
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Jonáš Vidra

Extending the Lexical Network DeriNet

Institute of Formal and Applied Linguistics

Supervisor of the bachelor thesis: doc. Ing. Zdeněk Žabokrtský, Ph.D.

Study programme: Computer Science

Specialization: General Computer Science

Prague 2015

I dedicate this thesis to my supervisor, Zdeněk Žabokrtský, and I would like to thank
him for his support, advice, suggestions and guidance.

I would also like to thank Pavla Wernerová for proofreading the draft of this thesis.

I declare that I carried out this bachelor thesis independently, and only with the cited
sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles
University in Prague has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In …………. date ………… signature of the author

Název práce: Rozšíření lexikální sítě DeriNet

Autor: Jonáš Vidra

Katedra: Ústav formální a aplikované lingvistiky

Vedoucí bakalářské práce: doc. Ing. Zdeněk Žabokrtský, Ph.D., Ústav formální a apli-
kované lingvistiky

Abstrakt: DeriNet je databáze českých lexikálních derivátů – lexikální síť, ve které
uzly odpovídají lemmatům vybraným z Českého národního korpusu a hrany deri-
vačním vztahům mezi nimi (například práce → pracovat → vypracovat). Vybírání
lemmat z korpusu s sebou nese dva hlavní problémy: chybovost a chybějící lemmata,
která by mohla sloužit jako spojnice mezi dosud nespojenými komponentami slov-
ní sítě. Proto je potřeba najít spolehlivější a bohatší zdroj lemmat. Cílem této práce
je rozšířit slovní zásobu DeriNetu pomocí lemmat z českého morfologického slovní-
ku MorfFlex CZ a opravit derivační pravidla, která s novými slovy produkují chyby.
Chybovost je měřena porovnáváním vztahů v databázi s ručně anotovanými daty vy-
tvořenými v rámci práce.

Klíčová slova: DeriNet, derivace, lexikální síť, MorfFlex

Title: Extending the Lexical Network DeriNet

Author: Jonáš Vidra

Department: Institute of Formal and Applied Linguistics

Supervisor: doc. Ing. Zdeněk Žabokrtský, Ph.D., Institute of Formal and Applied
Linguistics

Abstract: DeriNet is a database of Czech lexical derivates. It is a wordnet in which
nodes represent lemmas sampled from the Czech National Corpus and edges repre-
sent derivational relations between them (such as work → workable → unworkable).
Sourcing the lemmas from a corpus brings two problems: errors and missing lemmas
that could link together currently unconnected clusters. Therefore, a more reliable
and more complete source of lemmas is needed. The goal of this thesis is to extend
the lexicon of DeriNet using lemmas sourced from MorfFlex CZ, a Czech morpho-
logical dictionary, and to correct the derivational rules that produce errors with the
new lexicon. Error rate is measured by comparing the relations in the database with
manually annotated data created as part of the thesis.

Keywords: DeriNet, derivation, lexical network, MorfFlex

Contents

1 Introduction 1
1.1 DeriNet . 1
1.2 Structure of this thesis . 4

2 Documentation of DeriNet 5
2.1 Installation and requirements . 5
2.2 Building DeriNet . 5
2.3 Build system . 6

2.3.1 Lemma selection . 6
2.3.2 Calling derimor . 6

2.4 Using derimor . 7
2.4.1 Prerequisities . 7
2.4.2 Writing scenarios . 8

2.5 Writing new modules for derimor . 8
2.5.1 Working with lexemes . 9
2.5.2 Finding lexemes . 9
2.5.3 Creating new derivations . 10
2.5.4 Creating new lexemes . 10

3 Quality measurement 11

4 Porting to MorfFlex 12
4.1 Differences between SYN and MorfFlex 12

4.1.1 Negative adjectives . 12
4.1.2 Abbreviation culling . 12

4.2 Violations of structural constraints 12
4.2.1 Cycles . 12
4.2.2 Non-matching techlemmas 13

4.3 Derivation history . 13
4.4 Errors in MorfFlex . 13

4.4.1 Derivational comments . 14
4.4.2 Homonym numbers . 14
4.4.3 Wrong lemmas . 15
4.4.4 Wrong POS tags . 15
4.4.5 Non-lemmas . 16

4.5 Revised derivational rules . 16
4.5.1 Male and female variants of nouns 16
4.5.2 Reconnected possessives of names 16
4.5.3 Missing common rules . 17

4.6 Assorted improvements . 17
4.6.1 Techlemma parsing . 17
4.6.2 Homonym number removal 17
4.6.3 Conversion to MorphoDiTa 17
4.6.4 Choosing from homonymous variants 17
4.6.5 Miscellaneous fixes . 18

5 Statistics 19

6 Conclusion 23
6.1 Future work . 23

Acknowledgements 25

Bibliography 26

Attachments 28

6

1. Introduction
In the Czech language, there are several different word formation processes. De-

rivation – creation of newwords by attaching morphological affixes to existing words
– is the most productive one (Dokulil, 1986). There are hundreds of different affixes
and many of them can be used for producing different meanings. For example, the
suffix “-ka” can be used both for deriving diminutives, as in krabička (small box), and
for deriving female variants, as in řidička (driver, fem.) (Dokulil, 1962; Štícha, 2012).

Derivation, as opposed to inflection, is not modeled by a single base lemma plus
a set of derived words based on a paradigm. Derivational rules are much less regular
than inflectional rules and they work recursively – a derived word can have its own
derived words. Therefore, recursive derivations from a single lemma can form entire
trees – so called derivational nests or clusters (Dokulil, 1962; Dokulil, 1986; Komárek,
1986). See figure 1.1 for an example of this behavior.

básníkův-A
básníkův_ˆ(*2)

básničin-A
básničin_ˆ(*4ík)

básnice-N
básnice_ˆ(*3ík)

básnířčin-A
básnířčin_ˆ(*3ka)

básnířka-N
básnířka_ˆ(*2)

básník-N
básník

antibáseň-N
antibáseň

prabáseň-N
prabáseň

báseň-N
báseň

Figure 1.1: An example derivation tree showing recursive derivation of new lemmas.

1.1 DeriNet
DeriNet is a database of derivational relations between Czech words (Ševčíková,

2014b). It is a lexical network where vertices represent Czech lexemes and oriented
edges represent derivational relations between them. Each lexeme represents one
lemma with its meaning (word sense) partially disambiguated. Several lexemes may
represent the same lemma in different senses if they differ in their derivational history,
i.e. they are derived from different lemmas (such as sladit (to sweeten / to harmonize)
from sladký (sweet) or ladit (to tune)) or they have different descendants, as in the
case of hnát (vulgar form of limb / to drive) whose child is either hnátek (diminutive
from hnát) or hnaný (the chased one).

1

In the database, a lexeme is a record identified by a unique numerical ID. It consists
of the following fields:

lemma is the base word form (Hajič, 2004). This generally means nominative singu-
lar for nouns, nominative singular masculine positive for adjectives and infini-
tive positive for verbs.1

POS stands for Part Of Speech, denoted by a single-letter abbreviation. DeriNet only
contains adjectives (A), adverbs (D), nouns (N) and verbs (V) (Ševčíková, 2014b),
although some numerals classified as other POSes are also included, for example
čtyřnásobný A (quadruple).

technical lemma (“techlemma”) is a lemma plus its technical suffix in the style of
the m-layer of the Prague Dependency Treebank (Bejček, 2013; Zeman, 2005;
Hajič, 2004). This suffix is included for three reasons: it might contain infor-
mation useful for our users, it sometimes includes a number useful for distin-
guishing homonymous lemmas2 and it can also include information about the
derivational parent. Other data encoded in the suffix, such as information about
style and category, are currently not used by the build system.

parent is an ID of the derivational parent. Since each lexeme is currently limited to
one parent at most, DeriNet does not allow representing compounding. This
simplifies the structure – clusters (connected components) are rooted trees3

instead of general oriented graphs.

See table 1.1 and figure 1.2 for an example of several lexemes. Version 0.9, released
in December 2014, contains 305,781 lexemes and 117,327 oriented edges. Aside from
version 0.9, there are also versions 0.9.1 and 0.9.2, which contain more derivations.
These have not been released yet, but they are available for extending.

Version 0.9’s lexemes are sampled from the SYN-2014 subcorpus of the Czech Na-
tional Corpus (Hnátková, 2014) – the build process selects every adjective, adverb,
noun and verb lemma that is mentioned at least twice, does not contain any punc-
tuation symbols and digits, contains a lowecase letter and is at least two characters
long.

Basing the dictionary on SYN-2014 has the advantage of only including lemmas
that are actually used. It does, however, also include many spelling mistakes, typos
and tagging errors. The frequency requirement lets some errors through, because
wrong spellings of some common lemmas are more common than many rare lemmas.
Furthermore, the process excludes correct-but-uncommon lemmas that could serve as
derivation links between pairs of common lemmas – for example, the verb domnít is
a parent to both domnívat and domněnka, but since it is not present in the database,
these two lexemes are not connected together.

This selection process excludes many erroneous lemmas and abbreviations, but
it still includes common spelling mistakes, typos and tagging errors. There exists a
superior source of lexemes – the dictionary MorfFlex CZ, formerly known as “Hajič’s

1Some words in negative are included as well – this is discussed in section 4.1.1.
2Note that the homonym number is, according to PDT documentation in (Zeman, 2005, p. 9), part

of the lemma proper and not the technical suffix. We consider it to be technical information and strip
it from the lemmas.

3Version 0.9 contains several cycles due to a programming oversight. See section 4.2.1 for details.

2

Table 1.1: An excerpt from DeriNet version 0.9. Each line represents one lexeme.
ID lemma technical lemma POS parent

113313 bulvárnost bulvárnost N 113314
113314 bulvární bulvární A 113312
113315 bulvárně bulvárně_ˆ(*1í) D 113314
113316 bulvárový bulvárový A
113317 buly buly N
113318 bulící bulící_ˆ(*3it) A 113294
113319 bulík bulík-1_ˆ(mladý_vůl) N 113294
113320 bulík bulík-2_,h_ˆ(polštářek) N
113321 bulík bulík-1_ˆ(mladý_vůl) N
113322 bulík bulík N
113323 bulíkovat bulíkovat_:T V
113324 bulíkování bulíkování_ˆ(*3at) N 113323
113325 bulíkův bulíkův-1 A
113326 bulíček bulíček-1_,h N 113319
113327 bulíček bulíček N

bulíčkův-A
bulíčkův_ˆ(*3ek)

bulíček-N
bulíček-1_,h

bulík-N
bulík-1_ˆ(mladý_vůl)

bulení-N
bulení_ˆ(*3it)

bulící-A
bulící_ˆ(*3it)

bulit-V
bulit_:T

Figure 1.2: A tree from DeriNet 0.9 showing several lexemes from table 1.1.

morphology”, (Hajič, 2004; HajičHlaváčová, 2013), which contains 1,001,704 unique
lemma + part-of-speech-tag pairs.

The derivational relations are added using rule-based scripts. These come in two
general flavors – a general rule with a list of exceptions, or a list of individual in-
stances. When adding new lexemes, these rules would have to be revised by adding
new exceptions to increase precision and new instances to increase recall.

The goals of this thesis are:

1. Fix any problems within the existing codebase of DeriNet.

2. Document code that DeriNet is composed of, both existing and new. Current-
ly, documentation is limited to a paper explaining the linguistic background

3

(Ševčíková, 2014b), and to slides by (Žabokrtský, 2014) and (Ševčíková, 2014a)
from a talk in December 2014. The new documentation should give potential
DeriNet developers an overview of the structure and point out the key sections
of the code.

3. Merge lemmas from MorfFlex into DeriNet and review and correct any errors,
with a special attention given to precision.

4. Release DeriNet version 1.0 based on the results.

1.2 Structure of this thesis
Chapter 2 contains documentation of the DeriNet build system and explains how

to install and use it and how to modify and write new modules.
Chapter 3 explains how I monitored precision and recall while working on the

code, how I made the gold-standard data, and it documents the annotation format
and the module used for measuring precision and recall.

Chapter 4 describes the changes I have made to the code to allow using lemmas
from MorfFlex without a decrease in precision.

And finally, chapter 5 compares various versions of DeriNet and presents mea-
surements of the quality of my work.

The contents of the enclosed CD are listed in Attachments.

4

2. Documentation of DeriNet
The DeriNet project is a set of resources used to build the DeriNet database; in-

cluding Unix shell scripts, Perl scripts, Perl modules connected by a Treex-like API,
Makefiles and text files with semi-automatically created derivational rules.

End users are not expected to use or even see the code. Only the end product, the
compiled TSV file containing the selected lemmas and their derivations, is published
– and even this file is of little use to most users, since its structure does not reflect
the structure of the derivations. There are currently two tools that parse the file
and present it in a friendlier way: a viewer by Milan Straka1 and a search engine I
have developed myself in spring 2015.2 The search engine allows you to search for
lexemes and clusters using regular expressions and a simple CQL-inspired grammar
similar to the one the Czech National Corpus uses in its KonText tool3 (Hnátková,
2014; Jakubíček, 2010). The viewer only selects lexemes by their techical lemmas, but
it shows more statistics, such as an overview of tree shapes.

This chapter presents an overview of all the code and concepts DeriNet is com-
posed of. Sections 2.1 and 2.2 give a quick overview of how to start the build process
and get a newly-built database. Retracing these steps is not required of readers of
this work, since I have included pre-built databases on the enclosed CD. Section 2.3
goes into detail on how the build system is structured. Section 2.4 explains how to
use derimor, the main component of our build system, and, finally, section 2.5 shows
how to write new modules for it.

2.1 Installation and requirements
TheDeriNet build system requires standard Unix utilities, GNUMake, Perl 5, Tre-

ex and MorphoDiTa. If you use Linux, Make and Perl are probably included in your
distibution. In the computer laboratories of the Faculty of Mathematics and Physics at
Malá Strana, you can use preinstalled Treex and MorphoDiTa made by Martin Popel
– just execute source p

�
opem3am/preinstall/treex.sh in your shell. Otherwise

follow the instructions at https://ufal.mff.cuni.cz/treex/install.html and
https://ufal.mff.cuni.cz/morphodita/install. Be aware that you have to in-
stall the SVN version of Treex, since the standard CPAN distribution does not contain
derimor.

2.2 Building DeriNet
Start the build process by running make in directory build/. This will generate a

compressed database file called derinet-version.tsv.gz. It is possible to choose between
SYN and MorfFlex as a source of lemmas – the default is MorfFlex, but you can select
SYN by passing LEMMAS_SOURCE=syn as an argument.

1http://ufallab.ms.mff.cuni.cz/~straka/derinet-viewer/
2http://jonys.cz/derinet/search/
3https://kontext.korpus.cz/first_form?queryselector=cqlrow

5

https://ufal.mff.cuni.cz/treex/install.html
https://ufal.mff.cuni.cz/morphodita/install
http://ufallab.ms.mff.cuni.cz/~straka/derinet-viewer/
http://jonys.cz/derinet/search/
https://kontext.korpus.cz/first_form?queryselector=cqlrow

2.3 Build system
DeriNet is built by a set of Unix shell scripts and Perl modules for Treex connect-

ed by Makefiles. The process starts with extracting lemmas from the base dictionary,
which varies depending on whether you use lemmas from MorfFlex or from SYN,
continues with culling unwanted duplicates caused by polysemous and homonymous
lemmas and finishes with executing several derimor scenarios that create the deriva-
tional links.

2.3.1 Lemma selection
SYN: The DeriNet distribution contains data sampled from the Czech National

Corpus (Hnátková, 2014) – Czech lemmas and their counts in SYN-2014. They are
further processed by a script select_syn_lemmas.pl, which selects lemmas of ad-
jectives, adverbs, nouns and verbs that are found at least twice, do not contain a digit
or punctuation, do not end with a capital letter (excludes some abbreviations) and are
longer than two characters.

MorfFlex: The MorfFlex dictionary (HajičHlaváčová, 2013) contains Czech lem-
mas, word forms and their morphological tags. Script select_morfflex_lemmas.pl
parses the file and extracts the lemmas and POS-tags for all adjectives, adverbs, nouns
and verbs. The lemmas are also partially deduplicated to bring the size of the resulting
file down – the script eliminates runs of equal lemma-POS pairs. Lemmas that contain
digits are excluded, but lemmas with punctuation are preserved. MorfFlex does not
contain punctuation, so this would only exclude useful lemmas such as O´Connorův
or e-mailový. Also, abbreviations are excluded – they are recognized by the _:B tech-
lemma flag.

After lemma extraction, the next phase is removing “false homonyms”. The base
dictionary may contain the same lemma more than once – as long as it differs in
the POS or in the technical suffix. These duplicities are linguistically motivated by
homonymy and polysemy. Many lemmas contain a so-called homonym number in
their technical suffix precisely for the purpose of allowing more variants to coex-
ist in the dictionary. They usually differ in inflectional forms or in their semanti-
cal meaning. However, many such duplicities do not differ in their derivation trees,
which makes the distinction meaningless for DeriNet – for example, the noun že-
bračka has four different variants in MorfFlex: žebračka, žebračka-3_,n_ˆ(polévka_z_-
chleba), žebračka-4_,n_ˆ(žudro) and žebračka-5_,h_ˆ(nejzadnější_kostelní_lavice_pro_-
žebráky). The non-numbered variant has a derivation žebraččin, while the three num-
bered variants do not, so we want to include it in DeriNet in a lexeme of its own. The
numbered variants, however, do not differ in any aspect of their derivation history,
which means that they can be coalesced into a single lexeme. Therefore, two of them
are removed by checking them against a predefined list of classes of lemmas that share
the same derivational history – the first lemma in each class is retained and the rest
is deleted. These classes were created by Milan Straka by listing lemmas that share
all inflection forms (Žabokrtský, 2014, p. 18).

2.3.2 Calling derimor
The rest of the build process is handled by derimor, a command-line application

that is a part of the Treex framework (Popel, 2010). It is, however, simpler than the

6

standard treex application and not compatible with Treex modules.

2.4 Using derimor

2.4.1 Prerequisities
If you want to use derimor as a standalone application (outside of the Makefiles),

you have to setup your @INC, so that Perl can find the requiredmodules in the build/lib
directory. This is done by adding the directory to the $PERL5LIB environment vari-
able. In sh or bash, you can type export PERL5LIB=”$PWD”/build/lib:”$PERL5LIB”
to temporarily set it in the current shell, assuming your currentworking directory is at
the top of the unpacked distribution archive. For a more permanent change, run echo
’export PERL5LIB=”absolute_path_to_build/lib:$PERL5LIB”’ >> ˜/.bashrc
if you use bash. Then try to run derimor CreateEmpty Dummy Save file=test.tsv.
If you encounter an error similar to the one in Listing 2.1, it means your $PERL5LIB
does not contain the build/lib directory. Correct output should look like the one in
Listing 2.2 and the program should create a file called test.tsv with contents identical
to Listing 2.3 – that file is actually a DeriNet database containing a single lexeme with
lemma “testlemma”.

Listing 2.1: Error encountered when the @INC has not been set correctly.

Can ’t locate Treex/Tool/DerivMorpho/Scenario.pm in @INC (
↪→ you may need to install the Treex::Tool::
↪→ DerivMorpho :: Scenario module) (@INC contains: /etc/
↪→ perl /usr/lib/perl5/vendor_perl /5.18.2/ powerpc -
↪→ linux /usr/lib/perl5/vendor_perl /5.18.2 /usr/lib/
↪→ perl5/vendor_perl /usr/lib/perl5 /5.18.2/ powerpc -
↪→ linux /usr/lib/perl5 /5.18.2 .) at ./ derimor line 6.

BEGIN failed --compilation aborted at ./ derimor line 6.

Listing 2.2: Output of the command “derimor CreateEmpty Dummy Save
file=test.tsv”.

TREEX -INFO: 3.633: Initializing Treex::Tool::
↪→ DerivMorpho ::Block:: CreateEmpty

TREEX -INFO: 3.651: Initializing Treex::Tool::
↪→ DerivMorpho ::Block:: Dummy

TREEX -INFO: 3.677: Initializing Treex::Tool::
↪→ DerivMorpho ::Block::Save

TREEX -INFO: 3.679: Applying Treex::Tool:: DerivMorpho
↪→ :: Block :: CreateEmpty

TREEX -INFO: 3.680: Applying Treex::Tool:: DerivMorpho
↪→ :: Block ::Dummy

TREEX -INFO: 3.682: Applying Treex::Tool:: DerivMorpho
↪→ :: Block ::Save

scenario: CreateEmpty Dummy Save file=dummy -test.tsv
Saving 1 lexemes

7

Listing 2.3: Contents of file test.tsv as created by “derimor CreateEmpty Dummy
Save file=test.tsv”.
0 testlemma Dummy

2.4.2 Writing scenarios
A derimor scenario is a list of parameters, supplied directly on the command line.

A scenario consists of “blocks” — instances of Perl modules — and their arguments.
See Listing 2.4 for an example of a scenario. When executing a scenario, all the blocks
are first initialized in the order in which they appear, and then executed in the same
order.

This is similar to the Unix concept of pipelines and it means that lemmas and
derivations created by any block are visible in the following blocks, but not in the
preceding ones. Therefore, their order is important, because some modules do not
modify existing derivations or create missing lexemes, and some others only recon-
nect existing derivations and do not create new ones. If you put a “reconnection”
block before a “creation” block, the former will have no effect – and switching the
order of two “do not modify existing links” blocks may produce widely different re-
sults.

Arguments are placed after the block they refer to and have a general format of
argument=value.

The scenario in Listing 2.4 consists of 5 blocks: CreateEmpty, CS::AddLexemes-
FromList with two parameters, another CS::AddLexemesFromList with three pa-
rameters, CS::AddDerivationsFromLemmaSuffices and Save with one parameter.

Listing 2.4: An excerpt from a real-world scenario used for building DeriNet.
derimor \

CreateEmpty \
CS:: AddLexemesFromList file=sorted_lemmas.tsv \

dictionary_name=morfflex \
CS:: AddLexemesFromList file=extra_lemmas.tsv \

dictionary_name=manual verify_lemma_uniqueness =1 \
CS:: AddDerivationsFromLemmaSuffices \
Save file=derinet -example.tsv

2.5 Writing new modules for derimor
The API of derimor is very similar to Treex; with both utilizing a custom launch-

er for Moose classes written in Perl. Modules for derimor extend Moose class Tre-
ex::Tool::DerivMorpho::Block and the names you specify on the command line
are prefixed by Treex::Tool::DerivMorpho::Block::, so any modules you write
have to be placed in a Treex/Tool/DerivMorpho/Block/ subdirectory somewhere in your
Perl’s @INC. If you use the provided infrastructure of Makefiles, you can store your
modules directly in build/lib/Treex/Tool/DerivMorpho/Block/ ; otherwise use one of the
directories listed in the environment variable $PERL5LIB.

You can see an example dummymodule in Listing 2.5. Thismodule creates a single
lexeme as a hello-world-style demonstration of the API.

8

A module is executed by calling its function process_dictionary with a Tre-
ex::Tool::DerivMorpho::Dictionary as a parameter. You have to return the mod-
ified dictionary after you are done. If you did not override this function, the de-
fault implementation from Treex::Tool::DerivMorpho::Block calls your subrou-
tine process_lexeme on each Treex::Tool::DerivMorpho::Lexeme in the dictio-
nary. Therefore, your module has to override at least one of these methods.

Listing 2.5: An example derimor module that adds one lexeme to the database.

package Treex::Tool:: DerivMorpho ::Block::Dummy;
use utf8;
use Moose;
extends ’Treex::Tool:: DerivMorpho ::Block’;

sub process_dictionary {
my ($self , $dict) = @_;
$dict ->create_lexeme ({

lemma => ’testlemma ’,
lexeme_creator => $self ->signature

});
return $dict;

}

1;

If you want to pass arguments to modules, simply add a Moose attribute dec-
laration to the top of the source file, as in Listing 2.6. Pass a value by adding at-
tribute_name=value directly after the block in the scenario, then access the argu-
ment using $self->attribute_name.

Listing 2.6: Example of adding an attribute named file to the module.

has file => (
is => ’ro’,
isa => ’Str’,
documentation => ’file␣name␣to␣load’,

);

2.5.1 Working with lexemes
Lexemes are represented in derimor by a class Treex::Tool::DerivMorpho::Le-

xeme. You can retrieve the lemma using Lexeme->lemma, techlemma using Lexeme-
>mlemma, POS using Lexeme->pos and parent lexeme using Lexeme->source_lexeme.

There are also functions for retrieving the immediate derivational descendants:
Lexeme->get_derived_lexemes(), and the ultimate derivational ancestor: Lexeme-
>get_root_lexeme() (useful for walking through the whole cluster).

2.5.2 Finding lexemes
The Dictionary you get as a parameter when overriding function process_dic-

tionary allows you to find and add lexemes and add or delete derivations.

9

The basic way of retrieving lexemes is getting the whole contents of the Dictio-
nary andworkingwith them by yourself. This is done by using function Dictionary-
>get_lexemes(), which returns an array of all lexemes. This is handy if you want to
loop over them and find those that satisfy some complicated condition, but if you are
looking for lexemes with a specific lemma, you should rather use the more special-
ized function, Dictionary->get_lexemes_by_lemma($lemma). That one searches
for lexemes matching the string $lemma using an internal hashtable, so it is more
efficient than looping.

Even more specific function is Dictionary->find_lexeme_pair($source_lem-
ma, $source_pos, $target_lemma, $target_pos) – it takes four strings (two lem-
mas and two corresponding parts-of-speech) and returns a pair of Lexemes: ($source-
_lexeme, $target_lexeme). This is the function you should use if you want to
create a new derivation between two specific lemmas, because it takes into account
existing derivations (prefers connected pairs, which helps with correcting or delet-
ing specific existing derivations) and homonym numbers (prefers pairs with equal
numbers). If you do not care about the POSes, just pass undef.

2.5.3 Creating new derivations
Derivations are added by passing a hash containing the proper parameters to

Dictionary->add_derivation(). Supported parameters are source_lexeme and
derived_lexeme for the parent and the descendant lexeme, respectively; then deriv-
_type for a short textual description of the derivation; and derivation_creator for
the identification of the block that created the derivation. We recommend that you set
all the parameters. You can (and should) use $self->signature (short name of your
module) as the base value of the derivation_creator. Currently existing modules
usually append the name of the file with rules or instances to the end.

Current modules use the deriv_type for an identification of the parent and de-
scendant POS in the format parentPOS2descendantPOS, i.e. V2A for a derivation from
a verb to an adjective. You are free to use it for anything you want, though.

Deleting derivations is done by calling Lexeme->set_source_lexeme(undef).
Do not use this method for adding derivations – it does not set the deriv_type and
derivation_creator description fields.

2.5.4 Creating new lexemes
Lexemes are created by passing a hash with parameters to Dictionary->cre-

ate_lexeme(). Supported parameters are lemma, mlemma and pos, which are self-
explanatory, and lexeme_creator for the identification of the block that created the
lexeme. As before, we recommend using $self->signature and a source file name
as a basis for the lexeme_creator description.

Setting the creator is not required but highly recommended. The other three basic
parameters are required and not setting them may result in strange behavior of other
modules.

You should ensure that your lemma and mlemma match each other. If you do not
know what to set the mlemma to, just use the lemma as a mlemma.

10

3. Quality measurement
Immediately after producing the first version of DeriNet using lemmas fromMorf-

Flex (DeriNet 0.10.0) I have sampled 1,000 random lexemes and manually tagged their
derivational parents. This was done “blindly with corrections”, that is, I have first an-
notated the lemmas without consulting either the techlemmas or the database and
then I ran a sample measurement using the data and re-thought the instances where
my annotation differed from the database. Most of them were errors in DeriNet, but
some were typos, misunderstandings or inconsistencies on my side – and those were
annotated again. This means that the process is not entirely bias-free, but the poten-
tially misannotated instances were seen two times.

The annotation has a simple format: The first two columns in a tab-separated-
file are the lemma and its POS. The annotator writes the lemma of the derivational
parent(s) into the third column. If there are variants (such as the lemma “Karlův”,
which can be derived from either “Karel” or “Karl”), all of them are written down,
separated by commas. Composition is annotated by separating the parents by spaces.
The annotator can also write a dash if the source lemma does not have a parent, a
question mark if he does not know the answer, or an exclamation mark if he considers
the source lemma to be erroneous.

The database is evaluated against the annotation using module MeasurePreci-
sionRecall, which I wrote for this purpose. It searches for lexemes with the lem-
mas from the first column and compares every single found lexeme to the values in
the third column. Lemmas produced by composition are by default considered to be
wrongly derived, since composition is currently not representable in DeriNet. There
is an option ignore_compositionwhich, when set, makes the module expect no par-
ent in place of multiple parents – i.e. a composite lemma is correctly derived iff it has
no derivational parent. I have had this switch enabled when taking all the measure-
ments in this thesis.

After finishing the annotation, I produced a report on precision and recall. The
results were underwhelming, because while DeriNet 0.9 had precision of about 0.97,
DeriNet 0.10.0 had only 0.84. After reviewing the results of the tests, I have made a
summary of the errors. There were 137 wrong derivations, out of which 117 were
caused by iterative verbs and their derivates. These lexemes are generally connected
to the right cluster, but they are skipping derivational links by connecting to the root
instead of a deeper node. (See figure 4.1 for an example of this behavior, section 4.4.1
for the solution and figure 4.2 for an example of what the trees look like now.)

Apart from this set of data, which was used for development, I have prepared a
second set for final evaluation, sampled from the final version. I did not review this
evaluation set and I did not use the data during development, so the results should
be representative. To further rule out my personal biases, I have asked an indepen-
dent annotator to annotate the evaluation set too. This parallel set was used both for
evaluation and for measuring inter-annotator agreement. Inter-annotator agreement
is 0.878, when measured according to the following algorithm: lexemes are consid-
ered to be annotated differently if none of the annotated parents match or if one of
the annotations contains one of (-,?,!) and the other contains a different symbol or a
parent.

11

4. Porting to MorfFlex
This chapter presents a list of all the changes I havemade betweenDeriNet version

0.9.2 and version 1.0.

4.1 Differences between SYN and MorfFlex
The SYN-2014 based dictionary from DeriNet 0.9 contains, after lemma extraction

but before homonym removal, 310,117 unique lemma+POS pairs. MorfFlex contains
(again, after extraction but before removing false homonyms) 994,659 such pairs.
However, MorfFlex is not a strict superset of the SYN-based dictionary – there are
300,924 common pairs, 601 are only found in SYN and 662,206 are only found inMorf-
Flex. The 601 missing lemmas are nearly all tagging errors (bělit A, ale N, podotkl N,
jako N), misspellings and errors in capitalization (zápaďákč, afrodita, blančin, elek-
trostrojírenký, Ještě), non-lemmas (kadeřávkovskou, Holubovské, krojovaných, polická,
chvíli) and numerals (čtyři, desetitisící). There are only 19 correct lemmas in the SYN-
based dictionary not found in MorfFlex. I have extracted them, had them tagged by
MorphoDiTa and manually verified and injected the results into the DeriNet dictio-
nary during the build process.

4.1.1 Negative adjectives
The amount of new lemmas also means that the module AddOstLexemesFrom-

CNC, which was adding extra lexemes whose lemmas end with “-ost”, became nearly
unnecessary – the lemmas it is adding now are either negative adjectives or erroneous
lemmas. I have prevented it from adding the wrong ones, but it is up for debate
whether the negatives should be left in or also excluded. I have left them in so far, since
even though they are superfluous, they create new derivations, they are well-formed
and excluding them is as easy as deleting the appropriate line from derinet09/Makefile.

4.1.2 Abbreviation culling
DeriNet 0.9 excluded abbreviations by not including any lemma ending with a

capital letter. MorfFlex allowed me to use a better way – a selection process based
on the _:B techlemma flag that marks abbreviations. This is very reliable – from the
4,546 excluded techlemmas, only several were not abbreviations and none were useful
Czech lemmas without other variants in the database.

Some abbreviations have remained in the database, such as TANAP or kW. There
is, however, only a handful of them, so I have decided not to do anything about it.

4.2 Violations of structural constraints

4.2.1 Cycles
DeriNet version 0.9 contained four cycles in its structure, for example poddaná→

poddaný → poddaná. This was highly problematic, because the structure is supposed

12

to be a set of trees and the tools used for working with the database should be able to
depend on this.

The cycles seemed to be caused by an erroneous direction of derivation between
poddaná (vassal, fem.) and poddaný (vassal,masc.), but that turned out to be an unre-
lated problem – see section 4.5.1 for details. The real cause of the cycles were duplicate
lemmas created by remove_false_homonyms.pl, which prompted me to rewrite that
script.

The old version relied on a particular ordering of input lemmas (lemmas that were
going to be substituted must have appeared after the lemma they were being substi-
tuted to) and printed duplicities whenever this constraint was violated, which in turn
caused cycles to appear downstream. The new version processes input in two pass-
es, which is slower, but also more reliable, because the script now sees the whole
database at once. It is also better at choosing the proper lemmas – I have written a
scoring heuristic to help lemmas with the richest technical information pass through.
If some of the variants contain derivational information in the technical suffix, it only
chooses among those. It favors longer techlemmas in hope that these will be more in-
formative, but penalizes lemmas with style classification and thus favors stylistically
neutral ones.

4.2.2 Non-matching techlemmas
Many lexemes created by AddOstLexemesByRules and AddOstLexemesFromCNC

had techlemmas that did notmatch their lemmas, for example the adjective oklamatel-
ný had a techlemma neoklamatelný and necitlivost had techlemma citlivost_ˆ(*3ý).
There were 1,687 such pairs just with the prefix “ne-”. The immediate cause, which I
have fixed, is using results from morphological analysis without checking that they
are correct. The underlying cause is that these “lemmas” are not actually lemmas.
MorphoDiTa considers negative words to be inflectional variants of the affirmative
ones, so a lemma should always be affirmative.

4.3 Derivation history
The TSV output format of derimor includes information about the type of the

derivation, name of the module that created the lexeme and name of the module that
created the derivation. In version 0.9 it did not include the derivation history of the
lexeme, however, which made it hard to discover where or why was a lexeme recon-
nected and where it belonged before the reconnection. I have added history tracking
which records all the former authors and former derivational parents.

Aside from adding the tracking code to DerivMorpho::Lexeme, this also required
revising existing modules, because some of them did not fill the derivaton-creator
information in.

4.4 Errors in MorfFlex
Apart from the 19 missing lemmas, there are more errors in MorfFlex. The one

big issue – misleading derivation comments in techlemmas – is easily solvable within

13

DeriNet. The other issues are minor and I have decided to merely report them to the
MorfFlex development team and have them solved upstream.

4.4.1 Derivational comments
729 derivational comments refer to lemmas that do not exist in the lexicon. For

a full list see suffixes_bad_words.tsv. I have added the correct ones manually via ex-
tra_words.txt; the rest is ignored. Also, one techlemma links to itself: dovotvírat_:T-
_,h_ˆ(ˆGC*0); this is ignored.

Furthermore, many derivational comments do not point to the immediate deriva-
tional parent, but skip it and connect to a lexeme higher in the cluster. I have found
two big systematic examples of this behavior – iterative verbs and their derivates and
feminine possessives. Then I wrote a new module, CS::ReconnectVerbalDeriva-
tives, that would reconnect them.

The module is, by default, strict – all its rules contain a suffix of the current (in-
correct) parent, which is checked before reconnecting. The module therefore does
not reconnect lexemes that have already been reconnected by a different block and
by default only reconnects lexemes within their cluster, which helps to ensure that
the rules will not affect semantically unrelated lexemes that just happen to be ortho-
graphically close. There is, however, an “aggressive mode” which relaxes the checks
somewhat and allows connecting to lexemes outside the cluster. This aggressivemode
is enabled by default, because all of its 2,714 extra results have beenmanually checked
and were found to be sound.

The module reconnected 111,725 lexemes. See figures 4.1 and 4.2 for an example
of what the clusters looked like before and after the reconnection, respectively.

lehávající-A
lehávající_ˆ(*7at)

lehávanost-N
lehávanost_ˆ(*7at)

lehávaně-D
lehávaně_ˆ(*5at)

lehávaný-A
lehávaný_ˆ(*5at)

lehávat-V
lehávat_:T_ˆ(*4at)

lehávání-N
lehávání_ˆ(*5at)

lehat-V
lehat_:T

Figure 4.1: An excerpt from the tree of lehat within DeriNet 0.10.0. Notice that the
actual children of lehávat are incorrectly placed directly below lehat.

4.4.2 Homonym numbers
Whenever MorfFlex contains one lemma several times, either because of poly-

semy or because of homonymy, these lemmas are distinguished by having different
“homonym numbers” in their technical suffixes. However, the homonym numbers
are sometimes inconsistent. According to the manual (Zeman, 2005, p. 10), when

14

lehávající-A
lehávající_ˆ(*7at)

lehávanost-N
lehávanost_ˆ(*7at)

lehávaně-D
lehávaně_ˆ(*5at)

lehávaný-A
lehávaný_ˆ(*5at)

lehávání-N
lehávání_ˆ(*5at)

lehávat-V
lehávat_:T_ˆ(*4at)

lehat-V
lehat_:T

Figure 4.2: An excerpt from the tree of lehat within DeriNet 1.0. The children of
lehávat are now positioned properly.

a lemma has more than one variant, all of them should be numbered and, if possi-
ble, distinguished using comments (_ˆ(…)). This is often not the case, 1,793 lemmas
in DeriNet 1.0 have inconsistent numbering where the lemma has both numbered
and unnumbered variants. The unnumbered variant is often a “miscellaneous” ver-
sion without any other meaningful tags, but sometimes it is also the main sense of
the lemma: železnice (railway) × železnice-1_,s_ˆ(výrobce_železa)_(*5ík-1) (ironsmith,
fem.). Therefore, the unnumbered variants cannot be easily deleted.

There are also some stranger cases: čápek-1_ˆ(malý_čáp) × čápek-2_,n_ˆ(malý_čap)
(little stork). There seems to be no difference between those two variants.

4.4.3 Wrong lemmas
MorfFlex contains an occasional misspelling or error. Examples: zjudaizoovaný,

opajcnnou, nabotnání, adenosinmonofosát, Vávrůův. I have done nothing about these
with the hope that a future version of MorfFlex will remove them. There is only a
handful of them anyway.

Apart from that there are also lemmas that are colloquial or vernacular variants
of lemmas in offical usage. They are not “wrong” per se – the issue is that they are
introduced irregularly. Some of the lemmmas do have such variants listed, others
do not. For example, vdýchnutelně (inhalably) has a variant vdejchnutelně, but an
analogous variant of vdýchnout (inhale) – vdejchnout – is not there. Because of the
missing lemmas, the variants often do not form clusters.

4.4.4 Wrong POS tags
There are at least 95 lemmas with wrong part-of-speech tags; for example zeste-

tičtění V, zcitlivěný V and most adjectives ending with “t”.

15

4.4.5 Non-lemmas
There are also items in the dictionary that are real Czech words, but are not lem-

mas. It is not obvious how to find these, but I have encountered at least 36 such verbs;
for example znovuzasunu (slip in again,masc. sg. fst.), zklevetěn V (gossiped,masc. sg.
past) or odkřemič V (desiliconize, imperative); by searching for verbs that end with
neither “t” nor “ci”, the standard Czech infinitive suffixes.

4.5 Revised derivational rules

4.5.1 Male and female variants of nouns
Some nouns in the database had an opposite direction of derivation filled in; for

example Železná→ Železný. This error was fixed bymodifying a single rule in Block/-
CS/manual.AddManuallyConfirmedAutorules.rules.tsv: the line

* 61 N-á N-ý # prosim zpracovat s obracenym smerem odvozeni!!!

was processed with the opposite direction of derivation.

4.5.2 Reconnected possessives of names
In DeriNet 0.9.2, many possessives of male names are connected to the female

variants; such as Petrův to Petra. Others are unconnected, but they were connected
in DeriNet 0.9; for example Františkův. This is a problem with the annotation – the
meaning of many annotation instances was probably “this variant is also possible”,
but the module which uses the annotation interprets them as “reconnect these un-
conditionally”. This results in good derivations being deleted in favor of less probable
ones – see figure 4.3 for an example. The problem does not have an easy solution,
all the rules would have to be revised and split between two different modules – an
“eager” one and a “lazy” one. Some of the lexemes would also have to be duplicated
to satisfy all possibilities.

I have fixed several instances of this problem in the annotation, but many other
remain.

Aragonův-A
Aragonův_;S_ˆ(*2)

aragonskost-N
aragonskost_ˆ(*3ý)

aragonsky-D
aragonsky_ˆ(*1ý)

aragonský-A
aragonský

Aragona-N
Aragona_;G

Figure 4.3: A tree showing less-than-optimal placement of Aragonův and aragonský
below Aragona. They would be better placed under Aragon.

16

4.5.3 Missing common rules
Many derivations in DeriNet are added by using lists of instances – that is, by

explicitly stating which lexemes to connect. This is error-proof, but adding new lem-
mas means that more instances have to be added to match the enlarged database. I
have reused 18 rules frommanual.AddManualyConfirmedAutorules.rules.tsv that were
marked as reliable and generated 27,062 new derivative relations, which were then
manually verified and cleaned.

I have also edited AddManuallyConfirmedAutorules to support loading rules and
instances from non-default locations.

4.6 Assorted improvements

4.6.1 Techlemma parsing
Module AddDerivationsFromLemmaSuffices, which parses derivational infor-

mation in the suffixes of techlemmas, did not recognize all the instances. This was
due to an erroneous regular expression, which I have fixed. This change has added
8,394 new derivations. I disabled adding derivations from some variants of these
derivational suffixes, because some, such as _ˆ(ˆHN**…), add strange links. For ex-
ample, lemma Honza has a techlemma Honza_;Y_ˆ(ˆHN**Jan) and tries to connect to
Jan, but the actual (etymological) connection between these two names should go
through Johann.

4.6.2 Homonym number removal
The module AddDerivationsFromLemmaSuffices contained another error – in

an algorithm for homonym number removal. This caused many possible derivations
to go unnoticed. It was only discovered thanks to manual reviewing of the output
of ReconnectVerbalDerivatives – many lexemes did not reconnect, because the
module is conservative and did not attempt to fix an incomplete cluster.

A similar error was found in AddAdj2AdvByRules before – there, the homonym
numbers stayed behind and proliferated into lemmas in the resulting database. There
were 1,326 extant lemmas with homonym numbers in DeriNet, fixing this error had
removed all of them.

4.6.3 Conversion to MorphoDiTa
Modules AddAdj2AdvByRules, AddOstLexemesFromCNC and AddOstLexemesBy-

Rules require a morphological tagger and lemmatizer to derive techlemmas from
lemmas when adding new lexemes. DeriNet 0.9 used CzechMorpho for this task,
but CzechMorpho is no longer being developed and has been deprecated in favor of
MorphoDiTa (Straková, 2014). I have therefore converted these modules to the new
tagger. This change was seamless and did not result in any reconnections.

4.6.4 Choosing from homonymous variants
Many modules in DeriNet have to cope with the fact that lexemes may have iden-

tical lemmas. Previously, this wasmostly ignored –whenever amodule searched for a

17

lexeme with a particular lemma and got more than one result, it simply chose the first
one on the list. This had obviously lead to many strange connections: in DeriNet 0.9,
balíkův-2_ˆ(člověk)_(*4-2) (hillbilly’s) was connected to balík-1_ˆ(předmět) (package),
while it should have been connected to balík-2_ˆ(člověk) (hillbilly).

I have written a procedure, find_lexeme_pair, which tries to find two lexemes
matching a pair of lemmas and POSes. Since it has control over both ends of the
derivation link, it can choose the best pair, taking into account existing derivations
and homonym numbers. This rectifies several hundreds of these errors. Moreover,
converting every applicable module to use this new procedure had another advantage
of unifying the code – previously, everymodule had had its own version, each slightly
different.

This does not fix all instances of similar errors, however, because not all derived
lemmas have the same number filled in. For example, stanice (station) and stojatý (up-
right or stagnant) are still connected to stát-2_ˆ(něco_se_přihodilo) (happen) instead of
stát-3_ˆ(někdo/něco_stojí,_např._na_nohou) (to stand), because their techlemmas lack
a homonym number altogether.

4.6.5 Miscellaneous fixes
I have fixed themodule RevertDerivationDirection, which refused to initialize,

by adding 1; to the end. Modules have to return a true value after they are done
initializing.

I have restructured the Makefiles. Previously, each step had to be called manually;
this was especially tedious since the build system is split into three directories. Now,
you can simply type make in the main directory and wait for the result.

The module AddOstLexemesByRules is supposed to connect adjectives to nouns,
but it did not contain a check for the POS of the adjective and thus it sometimes
incorrectly added derivations to other parts of speech. Thus, komornost A (intimity)
was connected to komorný_ˆ(osoba) N (butler) instead of komorný A (gentle). I have
added this check.

In Dictionary, there was a hard-to-discover bug with saving the database. A
derivation for a particular lexeme is stored primarily in the field source_lexeme in the
lexeme itself. But there is a second place – the source lexeme keeps a backreference
in a hash called derived_lexemes, which is updated every time the source_lexeme
of the linked lexeme is changed. The fact that it is a hash and not an array is an
optimization and a source of the aforementioned bug – the lexemes there are kept
using $derived_lexemes{$lexeme} = $lexeme. The first occurrence of $lexeme in
this assignment is cast to string, which depends on its location in memory. And when
saving the database to a .slex file and reloading it, these locations change, making
those backreferences impossible to delete from the linked lexemes. I have fixed this
by giving every lexeme an additional unique ID.

18

5. Statistics
For a comparison of basic statistics between different versions od DeriNet, see

table 5.1 and a corresponding graph in figure 5.1.
Description of the version numbers:

0.9 is the version from December 2014, without any of my changes.

0.9.2 is the unreleased version from January 2015 – it differs from 0.9 in having ad-
ditional rules. This was the basis of my work.

0.9.3 differs from 0.9.2 in including all the fixes and improvements I have made while
writing this thesis, but it is still made using lemmas from SYN.

0.10.0 differs from 0.9.2 in utilizing lemmas from MorfFlex. These are plugged di-
rectly into the old 0.9.2 infrastructure.

1.0 is the final versionwith both lemmas fromMorfFlex and all the fixes and improve-
ments I have made while writing this thesis. It differs from 0.10.0 in having the
improvements and from 0.9.3 in having the new lemmas.

Table 5.1: Side by side comparison of selected statistics for various versions of Deri-
Net.

Version: 0.9 0.9.2 0.9.3 0.10.0 1.0
Lexeme count: 305,781 305,210 305,471 973,702 968,967

Unique lemma count: 303,174 303,174 303,432 970,194 965,535
Derivational link count: 117,327 124,577 137,090 686,803 715,729

Cluster count: 188,462 180,643 168,381 286,899 253,238
Singleton cluster count: 129,672 122,048 105,372 132,812 101,311

Maximum lexemes per cluster: 38 40 42 82 82
Maximum cluster depth: 7 6 7 7 8

... ..
Version 0.9

.
Version 0.9.2

.
Version 0.9.3

.
Version 0.10.0

.
Version 1.0

.0 .

200,000

.

400,000

.

600,000

.

800,000

.

1,000,000

.

. ..Lexeme count

. ..Lemma count

. ..Derivational link count

. ..Cluster count

. ..Singleton cluster count

Figure 5.1: Contents of the table 5.1: Side by side comparison of selected statistics for
various versions of DeriNet in graphical form.

19

As evidenced by this data, a lot of the improvements stem just from using lem-
mas from a better source; this alone allowed creation of new derivational links. See
table 5.2 and graph in figure 5.2 for counts of derivations added by various creators.
The increase for the threemost productivemodules (AddAdj2AdvByRules, AddOstLe-
xemesByRules and especially AddDerivationsFromLemmaSuffices) between 0.9.3
and 0.10.0 is caused directly by the new lemmas.

On the other hand, my own additions are visible, too: The decrease for module
AddDerivationsFromLemmaSuffices between 0.10.0 and 1.0 is caused by the module
ReconnectVerbalDerivatives, which I wrote to correct the systematical errors in
AddDerivationsFromLemmaSuffices. These errors have not been so severe in ver-
sions based on lemmas from SYN – ReconnectVerbalDerivatives reconnects only
very few lexemes in 0.9.3. Also, the higher numbers for AddManuallyConfirmedAu-
torules in versions 0.9.3 and 1.0 are caused by the new derivation instances I have
generated and verified.

Version 0.9 is not included because the distribution TSV does not contain the re-
quired data and I have been unable to replicate the build of that version exactly. Also
be aware that the numbers for the modules in the old-code versions (0.9.2 and 0.10.0)
may be a little bit off because of because of errors in their codebase – and additionally,
some of them are zero because ReconnectVerbalDerivatives did not exist yet and
AddOrDeleteLinksInClusters did not report its name when creating the deriva-
tions.

... ..
1.0

.
0.9.2
.

0.10.0
.

0.9.3
.0 .

100,000

.

200,000

.

300,000

.

400,000

.

. ..AddAdj2AdvByRules . ..AddConfirmedMluvCandidatesMonosource

. ..AddOstLexemesByRules . ..AddDerivationsFromLemmaSuffices

. ..ReconnectVerbalDerivatives . ..AddManuallyConfirmedAutorules

Figure 5.2: A comparison of productivity for selected modules. Other modules that
are not shown either did not change their output between versions much or they are
too unproductive to be visible on the chart.

20

Table 5.2: A comparison of productivity for all DeriNet modules. The numbers are to-
tal derivations made by this module that remain in the finished database. (Derivations
later reconnected by a different module do not count.)

Version: 0.9.2 0.9.3 0.10.0 1.0
AddAdj2AdvByRules: 9,986 9,961 132,603 132,550

AddConfirmedMluvCandidatesMonosource: 14,808 12,181 14,701 12,331
AddDerivationsFromLemmaSuffices: 71,937 72,981 366,180 261,948

AddDerivationsFromList: 2,853 2,697 2,841 2,693
AddManuallyConfirmedAutorules: 10,801 21,977 10,543 37,172
AddManuallyConfirmedAutorules2: 3,523 3,519 3,582 3,592

AddOrDeleteLinksInClusters: 0 1,547 0 1,561
AddOstLexemesByRules: 7,857 8,209 151,399 150,389

Prefixes: 1,462 1,458 2,934 2,929
ReconnectVerbalDerivatives: 0 2,643 0 111,731
RevertDerivationDirection: 9 9 9 9

RevertDerivationDirectionSpecial: 619 619 623 623

What is not visible in these graphs is the improvement in precision and recall that
has been directly caused by my improvements – the sole amount of derivations does
not say anything about their correctness. See table 5.3 for measurements of precision
and table 5.4 for measurements of recall based on various annotations. There are three
sets of data – my own development set, my evaluation set Eval 1 and an evaluation set
Eval 2 made by an external annotator, Kristýna Merthová. Be aware that the statistics
consider lemmas created by composition to be connected correctly iff they have no
derivational parent, because these lemmas are outside the scope of DeriNet.

Table 5.3: A report on precision.
Version: 0.9 0.9.2 0.9.3 0.10.0 1.0
Devel: 0.97 0.98 0.98 0.84 0.99
Eval 1: 0.97 0.98 0.98 0.87 0.99
Eval 2: 0.93 0.92 0.92 0.82 0.94

Table 5.4: A report on recall.
Version: 0.9 0.9.2 0.9.3 0.10.0 1.0
Devel: 0.65 0.68 0.73 0.72 0.88
Eval 1: 0.69 0.72 0.75 0.75 0.88
Eval 2: 0.69 0.72 0.74 0.72 0.85

The singleton cluster counts are similar for all five versions, and there indeed
is quite a large common base of singletons, but a lot of them are also different. The
figure 5.5 shows that there is a big difference between singleton clusters in SYN-based
and MorfFlex based versions, with a third of them disappearing and about the same
amount of new ones appearing. On the other hand, nearly no new singleton clusters
have emerged between versions 0.10.0 and 1.0 and a lot of them has been eliminated.

21

... ..
Version 0.9

.
Version 0.9.2

.
Version 0.9.3

.
Version 0.10.0

.
Version 1.0

.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1

.

. ..Devel . ..Eval 1 . ..Eval 2

Figure 5.3: A graph of precision on the three data sets.

... ..
Version 0.9

.
Version 0.9.2

.
Version 0.9.3

.
Version 0.10.0

.
Version 1.0

.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1

.

. ..Devel . ..Eval 1 . ..Eval 2

Figure 5.4: A graph of recall on the three data sets.

... ..
0.9
.

0.9.2
.

0.9.3
.

0.10.0
.

1.0
.0 .

50,000

.

100,000

.

150,000

.

66,518

.

58,894

.

42,682

.

69,658

.

38,157

......

...Common singleton clusters ...Version-specific singleton clusters

.. ..
0.9.3
.

1.0
.....

41,953

.

37,428

.... ..
0.10.0

.
1.0

.....

31,684

.

183

..

Figure 5.5: Comparison of singleton cluster counts and their composition. The com-
mon clusters are computed within each subgroup – i.e. in the leftmost plot the blue
part represents clusters common to all five versions, while in the rightmost one it
represents clusters common to the two MorfFlex-based versions.

22

6. Conclusion
In this thesis I have documented DeriNet’s internals and enlarged DeriNet with

lemmas imported from MorfFlex, a large dictionary of Czech word forms. The doc-
umentation is intended for developers, not end-users, since our users interface with
DeriNet through helper programs.

I have corrected a key issue that prevented DeriNet from interfacing cleanly with
these programs, namely cycles in the database. Besides that, I have fixedmany smaller
issues, including wrong calculation of statistics and erroneous numbers at the end of
some lemmas.

After porting DeriNet to using lemmas fromMorfFlex, which in itself was an easy
task, I have also corrected hundreds of existing derivational rules and added tens of
thousands of new ones. A new module, ReconnectVerbalDerivatives, was written
to amend systematical errors in MorfFlex.

I have been monitoring the results of every change I have made and I have en-
sured that only changes with net positive impact make it through. To aid me with
these checks, I have manually annotated 1,000 lemmas as gold-standard data for de-
velopment and a further 1,000 for evaluation. The evaluation set was annotated in
parallel by a second person. The measured precision and recall is summarized in
chapter 5 – I have exceeded the precision and recall of version 0.9.2, which served as
the basis of my work.

6.1 Future work
As already mentioned in Section 4.1.1, some of the lemmas of adjectives have both

their affirmative and negative form in DeriNet. The forms with negative polarity are
superfluous, because negation is considered to be an inflectional process and it is
marked in the morphological tags. Several are generated by AddOstLexemesFromC-
NC and AddOstLexemesByRules, but many others are included in MorfFlex itself and
getting rid of those is not easy.

Also, DeriNet contains mistagged numerals. This is an issue I will try to solve in
the upcoming months.

We should continue solving problems with homonymy and polysemy. Many lex-
emes contain semantically different variants of the same lemmas and it is hard to
programmatically discern which variant to choose when adding a derivation. My at-
tempts described in section 4.6.4 have been only partially successful. Moreover, this
issue is nearly invisible because homonyms are unmarked in the gold-standard data
– it is impossible to mark them without consulting the database itself, which is likely
to introduce biases. However, since there are only several hundreds of homonymous
lemmas, the issue is not particularly pressing.

Perhaps the biggest issue is a lack of on-demand creation of new lexemes, es-
pecially duplicating existing ones. For example, “Karlův” can be derived both from
“Karel” and “Karl”, but right now we can only select one of them as a parent. We
therefore either need a way of connecting a single lexeme to two parents and mark-
ing one of the connections as “alternative”, or an automatic way of copying the lex-
eme to the second position. The latter version is probably cleaner and easier, but we
would have to categorize and describe the cases where duplication is applicable by

23

using special annotation, which is a lot of work. Currently, only two modules cre-
ate new lexemes when they do not find a viable candidate – AddOstLexemesByRules
and AddOstLexemesFromCNC, but others should be able to do this too. However, we
cannot allow duplication for every rule, because many lexemes should be simply re-
connected without copying.

24

Acknowledgements
Data for measurement of inter-annotator agreement have been prepared by Pavla

Wernerová and Kristýna Merthová.
This work has been using language resources developed and/or stored and/or dis-

tributed by the LINDAT/CLARIN project of the Ministry of Education of the Czech
Republic (project LM2010013).

25

Bibliography
BEJČEK, Eduard; HAJIČOVÁ, Eva; HAJIČ, Jan, et al., 2013. Prague Dependency Tree-

bank 3.0. LINDAT/CLARIN digital library at Institute of Formal and Applied Lin-
guistics, Charles University in Prague. Available also fromWWW: 〈http://hdl.
handle.net/11858/00-097C-0000-0023-1AAF-3〉.

DANEŠ, František; DOKULIL, Miloš; KUCHAŘ, Jaroslav, 1967. Tvoření slov v češtině
2: Odvozování podstatných jmen. Prague: Academia.

DOKULIL, Miloš, 1962. Tvoření slov v češtině 1: Teorie odvozování slov. Prague: Nakla-
datelství Československé akademie věd.

DOKULIL,Miloš; HORÁLEK, Karel; HŮRKOVÁ, Jiřina; KNAPPOVÁ,Miloslava; PETR,
Jan, 1986. Mluvnice češtiny 1. Prague: Academia.

HAJIČ, Jan, 2004.Disambiguation of rich inflection: computationalmorphology of Czech.
Prague: Karolinum. ISBN 978-80-2460282-0.

HAJIČ, Jan; HLAVÁČOVÁ, Jaroslava, 2013. MorfFlex CZ. Available also from WWW:
〈http://hdl.handle.net/11858/00-097C-0000-0015-A780-9〉.

HNÁTKOVÁ, Milena; KŘEN, Michal; PROCHÁZKA, Pavel; SKOUMALOVÁ, Hana,
2014. The SYN-series corpora of written Czech. In. Proceedings of the Ninth In-
ternational Conference on Language Resources and Evaluation (LREC’14). pp. 160–
164.

JAKUBÍČEK, Miloš; KILGARRIFF, Adam; MCCARTHY, Diana; RYCHLÝ, Pavel, 2010.
Fast Syntactic Searching in Very Large Corpora for Many Languages. In. PACLIC.
pp. 741–747.

KOMÁREK,Miroslav; PETR, Jan; KOŘENSKÝ, Jan, 1986.Mluvnice češtiny 2: Tvarosloví.
Prague: Academia.

POPEL, Martin; ŽABOKRTSKÝ, Zdeněk, 2010. TectoMT: modular NLP framework. In.
Proceedings of IceTAL, 7th International Conference onNatural Language Processing.
Pp. 293–304.

ŠEVČÍKOVÁ,Magda; ŽABOKRTSKÝ, Zdeněk, 2014a.DeriNet: Lexikální databáze českých
derivátů [online]. [Visited on 2015-07-15]. Slides of a talk given byMagda Ševčíková
at LinguisticMondays, December 15, 2014, Charles University in Prague. Available
from WWW: 〈http://ufal.mff.cuni.cz/~zabokrtsky/derinet/derinet-
Sevcikova.pdf〉.

ŠEVČÍKOVÁ, Magda; ŽABOKRTSKÝ, Zdeněk, 2014b. Word-Formation Network for
Czech. In CHAIR), Nicoletta Calzolari (Conference; CHOUKRI, Khalid; DECLER-
CK, Thierry, et al. (ed.). Proceedings of the Ninth International Conference on Lan-
guage Resources and Evaluation (LREC’14). Reykjavik, Iceland: European Language
Resources Association (ELRA). ISBN 978-2-9517408-8-4.

ŠTÍCHA, František; JANEČKA, Martin; KOUTOVÁ, Marta, et al., 2012. Miloš Dokulil
and his theory of productivity in word-formation. Korpus – gramatika – axiologie.
Vol. 6, pp. 3–9.

STRAKA, Milan; STRAKOVÁ, Jana, 2014. MorphoDiTa: Morphological Dictionary and
Tagger. Available also fromWWW: 〈http://hdl.handle.net/11858/00-097C-
0000-0023-43CD-0〉.

26

http://hdl.handle.net/11858/00-097C-0000-0023-1AAF-3
http://hdl.handle.net/11858/00-097C-0000-0023-1AAF-3
http://hdl.handle.net/11858/00-097C-0000-0015-A780-9
http://ufal.mff.cuni.cz/~zabokrtsky/derinet/derinet-Sevcikova.pdf
http://ufal.mff.cuni.cz/~zabokrtsky/derinet/derinet-Sevcikova.pdf
http://hdl.handle.net/11858/00-097C-0000-0023-43CD-0
http://hdl.handle.net/11858/00-097C-0000-0023-43CD-0

STRAKOVÁ, Jana; STRAKA, Milan; HAJIČ, Jan, 2014. Open-Source Tools for Mor-
phology, Lemmatization, POS Tagging and Named Entity Recognition. In. Pro-
ceedings of 52nd Annual Meeting of the Association for Computational Linguistics:
System Demonstrations. Baltimore, Maryland: Association for Computational Lin-
guistics, pp. 13–18. Available also from WWW: 〈http://www.aclweb.org/
anthology/P/P14/P14-5003.pdf〉.

ŽABOKRTSKÝ, Zdeněk; ŠEVČÍKOVÁ,Magda, 2014.DeriNet: Lexikální databáze českých
derivátů [online]. [Visited on 2015-07-15]. Slides of a talk given byZdeněk Žabokrt-
ský at LinguisticMondays, December 15, 2014, Charles University in Prague. Avail-
able from WWW: 〈http : / / ufal . mff . cuni . cz / ~zabokrtsky / derinet /
derinet-Zabokrtsky.pdf〉.

ZEMAN, Dan; HANA, Jiří; HANOVÁ, Hana, et al., 2005. A Manual for Morphological
Annotation. 2nd ed.

27

http://www.aclweb.org/anthology/P/P14/P14-5003.pdf
http://www.aclweb.org/anthology/P/P14/P14-5003.pdf
http://ufal.mff.cuni.cz/~zabokrtsky/derinet/derinet-Zabokrtsky.pdf
http://ufal.mff.cuni.cz/~zabokrtsky/derinet/derinet-Zabokrtsky.pdf

Attachments
1. Structure of the enclosed CD:

• derinet-*.tsv – prebuilt databases of various versions.

• annot-*.tsv – manually annotated data. Devel was made from DeriNet
0.10.0, Eval 1 and Eval 2 are based on DeriNet 1.0.

• annot-eval-diff.txt – a list of lemmas which are annotated differently in
Eval 1 and Eval 2.

• build/ – the build system directory.

• build/Makefile – the main Makefile that handles the build process by re-
cursively calling sub-Makefiles in derinet09/, derinet091/ and derinet092/.

• build/data/ – data files required for building DeriNet.

• build/data/pro-zdenka-syn-lemata-od-ondreje.gz – data sourced from the
Czech National Corpus: lemmas, POSes and their counts in SYN-2014.

• build/data/morfflex-cz.2013-11-12.utf8.lemmaID_suff-tag-form.tab.csv.xz – dis-
tribution package of MorfFlex CZ.

• build/data/straka_same_lemma_sense_classes.txt – equivalency classes for
removing superfluous homonymous and polysemous lemmas.

• build/lib/ – modules for derimor.

• build/derinet09*/ – build directories for the three stages of the build pro-
cess. They do not correspond to DeriNet 0.9, DeriNet 0.9.1 and DeriNet
0.9.2, since I have made changes to all of them, but the historical structure
is preserved.

28

	Introduction
	DeriNet
	Structure of this thesis

	Documentation of DeriNet
	Installation and requirements
	Building DeriNet
	Build system
	Lemma selection
	Calling derimor

	Using derimor
	Prerequisities
	Writing scenarios

	Writing new modules for derimor
	Working with lexemes
	Finding lexemes
	Creating new derivations
	Creating new lexemes

	Quality measurement
	Porting to MorfFlex
	Differences between SYN and MorfFlex
	Negative adjectives
	Abbreviation culling

	Violations of structural constraints
	Cycles
	Non-matching techlemmas

	Derivation history
	Errors in MorfFlex
	Derivational comments
	Homonym numbers
	Wrong lemmas
	Wrong POS tags
	Non-lemmas

	Revised derivational rules
	Male and female variants of nouns
	Reconnected possessives of names
	Missing common rules

	Assorted improvements
	Techlemma parsing
	Homonym number removal
	Conversion to MorphoDiTa
	Choosing from homonymous variants
	Miscellaneous fixes

	Statistics
	Conclusion
	Future work

	Acknowledgements
	Bibliography
	Attachments

