P)

u(z) =

2.5 Optimal Parameters for BM3D

The denoising performance of BM3D is controlled by several parameters, which
were mentioned in the description of the algorithm. We are referring to the
optimal values as they were measured in analysis of BM3D algorithm provided
by Marc Lebrun [14].

e k defines the width and height of a patch. The optimal value slightly
depends on the variance of the noise in the image. Nevertheless, the best
results are generally obtained if we fix this number to 8.

e n specifies width and height of area around reference patch in which similar
patches are searched. This parameter has a little influence on the final result
if we choose reasonable values for it. The authors has chosen as optimal
value of 39.

e N stands for a maximal number of patches in 3D groups. It more affects
the processing-time of an algorithm rather than the denoising effectivity.
Reasonable values of N has almost no influence on the result. The optimal
value in the terms of efficiency and effectivity is 16.
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e 7 is a parameter specifying the threshold under which two blocks are as-
sumed similar. Its optimal value is highly dependant on the noise variance
o%. For o < 40 the optimal value is 2500. For larger values of ¢ the al-

gorithm compares coarsely denoised patches and therefore the threshold is

higher. It is proven that optimal value of 7 for this case is 5000

e )\3p is one of the most important parameters in terms of denoising perfor-
mance. It defines the threshold under which the coefficients of image in
transform basis are set to zero. Its optimal value is 2.7 and even small
variations of it have strong influence on the result.

Although in this thesis we are concerned only with DF'T as 73p transforms, we
should mention that it not the most optimal choice. More optimal would be DCT
(Discrete Cosine Transform), which can be computed using DFT on symmetric
data.

The 3D transforms we mentioned are separable, they can be computed as 2D
transforms followed by 1D transforms in the remaining dimension. We can also
combine different transforms for each dimension. Moreover, studies have proven
that the most optimal transform combination for BM3D is 2D Biorl.5 transform
followed by 1D Hadamard transform.

Both the original paper [3] and the analysis by Marc Lebrun [14] suggest that
it is not necessary to use every patch in the image as a reference patch. For
that purpose they present a parameter p, that denotes the step with which the
reference patches are chosen. Its optimal value is 3. This parameter has a great
influence on memory consumption and computational complexity.

Even with the employment of the p parameter, the BM3D algorithm remains
computationally intensive. In block-matching, each reference patch still has to
be compared with all the patches in its neighbourhood. However, the complexity
of block-matching can be reduced by reusing already computed distances. We
present this approach among with the implementation in the next chapter.
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3. Graphics Card Architecture
and Programming Model

Graphics cards are designed for compute-intensive, highly parallel computations.
For that purpose they contains thousands of cores and high bandwidth memo-
ries. This design arises from the original purpose of the graphic card — graphic
rendering. Graphic cards are well-suited for problems that can be expressed as
data-parallel computations, where a same routine (usually denoted as kernel) is
executed on many data elements in parallel.

To be able to design any high performance algorithm it is necessary to know
at least basic aspects of the target platform. Therefore, in this chapter we will
present the architecture of the current graphics cards. Then, we shall present the
programming model which we use for GPU-accelerated implementation of the
BM3D method.

3.1 Graphics Card Architecture

There are two main producers of graphics card designs — NVIDIA and AMD.
Because we have only NVIDIA cards at disposal, all this chapter is concerned
with the NVIDIA cards. We will cover only the basic aspects that are essential
for developing the GPU-accelerated BM3D algorithm.

Even though all graphics cards are similar in nature, each new generation have
some more or less important differences in the architecture. For better orientation
in these architecture differences, NVIDIA present a concept of compute capabil-
ities. It is a number which define features that are supported by a particular
graphic card as well as the technical specifications such as memory sizes, number
of registers, system of caching, etc. If we refer to the contemporary GPUs in this
thesis, we mean the GPUs with Maxwell architecture [18] (compute capability
5.X).

3.1.1 CPU and GPU Communication

Since the graphic card is a separate device commonly connected with the host
system by the PCle bus, we will refer to it as the device. The host offloads certain
computing tasks to the device. The offloading covers both, the data transfers and
the computation itself.

The device has its own dedicated memory which is not directly accessible by
the host CPU. However, the access to this memory is granted through a certain
set of instructions. These instructions offers the host to allocate a space for data
in this memory as well as transfer the data from the host to this memory and
vice-versa. Nevertheless, due to the limited bandwidth of the bus between the
host and the device, it is common to minimize these transfers, or overlap them
with computations. A typical dedication of work to a device then looks like this:

1. Allocate the device memory for all the data (input, output and intermedi-
ate)
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2. Transfer the input data from the host to the device
3. Launch a kernel on the device and wait until it finishes.
4. Transfer the output data to the host

The above mentioned practice is not always the most optimal one. For large
input data, it is often better to partition this data, transfer each part to the device
separately and launch kernel on it. Consequently, the kernel execution on one
part can overlap with the data transfers of other parts, which can significantly
speed up the algorithm. For the kernels with relatively short execution time and
larger data, this approach may even triple the speed of the algorithm. However,
for compute intensive kernels and small data, the time savings could be negligible.

Once the host launches the kernel on the device it can do some other work
or it can enforce synchronization and wait for the device to complete the kernel.
However, host can not interfere with the ongoing computation on the device.

3.1.2 GPU Architecture

GPU contains several independent processors called streaming multiprocessors
(SM). Each SM contains many simple cores which share registers, L1 cache, and
shared memory. Figure 3.1 shows the design of the current NVIDIA SM. Among
the simple cores there are Load/Store units for memory access and special func-
tion units (SFUs) for calculation of functions as sin, cos, or log.

Threads that execute the kernel are launched in blocks. Each thread block
is dynamically, but non-preemptively, assigned to one of the SMs and executed.
Since each SM is independent of others, there is no way how to safely synchronize
the computation among blocks. On the other hand, threads inside one block
can be synchronized, which is important ability for many cooperative parallel
algorithms.

There could be more than one block assigned to one SM, but that number is
strongly limited by available registers and shared memory of this SM. Moreover,
different SMs can process blocks of different kernels at the same time.

SM partitions the threads of the assigned blocks into warps. So far each warp
has consisted of 32 threads. Threads of one warp work in a lock-step mode. That
means that they always executes the same instruction at one time. This execution
model is called a SIMT (Single Instruction Multiple Threads) model.

The SIMT model is very sensitive to branching. The proper execution path
is selected based on the result of a condition that is evaluated for each thread
separately. Each thread of a warp can select different execution path, but because
the threads of a warp still have to execute the same instructions, SIMT model
presents a concept of instruction masking. All threads of a warp serially process
all the paths that were selected by at least one of these threads. The threads that
did not select the currently processed execution path are masked.

Inappropriate branching in a kernel may lead to poor utilization of the GPU
cores. Hence, there should be minimal differences in lengths of for or while loops
between threads of one warp. Also, in the case of the if /else statements, we
should be aware, that if the threads of a warp diverge on the execution path,
both of these paths will be consecutively processed by all the threads.
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Figure 3.1: Streaming multiprocessor of NVIDIA Maxwell architecture, Source:
NVIDIA

When an SM is given a thread block to execute, the SM partitions the block
into warps and allocates registers for each warp. Subsequently, the warps get
scheduled by warp-schedulers for execution. Warp-scheduler selects the warps
whose threads are ready to be executed (which are not waiting for any data) and
dispatches the instruction which is going to be executed to the physical cores of
an SM.

The execution context of each warp is maintained on the SM; therefore, context
switch has no cost. Consequently, thread block should consist of many threads in
order to efficiently overcome data-dependency stalls (memory reads and writes)
or stalls caused by other time-intensive operations.

Since the programmer is responsible for defining the sizes of the thread blocks,
it is necessary to know the approximate number of cores, SMs, etc. We can see
the numbers for last two generations of NVIDIA GPUs in the table 3.1

3.1.3 Memory Hierarchy

There are several types of memory on a device.
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GPU GeForce GTX 680 GeForce GTX 980

(Kepler GK104) (Maxwell GM204)

CUDA Cores 1536 2048

Base Clock 1006 MHz 1126 MHz
Compute Capability 3.0 5.2

SMs 8 16

Shared Memory / SM  48KB 96KB
Register File Size / SM  256KB 256KB
Active Blocks / SM 16 32

Memory 2048MB 4096MB
Memory Bandwidth 192.3 GB/sec 224.3 GB/sec
L2 Cache Size 512KB 2048KB

Table 3.1: Hardware specifications of Kepler and Maxwell GPU architectures

Global memory resides on the device outside of the GPU chip. It is
designed to operate with huge data and therefore a great emphasis is placed
on the bandwidth rather than on latency. The bandwidth of the current
global memories is about five times higher than on high-end host RAMs
while the latency can reach 400-600 cycles.

Registers are used for operands of instructions. They also store thread-
local variables. Registers have almost no latency, but their number is lim-
ited. Contemporary SMs contains 64K of 32-bit registers.

When a block requires more registers than the SM offers, the registers are
spilled into much slower local memory. Therefore, the blocks should not
generally require more registers than SM offers.

Shared memory is located on each SM and it is directly managed by
the threads running on that SM. Shared memory is almost as fast as the
registers and its size is also very limited. Contemporary SMs have 96KB of
shared memory.

Because shared memory resides on an SM it is designed for concurrent access
by threads of a warp. For that purpose, it is divided into 32 equally sized
memory modules called banks that can be accessed simultaneously. Each
bank has a bandwidth of 32 bits per clock cycle. Every shared memory
address is mapped to a particular bank in such manner that consecutive
32-bit words are mapped to the successive banks.

Whenever multiple threads want to access different memory addresses that
fall into the same bank at the same time, bank conflict occurs and the access
has to be serialized. The only exception occurs when threads of one warp
access the same address. In the case of read access the value is broadcasted
and in the case of write access only one of the threads writes the value. In
both cases no serialization occurs.

Shared memory combined with a barrier synchronization allows the threads
of a block quite efficiently cooperate on the computation. Nevertheless, it
is good to use access patterns that minimize bank conflicts.
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e Local memory physically resides in the thread-private area in the global
memory. Therefore, it has the same bandwidth and latency as the global
memory. It is used for the register spilling or for large thread-local structures
and arrays.

e Caches speeds up the access to the global memory. The most important
caches of the contemporary (Maxwell) GPUs are:

— Unified L1/texture cache is in each SM. It has 64KB and it is used
to cache the data in global memory, that are read-only during the
entire lifetime of a kernel.

— L2 cache is shared by all SMs of a device and it is used for caching
the access to the global memory (including the local memory). It is
about 2MB large.

3.2 Programming Model

In this section we will briefly present how to write, compile, and launch a pro-
gram accelerated with a graphics card. For more information about the GPU
programming we refer to the 'Programming Massively Parallel Processors’ [19].

First of all, we have to choose the convenient GPGPU platform. The three
most popular are: Direct Compute, OpenCL [20], and CUDA [21].

e Direct Compute is a part of Microsoft DirectX 11 API and it is mainly
used for acceleration of non-graphic computations in graphic applications
that uses the DirectX. It uses a language that is similar to HLSL, which
is used for programming of shaders. Unfortunately, the usage of Direct
Compute is limited to the Windows operating systems only.

e OpenCL is cross-platform and very complex framework. OpenCL code
can run on many parallel devices including the graphic cards. Because the
OpenCL standard is open, implementations for other devices can follow.
Even though the code can run on many GPU architectures, if we tune the
performance, we shall need a slightly different code for different architec-
tures. Moreover, due to the OpenCL universality, programmer often can
not use architecture-specific technologies.

e CUDA (Compute Unified Device Architecture) is a product of NVIDIA
and it is bound to their graphics cards only. The absence of diversity among
producers allows us to use architecture-specific features. Nevertheless, even

the graphic cards from the same vendor may differ and a code tuned for one
NVIDIA device might not be the best one for an another NIVIDA device.

We have choosen the CUDA which allows us to use architecture-specific abil-
ities of the recent NVIDIA graphics cards. CUDA has also very intuitive syntax
from which we can benefit when we will present our prototype solution. Never-
theless, the transformation from CUDA to OpenCL is not generally difficult.

The source files for CUDA applications are mixture of conventional C/C++
host codes and CUDA C/C++ device codes (kernels). The host code uses CUDA
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runtime library to select the device, to launch kernels on the device, to allocate
the global memory, to transfer data between the host and device, etc.

During the compilation, the host code is compiled to a binary code and the
device code is pre-compiled into an intermediate code common for many graphic
card architectures or into a binary code for one particular architecture. This code
is then embedded into the host binary code.

3.2.1 Kernel

Kernel is a routine which code is executed on the GPU by many threads in
parallel. CUDA kernels are defined as normal C/C++ functions without a return
value. They are introduced by __global__keyword.

Due to the architecture of the GPU, kernels are launched in equally sized
blocks of threads, which can be executed in any order or even simultaneously.
These blocks form a structure we call a grid. The size of the grid as well as the
size of the blocks is specified when the kernel is launched; however, the kernel
should be written regardless the concrete sizes.

Each thread that executes the kernel can access its thread and block index
through the built-in threadIdx and blockIdx variables. Threads in a block as
well as blocks in a grid can be organized in up to three dimensions. The sizes
of these dimensions are available through the blockDim and gridDim variables.
These sizes and indexes are essential for data parallelism. Each thread is able to
get the unique data element from the memory based on this unique set of indexes.
Figure 3.2 shows an example of how the threads and blocks can be organized in
the case of 2 dimensions.

Grid

Block (0 0) || Blodk (1, 0) || Block (2, O}

Block (0 1} Blode (1, 1) %[ﬂl}

Figure 3.2: 2D Grid of 2D blocks of threads, Source: NVIDIA
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In most cases the division into blocks and threads is based on the data struc-
ture. The possibility of having up to three dimensional grids and blocks provides
a natural way to invoke computations across the elements of vector, matrix or
volume.

When we are dividing the problem into threads and blocks, we have to take
into account some limitations arising from the hardware architecture. Maximal
number of threads in a block on current devices is 1024 regardless of the dimen-
sionality and the number of blocks in grid is limited by 65535 in each dimension.

To launch a kernel CUDA uses special syntax which allows us to set size of a
grid and the size of a block:

kernel_name<<<grid size, block size, shared memory size
>>>(arguments)

The last parameter is optional and it defines the number of bytes of shared
memory each block want to use. We will say more about the shared memory
in 3.2.5.

Figure 3.2.1 presents an example of definition and launch of a kernel doing
vector addition.

void VectorAdd(float *a,
float *b,
float *result,
int size) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < size) { // friendly branching
result[i] = al[i] * b[i];

__global_

}

int main() {

VectorAdd <<<(N+255) /256 ,256>>>(a,b,result ,N);

Figure 3.3: Example of definition and launch of the kernel doing vector addition

On operating systems started with GUI (graphic user interface), the graphics
driver may restrict the maximal execution time of a kernel. Kernels that run
longer end with error. Therefore, we are often forced to partition the work into
multiple shorter kernels.

3.2.2 Warps

Threads in a block are divided into warps by their linear id which is computed
as:

threadIdx.z * (blockSize.x*blockSize.y) + threadIdx.y *
blockSize.y + threadldx.x;

22



Each successive warpSize threads form one warp. The warpSize is an architecture-
specific built-in variable; nevertheless, so far, a warp has been always formed by
32 threads. We know that the threads in a warp executes code in the lock-step
mode and that we should avoid code divergence mentioned in 3.1.2.

3.2.3 Function Calls Inside a Kernel

A kernel can call other functions. These function has to be marked with __device__
keyword and no other special syntax is needed. However, because the standard
function call would be an expensive operation for the GPU, these function calls
are generally inlined whenever possible.

Beside the standard functions, a kernel can call many intrinsic function.
Among many arithmetic operations, these functions includes synchronization
primitives, warp shuffle functions, and many others.

In the implementation of BM3D we shall use the following functions:

e Atomic operations handle writing conflicts in shared or global memory
by serializing the access. If multiple threads want to simultaneously read,
modify and write a value at the same memory address, they are serialized
and no conflict occurs. Atomic operations allows us to use random access
patterns for accessing both those memories. On the other hand, these
operations are slower than their non-atomic counterparts and we should
use them wisely.

e Thread synchronization across all threads of a block can be enforced
by kernel through a lightweight function __syncthreads(). It is a barrier
that can be passed by a thread only after it is reached by all threads of a
block. This barrier combined with the shared memory allows the threads
of a block to cooperate on computation.

e Warp shuffle functions are used for direct data exchange between threads
of a warp. These functions are faster then the access to the shared memory;,
but they are available only since the compute capability 3.0.

3.2.4 Host Device Communication

We have already described how to launch a kernel in 3.2.1. Each kernel is launched
with special parameters as block and grid size as well as with standard C/C++
arguments. These arguments are often device pointers to arrays in global memory
and sizes of these arrays.

Generally, host communicates with the device using the CUDA runtime. Even
the kernel calls are during the compilation transformed into the runtime calls.
Beside that, CUDA runtime offers basic functions for utilization and management
of the device. Primarily:

e Device properties and device selection: In order to get any informa-
tion about hardware architecture of the device at runtime, we should call
a cudaGetDeviceProperties function. Among the properties there are for
example: shared memory size, warp size, maximal block size, etc. These
properties may be useful for run-time adjustments of kernels.
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There can be multiple devices available on the host. However, since most
of end-user computers have only one GPU we will not discuss the selection
of the most suitable device nor the problems associated with multi-GPU
programming. The CUDA runtime automatically selects the first available
device which is then used for all runtime calls.

e Memory allocation: Generally, the data is placed in global memory. In
order to place them there, first, we have to allocate a space for them and
obtain a pointer to this space.

To allocate a space in global memory CUDA offers cudaMalloc function
which has the same semantics as standard C malloc. The only difference
is, that the allocated space resides in the global memory of the selected
device and the returned pointer targets the global memory address space.
This pointer looks as any other pointer; however, it can be used only in
kernels or in several CUDA Runtime functions. Any dereference of it on the
host would led to an undefined behaviour. It is common to mark variables
containing these device pointers with some specific prefix. In the prototype
implementation we use d_ prefix.

Any memory allocated by cudaMalloc has to be properly deallocated using
a cudaFree function.

e Data copying: To copy data from host memory to device memory or
vice-versa CUDA runtime offers a cudaMemcpy function. In order to use
this function we have to provide the following arguments: a pointer to the
device memory, a pointer to the host memory, size of data, and direction of
the copying (device to host or host to device).

3.2.5 Utilization of Device Memories

The device has several different memories. There is a global memory, shared
memory, registers and several caches. While caches and registers are managed by
compiler or by hardware itself, the global and shared memory is managed by a
programmer.

The global memory is designed for massive data movement rather than for fast
access; therefore, it is generally used for large arrays. When dealing with arrays
stored in global memory, we may rely on much faster L2 cache, but as with all
caches its benefit depends on the access patterns that our program uses. In order
to use even faster unified L1/texture cache for global memory reads, the array we
want to access has to be read-only for the entire lifetime of a kernel. However,
the compiler might not be able to detect, that the array is read-only. To increase
the likelihood that the compiler detects that, we mark pointers with both const
and __restrict__ qualifiers. __restrict__ keyword makes a promise to the
compiler, that the pointed array will not be accessed through any other pointer.

Another type of memory which is exposed to a programmer is shared memory.
It is a block-local low-latency memory. A variable of a kernel is shared among
the threads of a block when it is marked with __shared__ qualifier. Its value is
then stored in the shared memory. To allocate an array in the shared memory,
we can use either static or dynamic allocation. If we know the size of the array
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at compile time, we can use traditional static C allocation; otherwise, we have
to use the dynamic allocation. Array which is the subject of dynamic allocation
is marked with both extern and __shared__ qualifiers and its size is defined by
the third kernel launch parameter. Unfortunately this approach allows only one
dynamically allocated array per kernel; hence, for multiple arrays we have to use
pointer arithmetic and casting functionality to divide that one array into multiple
different arrays.

The shared memory can be used for data-exchange between the threads of
a block, as a programmer-managed cache, etc. When dealing with the shared
memory, we have to avoid race conditions. To do so, we can use either the atomic
operations or the __syncthreads() barrier. Moreover, we have to be aware of
the limited size of the shared memory.

Finally, data stored in standard thread-local variables are likely to be stored
in registers. In the case of lack of registers we can encounter the register spilling,
where the data in registers are moved to the local memory (thread-local area in
the global memory). In order to avoid the register spilling, we should limit the
number of variables the kernel uses with respect to the target architecture.

3.2.6 Compilation

To compile a CUDA code we do not use a standard C/C++ compiler. To com-
pile the code containing kernel calls or kernel definitions we employ the CUDA
compiler nvcc. The compilation itself works as follows. The CUDA code is pre-
processed and separated into a device code (kernels) and a host code. The device
code is compiled/assembled for target platforms and the result is later embedded
into the final binary code. In the host code, all the kernel calls are replaced
by more complicated C/C++ CUDA runtime stubs. Since the host code then
does not contain any CUDA specific syntax it is compiled by the default C/C++
compiler (eg. gce or msve).

Because nvce does not support all C/C++ compilers, the common practice
is to separate a CUDA code from the rest of an application as much as possible.
That often results in a scheme, where all kernel calls are wrapped in extern C
functions. The CUDA code then contains only kernel definitions and kernel calls
and therefore the host code can be compiled by the desired compiler indepen-
dently of the nvcc.

Since the device code could use various compute capability dependent func-
tions, we have to provide the nvcc compiler an information about the compute
capabilities of the GPUs which should be able to run our code. For example, the
compilation of code that contains warp shuffle functions should fail for devices
with compute capability 2.0, because these functions are defined only for compute
capability 3.0 and higher.

The nvcc distinguishes two ways of compilation of a kernel. It can be trans-
lated into an architecture-specific CUDA binary (cubin) code or into an inter-
mediate PTX code. While the cubin code can be immediately executed by the
proper GPU, the PTX code is first compiled by the CUDA runtime into the cubin
whenever it is going to be launched and only then it is executed.

To select the proper type of compilation of the device code, the nvce offers two
options —arch and -code. Option -arch defines the target virtual architecture,
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which only specifies the compute capability that the target GPU has to support.
Values for the virtual architectures start with compute_ followed by the number
identifying the target compute capability. Code is then translated into the PTX
code and due to the backward compatibility of compute capabilities it can be run
on all GPUs with this or higher compute capability.

Through the -code option we may specify the real architectures for which
the cubin code should be generated directly during compilation. Values for the
real architectures start with sm_ followed by the number identifying the archi-
tecture of the GPU. Code is then compiled directly to the cubin code of the
specified architectures. We may specify more of them, but we can not select a
real architecture that do not support the compute capability defined in -arch.
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4. Implementation

4.1 Analysis

The BM3D algorithm, presented it in the section 2.4, consists of three parts:
grouping, collaborative filtering, and aggregation. For each reference patch of an
input image, the grouping finds similar patches and stacks them into a 3D group.
The collaborative filtering denoise these groups in a transform domain by hard-
filtering. The patch estimates in the filtered groups are then aggregated into the
final image estimate at their former locations. The whole process is shown in
Figure 4.1.

Grouping Collaborative filtering Aggregation

—>»
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Y

Noisy image 3D groups Weights  Filtered 3D groups Output image

Figure 4.1: BM3D method

Before we will proceed to the grouping part, first, we have to define which
patches are the reference patches. This depends on the p parameter, which defines
the space (in pixels) between two adjacent reference patches in horizontal or
vertical direction. If p = 1, all patches of an image are marked as reference
patches.

We have to ensure, that whole image is covered by reference patches. If the
parameter p is set to a value larger than 1, it may happen that some pixels near
the borders of the image would not be covered by any patch at all. This would
resulted in black spots in the image estimate. To solve this problem we mark all
patches on the border of the image as reference patches, regardless the value of
.

Grouping uses block-matching algorithm to find for each reference patch N
the most similar patches that pass the threshold. The search area is limited by
n - n window centred at the location of this patch. This is an opportunity for
data-parallelism, because each reference patch could be processed independently
of others. Because we have to compute L, distances between each reference
patch and all patches in its search window, block-matching is computationally
very intensive.

For future extensions of the algorithm, the grouping will not return assembled
3D groups but only coordinates of the patches in these groups. The collaborative
filtering, at beginning, assemble the 3D groups according to these coordinates. In
the case of extending the algorithm to process color images, it allows us to find
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the similar patches according to luminance channel only and then build the 3D
groups based on this matching for all channels.

Collaborative filtering assembles the 3D groups according to the coordinates
and transform them using 3D (or 2D followed by 1D) DFT or other decorrelating
transform. Transformed patches are then filtered using hard-thresholding. During
this part we shall count the number of retained (non-zero) coefficients for each
group. From this value we compute the weight of the 3D group, which is used
later in the aggregation part. Finally, the filtered groups are transformed back
using the inverse transforms.

The collaborative filtering exposes many opportunities for data-parallelism.
The 3D groups can be processed independently. Beside that, the DFT and IDFT
can be computed using Fast Fourier Transform (FFT) algorithm which is well-
suited for the GPU platform. Moreover, the transformed coefficients in a 3D
group can be also filtered independently.

Aggregation returns patch estimates to their original locations and computes
weighted averages of all overlapping pixels of all overlapping patches. Each pixel
of a patch estimate is aggregated with the weight of the 3D group from which it
was obtained. In order to process patches in any order we divide the aggregation
into two steps. First, we fill two buffers: the numerator v and the denominator
6. Each of them is used to store the appropriate part of the former aggregation
fraction: (@) (@) (@)

v(r) =v(x) + wpug p(T
VQ € P(P),Vx € Q{ 5(x) = 8(x) + wp
Second, when all the patches are aggregated into v and  buffers, we obtain the
image estimate as a simple element-wise division of these two buffers. Conse-
quently, if we handle the writing conflicts when aggregating overlapping patches,
we can process every patch independently.

Computing each part of the BM3D method on the entire image before con-
tinuing to the next successive part demands extreme amount of memory. For
example, the collaborative filtering can produce up to /N patch estimates for each
reference patch. Assuming the optimal parameters as they were presented in 2.5
and that we can have almost as many reference patches as pixels in image, solely
on storing all these patch estimates, we would have to allocate about thousand
times more bytes of memory than we use for storing the image.

It is true that the number of concurrently kept 3D groups is significantly
reduced by the parameter p. Unfortunately, the step p has to be significantly
lower than size of a patch and therefore this reduction may not be sufficient for
larger images.

The entire algorithm (with except of the final division in the aggregation
part) can be done for each reference patch and its 3D group separately. Hence,
we can reduce the memory consumption by iterative computation, where in each
iteration only a reasonable number of reference patches are processed.

In summary, the BM3D method exposes many opportunities for data-parallelism.
The reference patches can be processed concurrently and the individual opera-
tions done on each reference patch or the 3D group (such as computing the dis-
tances, 3D transforms, etc.) can be computed in parallel. However, the parallel
algorithm have to deal with writing conflicts in aggregation part and with the
memory intensity.
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Because the BM3D method offers data-parallelism on various levels, there
are many ways how to design the algorithm and divide its parts into blocks and
threads of a GPU. We have empirically tested several approaches and selected a
suitable algorithm for current GPU.

4.2 Overall Architecture

We present a GPU accelerated implementation of BM3D. Due to the limited bus
bandwidth between a host and device, we propose an implementation, where all
the data remain in the device memory throughout the computation. Therefore,
only the input and output images are transferred through the bus.

This implementation is focused on common high-resolution grayscale images.
These images have up to 20Mpx (mega pixels); therefore, in traditional byte
representation, they does not occupy more than 20MB. Because the size of global
memory of current devices is in the order of GBs, we can afford to keep the whole
input and output image in global memory throughout the computation.

Because the auxiliary arrays needed for storing intermediate results demand
lot of memory and because of the computational complexity of the block-matching
(see the section 4.1), we propose to process the image in batches. The image is
divided into virtual rectangles of reasonable size. The reference patches inside one
rectangle form one batch. The space needed for the intermediate results of each
batch is then limited by the size of the batches. Also it reduces processing-time
of kernels, that would be otherwise applied to the entire image.

The batches are processed serially; however, the reference patches or their 3D
groups in a single batch are processed in parallel. We have empirically chosen the
batch size to be 256 - 128. Batches of this size can still utilize all GPU cores and
the intermediate results of the batch can fit the device memory. Nevertheless, we
can change the batch size if we find out the proposed values insufficient in the
future.

Because the batches are compact, there is higher possibility that during the
computation of a batch, the appropriate part of the image and other data will
remain in caches. For each reference patch of a batch the similar patches are
found, assembled into 3D groups, collaboratively filtered and aggregated.

The algorithm needs several auxiliary arrays that are used to store the inter-
mediate results:

e Coordinates of patches in 3D groups

Sizes of 3D groups

Assembled 3D groups

Weights of 3D groups
e Numerator
e Denominator

All the auxiliary buffers have necessary size for one batch and they are reused by
all the batches. The only exception are the numerator and denominator buffers
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which are of the same dimensions as the image estimate and which are iteratively
filled by the aggregation part of every batch.

We may notice that 3D groups of a batch can consist of patches originating
outside the virtual rectangle of this batch. However, accessing patches located
outside the rectangle is possible because the entire noisy image is stored in the
global memory throughout the computation.

We use the following scheme of processing;:

1. Noisy image is copied to the device memory
2. Reference patches are divided into batches
3. For each batch the 3 parts of the BM3D method are performed:

e Block-matching produces an array of the coordinates of the patches
similar to each reference patch of a batch. These arrays are stored in
the coordinates buffer.

e Collaborative filtering assembles 3D groups according to the ar-
rays of coordinates and filters them. Collaborative filtering produces
filtered 3D groups and weights of these groups.

e Aggregation takes the patch estimates in the filtered 3D groups and
aggregates them to the numerator and denominator buffers at their
original locations according to the arrays of coordinates and weights
of the 3D groups.

4. The numerator buffer is divided element by element by denominator buffer.
5. The result (image estimate) is copied back to the host.

A detailed overview of buffers used in parts of BM3D is shown in Figure 4.2

Block-matching Collaborative filtering Aggregation
1D DFT,
Hard-thresholding,

| Assembling 2D DFT 1DIDFT 2D IDFT | Aggregation | Final division
Noisy image :

Image est.

Figure 4.2: Buffers used in different parts of BM3D and its kernels. Green color
marks that buffer is read-only in the particular kernel.

We have implemented the block-matching in a single kernel. It is compu-

tationally intensive; nevertheless, by batch processing, we have prevented the
problem of terminating long-running kernels.
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While the block-matching could be written in one kernel, for collaborative
filtering we propose a more complicated scheme. Mainly because we want to
employ an existing efficient CUDA implementation of FFT (Fast Fourier Trans-
form) which is contained in CUDA toolkit, the CUFFT [22]. Its functions can be
launched from host only; therefore, we have to divide collaborative filtering into
two kernels. One for assembling 3D groups and one for filtering the transformed
patches.

4.3 Block-Matching

For each reference patch of a noisy image the block-matching algorithm finds
similar patches located in the n - n search window centred around the reference
patch. Similarity is measured using the normalized quadratic L distance. Similar
patches are those which has lower distance than threshold 7. As a result, the
block-matching produces N the most similar patches for each reference patch.

We have implemented the block-matching algorithm in a single kernel. Each
block processes warpSize reference patches successive in horizontal direction.
Thus, we need roughly 32 times less blocks then reference patches in a batch.
Each thread operates on one reference patch; however one reference patch is
processed by more threads which cooperate on the result. Threads of a single
block which have the same laneld (index of a thread within a warp) and different
warpld (index of a warp within a block) process the same reference patch.

Each thread searches portion of the n - n search window of its reference patch
and calculates the quadratic L, distance to the patches in this portion. Threads
that handle the same reference patch alternates when traversing the search win-
dow. If a thread with laneId = 0 and warpId = 0 calculates a distance to the
patch displaced from the reference patch by (=5, —5), thread with laneId = 0
and warpId = 1 would calculate the distance to the patch displaced by (—4, —5)
and so on. Thus, the more is the warps in a group, the less distances each thread
has to compute.

When a thread computes the distance to some patch it checks if it pass the
threshold. If it does, it stores the coordinates of this patch and the computed
distance to the array that we denote stack. This array can store up to N values
for each reference patch; therefore, the insertion of a new value to this array is
a non-trivial operation. Consequently, in order to avoid writing conflicts, each
thread has a local copy of this array. Due to its size, we can store all the copies
in the shared memory. Consequently, when all distances in the search window
are computed, we have to merge the stack arrays of the threads which processed
the same reference patch. This merged array is then saved to the global memory
as a result of the block-matching part.

4.3.1 Cooperative Calucation of Distances

The reference patches overlaps; therefore, we can share some portions of the
computation of distances to the patches displaced form these reference patches
by the same value. We can notice, that the area covered by these reference patches
and the area covered by the displaced patches is exactly of the same size. We
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share the computation for several reference patches successive in the horizontal
direction.

To compute the quadratic Ly distances, we first compute the quadratic Ly dis-
tances between corresponding pixels of the area covered by the reference patches
and the area covered by the displaced patches. Then we sum the pixel distances
in columns to obtain the column distances. Finally, we obtain each distance by
summing the column distances of the columns corresponding to the reference
patch. A visualisation of this computation is presented in Figure 4.3

two overlapping corresponding

reference patches |, pixel distances
0 1J[8 10 0lo 1|25
8181820 0> [49]16 0 |25
9 |10 20|23 0 lea 0 |4

(displacement‘)‘_‘,..‘....

column sums

4980 1 |54
0|1 7|15 e
i final quadratic
9 |18 20|21 130] 135 L, distances

Figure 4.3: Cooperative calculation of distances between two overlapping refer-
ence patches and patches displaced by the same value

The threads of one warp always compute the distance to the patches that are
displaced by the same value from their reference patches. Because the threads of
a warp process reference patches successive in horizontal direction, these patches
share many columns. Therefore, to compute the distances, we use the above
mentioned approach.

The reference patches that are processed by a single warp covers an area
in the image which we denote P_area. The patches with displacement that is
currently computed by this warp defines Q_area. Both these areas have the same
dimensions. Width is equal to (warpSize — 1) - p+ k, where & denotes the width
of a patch and p the step between two reference patches. Height of these areas
is k.

Each thread of a warp computes the quadratic Ly distance between a column
of pixels of the P_area and the corresponding column of the Q_area. Because the
number of columns in these areas is greater than the size of a warp, each thread
processes multiple columns. To avoid bank conflicts, a warp always computes a
compact block of warpSize columns. The column distances are saved into the
diff array, which resides in shared memory. In order to obtain the final distances
from the diff array, each thread sums the values corresponding to the columns
of its reference patch. This sum could be handled cooperatively in a warp (e.g.,
by reduction); nevertheless, because the k is relatively small, the sequential sum
of these values is sufficient. Figure 4.4 illustrates the computation for multiple
warps when the parameter p is set to 1.
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Figure 4.4: 3D visualisation of work in a block when p = 1. Different colors show
different displacements processed by different warps

After each warp processes its actual Q_area and saves the results to the stack
arrays, all the warps slides by num_warps to the right to their next Q_area and
repeat the same process again. The initial displacement between P_area and
Q_area is (—"T_l + 1, —"T_l), where 7 denotes the warpId. Each warp is sliding
horizontally until its horizontal displacement becomes grater than ”;1. Then it
continues with the initial horizontal displacement and increased vertical displace-
ment by one. There is no need for any synchronization in this process, therefore,
it may happen that two warps are processing completely different displacements.

Because the P_area does not change throughout the computation of a block
and because it is shared among all warps of a block, we first pre-load it to the
shared memory. We can notice, that the Q_area overlaps; therefore, we could
also pre-load the union of these areas to shared memory. However, the shared
memory is very exposed by the rest of the algorithm and any additional array
would limit the number of warps in a block; consequently, we rely on L1 and L2
caches to hold Q_area values.

4.3.2 Add Patch Coordinates to Thread-Local Array

When a thread obtains the quadratic Ly distance between its reference patch and
some displaced patch, it checks if this distance fits the threshold 7.} If the distance
is lower than the threshold the thread adds the coordinates of the displaced patch
to its local copy of the stack array.

We could also have one stack array shared by all threads in a block with
the same laneId and synchronize the insertion of new values. Unfortunately,
the adding is an non-trivial operation; therefore, any synchronization would be
expensive.

'In order to speed up the algorithm, we do not normalize the distance by k2, but we multiply
the threshold by this normalization factor.
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The stack array has space for up to N coordinates and distances. It is sorted
so that the coordinates of the most similar patch are stored at the end. Sorting
the values in this manner allows us to efficiently insert a new value to the stack.

We classify two ways of adding.

e num_patches_in_stack < N: The new value is added to the array using
the insert-sort algorithm.

e num_patches_in_stack = N: If the distance is lower than the largest
distance in the array, the new value is inserted using the insert-sort and the
value with the largest distance is removed from the array.

Because of the SIMT model of execution, there is a possibility, that a warp would
have to pass both the ways. However, because the images we denoise are natural,
such situations do not happen very often. Moreover, merging those two branches
of code into one would lead to more complex code, which would resulted in a
longer execution time.

4.3.3 Merging the Arrays of Coordinates

Finally, when we have explored the entire search window of every reference patch
processed by one block, we have total num_warps copies of a stack array for
each reference patch. Each of them contains up to N patch coordinates and their
distances. For each reference patch we have to choose only N values with the
lowest distances from all the copies of stack array and save them to the global
memory, where they will be available for collaborative filtering and aggregation.

We use only the first warp for this job and we employ the fact, that every
stack array is sorted. Each thread handles only its reference patch and it iterates
over the minimal values of the corresponding copies of the stack array to find
the patch coordinates with the minimal distance. Once the thread finds such
value, it removes it from its local array and insert it to the global stack array
of their respective reference patch. We can notice, that the distance itself is not
necessary for any future part of the method, therefore only the patch coordinates
are written to the global memory. This process is repeated N times or until all
the stack copies are empty. For the future processing, it is also necessary to save
the number of patch coordinates in each global memory stack array.

4.4 Collaborative Filtering

In the collaborative filtering part the 3D groups are assembled according to the
arrays of coordinates produced by block-matching. These groups are then trans-
formed using 3D DFT and filtered by hard-thresholding. During the filtering, the
weight of each 3D group is computed. Finally, the 3D IDFT is applied producing
filtered 3D groups that consist of patch estimates.

We want to compute the DFT and IDFT transforms using the existing and
efficient algorithms of CUFFT library. The CUFFT transforms are done in two
steps: creating the transform plan and executing the transform plan. The cre-
ation of the plan is an expensive operation; however, one plan can be executed
many times. Unfortunately, the transforms in one plan has to be of the same
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size. Because the 3D groups can contain different number of patches, we have to
separate the 3D DFT into 2D and 1D DFT and use the CUFFT only for the 2D
DFT. The remaining 1D transform is then handled in a separate kernel.

We create the plan for 2D transforms so that it always transforms N patches
in each 3D group regardless the size of the group. Because the number of patches
in 3D group can be lower than /N, some transforms are needless. Moreover, some
of patches could appear in more than one 3D group and they are transformed
multiple times with the same result. Although some optimizations may be pos-
sible, the FFT is very fast and therefore they would have negligible influence on
the total processing time of the method. Moreover, this approach allows us to
use simple data layout of the assembled 3D groups array.

CUFFT employs the fact, that DF'T of real-valued data input satisfies Her-
mitian symmetry which is described at the end of the section 2.3.1. In case of
real to complex transform of an float array of size M - N, CUFFT produces only
M - (|5] + 1) complex coefficients. Some coefficients are still redundant, but
now we are allowed to do in-place transforms with minimal additional space re-
quirements. More precisely, if we store complex value as two floats, we need the
input array to be padded to M - (N + 2) floats in order to be able to store the
transformed data.

Due to the above mentioned problems, each 3D group is filtered using the

following scheme. Each of the following items represents a separate kernel or a
CUFFT call.

1. Assemble the 3D group according to the coordinates that were obtained
during block-matching

2. Apply the 2D transform to every patch of the group. (using the CUFFT)

3. Apply the 1D transform to the remaining dimension of the group, filter the
coefficients, count the retained ones, and apply the inverse 1D transform.

4. Apply the inverse 2D transform to every patch of the group (using the
CUFFT)

Buffers that are needed for each of these kernels and transforms is shown in
Figure 4.2.

4.4.1 Assembling the 3D Groups

Block-matching produces global stack buffer that contains patch coordinates for
each reference patch of the current batch. According to these coordinates, this
kernel assembles the 3D groups and saves them to the assembled_groups array
in global memory.

Because the CUFFT expects the real-valued padded input and because we
expect the number of patches in a group to be N in most cases, for each group
there is a space for k- (k+2)- N floats in the assembled_groups array regardless
the size of a group.

This kernel is launched in the blocks of k% threads, where each block is re-
sponsible for assembling one 3D group. Each thread sequentially loads one pixel
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of every patch of the 3D group and stores it in the assembled_groups array as
a float value.

This kernel does not need any shared memory; therefore, multiple blocks can
be processed on each SM of a GPU. Moreover, because the optimal value of
k is 8, the blocks of size k? (64) are processed by exactly two warps, without
any idle threads. Consequently, blocks of this size can efficiently utilize SMs of
contemporary GPUs.

4.4.2 2D Transform

The 2D DFT transform is performed using the CUFFT library. This library
exposes the same API as the well known FFTW library. Launching the transfor-
mation consists of two steps. Creating the transform plan and using that plan to
perform the transform itself.

We are creating the plan only once at the beginning and then we use it for all
the batches. The plan creation has the following syntax:

cufftPlanMany(cufftHandle *plan, int rank, int *n,
int *inembed, int istride, int idist,
int *onembed, int ostride, int odist,
cufftType type, int batch);

e handle is an output parameter. It is a reference to the plan, and we use it
later for executing and destroying the plan.

e rank sets the dimensionality of the transform. In our case it is equal to the
dimensionality of a patch which is 2.

e *n is an array containing the size of the transform in each dimension. We
transform patches, therefore the array contains two values: {k,k}

e type defines a type of the transform. We use CUFFT_R2C, which denotes real
to complex transform. This choice defines that input data will be stored
as floats and that output data will consist of only k(|%] + 1) complex
coefficients.

e batch is the number of transforms that are done in one call. In our case each
transform deals with one patch, each 3D group has maximally N patches
and one batch as we have defined it in the section 4.2 contains batch 3D
groups, where batch denotes the size of a batch.

e *inembed, *onembed parameters define the layout of the input and out-
put data, respectively. We set both these values to NULL, which implies that
the basic data layout is used. For in-place transforms that means that pixel
at (x,y) of the b-th patch is stored in the input float array at location:

b-(k-(k+2)+ (z-(k+2)+vy)

In the output complex array the coefficient at (x,y) of the b-th patch is
stored at location:

b-(k-(k/24+ 1))+ (x-(k/2+1)+y)
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We employ the basic data layout because the patches after the in-place
transform begins at the same memory address as the original ones.

When the basic data layout is used for both input and output data, the
istride, idist, ostride and odist are ignored.

The plan allocates O(batch- N - k?) bytes of space in the global memory, there-
fore the creation of the plan is an expensive operation and we should minimize
the total number of transform plans.

To perform the real to complex single-precision transform according to a plan,
we use the following function:

cufftExecR2C(cufftHandle plan, cufftReal *idata, cufftComplex *odata);

where plan is a handle of the plan we have created, *idata is an input array
of floats, and *odata is an output array of complex numbers. Internally these
complex numbers are pairs of floats. Because we perform the in-place transforms,
xidata and *odata represents the same array (they point to the same memory
address) and we only need to cast these arrays to the proper types.

To compute the 2D IDFT we use almost the same approach as for the 2D DFT.
We create new CUFFT plan and execute it on our filtered complex data. For
plan the only difference is that type is now CUFFT_C2R, which denotes complex
to real transform. The transform itself is then performed using:

cufftExecC2R(cufftHandle plan, cufftComplex *idata, cufftReal *odata);

4.4.3 1D Transforms and Filtering

Once the patches are transformed using the CUFFT, we apply the 1D DFT trans-
form in the remaining dimension of every 3D group of a batch. Each coefficient
is then checked if its absolute value is higher than the threshold Aspo. If it is
not, this coefficient is set to zero. During the thresholding the number of retained
(non-zero) coefficients for each group is counted. Finally, we apply the 1D IDFT
and save the weight of every 3D group.

We use very similar division into the blocks and threads as with the kernel,
which is responsible for assembling the 3D groups. Each block handles one 3D
group and it has as many threads as the size of a transformed patch which is:
(L%] 4+ 1)k. Each thread process the same coefficient in every patch of the group
and it serially computes the 1D DFT on these coefficients.

Because the number of patches in each group may vary, we are not able to
apply the simple FFT algorithm for 1D DFTs. Fortunately the number of patches
is not very high; therefore, we are allowed to compute the DFT exactly according
to the DFT definition it in the section 2.3.1.

The DFT intensively access the memory, therefore we store the transformed
coefficients in the shared memory. This data then remains in the shared mem-
ory until they are transformed by the inverse transformation back to the global
memory.

The coefficients of the transformed patches are filtered using the hard-thresholding
with the A\3po threshold. Unfortunately the data produced by CUFFT or our
DFT are not normalized. To normalize the data we need to divide them by the
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square root of the transform size, but instead we multiply the threshold. More-
over, due to the performance issues, we do not compute the absolute value of
each complex number, but only its quadratic sum. Therefore, we use the follow-
ing threshold:

'o = (Xspo)® k- g

where g denotes the number of patches in the 3D group.
Finally, the filtered coeflicients are transformed using the 1D IDFT which is
done in the same way as the 1D DFT.

Computing the Weight of a 3D Group

The weight of each 3D group is defined as an inverse number of retained (non-
zero) coefficients. If there is no retained coefficient, the weight is 1.

The number of retained coefficients for a 3D group is computed during the
filtering. Each thread counts how many of the processed values has passed the
threshold. Because the CUFFT produces only & - ( ng + 1) complex coefficients,
we have to count some coefficients twice in order to get correct result.

To sum the numbers counted by threads within a warp, we use the warp
shuffle functions. The sum is performed using traditional parallel reduction sum
algorithm. The result for each warp is then stored in the shared memory.

Because the maximal size of a block on contemporary GPUs is 1024, the
number of warps in a block is not higher than the warpSize (32). Therefore,
to obtain the total number of retained coefficients we employ only one warp in
the same manner as before to sum the counts that the warps have stored in the
shared memory. The final weight is then placed into the global memory, where it
is available for the aggregation part.

4.5 Aggregation

Collaborative filtering produces filtered 3D groups as well as weights of these
groups. Filtered groups contain patch estimates which has to be aggregated into
numerator and denominator buffer at their original locations with the weight
of their group. The values of both these buffers corresponds to the pixels of
the image. The aggregation is basically an inverse operation to the assembling;
therefore, we use the same division into blocks and threads as with the kernel
which was responsible for the assembling of the 3D groups.

The patches could overlapped before they were gathered to the 3D groups.
While in assembling kernel it led to optimal utilization of caches, in aggregation
it complicates the writing to their original locations in numerator and denomi-
nator buffers. A write conflict happens every time different blocks want to write
overlapping patches at the same time. Thus, to avoid conflicts, we use the atom-
ic adding to write the patch values to both these buffers. Because the buffers
are likely to be cached and the collisions are relatively rare, the employment of
atomic operations does not significantly slow down the algorithm.

After all batches have been aggregated into the numerator and denominator
buffers, we shall proceed to the final division. Final division is computed in a
simple kernel. It divides the numerator buffer by the denominator buffer element
by element and then it rounds the float result to fit the byte representation of
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an image. Simple rounding is not sufficient, because even the small inaccuracies
could lead to overflow. For example value —0.0001 should be rounded to 0 and
not 255.

The final division kernel is not computationally intensive and therefore the
division to blocks and threads has negligible influence on the runtime of the
algorithm. We define the kernel so that each thread process one pixel and the
size of a block is set to 256.

4.6 Data Representation

4.6.1 Image Representation

The gray-scale image is represented as an array of pixels where each pixel defines
the brightness at its location. It is often stored as a byte with the value from 0 to
255 or as a float with the value from 0.0 to 1.0. Due to the smoother quantization,
float representation is more accurate. Nevertheless, because of the properties of
displays and cameras, the byte representation is the most common and we use it
in this thesis. In case of need, the change to float representation would be simple.

Because the block-matching, which is the most computationally and memory
intensive part of the method, process the image primarily in horizontal direction,
we store the image in a single array so that pixel u, , is stored on the y-width+x.
Although the GPU natively works with the 32-bit values, storing the image as a
compact array of byte values ensures that 4 times larger area in the image can
be cached.

4.6.2 Global Auxiliary Buffers

The proposed algorithm uses several global memory buffers for storing auxiliary
data:

e Coordinates of patches in 3D groups are stored in the array that we
have earlier denoted as stacks. For each reference patch of a batch it
contains up to N coordinates of similar patches.

There is a space for N coordinates for each reference patch of a batch no
matter of the real number of found similar patches. We store the coordinates
as two unsigned integers; therefore, we need 8 bytes for each value. The
total size of this array is then b- N - 8 bytes, where b denotes the total size
of the batch.

Beside that, for each reference patch we have to know how many patches it
contains. If we store each of these counts as an unsigned integer, we need
additional b - 4 bytes large array to store them.

When we use the optimal values of the parameters form the section 2.5 and
default batch size (256 - 128), these buffers occupies 2MB and 128KB of
global memory.

e 3D groups are stored in aseembled_groups buffer. It contains b assembled
3D groups, where b is the total size of a batch. Each group consist of up to N
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patches. Because we use CUFFT in-place transforms, there is a k- (k+2)-4
bytes of space for each patch. The total size of this array is therefore:

k-(k+2) N-b-4

This array is the largest array of all auxiliary arrays. When we use the
default values, this array occupies 8OMB of global memory.

3D groups are stored in this array one after another. The 3D group built
according to the i-th reference patch of the virtual rectangle (see the defini-
tion of a batch in the section 4.2) starts in this array on the i- (k- (k+2)-N-4)
byte.

e Weights for each 3D group of a batch are stored as floats and therefore the
size of the weights buffer is b -4 bytes. When we employ the default values,
the size is 128 KB. The weight of i-th 3D group of a batch is then stored as
expected on the i-th position of the array.

e Numerator and denominator: These two buffers are of the same di-
mensions as the image, but each value is stored as a float. Therefore, each
of these buffers consumes 4 times more space than the image in byte rep-
resentation. The size of each of these buffers for a 16MPx image is 61MB.

The total memory consumption is defined mostly by the size of a batch and
size of an image. The optimal batch size may vary. For small images it is good
to have the smallest batch that covers all reference patches; however, for larger
images we found optimal batch to be (256 x 128) patches large.

To copy image between device and host memory we employ cudaMemcpy func-
tion. We could partition the image and overlap the execution with copying, but
due to the computation complexity of BM3D the saved time would be negligible.
Consequently, we copy the entire image at once.

The proposed BM3D algorithm is optimized for natural images of the sizes
that are common for contemporary cameras. For extremely large images, the
allocated space could reach the size of the global memory it self, regardless the
batch size. Nevertheless, this problem could be solved by the partitioning as well.

40



5. Experiments

Based on the information we have provided in the chapter 3 we have created a
CUDA accelerated BM3D prototype implementation. In this section, we provide
empirical results, that evaluates our implementation in terms of processing time
and quality of the denoised pictures. The results are compared with the existing
implementations. compared with the existing implementations.

5.1 Existing Implementations

There are two existing implementations that we employ in testing. First of them
was created in MATLAB along with the BM3D method itself [4]. The second
one was created together with the analysis of this method by Marc Lebrun [14].
It is written in C+4++, it uses OpenMP for parallelization and it is open-source.

5.1.1 Original MATLAB Implementations

This implementation is still maintained and updated. We use the latest version
(2.0) from 2014. It is written in MATLAB; therefore, in order to run it, it is
necessary to have MATLAB software installed. Also the processing time of this
implementation is dependent on the MATLAB version installed. We use the
MATLAB 2014a x64 for UNIX.

This implementation allows us to use various transforms; unfortunately, the
DFT is not one of them. Consequently we employ Discrete Cosine Transform
(DCT) which is similar to DFT in the terms of both memory and time com-
plexity. DCT can be computed using Fast Cosine Transform (FCT) algorithms,
which are based on the FFT and which have the same computation complexity
as FF'T. Unfortunately, because the authors do not provide source codes of this
implementation, it would be difficult measure the time spent solely on transforms
and we rely on the above mentioned facts.

The MATLAB implementation computes both steps of the BM3D method.
Because we do provide only the first step, for testing purposes, we have slightly
modified the MATLAB scripts to measure the first step only.

5.1.2 Open Source OpenMP Implementation

With the analysis of the BM3D method [14] Marc Lebrun has developed the C++
open-source parallel implementation based on OpenMP. Unfortunately, DFT is
not listed among the available transforms as well. Therefore, as with the MAT-
LAB version, we use the DCT. We have also slightly changed the code to measure
the performance of the first step of BM3D only.

This implementation requires large amount of memory space. The larger
the image is, the more memory it require. Unfortunately, on common desktop
computers, the program fails to denoise any larger images. For example when
denoising 9Mpx image on computer with 4GB of RAM, the process is killed before
the denoising is finished.
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5.2 Testing Hardware & Metholodogy

The performance test were conducted on the following computers:

e Desktop 1:
GPU: NVIDIA GeForce GTX 660 (Kepler architecture)
CPU: AMD Phenom(TM) II X2 550 @ 3.1GHz (2 cores)
RAM: 4GB
OS: Linux x86_64

e Desktop 2:
GPU: 2 x NVIDIA GeForce GTX 980 (Maxwell architecture)
CPU: Intel(R) Core(TM) i7 870 @ 2.93 (4 cores)
RAM: 16GB
OS: Linux x86-64

e Server 1:
GPU: 2 x NVIDIA Tesla K20m (Kepler architecture)
CPU: Intel(R) Xeon(R) E5-2630 @ 2.30GHz (2 x 6 cores)
RAM: 128GB
OS: Linux x86_64

The graphics cards of the server computer do not have any display output.
Therefore, the long-running kernels are not terminated and all the computational
power of a GPU can be used by the tested applications.

We measure the execution-time of the functions we are interested in (first step
of BM3D and individual kernel calls). Because the execution-time depends on
many external factors such as hardware, OS, etc., it is not an exact measurement
unit. However, all the experiments were conducted in the environment where most
of the computational power and RAM were available to the tested application
and they were repeated at least 5 times. Therefore, we use this unit for basic
overview of the complexity of the tested algorithms.

In the following sections, we always show only the arithmetic average and the
maximal deviation of the measured values for each test.

5.3 Performance Tests

5.3.1 Comparison of Implementations

In order to compare the implementations we have measured the execution-time
of the first step of BM3D on images of different sizes. Tables 5.1, 5.2 and 5.3
shows the results for Desktop 1, Desktop 2 and Server 1. On desktop computers,
the denoising of images above 9MPx failed because of the lack of memory. Every
performance test was conducted at least 5 times and we show the average of times
and the maximal deviation we measured.

Unfortunately, we do not have MATLAB available on the Desktop 2 and
Server 1 computers; therefore, on these computers we measured only the CUDA
and OpenMP implementation.
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CUDA | OpenMP | Matlab 2014a x64

lena 0.74s 3.95s 7.72s

512x512 46% 1.55% 1.55%

roads 3.49s 279.18s 57.54s

1615x1026 0.34% | 4.09% 1.15%

bodies 9MPx | 18.16s 263.20s
3714x2460 1.93% 1.94%

bodies 29.53s 423.44s
4714x3122 0.44% 0.89%

Table 5.1: BM3D processing time and maximal deviation on Desktopl

CUDA | OpenMP

lena 0.21s 1.57s
512x512 5.18% | 1.40%
roads 0.69s 9.34s

1615x1026 1.91% | 0.95%
bodies 9MPx | 3.13s
3714x2460 0.33%
bodies 5.10s
4714x3122 2.23%

Table 5.2: BM3D processing time and maximal deviation on Desktop2

CUDA | OpenMP

lena 0.50s 1.21s
512x512 12.40% | 3.22%
roads 2.42s 5.19s

1615x1026 0.09% | 10.96%
bodies 9MPx | 12.30s | 22.47s
3714x2460 0.01% | 5.59%
bodies 20.10s | 29.96s
4714x3122 0.01% | 6.24%

Table 5.3: BM3D processing time and maximal deviation on Serverl
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These experiments proves, that processing time of our CUDA-accelerated im-
plementation is on server computers slightly faster than the OpenMP implemen-
tation. Nevertheless, on desktop computers our implementation can be more than
ten times faster than the existing ones. Moreover, our prototype implementation
is rapidly faster on the Maxwell GPU architecture than on the older Kepler ar-
chitecture. We assume that it is mainly a consequence of the larger SM memories
on the Maxwell architecture.

5.3.2 Kernel Execution Times

For future development of our implementation we have tested which parts of
BM3D are the most computationally intensive. We have measured how much time
the algorithm spent on each defining kernel of BM3D. The results are visualized
in figure 5.1

Kernel Time Distribution

Aggregation -
2D IDFT
m Desktopl
u Serverl
2D DFT Desktop2

Assembling I

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00%

Percent

Figure 5.1: BM3D method

The graph demonstrates, that the processing time of 2D transforms is negligi-
ble in comparison to the rest of the algorithm. Also it shows, that the distribution
of processing time is dependent on the graphics card architecture. On the Desk-
top2, which has GPUs with the Maxwell architecture, the processing time of
the three most complex kernels is much more balanced than on the older Kepler
architecture. This is probably also the result of the larger shared memory.

Although the most computationally intensive kernel is the block-matching, the
processing time of the thresholding kernel is also very important. Nevertheless,
this time can be significantly reduced by employing more sophisticated 1D DFT
and IDFT algorithm, than we have used.

5.3.3 Denoising Performance

In order to evaluate our implementation in terms of denoising performance, we
measure the PSNR (peak signal to noise ratio). To compute the PSNR, first
we define the RMSE (root mean square error). RMSE between the original
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CUDA | OpenMP | Matlab 2014a x64
lena 3297 | 31.96 32.49
o =20
roads 24.81 | 25.54 95.53
o =25
bodies IMPx | 05 /0 | 5473 34.62
o =25
bodies 33.25 | 35.17 35.01
o =25

Table 5.4: Denoising performance of different BM3D implementations measured
on different images in PSNR

(reference) image ur and denoised image up is computed as:

2 (ur(z) —up(@))?
RMSE = X

where X denotes set of all pixel coordinates in an image. PSNR is then defined
as:

RMSE

where M AX denotes maximal pixel value. In the case of images in byte repre-
sentation it is 255. PSNR is measured in decibels (db). The larger the PSNR,
the better the denoising.

Because we have implemented only the simplified version of the BM3D method,
there are some differences between our implementation and the existing imple-
mentations. We can only denoise images with noise variance below 40. Also we
use DFT transforms instead of the DCT transforms. Therefore, the denoising
performance is not the same. For basic overview, we conducted tests on several
images affected by the noise with variance o around 25.

The results in table 5.4 shows the PSNR values for various images. As expect-
ed, our implementation has slightly lower denoising performance than the existing
implementations. We assume that it is mainly because of the used transforms.
Replacement of the DFT by DCT, should improve the PSNR values, while the
processing time should (due to the similar time complexity) remain the same.

This implementation is mainly focused on the total processing time of the
method, which is significantly lower than with the existing implementations.
Nevertheless, the measured values prove that even with the DFT, the denois-
ing performance is still very good.
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Conclusion

Analysis of the BM3D image denoising method and the basic information about
the GPU architecture and GPU programming were used as a basis for implemen-
tation of simplified CUDA-accelerated BM3D method.

Compared to the full BM3D algorithm, the simplified version can denoise only
images corrupted by noise with variance o < 40. It employs only the 1st step of
the method and it uses only the DFT for all the transforms. However, common
photos are rarely corrupted by the noise with higher variance and the extension
to the both steps of the BM3D as well as the replacement of DF'T by DCT should
be simple.

The merit of this thesis, has been proven empirically. On traditional desktop
computers, the CUDA-accelerated implementation was more than 10 times faster
than the existing CPU implementations. Moreover, even on server computers,
that contains up tens of CPU cores, the achieved speed-up was still significant.
The empirical results have also showed, that the processing-time of the algorithm
on modern desktop GPUs, that are primarily designed for computer gaming, can
be significantly lower than on one generation older professional server-oriented
GPU.

Due to the simplifications, the proposed implementation has slightly lower
denoising performance than the original method. Although, this implementa-
tion is focused on short processing time rather than on the maximal denoising
performance, the empirical results shows, that the denoising quality is still very
good.

Because the presented implementation has been created mainly for denoising
of high-resolution photos on common desktop computers, where the speed-up was
largest, we may proudly mark it as successful.

Future work

The prototype implementation created as a part of this thesis offers lot of space
for improvement. These improvements can be divided into three groups:

e Improvements of algorithms: The processing times of the kernels shows,
that the most compute-intensive parts are block-matching, 1D DFT trans-
forms and filtering, and aggregation. On the latest GPUs the processing-
times of these algorithms are very similar. However, for the 1D DFT and 1D
IDFT, the current implementation uses rather ineffective algorithms. Con-
sequently, by employing sophisticated FFT algorithm or by precomputing
some values of the current DF'T algorithm, we can lower the processing-time
of this kernel.

The block-matching also provides some space for improvement. For exam-
ple, when processing images in byte representation, we can employ SIMD
intrinsics, that can compute the distance between four pairs of pixels by
one thread simultaneously.

e Utilize multiple GPUs: The proposed implementation can utilize only
one device; however, a computer may have multiple devices. Because batch-
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es are generally smaller than images and because the search area around
each reference patch is strongly limited, the overall architecture can be mod-
ified to process each batch on different GPU. Because the batches overlap
only around their edges, there wont be many conflicts while merging the ag-
gregation buffers. Therefore, the achieved speed-up should be almost equal
to the number of available GPUs.

Extensions: In order to improve the denoising performance of the imple-
mentation, we can extend it to process the second step of BM3D (Wiener
filtering). Fortunately, the steps are very alike; therefore, we can use most
of the developed algorithms; namely, block-matching, assembling of 3D
groups, aggregation, and final division.

The implementation could be also extended to use other transformation
as DCT, Hadamard transform, or Biorl.5 transform. However, in order
to extend the algorithm to denoise images corrupted by the noise with
sigma > 40, more complex changes to the overall architecture would be
necessary.

The method itself can be also extended to process colour images. For that
purpose only the minor changes to the overall architecture has to be made.
The block-matching would be computed on the luminance channel only and
the filtering and aggregation would be processed on each channel separately.

47



Bibliography

[1]

[10]

[11]

[12]

GOW, Ryan D.; et al. A comprehensive tool for modeling CMOS image-
sensor-noise performance. FElectron Devices, IEEE Transactions on, 2007,
54.6: 1321-1329.

CHEN, Ting, et al. How small should pixel size be?. In: FElectronic Imaging.
International Society for Optics and Photonics, 2000. p. 451-459.

DABOV, Kostadin, et al. Image denoising with block-matching and 3D fil-
tering. In: FElectronic Imaging 2006. International Society for Optics and
Photonics, 2006. p. 606414-606414-12.

DABOV, Kostadin, et al. Image denoising by sparse 3-D transform-domain
collaborative filtering. Image Processing, IEEE Transactions on, 2007, 16.8:
2080-2095.

BUADES, Antoni; COLL, Bartomeu; MOREL, Jean-Michel. A non-local al-
gorithm for image denoising. In: Computer Vision and Pattern Recognition,
2005. CVPR 2005. IEEE Computer Society Conference on. IEEE, 2005. p.
60-65.

ZHENG, Ziyi; XU, Wei; MUELLER, Klaus. Performance tuning for CUDA-
accelerated neighborhood denoising filters. In:  Workshop on high perfor-
mance image reconstruction (HPIR). 2011.

HUANG, Kuidong; ZHANG, Dinghua; WANG, Kai. Non-local means de-
noising algorithm accelerated by GPU. In: Sixth International Symposium

on Multispectral Image Processing and Pattern Recognition. International
Society for Optics and Photonics, 2009. p. 749711-749711-8.

MARQUES, Adridan; PARDO, Alvaro. Implementation of Non Local Means
Filter in GPUs. In: Progress in Pattern Recognition, Image Analysis, Com-
puter Vision, and Applications. Springer Berlin Heidelberg, 2013. p. 407-414.

DOLWITHAYAKUL, B.; CHANTRAPORNCHAI, Chantana; CHUM-
CHOB, N. GPU-based total variation image restoration using Sliding Win-
dow Gauss-Seidel algorithm. In: Intelligent Signal Processing and Communi-
cations Systems (ISPACS), 2011 International Symposium on. IEEE, 2011.
p. 1-6.

SU, Yang; XU, Zhijie. Parallel implementation of wavelet-based image de-
noising on programmable PC-grade graphics hardware. Signal Processing,
2010, 90.8: 2396-2411.

YUANFENG, Lian; YAN, Zhao. Accelerating fuzzy adaptive anisotropic dif-
fusion on GPU. In: Electronic Measurement & Instruments (ICEMI), 2011
10th International Conference on. IEEE, 2011. p. 175-180.

DE FONTES, Fernanda Palhano Xavier, et al. Real time ultrasound image
denoising. Journal of real-time itmage processing, 2011, 6.1: 15-22.

48



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

PERROT, Gilles, et al. Fast GPU-based denoising filter using isoline levels.
Journal of Real-Time Image Processing, 2013, 1-12.

LEBRUN, Marc. An analysis and implementation of the BM3D image de-
noising method. Image Processing On Line, 2012, 2012.

LEBRUN, Marc; BUADES, Antoni; MOREL, Jean-Michel. Implementation
of the "Non-Local Bayes” (NL-Bayes) Image Denoising Algorithm. Image
Processing On Line, 2013, 2013.

BONCELET Charles. Image Noise Models. In: Alan C. Bovik. Handbook of

Image and Video Processing Academic press, 2010.

PRATT, William K. Digital Image Processing, Third Edition, John Wiley
& Sons, Inc., 2001.

NVIDIA. Mazwell Tuning Guide.
http://docs.nvidia.com/cuda/maxwell-tuning-guide/

KIRK, David B.; WEN-MEI, W. Hwu. Programming massively parallel pro-
cessors: a hands-on approach. Newnes, 2012.

SCARPINO, Matthew. Opencl in Action: How to Accelerate Graphics and
Computation. NY. 2012.

NVIDIA. CUDA C Programming Guide.
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

NVIDIA. CUFFT library documentation.
http://docs.nvidia.com/cuda/cufft/index.html

49



List of Abbreviations

AWGN Additive White Gaussian Noise
BM3D Block-Matching and 3D Filtering
Bior Biorthogonal wavelet

CPU Central Processing Unit

CUDA Compute Unified Device Architecture
DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

FT Fourier Transform

FFT Fast Fourier Transform

GPGPU General-Purpose Computing on GPU
GPU Graphic Processing Unit

IDFT Inverse Discrete Fourier Transform
NL-Means Non-Local Means

SFU Special Function Unit

SIMD Single Instruction Multiple Data
SIMT Single Instruction Multiple Thread
SM Streaming Multiprocessor
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