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Title: Model building in polynomial representation

Author: Martin Blicha

Department: Department of Algebra

Supervisor: doc. RNDr. David Stanovský, Ph.D., Department of Algebra
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Introduction

Finite model finding in first-order logic is an established area of research in the
field of automated theorem proving. Its main goal is searching for counter-
examples when detecting non-provability of given formula. This is most important
in the area of formal verification where a counter-example points to a bug in the
system being verified.

Many different approaches have been tried for finite model finding and they
compete annually at The CADE ATP System Competition1 (CASC, see (Sutcliffe
and Suttner 2006))

The aim of this thesis is to implement and test a new approach proposed
by Stanovský, the supervisor of this thesis. He found out that when looking
for a model of size n, the clauses can be translated to a system of multivariate
polynomial equations such that the set of clauses has a model of size n if and
only if the system of equations has a solution. Moreover, the model can be
constructed from the solution. In this thesis we prove the correctness of this
approach, implement a model finder based on this approach and compare it to
the state-of-the-art model finders.

This thesis is organized as follows. In Chapter 1 we describe the problem of
finite model finding and give a survey of current approaches. In Chapter 2 we
formally define the translation of clauses to multivariate polynomial equations,
prove the correctness of this approach and introduce the basic algorithm for
finite model finding using this approach. In Chapter 3 we discuss implementation
details and tweaks to the basic algorithm and also present the results from testing
the model finder.

Preliminaries and notation

In the theoretical part of the thesis, we work a lot with finite fields, polynomial
rings over finite fields, and structures for the first-order logic, especially (Tarski’s
definition of) evaluation of formulas in structure under a variable assignment. We
assume the reader is familiar with these notions and is able to work with them
at basic level.

Our notation should be standard. Letters x, y stands for variables while a
denote elements of a structure and (logical) terms are denoted by t, usually with
index. q is reserved to denote a prime power number. We write x1, . . . , xn to
denote n-tuple, but if the actual count is not relevant or known from context, we
use x or a. D denotes a structure of first-order logic and D denotes its domain.
Similarly when working with finite fields we use F to denote the field and F to
denote just its domain. F[x1, . . . , xn] stands for a polynomial ring over the field
F. Sometimes we use GF (q) when referring to a field of size q. We have reserved
P , usually with a subscript, to denote polynomials and thus predicate symbols
are denoted by R. Similarly G,H are used for function symbols, as F is used for
fields.

1http://www.cs.miami.edu/~tptp/CASC/
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1. Finite Model Finding Problem

In this chapter we give a brief description of the Finite Model Finding (FMF)
problem and discuss a couple of techniques and algorithms designed to solve this
problem.

1.1 Description of FMF

An instance of FMF is a set of formulas in the language of first-order logic, a first-
order theory. The goal is to find a finite model of the theory (a finite structure in
the language of the theory such that all axioms of the theory are satisfied in the
structure) or to report that no such model exists. In this thesis we only consider
the instances where the axioms are clauses (or equivalently, universal closures of
clauses). This can be done without the loss of generality, as every theory can be
translated to an equiconsistent theory consisting of clauses only. This process is
called Skolemization and consists of converting the formula to its prenex form and
then removing existential quantifiers by replacing occurrences of their variable by
fresh functions (or constants).

FMF appears in the literature also under a few other names, for example,
Finite Model Computation, Finite Model Building, Finite Model Construction.
It seems no consensus has been reached; nevertheless, it is obvious they refer to
the same type of problems. We chose the neutral word “finding” as the others
seems to emphasize the constructive part of the problem and sometimes it is
enough, and also easier, just to decide if the given problem has a model instead
of explicitly constructing it.

1.2 Applications

As mentioned earlier, FMF is an established area of research in the field of Au-
tomated Theorem Proving. Its importance is mainly in constructing counter-
examples to a given hypothesis. This has been successfully applied in Mathemat-
ics and Logic, Automated Deduction, and Program Verification (Caferra et al.
2004, p. 309).

1.3 Current methods for FMF

Several methods for finding finite models have been developed since its beginnings.
According to Gebser et al. 2011; Claessen and Sörensson 2003, these methods
can be divided into two major categories: translational and constraint solving
approaches.

In the translational approach, an instance of FMF is encoded into a problem
of a different type, which is then solved by means available for that problem.
The solution for the original problem is computed from the solution for the en-
coding problem. The first and very popular method was to translate FMF to
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a satisfiability problem in a propositional logic and use the powerful machinery
of SAT solvers to obtain the solution. This method originated in McCune 1994
who implemented it in his tool MACE. Another successful tool based on this
method, PARADOX, was introduced in Claessen and Sörensson 2003 and sig-
nificantly improved the techniques used in this approach. Beside propositional
logic, a translations to function-free clause logic (Baumgartner et al. 2007) and
to (incremental) Answer Set Programming (Gebser et al. 2011) were introduced
and implemented in tools FM-Darwin and iClingo, respectively.

In the constraint solving approach, the search is performed directly on the
problem without translating it. It is typically a basic backtracking search backed
up by powerful constraint propagation methods using a symmetry reduction prin-
ciple to avoid searching for isomorphic models. The main representative of this
approach is J. Zhang and H. Zhang’s (1995) tool SEM.

In this thesis we examine an algebraic approach to FMF, which falls into the
translational category. We show that it is possible to convert a set of clauses to
a system of multivariate polynomial equations over a finite field of size q such
that there is a finite model of size q for the clauses if and only if the system of
equations has a solution. Moreover, it is possible to construct the model from
the solution.
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2. An algebraic approach to FMF

In this chapter we present a way to represent a finite structure for a language
of first-order logic in a finite field and show a basic algorithm that converts an
instance of FMF to a system of polynomial equations over a finite field. Behind
the core idea is the fact that for a finite field F, any function f : F n −→ F can be
represented by a polynomial Pf of n variables with coefficients from the field F
and a bounded degree. By this representation we mean that ∀(x1, . . . , xn) ∈ F n

f(x1, . . . , xn) = Pf (x1, . . . , xn) holds.
Recall that a finite structure D for a language L is defined as a finite set

D (the domain of the structure) together with realizations of every predicate
and function symbol of L, where realization of a function symbol of arity k is a
function from Dk to D and realization of a predicate symbol of arity l is a subset
of Dl or equivalently a function from Dl to {>,⊥}. Moreover, if we have at least
two elements in the structure, we can denote two distinct elements to represent
the truth values and treat even realization of predicate symbol as if its range was
D. It follows that given a bijection between a structure D and a finite field F,
realizations of the logical symbols can be represented as multivariate polynomials
over F. Note that the previous sentence indicates a little setback. For some finite
cardinalities, there is no finite field of that cardinality. Therefore, we will now
deal only with cardinalities of prime powers and show how to deal with the others
later.

2.1 Translating clauses to polynomial equations

The idea of translating a set of clauses to polynomial equations was inspired by
the fact that every function in finite field can be represented by a polynomial
over this field with bounded degrees of variables. This follows from the known
interpolation theorems for finite fields.

Theorem 2.1 (Interpolation theorem for finite fields). Let F be a finite field of
size q and h be a function from F to F . Then there exists exactly one polynomial
Ph ∈ F[x] with deg(Ph) < |F | such that ∀a ∈ F Ph(a) = h(a).

Proof. This is a direct consequence of general interpolation theorem. Lagrange
polynomial

∑q
i=1 h(ai) ·

∏
j 6=i

x−aj
ai−aj is the wanted unique polynomial representing

h.

Theorem 2.2 (Interpolation theorem for finite fields in higher dimensions). Let
F be a finite field of size q and h is a function from F n to F . Then there exists
a polynomial Ph ∈ F[x1, . . . , xn] such that ∀a ∈ F n Ph(a) = h(a).

Proof. We will prove this by induction on n with the base case n = 1 already
covered by Theorem 2.1.

For the inductive step we need the following generalization of Theorem 2.1:
Suppose h is a function from F to R where R is an integral domain extending
F . Then there again exists a unique polynomial Ph ∈ R[x] representing h. This
holds because the corresponding Lagrange polynomial is a member of R[x].
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Now suppose we are looking for a representing polynomial for h : F n+1 −→ F .
Consider the following q functions obtained by fixing the last argument of h:

ha1 : F n −→ F where ha1(x) = h(x, a1)

...

haq : F n −→ F where haq(x) = h(x, aq)

Using the inductive hypothesis, we obtain polynomials Pha1
, . . . , Phaq

represent-
ing functions ha1 , . . . , haq . Since these polynomials are members of F[x1, . . . , xn],
we can define a function h′ : F −→ R (where R = F[x1, . . . , xn]) as follows:
∀i h′(ai) = Phai

. Then we use the generalized version of Theorem 2.1 to obtain
Ph′ ∈ R[xn+1] = F[x1, . . . , xn, xn+1] such that ∀i Ph′(ai) = Phai

. It is easy to see
that Ph′ is the representing polynomial of h.

Note than we can put boundaries on the degree of representing polynomials.
In finite field F of size q, it holds that ∀x ∈ F xq = x. This means that
we can consider only representing polynomials where exponents of variables are
less than q. Such polynomials have at most qk monomials, where k is the arity
of represented logical symbol, as each monomial is a distinct combination of k
variables with degrees in range [0; q − 1]. For example, a binary function h over
GF (2) has a representing polynomial of the form

Ph(x1, x2) = c0 + c1x1 + c2x2 + c3x0x1 (2.1)

where ∀i ci ∈ GF (2). Actually, we know that that every binary function
over GF (2) has a representing polynomial of the form as in 2.1, varying only in
the coefficients ci. This means that if we abstract from the concrete values of
the coefficients and treat ci as unknowns - coefficient variables, than 2.1 can be
regarded as a representing polynomial for the binary function symbol h, not only
for a particular function. When looking for a particular realization of the symbol,
we just have to provide the right values of the coefficients.

We already mentioned predicates can also be viewed as functions, therefore the
case of predicate symbols is the same as the case of function symbols. However,
the notion of representing polynomial is not restricted just to stand-alone function
and predicate symbols. It can be extended to arbitrary terms and even to clauses.

Definition 2.1. Let F be a finite field of size q and let ϕ be a clause. If ρ is a
translation mapping each function and predicate symbol in ϕ to its representing
polynomial over F then we define a translation τ to recursively translate ϕ to a
polynomial in a following way:

• For a disjunction, it recursively translates its disjuncts and then multiplies
the results: τ(ξ ∨ ψ) = τ(ξ) · τ(ψ).

• For a negation, it recursively translates the inner formula and subtract 1
from the (q − 1)-th power of the result: τ(¬ψ) = τ(ψ)q−1 − 1.

• For an equality, it recursively translates terms on each side and subtract
one from the other: τ(tl = tr) = τ(tl)− τ(tr).
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• For a predicate symbol or a function symbol, it recursively translates the
arguments and substitutes the results in the representing polynomial of the
symbol: τ(S(t1, . . . , tk)) = ρ(S)(τ(t1), . . . , τ(tk).

• For a variable, it returns this variable as a polynomial: τ(x) = x.

We illustrate the translation on a simple example.

Example 2.1. Consider a clause in a language with one constant a and one
binary predicate symbol R:

R(x, a) ∨ ¬R(x, x)

Suppose we look for a model with only two elements, so we will work in GF (2).
First, define how the symbols R and a will be translated:

• ρ(a) = c1,

• ρ(R(x, y)) = c2 + c3x+ c4y + c5xy.

Now proceed to translate the atomic formulas, the negation, and finally the
disjunction. Properties of GF (2) can be used to simplify the polynomials as much
as possible:

• τ(R(x, x) = c2 + c3x+ c4x+ c5x
2 = c2 + c3x+ c4x+ c5x,

• τ(R(x, a) = c2 + c3x+ c4c1 + c5c1x,

• τ(¬R(x, x)) = τ(R(x, x))− 1 = c2 + c3x+ c4x+ c5x+ 1,

• τ(R(x, a) ∨ ¬R(x, x)) = τ(R(x, a)) · τ(¬R(x, x)) = c22 + c2c3x + c2c4x +
c2c5x+ c2 + c2c3x+ c23x

2 + c3c4x
2 + c3c5x

2 + c3x+ c1c2c4 + c1c3c4x+ c1c
2
4x+

c1c4c5x+ c1c4 + c1c2c5x+ c1c3c5x
2 + c1c4c5x

2 + c1c
2
5x

2 + c1c5x =
= c2c4x+ c2c5x+ c3c4x+ c3c5x+ c1c2c4 + c1c3c4x+ c1c4x+ c1c4 + c1c2c5x+
c1c3c5x.

Notice that in the resulting polynomial there are two distinct kinds of vari-
ables. There are variables that were already present in the clause itself and were
preserved in the translation process (as seen in the last point of the definition
of τ). We will refer to these as element variables. And then there are unknown
coefficients, introduced by translating function and predicate symbols. These will
be referred to as coefficient variables.

Definition 2.2. Let ϕ be a clause, F a finite field of size q and τ(ϕ) the transla-
tion of ϕ with respect to F. Then trin(ϕ) = {τ(ϕ)[e] | e : V AR(ϕ) −→ F} is the
instantiated translation of ϕ.

Instantiated translation is simply the set of polynomials obtained from τ(ϕ)
by instantiating all element variables in τ(ϕ) with every possible combinations
of values. That is, every member of trin(ϕ) is obtained by taking an assignment
of element variables e and substituting element variables in τ(ϕ) with values
assigned by e.

Moreover, let eq(ϕ) denote the system of equations obtained from trin(ϕ)
simply by setting each polynomial from trin(ϕ) to be equal to zero. Note that
unknowns of the systems are precisely the coefficient variables of τ(ϕ).
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Example 2.2. To illustrate the instantiation, consider the situation from Exam-
ple 2.1. The clause was translated to a polynomial

c2c4x+ c2c5x+ c3c4x+ c3c5x+ c1c2c4 + c1c3c4x+ c1c4x+ c1c4 + c1c2c5x+ c1c3c5x.

There is only a single element variable x, and two possible values (since we were
working in GF (2)). Substituting these values yields two polynomials with only
the coefficient variables left.

• x := 0 =⇒ c1c4 + c1c2c4

• x := 1 =⇒ c2c4 + c2c5 + c3c4 + c3c5 + c1c2c4 + c1c3c4 + c1c2c5 + c1c3c5

It is possible to translate not only a single clause, but also a set of clauses.
The translation of function and predicate symbols just need to be consistent, it
has to use the same coefficient variables when translating the same symbol in
various clauses. The instantiated translation of a set of clauses can then be used
to verify if it has a model of given size (note that the translation of function and
predicate symbols always depends on the field).

Theorem 2.3. Let T be a set of clauses and F be a finite field of size q. Then
T has a model of size q if and only if eq(T ) has a solution over F.

The following section is basically the proof of this theorem, but we believe the
topic to be interesting enough to deserve a separate section.

2.2 Representing finite structures of first-order

logic in finite fields

In this section we show that a finite field can be used to represent any finite
structure of a prime power size. In the finite field representation we define logical
notions of value of term and formula and satisfiability. Then we show that these
are well-defined, that is it holds that

D � ϕ iff F � ϕ

where F is the finite field representation of structure D an ϕ is a clause. At the
end, we use the notion of finite field representation to prove Theorem 2.3.

Consider a finite first-order structure D such that |D| = q, where q is a prime
power. Take a finite field GF (q) and denote it F. Then there is a bijection b
between D and F . Fix one bijection b : D −→ F for the rest of the section.
Using b, it is possible to pull the functions and relations of D to F . For an n-ary
function symbol H and its realization HD : Dn −→ D the corresponding func-
tion HF : F n −→ F is defined as HF(a1, . . . , an) = b(HD(b−1(a1), . . . , b

−1(an))).
Similarly, for an n-ary predicate symbol R and its realization RD in D, the
corresponding relation RF is defined such that RF(a1, . . . , an) if and only if
RD(b−1(a1), . . . , b

−1(an)).
In Theorem 2.2 we showed that all functions over a finite field have their

representing polynomials. Since we can treat relations as functions (by denoting
some elements as > and some as ⊥), we can replace the functions and relations
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over F by their representing polynomials. By doing this we obtain a finite field
representation F of the structure D consisting of a finite field F and a set of
representing polynomials.

We show how to evaluate terms and clauses in such representation and then
we prove that satisfiability behaves the same way in the finite field representation
as in the original structure.

Definition 2.3 (Term evaluation). The value of a term t in F for a variable
assignment e : V AR −→ F is inductively defined as follows:

• variable: xF[e] = a, where x ∈ V AR and e(x) = a,

• complex term: G(t1, ..., tn)F[e] = PG(tF1 [e], ..., tFn[e]) where PG is the polyno-
mial representing realization of G.

Lemma 2.1. tF[e′] = b(tD[e]) for e′ = b ◦ e.

Proof. Let e : V AR −→ D and e′ = b ◦ e be variable assignments for D and F,
respectively. Proceed by induction on the complexity of the term:

• variable:

xF[e′] = e′(x) (Definition 2.3)

= b(e(x)) (e′ = b ◦ e)
= b(xD[e]) (Tarski definition)

• complex term:

G(t1, . . . , tn)F[e′] = PG(tF1 [e′], . . . , tFn[e′]) (Definition 2.3)

= PG(b(tD1 [e]), . . . , b(tDn [e])) (induction hypothesis)

= GF(b(tD1 [e]), . . . , b(tDn [e])) (∗)
= b(GD(tD1 [e], . . . , tDn [e])) (definition of GF)

= b(G(t1, . . . , tn)D) (Taski definition)

(∗) - PG is the representing polynomial of the function GF

We continue by defining the value of a formula in F. The value of a formula
is, as in the case of terms, an element of F and we show how to interpret such
evaluation as true or false to obtain agreement with the evaluation in the original
structure.

Definition 2.4 (Formula evaluation). The value of a formula ϕ in F for the
variable assignment e : V AR −→ F is inductively defined as follows:

• equality : (t1 = t2)
F[e] = tF1 [e]− tF2 [e]

• predicate: R(t1, . . . , tn)F[e] = PR(tF1 [e], . . . , tFn [e]) where PR is the represent-
ing polynomial of R.

8



• disjunction: (ψ1 ∨ ψ2)
F[e] = ψF

1 [e] · ψF
2 [e]

• negation: (¬ψ)F[e] = v|F |−1 − 1, where v = ψF[e].

Definition 2.5 (Satisfiability in finite field representation). Let F be a finite field
representation, e an assignment of the variables, and ϕ a formula. We define the
satisfiability of ϕ in F under e as

F � ϕ[e] iff ϕF[e] = 0.

Lemma 2.2. Let D be a first-order structure of prime power size q and let F be
its finite field representation. Then for every formula ϕ in the language of D and
every variable assignment e : V AR −→ D and e′ = b ◦ e it holds that

D � ϕ[e] iff F � ϕ[e′].

Proof. Proceed by induction on the complexity of the formula:

• equality :
D � (t1 = t2)[e]

⇐⇒ tD1 [e] = tD2 [e] (Tarski definition)

⇐⇒ b(tD1 [e]) = b(tD2 [e]) (b is bijection)

⇐⇒ tF1 [e′] = tF2 [e′] (Lemma 2.1)

⇐⇒ tF1 [e′]− tF2 [e′] = 0

⇐⇒ (t1 = t2)
F[e′] = 0 (Definition 2.4)

⇐⇒ F � (t1 = t2)[e
′] (Definition 2.5)

• predicate:

D � R(t1, . . . , tn)[e]

⇐⇒ RD(tD1 [e], . . . , tDn [e]) (Tarski definition)

⇐⇒ RF(b(tD1 [e]), . . . , b(tDn [e])) (definition of RF)

⇐⇒ PR(b(tD1 [e]), . . . , b(tDn [e])) = 0 (∗)
⇐⇒ PR(tF1 [e′], . . . , tFn[e′]) = 0 (Lemma 2.1)

⇐⇒ R(t1, . . . , tn)F[e′] = 0 (Definition 2.4)

⇐⇒ F � R(t1, . . . , tn)[e′] (Definition 2.5)

(∗) - PR is the representing polynomial of R and 0 is the only element
denoting >

• disjunction:

D � ψ1 ∨ ψ2[e]

⇐⇒ D � ψ1[e] or D � ψ2[e] (Tarski definition)

⇐⇒ F � ψ1[e
′] or F � ψ2[e

′] (Induction hypothesis)

⇐⇒ ψF
1 [e′] = 0 or ψF

2 [e′] = 0 (Definition 2.5)

⇐⇒ ψF
1 [e′] · ψF

2 [e′] = 0 (Field property)

⇐⇒ (ψ1 ∨ ψ2)
F[e′] = 0 (Definition 2.4)

⇐⇒ F � ψ1 ∨ ψ2[e
′] (Definition 2.5)
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• negation:

D � ¬ψ[e]

⇐⇒ D 2 ψ[e] (Tarski definition)

⇐⇒ F 2 ψ[e′] (Induction hypothesis)

⇐⇒ ψF[e′] 6= 0 (Definition 2.5)

⇐⇒ (ψF[e′])q−1 − 1 = 0 (Field property)

⇐⇒ (¬ψ)F[e′] = 0 (Definition 2.4)

⇐⇒ F � ¬ψ[e′] (Definition 2.5)

The correctness of the finite field representation is the key point in the proof
of Theorem 2.3.

Proof of Theorem 2.3. Suppose a theory T has a model D of size q. Fix a clause
ϕ ∈ T . Since D is a model of T it holds that ∀e D � ϕ[e]. Take a finite field
representation F of D. By Lemma 2.2 it holds that ∀e F � ϕ[e]. By Definition
2.5 this is equivalent to ∀e ϕF[e] = 0. Now consider the set of equations trin(ϕ).
There is an equation for every evaluation e and this equation is the result of
translating ϕ by τ from Definition 2.1. Notice that τ mirrors the evaluation
of terms and formulas in finite field representation (Definition 2.3 and 2.4). The
only difference is that evaluation works with representing polynomials with known
coefficients and τ works with representing polynomials with unknown coefficients.
Since ϕF[e] = 0 for every evaluation e, this means that coefficients of representing
polynomials in F satisfy every equation in trin(ϕ).

The proof of the other implication is practically the same. If a solution of the
system of equations exists than using the solution as coefficients for the repre-
senting polynomials yields a finite field representation F such that ϕF[e] = 0 for
every evaluation e and every ϕ ∈ T . This follows from the fact that τ mirrors
the evaluation of terms and formulas in such F and for every clause ϕ every eval-
uation e is covered by one equation in trin(ϕ). As a consequence F represents a
model of T .

Example 2.3. At the end of Example 2.2 we obtained the instantiated transla-
tion trin(ϕ) where ϕ = R(x, a) ∨ ¬R(x, x). By solving the corresponding system
of equations eq(ϕ) we obtain a two-element model for the original clause ϕ. For
example, the trivial solution ∀i ci = 0 translates to a finite model M with domain
M = {0, 1} and with realizations of symbols as aM = 0 and RM = M×M . Other
solutions yield different models, for example a solution c3 = 1 and ∀i 6= 3 ci = 0
yields realizations aM = 0 and RM = {[0, 1]; [0, 0]}.

2.3 Algebraic algorithm for FMF

In this section we use the ideas from the previous sections in an algebraic algo-
rithm for finding finite models. First, we present a subalgorithm for finding a
model of given prime power size, then we show how to deal with other sizes and
finally we sum it all up and present a pseudocode for the algebraic algorithm for
finding finite models.
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2.3.1 Core subalgorithm

In Section 2.1 we showed, given a prime power q, how to translate a set of clauses
T to a system of polynomial equations over finite field such that T has a model
of size q if and only if the system of equations has a solution. Here we formulate
this approach as an algorithm.

Algorithm 1 FindModelBasic(T , q)

Require: q is prime power, T is a set of clauses
1: eq(T )← ∅
2: ρ← SymbolTranslation(T, q)
3: for ϕ ∈ T do
4: τ(ϕ)← Translate(ϕ, ρ)
5: trin(ϕ)← ∅
6: for e in {e | e : V AR(ϕ) −→ GF (q)} do
7: trin(ϕ)← trin(ϕ) ∪ Instantiate(τ(ϕ), e)
8: end for
9: eq(T )← eq(T ) ∪ AsEquations(trin(ϕ))
10: end for
11: return Solve(eq(T ))

The input of this function consists of the set of clauses T and a prime power
q determining the finite field GF (q). At the beginning, a translation of predicate
and function symbols from T to corresponding representing polynomials over
GF (q) is defined and used in the next phase to translate every clause from T
as described in Definition 2.1. After that, all the translations are instantiated,
i.e. element variables are substituted by elements of the field. Finally, every
polynomial is transformed to equation by setting it to be equal to zero. The
resulting system of equations is then solved and the algorithm returns the solution
or reports that no solution exists.

If a solution of the system is found, the representing polynomials with coef-
ficients from the solution together with the field GF (q) represents a model of T
of size q. If no solution exists than the clauses does not have a finite model of
size q. Note that this works only for prime power sizes. It the next section we
describe how to modify Algorithm 1 so it can be used also for sizes that are not
prime power.

2.3.2 Modification for size that is not a prime power

The problem we are facing is that if we are looking for a model of size that is not
a prime power, there is no finite field of that size. We can overcome this obstacle
if we work in the closest bigger field and denote a subset of the domain of the
field, with the wanted size, that will constitute the domain of the smaller model.
Suppose we are looking for a model of size k which is not a prime power. Denote
q to be the smallest prime power larger than k, F to be the finite field of size q
and let S stand for a subset of F of size k, with 0 ∈ S. Under some modifications,
we can use the algorithm to found a structure in F (not necessary a model of the
theory) which yields a model of size k after restricting the realizations of function
and predicate symbols to S.

11



There are two steps where we need to modify the algorithm. First, we want
the restriction to be a closed structure, meaning that for every function h it
must be true that if ∀i xi ∈ S, then h(x1, . . . , xn) ∈ S as well. Fortunately, this
condition can be formulated as a system of equations. More precisely, it can be
formulated as a set of clauses in the extended language using elements of S and
these clauses can be translated to equations the same way as original clauses of
the theory (translating the elements of S to themselves).

For each n-ary function symbol H a restrictive clause∨
s∈S

H(x1, . . . , xn) = s

is added to the original clauses. Restrictive clauses are translated the same way
as original clauses and during the instantiation clauses, as we plan to restrict
the realization of function symbols to S and thus do not care about the cases
where one of the arguments is not from S, only elements from S are used for
substituting.

Besides adding restrictive clauses, one more modification is necessary. If we
would just add restrictive clauses and Algorithm 1 would successfully return a
solution, then the resulting structure F would be a model of size q and the re-
striction F�S would be a model of size k. However, it could happen that the
bigger model does not exist but the smaller model does. In this case, Algorithm
1 would return failure and the smaller model would not be found. To ensure that
this does not happen, we need to do one more modification.

Recall that during instantiation (lines 6 to 8) the translation of a clause is
instantiated with all possible combinations of values from the field. We do this
because the clause must hold for all elements of the model, in our case all elements
of the field. In current situation, however, the model we are aiming for has domain
S, not all F . So instead of substituting all possible combinations of values from
F , we consider only those with all values from S. In the algorithm, on line 6, the
variable e will cycle through elements of

{e | e : V AR(ϕ) −→ S} .

Now if a solution to the final system of equations is found, it yields a structure
F which is not necessarily a model of the theory, but the substructure F�S with
domain S is a model of the theory. On the other hand, if a model of the smaller
size exists, then there also exists its extension in a form of F, which satisfies the
system of equations.

Incorporating these modifications results in a general algorithm for finding a
model of a fixed size. For a size that is not a prime power, restrictive clauses
are added to the theory (line 6) and assignments of variables have smaller range
during instantiation (line 12).

12



Algorithm 2 FindModelGeneral(T , k)

Require: k is integer > 0, T is a set of clauses
1: if k is prime power then
2: return FindModelBasic(T, k)
3: end if
4: q ← NextPrimePower(k)
5: S ← SubsetOfSize(GF (q), k)
6: T ← T ∪RestrictiveClauses(T, S)
7: eq(T )← ∅
8: ρ← SymbolTranslation(T, q)
9: for ϕ ∈ T do
10: τ(ϕ)← Translate(ϕ, ρ)
11: trin(ϕ)← ∅
12: for e in {e | e : V AR(ϕ) −→ S} do
13: trin(ϕ)← trin(ϕ) ∪ Instantiate(τ(ϕ), e)
14: end for
15: eq(T )← eq(T ) ∪ AsEquations(trin(ϕ))
16: end for
17: return Solve(eq(T ))

2.3.3 Incremental algorithm

The final algorithm starts at size 1 and looks for models of increasing sizes until
it finds one or until it runs out of resources.

Algorithm 3 FindModel(T )

Require: T is a set of clauses
1: k ← 1
2: while TRUE do
3: sol← FindModelGeneral(T, k)
4: if sol 6= ⊥ then
5: return ModelFromSolution(sol)
6: end if
7: k ← k + 1
8: end while

2.3.4 Properties

Since algebraic approach is a translational approach to FMF, the best way to
analyze it is by comparison to other translational approaches. We point out
some similarities and differences between our and other approaches.

Firstly, although the search for the model is incremental, the algorithm is
not able to share information between stages. This is a consequence of using
different fields in different stages as the predicate and function symbols have dif-
ferent representing polynomials in different fields and all operations are evaluated
differently, with respect to the current field.
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Secondly, full instantiation is necessary in our approach. For every clause
and every possible evaluation of its variables there is one equation. So there
are kn equations for a clause with n variables when looking for a model of size
k. This indicates that the number of variables in a clause has great impact on
the size of the resulting system of equations and beyond certain boundary the
size can become intractable. Full instantiation was necessary both in SEM-style
and MACE-style approach. PARADOX (Claessen and Sörensson 2003) was very
successful in spite of this obstacle. However, recent approaches try to avoid this
problem. This can be seen in FM-Darwin (Baumgartner et al. 2007) and iClingo
(Gebser et al. 2011) where the full instantiation is not part of the translation.

Most translational approaches cannot handle nested terms, so a step called
flattening is a part of the translation. It flattens nested terms at the cost of intro-
ducing new variables to clauses. This is particularly undesirable in PARADOX
because of the full instantiation. In our approach the flattening is not necessary
as nested terms are not an obstacle for the translation.

Since we translate the clauses to a system of equations, any solver can be
used to tackle the equations. The solver can be completely independent of the
translation process and thus one implementation can be easily replaced by another
if it proves to be better. As a result, an advance in the field of solving multivariate
polynomial equations directly translates to an improvement of our algorithm.
This feature is common for all translational approaches (with respect to their
target domain).

Some optimizations introduced by Claessen and Sörensson 2003 can be applied
in our approach as well since they either operate on the clauses or introduce
new ones. They are very well explained there, so here we discuss them only
briefly. Static symmetry reduction is expressed as clauses using elements of the
field, so it can be translated to equations. It introduces only few new equations
and they are very useful since they restrict possible values of the variables. As
a consequence, sort inference is also useful as it can strengthen the effect of
symmetry reduction. The effect of splitting is double-edged. It splits a clause
to multiple clauses having less variables, and usually also less literals, than the
original clause. As a result, less equations are created during instantiation than
with the original clause. However, it introduces new split predicates and this
means that the resulting system of equations has more variables than the original
one. The number of new variables depends on the arity of the split predicate
and consequently on the number of variables shared by the split parts of the
clause. Splitting a clause to two disjoint parts (with respect to shared variables)
introduces only one new coefficient unknown (nullary predicate), but with more
shared variables the number of new coefficient unknowns grows exponentially,
and the savings in terms of equation count decreases as well.
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3. Implementation and results

In this chapter we describe the implementation of the algebraic algorithm for
finding finite models, test it on benchmarks from TPTP library (Sutcliffe 2009)
and analyze the results.

3.1 Choosing software

The algorithm consists of two main parts, which are independent of each other.
The first part is the translation of the input clauses to system of multivariate
polynomial equations, the second is solving the resulting system.

Translation of clauses is relatively easy, it only requires manipulation with
multivariate polynomials like multiplication, sum, substituting a value (or anoth-
er polynomial) for a variable. These can be provided by a library or one can
implement them by oneself in a favorite programming language.

On the other hand, solving a system of multivariate polynomial equations is
much harder. This problem has been heavily studied due to its connection to
cryptanalysis and several interesting algorithms have been proposed to solve it.
Bard 2009 provides a nice survey of the problem and proposed solutions in two
chapters. Chapter 11 focuses on some theoretical aspects of the problem and
Chapter 12 describes algorithms used to solve this problem. The oldest and most
popular approach is the computation of Gröbner basis. The notion of Gröbner
basis was introduced by Bruno Buchberger in his PhD thesis in 1965 (english
translation was published in 2006, see Buchberger 2006) and it proved to be very
important tool in solving problems both in and outside of computer algebra. A
nice online survey (Buchberger and Kauers 2010) was published in Scholarpedia1.
Czech readers can find a nice explanation of Gröbner bases and ideas of the orig-
inal Buchberger’s algorithm for their computation in Stanovský and Barto 2011.
There exist more than one variant of the algorithm for computing Gröbner basis
of a set of multivariate polynomials, modern variants beating original Buchberger
algorithm significantly. They are implemented in various software for computer
algebra like Magma, Maple, Mathematica and SageMath(via SINGULAR). Be-
sides Gröbner basis, other algorithms for solving multivariate polynomial equa-
tions were introduced, for example XL (for eXtended Linearization) algorithm
(Courtois et al. 2000; Courtois 2001) and its variants. Recently a translation of
polynomial equations over finite fields to SAT (first implemented in Bard et al.
2007) has become very popular. When choosing between this options, we ruled
out the SAT approach, as the original problem (FMF) can be translated to SAT
directly. From the others, we chose to use SageMath (Stein et al. 2015) with
its component SINGULAR (Decker et al. 2015) for the computation of Gröbner
basis. The main reason was that SageMath is an open-source project with one of
the best implementations of Gröbner basis algorithm provided via SINGULAR.
SageMath, with its Python based language, also provides user-friendly interface
for operations with multivariate polynomials.

1http://www.scholarpedia.org
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3.2 SageMath

SageMath, also referred to only as Sage, is a free open-source mathematics soft-
ware system that supports research and teaching in algebra, geometry, number
theory, cryptography, numerical computation, and related areas. Both the Sage-
Math development model and the technology in SageMath itself are distinguished
by an extremely strong emphasis on openness, community, cooperation, and col-
laboration. An interested reader can learn a lot about SageMath by reading its
tutorial. 2

Most of SageMath is implemented using Python and has several ways of usage.
It can be used interactively from command line using its interactive shell, it
also provides a very nice graphical interface called Notebook and finally it allows
writing interpreted and compiled programs in Sage or writing stand-alone Python
scripts that use Sage library.

For our purpose, it is important that SageMath provides a well-documented
and user-friendly way to work with multivariate polynomials. SageMath distribu-
tion contains SINGULAR, a computer algebra system for polynomial computa-
tions, and it uses a shared library interface to SINGULAR called libSINGULAR
to provide specialized and optimized implementations for multivariate polynomi-
als over many coefficient rings, including finite fields. SINGULAR also provides
one of the best implementations of an algorithm computing Gröbner bases.

3.3 Implementation

In this section we describe the details of our implementation of the algebraic
algorithm for solving FMF.

As we said earlier, we decided to implement the algorithm using SageMath.
Although its Notebook interface seemed appealing, we decided to implement it
as a stand-alone Python script to enjoy the advantages of Python editor. The
source code, together with user’s guide, can be found in the attachment of this
thesis. The algorithm requires SageMath to run, so it has to be installed3 on your
computer.

3.3.1 Data structures

SageMath provides several well-documented classes for work with multivariate
polynomials, see the reference manual4. After creating the desired polynomial
ring to work in, it is easy to create polynomials. They can be specified directly,
or built step by step from ring generators (the variables) using sum, multiplication
and other operations. SageMath also allows creating ideal from set of polynomials
and calling the computation of Gröbner basis of this ideal in just two steps.
This saves a lot of time as it is not necessary to code such classes from scratch.
Unfortunately, it comes at a price. Working in the finite field GF (q) allows using
field equations (in the form of xq = x) to reduce the degrees of variables in

2available at http://doc.sagemath.org/html/en/tutorial/index.html
3http://doc.sagemath.org/html/en/installation/index.html
4http://doc.sagemath.org/html/en/reference/polynomial_rings/polynomial_

rings_multivar.html

16

http://doc.sagemath.org/html/en/tutorial/index.html
http://doc.sagemath.org/html/en/reference/polynomial_rings/polynomial_rings_multivar.html
http://doc.sagemath.org/html/en/reference/polynomial_rings/polynomial_rings_multivar.html


polynomials if they exceed certain boundary. However, SageMath does not do
this automatically, it strictly distinguishes between equality and equivalence of
polynomials. As a consequence, a field ideal (ideal consisting of field equations)
needs to be used explicitly to reduce the degrees. This has an undesired effect
that the polynomials with higher degrees gets constructed and are reduced only
later. With proper implementation, the construction of the bigger polynomials
could be avoided. It should be mentioned here that SageMath provides quotient
rings (a polynomial ring modulo some ideal) which seems to be what we wanted.
However, experiments showed that it is not optimized for polynomial ring over
finite field modulo the field ideal. So it still computes the larger polynomial and
only after that, it reduces it by the ideal. The only difference is, this is done
implicitly, not explicitly. As we tried to improve the algorithm, we found we
sometimes the field equations for some variables can be improved, so the degree
of that variable could be reduce further. Therefore, we decided not to use the
quotient ring but to maintain the reduction ideal (ideal containing the reduction
equations, originally the field equations) explicitly.

Data structures to hold the information about the clauses were created with
respect to the expected input format. The class TPTPParser is a simple parser
for input files from TPTP library in the CNF format. The following classes, with
self-explanatory names, reflects the structure of the input and serve to store the
input information: Clause, Literal, Equality, Predicate, Term, Function and
Variable. Input file is parsed into a list a of Clauses, each Clause holds a list
of Literals. Literal is either Equality or Predicate and can be positive or
negative. Terms are arguments of Literals. Equality has always two terms,
Predicate has a list of Terms, the length depending on the arity of Predicate.
Term can be either Function or Variable, where Variable is defined by its
name, and Function consists again of list of Terms, depending on its arity. The
input of the algorithm (as seen in Algorithm 3) is a theory represented as a list
of Clauses.

The main work is done in Manager class. This is the class that holds the cur-
rent context of the algorithm (current field, polynomial ring, reduction ideal and
others) and provides functions for the translation of the clauses and computing
the solution of the equations. Much of its work consists of manipulating with
polynomials, which is quite easy thanks to functionality provided by SageMath.

There are some options that can alter the run of the algorithm. For setting
these options, a configuration file is used and Configuration class parses the file
and provides the chosen options to the algorithm.

3.3.2 Modifications to the basic algorithm

Since we tweaked the implementation of the algorithm to test the impact of vari-
ous modifications, the result differs somewhat from the procedure as described in
Section 2.3. We now go through the implementation and discuss the modifications
that were made.

During the implementation and testing it happened that a solution for some
variable has been found during the translating phase. The solution can be ab-
solute, when the exact value for a variable is computed (for example x = 0), or
partial, when the value of the variable is expressed in terms of other variables
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(for example x = yz). Finding such solutions early on can help to simplify the
translation process (a prominent example is setting first constant in symmetry
reduction to 0) and it means less variables in the resulting system of equations,
which in turn reduces time spent in the solver. As a consequence, in the imple-
mentation, the instantiation precedes translation of the clauses. More precisely,
the translation is repeated for every possible evaluation of clause variables and
when translating a variable, instead of leaving it as a variable, its value from
current evaluation is substituted. This has two advantages. Firstly the huge
polynomial τ(ϕ) for clause ϕ is never constructed, only the smaller polynomials
trin(ϕ) are. This is desired because it takes longer time and more memory to
work with bigger polynomials. Secondly some solution can be found from the
first instances (especially if we are substituting 0 for all clause variables) and this
can make the polynomials in other instances smaller, hence speeding up the rest
of the translation.

As mentioned before, some optimizations proposed by Claessen and Sörensson
2003 can be incorporated into the algebraic algorithm as well. Symmetry reduc-
tion is the best of them. Static symmetry reduction was formulated in terms
of new instantiated clauses and so they can be easily translated and the result
added to the system of equations. However, we can use some of them better. For
example, the restriction a0 = 0 for the first constant means we have an absolute
solution for the variable representing the constant. This can significantly reduce
polynomials for clauses containing this constant. For other constants, we do not
have a direct solution, but we do obtain polynomials that reduces the degree of
variables for these constant better than the original field equations. For example
the restriction for the second constant is a1 = 0 ∨ a1 = 1 which translates to
a1 · (a1− 1) and that is a21− a1. The new restriction for a1, a

2
1− a1 = 0, is better

than the original one aq1−a1 = 0 for q > 2. If we are out of constants but did not
use all elements in symmetry reduction, we can use function symmetry reduction
similarly to constants, by restricting the value in the point 0 (all arguments are
0) since f(0) = c where c is the constant coefficient of polynomial representing
f . For example restricting unary function after two constants in GF (5) is rep-
resented by clause f(0) = 0 ∨ f(0) = 1 ∨ f(0) = 2 which translates to condition
c3 + 2c2 + 2c = 0, restricting the degree of variable for the constant coefficient
to 2 instead of 4. This can be used in the translating phase to keep the poly-
nomials of clauses containing restricted constants and functions smaller. In the
implementation, ideal for reducing degrees of variables is kept by Manager. At
the beginning, it contains field equations, but can be updated, for example with
restrictions from symmetry reduction.

The next modification we implemented is called predicate restriction. Or more
precisely restricting polynomials representing predicates. In the basic algorithm,
when searching for a realization of predicate symbol we look for any function and
interpret it as a relation (0 as > and any other element as ⊥) only later. But we
can be strict and demand that the range of the function is {0, 1} (Note that this
is a subset of every finite field). This has a few consequences. Firstly we obtain
better restrictive equations for constant coefficients of polynomials representing
predicates (in GF (q) for q > 2) as the restriction R(0) = 0 ∨ R(0) = 1 translates
to c2R − cR = 0. Secondly for each polynomial representing predicate, we obtain
new equations containing only the unknown coefficients of this polynomial. Al-
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though the resulting system will be bigger, such equations should help find the
solution quicker. Finally, the translation of negation of predicate symbol can be
simpler. If we know that ∀x PR(x) = 0 ∨ PR(x) = 1 then we can replace the
original translation τ(¬ψ) = τ(ψ)q−1 − 1 with τ ′(¬ψ) = 1 − τ(ψ) (or τ(ψ) − 1.)
as using this new computation of value of negated predicate we do not violate
the condition ¬R(t1, . . . , tn)F[e] = 0 if and only if R(t1, . . . , tn)F[e] 6= 0 satisfy-
ing F � ¬R(t1, . . . , tn)[e] if and only if F 2 R(t1, . . . , tn)[e]. This simplifies the
translation of negative predicates in clauses since there is no need to compute the
power of large polynomials. Unfortunately, this does not work for negated equal-
ity. In that case, the old translation with computing the power of the polynomial
must still be applied.

If looking for a model of size that is not prime power, a function restriction
follows. Polynomials representing restrictive clauses (as defined in Section 2.3.2)
are computed and added to the result.

The translation of clauses is implemented as proposed in Definition 2.1 with
the exception that the variables are translated to their current value and this
is done for every evaluation of variables in the clause. Also, if a solution for
some variable has been found earlier, the solution is immediately used instead
of the variable. And the translation of negated predicate is simpler if predicate
restriction is turned on. The polynomials appearing in the translation are reduced
at certain steps with respect to current reduction ideal and they are also checked
for possible solution for some variable.

We also implemented a possibility to restrict the size of representing polyno-
mials by restricting the degree of variables in its monomials. By doing this, the
algorithm might miss a model if it exists, but it can be interesting to test, for
example if some theories have models which have simple representing polynomials
(for example only quadratic). This option can be turned on in the configuration
of the algorithm.

After the translation, the system of equations is ready for a solver. In this
implementation we use computation of Gröbner basis provided by SageMath via
SINGULAR. However, when using the method of Gröbner basis, the field equa-
tions (or even better restrictions for some variables in our case ) must be added to
the system to ensure the solution is computed over the finite field. Computation
of Gröbner basis is then called. It is good to remember that a Gröbner basis is
not unique, it depends on the chosen term order. And the chosen order often have
tremendous impact on the computation time. Generally, orders where the total
degree of the monomial is taken into account, like degree lexicographic or degree
reverse lexicographic, are recommended. However, for the computation of a solu-
tion for the system of equations, the lexicographic order is the best, since then the
basis has triangular shape and the solution can be read easily. The recommended
way is to compute the basis for some of the faster order and then transform the
basis to lexicographic one. This is often much faster than computing the lexico-
graphic basis directly and SageMath provides a function for the transformation.
If the result is the trivial basis (basis with only the trivial polynomial 1), the
system does not have any solution over the finite field and this means the theory
does not have a finite model of given size. The algorithm continues by trying the
next size. If a non-trivial basis is returned, it encodes all possible solutions of the
original system (assignment of variables is a solution to the original system if and
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only if every polynomial reduces to 0 under this assignment). It is transformed
to lexicographic basis for better extraction of some solution. We use a simple
algorithm of trying all elements of the field for the extraction of some solution.
Fortunately, this is fast for lexicographic basis since it has triangular form. At
the end, a model is displayed in the form of representing polynomials using the
computed coefficients.

3.4 Testing and results

W tested the algebraic algorithm for FMF mostly on problems from TPTP library
and also on some hand-made inputs, e.g. axioms for Boolean algebra, group
axioms and axioms for non-Abelian group. The correctness of the algorithm
was not disproved by any example we tried. This means that either it correctly
returned the smallest model possible or, if it did not finished (due to lack of time
or memory), it correctly refuted the sizes it was able to examine.

However, during testing, it soon became clear, that the algorithm is extremely
resource-demanding. Since every n-ary predicate or function symbol introduces
qn new variables when working in field GF (q), the representing polynomials grow
quickly when incrementing the size of the model. This results in huge polynomials
when dealing with rich clauses, that is clauses containing many different function
and/or predicate symbols. This is often problem even in the translation phase,
as polynomials with hundreds of thousands or even millions of monomials even
for small model size (2 or 3) are not that rare (see Example 3.1). Not only
does the computation of such polynomials takes long time, but also the memory
requirements to store these polynomials are enormous. We tried to introduce some
modifications to keep the polynomials smaller, but the effect was insignificant.

Example 3.1. Consider the following clause taken from problem GRP135-1.005

from TPTP library:

cnf(product total function1, axiom,

(∼group element(X)

| ∼group element(Y )

| product(X, Y, e1)
| product(X, Y, e2)
| product(X, Y, e3)
| product(X, Y, e4)
| product(X, Y, e5))).

Translating this clause in field GF (3), with symmetry reduction applied, yielded
polynomial with 5734890 monomials for variable assignment X := 1, Y := 1, and
polynomial with 4014423 monomials for variable assignment X := −1, Y := 1.
Both polynomials contained 34 variables. In GF (4) these polynomials would
contain 72 variables and we would not have enough memory to store them.

To get larger results, we ran the algorithm on 100 problems from TPTP
library. After setting filters to satisfiable problems in CNF format, with small
formulas and clauses, and rating Easy, 509 problems remained. We randomly
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picked 100 of them and ran the algorithm on them with limits of 300 seconds
and 1.5GB of memory on home laptop. In comparison with PARADOX, which
was able to solve all these problems within seconds (and mostly in fractions of
second), the results of our algorithm were very poor: it solved only 46 problems,
ran out memory in 29 cases and the computation did not finish on time in 25
cases. Moreover. with one exception, in all the successful cases, the problem
had model of size only 1 or 2. The results also showed that our model finder
completed the search for model of size 3 in very few cases. Even when later tried
on a problem of non-Abelian group, which has very simple axioms, the algorithm
quickly refuted sizes up to 3, but got stuck in the computation of the Gröbner
basis for size 4.

3.4.1 Analysis of results

The experiment confirmed the problems of algebraic approach to FMF. The poly-
nomials occurring in the translation simply grows too much too quickly. This is
the result of frequent computing of powers of polynomials for nested arguments,
computing power in case of negative literal, and multiplying polynomials of all
literals in a clause and also of quick growth of representing polynomials (both in
terms of arity and field size). On many problems from TPTP library this yields
system of equations with hundreds of variables even for small sizes like 3 or 4.
Even when the translation completes successfully, the resulting system contains
huge polynomials with many variables and the algorithm and solver is not able
to compute the solution of such system.

We are aware that the implementation presented here is far from optimal.
We believe that the translation could be faster in a more low-level language like
C/C++ and especially if keeping the degrees under given boundary were done
directly during multiplication/power operation. It could be further improved by
implementing sort inference, since that could allow for even better symmetry
reduction. However, we came to the conclusion that the problem of large poly-
nomials is an inherent property of the translation. As a consequence, even if the
implementation is faster, the memory requirements will not diminish. And the
resulting system of equations is thus intractable even for current state-of-the-art
solvers.

For a while we considered a different approach. Instead of performing all
the operations with polynomials, we would just remember them in a tree-like
structure, since the polynomial is build gradually. This is very compact repre-
sentation; however, it does not allow the use of algebraic methods and thus the
only possible way of searching for a solution of a system in such representation
is exhaustive search. Such approach resembles SEM-style methods, but does not
have an apparent advantage, so we did not continue this way.
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Conclusion

In this thesis we have examined an algebraic approach to finite model finding
problem. We showed how, for a given model size, a theory is translated to a
system of multivariate polynomial equation (this translation is due to Stanovský,
the supervisor of this thesis) such that a model of the theory of given size exists if
and only if the system of equations has a solution. We proved that finite structure
of first order logic (of prime power size) can be represented in a finite field by
polynomials over the field, and used it to prove the correctness of the translation.
Finally, we implemented this algorithm in an algebraic model finder and tested
the implementation on problems from TPTP library.

The tests showed that the polynomials from the translation are too large.
They grow too quickly with increasing model size, they require a lot of memory
and the solver is often not able to cope with the resulting system of equations.
The algebraic model finder can deal only with the smallest sizes (1 and 2, rarely 3)
for hard problems (problems with many different predicate or function symbols
in the same clauses, or problems with symbols with high arity) and even for
relatively simple problems (problems with simple clauses), it does not finish on
sizes starting at 4 or 5. We believe it would be possible to speed up the translation
process by better implementation, but the size of resulting polynomials cannot be
decreased by much any further. We have thus concluded that although it shows
very interesting connection between logic and finite fields, the algebraic approach
cannot compete with current state-of-the-art model finders.
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Paris 6 - Pierre et Marie Curie.

Courtois, Nicolas et al. (2000). “Efficient Algorithms for Solving Overdefined
Systems of Multivariate Polynomial Equations”. In: Proceedings of the 19th
International Conference on Theory and Application of Cryptographic Tech-
niques. EUROCRYPT’00. Bruges, Belgium: Springer-Verlag, pp. 392–407. is-
bn: 3-540-67517-5. url: http://dl.acm.org/citation.cfm?id=1756169.
1756206.

Decker, Wolfram et al. (2015). Singular 4-0-2 — A computer algebra system
for polynomial computations. http://www.singular.uni-kl.de.

Gebser, Martin, Orkunt Sabuncu, and Torsten Schaub (2011). “Finite Model
Computation via Answer Set Programming”. In: Proceedings of the Twenty-
Second International Joint Conference on Artificial Intelligence - Volume Vol-
ume Three. IJCAI’11. Barcelona, Catalonia, Spain: AAAI Press, pp. 2626–
2631. isbn: 978-1-57735-515-1. doi: 10.5591/978-1-57735-516-8/IJCAI11-
437. url: http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-
437.

McCune, William (1994). A Davis-Putnam Program and its Application to Finite
First-Order Model Search: Quasigroup Existence Problems. Tech. rep.

Stein, W. A. et al. (2015). Sage Mathematics Software (Version 6.7). http://
www.sagemath.org. The Sage Development Team.

23

http://eprint.iacr.org/
http://dx.doi.org/http://dx.doi.org/10.1016/j.jsc.2005.09.007
http://www.sciencedirect.com/science/article/pii/S0747717105001483
http://www.sciencedirect.com/science/article/pii/S0747717105001483
http://www.nicolascourtois.com/papers/phd.pdf
http://www.nicolascourtois.com/papers/phd.pdf
http://dl.acm.org/citation.cfm?id=1756169.1756206
http://dl.acm.org/citation.cfm?id=1756169.1756206
http://www.singular.uni-kl.de
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-437
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-437
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-437
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-437
http://www.sagemath.org
http://www.sagemath.org
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Attachment A - Content of CD

The enclosed CD contains source files, user guide and the electronic version of
this thesis.
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