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1 Introduction 

A growing number of computer games advertise to feature a “large open world”. No 
strict definition exists as whether a particular world can be considered “large” and 
“open” but one of the key properties is definitely freedom: In an ideal case, the 
player is constrained only by the physical laws of the virtual world – they may 
interact at any time with all the objects and characters in their surrounding and will 
always get a meaningful feedback from the environment. We will refer to this class 
of games as open-world games (OWGs). 

Contemporary game worlds that are considered large feature a landscape of tens 
to hundreds of square kilometers. Recent and popular OWGs such as The Witcher 3: 
Wild Hunt (CD Projekt Red 2015), The Elder Scrolls V: Skyrim (Bethesda Game 
Studios 2011) or Read Dead Redemption (Rockstar Games 2010) are actually in the 
lower part of the spectrum because of gameplay considerations – travelling through 
the world should not take too much time. Such worlds are then populated with 
dozens of non-player characters (NPCs) that are part of the story of the game and 
possibly hundreds of NPCs as background cast.  

This thesis deals with the development of behaviors for NPCs in OWGs, as there 
are both theoretical and practical unsolved challenges for applied AI. In general, the 
NPCs should be believable, that is, to appear and behave in a lifelike manner.  
Believable NPCs enable users to suspend their disbelief by providing a convincing 
portrayal of the personality the user expects (Loyall 1997). While the visual fidelity 
of NPCs in contemporary games is spectacular, this is often not the case for NPC 
behaviors.  Limitations of NPC AI are exacerbated in OWGs in particular, since 
OWGs give the user a large degree of freedom and NPC behaviors thus have to 
maintain believability even when faced with unpredictable actions of the player. 

In game development practice, the goal is to be perceived as intelligent and/or 
believable, but not necessarily to develop a cognitively plausible model producing 
the behavior. This is further supported by the fact that the way the AI is presented to 
the player often makes larger difference than the quality of the actual AI algorithm. 
This has been nicely demonstrated in (Denisova and Cairns 2015) where the authors 
show that merely telling people a game features “adaptive AI” improves perceived 
quality of the AI. There is also anecdotal evidence (Champandard 2007a) that simply 
increasing enemies’ health makes them perceived as more intelligent.  

The role of complex AI algorithms in OWGs is further diminished by the fact that 
in most OWG contexts, NPCs are not required to solve complicated logical problems 
or to perform a true long-term planning. Therefore almost any relevant behavior can 
be expressed with a reactive approach. Nevertheless, as game worlds grow and try to 
capture increasing variety of NPC behavior, increasing effort is required to develop 
reactive behaviors and the returns are diminishing. This has been partially addressed 
by both improving the reactive approaches in industry use (e.g., Isla 2005) and by 
introducing additional goal-based layer to ease authoring by handling the 
combinatorial explosion of the possible states of the world (Orkin 2006). There is 
however still large room for improvements. 

Despite the overlap between academic AI and game AI, rational behavior as 
studied by classical AI may be of little advantage in games. It may even be 
undesirable – the NPCs’ behavior should primarily match player’s intuition about the 
world and intentions of the game designer, which may not necessarily align with 
what is optimal with respect to the actual game mechanics – the AI should not 
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exploit the mechanics against their spirit. It is also important to limit the intelligence 
of the NPCs so that the game difficulty is appropriate. 

Overall, the initial premise of this thesis is that while intelligence is rarely the goal 
in itself, it is highly desirable to reduce the complexity and increase manageability of 
the AI code and thus help to express the design intentions behind the game with less 
effort. In this view, OWG AI techniques are primarily tools for the game designer 
and the development team. This thesis shows three new techniques that are 
promising to become powerful contributions to a designer’s toolbox.  

The techniques that we implemented advance the state of the art in the 
development of game AI with the primary aim to better handle the complexity of the 
game world. 

1.1 Basic Game AI Concepts 

To make the claims of this thesis explicit we first need to introduce some basic 
concepts relevant to game AI. In the literature on intelligent agents, the basic 
problem of agent’s AI is called action selection (Russel and Norvig 2010) – deciding 
what to do next. We build upon this notion, but we need to extend it in several ways.  

As the NPCs in OWGs need to deal with multiple different sets of tasks (e.g., 
following a daily routine versus combat behavior), the action selection for an NPC is 
usually divided into multiple components, each adjusted to the specifics of the tasks 
it deals with. We will assume that a mechanism to choose which component should 
control the NPC at a given is already provided – it may be, for example a variant of 
the subsumption architecture (Brooks 1986). 

First, we need to distinguish between the implementation of action selection and 
its manifestation in the virtual environment. In this text, we will use the heavily 
overloaded term behavior to refer solely to the NPC’s activity as perceived by the 
player.  

On the implementation side, we will distinguish between an action and a script. In 
our view, action is a single command sent to the game engine, e.g., “play an 
animation”, “move to a nearby location”, “add an item to inventory”, “change a 
property of the NPC”, etc. In general, an action can be described by a single verb and 
has short duration. Script is then a procedurally defined sequence of actions 
achieving a meaningful task1. A script may issue multiple actions to the game engine 
during a prolonged period of time, reacting to immediate state of the world. To 
preserve reactivity, the scripts should generally be interruptible so that if a different 
script is selected to run, it may quickly replace the currently executing one. In most 
cases we will abstract from the actual language that the scripts are represented in.  

In the following text, we will speak more broadly about script selection, which is 
defined separately per AI component. In this view, we are given a set of already 
implemented scripts and the goal of script selection is to choose the correct script to 
execute at the present moment. It is important to note that what constitutes a script in 
this view is dependent on the level of abstraction we work with. At the lowest level 
of abstraction, even a single action can be a script (e.g., “play talking animation”). At 
the highest level, scripts may correspond to very large chunks of NPC behavior (e.g., 

                                                
1 Note that the term “script” is used in many different contexts and its exact meaning varies. The 

way we define script for the purpose of this thesis may not align with usages of the term in other 
works. 
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“perform complete work routine” or “aggressively attack nearest enemy”). Another 
possible view is that script selection functions are nested. Once first-level script 
selection functions are defined over low-level actions, we can build second-level 
selection functions which treat first-level selection functions as atomic scripts. 
Higher levels of nesting can be introduced by iterating this scheme as necessary. Our 
focus in this thesis is not fixed on a single level of abstraction. For each of the 
techniques we present, we assume that we are given a set of “building blocks” – 
scripts that have already been implemented, be it low level actions in the engine or 
complex selection functions of their own. Our task is then to build a new script 
selection function over those building blocks, regardless of the level of abstraction 
the building blocks represent.  

Before delving into more detailed analysis, let us introduce additional game AI 
concepts that will be indispensable throughout the thesis. From architectural 
viewpoint, the NPC AI in an OWG may be divided into several main components, 
each performing script selection in a different context. As fighting enemies is still a 
major part of most contemporary games, combat AI is often the largest AI 
component. It may be further divided into enemy AI that guides NPCs opposing the 
player and ally AI that controls NPCs trying to help the player in a fight. Non-combat 
AI governs the rest of the NPC behavior. It may be further divided into direct 
interactions with the player (e.g., dialogues, barter, …) and ambient AI which covers 
the daily life of the NPCs and other actions they perform on their own. While the 
aforementioned components are present in the vast majority of OWGs, in a particular 
game some of the components may not be present at all, the individual components 
may be further subdivided or other components may be added to suit the needs of the 
game (e.g., a component that coordinates groups of NPCs). As the needs of various 
AI components are vastly different, we will always focus on a single AI component 
rather than on the NPC as a whole. Another reason to focus on components instead 
of NPCs is that some AI components may be challenging to develop as a whole even 
if the behavior of any individual NPC would be easy to create. These are the 
components where the difficulties arise from the interactions among NPCs or simply 
from the number of different NPCs that need to be covered.  

From the implementation viewpoint, the AI techniques used to develop reasoning 
for NPCs in games can be divided into two large classes: reactive and goal-based, 
corresponding to “reflex agent” and “goal-based agent of  (Russel and Norvig 2010) 
respectively. While no exact definitions exist, any mechanism that can be reasonably 
represented as a set of if-then rules is generally considered reactive, while 
mechanisms that explicitly represent NPC’s goals and project the effects of NPC’s 
decisions on the state of the world are considered goal-based. With the above 
classifications in mind, let us discuss two large categories of issues in behavior 
development that manifest to various extent in all AI components: performance and 
complexity. Performance is the one easier to grasp: script selection in OWGs needs 
to achieve amortized sub-millisecond performance and thus, goal-based reasoning is 
used scarcely as it tends to be computationally costly. The analysis of complexity, as 
a central point of this thesis, however deserves a closer look. 

1.2 AI Complexity 

This thesis aims to provide OWG developers with new techniques to reduce 
complexity of AI code. Focusing on any given level of abstraction, complexity of an 
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AI component corresponds to how difficult it is to realize the script selection in code. 
To turn this intuitive notion into a more precise working concept that would enable 
us to analyze complexity in more detail, we introduce a basic formalism for script 
selection.  

For the purpose of this thesis we will define AI component as a set of sensory 
inputs (I), a set of possible scripts (S), a set of script selection functions (F), a set of 
NPCs that use the component (N) and a behavior assignment function (a). The 
behavior assignment function connects NPCs with script selection functions, 
formally, it is a function a: N → F. A single script selection function f ϵ F, f: I → S 
represents the instantiated script selection mechanism for a particular NPC2. 
Importantly, we do not analyze AI at the level of individual NPCs but rather look at 
the whole component. This lets us capture the fact that elements of behaviors are 
often shared by multiple NPCs, which is important in practical development. 

For the sake of our initial analysis, let us assume that every input i ϵ I is a tuple of 
values of a fixed set of Boolean, integer and real-valued parameters and every f ϵ F is 
realized by a decision tree where each node performs a test on one of the parameters. 
We further assume that all the trees have the minimal possible number of nodes that 
can realize the given function. 

Now, in a very broad sense we can classify the complexity of the AI component 
along two axes: size complexity – the number of scripts the NPCs choose from (|S|) 
and rule complexity – the maximal number of non-leaf nodes of any of the decision 
trees (max{|�|;  � ϵ F}).  

As an example, let us analyze combat AI in a typical shooter game. Here the size 
of the component is small – there are only few broad types of scripts (attack, retreat, 
advance, cover an ally, …) each with a handful of concrete variants. The inputs 
consist of the NPCs health, available weapons and ammo and basic spatial 
information such as distance to the player and the availability of cover spots. With 
good design of the fighting mechanics and the levels, even a low rule-complexity AI 
( < 10 nodes in all script selection functions) can create great gameplay. 

In contrast, governing an army of units in a real-time strategy game (RTS), has 
both large size complexity and large rule complexity. There is huge amount of 
combinations of allocating the individual units to particular tasks and the script 
selection function cannot be represented concisely, as witnessed by the difficulties in 
implementing a good RTS AI and the sheer amount of skills and knowledge human 
players need to play the game well. 

We also see that as the number of input parameters that the NPC needs to take 
into account grows, the rule complexity necessarily increases. Even if each parameter 
is checked at most once on every path from the root of the tree to a leaf and a single 
parameter is relevant only for a small but fixed percentage of all paths from the root 
of the tree to a leaf (i.e. the tree is at least slightly balanced), the rule complexity 
grows exponentially with the number of parameters. 

This view of complexity lets us categorize all AI components into four loosely 
defined groups: 

                                                
2 For simplicity, we have omitted memory of the NPCs from our analysis, but reading from 

memory can be easily modeled within this framework as just additional stimuli and writing to memory 
can be modeled through specialized actions within the scripts. 
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1) Small size complexity and small rule complexity: this is the situation for 
most contemporary shooter games. It is easy to create the scripts and the 
selection functions manually. This case may be considered trivial. 

2) Large size complexity and small rule complexity: with growing size 
complexity, the sheer size of the codebase starts to be an issue. This is 
typical for ambient AI, where it is useful to have a lot of diverse behaviors, 
but the actual script selection is very straightforward. Although it is still 
possible to write all the selection functions manually, good structuring, 
reuse, and decoupling of the code is necessary for efficient development.  

3) Small size complexity and large rule complexity: the individual script 
selection functions are too big to be efficiently written and maintained 
manually. Although NPCs in games seldom solve truly difficult problems, 
this case may arise simply because there are too many parameters the NPC 
needs to take into account, as in combat AI for games with complex fighting 
mechanics. The most common approach in the industry is to avoid this case 
by keeping the rule complexity low and sacrificing the quality of NPCs 
decisions. Planning-based techniques have also been employed in such 
cases with notable success (see Table 1). Note that planning and other 
search-based techniques require small size complexity to be feasible in real-
time – small number of possible scripts translates into small branching 
factor of the search.  

4) Large size complexity and large rule complexity: this case typically arises 
when there is a need to coordinate a group of NPCs in a task that would fall 
under case 3 if only single NPC participated. Since the scripts now consist 
of tuples of instructions for all NPCs, the size explodes. This case is not 
frequently present in contemporary OWG games (in part due to its inherent 
difficulty). Nevertheless, similar problems have been handled to various 
extent of success in different game genres, most prominently in both turn-
based and real-time strategy games, using mix of search-based approaches 
and machine learning. An important difference to OWGs is that strategy 
games generally have lower graphical fidelity and the individual behaviors 
exhibited by units in strategy games tend to be significantly simpler than 
those in OWGs, resulting in both easier development of higher-level 
abstractions of the game and more computing time available for AI. 

The categorization is summarized in Figure 1 and Table 1. In this thesis we focus 
on cases 2 and 3, as handling them to a full extent is beyond the state of the art in 
contemporary OWGs. Since case 4 is both vastly more difficult and does not 
naturally arise in OWGs, it is out of scope of this thesis. 
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Figure 1: Diagrams of script selection functions AI of components with different types of 
complexity. 
Here we assume that script selection functions are represented by decision trees. White 
circles represent internal nodes and colored shapes represent various scripts (same shape 
with the same color is the same script in all selection functions). Rule complexity reflects the 
number of internal nodes of the selection functions (left to right) while size complexity 
reflects the number of different scripts the component has to handle (top to bottom). 
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  Small Large 
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l Basic enemy AI  

Half-Life 
Halo 2 

Quality enemy AI  
F.E.A.R. 
Killzone II 

Ally AI 
Bioshock: Infinite 

L
ar

ge
 Ambient AI 

The Sims 
Elder Scrolls V: Skyrim 

Dialog-handling AI 

Strategic squad coordination 
Fable Legends 
Frozen Synapse  

High-level RTS AI  
Planetary Annihilation 

Table 1: Two basic dimensions of OWG AI complexity.  
For each type of complexity, the table provides examples of representative AI components 
and games that contributed significantly to the state of the art and/or provided inspiration 
for this work (italics). The highlighted areas are dealt with in this thesis. 

1.3 Goal Statement 

The goal of this thesis is to develop, implement and evaluate new techniques that can 
be used in AI components with either small rule complexity and large size 
complexity or large rule complexity and small size complexity. These techniques 
should enable creation of next generation OWG AI that would be impossible or 
impractical to achieve with state-of-the-art methods. In particular, there are three 
subgoals: 

1. Implement and evaluate new ways to structure NPC-centric reactive script 
selection functions when the size complexity is large and rule complexity 
is small. To address this we devise and implement behavior objects as a 
parallel to object-oriented programming in game AI (Chapter 5). 

2. Implement and evaluate a global approach to script selection for 
coordinated multi-NPC in-game events in components with large size 
complexity and small rule complexity. We address this subgoal by using 
constraint satisfaction techniques to select tuples of NPCs that will enact a 
designer-specified situation (Chapter 6). 

3. Implement and evaluate script selection functions based on adversarial 
search for OWG AI components with large rule and small size complexity. 
We address this subgoal by testing AlphaBeta and Monte-Carlo Tree 
Search in the context of enemy AI for swordfighting scenarios (Chapter 7). 

The rest of this thesis is structured as follows: we start with general analysis of 
requirements imposed on game AI (Chapter 2) and with discussion of related work 
common to all of the techniques we investigate (Chapter 3). Then we describe the 
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OWG that we evaluated all of our techniques in (Chapter 4) and present the 
individual techniques we have developed (Chapters 5 – 7). The thesis concludes with 
discussion of the overall contribution and considerations for future work (Chapter 8). 
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2 General Analysis 

As we already noted in the introduction, OWG AI is better perceived as a tool that 
helps the game designers to achieve a desired effect on the player – either directly by 
helping the NPC to choose an appropriate action, or indirectly by making a desired 
behavior easier to develop. In both cases, AI development in OWGs is primarily a 
software engineering task – implementation and integration with the game is at least 
as important as the choice of the algorithm. The AI technique in question must align 
with the development lifecycle of the game – in particular it must be amenable to 
iterative improvements, fine-tuning, testing and debugging. It is further very useful if 
the way AI is expressed corresponds to the way designers think about the game. 
While these non-technical requirements are harder to evaluate, they cannot be 
omitted if the systems we develop are to be truly helpful in game development. 

To better frame the technical aspects of our work, this section will give a more 
detailed attention to the performance requirements of OWGs and to the properties of 
contemporary formalisms for reactive AI. 

2.1 AI Performance 

In OWGs, CPU time is a very scarce resource as almost all of the CPU time is 
dedicated to graphics and physics. Time allowed for AI is usually less than 5 ms per 
frame (100 - 150 ms per second) on a single core for all NPCs together3, including 
not only script selection, but also pathfinding and collision avoidance, which can be 
costly on its own – see for example (Berg et al. 2011). This means that 
computationally expensive techniques such as AI planning can be used only for one 
or very few NPCs at once.  Due to this limitations, planning and similar goal-based 
techniques have been used only for combat AI (Champandard 2013), as only few 
NPCs are usually engaged in combat at the same time. For other AI components, and 
often even for combat AI, OWGs use reactive techniques. 

We can even see developers abandoning already implemented goal-based 
approaches in favor of scripts. For example, developers of Just Cause 3 (released in 
2015) switched to BTs from a planning approach they used in Just Cause 2, because 
they needed better performance and more designer control.4 

In our  previous work, we have examined planning approaches in the context of 
computer games, especially with regard to quality of decisions classical planning can 
provide and the computational requirements of planning (Černý et al. 2015). In that 
work, we took strictly the perspective of classical AI and measured how efficient an 
agent is in reaching its goal in an environment with small size complexity but large 
rule complexity. The agent also had a complete CPU core at its disposal, which is 
unrealistic amount of computing time for an OWG. Even in this limited context, the 
results indicate, that planning can be outperformed by simple reactive reasoning, 
unless the environment is very hostile to the agent or is relatively static. 

                                                
3 Based on our personal experience when cooperating with a game studio and discussions with 

developers at various conferences. 
4 As explained at time 2:08 of their video development diary dealing with the AI engine 

https://www.youtube.com/watch?v=GUEwOGo3BFI 
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We have further compared Hierarchical Task Networks (HTN) planning (Ghallab 
et al. 2004) to classical planning in game contexts (Černý and Gemrot 2013). While 
the results show that HTN planning has some benefits over classical planning, they 
manifest only when a huge amount of control has been delegated to a scripted layer 
below the planning algorithm, and the decisions the HTN makes are relatively simple 
and could be probably easily implemented in a reactive way. These are just further 
confirmations that reactive AI is often the best choice for computer games.  

It is worth noting, that even reactive approaches often need to be heavily tuned for 
performance to satisfy the requirements of games (Canary and Champandard 2014; 
Mueller and Champandard 2015), further confirming that only very limited space 
remains for more expensive computations. 

2.2 Reactive Techniques in OWGs 

The state of the art in reactive OWG AI are – to our knowledge – variants of 
behavior trees (BTs) (Champandard 2007b). The common denominator of all BT 
approaches is that the script and/or script selection function is represented in a tree 
structure which is traversed for every update of the NPC to determine a leaf that 
should be executed. The leaves either directly represent actions in the game engine or 
contain short programs in a procedural language. The internal nodes then direct how 
the tree is traversed based on state of the nodes and input from the environment. 
Conceptually the nodes close to the root correspond to high-level decisions while 
nodes close to the leaves correspond to low-level decisions.  

Other notable reactive techniques in use are finite state machines (Fu and Houlette 
2004) and direct use of an interpreted procedural language like Lua (Schuytema and 
Manyen 2005). In all cases we are aware of, the limitations are similar to those of 
BTs.  

An important benefit of reactive approaches is that they are easy to tweak and 
provide a lot of control to the game designers – handling a special case means simply 
adding a branch to the BT or a adding a new node to the state machine. Reactive 
techniques are also usually easy to understand and reactive scripts or script selection 
functions can be – with proper tooling support – created even by non-programmers. 
Ease of use and transparency is thus a vital consideration for OWG AI that all of the 
techniques we propose have to address. 

2.3 Summary 

The main difference between OWG AI and “classical” AI as researched in most of 
academia is that OWG AI is heavily constrained by both design and technical 
considerations that are not directly related to the AI algorithms themselves. The aim 
of this work therefore cannot be to solely propose new techniques, but to also devise 
how the techniques will be integrated in an actual game and how they will meet 
performance and design requirements that may arise during the development of a 
game. 
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3 General Related Work 

In this chapter we deal with the research related to the general concept of handling 
complexity of software systems and engineering aspects of AI. Since the individual 
techniques we describe in this thesis come from different areas of AI, we defer the 
discussion of extant approaches to individual types of complexity to the chapters 
dealing with our particular solutions. 

3.1 Software Complexity 

In a broad sense, attempts to manage more and more complex programs have been 
the driving force of the development of modern programming languages and 
software design methodology. While object-oriented programming (OOP) remains 
the dominant paradigm, many orthogonal techniques have been combined with OOP 
and adopted by wider programmers’ audience. Notable extensions include generic 
programming (Musser and Stepanov 1989), aspect-oriented programming (Kiczales 
et al. 2001) and reflection (Smith 1982).  

All those specific techniques have been conceived to let developers realize some 
of the basic concepts of software design – decomposition, abstraction, modularity 
and separation of concerns. The tools we use however do not directly help us in 
choosing the right decompositions and abstractions in our programs. A basic 
methodology for choosing a good decomposition is information hiding (Parnas 1972) 
– decomposing system in such a way that each of its parts hides certain design 
decisions from the rest of the system. If the design decisions are properly hidden, 
changes to those decisions affect the system only locally. 

The complexity-driven evolution of general-purpose programming languages and 
programming methodology is being mirrored by the evolution of tools to develop AI 
in games: game AI progress is also motivated by the necessity to handle more 
complex decision making. The most prominent example is the now-standard 
paradigm of behavior trees which stems from works such as (Bryson 2001) on trying 
to express complex behaviors in a concise way and (Isla 2005), where the authors 
tried to find a way to handle AI complexity in Halo 2.  

We see the present work as a continuation of this effort to mitigate complexity 
and we will show how specific techniques let us hide and isolate design decisions 
that could otherwise propagate through large portions of the AI system. 

3.2 AI as an Engineering Problem 

The fact that an AI technique is in principle able to mitigate complexity does not 
automatically ensure it is useful in everyday development. In practice, AI techniques 
in games cannot be separated from the engineering and maintenance challenges they 
bring in. This consideration is seldom discussed in separation, and is mostly implicit 
in the way industrial game AI is deployed or talked about. The only resources known 
to us, focusing attention explicitly and systematically on the engineering side of 
game AI was (Champandard 2004) and an invited talk by Squirell Eiserloh at AIIDE 
2014 (Carr et al. 2014).  

Nevertheless, the engineering aspects of AI have been discussed at least as early 
as in the era of expert systems (Nilsson 1982). The idea that careful engineering for a 
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given task is of critical importance is also implicit in the influential works of Brooks 
– the subsumption architecture (Brooks 1986, 1991) and his arguments against the 
pure symbolic approach to AI (Brooks 1990). Closely related to NPC AI, the multi-
agent systems community has also long recognized the necessity to handle the 
practicalities of everyday software development (Wooldridge and Jennings 1998). 

In a similar vein, researchers from Google acknowledge, that only very small part 
of real-world machine learning systems are the actual learning algorithms discussed 
in the research literature – majority of the system is actually “glue code” connecting 
various algorithms, preprocessing data, etc. (Sculley et al. 2014). To alleviate the 
difficulties of everyday development, software engineers have created a set of design 
patterns – “simple and succinct solutions to commonly occurring design problems” 
(Gamma et al. 1994). While a similarly highly-accepted and generalized set of 
patterns is yet to be developed for AI, there were some attempts to formalize patterns 
occurring in specific areas of AI.  

Design patterns have been introduced for autonomous agents (Kendall et al. 1998) 
or robots (Graves and Czarnecki 2000). Walsh (2003) proposes design patterns for 
constraint satisfaction problems. And, close to our work, Weber et al. (2010) propose 
“reactive planning idioms” – a set of patterns for designing reactive reasoning in 
NPCs. 

3.3 Summary 

Complexity is one of the driving forces of game AI development and there is a lot of 
inspiration that could be taken from the way general purpose programming languages 
evolved in response to increasing complexity. At the same time, OWG AI is to a 
large extent an engineering field that needs to be rooted in practice. Similarly to other 
fields of AI or software engineering, OWG AI can benefit from establishing patterns 
and methodologies for effective development. 

In this line of thinking, we see the approaches we introduce as a set of design 
patterns for OWG AI and – to a smaller extent – for game AI in general. Further, we 
integrate all our techniques in a complete game, letting us to discover, describe and 
resolve the engineering challenges of applying the techniques in practice. 
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4 Evaluation Domain 

In this work, we propose two techniques that apply to components with large size 
complexity and low rule complexity and one that applies to components with small 
rule complexity and low size complexity.  

We implement the techniques in the context of an upcoming high-budget OWG 
Kingdom Come: Deliverance (KC:D) and evaluate them, both in terms of how they 
are perceived by humans (players or developers) and how much CPU time they 
require. From the software engineering perspective (as discussed in Section 3.1), we 
will ask which design decisions can be hidden using our techniques – i.e., which 
design decisions can be confined to affect only small parts of the AI system, making 
them easier to change later in development. 

The AI system, that forms basis for our evaluation is described in (Plch et al. 
2014). In this section we briefly introduce the system5.  

The basic NPC decision making in KC:D is performed by a variant of behavior 
trees (Champandard 2007b). In plain behavior trees (BTs), the script consists of a 
tree. The leaves of the tree are scripts and senses while the internal nodes (called 
composites) represent the main structure of the script selection function. Evaluation 
of a node may return three possible values: success, failure and running.   
Upon evaluation, scripts return success when the NPC has finished the action, 
running if more is to be done and failure if the script cannot complete. Senses 
test a condition in the world and succeed if the condition is true and fail otherwise. 
Composites are either selectors or sequences; both evaluate their children in order 
and when the evaluated child returns running, they also return running. 
Selectors return success when the first child node succeeds and do not evaluate 
the rest of the children. Sequences on the other hand need all of their children to 
succeed in order to return success.  

In this scheme senses are typically the first children of sequences followed by 
single other node. Thus the node is evaluated if and only if the sense is active. 
Selectors then play the role of priority ordering on nodes below them and the highest 
priority subtree which does not fail is executed. See Figure 2 for an example.  

This simple formalism allows for easy coding of quite complex behaviors and 
variations of BTs have become a de facto industry standard. The actions and senses 
are directly implemented by programmers in the game engine and thus are quick to 
evaluate. Another advantage is that subtrees may be easily reused among different 
scripts. Similar reactive planning approaches have been previously evaluated in 
academia (Bryson 2001). Further extensions to the formalism including  decorator 
nodes (Champandard 2007c) and parallel nodes (Champandard 2007d) were 
proposed. 

                                                
5 The contents of this chapter is adapted from (Plch et al. 2014) and (Černý et al. 2016). The AI 

system was built by Tomáš Plch, Jakub Gemrot, Matěj Marko, Martin Štýs and others at Warhorse 
studios with only minor contributions from the author of this thesis and as such is not a part of this 
thesis. 
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Figure 2: Example behavior tree representing a simple guard behavior for a shooter game.  
All children are ordered left to right. The first leaf to be evaluated is the “Health < 30” 
sense. If it succeeds, the “Flee” script will be started (it is in a sequence). If “Flee” returns 
success or running, no more nodes will be evaluated. If either health is over 30 or the 
“Flee” script fails, the “See player” sense will be evaluated and if it succeeds, the selector 
over “Shoot” and “Melee” sequences will be evaluated etc. Note that a selector represents a 
prioritized list of alternatives and sequences a list of preconditions and actions that 
correspond to distinct parts of the script selection function. Sequence names (in parenthesis) 
have no semantic meaning – they are shown only to make the structure more readable.  

A decorator is a node that has a single child and performs no direct actions on its 
own, but alters how its child is evaluated. Examples include decorators that, upon 
evaluation, simply evaluate their child but alter the return value (e.g., turning 
failure into success) or decorators that evaluate their subtree only if a 
condition is met and return a fixed value otherwise. 

A parallel node evaluates all its children every time it is evaluated. There are 
multiple possible ways to aggregate the return values of the children into the return 
value of the node, which are usually specified as parameters of the parallel node. 
Common settings include returning success/failure once a single child 
succeeds/fails, or running until all children succeed or fail and then returning 
success if all children succeeded and failure otherwise. As their name suggests 
parallel nodes are useful for issuing multiple actions in parallel (e.g., moving and 
directing gaze at the same time). 

In KC:D, the BT formalism is further extended with variables and a custom type 
system which allows for complex structured types and type inheritance. The 
execution model of the BT nodes has also been extended to ensure consistent 
initialization and cleanup of subtrees; in particular the formalism allows a specific 
cleanup script to be executed when the main script is interrupted. The way a cleanup 
is expressed in the BT structure is shown in Figure 3. 
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Figure 3: Script cleanup example.  
The semantics of the RollBacker node ensure, that once the Main branch starts executing, 
the Clean Up branch is always executed to completion before control is yielded to another 
subtree. 

The decision logic of every NPC in KC:D is represented as a hierarchy of 
subbrains. Subbrains represent individual components of the NPC logic (ambient AI, 
combat, quest-related logic, ...) ordered by priority and connected in a manner similar 
to the subsumption architecture (Brooks 1991). If the subbrain becomes active, it 
executes a BT associated with it. If a higher-priority subbrain tries to run, the BT of 
the lower-priority subbrain is stopped, including proper script cleanup. The subbrain 
priorities are fixed per NPC template and assigned by scripters. If more complex 
handling is desired, the scripters may create a special “switching” BT running in 
parallel with the subbrains and enforce activation/deactivation of specific subbrains 
through dedicated BT nodes.  

Other important features of the AI system include a link database and a messaging 
system. The link database stores named links between game entities and can be 
queried at runtime with complex queries (e.g., return all objects with “child” link to 
an object linked to me with a “parent” link). The messaging system manages a list of 
inboxes for all NPC. Each inbox has its own message type. The system manages 
thread-safe message queues for each inbox. 

Although we implement all the techniques in this thesis within KC:D and thus 
using BTs, all of the techniques we present generalize in a straightforward manner to 
AI systems with other architectures common in the game industry. We will discuss 
those generalizations in the individual chapters dealing with the techniques. 
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5 Behavior Objects 

In this chapter we discuss the motivation, implementation, and evaluation of a new 
way to structure NPC-centric reactive script selection functions when the size 
complexity is large, as outlined in Subgoal 1 of this thesis (see Section 1.3). As a 
consequence, practical implementations will almost exclusively belong to AI 
components of small rule complexity, to keep the script selection functions amenable 
to a reactive representation. Table 2 shows our target complexity for this chapter in 
context. 

The overarching theme of this chapter is that some of the lessons from object-
oriented programming can be applied to game AI, resulting in what we call behavior 
objects. Behavior objects allow for better structuring of reactive code and thus let the 
development team to create better, more reliable behaviors in less time.6 

The rest of this chapter is structured as follows: First, we discuss the motivation 
for the approach in general (Section 5.1) and for the implementation in KC:D 
(Section 5.2) followed by a survey of the related work (Section 5.3). We then 
describe the general concepts of behavior objects (Section 5.4) and dive into the 
specifics of the KC:D implementation of  behavior objects (Section 5.5). The chapter 
concludes with evaluation of behavior objects in practice (Section 5.6) and a 
discussion of the results (Section 5.7). 

5.1 Motivation for the General Case 

In this chapter we focus on ambient AI – the AI component handling the behaviors 
NPCs perform on their own and that do not require direct interaction with the player. 
For ambient AI, size complexity is the most pressing issue – there is a large number 
of behaviors the NPCs may perform and although each individual NPC performs 
only a handful of scripts and the script selection function for any single NPC would 
be easy to implement, managing the codebase for a large number of NPCs becomes 
problematic. As noted in Chapter 1, ambient AI in contemporary games has to be 
implemented reactively, because of the large number of NPCs that need to be 
updated in a very short time frame. In practice, many OWGs implement ambient AI 
by letting NPCs either wander randomly around the game world or stay at a single 
place and loop an animation. 

 

                                                
6 Some of the systems described in this chapter were implemented by staff at Warhorse (especially 

Tomáš Plch, Matěj Marko, Martin Štýs) and thus their implementation cannot be considered a part of 
the thesis. To be specific, smart areas were initially designed and implemented by me and further 
developed by Warhorse staff. All types of smart objects were implemented by Warhorse staff with 
little direct input from myself, but based on the initial design and implementation of smart areas. 
Situations were fully developed by me. The unifying view presented in this chapter as well as all 
experiments, their interpretation and the text of this chapter are my contribution. This chapter is an 
adapted version of our paper on this topic (Černý et al. 2016). 
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Basic enemy AI 
Quality enemy AI  
Ally AI 
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Ambient AI 
Dialog-handling AI 

Strategic squad coordination 
High-level RTS AI 

Table 2: Complexity classification for the techniques in Chapter 5.  
This chapter deals primarily with small rule complexity and large size complexity in general. 
The implementation in KC:D is focused on ambient AI in particular (highlighted). This table 
is a reiteration of the complexity classification shown in Table 1. 

We perceive the complexity of the codebase required to handle varied ambient 
behaviors as the main obstacle to improving the state of the art. While truly lively 
and dynamic ambient behaviors could be, in principle, implemented with state of the 
art technology, the large amount of edge cases and possible interactions between 
various parts of the ambient AI make the script selection functions interdependent 
and hard to debug (e.g., what if innkeeper does not arrive to a pub, because a player 
blocked his way to the pub). Moreover, the improvement in player’s experience 
achievable with better ambient AI is usually modest and may not justify the possibly 
very large expenses of maintaining the necessary script selection functions. As script 
selection for ambient AI is limited to reactive techniques for performance reasons, 
the problem cannot be overcome by planning or similar methods. Improving the way 
reactive script selection functions are expressed is thus a key to progress in this area. 

It is of little surprise that hierarchical decomposition and code reuse are the basic 
ingredients for a good formalism for expressing script selection functions. To an 
extent, the contemporary reactive techniques – especially BTs – were made with 
exactly these goals in mind. But current OWGs seem to stretch state-of-the-art 
techniques to their practical limits and a new layer of abstraction needs to be placed 
on top of them to move forward. This is our goal in this chapter. 

5.2 Motivation for the Specific Case of KC:D 

The general points given in the preceding section arose very concretely during the 
work on AI system for KC:D. Initially, an augmented variant of BTs was 
implemented (as described in Section 4) to help in creating lively ambient AI, but a 
desired level of fidelity of ambient behaviors was still very challenging to achieve, 
since it was hard to separate individual parts of the code realizing ambient AI from 
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each other (e.g., work behaviors and sleep behaviors). Therefore new scripting 
techniques were needed to make the BT codebase manageable. We wanted the new 
techniques to let the scripters gradually decompose the behaviors into simple 
elements that can be designed, implemented and tested separately. In many ways, it 
was the basic software engineering problem: how to structure the AI code to get the 
best results for a given amount of effort. 

The design team of KC:D introduced certain objectives the new technique should 
fulfill beyond the objectives of BOs in general: 

O1 Strong guarantees must be made that gameplay-critical behaviors (quests, 
combat, …) will not be disrupted. 

O2 The scripts must be interruptible and maintain consistency even on 
prolonged execution. The game is expected to be played for several dozen 
hours while all the NPCs are continually simulated, without any reset. In 
contrast to most contemporary OWGs, the design team of KC:D required 
that all NPCs are simulated even when the player is not in their proximity. 

O3 Primary use-case is the ambient AI. 
O4 The behavior code has to be decoupled from the data in the game world. In 

particular, using an already defined script in a new context (e.g., adding a 
new pub to the game world) should be possible without changing any of 
the code of NPCs that use the script and without modification to the pub 
logic. 

O5 Some NPCs should be allowed to behave differently in the same context: 
e.g., in a pub, rich people behave (and are treated) differently than poor 
people. 

O6 Coordination of joint behaviors among agents (a pub brawl, a game of 
cards …) must be supported. 

To an extent, all of these additional objectives can be achieved with state-of-the-art 
reactive script selection functions, but at the cost of reduced code manageability. 
This is an exact parallel to traditional programming, where everything that can be 
implemented using an object-oriented language can be, in principle, written with a 
language that only supports structured programming or directly in the assembly 
language. Nevertheless, OOP has great merits for practical development. In a similar 
vein, our aim is to meet the design objectives while increasing code manageability 
and promote information hiding to prevent most future changes from affecting large 
parts of the codebase. 

5.3 Related Work 

In both academia and industry, a prominent approach to managing behavioral 
complexity (including, but not limited to ambient AI) is embedding intelligence in 
the environment. We will start this section by introducing smart objects as the oldest 
and most widely used example of this approach. Further we will review how smart 
objects and other elements of intelligent environments have been used in the game 
industry and academia respectively. We conclude this section with a discussion of 
other approaches relevant to our work.  

Note that most of the approaches we will discuss here are not aimed directly at 
ambient AI, but rather at behavior development in general. 
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5.3.1 Introduction to Smart Objects 

Smart objects as introduced by (Kallmann and Thalmann 2002) are, to our 
knowledge, well-established in the game industry, although in a very simplified 
form. A smart object as used by the industry is typically a graphical entity in the 
game world that is accompanied by a character animation (or several animations) 
that should be used when a character desires to use the object. The smart object is 
also responsible for positioning the character at the exact spot where the animation 
should be played. 

A typical example of a smart object is a lever on the wall. An NPC that wants to 
change the state of the lever simply fires a “use smart object” action and the smart 
object takes care of the necessary details. This way, many different levers and 
switches may be present in the environment, but the AI only needs one action to use 
them all properly. In other words, smart objects hide animation details from the 
NPC’s script. 

Another frequent use are so-called navigation smart objects, which are smart 
objects intended solely for navigating around the environment. A navigation smart 
object connects a graphical entity in the game world with an entry and an exit point. 
When an NPC wants to move from the entry point to the exit point, it plays the 
animation associated with the smart object. This keeps the details of movement 
hidden from the NPC’s script. Navigation smart objects typically connect disjoint 
areas that could not be traversed by regular navigation – a typical example is 
jumping over a barrier. Another approach to handle barriers and doors is to embed 
additional navigation information inside edges of the navigation graph (Reed and 
Geisler 2004). While this is conceptually similar, it is less flexible as the navigation 
graph needs to be manually kept consistent with the environment. 

Conceptually, smart objects are inspired by the psychological notion of 
affordances (Gibson 1986). The idea is that animals (and humans) do not perceive 
the environment as physical objects but rather as a set of possibilities the 
environment affords, e.g., a door is something that may be opened, lever is 
something to be pulled, barrier is something to jump over, etc. 

Kallmann originally proposed smart objects as more complex entities that can 
provide multiple interacting parts, each with its own location, mechanics, instructions 
for NPC positioning and optionally also with code the NPC should run to use the 
given part. Kallmann’s smart objects could also run code on their own to alter their 
internal state. Kallmann’s idea is close to our goal, although it misses several 
important features. Most notably Kallmann does not consider interrupts to the scripts 
(O2), and it does not support script nesting (important for O4). 

5.3.2 Intelligent Environments in the Game Industry 

A version of smart objects close to the Kallmann’s version has been implemented in 
The Sims series (Ingebretson and Rebuschatis 2014). The Sims form a very different 
application than OWGs, because the user is not embodied in the environment and 
interactions with NPCs and objects are triggered indirectly. The NPCs autonomous 
decision making consists of selecting an appropriate smart object (NPCs are also 
smart objects) to satisfy its current needs. The basic units of scripts in The Sims 4 are 
called “interactions” (e.g., sit down). An interaction consists of animations and 
changes to state of the NPCs and/or the world (e.g., NPC is now in “seated” pose, 
chair is occupied). These interactions are then connected to objects in the game (e.g., 
the same sit down interaction is connected with a chair and a bench). The interaction 
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may further decompose into atomic “blocks”. Those blocks are not interruptible and 
are always run to completion, but blocks of multiple interactions may be interleaved 
(e.g., sip a drink – look at TV, cheer – finish the drink) and nested (e.g., cuddling 
while sitting on a sofa). Thus in The Sims, all objects have the same interface for the 
NPC and their differences are hidden from the NPC logic. 

Our work is the first that we are aware of that implements comparably powerful 
(complex behaviors, behavior nesting …) smart objects in a game where the user 
may interact directly with the NPCs, which requires a different approach to O2.  

Although our experience indicates that smart objects are used in many first/third 
person games, there are – as is often the case with game industry – relatively few 
official sources and very little detail revealed. Among those, smart objects are 
mentioned in the context of FarCry 4 (Isla 2014), Castlevania: Lord of Shadows 
(Parera 2013) or F.E.A.R. 2 (Champandard 2011). BioShock:Infinite also has 
“opportunities” placed in the environment for the sidekick character Elizabeth to 
interact with.7 From the little information available, all these implementations do not 
seem to go much beyond levers and other simple objects and are therefore not 
suitable for improving manageability in large-scale OWGs.  

Notably the S.T.A.L.K.E.R. series extended smart objects to “smart terrains” that 
provide more long-term behaviors to all NPCs in a specific area (Iassenev 2008). In 
more recent developments de Sevin et al. (2015) propose “smart zones”. Smart zones 
are a collection of roles NPCs may perform at a given location. Upon arrival to the 
zone, the NPC is assigned a role and starts performing it. The problem with both of 
these approaches is that the smart zone/terrain completely takes over the NPC, 
bypassing any high-level reasoning on the NPCs side. Thus the internals of the smart 
zone/terrain scripts are not completely hidden to the NPC script, as it needs to 
consider, whether the smart zone/terrain script may interfere with high-priority 
behaviors of the NPC. Also, there is no mention on how interruptions to the scripts 
are handled, so it is unclear, whether interruptions are handled at all. Therefore it is 
likely to be unsuitable for implementing behaviors of long-lived NPCs with a large 
palette of possible behaviors. 

In a slightly different vein, Skubch (2015) uses “smart locations”, which are a 
collection of assets together with a shared blackboard. Behaviors are then 
implemented as rules that are triggered by a matching set of facts on the blackboard. 
These rules then either start scripts for the given NPCs and/or manipulate the 
contents of the blackboard. Upon arrival of an NPC to the smart location, special 
rules assign the NPC a role (e.g., a waiter or a guest in a restaurant), and the role is 
then part of the preconditions of all rules handling the particular role. The advantages 
of this approach is that proper handling of various amounts of NPCs at the smart 
location is handled emergently and that such a rule based formalism allows for 
offline validation of basic properties with a planner (rules that cannot fire, 
blackboard states that are inconsistent). The downside is that truly complex 
behaviors are harder to develop as there is no explicit hierarchical structuring of the 
rules and it is easy to introduce unexpected dependencies into the rule set. 
Interruptions of scripts are also handled in an ad-hoc manner. The approach worked 
great for Final Fantasy XV, as the NPCs there are short-lived and the locations are 
reset frequently, but is not suitable for long-lived NPCs in OWGs. 

                                                
7 See an interview with the developers at http://www.youtube.com/watch?v=2viudg2jsE8 
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Another interesting approach is presented in Hitman: Absolution. Here, the AI 
uses objects called “situations” to coordinate multiple NPCs (Vehkala 2012). 
Whenever an NPC deals with an event that requires coordination with others (e.g., 
the player is trespassing and should be stopped), it subscribes to a corresponding 
situation object. The situation object assigns roles to the subscribed NPCs and alters 
their knowledge based on events in the game world (e.g., tells the NPC that it is in a 
trespassing situation, who is the leader of the situation and how aggressively should 
the NPC react). The NPCs then take that knowledge into account in their own 
decision making. The drawback of this approach is that every NPC needs to include 
specific code for every situation it may participate in and thus the situations are not 
hidden from the main NPC logic. Furthermore, the code for the situation is scattered 
among multiple NPCs making the technique impractical for large OWG codebases. 

With regards to the major available game engines, CryEngine Free SDK seems to 
have the best support for embedding intelligence in the environment (Crytek 2013). 
In CryEngine Free SDK a “smart object rule” can be assigned to any entity in the 
game. The rule consists of a condition and an AI script to be executed, when the 
condition is met. This approach allows for simple creation of a wide variety of active 
non-character entities (e.g., landmines, machines), but the approach is more 
problematic when implementing behaviors for NPCs as the script within the rule 
executes in parallel with the NPC’s logic. In all but the simplest situations the script 
within the rule would have to manually synchronize/communicate with the NPC’s 
logic to prevent the rule from threatening the consistency of the NPC’s state or from 
interrupting a gameplay-critical behavior, introducing unnecessary coupling of the 
respective code. There is also no support for communication when multiple NPCs 
use the same object. In general the “smart object rules” of CryEngine Free SDK are 
great tools for what CryEngine was intended for – quick action in first-person 
shooters – but they are not very suitable for ambient AI in complex persistent worlds.  

Unity3D (Unity Technologies 2016) and Unreal Engine (Epic Inc. 2016) have no 
built-in support for embedding intelligence into the environment, although there are 
AI middleware solutions that provide some support. One example is Autodesk 
Gameware Navigation8 that includes support for navigation smart objects (as 
described above). 

5.3.3 Intelligent Environments in Academia 

In academia, the concept of smart objects has quickly been extended by crowd 
simulation research to whole areas. In (Tecchia et al. 2001) the environment is 
overlaid with a grid, where each cell may dictate a movement behavior for the agents 
in it. In (Sung et al. 2004) “situation based behavior selection” is presented. The 
system detects situations in the environment and instructs the agents participating in 
the situation what should they do. While situation based behavior selection is very 
general, the situations tested in the paper are mostly triggered by entering a location. 
In both of those works, the environment is the sole source of behaviors and the 
behaviors cannot be further decomposed, preventing the implementation of more 
complex behaviors.  

Stocker et al. (Stocker et al. 2010) introduced “Smart Events” – specific objects 
providing NPCs with ready-made responses to external events. An important 
problem is that Smart Events provide the same behaviors for all types of characters 

                                                
8 http://gameware.autodesk.com/navigation 
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(conflicting with O5) and do not provide means for coordination among the 
characters (O6).  

The simulation of Shao and Terzopoulos (Shao and Terzopoulos 2005) features 
autonomous pedestrians in a virtual railway station. Several social behaviors (e.g., 
buying tickets, spectating an art show) with coordination (e.g., queue at the ticket 
booth) mediated by specialized environment objects are introduced. However, every 
character must be explicitly prepared for all the social behaviors it may perform, 
limiting scalability to OWGs. 

Further, the crowd simulation approach cannot be directly translated to OWGs as 
crowd simulation is intended to be believable from a larger perspective, but does not 
necessarily retain believability when individual characters are tracked. To quote 
(Sung et al. 2004): “When we look at a crowd, we care only about what is happening, 
not who is doing it”. In their work this let them adopt a simple probabilistic behavior 
selection model, which is unsuitable for computer games as it allows a character to, 
for instance go, to work twice without a break. 

Brom et al. (2006) take the idea of smart objects further with “smart 
materializations”. In their work the world is inhabited by agents using the belief-
desire-intention (BDI) architecture (Bratman 1987). The only way to act on 
intentions is to choose a smart materialization which is a script fragment embedded 
in the environment. The smart materialization may in turn introduce subintentions, 
which are again resolved in the same manner. For example the character may adopt a 
“have fun” intention. A pub in the environment would provide a materialization that 
realizes the “have fun” intention by instructing the agent to go to the pub and adopt 
subintentions “buy a beer” and “drink a beer”. A simple scheme to choose the best 
materialization among those that achieve the same intention is implemented. This 
work has provided substantial inspiration for us. While smart materializations have 
many of the desired properties, they lack the possibility to create scripts or their 
fragments without any materialization. Also BDI architecture is seldom used as a 
game AI architecture, probably because it is relatively complex and not well known 
to the developers.  

5.3.4 Other Approaches 

Orthogonally to embedding intelligence in the environment (or outside of NPCs in 
general), Bryson (Bryson 2001) advocated using object-oriented programming 
principles in behavior design. In her view, every capability of an agent should be 
represented as an object. Bryson’s approach however has no explicit support for 
agent coordination neither does she outline the use of objects of a finer granularity. 

A different approach to modularizing behaviors is provided by ScriptEase 
(McNaughton et al. 2004). ScriptEase lets users create scripts by using “generative 
design patterns” which are essentially parameterized code generators. This approach 
allows for great flexibility as the scripter can make low-level modifications to the 
generated code but does not account for hierarchical decomposition of complex 
behaviors. 

In a similar vein, (Zhao and Szafron 2014) shows a framework for generating 
cyclic schedules for ambient AI offline. This approach alleviates the problem of size 
complexity, as a large codebase is generated from a much smaller (and thus 
manageable) number of declarative constraints. It however does so at the expense of 
some runtime flexibility, as the general schedules for NPCs have to be prepared 
offline and thus cannot directly react to events in the game world. 
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5.3.5 Summary 

While most of the works mentioned in the preceding sections follow the same 
general direction as we aim for (managing complex code, encapsulation and 
information hiding), they either do not scale to larger use cases or to highly complex 
behaviors or they lack support for some specific features we require. Most 
frequently, the techniques assume the behaviors to be uninterruptible or do not 
provide any consistency guarantees upon interruption (O2). Most of the techniques 
also have limited support for coordination and communication (O6). 

5.4 Our Solution – Behavior Objects  

Behavior objects (BOs) are our attempt at combining the benefits of object-oriented 
programming (OOP) with the benefits of smart objects and other intelligent 
environment elements. BOs aspire to be a parallel to OOP in the behavior context 
and allow scripters to handle complex codebases while maintaining consistency and 
providing robust support for cooperation and coordination as well as the rest of the 
objectives O1 - O6.  

Let us start by making the parallel to OOP explicit: Objects in OOP consist of 
code (methods) and data (fields). The code is defined once for a class of objects, 
while data are specific to object instances. When a method is invoked on an object, it 
manipulates the object’s data to provide a desired result. 

BOs consist of code (scripts), data and central decision logic which we call the 
brain. Code and brain is defined in a BO template, the data is specific to a BO 
instance (this addresses the objective O4). When a script selection function of an 
NPC invokes a script provided by a BO, it executes the script in its own context and 
lets it access the NPC’s internal state. The NPC becomes a holder of the script. The 
script however still has access to the BO instance data which provide further context 
for execution and provide an implicit communication channel to other NPCs using a 
script from the same BO instance (addressing objective O6). The brain (if present) 
manages the individual scripts and may actively influence their execution, either by 
manipulating the BO instance data or by explicit communication with NPCs holding 
BO’s scripts. The BO instance data come in two very different flavors: environment 
data, which are links to entities in the game world, and state, which is internal to the 
object. 

A simple example of a BO is a chair with a “sit” script – here the environment 
data consists only of the chair; the object state is a flag indicating whether the chair is 
in use, and the script consists of three animations (sitting down; idle while sitting; 
standing up). The chair has no brain. A complex example is a BO that manages a 
pub. It contains scripts for guests, the innkeeper and the waitress. The environment 
data consist of links to chair BO instances (as above) inside the pub and the area the 
pub covers; the state is a list of orders for drinks. See Figure 4 for a diagram of the 
situation. 

The brain of the pub BO handles requests for seats and drinks and sends messages 
to guests to inform them where to sit and to the innkeeper and the waitress to instruct 
them to prepare and deliver drinks respectively. This makes the pub a central point of 
communication, which allows multiple waitresses/innkeepers to be added to the pub 
without changing the code. Since the code for guests, the innkeeper and waitress is 
all in the BO, the development of the communication protocols for seat and order 
management is greatly simplified as all its uses are from within the BO. To use OOP 
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terminology, the communications are private to the pub object, hidden from other 
scripts. Most of the rules of thumb used in object-oriented analysis can be easily 
translated to the behavior case to help design a good decomposition of behaviors into 
BOs. 

 

 

Figure 4: An example usage of behavior objects: a pub with multiple chairs.  
The code for individual scripts and central decision logic is provided in BO templates 
(purple, dotted), that are shared by multiple instances (pink, solid). The instances execute 
code and encapsulate state and environment data – links to in-game entities and other BOs. 
NPC_1 represents a waitress – it uses “Waitress” script provided by the pub and manages 
data used by the script. NPC_8 is a guest in the pub – it uses the “Guest” script provided by 
the pub. On a finer level of abstraction, the “Guest” script acts as another script selection 
function which further uses “Sit” script provided by a chair. 

5.4.1 Differences from OOP 

While OOP is a very general methodology, we have found three notable issues 
specific to behavior development that preclude direct application of any of the 
classical implementations of OOP. These issues motivate the main differences 
between BOs and OOP. First, the state of an NPC is implicitly shared by all scripts 
the NPC may execute, which complicates encapsulation. Second, scripts representing 
behaviors have different execution model than programs which needs to be taken 
into account. Third, execution of scripts is highly parallel – all NPCs and BO brains 
act like separate threads. This section details these three issues and how we 
addressed them with BOs. 

5.4.1.1 Shared State 

The fact that the NPC’s state (position, speed, active animation) is shared by multiple 
scripts makes encapsulation of code more difficult – the shared state makes the 
currently executing script implicitly dependent on the scripts that were executed 
previously.  A general principle followed by BOs to minimizes issues caused by 
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sharing state between multiple scripts is to require all scripts to terminate only when 
all the changes to NPC’s state have been fully completed or rolled back and to 
require all scripts to check the NPC’s state anew when they resume execution after 
an interrupt. This is well supported by the underlying BT formalism. 

The reality of the game engine has forced us to make an important exception to 
the above principle: Since a script may require an extensive computation or data 
exchange with other NPCs/BOs to determine the next action, the system cannot 
guarantee that a new script will issue an action on the same frame in which the old 
script has ended. This would result in movement and animation artifacts where the 
NPC stays still for one or two frames during a script transition. To remedy this, a 
script should terminate before its last movement and/or animation action completes. 
Every script is then required to issue an animation and/or a movement action (or 
force the NPC to stop) at the beginning of its execution. This way, the transitions are 
instantaneous and the animation subsystem can take both new and old animations 
into account when choosing an appropriate transition animation. As almost all scripts 
start with movement or animation anyway, this approach required very little 
modification to behavior code and worked reasonably well in practice.  

5.4.1.2 Execution Model of Scripts 

In OOP, executing a method results in a full change of context – the methods lower 
on the stack do not influence the execution of the active method. However, 
inactivating the script selection function of the NPC while a BO script is running is 
not a viable option for OWGs as the BO script would then need to be able to react to 
high-priority external events (e.g., combat) on its own, reducing modularity of the 
code. Thus, in BOs, scripts are injected: using a script of a BO keeps the parent script 
selection function active. In the context of a BT-driven system, using BO results in 
inserting a new subtree in the BT that drives the NPC and thus the parent tree still 
influences execution. This becomes crucial, if the injections are nested. In particular 
a node closer to the root may switch to a different child and terminate the injected 
script – see Figure 5 for an example. The script may also be injected at a well-
defined place in the NPC decision making that is not the part of the main BT. For 
example the NPC architecture may allow asynchronous execution of a small “event” 
tree whenever the NPC is damaged. The script then may be injected as this event 
tree.  

We have considered two variants of script injection: Either it is on-request – NPC 
script selection actively requests a script from a BO and is in direct control of the 
injection (as in the example in Figure 5), or on-command – a script is imperatively 
injected into NPC’s script structure based on conditions external to the NPC (e.g., 
injecting code to handle a combat event). Nevertheless, even the on-command 
injection still keeps the top-level script selection in-place and it is the top-level script 
selection which decides when and if at all the injected code is executed (this helps to 
maintain consistency – objective O2). For most of the use-cases in KC:D, the on-
request method is more appropriate: it is the NPC that decides to perform a work 
behavior and the actual request for the script should be made at the time of such 
decision. However, some use cases require on-command injection as well.  
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Figure 5: Injecting script into an NPC’s main script.  
In this case, it is the NPC that actively requests a script of a given type to be injected. Since 
the higher-priority nodes are still being evaluated when performing the injected script, the 
high-level NPC decision making may terminate the injected script when necessary. A similar 
logic handles the ambient AI of NPCs in KC:D. 

Note that the injection principle can be applied to formalisms other than BTs. For 
example, when finite-state machines (FSMs) (Fu and Houlette 2004) are used, a 
special “use behavior object” state may be expanded to a new FSM prior to 
transitioning to that state. For a belief-desire-intention architecture, methods to act on 
certain intentions may be injected, etc. However, BTs naturally provide a very clean 
support for decomposition and hierarchical structuring of the code which aligns 
nicely with the BO approach.  

5.4.1.3 Parallel Execution 

While OOP languages provide mechanisms to handle parallelism, BOs differ in the 
scale of the problem – effectively every NPC and BO instance acts as a separate 
thread, and thus parallelism has to be accounted for at the architecture level and not 
ad-hoc at the code level.  

The main problem arising from the parallel nature of game AI is safe and 
consistent data access and sharing required for coordinated behavior (O6). While it is 
safe to directly access immutable data belonging to a different thread, access to 
mutable data needs to be more careful to avoid race conditions. There are multiple 
solutions to this problem in OOP, but we consider it best to make each thread (NPC, 
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BO brain) solely responsible for its mutable data. Mutable data of other threads can 
be accessed only indirectly by sending messages to a) request data from another 
thread, b) provide data to another thread or c) request a change of data belonging to 
another thread. The receiver then handles those messages within its own updates. 
Using the message system as the sole mechanism for sharing mutable data is in most 
cases sufficient to ensure that the scripts are robust to any possible interleaving with 
other scripts. In most cases, BO’s environment data is immutable at runtime and thus 
may be directly referenced from anywhere. Internal state on the other hand is almost 
always mutable and thus cannot be referenced directly from other threads. Since an 
injected script is executed within the main script selection of an NPC, it has full 
access to the NPC’s internal state but the state of the injected script cannot be 
directly referenced by the BO’s brain and vice versa (see Figure 6). 

 

 

Figure 6: Possible data access between a BO instance and a holder.  
In direct access the data may be explicitly referenced, while indirect access requires sending 
messages to read/write data. 

5.4.2 BO Summary 

While BOs derive most of their usefulness from the concepts of OOP, they have 
additional functionality and coding rules specific to behavior development: BOs 
require all BO scripts to explicitly handle interrupts and always leave the NPC in a 
well-defined state – even at the cost of not terminating the script immediately after 
an interrupt. BOs have specific execution model that keeps higher-level logic in 
place while executing low-level behavior. BOs support parallelism at the 
architectural level and define clear rules for data access to prevent the most common 
concurrency issues. 

Like OOP, the BO approach is not a silver bullet to solve all behavior design 
problems, but it has the potential to mitigate complexity and enable scripters to 
create more lifelike behaviors within a given timeframe. 

5.5 Implementation 

In this section we describe the implementation of BOs for KC:D. The most common 
type of BOs in use are smart entities: BOs that embed intelligence into the 
environment. To both test the versatility of the BO approach and to meet 
requirements of the design team, four kinds of smart entities were developed: smart 
objects, navigation smart objects, smart areas and quest smart objects. We also 
created situations as a very different type of BOs. The motivations for the individual 
types of BOs are provided along their implementation details in the following 
sections. Figure 7 shows the relationships between types of BOs that were 
implemented. As the AI system is primarily based on BTs, BTs are used for both 
script selection (at multiple levels of abstraction) and for the low level scripts. 
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Unfortunately, we cannot publish the code for the BO implementation described 
in this chapter, as it is tightly bound to the underlying proprietary game engine. In 
addition, the usefulness of the code would be limited, since the implementation of the 
BOs themselves is straightforward and most of the code relevant to BOs is dedicated 
to integration of BOs with the virtual world, which is highly case-specific. 
Furthermore, BOs are mainly a paradigm for behavior development rather than a tool 
for a specific use case and we consider the paradigm and its evaluation in a full-
fledged OWG the contribution of this thesis. The digital attachment however 
contains several videos, showcasing BOs in the complete game.  

 

 

Figure 7: A simple class diagram of various types of behavior objects and their basic 
properties.  
Abstract categories have dashed borders, while full borders correspond to types of BOs that 
are actually used in the game. 

5.5.1 Requirements on the AI System 

From the perspective of behavior injection, there are four very important aspects of 
the AI system in KC:D  that we want to highlight (details for all of those features are 
given in Section 4). In practice, those or similar mechanisms will be needed for most 
BO implementations. The first one is the ability to execute a specific cleanup script 
when a script is interrupted. This feature is critical to allow behavior objects and 
NPCs to maintain consistency (objective O2). The second one is the hierarchy of 
subbrains. The subbrain interaction is important for the situation BOs and to 
decouple combat logic and ambient AI in order to make sure that combat is always 
functional (objective O1). The third one is a standalone mechanism for connecting 
BO instances with their environment data (as seen in Figure 4), which in the case of 
KC:D is the database of links between game entities (e.g., a pub is connected to all 
seats within; a quest is connected to an item the player should find). This way 
instances have specific data, but the data is decoupled from behavior code (objective 
O4). The fourth requirement is a mechanism for communication between BOs and 
NPCs – in our case this is the messaging system. 
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5.5.2 Smart Entities 

A smart entity (SE) is a behavior object associated with a specific entity in the game 
3D world. There two basic types of SEs in KC:D – smart areas (s-areas), which are 
associated with an area in the game world (e.g., a pub), and smart objects (s-objects), 
which are associated with a specific object (e.g., a door). S-objects are further 
divided into regular, navigation and quest s-objects. In a sense, SEs are a 
generalization of all of the well-proven techniques that embed intelligence into the 
environment (see sections 5.3.1 - 5.3.3). SEs are thus designed to be versatile and to 
be able to take a wide range of roles in the script codebase. 

We will first discuss the common properties of SEs and later deal with their 
differences. Note that while there are huge differences in the way different types of 
SEs are used in practice, there are only minor differences in their implementation. 
This provided significant speed-up of development and allowed reuse of the same 
script development tools. SE contains all the information the NPCs need to behave 
appropriately in the context of a game entity (e.g., scripts for the innkeeper and for 
the guests, scripts for opening the door). If necessary, the SE’s brain coordinates 
various NPCs within (e.g., assigns free seats to the guests, chooses NPCs to engage 
in a brawl, handles queues near the door, …). As such, an SE together with the in-
game entity forms a standalone package that may be plugged in to the virtual world 
and be used by NPCs without modification to NPC code (objective O4). The SE may 
also disable certain scripts and limit the maximal number of NPCs that may hold a 
given script at one time. 

5.5.2.1 Script Injection for Smart Entities 

To ensure that gameplay-critical behavior remains uninterrupted (objective O1), we 
have decided that the injection should be performed on-request. We have thus added 
a new BT node that requests a script from SE (further referred to as request node).  

There are two possible configurations for the request node that are handled in a 
slightly different way: 1) the designer explicitly states the name of the script that 
should be requested and 2) the script is left unspecified. In the former case it is 
checked, whether the SE provides a script with the given name, whether the script is 
currently enabled and that the maximal number of holders for this script is not 
exceeded. If any of the conditions is not satisfied, the SE returns failure and the 
request node fails. In the latter case, the first available script is chosen, failing only if 
there are no scripts available. This is used especially in the context of s-objects which 
often provide only one script. Another use is for the special case, when the NPC 
wants a smart area to just give it any script, which is useful for “idle” script. This is 
specific to ambient AI (objective O3). 

If a more complex logic for requesting scripts is necessary, the NPC requests a 
high-level script from the SE, whose only task is to perform script selection and 
requests more specific scripts from the SE. This approach is used primarily when 
NPCs should behave differently in the same context based on their traits, preferences 
or knowledge (objective O5). 

If the requested script is available, it is instantiated in a data structure called script 
descriptor which is passed to the request node. The script descriptor contains meta 
data about the script (e.g., when it should be dropped) and an instance of the script 
(BT) that achieves the behavior, which we call injected subtree. The injected subtree 
is then added as the only child of the request node and the tree continues execution 
by evaluating the subtree. The injected subtree has access to the NPC’s state and data 
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and thus may modify the behavior appropriately (e.g., a rich guest in a pub orders 
more expensive food – objective O5). 

If needed, the script descriptor contains new message inboxes that should be 
added to the NPC to allow synchronization and communication (objective O6). The 
request node is responsible for subsequently removing those inboxes when the script 
is dropped. The AI system supports nested inbox contexts in order to avoid problems 
with name clashes, i.e., if the script descriptor contains an inbox which has the same 
name as one of the inboxes the NPC already possesses, references from scripts 
defined in the SE will resolve to the newly added inbox while references from 
outside will resolve to the original inbox. This is necessary to maintain consistency 
(objective O2).  

As synchronized action of multiple holders is often required (objective O6), the 
descriptor also refers to the SE’s local context in which locks are resolved (the 
context is part of the instance state). This ensures that using a fixed lock name across 
multiple SE instances is safe. For example, when NPCs sitting around a table (a BO 
instance) in the pub want to synchronize movement during a toast, they may all 
explicitly reference “toast” lock. Since the lock name is resolved relative to the BO 
instance, holders of the same script at another table instance will receive a different 
lock when referencing a “toast” lock. This improves code readability and prevents 
the necessity to share a lock explicitly by messages.  

As requests may be nested, it is technically possible to request the same script 
twice from the same object. But this is considered a runtime error, as the expressive 
power of recursion would do more harm than good in a game setting. 

5.5.2.2 Smart Entity’s Brain 

The basic decision making of the SE is passive: for each script, the SE maintains 
information whether the script is enabled (i.e., whether new instances of the script 
may be requested) and the maximum number of instances that may be adopted at the 
same time. This information is used upon request processing – disabled scripts or 
scripts where maximum number of adopted instances has been exceeded are not 
made available for injection. 

Some SEs, especially areas, however need to have brains to actively influence the 
scripts. The brain contains a script that gets updated regularly and may either modify 
the passive decision making based on external conditions (e.g., disallow “drinking” 
script in a pub if no innkeeper is present) or it may perform some coordination 
among script holders inside the area (e.g., instruct a pair of customers to play cards 
together). The coordination is done by sending messages between the SE and the 
script holders. Since the NPCs are now controlled by the injected subtrees, the SE 
can make strong assumptions about NPCs responses to its messages. Even if the 
NPC terminates the injected subtree, the cleanup logic of the behavior will notify the 
SE of this fact and allow for recovery. This central control of joint actions is an 
important aspect of the implementation as it removes the need for NPC negotiation 
(related to objective O6).  

There are special BT nodes specific to the SE brain that enable/disable scripts and 
that send messages to holders of a certain scripts. The brain BT can access variables 
containing references to script holders and system data (e.g., what scripts are 
enabled). The BTs for the NPC scripts then may use a special node to send messages 
to the SE that the NPC received the script from.  

In many scenarios, the SE needs to perform some action whenever an NPC adopts 
a certain script (e.g., assign a free seat to a customer in a pub) or when an NPC drops 
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the script (e.g., the innkeeper says goodbye to the leaving guest). To streamline the 
development in such scenarios and to make the BTs of the SE brain and the scripts 
more readable, we have introduced event handlers to the SE brain. An event handler 
is simply a BT that is executed until completion for each instance of an event. All of 
the SEs implement two events OnAdopt – an NPC adopts a script – and OnDrop – an 
NPC drops a script. S-areas introduce two more events that fire whether the NPC has 
requested a script or not: OnEnter – an NPC enters the area – and OnExit – an NPC 
leaves the area. The SE adds events to an event queue. If the event queue is non-
empty upon updating the SE, the handler tree of the event to be processed is updated 
instead of the main tree. In order to keep handler code simpler and without safety 
checks and to simplify debugging, the handler trees are executed without 
interruption. The designers however must make sure that the handler trees complete 
quickly. The current practice is to only update the state of the SE or send messages 
inside the handler trees and perform any actual actions on the main tree. To prevent 
the main tree from starving at least one update to the main tree is guaranteed between 
two successive events. 

5.5.2.3 Linking Data to Smart Entities 

As there is an in-game entity (e.g., pub area, chair 3D model) attached to every SE 
instance, it is possible to use the linking feature of the underlying AI system to 
connect the instance to its environment data. This is easily done and visualized in the 
game editor. For example, the pub area has a link labeled “seat” to all chairs 
available for guests in the particular pub and further labeled links for the beer tap and 
other notable locations in the area. Upon initialization, the SE gathers the immutable 
environment data from the links to its internal variables to simplify access. 

5.5.3 SE: Smart Objects 

S-objects are SEs with the simplest intended use. Their task is primarily to handle 
short behaviors associated with specific in-game objects (sitting on a chair, opening 
door, cooking on a fire, …). The environment data of s-objects is therefore usually 
only the 3D model they are attached to. To reduce system load, majority of s-objects 
do not have their own brain and act only passively. 

Still most of the s-object behaviors cannot be implemented by simply playing an 
animation, because KC:D aims for high behavioral fidelity. For example, when 
sitting on a chair, the NPC should move the chair a little away from the table with its 
hand, go closer to the table and drag the chair back to its original position while 
sitting down. To properly align the chair with the NPC, it must be first attached to 
the NPCs hand by its back, then the hand is detached and later the NPCs bottom is 
attached to the chairs seat. Without the attachment, the chair might easily become 
slightly out of sync with the NPC producing an eerily looking result – this is a 
limitation of game engines in general. Since the s-object provides complete code and 
not only an animation, these issues are handled easily. 

Although s-objects are used for the simplest use-cases in KC:D, they are still 
much more powerful than s-objects in other OWGs that we know of. Apart from the 
simple uses outlined above, more complex scenarios are supported due to the very 
general nature of SEs. The most elaborate s-object that has been deployed so far is a 
bench that allows up to 4 NPCs to sit on it. Since the bench is attached to a table, 
NPCs cannot stand up directly, but need to move to the end of the bench and then 



 

 36   
 

leave. If an NPC in the middle wants to go away, the NPC on the side stands up, 
clears the way and then sits back again.  

5.5.4 SE: Navigation Smart Objects 

Navigation s-objects are an extension of regular s-objects. Navigation s-objects work 
as a link between two navigable areas that would be disconnected otherwise. The 
most common ones are doors or barriers that can be jumped over. The purpose of the 
navigation s-object is to provide a script that the NPC should use to traverse the link. 
As in the regular s-object case, a more powerful mechanism than just playing 
animations was needed. A good example is a door: not only does the NPC play an 
animation, it also must be properly synchronized to the door and, more importantly, a 
queue of NPCs waiting for the door must be handled reasonably. For this purpose, 
the doors are linked to nearby places where NPCs should wait for their turn in the 
door and explicitly manage the queue, including giving way to the player. This 
central approach was chosen in favor of distributed solution using steerings or 
similar techniques because given the specifics of the AI and animation systems and 
various minor design requirements, the central control allows for much better results, 
although with some extra work.  

Navigation s-objects also differ from regular s-objects in the injection method. 
The navigation s-object behavior is injected on-command – the NPC does not 
partake in the decision to use the s-object, it is the navigation system that decides that 
the particular s-object is used during movement. The injected subtree is then inserted 
as a child of the move node and updated accordingly. Once the injected subtree 
finishes, the move node resumes its normal execution if the subtree was successful or 
fail if the subtree failed. The injected subtree is removed from the move node in both 
cases. 

5.5.5 SE: Smart Areas 

One of the limitations of smart objects is that not all behaviors can be meaningfully 
attached to an object in the game. Many higher-level behaviors are better viewed as 
attached to an area (pub, forest, city, …). We have therefore developed smart areas 
(s-areas) which are smart entities connected to whole areas in the game world. As s-
areas usually represent higher-level behaviors, they often delegate the low-level 
functionality to s-objects. In the pub example, the chairs or benches in the pub area 
are s-objects that provide “sit” script that is then requested from the “guest” script. A 
typical s-area thus has a large amount of environment data which consist mostly of 
smart objects it uses. 

5.5.5.1 Script Requests and Smart Area Hierarchy 

In contrast to s-objects, where the NPC has to possess an explicit reference to an 
s-object instance while requesting a script, an s-area may be used implicitly as “the 
s-area I am currently in”. While in some cases it turned out to be more useful to use 
s-areas with explicit references as well, implicit area referencing is useful when the 
NPC wants to perform any particular script from a larger group of scripts. A typical 
example is “relax” behavior: the NPC wants to perform any relaxing activity that is 
available in the area it is in (e.g., drinking or dancing in a pub, idly resting at a field 
or watching comedians in the city center). It is actually beneficial, if the relaxing 
activity is different when requested repeatedly. We call behaviors where an NPC is 
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not bound to a particular area general. This is in contrast with specific behaviors, 
such as “work” where the NPC has a specific place where it works and this should be 
the same every time it works and thus an explicit reference should be used.  

There is however a catch in using general behaviors: to reference an s-area 
implicitly, the NPC must be inside the area. But how does the NPC know, where a 
pub is if all it requires is to relax? As mentioned in the design objectives, the pub 
location should not be hardcoded in the NPC’s script. The solution was to introduce 
parent-child relationship between s-areas and make the whole city an s-area and 
make the pub its child. Now the city (the city designer) knows the locations of all 
pubs and other relaxing areas within. The NPC thus requests a “relax” script 
implicitly and the city s-area gives it a BT that consists of a sequence of a move node 
that moves the NPC to the pub and a request node that requests a “drinking” script in 
the pub. 

However it later proved necessary to involve higher-level areas in specific 
behavior execution as well. The reason behind this is that the s-area should be able to 
control or modify all movement of NPCs within its bounds (e.g., make the NPC pick-
up a torch when moving at night). A high-level s-area is a good place to store this 
kind of behavior modifications as it applies globally to all movements within the 
area. The code for this movement behavior is generic and not bound to any particular 
script (the target location is passed to the injected subtree through a shared variable, 
because BTs in KC:D currently do not support parameters to script requests). An 
example of injection of this kind of movement script is shown in Figure 8. 

In the SE implementation we evaluated for this thesis, sleeping, eating and most 
of working behaviors are specific, but the pastime behaviors (fun, prayer, …) and 
some non-distinctive working behaviors (e.g., fishing or hunting) are general. 

A different problem we aimed to solve with s-area hierarchy is that an NPC that is 
currently in a pub may decide it wants to pray, but the pub should not be required to 
know of all churches in the city. It is thus a good idea to ask the city in such a case. 
For this reason, if the current s-area cannot provide any applicable script, the request 
node asks the parent s-area. To avoid confusion, the scripters have adopted the 
practice that scripts in leaf areas have distinct names from scripts in the parent area 
and for general behaviors, only the scripts from the higher-level areas are requested. 
This way, the higher-level areas always take part in decisions about general 
behaviors that take place within its bounds and may for example balance the amount 
of NPCs in individual pubs in the city. 

There is however one possible exception, when defining the same script in both 
child and parent areas might be desirable. This would be the case with general 
behaviors like “go to toilet”, where the NPC should stay in the same s-area, if it may 
perform the behavior there, but should be able to ask a parent area, if this is not 
possible. As of now, no such behavior that the design team would want to have 
implemented in the game has been identified. 

We have also introduced a default top-level area, covering the entire game world. 
This way general behaviors can be requested anywhere on the game map and the 
default area is able to guide the NPC to an s-area that provides a suitable script. 
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Figure 8: Handling specific behaviors at a high-level smart area to control movement within 
the area.  
The $thisSA variable is provided by the system and refers to the s-area that provided the 
script. Note that when s-area scripts are nested, $thisSA will refer to a different value in 
different subtrees. 

5.5.5.2 Using Smart Objects inside Smart Areas 

One of the interesting problems the scripters tried to solve was how to properly use 
s-objects, in particular chairs, inside s-areas: i.e., how to best compose script 
selection functions expressed with BOs. The typical problem is as follows: the pub 
s-area wants the NPC to sit down, wait for a beer and drink it, then stand up. While 
sitting down and standing up should be delegated to a s-object, it is necessary that the 
script in between remains controlled by the s-area while still letting the s-object make 
sure, that the NPC does not remain seated if the script is terminated. 

To keep the s-object in control of init/done scripts, the solution that was adopted 
is that the s-area script requests the s-object script which in turn requests a “private” 
s-area script that expects the NPC to be seated. The name of the private script is 
passed through a shared variable. Technically, the chair script should work as a 
decorator node over the private s-area script. An example of the setup is given in 
Figure 9. 
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Figure 9: Using smart object to “decorate” a script in a smart area.  
In the actual implementation, the node structure at the s-object script root is a bit more 
complicated, but is conceptually equivalent to the structure in the figure. 

5.5.6 SE: Quest Smart Objects 

Quests can be divided into two categories with regard to the way they affect NPCs: 
quests that do not require NPCs to change their behavior are called behavior-
preserving and those that do are behavior-changing. An example of a behavior-
preserving quest is a guard asking the player to kill bandits living in the woods. The 
bandits behave the same way they would without the quest (attack the player when 
they see them) and the guard keeps guarding the village. The only change is in dialog 
options the guard provides – once the bandits have been killed a new dialogue to 
congratulate the player on success in the quest is activated.  

The quest system in KC:D is event-based and handles behavior-preserving quests 
very easily. A quest is composed of a series of steps. Individual steps of an active 
quest listen to events in the game (player picking up items, killing enemies…). These 
events then trigger progression of the quest to next steps. The quest steps are also 
bound to dialogues that the NPCs use and allow/disallow various dialog options. 

Behavior-changing quests are however more demanding and handling behavior-
changing quests is the main motivation for quest s-objects. It is not desirable for 
NPCs participating in a quest to completely abandon their daily cycles and stand at 
one place, waiting for the player. Instead, behavior changing quests may directly 
modify daycycles of the participating NPCs. Initially a new type of BO was intended 
to encapsulate scripts related to a given quest, but to save development time, it was 
decided to use quest smart objects to handle this task. A behavior-changing quest 
delegates execution of some of its steps to a quest s-object. The quest s-object then 
notifies the quest of completion/failure of the assignment by the player. This 
communication is done through the message system. 

The quest smart objects are technically the same as regular s-objects which 
allowed us to directly reuse code for both the game and the editor, but they are used 
very differently. The most notable difference between regular s-objects and quest 
s-objects is that quest s-objects are connected to quest anchors – game entities not 
visible in the game. Quest anchor’s only function is to connect the quest s-object to 



 

 40   
 

its environment data. Quest s-objects also always have brains that guide the 
execution of the quest step(s). The quest s-object then may instruct the NPC to 
exchange a part of its daycycle with a behavior requested from the quest s-object. 

If the quest requires the NPC to change its behavior completely, regardless of the 
day cycle, the appropriate approach would be to introduce new higher-priority quest 
subbrain to the NPC. The quest s-object would then activate the quest subbrain 
which will in turn request a script from the quest s-object. However all of the quests 
implemented so far are designed to keep at least the basic daycycle intact (in 
particular let the NPC sleep at nights).  

5.5.7 Situations 

While SEs are powerful and versatile, they are not well suited for small and short-
lived events. To enrich the world with such short events, we designed situations as a 
different type of BO. A situation encapsulates a short coordinated behavior involving 
multiple NPCs. Typical examples of situations in the context of KC:D are two 
villagers pausing for a small talk, a collective dance in the pub or a brawl. An 
important aspect of situations in KC:D is that they serve mostly as “eye candy”, i.e., 
they should not significantly alter the state of the game world. This is important 
because it lets the AI system run situations without considering their consequences 
for the current state of the game. Situations have deliberately very low priority so 
that any “important” behavior always overrides the situation.  

Technically, situations are run within a specific situation subbrain of the NPC, 
which has a higher priority than ambient AI, but lower priority than any other 
subbrain. Thus if only an ambient behavior is being performed, and the NPC should 
start performing a situation, the ambient AI is suspended and the script provided by 
the situation is started. This could still lead to undesirable results (such as an NPC 
starting to dance in the middle of a conversation). To keep the ambient AI in some 
control over situation execution, the NPC has to explicitly subscribe to the situation 
system. This is achieved by decorating a subtree of the ambient AI script with a 
special node that subscribes the NPC when the execution of the subtree starts and 
unsubscribes when the execution is finished. This makes it possible for situations to 
be developed almost independently of the rest of the AI code, as the potential 
negative interactions with other scripts are minimized by design (protecting 
gameplay-critical behaviors – objective O1).  

A situation template describes several roles, each providing a script for one of the 
NPCs that participate in the situation. Roles also have associated conditions that an 
NPC must satisfy to take the given role (e.g., to engage as an aggressor in a pub 
brawl, the NPC must be drunk). The situation templates are connected to s-area 
templates to allow for area-specific situations. Once a component called situation 
manager decides that a particular situation template should be instantiated, it tries to 
find suitable NPCs using constraint satisfaction techniques. After the NPCs are 
chosen, an instance of the situation is created and the scripts are injected 
on-command as the main tree for the situation subbrain making the subbrain active.9 
More details on the inner workings of the situation manager are given in Chapter 6. 
Here we are interested only with how situations encapsulate a set of scripts. 

                                                
9 To avoid multithreading issues and inconsistencies, the script is sent to the situation subbrain as a 

request for injection. The situation subbrain then injects the script during its next update. 
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If any of the chosen NPCs cannot execute the situation or terminates the situation 
prematurely (e.g., because a higher-priority subbrain becomes active), all other 
participants also abort the situation. Once again, the clean-up scripts are guaranteed 
to be executed, keeping the system in a consistent state (objective O2). After all 
participants finish their scripts, the situation instance is destroyed. 

As a behavior object, situation is lightweight compared to SEs. This is mostly 
because situations are much more specific than behaviors provided by SEs and that 
situation instances are short-lived. In particular, situations do not have their own 
brain, as central decision making is usually not necessary and in the rare cases when 
it is, one of the holders may handle the central logic. 

For coordination purposes (objective O6), all participants are given explicit 
references to all other participants and a local synchronization context is maintained 
for the situation. The situation also provides the participants with up-to-date 
information on the state of the other participants, especially if they already started the 
given script or if they dropped the script and thus may no longer be expected to 
cooperate.  

5.6 Evaluation 

The evaluation in this chapter consists of two main parts: qualitative observations 
gathered in 16 months since the scripters first used smart areas for development and 
two rounds of semi-structured interviews we performed with scripters. In our 
previous work, we have also performed quantitative evaluation, which will be 
discussed before the results in this thesis.  

5.6.1 Summary of Evaluation in Previous Work 

In our previous work, we have performed quantitative evaluation of scripters’ 
performance using BTs and using BTs with s-areas (Černý et al. 2014). While part of 
the measured metrics showed statistically significant differences, the sample size and 
the scope of the tasks assigned to the participants was limited and it was concluded 
that the “data provide some support that s-areas are better, when modifications are 
frequent – which is the case in real development – but the results are not clear and 
further research is needed.”  

Qualitative feedback was also gathered, including the fact that “subjects were 
relatively quick at understanding code created with s-areas. Judged by the researcher 
monitoring experiment progress, the subjects using s-areas had no trouble finding the 
code for a particular behavior [in contrast to subjects not using s-areas].” 

We have also tested the computational load of the AI system – including SEs – 
imposes on the CPU and found that it is fast enough for production (Plch et al. 2014). 
The system consumes less than 1 ms on average with 30 complex NPCs running and 
less than 2 ms with 300 simple NPCs running. However, the large amount of 
s-objects turned out to be a bottleneck. In response the KC:D team decided to reduce 
the number of s-objects that have their own brains and to update those that have brain 
less frequently to ensure swift execution even with larger worlds. BO instances also 
share pools of instantiated BTs and inboxes to reduce memory footprint while 
keeping the performance benefit of preallocated and preconstructed objects.  
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5.6.2 General Observations 

In general, the virtual world works well using BOs and the structuring of scripts into 
objects enables scripters to concentrate on the individual aspects of the world (pub, 
shop, church, …) while only minor problems arise during integration of the 
individual objects into the world (objective O4). As an example, one of the scripters 
was tasked with adding ambient AI to a freshly created village. This required placing 
approximately 60 s-areas and 200 s-objects in the world, linking them to 
environment data and performing basic tests. The scripter completed all those tasks 
by himself in two days. 

The scripters have been able to implement behaviors that – to our knowledge – 
have not been present in any commercial game, for example realistic door and 
seating logic and complex interactions with items in a pub. Those behaviors were 
included in the public release of a beta version of the game. S-areas and all types of 
s-objects are considered stable and have been deployed in a public beta version of the 
game. The situation system is still in preliminary use but unlikely to change 
significantly. 

We have also noted that s-areas, quest s-objects and situations closely correspond 
to the way game designers think about the world: it is natural for them to describe the 
behaviors that NPCs should manifest in a pub separately of other behaviors the NPC 
perform in their daily cycles. 

So far, over 30 types of s-areas and over 40 types of s-objects of release quality 
have been developed and released in the public beta version. Nine situations were 
developed to test the situation system, but these situations will be subject to heavy 
changes before inclusion in a release build. Fifteen quests have been released in the 
public beta version and multiple others have been developed in release quality. 

We received mixed feedback to the fact that s-areas have strict boundaries. 
Boundaries introduce issues to handle when the movement to the area fails for some 
reason or produces unnecessary movement, in case the s-area instructs the NPC to 
leave the area (e.g., to gather wood outside the area). On the other hand, strict 
boundaries are beneficial from debugging perspective – one can be sure, that since 
the NPC is outside the area, it cannot receive a script from it. 

Another lesson learnt is that it is vital to keep the s-object scripts small and 
focused on a single task while providing detailed control to the parent s-area. An 
example that used to be problematic is feeding fire in a house. In an initial 
implementation, the house s-area told the NPC to use a fire s-object. If the fire 
s-object realized there is no wood, it instructed the NPC to use an s-object 
representing a pile of wood outside the s-area. Now the s-area believed that someone 
was performing fire feeding script and should be done quickly, but in fact, the NPC 
was outside the area on a much lengthier task. The current implementation is that if 
there is no wood, the fire feeding script fails. The s-area is notified of the reason for 
the failure and assigns a “find wood” script to the NPC. This way the s-area is more 
aware of what is going on and may react to individual events. 

The above example also illustrates where the system evolved to: the individual 
scripts are kept small and are hierarchically requested from a large number of BOs. 
One further example is the pub. The pub directs NPCs to table s-objects which in 
turn delegate the actual sitting to several attached chair s-objects. The table also 
manages a bowl s-object that manages pieces of chicken (also s-objects). To eat, the 
NPCs thus request eating script from the table, which requests a script from the bowl, 
which requests a script from the chicken pieces. This arrangement is instructive and 
scripters are happy that building a new pub can be done by simply arranging the 
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premade s-objects and connecting them with links. Furthermore, any element can be 
replaced without changes to the others (e.g., a plate instead of a bowl, a piece of pork 
instead of chicken) and the individual scripts are easy to debug. The downside is that 
the abundance of s-objects is taxing on the system by both the need to manage the 
s-objects and by making the NPCs trees deeper and thus slower to evaluate. 
However, this load seems manageable so far. Another performance related 
technicality it that it was very important to pool and reuse the injected subtrees 
instances instead of creating and destroying them on the fly. 

5.6.3 Qualitative Feedback 

We performed two rounds of semi-structured interviews with all 6 scripters involved 
KC:D development in the first half of 2015. Except for the technical design lead, 
these are all of the KC:D development team that used BOs on a daily basis at the 
time of the interviews. We have chosen a qualitative approach because there are few 
scripters in the company and thus quantitative conclusions would be weak. The 
experiences of the individual scripters are also not comparable, as the scripters 
specialize and solve very different problems. Recruiting external subjects to extend 
the sample size is not practical, as a large amount of knowledge has to be mastered, 
before a user is able to deal with tasks at least remotely connected to actual practice. 
Structured interviews have their limitations, nevertheless they have given us valuable 
insights for further development of our variant of BOs and we consider them of 
interest to anyone trying to implement their own BO variant. 

Shneiderman and Plaisant (2005) recognize five basic usability measures: time to 
learn, speed of performance, rate of errors by users, retention over time and 
subjective satisfaction. We focused on subjective user satisfaction as this is the only 
category where we can, to some extent, separate the effects of using BOs from the 
features and quirks of the underlying AI system and BT implementation.  

The first round of the interviews consisted of broadly formulated questions on the 
general usage of the AI system (including BOs), while the second round had more 
focused questions linked to the design objectives of BOs. 

5.6.3.1 First round of interviews 

The interviews in the first round consisted of nine questions and took 30 - 60 
minutes. Table 3 shows the questions and the information we expected to gather 
from the answers. In general, we tried not to mention BOs in the questions to make 
scripters more likely to report when they used alternative solutions and to prevent 
bias. We also wanted to gather feedback for other parts of the AI system than BOs. 
While we asked the scripters to report on the AI system as a whole, we expected all 
the answers to reflect on BOs to an extent, as the vast majority of in-game behaviors 
are built with BOs.  

 



 

 44   
 

Q1 What were the tasks you worked on recently? Frame the interview and 
provide source for specific examples for the rest of the interview. 

Q2 What activity consumes the most of your development time? Discover the 
main bottlenecks for production. 

Q3 Give an example of a code segment/snippet that is often repeated across 
behaviors and has to be copied each time and a segment that is well reused 
across behaviors. Discover a situation where BOs are not applicable in 
practice, although they should be in theory. Understand the potential for AI 
code reuse. 

Q4 Describe the process of implementing a behavior from a design request to 
the final code. Discover how BOs fit (or do not fit) in the overall production 
pipeline. 

Q5 How would your behavior code change if you could only use plain tree 
injection (without BOs). Understand what features of BOs are considered 
important. 

Q6 What was the most complex/difficult task you have worked on in this 
company? The most challenging tasks are likely to demonstrate the full 
power (or lack thereof) of a system. 

Q7 Describe the process of resolving an issue reported by the QA department. 
Discover whether BOs help/hinder debugging. 

Q8 What do you dislike about the scripting tools? Gather all the problems 
scripters face when writing code. 

Q9 Describe your ideal scripting tool. Gather constructive suggestions and let 
the scripters compare BOs to hypothetical alternatives. 

Table 3: Questions in the first round of interviews.  
The reason why we included the individual questions are shown in italics. 

First, we will focus on issues with the system, which were mostly reported for 
Questions 3, 8 and 9. The scripters reported a number of usability problems with the 
underlying AI system, especially with the BT editor and debugger, but only three 
concerns that could be linked to BOs were raised. The most common issues related to 
BOs (mentioned by four scripters) were the usability problems inherent in debugging 
large trees (e.g., “the trees do not fit well on a single screen”). This is mainly an issue 
with the BT editor in KC:D, but is related to BOs, because every injection adds depth 
to the tree and use cases in KC:D require a large number of injections. Second came 
the necessity to use global variables to parameterize injected scripts (four mentions 
by two scripters, see Figure 8 for an example). One scripter also mentioned that he 
dislikes that all s-objects need to be connected to an in-game entity, although for 
some quest s-objects there is no natural connection. Overall, BOs are seldom the 
source of frustration of scripters, although they are used on a daily basis. The 
answers also support our previous work (Gemrot et al. 2014) where we show, that 
quality tooling support is vital for a technique to succeed in practice.  

Except for a few references to usability issues with the AI system, Questions 4, 6 
and 7 did not provide any valuable insight into BO usage. The other questions 
however conveyed some interesting feedback. 

The most time-consuming activities (Q2) were debugging in general and updating 
code after a backwards incompatible change has been made to the underlying AI 
system (both mentioned by four scripters). Good debugging support is thus vital to a 
success of a tool. It is also obviously beneficial, although not always possible in 
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practice, to change the underlying AI system as little as possible during production. 
One scripter reported development of synchronized behaviors as the most time 
consuming and one reported that he spends most time in figuring out, how exactly 
should the relatively broad requirements from game designers be implemented at the 
low level. 

Examples given for good encapsulation (Q3) were very specific to KC:D and do 
not provide a valuable insight into BO usage. However, seven examples were given 
of frequently copy-pasted code. All of those were small snippets consisting of up to 
eight nodes and were not suitable candidates for BO-based implementation (e.g., 
searching the link network for a useful object, aligning animations to game entities). 
While this means that BOs let the scripters reuse larger code structures without 
problems, it also indicates a room for improvement of the AI system: creating a 
reusable BT snippet should be made easy, especially it should be straightforward to 
pass data (parameters) to an injected tree.  

Best insights into BOs were provided by Q5. Scripters reported that without BOs 
they would reimplement: the ability to connect behavior code and data (four 
mentions); a local communication hub/an entity that handles messages related to a 
given context (three mentions); a central logic (brain) for a set of scripts (two 
mentions) and a container of related scripts (one mention). One scripter also 
mentioned that BOs help him write consistent code and another stated that he “would 
implement something very similar”. We see that the defining properties of BOs 
(connecting code and data and a centralized point for coordination) were indeed 
perceived as important.  

5.6.3.2 Second round of interviews 

The second round of interviews consisted of five questions which aimed to elicit 
feedback on how do BOs fulfill the design objectives of the system (see Table 4) and 
took 10 - 30 minutes. 

Q10 was bound to objectives O1 and O2. Only one scripter reported that he has 
written complex code with interruptions in mind. He has been responsible for making 
scripts work when interrupted with a dialogue. While it was not hard to let the NPC 
finish an uninterruptible task prior to dialogue, main difficulties stemmed from the 
fact, that the script has to resume to the point where the dialogue started, while some 
of the NPC’s state resides only in the animation system, inaccessible to the BT. In 
particular, an animation may be queued for execution, but not actually started when 
the dialogue is invoked (see Section 5.4.1.1 for the reasoning behind this). 

To remedy this, an improvement in the animation handling was implemented, 
letting the scripters to directly access animation state and to create “lambda BTs” – a 
BT counterpart to lambda functions in classical programming languages. Lambda 
BTs are subtrees that are attached to events in the animation system. These subtrees 
then get executed regardless of the progress in the main BTs and can send messages 
that are handled in an appropriate moment by the main BT.  
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Q10 When writing code, do you take into account the possibility of interruption by 
quest/combat? How? (O1 and O2) 

Q11 Is there a difference in using BTs and BOs in quest logic and in ambient AI? 
(O3) 

Q12 What are the necessary steps to place a new instance of an s-area/s-object in 
the game world? (O4) 

Q13 Have you implemented any behavior where the attributes of an NPC would 
change the way the NPC behaves in a given context? (O5) 

Q14 What was the most difficult synchronization/coordination task you 
implemented? Why? (O6) 

Table 4: Questions in second round of interviews.  
The design objectives that motivated the questions are shown in italics. 

The same scripter and three other colleagues have implemented simpler 
interruption-aware code that handled halting of the subtree (stopping the script 
without the need to resume to the original state). Two of those reported that it was 
easy and one other reported that BTs support halting well. 

We see that the system demonstrates capability to properly handle “hard” 
interruptions when the NPC discards the running script completely, while further 
refinements are necessary to the “soft” interruptions where the script is expected to 
maintain its state after the interruption has finished. 

Q11 was intended mainly to check whether our focus on ambient AI (objective 
O3) has not introduced problems in quest handling. This does not seem to be the case 
as no scripter reported notable problems with implementing quest behaviors. The 
only problem that was mentioned was the fact that quest logic intersects with 
multiple systems with overlapping capabilities: quest s-objects, the dialog system and 
the quest system (see Section 5.5.6 for details). The consequences are twofold: 1) 
writing quests requires the scripter to interact with several different user interfaces 
and 2) there are multiple ways to distribute the quest logic among the systems. The 
current consensus is that when a quest uses an s-object (i.e. when the quest alters 
behaviors of NPCs), then all of the quest logic is implemented within the s-object 
and the other systems only pass messages to the s-object. Other than that, three 
scripters considered quest behaviors to be very similar to ambient AI and two 
scripters considered quest behaviors to be simpler in general than ambient AI. One 
scripter has not implemented any quest yet. Although we did not ask directly about 
quest s-objects, two scripters said that quest scripts differ in that quest s-objects serve 
as a central entity to coordinate the quest. This indicates that quest s-objects do their 
job well. 

For Q12, all scripters reported that to create a new instance of a BO, they never 
needed to do more than link the BO to the appropriate environment data. Two 
scripters explicitly said that the process was quick, while two reported on usability 
issues with the linking system. This shows that behavior code is well decoupled from 
data and that objective O4 was fulfilled.  

With regards to different behaviors of NPCs based on their attributes (objective 
O5, Q13), only one scripter has already implemented such a behavior. This was a 
military camp, where soldiers are assigned different work tasks based on their rank. 
He did not report any problems in achieving this, but further investigation would still 
be needed to verify that this use case is well supported. As for synchronization and 
coordination (objective O6, Q14), all scripters encountered tasks that required 
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explicit synchronization of NPCs, but two only in a very simple context. Only one 
scripter built synchronization outside the scope of a BO and he referred to this case 
as the most difficult to handle. Another scripter explicitly mentioned that s-areas 
were helpful for coordination. Three scripters considered synchronization to be non-
problematic, while two reported usability issues with debugging and implementing 
synchronized behaviors. One scripter also reported that he considered parallel 
behaviors challenging in principle. Two scripters reported usability issues with the 
message system that make writing message-oriented code tedious. Two scripters 
described the need to reduce the scope of possible NPC states when coordinating 
behaviors for quests – when NPCs need to cooperate on a quest, they are usually 
instructed to stay at a well-defined place and perform only very simple activities so 
that other NPCs can make simplifying assumptions on their state. 

One scripter reported a performance issue that arose while he was implementing 
advanced door handling behavior where NPCs form a queue, but there are 
dynamically changing priorities for NPC ordering (e.g., if the door is locked, an NPC 
that has a key is given priority). This resulted in multiple rounds of messages being 
exchanged between NPCs. As two-way communication cannot be performed within 
a single frame and there was a relatively lot of computation involved between the 
messaging, the system exhibited visible lag when many NPCs tried to use the same 
door at once. This can be resolved by both simplifying the code and by giving larger 
time budget to evaluate trees of s-objects that are heavily used.  

In general the data indicates that synchronization and coordination is handled by 
BOs in a satisfactory manner, although improvements can be made, especially in 
tools and usability. 

5.7 Discussion 

In this chapter we have described behavior objects as a tool to manage complexity of 
reactive decision making in OWGs. BOs become useful when the size complexity is 
large and it is thus necessary to partition the behaviors into pieces that may be 
developed and tested independently. BOs allow for easy development of reactive 
script selection functions at multiple levels of abstraction while maintaining 
consistency of the scripts. BOs let us efficiently hide how behaviors are implemented 
from the script selection function deciding what behaviors should be performed. 

We have shown five use cases (smart areas, smart objects, navigation smart 
objects, quest smart objects and situations) for BOs within the AI system for an 
upcoming AAA role-playing OWG. The behavior object concept has withstood field 
testing and was deployed in multiple forms within a public beta version of the game. 
Qualitative feedback and lessons learned during the implementation were presented. 
The available feedback suggests that BOs are a suitable approach for managing 
complexity in NPC scripts, fulfilling all design requirements.  

While the initial development of smart entities and situations was driven simply 
by the needs of the AI system, we have noticed the similarity of the concepts to 
object-oriented programming. We have established the connection between behavior 
objects and OOP explicitly, as it helped us drive further development of the 
implementation in KC:D and provided inspiration. We believe that inspiration by 
OOP can be useful for the next generation of game AI and lead to dramatic 
improvements in code manageability, as OOP has done for classical programming. 
Our implementation is based on behavior trees, but BOs should be usable in all 
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reactive action-selection mechanisms that are in frequent industry use. Since the BO 
concept is not bound to any specific AI technology, but is rather a form of imposing 
abstractions in the code, it is applicable to a wide range of use cases in OWGs or in 
game AI in general. 
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6 Constraint Programming for Global Specification of 
Behaviors 

Behavior objects, as presented in the previous chapter are useful for structuring AI 
code around higher-level concepts, but may still be insufficient in certain cases. One 
particular dimension for improvement is to allow for more global connections of 
code and content. This was emphasized in the Subgoal 2 of this thesis (see Section 
1.3). In particular, we are interested in a global approach to script selection for 
coordinated multi-NPC in-game events in AI components with large size complexity. 
We address this subgoal by using constraint satisfaction techniques to select tuples of 
NPCs that will enact a designer-specified situation.10  

In relation to BOs, it is important to note that keeping the connections between 
code and content local was one of the main motivations for BOs. This is definitely a 
good thing and we need to keep this locality for most cases. What we aim for in this 
chapter is to find a mechanism that would allow us to impose a more global view on 
script selection wherever it is necessary, while building on top of BOs and 
maintaining local (and thus easier to manage) connections everywhere else. We will 
show that constraint satisfaction problems (CSPs) are a viable formalism for 
declaratively specifying script selection in a more global context. Similarly to the 
previous chapter, this chapter focuses on AI components with small rule complexity, 
but large size complexity (see Table 5). 

We will first describe what exactly we mean by “global connections” and 
motivate both the general approach (Section 6.1) and the particular use case we aim 
to solve (Section 6.2.) Then we discuss related work (Section 6.3) and describe our 
solution to the general problem (Section 6.4.). We further describe a particular 
implementation of global specification in KC:D (Section 6.5), evaluate it (Section 
6.6) and summarize the results (Section 6.7). 

                                                
10 This chapter is based on the paper (Černý· et al. 2014), a large portion of this chapter has been 

directly copied from the paper, with only minor adjustments. 
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Basic enemy AI 
Quality enemy AI  
Ally AI 

L
ar

ge
 

Ambient AI 
Dialog-handling AI 

Strategic squad coordination 
High-level RTS AI 

Table 5: Complexity classification for the techniques in Chapter 6.  
This chapter deals primarily with small rule complexity and large size complexity in general, 
the implementation in KC:D is focused on ambient AI in particular (highlighted). This table 
is a reiteration of the complexity classification from Table 1. 

6.1 Motivation for the General Case 

Let us start with an example of script selection in a BO-driven AI component: An 
NPC, currently in a city, wants to relax – at the highest-level script selection, it 
requests a “relax” script from the city BO. The script provided by the city BO 
enumerates child BOs suitable for relaxing and chooses a pub BO, instructing the 
NPC to go to the pub and request a “drink” script there. The “drink” script than 
instructs the NPC to use a “sit” script from a chair BO and makes the NPC interact 
properly with objects representing glasses to drink from, which are connected to a 
table BO. 

We see that a connection between an NPC and a piece of code or a game object is 
made by a series of decisions that are local to the NPC or the BO the NPC uses. This 
paradigm however prevents us from choosing scripts from a more global viewpoint. 

A typical case where a global view is useful is when specifying script selection 
functions for an AI component responsible for randomly generated events or optional 
side-quests. For example a designer may provide requirements of the following kind:  

1. “for a robbery event to occur, we need an NPC that is rich and a pair of 
thugs”, or 

2. “in a pub, two drunk NPCs may get into a fight over who gets the attention 
of a third, handsome NPC”, or 

3. “an optional side-quest will ask the player to carry an expensive item 
stored at a city controlled by enemy forces to a city controlled by a 
friendly army”.  

A typical approach to handle such generated events in contemporary games is to 
spawn new NPCs/objects fulfilling the requirements as needed and despawn them 
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once the event ends. This can however damage immersion, as the player may notice 
that the events are not tied to the state of the game world and that the events never 
concern the NPCs that are long-lived.  

However, if the NPCs/objects that are already present should participate in the 
events, there are other difficulties. A direct approach is to handle the event 
requirements locally (within the thug script selection function or a brain of the BO 
controlling the pub or the city). Unfortunately, this quickly leads to problems once 
the requirements become non-trivial – should the pub keep count of all the drunk 
NPCs and handsome NPCs present? How does a city know which items are stored 
within it? And how does it discover an enemy city? Handling all those small tasks 
inflates the size of the codebase and hinders manageability.  

While we obviously can incorporate code for handling those events into 
NPCs/BOs script selection, checking more complex requirements becomes verbose 
and plagues the script selection functions of the NPCs and BOs with code unrelated 
to their main function. It is also not optimal from the performance perspective if all 
cities or all thug NPCs try to find a suitable match on their own, possibly repeating 
many checks. At this point, creating a new AI component that performs script 
selection with a well-separated global view may become very useful.  

6.2 Motivation for the Specific Case of KC:D 

The BO system described in the previous chapter proved to enable scripters to create 
a large palette of ambient behaviors with little effort. Nevertheless the system 
primarily works by sending NPCs to various locations where they perform a 
behavior and then move to another location. For a truly lively world, the NPCs 
should also exhibit non-trivial behaviors while “in transit”. For the use case in KC:D 
we therefore aim for a subsystem that is able to add variety to the NPCs movement 
across the virtual world with focus on interactions between NPCs.  Literature on 
crowd simulation provides inspiration for good implementation of low-level 
behaviors and interaction of the NPCs (gaze control, collision avoidance, …), but 
there are fewer guidelines how to introduce higher level interaction (e.g., small talk, 
petty crime). At the same time, design and computing power restrictions severely 
limit the acceptable complexity of NPCs.  

To enrich the simulation of the virtual world without the need to increase 
complexity of the individual NPCs, we propose what we call situations. A situation 
is a specific type of event as discussed in the previous section. It is a short scripted 
scene that involves multiple interacting NPCs. All of the situations that were of 
interest to the design team involved 2-5 participants. The situations span from very 
simple and frequent (e.g., NPCs greeting each other in various ways) to complicated 
and infrequent (e.g., people gathering to perform a collective dance). The situations 
have to be decoupled from the AI of the individual NPCs, so that adding new 
situations does not require any code changes on the NPC side. Also the individual 
situations have to be well encapsulated pieces of AI code to make them easy to 
modify and debug. Note that the requirements on NPCs to enact a situation naturally 
take a form of constraints on the NPCs or their relations (e.g., the situation needs a 
beggar and a rich man who are close to each other). This makes constraint 
satisfaction problems (Dechter 2003) a promising formalism to work with. 

The downside of the global approach to script selection is the necessity to search 
for suitable tuples of NPCs. In the case of KC:D, situations are expected to be 
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scheduled at relatively long intervals (several situations per minute at maximum), 
which gives some leeway, but as a purely decorative element, it still needs to not be 
very taxing. An individual search is required to not take more than 1 ms in the worst 
case and the average should be lower than 100 µs. 

Apart from choosing good algorithms, a huge performance gain may be achieved 
by limiting the scope of the problem. Although the world of KC:D should feature 
hundreds of NPCs, there are multiple considerations that will reduce the number of 
NPCs involved in search and thus let us meet the runtime requirements. Most 
importantly, situations are, in the case of KC:D, only “eye candy” so there is no need 
to consider NPCs that are too far from the player and cannot become visible to the 
player for the duration of the situation. Next, most of the situations make sense only 
in certain areas (e.g., the “Beggar” situation is tied to a city) and thus only NPCs that 
are present in the area may be considered. Finally, some of the NPCs will not 
participate in situations at all because they execute a more important script. This way 
we will never search more than a few dozen candidate NPCs. 

It is further vital, that situations do not disrupt any important game mechanic 
(quests, combat, …) or threaten the consistency of ambient behavior scripts in any 
way. In particular, situations should not change the state of the world in any 
significant way. 

With respect to the complexity classification presented in section 1.2, the 
situation-controlling AI component will have low rule complexity (there are few 
requirements to satisfy per situation and they are easy to express) and high size 
complexity (we usually want to have a large pool of situations) – similarly to the case 
of behavior objects. 

6.3 Related Work 

There are two broad areas of related work: crowd simulation research on 
development of complex NPC interactions and the use of CSPs in games in general.  

6.3.1 NPC Interactions in Crowd Simulation 

Pedica & Vilhjálmsson (Pedica and Vilhjálmsson 2009) pioneered the area of social 
interactions in virtual crowds. However, their work focuses on relatively low-level 
social behavior (attention, gaze and positioning) rather than on higher-level 
behaviors. 

In the CAROSA framework (Li and Allbeck 2011) interactions between 
characters may emerge from agent-centric decision making. Although little detail is 
provided, the main mechanism seems to involve characters switching behaviors in 
response to their needs and in response to another character with a given need 
nearby. This way the interaction code has to be split among several parts of the 
system – the code that triggers the need for interaction, the code that ensures proper 
role switching in the other character once the initiator approaches and the code for 
the interacting roles, making the approach unnecessarily complicated and reducing 
the amount of design decisions that are hidden from the rest of the AI code. 

Also in other contexts, it has been noted that complex short-time events are hard 
to generate emergently from local rules and work better when scripted (Shoulson et 
al. 2013). A need for a compromise between local and global control in agents is also 
discussed in (Russell 2008), giving support to the idea of separate local control (e.g., 
with BOs) and global specification as in our approach. 
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6.3.2 Constraint Programming in Games 

Closest to our focus, The Sims: Medieval feature a central entity that selects 
individual NPCs to perform a specific role in the game based on simple constraints 
(Graham 2011). However, tuples of NPCs are not searched for. 

Most applications of the CSP formalism in computer games are in procedural 
generation of game content. This is a very natural application, as valid content can 
often be concisely described by a set of constraints that have to be met. 

Most CSP-based content generators are fully autonomous. Marouene, Paul & 
Vincent  (2011) use CSPs to place objects in a 3D virtual environment. Horswill & 
Foged (2012) populate a map in a game with items and enemies to fulfil various 
constraints. Everyday Genius: SquareLogic uses technique very close to CSP to 
generate numerical puzzles (Sturtevant et al. 2014).  

Apart from fully autonomous generators, Tanagra (Smith et al. 2011) is a mixed-
initiative tool for platformer level design. It uses CSP to ensure that the level under 
consideration is playable. 

Some generators also use constraints expressed as answer-set programs to 
generate both content (Smith et al. 2012) and whole rulesets of games (Smith and 
Mateas 2010). 

CSPs have been used also for automatic camera control (Bourne et al. 2008; Ali 
and Goodwin 2008). 

While all the above approaches have provided inspiration and proven that CSPs 
are viable technology for game development, none of the works considers using 
CSPs to encode global specifications of behaviors. 

6.4 Our Solution – Global Specification 

As noted in the motivation for this chapter, it is cumbersome to find good matches 
for events or side-quests locally from within the script selection of the participants. 
What we want to achieve is a mechanism for a declarative global specification of 
script selection. Global specification means that we simply specify some conditions 
for a script/a set of scripts to start along with requirements on entities that will enact 
the scripts and the system selects the participants automatically. While this requires a 
list of all entities in the game or all entities in a given location to be available, such 
lists are usually already present in the game and if not, they are easy to create and 
maintain.  

We further note that the requirements imposed on participants can be modelled 
naturally as constraints on individual objects and their relations, exactly as in 
constraint satisfaction problems (CSPs) (Dechter 2003). Using CSPs in this context 
lets us build upon a large body of previous research. Importantly, CSPs relevant to 
games will have few variables (designers are unlikely to design a quest/situation/… 
with more than several participants). And such small CSPs can be solved very 
quickly using state-of-the art CSP techniques, allowing us to meet the runtime 
requirements of the game. 

In this context, CSPs are not limited to events or side-quests – CSPs can for 
example model complex goal conditions or trigger an action from an AI director of 
the player’s experience. In general, a CSP-based approach allows us to partially 
overcome our inability to predict or even control emergent global patterns of 
behaviors in the game world. CSPs can serve as a bridge that let us search for a 
global structure in the current world state and exploit that structure as it arises. We 
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can then implement mechanisms that incorporate the result in the NPCs script 
selection without direct changes to the NPC code, maintaining a clean separation 
between local and global viewpoints. 

Returning to the parallel between BOs and object-oriented programming (see 
Section 5.4), global specification is loosely related to aspect-oriented programming 
(AOP) (Kiczales et al. 1997, 2001). AOP introduces aspects which are single entities 
that implement a functionality that is shared by a large number of objects/methods, 
but does not align well with the object decomposition (e.g., logging, transaction 
handling, …). Aspects let the logging or transaction handling functionality to be 
defined in one place and thus easily modified and reused. In this view, global 
specification provides a single place to define scripts that may be adopted while the 
NPC executes any of a large number of unrelated BO-provided scripts. 

6.4.1 CSP Overview 

A Constraint Satisfaction Problem (CSP) (Dechter 2003)  consists of a finite set of 
variables, where each variable has a finite set of possible values, called a domain. In 
our case, each variable corresponds to an entity the global specification scheme 
requests and the domains are lists of all entities of the relevant type (NPCs, items, 
locations, …). The values that can be assigned to variables are restricted by 
constraints, where each constraint is defined over a subset of variables and implicitly 
defines a subset of the Cartesian product of variables’ domains (allowed tuples).  A 
binary constraint can for example express the maximal distance between two entities 
and a unary constraint may express required NPC properties for a given role.  A 
solution to a CSP is an instantiation of all the variables satisfying all the constraints. 

CSP is NP-complete so the search is exponential in the worst case, but we expect 
the search to be relatively “easy” in an actual game implementation – only a small 
number of variables will be required and there usually will be a lot of solutions or 
there will be no solution and very few “almost solutions”, letting us prune the 
possibilities quickly. In other words, most global specifications will not be contrived 
counterexamples to the heuristics/pruning methods we will use. 

The mainstream approach to solve CSPs is based on a combination of 
backtracking search and inference. Backtracking search repeatedly selects a variable 
for instantiation and then selects a value to be assigned to that variable.  After each 
variable instantiation, constraints are tested against the partial solution. If the 
constraints fail, the search backtracks: tries another value for the current variable. If 
there are no more values for the current variable, the backtrack returns to the variable 
assigned previously. The search terminates once all variables have been instantiated 
(success) or when there are no more values to try for the first variable (failure). 

When there are multiple constraints affecting only small number of variables, 
backtrack may be caused by conflicts with variables that have been assigned “long 
ago”. Backjumping detects such situations and backtracks to the conflicting variable 
directly without trying different values of the irrelevant variables.  

Inference techniques reduce search space by propagating the partial instantiation 
to other variables.  One of the basic inference techniques is forward checking. It 
means that values violating any constraint (with the currently instantiated variables) 
are removed from domains of not-yet instantiated variables.  For example, if we 
assign an NPC to a given role and there is a maximal-distance constraint for another 
role, then all NPCs that are too far are removed from that role’s domain.  If any 



 

 55   
 

domain becomes empty then we backtrack immediately. Upon backtrack the domains 
of unassigned variables are restored to the state prior to the instantiation.  

Since unary constraints are independent of assignment of other variables, values 
that violate them may be removed from the domains prior to search. This is called 
node consistency and it is actually a weaker form of forward checking, where only 
unary constraints are considered. There are more advanced inference techniques such 
as arc consistency where all the constraints between unassigned variables are taken 
into account.  Such techniques are useful for hard combinatorial problems, which is 
not our case. 

6.5 Implementation 

The situations that were needed to enrich the virtual world in KC:D can be 
implemented as globally-specified events. Each NPC that should interact in the 
situation takes a role. Each role imposes requirements for an NPC to be allowed to 
take it. For example a situation called “Beggar”, where a rich man shows contempt 
for a poor beggar and gives him some money has two roles: the beggar and the 
benefactor. Only poor NPCs may take the role of the beggar and only rich ones the 
role of the benefactor. Moreover the two NPCs must be close to each other to enact 
the situation promptly and safely.  

The system assures that only NPCs satisfying all the requirements enact the 
situation. It further tries to provide variety by randomizing which of the acceptable 
NPC combinations are actually selected for the particular situation instance. 

The central component of the situation system is the situation manager, which 
decides what situations should be enacted, when they should start and which NPCs 
should participate. Situation scheduling is driven by designer-specified minimal and 
maximal intervals between successive executions. Once a situation is scheduled for 
execution, the manager searches for suitable NPCs based on constraints associated 
with the situation. As in the “Beggar” example, there are unary constraints restricting 
the holders of individual roles by various traits of the NPCs (abilities, occupation, 
social status etc.) and n-ary constraints such as maximal distance between the NPCs 
or requirement for visual contact between the NPCs. Furthermore, each NPC keeps 
track of situations it has been involved in recently and thus designer-specified 
intervals between successive executions of situations with the same NPC can be 
enforced. 

The full lifecycle of a situation, once the role holders are decided, was already 
given in Section 5.5.7. To quickly reiterate the main points: situations are a type of a 
behavior object, i.e. the code and data for a given situation are defined in one place. 
The NPCs have to explicitly subscribe to the situation system, letting scripters to 
ensure, that an NPC does not participate in a situation when it is performing a critical 
task. The situation scripts are injected within the participating NPC’s script selection 
function through a special subbrain that, once the situation is started, takes priority 
over the active ambient subbrain, but has lower priority than combat and other 
subbrains. If any of the NPCs leave the situation (e.g., their script fails or the 
situation subbrain is suspended due to a higher-priority subbrain being switched in), 
all NPCs terminate their situation script and the situation itself is discarded. All the 
above precautions were made because situations in KC:D are only decorative and 
should not prevent any important scripts from executing. On the other hand, 
situations should be designed in a way that interrupting them causes no problems – 
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especially, situations should not change the state of the game world in any important 
way. 

6.5.1 Our CSP Solvers 

We tested a set of CSP solvers based on backtracking. The chosen solver is invoked 
directly by the situation manager whenever a situation is scheduled and is updated 
independently of the individual NPCs. Since our CSPs are small, it did not make 
sense to implement a sophisticated CSP solver with complex inference – the 
overhead would easily cancel out the slight gain in search performance. Instead, we 
were adding inference techniques one by one to see, when the performance stops 
improving. 

We started with the basic backtracking algorithm (see Algorithm 1). Since variety 
is important, the solver should not return the same solution upon repeated execution 
with the same data (if there are multiple solutions).  Thus the instantiation at each 
level starts at a random element of the domain. 

 

procedure BackTracking(X:variables, V:assignment, C:constraints)  
if X={} then return V  
x ← head(X)  
for each value h from x.domain do  

if constraints C are consistent with V ∪ {x/h} then  
R ← BackTracking(X – {x}, V ∪ {x/h}, C)  
if R ≠ fail then return R  

end for  
return fail  

end BackTracking  

Algorithm 1: Plain backtracking.  
To initiate the recursion, the algorithm is called as BackTracking(X, {}, C). Algorithm 
pseudocode adapted from (Barták 2015). 

Then we added node consistency (NC), i.e. all NPCs that did not match the unary 
conditions were removed from the domains before the search. Surprisingly initial 
results showed this approach to be often worse than plain backtracking.  Closer 
analysis revealed that on the smaller domains the time spent in evaluating all the 
unary constraints dominated the time in the actual search by factor of two to ten. 
Thus we introduced lazy NC evaluation:  the unary constraints are tested only on the 
values that are actually searched, but if the condition is not met, the value is removed 
from the domain permanently, i.e. it is not reinserted upon backtrack (see 
Algorithm 2). While lazy approaches to consistency are known in the literature 
(Schiex et al. 1996) we are not aware of any applications to node consistency. 
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procedure BT-LazyNC(X:variables, V:assignment, U: unary constraints,  
C:constraints)  

if X={} then return V  
x ← head(X)  
for each value h from x.domain do  
 if not x.domain.tested[h] 
               && h inconsistent with any u ϵ U then 

x.domain  ← x.domain – {h}  
if x.domain is empty then abort 
x.domain.tested[h] ← true 

end 
if constraints C are consistent with V ∪ {x/h} then  

R ← BT-LazyNC(X – {x}, V ∪ {x/h}, U, C)  
if R ≠ fail then return R  

end for  
return fail  

end 

Algorithm 2: Bactracking with lazy node consistency. 
The algorithm is a slight modification of the basic backtracking algorithm, the additions are 
highlighted.  

Last we added forward checking both with and without LazyNC (FC and 
LazyNC-FC, see Algorithm 3).  With a straightforward implementation where 
contents of domains (arrays of NPCs) were simply copied prior to instantiation of 
variables and restored upon backtrack, the algorithm fared worse than lazy NC only. 
An implementation trick was needed to make the algorithm competitive:  Pruned 
values were not removed from the domains, but kept at the beginning of the domain 
and an internal pointer to the first domain element that was not pruned was kept. This 
way, only the pointer needed to be changed on backtrack and still permanent removal 
of values from the domain due to lazy NC was possible in constant time (copying the 
last element over the removed element). See Figure 10 for a diagram. 

 

 

Figure 10: Domain contents while using forward checking with lazy node consistency. 
The elements filtered by lazy NC are moved to the end of the vector, and the size of the 
vector is permanently decreased. The elements filtered by FC are moved to the start of the 
searched domain and the searched domain start at current level (here level 2) is increased. 
Upon backtrack, the searched domain start is restored to the value at the previous search 
level (choicepoint), returning all FC-filtered elements from the last search level to the 
domain. 
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procedure ForwardCheck(X:variables, V:assignment, U: unary constraints,  
C:constraints)  

for each x from X  
for each value h from x.domain do  

if UseLazyNC and h is not consistent with any u ϵ U then 
permanently remove h from x.domain  
if x.domain is empty then return fail 

else if constraints C are not consistent with V ∪ {x/h} then  
temporarily remove h from x.domain  
if x.domain is empty then return fail 

end  
end for  

end for 
return true  

end 
 
procedure BT-FC(X:variables, V:assignment, U: unary constraints, C:constraints)  

if X={} then return V  
if not UseLazyNC 
 remove values of all variables inconsistent with U 
 if any domain is empty then return fail 
end 
 create choicepoint 
if ForwardCheck(X, V, U, C) = fail then 
 backtrack 
 return fail 
end 
x ← head(X)  
for each value h from x.domain do  
 if constraints C are consistent with V ∪ {x/h} then   

R ← BT-FC(X – {x}, V ∪ {x/h}, U, C)  
if R ≠ fail then return R  

 end 
end for 
backtrack 
return fail  

end 

Algorithm 3: Backtracking with forward checking. 
UseLazyNC is a Boolean parameter specifying whether unary constraints are enforced 
eagerly (at the beginning of the search) or lazily during the search. The differences from the 
plain backtracking algorithm have been highlighted. Algorithm pseudocode (except for the 
incorporation of Lazy-NC) adapted from (Barták 2015). 

We did not implement arc consistency (AC), because it requires keeping explicit 
track of pairs of values in unassigned variables. Since NC was already slow and 
allocating and updating linear amount of space was troublesome for FC, it was not 
likely that working with quadratic amounts of data could improve performance.  

We have not implemented backjumping, because in all situations the designers 
brought up, there were only one or two non-unary constraints both involving all 
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variables. Thus most backtracks were caused by assignment of variables “close” to 
the current variable and it was not likely that significant benefit could be gained. 

To summarize, we implemented and tested five variants of backtracking solver – 
plain, with eager NC, with lazy NC, with eager NC and FC, with lazy NC and FC. 

In addition to explicit constraints given by the designers, an implicit all-different 
constraint (the same NPC cannot take more than one role) is encoded in the solver 
algorithms. The solvers are implemented in C++, the code of the solvers can be 
found in the digital attachment to this thesis. 

6.6 Evaluation 

To evaluate the situation system, we first gathered informal qualitative feedback and 
then performed qualitative evaluation to assess computational requirements of the 
system. At the time of the evaluation (April 2014), the development team included 6 
scripters and 6 designers. All of the scripters had limited programming experience, 
while designers had close to none. Except for one scripter with mathematical 
modelling background, both designers and scripters had no experience in CSP or 
similar formalisms. Nevertheless, the idea of situations was relatively clear to both 
designers and scripters. 

The designers found it natural to think in terms of situations, although there was 
some confusion on the capabilities of the system and its intended use. Most often, 
designers would propose situations that could break if a participant leaves it due to a 
higher priority event. To give an example: “NPC falls into a trapping pit and 
someone comes to help” – if the rescuer is disturbed, the NPC is stuck in the pit.  

Another frequently mentioned issue was the impossibility to choose and constrain 
non-NPC game entities as a part of the search (e.g., find an NPC and a nearby water 
source where he could drink). This was left out as future work, once the system is 
proven suitable in practice. 

Describing situations in terms of conditions on role holders was a straightforward 
idea for the scripters, but they had some difficulty to decide what should be modelled 
by unary constraints and what should be an n-ary constraint. For example, in the 
“Beggar” situation, the first idea was to not constrain the richness of the benefactor 
in a unary condition, but create a binary condition “benefactor richer than beggar”, 
which would likely result in longer search times. 

6.6.1 Quantitative Results 

To field test the situation system, the design team of KC:D has proposed several 
situations that were implemented to test the system11: 

 Beggar. A rich NPC passes a beggar and gives him money. The beggar 
displays gratitude. 

 Payment. A peasant meets a rich man. The rich one demands money to 
settle a loan. The peasant is reluctant, but finally pays the requested sum. 

 Small talk. Two peasants meet on a corner of the street and discuss the 
weather briefly.  

                                                
11 The actual scripts for the situations were developed by Martin Antoš and are thus not part of this 

thesis. 
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 Lively argument. Three peasants meet to argue about trade, taxes and the 
heir of the throne. 

 Dance. A musician starts playing music on the street. Four peasants gather 
around and perform a group dance.   

 Difficult. A non-natural representation of the “Dance” situation to test a 
slightly more extreme scenario (see below for details). 

Formally, all of the situations have constraints on the occupation/social class of 
the participants, and distance/visibility constraints among all pairs of the participants. 
The “Difficult” situation is an exception as only 4 pairs of NPCs are affected by 
binary distance constraints. Still the constraint graph is connected and thus there are 
implicit “transitive” distance constraints over all NPC pairs, but those implicit 
constraints are inaccessible to the search algorithm and violations of those constraints 
are discovered only after assigning NPCs to the “intermediary” roles (see Figure 11). 

 

 

Figure 11: Distance constraint structure for the “Difficult” situation.  
Note that while there is no explicit constraint connecting roles 1 and 4, we see that an NPC 
holding role 1 cannot be too far from the NPC holding role 4 (at most 2 times the maximum 
distance between the constrained pairs). Violations of this implicit constraint are however 
discovered by the solver only after assigning an NPC to role 5. Similar implicit constraints 
hold between other pairs of roles not connected by an explicit constraint. 

The “Small talk”, “Lively argument” and “Dance” further require all NPCs to be 
close to one of designer-marked areas suitable for situation enactment. “Payment” 
has a special condition for the peasant to check whether it makes sense for him to 
pay a loan. This condition is expressed as a short Lua (Schuytema and Manyen 2005) 
program and we expect it to be very costly to evaluate.  

As discussed in Section 6.2, situations will not be scheduled in areas far away 
from the player and only a part of the NPCs will be subscribed to the situation 
system in any given moment, limiting the maximal number of candidate NPCs. 

We created two scenarios. Scenario 1 models the expected workload and involves 
50 NPCs: 2 musicians, 6 rich, 8 beggars and 34 peasants. The NPCs moved around 
the game world, sometimes performing a non-interruptible script; in effect 28 NPCs 
were registered for situations in an average search task (standard deviation: 4.7, max: 
49, min: 14) – a screenshot of the setup is shown in Figure 12. Scenario 2 tests a 
heavier, unrealistic load to check the scalability of the system. It involves a larger 
world and 300 NPCs, divided in the same proportions as in Scenario 1, with 193 
registered for situations on average (standard deviation: 24, max: 270, min: 149). 
Tests were run on an Intel i5-3470 quad core processor @ 3.2 GHz, with 8GB RAM. 
To reduce measurement noise, the solvers were run synchronously with the game 
engine and the engine was forced into single-threaded execution for the purpose of 
the test. In both scenarios, the situations (as described above) were scheduled on 
average once every 20 seconds. 
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Figure 12: A screenshot from the quantitative evaluation setup.  
White lines connect NPCs selected to engage in a situation, purple rectangles and orange 
cones indicate area and exact positions of NPCs that would perform the Dance and Small 
talk situations. 

Both scenarios were run until at least 200 instances of all situations were 
executed. During the experiment all situations were run with the same frequency. All 
five backtracking solver variants solved exactly the same CSP instances. The full 
dataset of the results can be found in the digital attachment to this thesis. 

Table 6 shows the ratio of successful searches in both scenarios. Since the search 
was never interrupted prematurely, failed searches represent problem instances that 
had no solution. The table shows that we tested both situations that always had a 
solution and those where solutions were rare and those in between, although the 
number of solvable assignments grew with more NPCs available. 

 

 
Scenario 1 Scenario 2 

Situation Success Fails % Success Fails % 

Beggar 215 2 99% 222 0 100% 
Small Talk 101 116 47% 205 25 89% 

Payment 98 123 44% 157 69 69% 

Argument 56 161 26% 172 52 77% 

Dance 24 187 11% 93 134 41% 

Difficult 45 166 21% 168 60 74% 

Table 6: Number of successful and failed searches. 
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Situation Back NC LazyNC NC-FC LazyNC-FC 

Beggar 5 (10) 16 (04) 3 (02) 27 (05) 15 (02) 
Small Talk 18 (10) 19 (05) 14 (07) 29 (07) 25 (05) 
Payment 95 (52) 117 (27) 87 (42) 161 (37) 92 (41) 
Argument 30 (22) 27 (09) 20 (09) 38 (10) 36 (08) 
Dance 22 (25) 22 (19) 17 (11) 35 (21) 42 (08) 
Difficult 245 (618) 38 (11) 21 (08) 51 (12) 55 (12) 

Table 7: Average search times and standard deviations for individual situations and 
algorithms in Scenario 1.  
Standard deviations are given in brackets. Best times for each row are highlighted. All times 
in µs. Scenario 1 consisted of 50 NPCs, ~28 registered at a time. 

Situation Back NC LazyNC NC-FC LazyNC-FC 

Beggar 125 34 12 47 33 
Small Talk 60 43 39 61 36 

Payment 331 258 205 329 248 

Argument 123 55 60 81 60 

Dance 154 79 55 110 80 

Difficult 4869 82 53 92 93 

Table 8: Maximum search times for individual situations and algorithms in Scenario 1. 
Best times for each row are highlighted. All times in µs. Scenario 1 consisted of 50 NPCs, 
~28 registered at a time. 

 

Situation Back NC LazyNC NC-FC LazyNC-FC 

Beggar 6 (003) 130 (018) 4 (003) 164 (026) 31 (004) 
Small Talk 95 (092) 158 (020) 69 (045) 196 (027) 52 (029) 
Payment 539 (396) 875 (173) 466 (335) 1104 (208) 482 (359) 
Argument 213 (242) 235 (037) 119 (073) 271 (041) 96 (059) 
Dance 435 (700) 306 (149) 179 (124) 345 (155) 149 (067) 
Difficult 14ms (38ms) 366 (066) 89 (038) 408 (066) 136 (066) 

Table 9: Average search times and standard deviations for individual situations and 
algorithms in Scenario 2.  
Standard deviations are given in brackets. Best times for each row are highlighted. Unless 
explicitly stated, all times in µs. Scenario 2 consisted of 300 NPCs, ~193 registered at a 
time. 

 



 

 63   
 

Situation Back NC LazyNC NC-FC LazyNC-FC 

Beggar 19 208 16 408 54 
Small Talk 594 232 183 286 171 
Payment 1816 1702 1586 1958 1579 
Argument 1239 415 366 423 305 
Dance 5557 584 600 686 462 
Difficult 273ms 584 246 577 326 

Table 10: Maximum search times for individual situations and algorithms in Scenario 2. 
Best times for each row are highlighted. Unless explicitly stated, all times in µs. Scenario 1 
consisted of 300 NPCs, ~193 registered at a time. 

The timing results for Scenario 1 are given in Table 7 and Table 8. The most 
important finding is that LazyNC performed the best for all situations in Scenario 1 
and safely fulfilled the required time limits (recall the requirements: 100 µs on 
average and 1 ms in the worst case). The problem instances are just too small for FC 
to make a difference, although the LazyNC-FC variant fulfils the time limits as well. 
Solving “Payment” takes a remarkably long time, because it involves execution of an 
interpreted Lua function to evaluate a unary constraint which is costly. Interpreted 
constraints are discouraged for production use and should serve as a prototyping tool 
only. Still LazyNC and LazyNC-FC stayed within performance bounds. 

In Scenario 2 (see Table 9 and Table 10) LazyNC still performs very well for all 
the 2-NPC situations. This is not surprising, as FC needs to scan the whole domain of 
the second NPC with every assignment of the first NPC during inference and then 
scans the remaining values again during search while LazyNC visits all the domain 
values at most once. In this regard it is unexpected that LazyNC-FC is better in the 
“Small Talk” situation. The reason is probably that the binary distance constraint is 
faster to evaluate than the unary constraint that checks whether the NPC is close to a 
suitable area, which is worst-case linear in the number of nearby areas (up to 5 in our 
scenarios). Some optimization of this condition might be useful. 

The FC technique performs better also at the 3-NPC “Argument” and 5-NPC 
“Dance” where finally the domains are large enough for pruning to have notable 
effect. While in Scenario 1 the “Difficult” situation took more time on average than 
the “Dance” situation, most solvers solved the “Difficult” situation faster in 
Scenario 2. This is most likely due to the fact that in Scenario 2, “Difficult” had 
solutions much more often than “Dance” and successful searches were generally 
much faster than failed ones.  

Combination of LazyNC for 2-NPC situations and LazyNC-FC for multiple NPCs 
situations satisfies the runtime constraints even upon heavy load, except for the 
“Dance” situation, where LazyNC-FC exceeds the average time limit by 49µs and 
“Payment” (which takes long due to the interpreted constraint). If the “Dance” 
situation is not scheduled frequently, the system as a whole would be fast enough. 
Notably, the search for NPCs is on the same time scale as pathfinding – instances in 
Scenario 1 are comparable to finding shorter paths and those in Scenario 2 are 
comparable to finding paths across large parts of the game world. This justifies the 
computing requirements of situation search, as pathfinding is one of the most 
frequent AI tasks, while situations should be relatively rare.   
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Further analyzing the successful and failed runs separately shows some deviations 
from the average case, but the overall picture remains the same. In general, plain 
backtracking ranks better in successful runs than on average, but is much worse in 
failed runs, while eager NC and NC-FC ranks better in unsuccessful ones than on 
average. This is most likely an intrinsic property of the algorithms: If there are many 
solutions, backtracking is likely to find one and it avoids the overhead of the other 
algorithms. Eager NC on the other hand is a pessimistic technique which fails 
quickly if there are no or very few values satisfying the unary constraints. 

6.7 Discussion 

We have introduced a system for global script selection for AI components with 
small rule but large size complexity. We have shown an implementation of this 
system that enriches a simulated world with short pre-scripted situations. Our 
algorithm uses CSP to search for appropriate NPCs and to keep the script selection 
function of the situation AI component hidden from the rest of the AI code. We have 
shown that the system meets functional and runtime requirements of a commercial 
game. The system is currently being evaluated for production use in KC:D and the 
initial response from scripters and designers was positive. 

In recent years the advances in hardware allowed classical AI techniques such as 
planning to become part of mainstream game AI. We show that CSP may as well 
follow. In our view application areas of CSPs in games are open: CSP makes it 
possible to decouple various parts of the game and find appropriate connections 
(NPCs to situation role in our case) at runtime, maintaining an easily describable, 
consistent global view of the game world. It also has numerous applications in both 
offline and online procedural content generation. Instantiating side quest templates or 
detecting important abstract game events might be among the interesting future 
applications. CSP also maintains a high level of designer control – undesirable 
solutions are easy to remove by adding new constraints. We hope that this example 
will promote the use of CSPs in games, as even simple and fast-to-implement 
algorithms have satisfactory performance.  

In further development of the system, we have introduced “passive” and 
“optional” roles. Passive NPCs are constrained in the search, but do not receive a 
script; they serve as a target of actions only (e.g., a situation where an NPC 
comments on another NPCs work). Optional roles on the other hand receive scripts, 
but the search may be successful, even when no NPCs are found for the role.  

Future work includes extending the situation system to search for items, locations 
and other non-NPC entities in the game world as a part of the situation search.  
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7 Adversarial Search For Handling Large Rule 
Complexity 

In this chapter we will deal with a different type of complexity than in the previous 
two: we will discuss the case of small size complexity, but large rule complexity. As 
script selection functions with large rule complexity are impractical to code by hand, 
this chapter will not be concerned with ways to structure code, but with a goal-based 
approach to choosing the right script. 

We will start by discussing the motivation for the general approach (Section 7.1) 
and for the particular implementation for KC:D (Section 7.2) followed by related 
work (Section 7.3) and description of our method in general (Section 7.4). Then we 
discuss the actual implementation (Section 7.5) and its evaluation (Section 7.6). We 
end the chapter with some concluding remarks (Section 7.7). 
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Quality enemy AI 
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Ambient AI 

Dialog-handling AI 

Strategic squad coordination 
High-level RTS AI 

Table 11: Complexity classification for the techniques in Chapter 7.  
This chapter deals primarily with large rule complexity and small size complexity in general, 
our implementation is focused on enemy AI in particular (highlighted). This table is a 
reiteration of the complexity classification from Table 1. 

7.1 Motivation for the General Case 

A typical AI component that may exhibit small size complexity but large rule 
complexity is combat AI – there are relatively few basic actions (attack, retreat, 
advance, take cover …), that can be combined in many ways to create a varying and 
challenging gameplay. As noted in Section 1.2, large rule complexity may be either 
inherent in the combat mechanics when the combat is more strategic (as in the 
Fallout series) or it may arise simply due to the necessity to take a large number of 
parameters into account when making a decision. The latter case arises quite 
frequently in games with role-playing mechanics as those typically include a large 



 

 66   
 

number of parameters that influence the combat, often in an indirect, interwoven 
manner. Most of the parameters in combat in OWGs take the form of stats – the 
numerical properties assigned to characters and items in the game that reflect their 
various qualities (health, agility, attack, defense, …). 

To avoid dealing with large rule complexity, combat AI in contemporary OWGs 
is often purely reactive with small rule complexity. Although reactive approaches 
can provide a reasonable combat AI, they do not scale well once more intelligent 
behaviors are required. Also NPCs with different properties require different reactive 
scripts, increasing the size of the codebase. At this point a goal-based approach may 
both allow for more intelligent behavior and reduce the size of the codebase, as a 
single algorithm may produce very different behaviors based on the actual stats of 
the individual NPCs. 

There are however significant downsides shared by many goal-based approaches 
that have to be addressed before they may be deployed in an actual game. The two 
most important are the high computational requirements and the black-box nature of 
deliberation.  

As for the computational requirements, one of the simplest goal-based reasoning 
techniques, classical planning, is already PSPACE-complete in theory and very 
demanding in practice. During our evaluation of state-of-the-art planners in game 
environments, we estimated that “The limits of real-time applicability (planning 
faster than 1s) of contemporary planners are somewhere above one hundred atoms 
and two hundred grounded actions” (Černý et al. 2015). Note that these are still 
relatively small domains and the budget of 1 second is unrealistically high for most 
real-time games. While planning performance can be hugely improved by writing an 
optimized planner for the particular game domain, classical planning does not 
capture many concepts of typical OWG combat AI – in particular stochasticity and 
the need to consider the actions of the adversary – which further inflate the search 
space. On the other hand, the computational requirements can be further reduced, 
because OWG AI does not usually need optimal actions, only actions that are “good 
enough”. All in all, any goal-based technique to be used in games has to be heavily 
optimized and make it possible to do trade-offs between optimality and efficiency. 

A much harder problem to address is the “black box” behavior of most goal-based 
techniques. Black box in this context means, that the algorithms receive the current 
state of the world and choose a script to execute, but expose little or no information 
on why the script was chosen. Without understanding why a given script was chosen, 
it is hard to debug and tune the script selection. This is in stark contrast to reactive 
approaches, where introspection is usually very easy and tuning the script selection 
for a specific case is simply a matter of providing a condition recognizing the case. It 
is also harder to incorporate design goals into a problem specification for a goal-
based technique. Any goal-based technique to be used in games thus has to support 
debugging and allow designers to provide “manual overrides” for specific cases. 

A further downside of a black-box approach is that it makes it hard to access and 
expose internal state of the NPCs decision making. Exposing internal state is 
important, because in some cases it is hard for the player to distinguish between a 
rich and well-motivated behavior and random actions. This is greatly alleviated if the 
inner state of the NPC is communicated to the player. A nice documented example of 
this phenomena is given in (Orkin 2006). Orkin describes how NPCs in F.E.A.R. let 
the player know whenever the planner decides it is optimal to perform an action that 
may be considered stupid (e.g., not taking cover) by shouting out that they have no 
better option. Further, squad coordination is displayed by NPCs asking each other 
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questions or giving orders. We therefore require our solution to expose at least some 
details about the NPC’s state. 

7.2 Motivation for the Specific Case of KC:D 

KC:D involves melee combat with swords and other medieval weapons. The combat 
was designed to allow for rich combinations of fighting style, weaponry and armor 
composition. There are over 40 parameters per NPC that meaningfully affect the 
combat mechanics, making it difficult to script a behavior that takes them all 
appropriately into account.  

At the same time, the design team of KC:D wanted the combat to be a relatively 
rare but challenging experience. The obvious caveat is that more challenging does 
not necessarily mean more fun and that combat difficulty could easily be increased 
by simply increasing the opponent’s stats. But the design asked for the strongest 
opponents to be difficult to conquer – at least in part – because they behave 
intelligently.  

The large parameter space and demand for high-quality decisions makes a goal-
based approach desirable. Since the combat is largely influenced by chance events, 
and the result of most actions is contingent on the actions of the opponent, the system 
should explicitly take chance and opponent decisions into account. 

The system however cannot take full control of the NPC, as scripters sometimes 
need a very tight control over combat behavior (especially in connection with 
quests). Therefore the component must be well integrated with the BTs used in KC:D 
and allow scripters to invoke it only when there is no gameplay-critical action to be 
performed. The system should thus act as more of an advisor on what to do in a 
typical situation than a complete controller of the NPC. 

For the sake of the investigation in this thesis, we limit our focus to one-on-one 
combat as one-on-one scenarios are easier to formalize and thus better suited for 
initial exploration of possible solutions.  

7.3 Related Work 

While goal-based and search-based techniques have been employed since the early 
research on AI for board games, their introduction to real-time games took a lot 
longer. In this section we will first discuss the current usage of goal-based techniques 
in the game industry and then review recent advances made in academia that have 
not yet been adopted by the industry. Last we note recent progress on tackling high 
rule complexity by developing agents that learn to play the game. 

7.3.1 Goal-based Techniques in the Game Industry 

The use of goal-based techniques to reduce complexity in NPC decision making in 
commercial real-time games can be first traced to the use of planning in F.E.A.R. 
(Orkin 2006). F.E.A.R. introduced GOAP (Goal-oriented action planning), which is 
a planning system derived from STRIPS (Fikes and Nilsson 1971) with multiple 
adjustments for use in a game. This pioneering work also makes explicit claim that 
planning is intended to primarily reduce complexity and increase manageability of 
code rather than to increase perceived intelligence. Further the GOAP system used in 
F.E.A.R. allowed the designers to decouple abstract actions (e.g., “attack”, “retreat”) 
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from their actual implementation. So although a beast would have the same “attack” 
action as a soldier, both would run very different scripts to execute it in the world.  

Planning with Hierarchical task networks (HTN) formalism (Ghallab et al. 2004) 
has also been used in games. To our knowledge, it was brought to mainstream games 
by Killzone 2 and 3 (Champandard et al. 2009; Straatman et al. 2013). In Killzone 2 
and 3, HTN is used to both select actions of the individual NPCs and to assign roles 
within squads of enemies.  

Planning techniques derived from both the GOAP and HTN formalisms have 
since become commonplace in games. There are hints that HTN planning is favored 
in new games, because it leaves the designers with more control than GOAP  (see 
Champandard 2013).  

A common property of all planning implementations in games is that they do not 
explicitly model opponent’s decisions and actions. They mostly assume that the 
world is static except for the NPC/squad of NPCs the system plans for and represents 
enemy threats by adding high cost to actions where the NPC can be hurt. The 
obvious reason is performance: even for a static world, the search is very expensive 
and considering enemy actions would effectively square the branching factor and 
preclude guiding the search with a heuristic function. Also, planning techniques have 
proven to work reasonably well, once good cost functions and heuristics are 
implemented. 

More recently, Monte-Carlo tree search (MCTS) (Browne et al. 2012) has been 
employed in strategy games, but in both cases we are aware of it was employed as an 
optimization technique, without explicitly considering opponent’s actions. We will 
discuss the following applications in greater detail, as their description is not freely 
available (unlike the rest of the works discussed in this chapter). 

In particular, the recent iterations of the Total War strategy series have used a 
two-layered MCTS to choose its actions for its turn-based campaign gameplay 
(Gosling and Andruszkiewicz 2014; Andruszkiewicz 2015). Although the setup is 
turn-based, the game mechanics are much more complex than in most board games 
and the implementation imposes very strict time limits, making the work relevant to 
real-time approaches. Here, a high-level MCTS chooses a set of non-conflicting 
goals and a lower-level search then handles the tactical aspect, giving orders to 
individual units. Although the campaign part of Total War is not real-time, the AI 
still needs to make its decisions relatively quickly, enforcing some interesting 
optimizations. First, the search looks only one turn ahead and instead of explicitly 
considering enemy’s actions it uses a simple worst-case heuristic: every 
army/settlement that can be reached in the next turn by enemy units of total strength 
larger than strength of defenders will be destroyed. Second, it heavily pre-caches 
pathfinding results for the units and involves aggressive pruning of the search tree. 
Third, it ignores randomness present in the game: actions with probability above a 
certain threshold are considered to be automatically successful, others as failed. If 
any of the actions that were expected to succeed fails during execution, the AI 
creates a new plan. To preserve as much opportunities as possible for the eventual 
replanning, the actions that may fail are executed as early in the turn as possible. 

An application of non-adversarial MCTS planning to a real-time squad 
coordination was done for Fable Legends strategy game (Mountain 2015). Here, the 
motivation was once again the complexity of the problem – a reactive approach 
would not scale to the complex gameplay. The authors also note that since MCTS 
runs over an abstracted model of the game, it automatically adapts to changes in 
game design – only the abstract model needs to be updated. The algorithm assumes 
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that the opponent’s squad remains static and tries to find sequence of script 
assignments to all units, simulating the combat until a defeat/victory. Once the 
scripts are chosen, they are realized in-game as behavior trees, allowing for certain 
runtime flexibility. Considering only the basic scripts, the branching factor is 
approximately 40, which prevented the algorithm from finding good solutions at the 
beginning of a skirmish where there are a lot of possibilities, while only few actions 
have direct impact on health or other important properties and terminal states lie in 
large depth. So at the beginning of a skirmish, they choose macro actions that 
represent more long-term strategies to be assigned to NPCs. 

An interesting problem the developers of Fable Legends had to deal with was that 
once the AI faces an almost certain defeat, all action assignments have almost the 
same value and thus the AI starts behaving randomly. To counter that, if there are 
multiple actions with value close to the maximal value, they choose among those 
top-valued actions using designer-specified priorities. Since attacking has high 
priority, squad facing a certain defeat will preferably attack the opponent, making 
him weaker for the next skirmish and also appear as deciding to perform a desperate 
last attack. 

To optimize the search, the system precomputes all paths and visibility over a 
simplified map of the world and there is a minor pruning of the search based on 
designer-specified rules. In the end, the system is able to perform 10 000 iterations in 
approximately 5ms when running on its own and 10 000 iterations in 5 frames 
(~150ms) when running within the game. Depending on the dynamics of the current 
situation, the time to make decisions is kept roughly between 5 frames and one 
second. 

Another interesting feature of the Fable Legends AI is its debugging support. To 
understand the algorithm, a designer may stop the game, let the search run multiple 
times from the current state and then explore statistics over the set of results (i.e. in 
this case AI will choose to attack in 80% of the searches). 

The main difference between the present work and the above uses of MCTS is 
that we explicitly model the opponent and chance events. 

The only use of a truly adversarial search schema in the game industry we are 
aware of is in Frozen Synapse (Hardingham 2012). While Frozen Synapse is turn-
based at the highest level, it shares many features with its real-time counterparts. In 
Frozen Synapse, each side controls a small squad of soldiers in a continuous space 
with obstacles that provide cover. Each side assigns orders to all of its soldiers for 
the next 5 seconds. Once all orders are placed, the environment is simulated in 
continuous time and the orders are executed simultaneously without further input 
from the players. The environment is fully deterministic. 

The AI in Frozen Synapse works in two phases: strategy generation and strategy 
selection. The strategy generation phase consists of a set of steps, each creating 
multiple candidate best-response strategies for one side. Initially, it is assumed that 
the opponent soldiers choose an empty strategy (soldiers remain stationary). Several 
different best responses to this strategy are found using a classical search algorithm 
over a simplified version of the environment (a hand-crafted scoring function is used 
to evaluate the final state). Then a set of best-response strategies for the opponent 
against each of the strategies from the previous step is found. These steps are 
repeated for a given number of iterations and a method for discarding some of the 
strategies is implemented to prevent explosion of the number of strategies. At the end 
of the generation phase, we have a set of candidate strategies for both sides. The 
strategy selection phase than consists of running pairs of the AI’s and opponent’s 
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strategies against each other. The original pool of strategies is enriched with 
combinations of good performing strategies (part of soldiers get orders from one 
strategy, the rest from a different strategy) in a manner similar to a genetic algorithm. 
The AI then selects the strategy that wins over the largest fraction of opponent’s 
strategies. 

While the approach in Frozen Synapse is interesting, it targets a very different 
scenario that focuses on squad coordination and is not real-time. 

7.3.2 Goal-based Techniques for Games in Academia 

Unlike the game industry, there is a considerable amount of academic works on 
using adversarial goal-based techniques in real-time games, mostly focusing on real-
time strategy (RTS) games. 

A Monte-Carlo tree search variant called upper confidence bound on trees (UCT) 
has been employed for tactical coordination of units in an RTS game Wargus (Balla 
and Fern 2009).  Later, variant of Alpha-Beta was developed for combat scenarios of 
up to 8 vs 8 units in Starcraft (Churchill et al. 2012) – the work augmented Alpha-
Beta to handle actions of varying durations and to handle simultaneous decisions. 
The authors then improved on this approach to tackle scenarios with up to 50 vs 50 
units, by limiting the search to assignments of longer-duration scripts and playing out 
the whole scenario with the assigned scripts – i.e. actions for both players consist of 
assignment of a script to each unit and only 2-moves look-ahead is performed 
(Churchill and Buro 2013).  

Assigning scripts instead of actions proved to be useful to reduce branching 
factor. To allow for longer look-ahead the branching factor was further reduced by 
clustering the units and giving all units in a cluster the same script (Justesen et al. 
2014). Nevertheless, the technique still focused only on combat scenarios. Most 
recently, (Barriga et al. 2015) show a more general approach called “Puppet search,” 
where a whole game of Starcraft is represented as a game tree where the choice 
points are either a selection of a script (scripts control the game fully in this case, not 
only a single unit as in the above works) or further choice points exposed as needed 
by the scripts themselves. For example, a choice point may let the player choose 
either a “defensive” script, that moves all units into base and builds defensive 
buildings or an “all-out attack” script that orders all units to attack. The “all-out 
attack” script may then expose a choice point to decide which of the enemy bases to 
attack first. 

In a related line of research, (Buro and Ontañón 2015) tested an adversarial HTN 
approach to finding scripts at multiple levels of abstraction to play a full Starcraft 
game. 

While all of the above works use algorithms that provided inspiration for our 
approach, RTS games are a very different use case than OWGs and thus the 
techniques cannot be applied directly. 

7.3.3 Learning Reactive Controllers for Games 

A complementary approach to handle large rule complexity is to still use reactive 
representations, but learn or evolve the actual reactive script instead of coding it by 
hand. A very basic approach in this regard is dynamic scripting. In dynamic scripting 
a simple ranking-based script selection function over hand-crafted scripts is learnt 
online to adapt to changing player’s strategy (Spronck et al. 2006). Dynamic 
scripting has been applied in multiple game scenarios (e.g., Policarpo et al. 2010; 
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Ludwig and Farley 2009; Toubman et al. 2014), including an OWG (Ludwig and 
Farley 2008). 

Earlier works on evolution in game context have seen evolutions of rule-based 
script selection functions (Small and Congdon 2009) or fuzzy finite state machines 
(Esparcia-Alcazar et al. 2010) for a shooter game Unreal Tournament 2004. Later, 
attempts have then been made at evolving neural network controllers for bots in a 
shooter game (Schrum and Miikkulainen 2010; Schrum et al. 2012; Van Hoorn et al. 
2009). 

A two-level learning approach has been employed for capture-the-flag scenario in 
a shooter game (Hefny et al. 2008) – reinforcement learning is employed for a 
commander of the squad, while neural networks, trained on human play-traces are 
used to learn a low-level script selection for movement and shooting for individual 
NPCs. More recently, (Wang and Tan 2015) use reinforcement learning to learn a 
neural network controller for a shooter game. 

A more thorough review of uses of machine learning in various game genres is 
given in (Muñoz-Avila et al. 2013). 

Recently, huge progress has been made on agents that can learn to play video 
games on their own from purely visual input, using various neural network 
architectures. It has been shown that computers can learn to play some Atari 2600 
games better than human experts (Mnih et al. 2015), reasonable success has also 
been achieved in car racing environment and with navigating a maze in 3D, similar 
to the Wolfenstein game (Mnih et al. 2016). Attempts have even been made at 
learning to play text-based adventure games (He et al. 2015). 

There are two general downsides to most learning and evolutionary approaches to 
game AI. The foremost is that very few learning and evolutionary approaches result 
in controllers that are measurably better than what could be achieved within a few 
weeks of hand-coding. Since implementing a learning algorithm represents 
considerable effort of a skilled programmer, the trade-off is often unfavorable. The 
second large downside is that most learning and evolutionary representations that are 
capable of representing at least a mildly competent agent (especially variants of 
neural networks) are completely opaque from a debugging perspective. 

7.4 Our Solution – Adversarial Search 

As testified by the academic research on RTS games, modern adversarial search 
techniques are close to being applicable to real-time games. Search can thus possibly 
replace components with large rule complexity. Although it is possible to envision 
other use-cases, adversarial search is mostly suited for combat AI. We will thus 
conduct further discussion only in the scope of combat AI. 

Similarly to F.E.A.R. one of our primary aims is to reduce complexity: once there 
is a huge number of parameters that have impact on what the optimal action is (e.g., 
armor and weapon stats of both combatants and multiple other RPG stats in the case 
of KC:D), it is difficult to create a robust scripted behavior. Adversarial search also 
allows for some interesting tweaks to the behavior – the AI can for example be made 
risk seeking by adjusting the way chance nodes are handled (it would assign higher 
weight to favorable outcomes). Other possible changes include an optimistic setting 
where the model used in search assumes higher damage dealt to opponent and lower 
damage received, or an aggressive setting where the evaluation function puts more 
weight on opponent loosing health than on the NPC retaining health. Tuning in the 
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opposite direction will make the NPC more risk averse, pessimistic or defensive 
respectively. 

Further, search (unlike most learning approaches) is amenable to at least partial 
debugging solutions – at the very least, the search tree may be visualized and by 
inspecting the states at individual nodes, a designer may gain insight on why an 
action was chosen.  

Search algorithms also allow for a limited exposure of NPCs internal state and 
some interesting tweaking. Important data that can be communicated to player can be 
extracted from the search tree and node values computed by the search algorithm. 
For example, the value of the root node may be useful to decorate NPCs combat 
behavior – a high value at the beginning of the combat justifies trash talk on the 
NPCs part, if the value decreases throughout the combat, it signals that the NPC has 
underestimated the opponent (or has bad luck) and it should replace trash talk by 
acknowledging the opponent’s strength. If the state value drops too low, the NPC 
may decide to flee or beg for mercy. As a different example, analysis of node values 
further down the tree may reveal what action the AI fears the most the opponent will 
do, letting the NPC to swear or scream in terror, if the opponent chooses this action. 

Using adversarial search however requires the AI component to feature small rule 
complexity (to keep the branching factor manageable) and the relevant game 
mechanics have to allow for an abstract model that both maintains reasonable 
accuracy and can be evaluated very quickly. Since planning techniques have very 
similar requirements and they have been employed in multiple games, we can 
conclude that the only factors that prevent adversarial search to be employed more 
often are either design decisions (planning is good enough for the particular case) or 
speed of execution.  

7.4.1 Game Trees for Combat in OWGs 

In OWGs, there are rarely more than two sides to a combat scenario and these two 
sides have usually strictly opposing goals. This enables us to model the combat 
accurately as a two-player zero-sum game. To prevent confusion between the two 
meanings of the word player, we will use player to denote the human interacting with 
the computer and use the term side to refer to the participants in the abstract 
representation of the combat scenario. We will use the common terminology and 
refer to the sides of the combat as min and max, where max is the NPC performing 
the search and trying to maximize its reward. The nodes in the tree that represent 
choices for the individual sides are min nodes and max nodes. 

The simple game trees that represent zero-sum board games are however no 
longer sufficient and need to be slightly extended. Foremost, OWGs are not turn-
based, actions are executed in real-time and have durations. Following Churchill et 
al. (2012) we assume actions are not interruptible (which is not always the case, but 
is often a reasonable simplification), letting us to place choice points for either side 
whenever the currently executed action ends. It naturally follows, that the children of 
a min node now do not have to be max nodes, and that all children of a node may not 
be all of the same type. Note however, that this irregularity of the game tree does not 
affect the way state value is propagated from the terminal states to the root. 
Considering the ideal case, when we can construct the whole tree up to terminal 
states, the value of a min node is still determined as the minimum of the values of 
child nodes and the value of a max node is still the maximum of the values of the 
child nodes. 
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Further, both sides may be able to act at the same time, giving rise to 
simultaneous nodes, where both sides pick actions independently, without knowledge 
of the choice of the opponent. The children of a simultaneous node thus correspond 
to pairs of actions. In most cases, the root node of the search tree will be a 
simultaneous node. With simultaneous nodes, the game is no longer sequential – its 
extensive form representation now requires imperfect information (although to a 
limited extent). For a more thorough game-theoretic discussion of this type of games 
see for example (Bošanský 2014), here we will focus only on the main properties.  
Simultaneous nodes are conceptually very different from max or min nodes. For 
optimal decisions in a simultaneous node we need to compute the Nash equilibrium 
of a game where the payoff matrix is given by the values of the children. Although 
we are considering only zero-sum games, finding the exact value of a Nash 
equilibrium translates to solving a linear program of a size proportional to the 
number of actions available, which may be very costly (average running time of all 
known algorithms for linear programming is a higher-order polynomial of the 
program size). The value of the simultaneous node is then determined as the 
expected reward when both sides follow their equilibrium strategy. However, as we 
will see in the following sections, approximating Nash equilibria with a 
computationally less expensive method is often sufficient for a good level of play. 

Last, games contain events that are governed by randomness, so we need chance 
nodes, where each child is assigned a probability and the value of the node 
corresponds to expected value after the random effect, i.e. an average of the values of 
the children weighed by their probabilities. Chance nodes are also useful for 
representing mechanics that are deterministic in the actual game but are difficult or 
too expensive to compute in the abstract model (e.g., results of a physical 
simulation).  

In the following two subsections, we will dig into details of the two most common 
algorithms for adversarial tree search: Alpha-Beta and Monte-Carlo Tree Search 
(MCTS) and discuss how simultaneous decisions and chance nodes can be handled 
in both algorithms. These algorithms and their extensions are state of the art in real-
time search-based reasoning and will be implemented for our use case in KC:D. 
Further, we expect the algorithms with the extensions discussed below to generalize 
well to other domains and use cases. 

7.4.2 Alpha-Beta and its Variants 

The Alpha-Beta algorithm  (Russel and Norvig 2010) dates back to early AI attempts 
to make strong AI agents for classical board games and eventually succeeded to win 
over human champions in Checkers, Chess and many other board games. 

The quality of the decisions made by the algorithm depends critically on the 
quality of the heuristic function used to evaluate leaf nodes. 

Two of the most common improvements to Alpha-Beta are transposition table 
and iterative deepening. Transposition table (Greenblatt et al. 1967; Marsland 1986) 
serves as a simple memory for states encountered previously during the search and 
enables us to reuse computation if a state is encountered multiple times during the 
search. Once a value is determined for a node in the search tree or the value of the 
node is proven to lie outside the alpha-beta interval, this knowledge is stored in a 
hashtable along with the height (distance to the leaf nodes) the value was computed 
at and the move with the best value found. Then, when a new node is expanded, and 
the state can be found in the transposition table there are two basic cases. If the 
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stored value was computed for the same or larger height then the search directly 
updates the alpha-beta interval with the value stored, possibly causing immediate 
pruning. Otherwise, the stored best move is tried first, as it is expected to quickly 
shrink the alpha-beta interval.  

There are many variants of transposition table implementations, differing in 
details. For example, since the size of the table is limited, there needs to be a policy 
to handle collisions, i.e. how to decide whether to overwrite an older entry that would 
come at the same place as a newly stored entry. The options here include “always 
overwrite”, “never overwrite”, “keep the node where the search evaluated more 
nodes downstream”, “keep the node with larger height” and many others. The actual 
hash function used is also of great importance as most implementations do not check 
for equality of the actual positions but only for equality of the hash. Since checking 
position equality is usually costly, this greatly improves performance in exchange for 
a small probability of error when two different positions have the same hash. 

Alpha-Beta is typically run in an iterative deepening scheme, i.e. searches are run 
with increasing depth, until the time runs out and the result of the deepest fully 
completed search is returned. Iterative deepening gives the algorithm the anytime 
property – it can be terminated at any time and always yield the best estimate 
available at the time. It also has a small cost – the time spent in search is dominated 
by the time spent in the deepest search and so searching the lower depths has small 
penalty. In connection with a transposition table, the scheme is even more powerful, 
as the transposition table keeps some of the information from the lower depth 
searches and improves move ordering in the following iterations. With a 
transposition table, iterative deepening to a given depth may actually be faster than a 
single search of the same depth. 

As for handling chance nodes in Alpha-Beta, the most basic method is to evaluate 
all children of the chance node and propagate the average of their values weighed by 
their probability as in ExpectiMiniMax (Russel and Norvig 2010). If the values of 
the subtrees can be bounded, it is possible to apply *-minimax  (Ballard 1983). 
*-minimax prunes the search once the value of the node will lie outside the 
alpha-beta interval even if all the remaining children have the extreme values. 
Methods to use transposition table information in chance nodes have also been 
proposed (Veness and Blair 2007). 

There are two families of approaches to handling simultaneous decisions in 
variants of Alpha-Beta: those that are guaranteed to find the optimal Nash 
equilibrium strategy and those that give up optimality guarantees in exchange for 
increased speed. To the best of our knowledge, state of the art optimal solvers for 
games with perfect information and simultaneous decisions are those developed by 
Bošanský in his thesis (2014) and the SMAB algorithm (Saffidine et al. 2012). 
Nevertheless, all those algorithms need to solve linear programs for each 
simultaneous node and thus the running time of the algorithms is on the order of 
seconds or even much larger for games with branching factors 6 or more. The fastest 
result reported is for Goofspiel with four cards (maximal branching factor 4, 4 steps 
look-ahead) where the solving time is reported at around 300ms in the work of 
Bošanský (our guess from a graph given in the thesis) and 12 ms for SMAB. While 
12 ms would be acceptable in many use cases, computer games typically require both 
higher branching factor and longer look-ahead than Goofspiel with four cards. 
Further, computer games scenarios rarely have the high level of interdependence 
between simultaneous decisions manifested in Goofspiel, so trading optimality for 
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higher speed or longer look-ahead would usually be advantageous. Another practical 
disadvantage is the high implementation cost of the optimal algorithms. 

The non-optimal but faster approach is based on serializing the simultaneous 
decisions into sequential decisions with delayed effects – the actions are chosen 
sequentially, but the effects of the actions are applied simultaneously once both sides 
have chosen an action.  This was first suggested for an algorithm called RAB 
(randomized Alpha-Beta), where the results of multiple random serializations are 
averaged to approximate the true value of the game (Kovarsky and Buro 2005). For 
real-time performance in more complex domains, only a single such serialization is 
chosen (Churchill et al. 2012). The latter work was evaluated in the context of small 
combat scenarios in the strategy game Starcraft and the algorithm was shown to yield 
good results in under 5ms, making the approach useful also for our case. It is 
important to note that part of the reason this simplified approach is successful is that 
scenarios arising in computer games usually do not have strong interdependence 
between the simultaneous moves and thus the value of the sequential game is often a 
good approximation of the true value and it can be obtained with much smaller 
computational expenses. 

Other notable approaches to serializing simultaneous decisions include taking the 
“paranoid strategy” and always make the max side move first, providing a lower 
bound on the value of the state (Schiffel and Thielscher 2007) or modelling 
opponent’s decisions in a simultaneous node as uniformly random (Kuhlmann and 
Stone 2006). 

7.4.3 MCTS and its Variants 

Although Alpha-Beta proved to be successful in many board games, other games – 
most notably Go – remained very difficult for Alpha-Beta and alternative algorithms 
have been considered. MCTS was brought to mainstream attention in game AI 
through a variant called upper-confidence bound on trees (UCT) designed for a Go 
playing program Crazy Stone, which proved to be very successful (Coulom 2006). 
The MCTS algorithm starts with a tree consisting only of the initial state and then 
iteratively and asymmetrically builds the search tree. MCTS consists of four steps 
which are iterated until the available time or memory is exhausted:  

1. Selection – starting at the root node, the algorithm selects the “most 
promising” action to take. If the node has a child corresponding to the 
selected action the procedure repeats for the child. Selection ends once it 
selects an action for which there is no corresponding child in the tree. The 
method to determine what “most promising” means is the main dimension 
along which variants of MCTS differ. 

2. Expansion – a new child, corresponding to the selected action is added to 
the tree. 

3. Playout (also called Default policy) – the game is simulated from the new 
child using a fixed policy for both sides until a terminal state is reached. A 
common form of the default policy is to simply choose actions uniformly 
at random. 

4. Backpropagation – the result of the playout is propagated from the newly 
expanded child up until the root node is reached, updating the statistics 
that affect the selection phase.  

The most important feature of MCTS is that it explores the tree asymmetrically, 
allocating more time to the branches that seem promising. Another important feature 
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is that MCTS does not depend on a heuristic function to assess the values of leaf 
nodes. It is the game rules themselves that provide estimates of node value – 
following the idea that in a good position there are more ways to win than to lose 
which should be picked up by the repeated playouts.  

UCT is the most frequently used variant of MCTS. It was innovative by using 
upper-confidence bound formula UCB1 originally developed for k-armed bandit 
problems (Auer· et al. 2002) in the selection phase to choose the best nodes in 
MCTS. The algorithm selects the node that maximizes the value: 

���1(�) =
��

��
+ ��

ln �������

��
 

Where si is the sum of rewards encountered so far in the subtree rooted at child i, 
ni is the number of visits to child i and nparent is the number of visits to the parent 
node. c is a parameter of the algorithm called exploration factor – higher c results in 
more exploration, as the second term in the formula is larger for children that are 
under-explored. Lower c on the other hand results in more exploitation as more effort 
is dedicated to the nodes whose past results were promising. In theory, c = 2 ensures 
asymptotically lowest possible expected regret if the rewards at terminal nodes are 
identically and independently distributed in the interval [0, 1] (Kocsis et al. 2006). 
Since this assumption is hard to check and is often violated in practice, the value of c 
is usually determined empirically to maximize performance in the actual settings. 
Ties among children are broken randomly and children that have never been 
explored (ni = 0) are considered to have a UCB value of ∞, so unexplored children 
are always selected first. 

For general games, the current understanding is that Alpha-Beta performs better 
than MCTS for games with a small branching factor and where good heuristics are 
available. If heuristics are not available or are hard to design (as in Go) or the 
branching factor is large, MCTS becomes preferable. This is underlined by the 
success of MCTS-based agents in general game playing competitions (Genesereth 
and Björnsson 2013). Recently, an algorithm combining MCTS and learned policies 
managed to beat the human champion in Go (Silver et al. 2016). 

In MCTS, a straightforward handling of chance nodes is to handle them the same 
as other nodes in the tree, except that in the selection and playout phases the 
probability distribution of the children is sampled to choose the node to select/move 
to play. This corresponds to averaging over all possible determinizations of the game 
weighed by their probability. When the computational cost of sampling a node is 
high or the branching of the chance nodes makes the tree unmanageably large, this 
direct approach becomes impractical. Multiple methods to limit the exploration to 
only a sample of the possible determinizations have been proposed (Lanctot et al. 
2013; Bjarnason et al. 2009). 

As in Alpha-Beta, the simplest way to handle simultaneous decisions is to 
serialize them and use plain UCT. This has the same disadvantages as serializing 
decisions in Alpha-Beta, but is easy to implement and fast. A simple improvement is 
to represent the simultaneous decision as a single node in the tree where children 
correspond to joint actions, but have each side maintain separate reward sums and 
visit counts for their own actions. In the selection phase, each side selects an action 
that maximizes the UCB1 value over their reward estimates independently. This 
algorithm is called decoupled UCT. The advantage of decoupled UCT is that 
simultaneous decisions are handled symmetrically for both sides. Nevertheless, 
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decoupled UCT algorithm does not, in general, converge  to  Nash equilibrium 
(Shafiei et al. 2009). 

However, using a different formula in the selection phase, in particular Exp3 
(Auer et al. 2002) or regret matching (Hart and Mas-Colell 2000) results in an 
algorithm that provably converges to the Nash equilibrium (Lisý et al. 2013), 
although at a higher computational cost per evaluation. Another MCTS-based 
algorithm with convergence guarantees is Online  Outcome  Sampling  (OOS)  
(Lanctot · et al. 2013), which uses a formula similar to regret matching but fixes a 
strategy of one of the sides for each iteration of the algorithm.  

In initial empirical evaluation in the context of Goofspiel, decoupled UCT was 
found to be worse than Exp3, OOS and regret matching (Lanctot · et al. 2013). 
Further work then evaluated multiple variants of simultaneous move handling 
methods in UCT in a set of nine games and found decoupled UCT to be best overall 
with serialization second (Tak et al. 2014). The likely reason is that MCTS variants 
with convergence guarantees are computationally more expensive then serialized or 
decoupled UCT, while most actual games are not “hard” in the sense that Nash 
equilibrium strategy is vastly different from both minimax and maximin 
serializations. 

7.5 Implementation 

As with the other techniques in this thesis we implemented adversarial search in 
KC:D. In particular, we tested search-based controllers for enemy AI in one-on-one 
swordfighting scenarios. In this section, we will first detail the combat mechanics of 
KC:D and how we abstracted them into a game tree. We will note how we made the 
abstract representation match the actual game as closely as possible and how the 
search-based controller is integrated in the game. Then we discuss the 
implementation of the actual search algorithms we tested and the section concludes 
with description of our experiments to find optimal parameter values for our 
algorithms. 

7.5.1 Combat Model in Game 

There are four main groups of stats that govern combat in KC:D: health, stamina, 
attack and defense. When health drops to 0, the NPC dies. Health starts at 100 and 
cannot be recovered during combat. Stamina represents the energy the NPC has to 
perform actions and is very important for combat. It ranges from 0 to 110 and every 
combat action except for walking consumes part of stamina. If the NPC does not 
perform any stamina-consuming actions for two seconds, the stamina slowly 
replenishes. The rate of stamina recovery depends on the stance of the NPC 
(completely at rest, walking, in combat guard – in order of decreasing stamina 
recovery) and on multiple additional stats of the NPC.  

Attack stats represent the ability to cause damage to opponent’s stamina and 
health. Most weapons support two or three attack types (e.g., slashing and stabbing 
with a sword). Attack value is attached to each attack type of a weapon and is further 
modified by several stats of the NPC. Defense value is attached to both weapon and 
every piece of armor the NPC wears. Armor may have different defense values 
against different attack types (e.g., chainmail is very effective against slashing, less 
effective against stabbing and of little use against blunt force). The body of the 
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character is divided into 6 parts and 36 subparts and different types of armor cover 
different subparts.  

When attacking, the character chooses the type of attack (e.g., slash or stab) and a 
broad zone of attack (head, upper left, upper right, lower left, lower right and center 
– not all zones are available for all types of attacks). Once the attack action is issued, 
the combat system selects an appropriate animation based on the context (obstacles, 
distance to opponent ...). The animation then controls the movement of the sword.  

The opponent can defend himself in three ways: blocking, perfect blocking and 
dodging. Blocking is the simplest and least effective way of defense: if the defending 
character is in blocking state when the attack reaches a critical point (usually just 
after the weapon starts moving towards the character), the attack is always blocked 
by weapon and the defender stamina is reduced – the larger the ratio of attack to the 
weapon’s defense, the larger damage to stamina. Although it is possible to be 
blocking for long periods of time, this is not the optimal strategy, because unless the 
attack is very weak, the defender loses much more stamina than the attacker 
consumed for the attack.  

If the defender’s stamina drops to zero as a result of the block, the block is broken 
and the defender is dazed for several seconds and unable to perform any action, 
letting the attacker score some unblocked hits. Furthermore, after a block, there is 
always a short time window where the attacker can issue another attack command, 
while the defender cannot counterattack.  

The defending character may also try to perform a perfect block – that is to start 
blocking in a very small time window that follows the critical point. The length of 
the perfect block window depends on the relative skills of the combatants and the 
type of attack. For NPCs that try to perform a perfect block, the same stats affect the 
probability that they will succeed. A successful perfect block costs the defender no 
stamina and also gives him a short time window for a riposte – a strong counter 
attack that cannot be blocked by a simple block, but only with a perfect block. On the 
other hand, a failed perfect block results in an unblocked hit.  

Dodging is activated if the defender starts moving in a small time window that 
starts slightly before the critical point. The length of the time window/probability of 
success for dodging is computed from different character stats than for perfect block 
and is usually longer. Dodging acts very similarly to perfect block, but it does not let 
the defender to riposte. Dodging also involves character movement which may be 
beneficial for tactical reasons (maneuvering the opponent to a constrained space). 
Dodging also has the advantage that the defender may be in a blocking state while 
attempting to dodge. If this is the case, a failed dodge will result in a blocked hit, 
which is almost always better than an unblocked hit. 

To summarize, the difference between dodging and perfect block is that a 
successful perfect block gives higher advantage than a successful dodge (perfect 
block allows for riposte), while dodge is usually a safer choice (longer time window 
/higher probability of success, failure may not result in an unblocked hit). 

In all cases of successful defense, the combat system ensures that the animations 
of the attacker and defender are properly synchronized and result in a physical 
collision of their swords or in a clear miss. 

If the defender does not block or fails to issue a perfect block/dodge, the 
attacker’s sword follows the trajectory outlined in the attack animation. If the sword 
collides with the opponent’s body, the opponent is hit. The actual damage done to the 
character depends on the ratio of attack value and the summed defense values of all 
armor parts that cover the body subpart where the sword hit the character. A hit 
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results in damage done to character’s stamina and possibly also to character’s health. 
Except for the strongest hits only little damage is done to character’s health and the 
majority of the damage is done to stamina. However, if the character’s stamina is not 
large enough to absorb the whole damage from the hit, the remaining damage 
translates directly to health damage. Strong hits (attack larger than 2.5 times 
defense), do considerable damage to character’s health even if his stamina is not 
depleted by the attack, but those are almost impossible to achieve against armored 
opponents. Very weak hits (attack less than 0.75 times defense) result in almost no 
stamina or health loss. The body part that was hit also affects the final damage – hits 
to the head result in larger damage, while hits to body members result in reduced 
damage.  

A successful hit also gives a short time window, when the attacker may start 
another attack (if he has enough stamina) while the defender cannot issue any attack 
actions. If the attacker is able to chain attacks precisely he may execute a combo. A 
combo is a designer-specified sequence of attack types and zones and if the attacker 
executes those attacks successfully with good timing (always issuing the attack 
action at the first possible moment) and the defender does not perform a dodge or a 
perfect block, the last attack turns into a special animation and deals the defender 
extra damage. 

Another important mechanic is feigning. If the attacker manages to change attack 
zone in a short time window between the moment the attack command is issued and 
the start of the actual attack animation and the defender is holding a normal block, 
the block will not automatically adjust to the new attack zone and the attack will hit. 
The defender may however counter by reblocking – releasing the block button and 
pushing it again immediately, which makes the block adjust to the new attack zone. 
Once again, AI has a probability for both performing a feign and successfully 
reblocking if the player feigns. 

Every block also damages the weapon and every hit damages the armor, 
decreasing their defense and/or attack values. All the time the characters can also 
move, stepping in and out of reach of opponent’s weapons. As different weapons and 
attack types have different maximal distances and every piece of armor slows the 
characters down, movement adds another level of complexity. 

The stamina is the key resource for combat, it acts as both a shield and energy for 
attacks and the character needs to weigh the benefits of consuming stamina for a 
chain of attacks, which may defeat the opponent, with the risk of exposing himself to 
a riposte while his stamina is low. Simple blocking is often useful if the attacker is 
low on stamina and will not be able to continue with further attacks after his attack is 
blocked, while a risky perfect block may tip the balance in favor of the currently 
weaker combatant. When character’s health decreases, his maximal stamina also 
decreases, but the decrease is non-linear and relatively slow (at 50 health maximum 
is 87 stamina, at 10 health maximum is 57 stamina). 

The character may also repeatedly aim for the same part of opponent’s body, 
damaging a fragile piece of the opponent’s armor and increasing the effectivity of his 
further attacks. A heavily armored opponent may easily endure several unblocked 
hits from a light weapon in a row while a fast but lightly armored character has to 
keep a safe distance and try to replenish his stamina even after a minor hit. Note that 
except for the most unbalanced cases, it is impossible to win a fight without taking 
risks – a series of successful perfect blocks and ripostes may defeat even a much 
stronger opponent. 
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Repeated hits in the same body part may also result in bleeding – the character 
starts to slowly lose health over time, the actual speed depends on the severity of the 
bleeding. 

The game features one other melee combat mechanic: clinch. Clinch is a specific 
combat state the occurs when the characters move to close together – their swords 
become interlocked and the only possibility is to perform a physical action (e.g., a 
kick or a punch), which may decrease opponent’s stamina and moves the characters 
further apart and terminates the clinch. In the game, clinch is simply a race as to who 
first pushes an attack button once the clinch starts. The AI calculates a random delay 
for its attack in clinch based on various stats of the NPC. 

The game currently features fist combat, broadswords, short swords, sabres, 
maces and shields. Short sword may be used together with a shield, while 
broadsword needs both hands of the NPC. All weapons follow the same basic 
mechanics and differ only in parameters and animations.  

Including armor, over 40 parameters per NPC affect the combat mechanics. This 
is where a search-based approach should be useful – due to the large number of 
parameters involved and to the large number of weapon and armor combinations, 
scripted combat decisions cannot be tailored to all possible cases and have to 
necessarily compromise between optimality and code complexity. 

The combat mechanic also has the desirable property that after important events 
(hit, block …), there are short time windows (about 100 ms long) where the 
animations are fully controlling both characters and neither of them can perform any 
action. These windows are very suitable to performing search for a next action. We 
thus consider 100 ms the longest time a search may take to be useful in the game. 

Note also that the combat mechanic has only limited interactions with the 
obstacles in the 3D world. For example, when the combatant is close to a wall, 
certain attack zones may be disabled (e.g., when the sword would have to move 
through wall to perform the associated animation). Obstacles may also limit the 
possible directions for dodging. Nevertheless, combat most often happens at open 
spaces, as obstacles are very hard to handle properly on the animation and AI side, so 
the game is designed to generally avoid combat in crammed spaces. 

7.5.2 Combat Model for Search 

As the combat mechanics rely heavily on animations and physics, reusing the code 
that executes the combat in the game as a model for the search would be both 
difficult and computationally very expensive. To make search possible, we need an 
abstract representation that maintains the important aspects of the mechanics but can 
evaluate millions of actions per second. Such model will necessarily reimplement a 
portion of the combat mechanics, which is one of the disadvantages of using search 
in this scenario. Since the combat is very fast-paced and a different choice at a single 
time point can make the difference between winning and losing the fight, we wanted 
the model to stay very close to the game mechanics and represent individual actions 
the combatants can perform. In this section we describe the model that proved most 
useful for our implementation. 

One of the biggest simplifications we made is that we reduce movement of the 
combatants to only one dimension. This is because in one-on-one combat, 
positioning plays a secondary role – the primary purpose of movement is to move in 
or out of range for attack, which is mostly captured by the 1D model. The 1D 
movement space is bounded to model that the combatant may be pushed to a wall. 
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The model cannot capture limitations to combat actions formed by obstacles and it 
cannot capture complex evasion/pursuit in a maze-like environment. Although 
obstacles can in principle have big influence on combat (e.g., good movement 
through a maze may give the combatant enough time to replenish stamina without 
letting its opponent attack), this is seldom encountered in the actual game. 

Further, the model assumes that all the equipment of both combatants is fixed 
throughout the combat, although combatants are allowed to change weapons in the 
middle of the fight. The model also assumes that all character parameters are fixed, 
in particular we ignore the possibility of increasing skill mid-combat and of time-
related changes in character parameters (e.g., if the character is hungry, his maximal 
stamina slowly decreases over time). In all those cases, our model works with a 
snapshot of the world as it was at the beginning of the search. Note however, that all 
those effects are very rare in combat and once they take place, they are taken into 
account in the next search invocation. To improve performance, all values derived 
from character properties that are assumed fixed are precomputed (e.g., the total 
armor for each body subpart).  

The last major mechanic we do not model is combos, as they are difficult to 
capture in a simplified way and it is difficult to obtain the exact data to model them – 
combos are declared procedurally as preconditions for special combat animations 
which can be evaluated only against the full game state.  

Other than that, we model – to various levels of fidelity – all aspects of the 
combat as discussed in the previous section. All events related to physics and 
reaction times are modelled as chance events where either the probabilities of 
success are a direct input to the search (e.g., the probability of a successful perfect 
block) or are determined by the stats of the combatants (e.g., the average time to 
reaction in clinch). To model the player, the parameters may be deduced from the 
player’s combat history combined with a baseline guess given by game designers.  

From the perspective of a search-based AI, a favorable feature of the combat 
mechanics is that on many occasions, a single combatant has the attack initiative, 
while the other character can only decide on a way to defend. Those moments can be 
adequately represented as the attacker deciding first on his attack and the defender 
deciding afterwards. This greatly reduces the number of nodes in the search tree that 
represent simultaneous decisions. Further, the attack and defense decisions are 
already discrete, we only need to discretize the movement of the NPCs and the flow 
of time. 

7.5.2.1 Actions 

After thorough experimentation with multiple variants, we arrived at the following 
set of actions for the abstract model: 

 AttackNow – if the enemy is within the attack range, attack immediately, 
if not, approach the enemy and attack once he is in range. The action is 
parametrized by the type of attack the character performs. 

 AttackOnApproach – do not move, but attack immediately if the enemy 
moves within attack range. The action is parametrized by the type of 
attack the character performs. 

 TryPerfectBlock – if the enemy starts an attack, attempt a perfect block. 
 TryDodge – if the enemy starts an attack, attempt to dodge. 
 SweetSpot – move towards the optimal attack distance (given as input to 

the algorithm). If the enemy starts an attack, attempt a perfect block. 
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 SweetSpot & Block – move towards the optimal attack distance. The 
combatant holds normal block while moving. 

 StepBack – increase distance from the enemy. If the enemy starts an 
attack, attempt a perfect block. 

 StepBack & Block – increase distance from the enemy. The combatant 
holds normal block while moving. 

 Nothing – do not do anything. If the enemy starts an attack, attempt a 
perfect block. 

 Nothing & Block – do not do anything except holding normal block. 

Note that all actions that do not explicitly include attack or a defensive action 
include an attempt at perfect block. This was introduced to both mimic the way 
players play the game (unless explicitly deciding to do something else, players 
almost always attempt to perfect block whenever they see the opponent attacking) 
and to reduce the number of occasions when the AI would receive a hit without 
doing anything to counter it, which players perceived as stupid. As a result, 
TryPerfectBlock executes the same as Nothing, but we kept those actions separate 
and use TryPerfectBlock when the AI is making a defensive decision and Nothing 
otherwise, which makes for a slightly more comprehensible visualization of the 
search tree for debugging purposes.  

The SweetSpot & Block and StepBack & Block actions were also added later in 
the development to let the AI move and defend itself at the same time, which once 
again reduced the number of unblocked hits the AI received and allowed for 
smoother risk balancing by the AI. Keep in mind however, that normal blocking is 
often  not the best choice as it lets the attacker keep initiative, so StepBack without 
normal block (but with an implicit attempt at perfect block) may be a better 
defensive decision in certain contexts. 

Initially, we also had only one attack action. We tested both having the AI to 
always attack immediately (as in AttackNow) and letting AI attack only when the 
enemy is within range (as in AttackOnApproach). The former resulted in the AI 
performing a lot of “preemptive strikes” as doing anything other than attacking 
meant letting the opponent to gain attack initiative. The latter option led to a very 
defensive behavior as the AI could approach the opponent only with the SweetSpot 
action, which gave the opponent the possibility to always attack first, and was thus 
avoided. However, once we let the AI use both actions, its strength increased 
considerably. 

When a combatant attacks, the duration of the attack and the defensive response is 
estimated from the real duration of the attacks in the game. If neither side attacks, the 
time moves by a fixed step, given as a parameter to the algorithm. This time step 
then determines the distance the combatants move with a single action. In all our 
experiments, the default time step was 0.5s. 

7.5.2.2 State 

Since most of the parameters influencing combat are assumed fixed in the model, the 
state of our model is formed by only:  

 Position of the combatants in the 1D space. 
 Health, stamina and the remaining time until stamina starts to replenish 

for both combatants. 
 Health of all pieces of armor for both combatants. 
 The action taken by the combatants at the latest decision point. 
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 Which combatant has the attack initiative (if any). 
 The type of search node. 

The state contains the action taken in the last decision point because many actions 
result in chance events that determine the success of the action and therefore the 
action chosen needs to be retrieved in later chance nodes. 

The attack initiative models the situations where one of the players can issue 
actions, while the other still recovers from a hit or from opponent’s perfect block. 
The side having the attack initiative is the attacker while the other side is the 
defender.  

The type of search node represents the general state of the combat and together 
with the attack initiative it implies the type of the node from the perspective of the 
search algorithm (simultaneous decision, min decision, max decision or chance). We 
have the following types of nodes (see Figure 13 for a diagram): 

 Decision nodes 
o Simultaneous – Both sides can perform all actions which are then 

evaluated simultaneously. 
o Attacker – The attacker side decides whether to attack or not. In 

this node, the attacker chooses only the type of attack, not the 
individual zone. There are two special cases for this node: 

 Riposte – The attacker may perform a riposte. If he 
succeeds, a defense with a normal block will be useless. 

 Broken block – the last attack resulted in broken block of 
the defender. The defender thus cannot react with a 
defensive action and will certainly be hit by the attack. 

o Defender – The defender chooses how to react to an attack. This 
node is only encountered after the attacker decides to attack in the 
attacker node. 

o Attack Zone – The attacker chooses the zone for the attack. This 
node was introduced to reduce the branching factor of the search. 
Note that unless the attack is a hit, it does not matter what zone the 
attacker chose, only the type of the attack. So we defer the choice 
of an attack zone to a separate decision node. This node is reached 
only in the branches when the attack resulted in a hit. 

 Chance nodes 
o Both attacking – This node is encountered when both sides choose 

to attack in the simultaneous node (if both of them can actually 
attack). It randomly chooses which of the combatants hits first. The 
probability of hitting first is derived from the difference of the 
durations of the attack action. Since the first hit invalidates the 
attack of the opponent, it is impossible for both combatants to 
score a hit at the same time. 

o Armor zone – Once an attack is determined to be successful and 
once the attacker has chosen the attack zone, a probability 
distribution is sampled to determine which part of the body was 
actually hit and corresponding damage is dealt to the defender. 

o Dodge – If the defender chooses to attempt dodge, this node 
determines the actual outcome – either a) the dodge is successful, 
or b) it is not successful, but the defender has been able to perform 
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a normal block, or c) it is completely unsuccessful and the defender 
receives an unblocked hit. 

o Perfect block – Determines whether an attempt at perfect block has 
been successful. This node is encountered whenever the defender 
does not use a normal block and is not attacking. 

o Riposte – If the defender successfully performs a perfect block and 
decides to attack in the riposte decision, this node determines 
whether he is successful at executing the riposte. Since the only 
possible defense against a riposte is a perfect block, successful 
riposte transitions to perfect block chance for the defender. 
Unsuccessful riposte behaves as a normal attack from the attack 
decision. 

o Feign and reblock – If the defender decides to perform a normal 
block (or performs a normal block as a result of the dodge chance), 
it is still possible that he gets hit, if the attacker executes a 
successful feign. The defender can however react to a feign by 
quickly reblocking. This node gathers these two events. The 
possible results are a successful block (either the feign has not been 
successful or the reblock has been successful) or an unsuccessful 
block with a changed attack zone. For simplicity, it is assumed that 
the new attack zone is chosen randomly, and so this node has one 
child for each attack zone. In both cases, the attacker retains attack 
initiative. 

o Clinch – This node models the clinch mechanic – it is encountered 
whenever the combatants get too close to each other. It randomly 
chooses which player will first react and thus gain attack initiative. 
The probability is determined by the average time for clinch 
reaction of the combatants. 
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7.5.2.3 Extracting Abstract Model Parameters 

Apart from parameters that are directly represented in the game mechanics (e.g., 
attack values, health), our model needs additional parameters to estimate the 
mechanics that, in the actual game, are governed by animations and physics. These 
are the durations of attack actions and the actual body subparts that are hit with 
successful attacks at various zones. To estimate the parameters, we have setup a large 
arena with several dozens of fighting pairs of NPCs (see Figure 14) and measured all 
attacks and the zones that were hit. The scenario was run for a day, giving us 62 083 
attack and hit combinations. Initially, we experimented with fitting linear models to 
the data taking various features into account (e.g., distance between the combatants, 
difference in elevation), but those additional features provided little improvement. In 
the end, we simply counted the number of times a particular subpart was hit as a 
result of an attack of a given type and zone. To keep the branching factor of the 
corresponding chance nodes reasonable, we then removed all subparts that were hit 
in less than 5% of the cases and used the normalized counts of the hits as the 
probability distribution. The attack durations are then simply the average durations of 
the individual attack types. 

 

 

Figure 14: Data gathering scenario for the abstract combat model. 

7.5.3 Integrating the Model with the Game 

A correct integration of deliberative reasoning with an abstract model in a real-time 
environment is a challenging task that may largely affect the practical performance 
of the system. There are three basic aspects of the integration: 

1. Translating the actual game state into the abstract representation. 
2. Enacting the decisions made by the system in the virtual world. 
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3. Meta-reasoning about the system – deciding when a new round of 
reasoning should be performed or when do the decisions made in a 
previous reasoning run become invalid. 

4. Debugging support. 

In most cases, including our model, translating the game state into the abstract 
representation is relatively straightforward – almost all variables in our model can be 
directly extracted from the game state. As our model is one-dimensional, we simply 
project the positions of the two combatants on the line connecting them and query 
the environment for obstacles on that line. We assume that the distance to obstacles 
on that line is representative of the general amount of free space available for the 
maneuvering of the combatants. 

In the framework of script selection, enacting actions in the world simply means 
running a script. While the actions represented in the abstract model are relatively 
low-level, the scripts handling their execution need to also cover the aspects of the 
combat that are not represented by the model – in particular, the scripts are 
responsible for handling combos and incorporate 2D obstacle information into 
movement.   

The meta-reasoning in our system continuously tracks the combat state and 
executes the search every time the combat state changes significantly or an important 
action is completed (e.g., when either combatant was hit or when the NPC 
successfully performs a perfect block). As we already noted, most of those situations 
are followed by a short time when neither combatant can perform an action, which 
lets us to enact the decision without any delay. Further, the system monitors the 
current attack initiative and prepares the root node of the search tree accordingly 
(e.g., when the opponent has started an attack, the search is initialized to a Defender 
decision node; after the NPC performs a perfect block, the search starts with a 
Riposte decision node). The system also estimates the time that is available for 
decision making in time-critical contexts (e.g., when deciding on a defensive actions 
when the attack is already in progress) and may shorten the time allocated for search 
to make sure the decision can be enacted safely. A new search is also started after a 
given time interval has elapsed, even if no significant changes have happened. We 
have achieved the best results with setting the maximal interval between searches to 
500 ms. 

It is also important that our model does not gain complete control over the NPC. 
Instead, the model is incorporated in the larger context of script selection and thus a 
higher-level decision may decide to ignore the results of the search or not run the 
reasoning at all. This is mostly to allow scripters to retain detailed control over the 
NPCs actions, if it is required by game design.  

On the implementation level, the search algorithm is represented by a decorator 
BT node which makes the results of the latest search run available to the child 
subtree in a variable. This enables the meta-reasoning system to get updates 
frequently while letting the scripter using the system implement and control how 
exactly should the actions be handled. 

The debugging of the model is facilitated by storing the complete trees for 
recently run searches and letting the user to explore the tree to learn why a given 
decision was made (see Figure 15). The user can also visualize the state represented 
by a given node in the stored tree directly in the game editor to be able to compare it 
to the actual state of the game (see Figure 16). 
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Figure 15: Search tree visualization in level editor. 
The color of the nodes represents who is deciding at the given node (blue: max side, green: 
min side). The intensity of the color corresponds to the node’s preference among siblings 
(node value in AlphaBeta, number of visits for UCT and DUCT). 

 

Figure 16: Visualizing the abstract model state by overlaying it with the game world. 
A possible state envisioned by the search algorithm is displayed over the actual state of the 
game. The cones represent the positions of the combatants in the hypothetical state, the bars 
represent health and stamina (purple) and the red circles are the attack ranges of the 
combatants. The red prism on the right represents the limit of the 1D space of the model. 
Text provides further details of the state (chosen action, armor stats, …). 
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7.5.4 Search Implementation 

The search algorithms and the abstract combat model are implemented in C++ and 
are intended to be run in a separate thread. Implementation of the model and all 
search algorithms has been heavily optimized with regards to best practices for C++ 
programming: high cache locality and cheap state copy was achieved by storing all 
data in a contiguous segment of memory, no dynamic allocation is performed in the 
main loops of the algorithms and allocation on stack is kept minimal. Since copying 
the state is – in our case – cheap while evaluating the effects of actions may be costly 
(multiple floating point operations), the search algorithms copy the state when 
branching instead of doing and undoing actions on a single state copy as is common 
in Go or chess. Our abstract model can evaluate approximately 107 moves per second 
(copying the state included) on a higher-tier PC (Intel Core i5 3470 @ 3.20 GHz). 
We have implemented three search algorithms that form the state of the art in online 
adversarial search: Alpha-Beta, UCT and Decoupled UCT (DUCT). 

In our version of the Alpha-Beta, we handle chance nodes with *-minimax 
(Ballard 1983) and randomly serialize simultaneous decisions. We have also 
implemented transposition tables, which slightly improved the performance, but the 
gain was very tenuous and we therefore did not implement transposition tables for 
chance nodes. Alpha-Beta is run in an iterative deepening scheme until the allocated 
time runs out. We used a class of evaluation functions that return difference in health 
for terminal nodes and a weighed sum of difference in health and difference in 
stamina for non-terminal nodes. The weight of the health difference in non-terminal 
nodes is always below one, as it represents the penalty for uncertainty (the same 
difference in health gives a higher value, if min is dead and lower value if max is 
dead). Our version of the Alpha-Beta algorithm thus has four parameters: the time 
limit, the size of the transposition table and the two weights for the evaluation 
function for non-terminal nodes. 

Our implementation of UCT and DUCT are very similar and so we will first speak 
about their shared properties. An issue for direct application of any MCTS-based 
algorithm to our abstract combat model is that the length of the combat is not limited, 
and in extreme cases it may not even be possible to end the combat even if both sides 
cooperated (with high armor, high stamina cost for attack and weak attacks). 
Therefore, we setup a limit on the maximal length of a playout. If the playout 
exceeds this limit, the value of the playout is determined by evaluating the state 
reached. For both terminal and non-terminal states, we use the same evaluation 
function as for the Alpha-Beta algorithm (a weighed sum of difference in health and 
difference in stamina).  

In both UCT and DUCT we handle chance nodes straightforwardly – all possible 
outcomes are added as children of the chance node and in the selection phase, the 
probability distribution is sampled to determine the next node. 

For sampling the chance nodes in the selection phase and in playouts, we use the 
Xorshift128+ random number generator (Vigna 2014), as its inclusion significantly 
improved the number of steps the algorithms could perform within the time limit 
over using the default generator employed in KC:D (a Mersenne twister) while also 
providing stronger guarantees on statistical quality. 

Since all memory is preallocated, including an array to store the nodes of the 
search tree built by UCT and UCT, the maximal number of nodes has to be known 
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during algorithm initialization. If the algorithm runs out of preallocated memory for 
nodes, it continues to run playouts from the leaf nodes, but does not expand new 
nodes. In practice we however set the memory limit large enough to prevent the 
algorithm from consuming all of the preallocated memory. 

As we expect the algorithms to be run for a very short time, we do not need to be 
conservative in memory usage, which has let us to implement a wasteful but faster 
storage scheme for the search tree stored by the UCT and DUCT algorithms. In 
particular, we store all children of a node in a contiguous segment of the preallocated 
array storing the nodes. This improves cache locality in the selection phase and 
makes the individual nodes smaller (only the index of the first child and the number 
of children have to be stored). On the other hand, it means that the memory for all 
children of a node needs to be reserved once any of the children is expanded. Since 
most potential children are never expanded (simply because trees in general have 
much more leaves than internal nodes), the memory requirements of the algorithm 
are several times larger than with a more compact storage.  

The only difference between UCT and DUCT is in handling simultaneous 
decisions. In UCT we handle simultaneous nodes by randomly serializing the 
decisions. In DUCT we use the decoupled approach - each player selects an action 
that maximizes the UCB1 value over their reward estimates independently. To keep 
the implementation simple, we emulate this behavior by two levels of branching in 
the tree, where all the nodes on the second level share the same visit count and total 
score statistic. 

Our versions of both UCT and DUCT have five parameters: the time limit, the 
exploration factor for the UCB1 formula, the maximal length of a playout (referred 
to as playout steps) and the two weights for the evaluation function of non-terminal 
nodes.  

We have also used two baseline controllers during evaluation:  

 Random. Uses the same model as the search algorithm (in particular, it 
uses the same move generator), but chooses actions uniformly at random. 

 Default AI. This is the combat AI developed for the public beta of KC:D 
by the scripters at Warhorse.  

While the random controller is very straightforward, the default AI deserves a bit 
more attention. The default AI is composed of multiple choices, where each choice is 
realized by sampling a discrete probabilistic distribution. These distributions then 
form the parameters of the default AI. The individual choices are activated by 
different stimuli and result in selecting a script. Once a script is chosen, there is no 
more randomness and the character is always successful at executing the script. This 
means that the probability distributions combine two types of information: what 
actions does the AI prefer for the given choice and how likely is the AI to 
successfully execute those actions. There are the following choices the default AI 
handles: 

 Defensive choice – performed when the opponent starts an attack. The 
possible scripts to execute are perfect block, dodge, normal block and 
nothing. 

 Idle choice – the default choice performed when no other choice should be 
active. The possible scripts to execute is moving closer or farther from the 
player, moving sideways, moving aggressively forward to enter clinch and 
starting an attack (triggers an attack choice). 
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 Attack choice – this choice is active when the NPC chose to attack in the 
idle choice or after a successful attack has been performed. The scripts 
available represent the individual types of attack or stopping the attack 
(triggers the idle choice). 

For all choices except the defensive choice we used the same parameters as was 
used in the alpha version of the game. For the defensive choice, we forced the 
parameters to match closely the defensive capabilities of the search-based AI. We 
used the default AI only for tests in the game, as the default AI cannot be run without 
the whole game running. 

7.5.5 Comparing Algorithms 

Initially, we compared the algorithms by running a multitude of randomly generated 
scenarios and simply counting the wins for both algorithms. This however proved 
very ineffective, as most scenarios were unbalanced. Since the combat mechanics 
favor stats (or skill) over intelligence, this imbalance frequently affected the outcome 
of the scenario much more than the difference in the quality of the algorithms.  

To alleviate this issue, we ran each scenario twice with the algorithms swapping 
sides and compared the difference: if one of the algorithms won both variants, it 
scored a win. If both algorithms won one variant of the scenario, the one that won 
with more health was awarded a win. If the difference in health was very close, we 
also took into account the amount of time it took the algorithms to win (shorter time 
is better) if even the time was close, the scenario was declared a draw and both 
algorithms were awarded half a win. We did not run the same scenario more than 
twice (once for each ordering of the agents), as we wanted to explore a large number 
of possible scenarios and running the same scenario multiple times reduced the effect 
of chance almost the same as running multiple scenarios twice. 

7.5.6 Finding Optimal Parameter Values 

As discussed in the previous section, the algorithms we developed depend on a set of 
parameters as discussed in Section 7.5.4 and summarized in Table 12. We chose four 
values for possible time limits for the algorithms: 1ms, 20ms, 50ms and 100ms (we 
noted earlier that 100ms is the maximal lag that still lets the NPC react in time to 
most events). The configuration of the other parameters is more difficult. To get the 
best possible results, we tried to find optimal parameters through simple genetic 
algorithm (GA). We used population size of 30 and tournament selection based on 4 
duels (as described in the previous section) which was determined in early 
experiments as a reasonable compromise between stability and exploration. We used 
one GA thread per core and we allocated up to two weeks of computing time on a 
single machine per algorithm to this task. This resulted in two runs of the GA for 200 
generations for each of the algorithms and time limits. 
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Alpha-Beta UCT/DUCT 

Parameter Possible Values Parameter Possible Values 

Time limit {1, 20, 50, 100} Time limit {1, 20, 50, 100} 

TT Size {2k; k = 1 .. 20} Exploration factor  [0.01; 4] 

  Playout steps  [0 – 200] 

Health weight  [0 – 1] Health weight  [0 – 1] 

Stamina weight  [0 – 1] Stamina weight  [0 – 1] 

Table 12: Summary of parameters of the search algorithms. 

Since we select algorithms by tournament, there is no global fitness that would let 
us choose the “best” algorithm. Instead we assume, that the best algorithm will have 
the most copies towards the end of the GA. Inspecting the evolution gave support for 
this approach: in most generations there was a single individual with many copies 
while most other individuals had only one copy. This overrepresented individual 
usually dominated for several generations until a more fit individual was found 
which then quickly became the new dominating individual.  

For each algorithm and time limit, we took all individuals from the last 50 
generations of each of the GA runs and found the median and mode for each of the 
individual parameters across those individuals, as well as the complete genome that 
had the most copies. This gave us 3 candidates for best parameters from each run. 
Those candidates are shown in Appendix B. We then ran 500 duels for each pair of 
the candidates and then chose the candidate that outperformed the most opponents.  

The resulting best parameters are shown in Tables 13 – 15. Note that transposition 
table (TT) proved to be of little significance for AlphaBeta as its size widely varies 
between the best individuals. Further, the exploration factors for both UCT and 
DUCT are very low – the optimal variants are thus quite greedy. The maximal 
number of playout steps is also relatively low, preventing reaching the end of combat 
in most playouts. We tested whether this is not an artifact, but all the variants indeed 
outperform their counterparts with significantly less (or zero) playout steps or a 
higher exploration factor. Stamina also plays only a minor role in all of the 
evaluation functions, but is more informative in UCT and DUCT. We assume that 
this is because the situations when stamina is critical are less frequent than situations 
when the combatant with lower stamina can step back and replenish the stamina 
while keeping safe distance from the opponent. 
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Time Limit Health 
Weight 

Stamina 
Weight 

TT Size 

1 ms 0.80 0.03 131072 
20 ms 0.77 0.02 0 
50 ms 0.56 0.01 8092 

100 ms 0.68 0.01 4096 

Table 13: Best evolved parameters for Alpha-Beta. 

Time Limit 
Exploration 

Factor 
Playout Steps Health 

Weight 
Stamina 
Weight 

1 ms 0.13 06 0.77 0.03 
20 ms 0.31 15 0.88 0.11 
50 ms 0.16 14 0.70 0.09 

100 ms 0.25 11 0.77 0.01 

Table 14: Best evolved parameters for plain UCT. 

Time Limit Exploration 
Factor 

Playout Steps Health 
Weight 

Stamina 
Weight 

1 ms 0.07 06 0.91 0.11 
20 ms 0.10 08 0.82 0.09 
50 ms 0.30 21 0.84 0.10 

100 ms 0.47 18 0.83 0.07 

Table 15: Best evolved parameters for decoupled UCT. 

7.6 Evaluation 

We have performed three separate rounds of evaluation. First, we ran a large number 
of duels in the simulator between the algorithms and the random baseline. Then we 
pitted a subset of the algorithms and the default AI against each other in the actual 
game and last we performed a human study where players fought against two 
variants of the algorithms and the default AI provided in the alpha version of KC:D. 
The raw data for all experiments as well as R scripts to analyze them can be found in 
the digital attachment to this thesis. 

In the following text, we will use the term time variant for agents that use the 
same algorithm but with different maximum computing time and algorithm variant 
when speaking about agents with the same maximum computing time but different 
algorithm (limited to the search-based agents only, i.e. Alpha-Beta, UCT and 
DUCT). 

7.6.1 Evaluation by Tournaments in the Simulator 

In this evaluation we first run a separate tournament per-algorithm (AlphaBeta, UCT, 
DUCT) among the 1 ms, 20 ms, 50 ms and 100 ms time variants of the algorithm, 
including the random baseline as a reference. Then we ran tournaments among all 
algorithm variants for each value of the time limit. Each duel consisted of 500 
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random scenarios evaluated according to the method described in section 7.5.5 (each 
scenario ran twice with the agents changing sides). Note that with 500 duels, a win 
rate above 0.545 or below 0.455 is statistically significant at the 0.05 level 
(calculated using prop.test in the R statistical software (R Core Team 2015)). As we 
do not use the results to confirm or reject any hypotheses, we did not correct for 
multiple comparison, we simply see this interval as a rough indication of what 
constitutes a meaningful difference. The results of the individual tournaments are 
shown in Tables 16 - 22. 

 

 AB-1 AB-20 AB-50 AB-100 Random 
AB-1  0.464 0.471 0.436 0.909 
AB-20 0.536  0.498 0.508 0.910 
AB-50 0.529 0.502  0.489 0.894 
AB-100 0.564 0.492 0.511  0.913 
Random 0.091 0.090 0.106 0.087  

Table 16: Results of tournament among all time variants of the Alpha-Beta algorithm and 
the random baseline. 

 

 UCT-1 UCT-20 UCT-50 UCT-100 Random 
UCT-1  0.432 0.419 0.395 0.957 
UCT-20 0.568  0.476 0.444 0.965 
UCT-50 0.581 0.524  0.469 0.946 
UCT-100 0.605 0.556 0.531  0.978 
Random 0.043 0.035 0.054 0.022  

Table 17: Results of tournament among all time variants of the UCT algorithm and the 
random baseline. 

 

 DUCT-1 DUCT-20 DUCT-50 DUCT-100 Random 
DUCT-1  0.410 0.406 0.395 0.911 
DUCT-20 0.590  0.466 0.510 0.935 
DUCT-50 0.594 0.534  0.494 0.951 
DUCT-100 0.605 0.490 0.506  0.956 
Random 0.089 0.065 0.049 0.044  

Table 18: Results of tournament among all time variants of the DUCT algorithm and the 
random baseline. 
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 AB-1 UCT-1 DUCT-1 
AB-1  0.485 0.491 
UCT-1 0.515  0.514 
DUCT-1 0.509 0.486  

Table 19: Results of tournament among all algorithm variants with 1ms computation time. 

 AB-20 UCT-20 DUCT-20 
AB-20  0.465 0.464 
UCT-20 0.535  0.453 
DUCT-20 0.536 0.547  

Table 20: Results of tournament among all algorithm variants with 20ms computation time. 

 AB-50 UCT-50 DUCT-50 
AB-50  0.510 0.473 
UCT-50 0.490  0.490 
DUCT-50 0.527 0.510  

Table 21: Results of tournament among all algorithm variants with 50ms computation time. 

 AB-100 UCT-100 DUCT-100 
AB-100  0.468 0.476 
UCT-100 0.532  0.508 
DUCT-100 0.524 0.492  

Table 22: Results of tournament among all algorithm variants with 100ms computation time. 

Note that while the differences between the random baseline and all the 
algorithms or between the 1 ms and longer (20 ms, 50 ms and 100 ms) time-variants 
of the same algorithm are generally large (except for AB, where only the difference 
between 1 ms and 100 ms variant is large), the individual algorithms fare very 
similarly. This suggests that the combat is not “hard” in the game-theoretic sense, i.e. 
the gains from more intelligent behavior quickly diminish. In particular, the 
performance of 50ms and 100ms variants of all algorithms is very close, indicating 
that the benefits of added computing time are small beyond 50ms. Among the 
algorithms, UCT and DUCT generally outperform AB, but with a very small margin. 
UCT and DUCT are however not distinguishable in this comparison. 

Although all of the differences could probably be made statistically significant 
with more duels performed, it is of little practical interest: if a difference between 
two algorithms is not distinguishable with 500 duels, it is unlikely to affect the 
player’s experience much as the player is expected to encounter much fewer 
opponents throughout the whole game.  

Generally, all of the algorithms and time variants demonstrated little differences 
in performance (except the random baseline), probably due to the nature of the 
combat model. The only conclusions that can be made with some certainty is that 
Alpha-Beta is slightly weaker overall than UCT and DUCT and that the performance 
gain of allocating more than 20 ms of computational time for the algorithms is small.  
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7.6.2 Evaluation by Tournaments in the Game 

We further run a setup similar to the evaluation in the simulator (tournaments among 
all time variants of a given algorithm and among all algorithm variants for a given 
computing time), but in the full game environment. We restricted the test to a subset 
of the algorithms, as runs in the game required much more time than the runs in the 
simulator. In particular, we excluded the 100ms variants from further evaluation as 
adding more time does not create a practical difference while keeping the computing 
time low increases reactivity of the system. We have also excluded the random 
baseline from further evaluation as it is clearly outperformed by even the 1ms variant 
of all algorithms. We also included the default AI in the tournaments. 

Each duel consisted of 75 random scenarios evaluated according to the method 
described in section 7.5.5 (each scenario ran twice with the agents changing sides). 
Note that with 75 duels, a win rate above 0.62 or below 0.38 is statistically 
significant at the 0.05 level (calculated using prop.test in the R statistical software (R 
Core Team 2015)). The results are shown in Tables 23 - 28. 

 

 AB-1 AB-20 AB-50 Default 
AB-1  0.32 0.43 0.63 
AB-20 0.68  0.53 0.71 
AB-50 0.57 0.47  0.75 
Default 0.37 0.29 0.25  

Table 23: Results of in-game tournament among all time variants of the Alpha-Beta 
algorithm and the default AI. 

 UCT-1 UCT-20 UCT-50 Default 
UCT-1  0.28 0.28 0.96 
UCT-20 0.72  0.48 0.96 
UCT-50 0.72 0.52  0.95 
Default 0.04 0.04 0.05  

Table 24: Results of in-game tournament among all time variants of the UCT algorithm and 
the default AI. 

 DUCT-1 DUCT-20 DUCT-50 Default 
DUCT-1  0.33 0.36 1.00 
DUCT-20 0.67  0.52 0.96 
DUCT-50 0.64 0.48  0.97 
Default 0.00 0.04 0.03  

Table 25: Results of tournament among all time variants of the DUCT algorithm and the 
default AI. 
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 AB-1 UCT-1 DUCT-1 
AB-1  0.45 0.41 
UCT-1 0.55  0.52 
DUCT-1 0.59 0.48  

Table 26: Results of in-game tournament among all algorithm variants with 1ms 
computation time. 

 AB-20 UCT-20 DUCT-20 
AB-20  0.39 0.40 
UCT-20 0.61  0.49 
DUCT-20 0.60 0.51  

Table 27: Results of in-game tournament among all algorithm variants with 20ms 
computation time. 

 AB-50 UCT-50 DUCT-50 
AB-50  0.33 0.35 
UCT-50 0.67  0.57 
DUCT-50 0.65 0.43  

Table 28: Results of in-game tournament among all algorithm variants with 50ms 
computation time. 

The results show very similar structure to the results of duels performed in the 
simulator, in particular that the variants of AB are consistently worse than both the 
corresponding UCT and DUCT variants, but most of the differences could easily be 
noise. The similarity of results in the game to the results in the simulator suggests 
that the abstract model does indeed match the actual game mechanics. We further see 
that all algorithm variants perform much better than the default AI, which once again 
indicates that the abstract model is useful in the actual game.   

Although the differences in algorithm performance in the simulator and in the 
game do not show any strong differences between the individual algorithms, we 
decided to favor DUCT for further evaluation as it felt the best during initial testing 
with humans. In particular, since DUCT does not expect the opponent to be able to 
react to the NPCs move in the root node (if the root node is simultaneous), it was 
able to prevent some awkward situations encountered by UCT and AB when facing a 
human player. Especially, both UCT and AB often waited for opponent’s attack even 
when they were in a better situation than the opponent, as they expected the opponent 
to choose the best defense once the NPC chose attack type. But DUCT was able to 
model that the opponent cannot react to the exact action the NPC chooses and 
attacked in that situation. While DUCT may not exhibit the optimal behavior, this 
trait was of big practical importance as it did not let the combat to stall. We therefore 
chose DUCT as the preferred algorithm for further testing with humans. 

7.6.3 Evaluation with Human Users 

Although comparing algorithms against each other is important, the bottom line is 
how players interact with NPCs using the given algorithm. To measure this, we ran a 
human study. Since the whole development of the AI focused on difficulty (making 
the AI hard to win against) and not on perceived fun, the main research questions of 
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the human study is to what extent do different time variants of a search-based 
algorithm influence the combat difficulty for human players. In the experiment, fun 
is only a secondary variable.  

7.6.3.1 Participants 

We have recruited 25 subjects – 2 female and 23 male. The age varied between 15 
and 30 (median 23). Twelve subjects (48%) had completed a university degree 
(either Bc. or MSc.), twelve subjects (48%) have completed high school and were 
studying university, one subject (the youngest one) had completed only elementary 
school and was studying high school. Majority of the subjects were studying/have 
studied science or technology (72%). Only a minority of the subjects (16%) were not 
playing games regularly (reported less than one hour per week spent playing games 
on average), while 44% of subjects reported playing games for more than 10 hours a 
week on average. The subjects reported experience with wide range of games of all 
genres without any genre being clearly more prevalent. 

7.6.3.2 Procedure 

The core of the experiment is that players play a set of duels against three types of 
opponents: the default AI and a weak and a strong version of the search-based AI. 
Based on the results in sections 7.6.1 and 7.6.2 we chose to use DUCT-50 as the 
strong variant (note that little performance was gained beyond 50ms) and DUCT-1 as 
the weaker variant. We chose a big difference in time limit to maximize the 
difference in difficulty, as power analysis showed that the sample size we planned 
for could only detect a relatively large difference. 

The opponents were color-coded so the subjects could find specific strategies 
against individual opponents, but they did not know which algorithm the opponents 
use. The color-to-algorithm mapping is randomized for each subject. We then 
evaluate both objective difficulty and self-reported difficulty and fun. The objective 
difficulty consisted of player wins – the fraction of the duels the player won against 
the algorithm and average difference in health between the subject and the opponent 
at the end of the combat (referred to as the health value).  For simplicity, all fights 
are performed with the same weapon (broad sword). The protocol was tested and 
improved in pilot studies with 8 subjects in total. 

Let us now delve into the details of the experiment. First, we let the players get 
comfortable with the combat mechanics – the players complete the in-game combat 
tutorial and then fight in the arena used for the main round of experiments against an 
opponent controlled by the random baseline. The latter set of fights had the exact 
same stats and equipment for both the subject and the NPC as in the actual 
experiment. During this training phase, the experiment administrator had a list of 
mechanics that have to be explicitly mentioned and explained to the subject. 
Moreover, the administrator answered to any inquiries raised by the subject in 
connection with the combat mechanics. The training phase was ended after the 
subject declared they feel comfortable with the controls and game mechanics. The 
subjects could choose to control the game with mouse and keyboard or an Xbox 
controller. The training phase took between 30 and 50 minutes. 

After the training phase, the subjects filled in the pre-questionnaire consisting of 
the Flow Short Scale (Engeser and Rheinberg 2008) and self-reported assessment of 
the subject’s understanding of the combat mechanics and his ability to use the chosen 
control scheme. The subjects also completed a short understanding test with 
questions testing the subject’s knowledge of the core combat mechanics. Once the 
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subjects completed the test, the correct answers were revealed by the experiment 
administrator and the administrator re-explained the mechanics that were not 
correctly understood by the subject. After this point the administrator provided no 
more feedback to the subject. 

The body of the experiment consisted of two almost identical parts. In each part, 
the subject fought 15 duels (5 with each opponent) in fully randomized order. For 
one part the opponent had heavy armor and slightly lower skill (chance for perfect 
block and dodge) while for the other part the opponent had light armor and slightly 
higher skill. The order of the parts was randomized. The duels were run in a flat 
enclosed arena (see Figure 17).  

In the experiments, the defense skills of the player are set relatively high, which 
results in a relatively long time slots for perfect block and dodge. The motivation was 
to let subjects with slower reflexes and lower gaming experience to be able to 
perform perfect block or dodge with non-negligible probability. Otherwise, subjects 
with lower skill would effectively have limited number of defensive choices, 
reducing the effect of conscious intelligent choices on the outcome of the duel. The 
exact numbers were tweaked during the pilot studies. 

After each part, the subjects completed the mid-questionnaire where they rated the 
overall performance of the individual opponents. The two parts took between 30 and 
60 minutes in total, including the questionnaires. 

Since the pilot showed that some subjects had difficulty recalling the individual 
opponents when completing the mid-questionnaire, we added a short immediate 
questionnaire. The participants were asked to fill the questionnaire twice for each 
opponent in each part (the duels after which the questionnaire appeared were chosen 
randomly). In contrast with the mid-questionnaire, the participants were instructed to 
report the perceived difficulty of the single duel that preceded the immediate 
questionnaire. Further testing in the pilot showed that the immediate questionnaires 
are filled out quickly and the subjects did not consider them intrusive. 

Finally, the subjects completed a post-questionnaire investigating the gaming 
experience of the subject and the demographic information reported above. 

The most important experimental condition is the algorithm controlling the 
opponent. The equipment condition (differing in the two parts of the experiment) is 
only auxiliary.  

7.6.3.3 Questionnaires 

The most important variables measured by the questionnaires are subjective 
difficulty (measured by both immediate and mid-questionnaire) and subjective fun 
(measured by mid-questionnaire). In the mid-questionnaire the difficulty is measured 
using a 4-item 7-point Likert scale separately for each of the colors assigned to the 
opponents. The items in the mid-difficulty scale were: 

1. For me, <color> was a difficult opponent. 
2. I felt helpless against the <color> opponent. 
3. The <color> opponent took advantage of the mistakes I made. 
4. The <color> opponent made mistakes I could take advantage of.  

Here, item 4 was coded negatively. 
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Figure 17: The arena used for experiments with human subjects. 

The mid-difficulty was complemented by a 2-item 7-point Likert scale that was 
the sole contents of the immediate questionnaire. When filling in the immediate 
questionnaire the subjects were instructed to reflect only on the duel preceding the 
questionnaire. The items of the immediate difficulty scale were the two most salient 
items from the mid-difficulty scale (as observed in the pilot): 

1. For me, the enemy was a difficult opponent. 
2. The enemy made mistakes I could take advantage of. 

Item 2 was coded negatively.  
Fun was measured only in the mid-questionnaire with the following 4-item 

7-point Likert fun scale (once again separately for each opponent color): 

1. Fighting the <color> opponent was fun. 
2. I enjoyed fighting the <color> opponent. 
3. Fighting the <color> opponent was boring. 
4. Fights with the <color> opponent were dull. 

Items 3 and 4 were coded negatively. For control, the mid-questionnaire also 
contained open-ended questions to describe the individual opponents and the tactics 
the subjects used against them and questions for explicitly comparing all three pairs 
of opponents. To monitor the overall mental state of the subjects, the mid-
questionnaire also contained the flow scale, the enjoyment and competence scales of 
the Intrinsic motivation inventory (Ryan 1982; McAuley et al. 1989) and a 6-item, 
7-point Likert self-assessment scale (item 1 was coded negatively): 

1. While playing, I just randomly mashed buttons.  
2. I think I can be successful in fighting the computer. 
3. I think I understand how the combat in the game works. 
4. During combat, I was aware of what I am doing and I planning ahead. 
5. During combat, when I realize, what I want to do, it is easy for me to press 

the right buttons at the right time. 
6. During combat, I knew exactly what I wanted to do in combat. 
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The pre-questionnaire was used to check whether the subject is not tired after the 
training phase of the experiment, it contained the flow scale, a 4-item subset of the 
self-assessment scale (items 1 and 4 excluded) and several additional questions to 
check the attitude of the subject toward the experiment. 

The questionnaires were filled in on a computer using the Google Forms service. 
The full questionnaires as given to the users can be found in the digital attachment to 
this thesis. 

7.6.3.4 Analysis 

To reliability of the custom scales described in the previous section was checked 
using Cronbach’s α (Cronbach 1951). The α ranges from 0 to 1 and α > 0.8 is 
generally considered reliable. We calculated α using the alpha function in the R 
package psych (Revelle 2015). The mid-difficulty and fun scales had high internal 
reliability (α = 0.88 and 0.90 respectively), while the immediate difficulty scale 
(consisting of only two items) had slightly worse, but acceptable reliability 
(α = 0.83). The self-assessment scale also had good reliability (α = 0.89). In all cases, 
the reliability decreased with the exclusion of any of the items. 

We have determined that any subject scoring less or equal to 2 (out of 7) on the 
self-assesment scale should be excluded. Nevertheless no subject has reached the 
exclusion criteria in either part of the study (the observed minimum was 2.33). 

The main dependent variables of interest are the objective difficulty measures 
(fraction of player wins and mean health value) and mean of the subjective difficulty 
measures (mid-difficulty and immediate difficulty). The last dependent variable – 
mean fun – is only auxiliary. The player win variable ranges from 0 to 1, the health 
value variable ranges from -100 to 100, all of the subjective scales range from 1 to 7. 

As not all of the variables we measure are normally distributed, we report median 
and median absolute difference (MAD) as descriptive statistics. 

We expect there to be large differences in player skill, so our analysis focuses 
primarily on the within-subject difference of the dependent variables for each pair of 
algorithms. In other words, for each subject and pair of algorithms we subtract the 
respective dependent variables. In accordance with the methodology of “new 
statistics” (Cumming 2014) we inspect the mean and 95% confidence interval for all 
of those differences. As all of the differences were normally-distributed, we calculate 
the confidence interval using the t.test method in the R statistical software  (R 
Core Team 2015). In our analysis, the mean differences are the effect size. 

The design of the study and the statistical procedure to evaluate the main results 
was preregistered with the AsPredicted authority as study No. 518. The preregistered 
information is available both as an appendix to this thesis and online12. The data were 
collected between March 14th and April 2nd 201613. All data as well as R scripts to 
perform all the analyses we report are available in the digital attachment to this 
thesis. 

 

                                                
12 https://aspredicted.org/public/206052895.pdf  
13 The first day of data collection coincides with the date of the preregistration, but the final 

version of the preregistration report was submitted before any data were collected. 
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Figure 18: Histograms of reported psychometric values.  
Each participant is counted twice - once for each part. 

7.6.3.5 Results Inspection 

Before analyzing the main effects in this study, we first inspect the data to check for 
possible confounding factors. First, we were interested to what extent does the 
immediate difficulty reflect whether the subject has won the last duel. The 
correlation between the immediate difficulty scale and the result of the duel and 
health value respectively is -0.67 and -0.75 so it is likely that the outcome of the duel 
is not the sole predictor of the reported difficulty. The correlation is negative as high 
score in the difficulty scale represents difficult matches while high score in player 
win or health value corresponds to good outcomes for the subject. 

We also note that players had generally reported high flow and high enjoyment 
(median 5.75 ± 1.26 and 6.4 ± 0.89 respectively14) while the reported competence 
and self-assessment are much more spread out towards the low values (median 3.67 
± 1.73 and 4.92 ± 1.6 respectively). See Figure 18 for histograms15. We thus note 
that while subjects enjoyed dueling the NPCs, the mechanics were difficult for most 
of them.  

To check how the experience of the subjects evolved over time, we examine the 
within-subject difference between the values reported for the individual phases. The 
result is that most measures have increased but very slightly (median differences – 
flow: 0.1 ± 0.44, enjoyment: 0 ± 0.59, competence: 0.33 ± 0.49, self-assessment: 
0.33 ± 0.49). This is further supported by the small within-subject differences 

                                                
14 As described in Section 7.6.3.4, we report median and median absolute difference, as some of 

the variables are not normally distributed. 
15 All graphs were created using the ggplot2 package (Wickham 2009). 
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between individual phases in the main dependent variables (median differences – 
player win: 0.07 ± 0.2, health value: 6.8 ± 41, difficulty immediate: -0.08 ± 0.61, 
difficulty mid: -0.17 ± 0.61, fun: 0.08 ± 0.61). We can thus conclude that the users 
have generally not been increasingly bored or frustrated by the experiment, neither 
has their skill substantially changed throughout the experiment (the effects of 
increased experience and fatigue were either low or mostly cancelled each other out). 

7.6.3.6 Algorithm Comparison 

We start the algorithm comparison informally by inspecting the boxplots of the main 
dependent variables (see Figure 19). While all four dependent variables visually 
show the same ordering of all algorithms, with DUCT-50 as the most difficult and 
the default AI as the least difficult, we need to be careful to quantify this difference 
correctly. First we should note that not all of the main dependent variables are 
normally distributed: the most extreme case is the health value which is bimodal 
even when averaged per player and algorithm. Overall player win is also not 
normally distributed (see Figure 20) Second important thing visible in Figure 20 is 
that there are large differences in player performance: some players won over 20 of 
the 30 duels, while many won less than 5. However, examining the within-subject 
differences per algorithm pair gives us a set of approximately normally-distributed 
values (see Figure 21). 

We then inspect the mean and 95% confidence interval for all of those differences 
(see Table 29 and Figure 22). In general we see that the mid-difficulty has longer 
confidence intervals (higher variance) than the immediate difficulty, but except for 
the difference in mid-difficulty between DUCT-1 and DUCT-50, the confidence 
intervals do not contain zero, indicating significant difference. Further, for all the 
differences between DUCT-50 and the default AI, the confidence interval is 
relatively far from zero indicating high confidence that the difference is real and the 
effect size is large. The differences between DUCT-1 and the default AI are smaller 
but still noticeable even with the limited sample size of the study. Overall we can 
conclude that the algorithms are ordered by difficulty as expected: default AI is 
easiest while DUCT-50 is the most difficult. 

Initially, we feared that the high difficulty of the AI will be frustrating to the 
subjects and perceived fun will be negatively influenced by increasing difficulty. 
This however did not happen – from the experiments performed, there are no 
significant differences in the fun variable (lower bound of all CIs is lower than -0.2 
and the upper bound is always higher than 0.7). Although it is possible that 
significant differences could be shown with larger sample size, it is unlikely that the 
effect is large. See Figure 23 for details. 

 



 

 104   
 

Figure 19: Box plots of main dependent variables per algorithm.  
The box spans from 1st to 3rd quartile with a band at median; the whiskers extend to 1.5 times 
the inter-quartile range or the maximum/minimum of the data, whichever is smaller. Each 
dot corresponds to a single participant-algorithm combination. 
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Figure 20: Histograms of the objective difficulty variables.  
Top-left: overall histogram for health value (each duel counted once),  
Top-right: histogram of fraction of wins per player (each subject counted once),  
Middle: mean health value per subject aggregated by algorithm (each subject counted once), 
Bottom: fraction of wins per subject aggregated by algorithm (each subject counted once). 
Note that the variables cannot be considered to be normally distributed. 
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Figure 21: Histograms of the within-subject differences of the main dependent variables for 
each algorithm pair (each player counted once per algorithm pair). 
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Figure 22: Confidence intervals (CIs) and the overall distribution of differences in the main 
dependent variables. 
Each gray dot represents the difference of one subject, the black dots represent the mean 
values and the whiskers represent 95% CIs. Red line marks zero. 
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Figure 23: Confidence intervals (CIs) and the overall distribution of differences in the fun 
dependent variable. 
Each gray dot represents the difference of one subject, the black dots represent the mean 
values and the whiskers represent 95% CIs. Red line marks zero. 

 
 DUCT-50 

– Default 
DUCT-50 
– DUCT-1 

DUCT-1 
– Default 

 Mean CI Mean CI Mean CI 
Player Win -0.34 -0.42 ; -0.25 -0.16 -0.24 ; -0.09 -0.17 -0.27 ; -0.07 

Health value -47 -61 ; -34 -23 -33 ; -12 -25 -40 ; -09 

Mid difficulty 1.59 0.9 ; 2.3 0.46 -0.3 ;  1.2 1.13 0.4 ; 1.9 

Immediate difficulty 0.42 0.7 ; 1.8 0.57 0.2 ; 1.0 0.68 0.2 ; 1.1 

Fun 0.43 -0.2 ; 1.0 0.18 -0.3 ; 0.7 0.25 -0.3 ; 0.8 

Table 29: Mean and 95% confidence intervals (CI) for differences of the main dependent 
variables between algorithms. 
Note that except for the difference in mid difficulty between DUCT-50 and DUCT-1, and the 
Fun variable, no CI contains zero. 

7.7 Discussion 

The combat model presented in this chapter proved successful in controlling NPCs in 
one-on-one combat and was more difficult for human subjects to conquer than the 
default combat AI of the alpha version of KC:D without showing any detrimental 
effects on fun. While this suggests, that search-based adversarial approaches are in 
general a feasible alternative to both reactive and non-adversarial deliberative 
methods for AI components with low size complexity but large rule complexity, 
there are numerous caveats. The biggest issue is that combat in KC:D proved to not 
be a particularly challenging scenario from the perspective of intelligence – 
performance in combat is dominated by skill and the performance of the search 
algorithms quickly leveled out with increased time available. Further, the best 
parameters we found for the UCT and DUCT algorithms (Section 7.5.6) suggest that 
a very greedy approach is preferred. Moreover, as discussed in Section 7.6.1, the 
differences among algorithms were minimal. A possible interpretation is that all 
algorithms quickly differentiate the generally good decisions from the generally bad 
ones and it is difficult to significantly improve over this coarse classification. 

One of the biggest drawbacks of the search-based approaches in general is that 
due to heavy optimizations and abstraction, the model for search cannot simply reuse 
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code with the main game mechanics, so the mechanics need to be kept in sync 
between the game and the model, reducing the manageability of the codebase. 
Further, there is a mutual dependency between the search model and the scripts that 
execute the decisions in the game: optimizing the model often requires a 
modification to the model’s action set, requiring new or modified scripts, while 
executing the scripts in the full game environment may reveal problems that need to 
be addressed in the model (as for the AttackNow and AttackOnApproach actions 
described in Section 7.5.2.1). To an extent, the model and the scripts need to be 
iteratively developed together. 

The example of AttackNow and AttackOnApproach actions also demonstrates 
one further issue with the search-based approach – a very small change in the model 
(adding an action) can result in a big change in the behavior of the NPCs. A related 
problem is that while most changes to game mechanics can be mirrored in the model 
with ease (e.g., a different formula for calculating damage), others may break the 
very assumptions on which the model is made and force a huge restructuring of the 
model (e.g., making maneuvering in 2D space a fundamental mechanic) or, in the 
worst case, make search-based approach unfeasible. In this sense, the model can be 
very fragile. 

For the reasons above, the model proposed in this chapter will likely not be 
adopted for AI in KC:D, at least not in the short term. Should the model by used in 
the actual game, some further developments would be needed, especially combat 
with multiple NPCs would have to be supported. A possible approach to this is to 
represent additional combatants on either side as nature. Since combatants can 
directly interact with only one opponent, additional opponent could be reasonably 
modeled as a deterministic machine that attacks in regular intervals and whose 
attacks cannot be blocked.  
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8 Discussion 

To conclude the present work, we first summarize the contributions of this thesis and 
then discuss directions for future work. 

8.1 Summary of the Main Contributions 

In this work we have presented three novel techniques to handle complexity of AI in 
OWGs. First have described a general way for structuring AI code in a manner 
similar to OOP – the BOs (Subgoal 1, Chapter 5), second we have shown how 
constraint programming can be employed to specify behaviors from a global 
viewpoint in complement to the local view of BOs (Subgoal 2, Chapter 6). Last, we 
have presented the use of adversarial search to mitigate the need for complex and 
parameter-sensitive hand-crafted scripts (Subgoal 3, Chapter 7). The overall goal of 
introducing and evaluating new techniques that extend the capabilities of game 
development teams to build AI in complex scenarios has thus been fulfilled. We 
believe that the techniques presented in this work have the potential to become “AI 
design patterns” for future games. 

Since we accompanied all of those techniques with a prototype implementation 
fully integrated in a complete OWG, we can be certain that no major obstacles for 
use in practice have been swept under the rug. We also did not restrict ourselves to 
technical evaluation and also evaluated the developer-facing techniques (BOs and 
global specification) with developers and the more player-facing adversarial search 
with human players.  

We consider BOs a mature technology that is ready to be applied in many game 
contexts and was heavily tested in actual use. Using constraint programming for 
global specification of behaviors is, in our view, less mature as it was not yet used in 
production environment. We are however confident that the method is useful in its 
present state, which is backed by its evaluation in test scenarios. The situation system 
is also scheduled to be used in a production build of KC:D in the near future. The use 
of adversarial search for controlling NPCs has proved promising, but is definitely the 
least production-ready of the contributions of this thesis.  

The main problem we encountered during our case study with adversarial search 
was that the reduction of complexity in the high-level AI code came at cost of 
duplicated implementation of some of the game mechanics and increased fragility of 
the code at the lower level. At the same time, some of the benefits of adversarial 
search are also provided by planning approaches, which have similar implementation 
cost, but are computationally cheaper. We therefore conclude that adversarial search 
will likely be useful only in a small subset of games where the advantages of a goal 
based approach that explicitly models the opponent offset both development and 
computational cost.  

In a broader perspective, designing and validating AI techniques with respect to 
their ability to mitigate complexity has shown to be relevant for practical 
applications. The analysis of complexity also moved attention from individual NPCs 
to whole AI components which, in our opinion, better reflects the considerations for 
a practical implementation. Often the effort required to implement the behavior of a 
single NPC is not proportional (for the better or for the worse) to the effort required 
to populate the world with many different NPCs. We have proposed a framework for 
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classifying the complexity of AI components which should be useful to explicitly 
consider the target type of complexity when developing future AI techniques. The 
complexity classification further has the potential to make claims about usefulness of 
a given technique more specific by emphasizing the type of complexity it aims to 
deal with. 

While we focused primarily on OWGs, all of the techniques and analyzes 
described in this thesis should translate easily to many other game genres that feature 
a rich environment and where AI is an important part of the game. 

8.2 Future Work 

Handling complexity is a general task of OWG AI development – it is highly 
unlikely that any single approach would be the silver bullet that solves all problems 
and thus many areas for future work emerge. 

Further development beyond BOs may be possible by taking inspiration from 
other programming paradigms that have matured enough to attain widespread 
adoption, in particular from functional programming.  

It may also be possible to avoid developing behaviors of low rule complexity by 
hand completely and rely instead either on learning approaches or on automated 
programming by example. 

The global view for behavior specification using CSP should be further validated 
in different use cases (e.g., generating quests, monitoring overall game state). It may 
also be possible to employ more powerful CSP variants (e.g., constraint 
optimization) or completely different, but declarative approaches (e.g., answer set 
programming). 

Since the need to develop and maintain an abstract model is an important 
disadvantage of search-based methods, techniques to extract such models directly 
from the game would be an important step forward. Recent advances in both 
machine learning and program analysis could make automatic model extraction 
feasible and practical. An orthogonal approach would be to devise languages for 
description of game mechanics that could be interpreted as both a continuous model 
that can drive the evolution of the game world and as a discrete abstract model 
amenable to search. 

While we have shown how to manage large size complexity and large rule 
complexity individually, it is still unclear how to handle cases with both large rule 
and large size complexity. Promising approaches in that direction include combining 
search with machine learning to learn both useful representations for search and good 
heuristics or pruning functions.  
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Appendix A – Digital Attachment Contents 

 Videos – Videos of all of the systems implemented in this thesis working in 
the complete virtual environment of KC:D. Due to size constraints, some of 
the videos are not present in the attachment downloadable from the thesis 
repository and are stored only on the DVD disc accompanying the physical 
copy of the thesis. 

 Videos/videos.txt – Description of the individual videos. 

 GlobalSpec/Source – Source code for the CSP solvers used for 
evaluation of the situation system (see Section 6.5.1). Only the code for the 
solvers is included, not the whole virtual environment. 

 GlobalSpec/solversDocumentation.pdf – Documentation for the 
CSP solvers code. 

 GlobalSpec/Results – Full dataset from the quantitative tests of the 
situation system (see Section 6.6.1) 

 Search/Source – Code for the search-based AI and the standalone 
abstract model of combat discussed in Section 7.5. Only the code for the 
abstract model and search algorithms is included, not the whole virtual 
environment. 

 Search/searchDocumentation.pdf – Documentation for the search-
based AI code. 

 Search/Questionnaires – PDFs of the questionnaires used in the 
human evaluation of search-based combat AI, both Czech originals and 
English translations (see section 7.6.3). 

 Search/preregistration.pdf – PDF of the AsPredicted 
preregistration form for the human evaluation of search-based combat AI (see 
Section 7.6.3). 

 Search/Results – Full dataset from the evaluation of the search-based 
AI and the R code to analyze it (see Section 7.6).  

 thesis.pdf – Text of this thesis.  

 readme.txt – Description of the contents of the digital attachment. 
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Appendix B – Evolution Results for Adversarial Search Algorithms 

Here, we show the candidate parameter combinations for the individual algorithm 
variants and the results of tournaments that selected the best. See Section 7.5.6 for 
details. 

 

Designation Exploration 
Factor 

Playout Steps Health 
Weight 

Stamina 
Weight 

U1-a 0.19 8 0.90 0.08 
U1-b 0.19 8 0.90 0.04 
U1-c 0.19 8 0.90 0.13 
U1-d 0.16 6 0.77 0.05 
U1-e 0.13 6 0.77 0.03 
U1-f 0.13 6 0.77 0.04 

Table 30: Candidate parameter combinations for UCT-1ms. 

 U1-a U1-b U1-c U1-d U1-e U1-f #Wins 

U1-a  0.495 0.506 0.508 0.472 0.466 2 
U1-b 0.505  0.524 0.511 0.479 0.488 3 
U1-c 0.494 0.476  0.455 0.491 0.487 0 
U1-d 0.492 0.489 0.545  0.481 0.474 1 
U1-e 0.528 0.521 0.509 0.519  0.505 5 
U1-f 0.534 0.512 0.513 0.526 0.495  4 

Table 31:Results of tournament between the UCT-1ms candidates. 

Designation Exploration 
Factor 

Playout Steps Health 
Weight 

Stamina 
Weight 

U20-a 0.31 15 0.88 0.11 
U20-b 0.26 09 0.88 0.11 
U20-c 0.31 09 0.88 0.09 
U20-d 0.27 14 0.68 0.18 
U20-e 0.27 14 0.81 0.18 
U20-f 0.27 14 0.67 0.18 

Table 32:Candidate parameter combinations for UCT-20ms. 
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 U20-a U20-b U20-c U20-d U20-e U20-f #Wins 
U20-a  0.483 0.502 0.529 0.545 0.535 4 
U20-b 0.517  0.509 0.494 0.496 0.533 3 
U20-c 0.498 0.491  0.520 0.498 0.553 2 
U20-d 0.471 0.506 0.480  0.490 0.472 1 
U20-e 0.455 0.504 0.502 0.510  0.499 3 
U20-f 0.465 0.467 0.447 0.528 0.501  2 

Table 33:Results of tournament between the UCT-20ms candidates. 

Designation 
Exploration 
Factor 

Playout Steps Health 
Weight 

Stamina 
Weight 

U50-a 0.44 17 0.78 0.27 
U50-b 0.44 16 0.82 0.27 
U50-c 0.77 16 0.78 0.30 
U50-d 0.29 18 0.60 0.20 
U50-e 0.16 18 0.45 0.09 
U50-f 0.16 14 0.70 0.09 

Table 34:Candidate parameter combinations for UCT-50ms. 

 U50-a U50-b U50-c U50-d U50-e U50-f #Wins 

U50-a  0.502 0.543 0.490 0.470 0.450 2 
U50-b 0.498  0.552 0.483 0.460 0.446 1 
U50-c 0.457 0.448  0.501 0.444 0.430 1 
U50-d 0.510 0.517 0.499  0.474 0.482 2 
U50-e 0.530 0.540 0.556 0.526  0.486 4 
U50-f 0.550 0.554 0.570 0.518 0.514  5 

Table 35:Results of tournament between the UCT-50ms candidates. 

Designation Exploration 
Factor 

Playout Steps Health 
Weight 

Stamina 
Weight 

U100-a 0.42 11 0.69 0.01 
U100-b 0.25 11 0.64 0.01 
U100-c 0.25 11 0.77 0.01 
U100-d 0.21 25 0.97 0.16 
U100-e 0.21 25 1.00 0.16 
U100-f 0.17 13 1.00 0.10 

Table 36: Candidate parameter combinations for UCT-100ms. 

 



 

 137   
 

 U100-a U100-b U100-c U100-d U100-e U100-f #Wins 
U100-a  0.478 0.484 0.548 0.513 0.509 3 
U100-b 0.522  0.502 0.500 0.526 0.497 3.5 
U100-c 0.516 0.498  0.526 0.506 0.503 4 
U100-d 0.452 0.500 0.474  0.480 0.471 0.5 
U100-e 0.487 0.474 0.494 0.520  0.510 2 
U100-f 0.491 0.503 0.497 0.529 0.490  2 

Table 37:Results of tournament between the UCT-100ms candidates. 

Designation 
Exploration 
Factor 

Playout Steps Health 
Weight 

Stamina 
Weight 

D1-a 0.25 11 0.80 0.04 
D1-b 0.25 11 0.88 0.04 
D1-c 0.07 06 0.91 0.11 
D1-d 0.07 05 0.91 0.11 
D1-e 0.07 11 0.91 0.06 

Table 38: Candidate parameter combinations for DUCT-1ms 

 D1-a D1-b D1-c D1-d D1-e #Wins 

D1-a  0.487 0.456 0.466 0.493 0 
D1-b 0.513  0.484 0.467 0.485 1 
D1-c 0.544 0.516  0.514 0.537 4 
D1-d 0.534 0.533 0.486  0.551 3 
D1-e 0.507 0.515 0.463 0.449  2 

Table 39: Results of tournament between the DUCT-1ms candidates.. 

Designation Exploration 
Factor 

Playout Steps Health 
Weight 

Stamina 
Weight 

D20-a 0.15 12 0.85 0.12 
D20-b 0.15 12 0.95 0.12 
D20-c 0.10 12 0.75 0.09 
D20-d 0.10 08 0.82 0.08 
D20-e 0.10 08 0.82 0.09 

Table 40: Candidate parameter combinations for DUCT-20ms 

 D20-a D20-b D20-c D20-d D20-e #Wins 

D20-a  0.516 0.500 0.504 0.498 2.5 
D20-b 0.484  0.500 0.504 0.502 2.5 
D20-c 0.500 0.500  0.514 0.487 2 
D20-d 0.496 0.496 0.486  0.484 0 
D20-e 0.502 0.498 0.513 0.516  3 

Table 41: Results of tournament between the DUCT-20ms candidates.. 
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Designation 
Exploration 
Factor 

Playout Steps Health 
Weight 

Stamina 
Weight 

D50-a 0.30 21 0.84 0.10 
D50-b 0.29 09 0.93 0.01 
D50-c 0.42 21 0.93 0.06 
D50-d 0.24 27 0.67 0.27 
D50-e 0.19 21 0.81 0.39 
D50-f 0.24 40 0.70 0.39 

Table 42: Candidate parameter combinations for DUCT-50ms 

 
D50-a D50-b D50-c D50-d D50-e D50-f #Wins 

D50-a  0.502 0.518 0.501 0.515 0.514 5 
D50-b 0.498  0.520 0.510 0.512 0.518 4 
D50-c 0.482 0.480  0.509 0.498 0.497 1 
D50-d 0.499 0.490 0.491  0.507 0.521 2 
D50-e 0.485 0.488 0.502 0.493  0.493 1 
D50-f 0.486 0.482 0.503 0.479 0.507  1 

Table 43: Results of tournament between the DUCT-50ms candidates.. 

Designation Exploration 
Factor 

Playout Steps Health 
Weight 

Stamina 
Weight 

D100-a 0.13 25 0.76 0.13 
D100-b 0.11 25 0.76 0.07 
D100-c 0.11 25 0.76 0.13 
D100-d 0.47 22 0.83 0.08 
D100-e 0.47 18 0.83 0.07 
D100-f 0.70 18 0.87 0.08 

Table 44: Candidate parameter combinations for DUCT-100ms. 

 D100-a D100-b D100-c D100-d D100-e D100-f #Wins 

D100-a  0.509 0.489 0.492 0.511 0.535 3 
D100-b 0.491  0.500 0.496 0.523 0.495 1.5 
D100-c 0.511 0.500  0.521 0.488 0.522 3.5 
D100-d 0.508 0.504 0.479  0.487 0.501 3 
D100-e 0.489 0.477 0.512 0.513  0.515 3 
D100-f 0.465 0.505 0.478 0.499 0.485  1 

Table 45:Results of tournament between the DUCT-100ms candidates.. 
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Designation Health 
Weight 

Stamina 
Weight 

Transposition 
Table Size 

A1-a 0.89 0.05 8192 
A1-b 0.92 0.03 32768 
A1-c 0.92 0.03 8192 
A1-d 0.75 0.07 65536 
A1-e 0.71 0.03 131072 
A1-f 0.80 0.03 131072 

Table 46: Candidate parameter combinations for AB-1ms. 

 A1-a A1-b A1-c A1-d A1-e A1-f #Wins 

A1-a  0.498 0.486 0.505 0.500 0.493 1.5 
A1-b 0.502  0.483 0.491 0.500 0.494 1.5 
A1-c 0.514 0.517  0.487 0.504 0.500 3.5 
A1-d 0.495 0.509 0.513  0.497 0.492 2 
A1-e 0.500 0.500 0.496 0.503  0.486 1.5 
A1-f 0.507 0.506 0.500 0.508 0.514  4.5 

Table 47:Results of tournament between the AB-1ms candidates. 

 

Designation Health 
Weight 

Stamina 
Weight 

Transposition 
Table Size 

A20-a 0.88 0.01 2048 
A20-b 0.93 0.00 8192 
A20-c 0.36 0.00 4096 
A20-d 0.77 0.02 32 
A20-e 0.77 0.02 0 
A20-f 0.68 0.02 0 

Table 48: Candidate parameter combinations for AB-20ms. 

 A20-a A20-b A20-c A20-d A20-e A20-f #Wins 

A20-a  0.535 0.526 0.514 0.491 0.487 3 
A20-b 0.465  0.507 0.476 0.486 0.487 1 
A20-c 0.474 0.493  0.469 0.454 0.482 0 
A20-d 0.486 0.524 0.531  0.479 0.498 2 
A20-e 0.509 0.514 0.546 0.521  0.512 5 
A20-f 0.513 0.513 0.518 0.502 0.488  4 

Table 49:Results of tournament between the AB-20ms candidates. 
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Designation Health 
Weight 

Stamina 
Weight 

Transposition 
Table Size 

A50-a 0.56 0.01 8092 
A50-b 0.54 0.01 8092 
A50-c 0.62 0.01 8092 
A50-d 0.73 0.03 32 
A50-e 0.73 0.03 2 

Table 50: Candidate parameter combinations for AB-50ms. 

 
A50-a A50-b A50-c A50-d A50-e #Wins 

A50-a  0.508 0.505 0.519 0.504 4 
A50-b 0.492  0.514 0.517 0.512 3 
A50-c 0.495 0.486  0.508 0.514 2 
A50-d 0.481 0.483 0.492  0.487 0 
A50-e 0.496 0.488 0.486 0.513  1 

Table 51:Results of tournament between the AB-50ms candidates. 

Designation Health 
Weight 

Stamina 
Weight 

Transposition 
Table Size 

A100-a 0.90 0.02 4096 
A100-b 0.61 0.02 8 
A100-c 0.92 0.02 8 
A100-d 0.72 0.01 2048 
A100-e 0.68 0.01 4096 
A100-f 0.68 0.02 4096 

Table 52: Candidate parameter combinations for AB-100ms. 

 

 A100-a A100-b A100-c A100-d A100-e A100-f #Wins 
A100-a  0.491 0.500 0.512 0.507 0.507 3.5 
A100-b 0.509  0.497 0.505 0.494 0.492 2 
A100-c 0.500 0.503  0.502 0.493 0.498 2.5 
A100-d 0.488 0.495 0.498  0.515 0.506 2 
A100-e 0.493 0.506 0.507 0.485  0.501 4 
A100-f 0.493 0.508 0.502 0.494 0.499  2 

Table 53:Results of tournament between the AB-100ms candidates. 
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Appendix C – Preregistration of the Human Evaluation 

Combat AI - Warhorse, Spring 2016 (#518) 
 
Created:          03/14/2016 
Made public:   03/27/2016 
 
Author(s) 
Martin Černý (Charles University in Prague) – cerny@gamedev.cuni.cz 
 
1) What’s the main question being asked or hypothesis being tested in this 

study? 
An intelligent algorithm using UCT for controlling opponent in a computer game 

will be more difficult to beat than a simple default algorithm already implemented in 
the game. Further, adding computing time to the algorithm will improve its 
performance. 

 
2) Describe the key dependent variable(s) specifying how they will be 

measured. 
Proportion of fights won by the human player, average of (player’s health -

opponent’s health) at the end of each fight. Player-assesed difficulty of the opponents 
through a questionnaire (4 item, 7 point likert scale) at the end of each phase. Player 
assesed difficulty of the opponents through quick questionnaires after 40% of the 
fights (2 item, 7 point likert scale). 

 
3) How many and which conditions will participants be assigned to? 
6 within-subject conditions: 
2 different equipments for the computer controlled opponent (light and heavy 

armor) 
3 different algorithms (the Default AI, UCT with 1 ms for thinking, UCT with 50 

ms for thinking). 
For each equipment, players will play 5 fights against each algorithm (30 fights 

per subject in total). 
 
4) Specify exactly which analyses you will conduct to examine the main 

question/hypothesis. 
We will compare 95% confidence intervals for the within-subject differences 

between the variables for all pairs of algorithms, following the methodology of new 
statistics (Cummings 2011). Parametric methods will be used, if the data will be 
normally distributed (assessed by histogram shape) - in doubt, both parametric and 
non-parametric analysis will be reported. For the main analysis, we will combine 
results for both equipment conditions. 

 
5) Any secondary analyses? 
Analysis of differences between the equipment conditions (exploratory). Further 

we will assess self-reported enjoyment of fighting against the individual algorithms. 
Participants will also directly compare all pairs of the algorithms (collected for 

control and exploratory purposes). 
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6) How many observations will be collected or what will determine sample 
size? No need to justify decision, but be precise about exactly how the number 
will be determined. 

The experiment will be offered to students of game programming at our university 
(some courses require participation in any of a set of studies for course completion) 
and through social networks. We will collect data until there are 25 participants or 
until the end of April 2016. 

 
7) Anything else you would like to pre-register? (e.g., data exclusions, 

variables collected for exploratory purposes, unusual analyses planned?) 
We will collect intrinsic motivation inventory and flow scale to check whether 

participants were engaged throughout the study. We will also collect self-reported 
scale to check whether the players actually try to beat the opponents or are just acting 
randomly and whether they know what they are doing. Participants with average over 
6 in those questions will be excluded. 

 
8) Have any data been collected for this study already? 
No, no data have been collected for this study yet. 
 
 
 
 
 
 


