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Abstract: Operating systems are complex and hard to understand. Students that
want to learn more about internal operation of the Windows NT system can use
tools such as WinDbg, WinObj or Process Monitor. However, these tools are
either hard to use or do not offer sufficient level of detail. This thesis implements
a new tool focused on monitoring of the I/O handling, called WinTrace. It
can monitor key I/O events, such as execution of dispatch routines, completion
routines, interrupts and deferred procedure calls. To make the understanding of
the recorded events easier, WinTrace can summarize them as graphical diagrams.
While the tool is primarily targeted at students, it should also be valuable to
driver developers when debugging real-world problems or as a general purpose
function tracer. We also hope the thesis will be useful to anyone hooking functions
in the NT Kernel, as we identify the problems that can be encountered during
the implementation.

Keywords: Windows, kernel, function tracing, debugging

Abstrakt: Operační systémy jsou složitý software a je téžké pochopit, jak fungují.
Studenti, kteří by chtěli vědet více o fungování operačního systému Windows
NT, mohou použít programy jako je WinDbg, WinObj nebo Process Monitor.
Bohužel, tyto programy buď není jednoduché ovládat nebo neposkytují dostatečně
nízkoúrovňové informace o systému. Výsledkem naší práce je nový program,
nazvaný WinTrace, který se zaměřuje na sledování vstupně/výstupních požadavků.
Je schopný monitorovat klíčové vstupně/výstupní události, jako je spouštění
obslužných funkcí ovladaču (dispatch routines), dokončovacích funkcí (completion
routines), obsluha přerušení a volání DPC. Aby byl výstup programu lépe
pochopitelný, WinTrace umí zaznamenané události shrnout do grafických diagramů.
I když je program určen hlavně pro studenty, měl by být cenným pomocníkem
i pro programátory při ladění problémů nebo jako obecný nástroj pro sledování
volání funkcí. Také doufáme, že tato práce bude přínosná pro všechny, kteří se
snaží zachytávat nebo měnit funkce v jádře Windows NT, jelikož popisujeme časté
problémy, na které lze narazit.

Klíčová slova: Windows, jádro, sledování funkcí, ladění

iii



iv



This work would not be possible without my supervisor, who has provided
numerous suggestions how to improve this thesis, my parents, who have shown
support and understanding, and also the local store selling suprisingly strong
energy drinks.

I also have to congratulate the people behind the ReactOS project for the
amount of work they have done in documenting and re-implementing the NT
kernel and thus saving me a substantial amount of debugging time.

v



vi



Contents

1 Introduction 5
1.1 Overview of Windows I/O . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Required knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 I/O in NT kernel 9
2.1 NT API layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Devices, drivers and files . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Symlinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Driver stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Recapitulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.1 I/O locations . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6.2 Asynchronous I/O . . . . . . . . . . . . . . . . . . . . . . 17
2.6.3 I/O completion routines . . . . . . . . . . . . . . . . . . . 17
2.6.4 I/O without IRPs . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Interrupts and synchronization . . . . . . . . . . . . . . . . . . . . 19
2.7.1 Disabling interrupts . . . . . . . . . . . . . . . . . . . . . . 19
2.7.2 DPCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7.3 IRQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 Plug and Play . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.8.1 Enumeration and PnP driver stacks . . . . . . . . . . . . . 21
2.8.2 PnP tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Existing utilities 25
3.1 I/O system concepts . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Debuggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 WinDbg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Live WinDbg . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Third-party debuggers . . . . . . . . . . . . . . . . . . . . 29

3.3 Object inspection tools . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 WinObj . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Device Manager . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.3 DeviceTree . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Monitoring tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.1 Process Monitor . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.2 Event Viewer . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.3 Logman . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.4 IrpTracker . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.5 Function tracing tools . . . . . . . . . . . . . . . . . . . . 35

3.5 Tool comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Proposal for our tool . . . . . . . . . . . . . . . . . . . . . . . . . 36

1



4 Gathering information 39
4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Event Tracing for Windows . . . . . . . . . . . . . . . . . . . . . 40
Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Filter drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Dispatch routines . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Code instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Instrumentation 43
5.1 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Detours . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.2 EasyHook . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.1 Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.2 Hardware breakpoints . . . . . . . . . . . . . . . . . . . . 45
5.2.3 Import table hooking . . . . . . . . . . . . . . . . . . . . . 45
5.2.4 Prologue overwriting . . . . . . . . . . . . . . . . . . . . . 45
5.2.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.1 32-bit execution redirection . . . . . . . . . . . . . . . . . 47
5.3.2 32-bit call to original . . . . . . . . . . . . . . . . . . . . . 48
5.3.3 64-bit execution redirection . . . . . . . . . . . . . . . . . 48
5.3.4 64-bit call to original . . . . . . . . . . . . . . . . . . . . . 49

5.4 Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4.1 Memory protection . . . . . . . . . . . . . . . . . . . . . . 49
5.4.2 Non-standard functions . . . . . . . . . . . . . . . . . . . . 49
5.4.3 Compiler optimizations . . . . . . . . . . . . . . . . . . . . 50
5.4.4 Structured Exception Handling . . . . . . . . . . . . . . . 50
5.4.5 Kernel Patch Protection . . . . . . . . . . . . . . . . . . . 50

5.5 Monitoring events . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5.1 Hooked functions . . . . . . . . . . . . . . . . . . . . . . . 51
5.5.2 32-bit interrupts . . . . . . . . . . . . . . . . . . . . . . . 52
5.5.3 64-bit interrupt hooking . . . . . . . . . . . . . . . . . . . 53

5.6 Collecting events . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.6.1 Writing to a file . . . . . . . . . . . . . . . . . . . . . . . . 54
5.6.2 Event Tracing for Windows . . . . . . . . . . . . . . . . . 54
5.6.3 Lockless circular buffer . . . . . . . . . . . . . . . . . . . . 54
5.6.4 Dropping events . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Visualization and parsing 57
6.1 Event view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Object view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.1 Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2.2 Interrupts and DPCs . . . . . . . . . . . . . . . . . . . . . 61
6.2.3 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2



6.3.2 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3.3 Parser threads . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3.4 Grouping requests . . . . . . . . . . . . . . . . . . . . . . 66
6.3.5 Identifying objects . . . . . . . . . . . . . . . . . . . . . . 67
6.3.6 Sequential operation . . . . . . . . . . . . . . . . . . . . . 69
6.3.7 Tolerance to malformed data . . . . . . . . . . . . . . . . . 70
6.3.8 Saving the diagrams . . . . . . . . . . . . . . . . . . . . . 71

6.4 Line routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.4.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.4.2 Algorithm description . . . . . . . . . . . . . . . . . . . . 72

6.5 Additional views . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.5.1 Call stack view . . . . . . . . . . . . . . . . . . . . . . . . 73
6.5.2 Sequence diagram view . . . . . . . . . . . . . . . . . . . . 74

7 User Documentation 75
7.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 Recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2.1 64-bit versions of Windows . . . . . . . . . . . . . . . . . . 75
7.2.2 WinTrace GUI . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2.3 Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.3 Opening previous traces . . . . . . . . . . . . . . . . . . . . . . . 77
7.3.1 Index file . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.4 Browsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.5 Understanding request diagrams . . . . . . . . . . . . . . . . . . . 78

7.5.1 Object view . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.5.2 Call tree view . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.5.3 Sequence diagram view . . . . . . . . . . . . . . . . . . . . 80

7.6 Searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.7 Export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.7.1 XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.7.2 Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.8 Kernel objects reference . . . . . . . . . . . . . . . . . . . . . . . 82

8 Developer Documentation 85
8.1 Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.2 Directory organization . . . . . . . . . . . . . . . . . . . . . . . . 86
8.3 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.4 File format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.4.1 Trace file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.4.2 Executive objects . . . . . . . . . . . . . . . . . . . . . . . 88
8.4.3 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.5 Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.5.1 Executive object listing . . . . . . . . . . . . . . . . . . . . 90
8.5.2 Hook engine . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.5.3 Hook definitions & handlers . . . . . . . . . . . . . . . . . 91
8.5.4 Event ring buffer . . . . . . . . . . . . . . . . . . . . . . . 91
8.5.5 64-bit interrupt hooks . . . . . . . . . . . . . . . . . . . . 92
8.5.6 Process filtering . . . . . . . . . . . . . . . . . . . . . . . . 92
8.5.7 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3



8.6 ETR Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.6.1 Driver controller . . . . . . . . . . . . . . . . . . . . . . . 93
8.6.2 Trace file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.7 WinTrace GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.7.1 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.7.2 Background workers . . . . . . . . . . . . . . . . . . . . . 96
8.7.3 UI and Qt models . . . . . . . . . . . . . . . . . . . . . . . 98
8.7.4 Utilities and helpers . . . . . . . . . . . . . . . . . . . . . 101

8.8 Console utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9 Customization 103
9.1 Building WinTrace . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.2 EvtGen code generator . . . . . . . . . . . . . . . . . . . . . . . . 103
9.3 Writing a new hook . . . . . . . . . . . . . . . . . . . . . . . . . . 104
9.4 Driver code segments . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.5 GUI code snippets . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Conclusion 109

Bibliography 111

4



1. Introduction
Operating systems are an important component of a computer. Understanding
how they work internally is considered useful for developing good applications.
Most IT-oriented university degrees include operating system courses as part
of their curriculum. However, modern operating systems are very complex and
consequently difficult to understand.

This thesis will focus on helping the students understand the Windows
operating system and how it works internally. Windows was chosen, because
it is a modern succesful operating system, running on both server and desktop
machines. Moreover, learning about the internals of a system the students are
likely to be using has certain appeal to it.

The operating system’s kernel typically has several responsibilities: input/out-
put, memory management, process management etc. To limit the scope of our
work, this thesis will mainly focus on the way the Windows kernel handles I/O
requests and how does it solve the various related problems.

1.1 Overview of Windows I/O

Before defining our goals, we would like to briefly to introduce the most important
concepts specific to the way Windows handles I/O. The topic will be later revisited
in Chapter 2 in more detail.

The starting point for understanding I/O in Windows is the common abstrac-
tion it uses to keep track of connected devices, loaded drivers and open files. All
three are known as executive objects and can be handled uniformly, regardless of
their type (executive object can be seen as base class). Since devices, drivers and
files are central to the I/O, understanding executive objects is crucial.

One of the common properties of executive objects is that they can have a
name. The name serves the same purpose as a file name does – it allows user-space
applications to identify and access the executive objects. The analogy goes even
further, since the names form a hierarchy, and thus resemble a file-system. By
browsing this hierarchy, we can learn a lot about the drivers, devices and other
objects managed by the kernel (/sys file-system in Linux is similar in this regard).

Windows also introduces a data-structure for representing the I/O requests,
regardless of the type of request (e.g. read, write or control) and the device (e.g.
harddisk, network card). This structure is known as interrupt request packet
(IRP) and contains all the information necessary for completing the request. The
IRPs are the backbone of the I/O system and they are also needed for some more
advanced features in I/O handling.

Because the IRP contains all information related to the request, the I/O
handling can be asynchronous. Asynchronous means that an I/O call to the
kernel may return before the request is completely finished, so that the application
can do other useful work instead of waiting for the hardware. The information
inside IRP is then used to complete the request processing when the hardware is
ready (typically signalled by an interrupt).

Another important feature, contributing to the modularity of the I/O system,
is that devices can be managed by multiple drivers. Each driver is responsible
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for certain aspect of the device’s functionality. The set of drivers associated with
the device is called a driver stack. A typical example of a driver stack would
be an NTFS driver providing a file-system functionality and an antivirus driver
providing a real-time malware protection.

Windows also includes two mechanisms that enable the device drivers to handle
interrupts more efficiently. The main perormance concern is interrupt latency –
the delay from the time a device requests an interrupt to the point where it gets
serviced by the operating system. A large interrupt latency can lead to e.g. lost
packets or audio stuttering. To have a low interrupt latency, the processor should
be running with interrupts enabled most of the time. Windows solves this by
prioritizing interrupts (thus allowing at least some interrupts to be run). It also
provides a mechanism for a function’s execution to be deferred until interrupts
are enabled again, called deffered procedure call (DPC ).

As can be seen, executive objects, IRPs, DPCs, drivers stacks and their
interaction is the basis for understanding the handling of I/O request in Windows,
down to the point where it gets serviced by hardware. Of course, there are more
concepts linked with I/O handling in Windows, but they are either details that
are not needed to understand the general architecture, or additional features and
extensions.

1.2 Problem statement
The general goal of this thesis is to design and implement a tool that would help
with the explanation of the internal operation of the Windows I/O system, by
showing the executive objects, IRPs and DPCs in a live system. Of course, such
utilities exist and indeed served as an inspiration, but they are far from ideal
for our purpose. To better understand the problems, let us look at two utilities,
representative of the two major problems, and then evaluate them.

WinObj is a simple tool for viewing the executive objects in a system. It is
a graphical tool, with the ability to view the namespace as a tree and browse
the individual directories. Additionally, it can show basic information about each
executive object.

WinDbg is a debugger, but unlike regular debuggers, it can pause and inspect
the whole operating system, not just a single program. It has commands to
show nearly any data-structure in the Windows kernel, including executive objects,
DPCs and IRPs. The advantage is having the full power of the debugger available,
including the ability to set-up breakpoints and observe interesting processes as
they happen.

Each of the tools has its advantages and disadvantages. While WinObj is easy
to use, it is very limited. It can only show executive objects that have a name.
The information shown about the objects is very basic – for example, there is no
way to find which devices are managed by a particular driver.

WinDbg, on the other hand, is very powerful and can be used to inspect all
aspects of the kernel. However, it is hard to use, since it is basically a text-based
debugger and its huge number of cryptic commands can be intimidating for novice
users. On top of that, configuring WinDbg traditionally involves connecting two
instances of Windows, one running WinDbg itself, the other one running the
observed system.
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WinObj and WinDbg represent the opposite ends of “limited but easy” and
“powerful but hard to use” spectrum. Our aim is to design the tool in such way
that it will display more information than WinObj, but still retain a graphical
presentation that does not overwhelm the user, while avoiding the problems of
difficult configuration. This will require a compromise between the amount of
information presented and the ease of use.

1.3 Goals
If the tool for inspecting the internal operation of Windows should be useful
to students, it must offer advantages over the existing utilities (so far we have
mentioned WinDbg and WinObj ). The design of the tool can be broken in three
major parts:

1. Evaluate the existing utilities that can be used for inspecting the I/O system
and determine which functionality is not covered by the existing easy to use
tools. Propose a feature-set that will cover the most important missing I/O
concepts.

2. Find a suitable way of obtaining the information, by evaluating the existing
APIs and alternative unsupported methods. Keep in mind that the information
collection method should not require complex set-up and should support recent
version of Windows (that is Windows 7 and Windows 8, at the moment of
writing this thesis). Both x86 and x64 platforms should be supported.

3. Choose a graphical representation for the collected data. The representation
should be easy to understand, using common concepts like block diagrams,
trees etc. It should allow the student to easily explore the available information,
like WinObj does.

These are our three primary goals, however, the tool has the potential to be
useful for driver development, both as a learning tool and a debugging tool. If the
tool is general and powerful enough, it is and advantage, but advanced features
should not contradict the design goal of being easy to use.

1.4 Required knowledge
Before tackling the first goal (evaluating existing utilities), the reader should be
familiar with the basic architecture of Windows NT operating system, in the area
of I/O handling. Should the reader feel that he/she already knows about driver
stacks, DPCs and PnP, he/she can continue with Chapter 3.

If this is not the case, Chapter 2 explains these concepts at the level required for
our work. For a much more in-depth explanation of the NT kernel internals, refer
to one of the Windows Internals [4] books and to Kernel-Mode Driver Architecture
section [6] on MSDN.

Otherwise a general familiarity with the operation of a classic monolithic kernel
is assumed: threads, processes, synchronization primitives, virtual memory, kernel
vs. user mode and interrupt handling.
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Since the tool is fairly low-level, we will often mention mechanisms specific
to the x86 architecture, like IDT, but we will try to explain them briefly when
used. Intel ’s Software Developer’s Manual [3] is the complete and authoritative
reference for these topics, although it may be a bit indigestible.
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2. I/O in NT kernel
In the introductory Chapter 1, some concepts like interrupt request packets or
executive objects were introduced. This chapter will explain them properly, in the
breadth that is needed for further discussion in this thesis.

The intention is not to write a device-driver development tutorial. For this
reason, the focus will be on the general concepts, not on technical details. More
advanced topics like user-mode drivers, I/O cancellation, minidrivers or Kernel
Mode Driver Framework will not be covered either. Similarly, when we talk about
fields of some data-structure, we only mention the ones that are most important
and relevant to the concepts we are explaining. Readers that want to know more,
should visit the Kernel-Mode Driver Architecture section [6] on MSDN.

The explanation will begin with the relationship between NT kernel and the
rest of the system (section 2.1). After that, the focus will move on to the topics
we have already briefly mentioned in the introduction (Chapter 1), but in greater
detail, that is drivers, devices and files (section 2.2), executive objects in general
(section 2.3), driver stack (section 2.4), I/O requests (section 2.6) and the problem
of efficient handling of interrupts (section 2.7). One of the topics not mentioned
in the introduction is the Plug and Play support. Althought it is an addition to
the basic I/O model, it is important for the modern system and we cover it in
section 2.8.

2.1 NT API layers

To better understand the kernel of the contemporary Windows operating system
(like Windows 8 ), let us look in the history. Windows 8 is a descendant of
Windows NT 3.1, first publicly released in 1993. Its kernel was designed by already
experienced David Cutler, who had previously worked on the VMS operating
system. From the start it was architected to be a modern, secure, portable,
multitasking system with memory protection and still retains the same basic
design – the topics covered by this chapter were already present in the original
release of Windows, with the exception of Plug and Play support. For more
information about the historical background of Windows NT, the reader can
consult the Showstopper book [5].

One of the lesser-known facts is that NT was designed to run applications
for multiple operating systems popular at the time: OS/2, 16-bit Windows and
POSIX. Only later in the development cycle of the NT kernel did a 32-bit version
of the Windows API became the prefered way of writing applications. The
consequence is the existence of a common base layer, called Native API, an
undocumented API hosted in the ntdll.dll library. All the remaining APIs call
into this undocumented native layer, while the Native API in turn communicates
directly with the kernel using system calls.

The diagram of this organization is in figure 2.1. At the top layer are the
APIs intended for use by regular applications. The Windows API is the primary
one, and other APIs may rely on it for some functions. However, in the end the
Windows API passes the functions calls to the the Native API.

The Native API then performs a system call to pass the request to the kernel.
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Kernel API

Drivers

Native API

Windows API Posix APIOS/2 API

Syscall Interface

Figure 2.1: API s provided by the Windows operating system.

The functions in the Native API closely mirrors the internal organization of the
kernel and indeed most functions in the Native API have direct counterpart in
the kernel.

Apart from the Native API counterparts, the kernel also contains a lot of
functions for accessing hardware, managing interrupts, using kernel heap etc. We
will call all of the functions inside the kernel the Kernel API (they go under the
name Driver Support Routines on MSDN ).

When the call from the Native API gets to the handler in the kernel, the
arguments are checked for validity, and the requested function in the Kernel API
is called. This kernel function is finally responsible for doing the heavy lifting
and servicing the call. Often the functionality is entirely implemented inside the
kernel (such as waiting for an object, mapping memory).

For I/O functions, however, the kernel must consult a driver for the device in
question. In case of NT, drivers are dynamically linked libraries (DLLs) loaded
into the address space of the kernel, but with .sys extension. The drivers provide
a collection of functions for reading from, writing to and otherwise managing a
connected device of given type.

2.2 Devices, drivers and files

The main goal of the I/O system in the kernel is to provide hardware-independent
access to devices connected to the system. To understand how NT does that, we
must understand how it represents the connected devices, their drivers and files
opened on those devices.

The NT kernel uses a C structure called DEVICE_OBJECT for keeping track of
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connected devices. This structure contains a pointer to the driver managing the
device, any driver-specific device data, the number of times this device is opened
and the security descriptor, identifying who can access the device.

For representing the drivers, the system uses a DRIVER_OBJECT structure. The
word driver can refer to either this structure, or to the code of the driver in
the form of .sys file, but this rarely causes confusion, since each driver has
corresponding DRIVER_OBJECT and vice versa.

For us, the most important part of the DRIVER_OBJECT is an array of pointers
to functions. These functions are responsible for writing to, reading from, opening
and otherwise manipulating the device managed by this driver. This array is
called the driver dispatch-table and is how the kernel communicates with the
driver. Using an analogy from C++, a driver can be thought of as a class and the
device is instance of this class.

As on most systems, before a particular file is accessed, it must be opened. On
NT this is done using the NtCreateFile function (corresponds to CreateFile in
Windows API ). The file to be opened is identified by a path – but in different format
then the usual Windows/DOS path. Suppose that the user wanted to open a file
named C:\TEST.TXT. The file-name gets translated to \GLOBAL??\C:\TEST.TXT
before calling NtCreateFile in the Native API.

The \GLOBAL??\C: is the name of the device where the file resides and is used
by NT to find the associated DEVICE_OBJECT. The GLOBAL?? prefix signifies that
the name is a system-wide driver-letter mapping. The name translation is more
complex then described, but for our purposes we only need to know how devices
are named internally in NT.

The remainder of the path is the name of the file on the device, in this case
\TEST.TXT. Some devices, serial port for example, do not have a file-system, but
still can be opened. In that case, the path consists only of the device name, like
\GLOBAL??\COM1. Windows does not distinguish between files and devices in any
important ways and when we speak about open file, it can mean an open device
as well.

Each time a file on a device is opened a new structure called FILE_OBJECT is
created, to represent the open file. The structure keeps track of current file position,
the underlying device, permitted access, locks etc. Because the FILE_OBJECT will
be used for any subsequent I/O operations, the driver can use it to cache data
about the file for quicker access (in its FileContext member).

Since the pointer to the FILE_OBJECT can not be returned to the user-space
application, an identifier called handle is created and the mapping from the handle
to the FILE_OBJECT is stored in the handle table of the calling process (similar to
file descriptor on Unix ).

Once the file is opened and the process gets a handle, it can use the handle to
perform all I/O operations, such as reading and writing. The operating system
can perform the I/O, because the FILE_OBJECT contains the file name and the
underlying device. When the program is done manipulating the file, it closes the
handle using NtClose and the associated FILE_OBJECT is destroyed.
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2.3 Objects

The previous section 2.2 has introduced three data structures: drivers, devices
and files. They have properties in common with lot of other kernel structures.
All three are referencou-counted. Devices have names (like \GLOBAL??\COM1) and
their use can be restricted using security descriptors. File objects can be accessed
from user-space, using handles.

Let us look at another kernel structure - the mutex synchronization primitive.
It too can be named, accessed using handle, protected using security descriptor
and its lifetime is managed using reference-count. It makes sense to abstract these
four traits into a general structure.

This common abstraction is called an executive object (or sometimes just
object). The component of NT kernel called the object manager is responsible
for providing the common functionality. Under the hood, each executive object is
a heap-allocated data-structure, preceded by an OBJECT_HEADER structure that
maintains the common information.

For illustration, the memory layout is shown in 2.2, with the FILE_OBJECT as
an example. The file object starts with the common object header, identifying it as
a file object. The number of handles and pointers referencing it is also maintained
in the header. Information about the security can also be stored there, but it is
unused for a FILE_OBJECT. Security information only makes sense for objects that
can be opened, like devices or synchronization primitives, but the FILE_OBJECT
already represents an opened file. User-mode components refer to the file object
indirectly, using the process handle table. The kernel-mode components can also
use handles, but have the option of referring to the object directly by the pointer.

Pointer Y

Kernel Component

…

Handle Table Type

PointerCount

HandleCount

SecurityDescriptor

DeviceObject

ReadAccess

CurrentByteOffset

WriteAccess

...

Figure 2.2: Layout of the executive object, FILE_OBJECT in this case.

Windows uses exectuive objects as a basis for wide range of data structures,
from synchronization primitives to processes. For our purposes, executive objects
are most important as the basis for devices, drivers and open files.

12



2.3.1 Naming

One of the important traits of the objects is that they can be named. An example
was already given in section 2.2: devices have names, like \GLOBAL??\COM1.

The reader may have already guessed that object names in NT form a hierarchy,
very similar to the Unix file system hierarchy (but kept only in memory). The
parts of the hierarchy, such as \GLOBAL??\ are called directories and are also
represented by executive objects. The hierarchy is then often called object manager
namespace. It can be explored using the WinObj [18] tool, as seen in figure 2.3.

Figure 2.3: Listing of the object manager directory, \GLOBAL??\ in WinObj.

Note that this object hierarchy is only visible at the level of Kernel API and
Native API, but no such concepts exists in the Windows API. Devices at Windows
(and DOS ) level have have only simple names like C: or COM1.

2.3.2 Symlinks

It is common that a device has multiple names. For example, since the days of
DOS, PRN is an alias for LPT1. As a more recent example, an USB device may
register itself under several names, if it supports several functions.

This functionality is realized using symlinks. Symlinks are executive objects,
which point to another part of the NT namespace, in a similar way file-system
symlinks do. Indeed, no devices really reside in the GLOBAL?? directory, but are
all located in the Device subtree. All objects in GLOBAL?? directory are symlinks
to the real device objects (but this is transparent to user programs).

The WinObj example in figure 2.3 displays the real name of the devices in the
rightmost column, called “SymLink”.

Please note that there is no counter-part to hard-links and each executive
object may have only one name.

2.4 Driver stacks

There are cases when a behaviour of a third party driver needs to be changed. For
example, an additional functionality needs to be implemented atop of an existing
driver, or a bug fixed. This section will explain the way this feature works.

13



This is typical for a file-system drivers, where additional drivers may provide
real-time anti-virus protection, versioning or auditing on top of the original file-
system driver 1. These additional drivers each have a chance to handle an incoming
I/O request and either decide to complete it themselves (e.g. block access to
infected file) or pass it to the original driver. They are also called filter drivers
for this reason.

The NT kernel is aware of this need and allows additional drivers to be
attached to an existing device. The terminology here is a bit overloaded, because
the way this concept is implemented is by using the AttachedDevice member
of the DEVICE_OBJECT to form a stack of devices (each managed by a different
driver). Thus this organization is called both device stack and driver stack (even
on MSDN ). The term device could then refer to individual device object in the
stack or the whole stack representing the hardware device. We use the term device
node to refer to the whole device stack associated with one hardware device.

A simple driver stack can be seen in figure 2.4. In this case, there are two
device objects in the stack. The bottom driver is the regular NTFS driver, with
an anti-virus protection driver attached. When an I/O request comes, the system
directs it to the attached filter driver instead of the original one. Multiple drivers
can be attached to one (forming a stack), in which case the last one in the chain
(also called topmost) is called.

\Device\HarddiskVolume1

Anonymous Device Object

...

AttachedDevice

DriverObject

...

AttachedDevice

DriverObject AV Driver Object

NTFS Driver Object

Figure 2.4: Illustration of a simple driver-stack.

Also note that both device objects in the stack are executive objects and so
both can be independetly named.

The concepts of driver stacks is important for file-system and block-device
drivers. Moreover, it is important for the implementation of Plug and Play support
that will be covered in section (2.8).

1File-system developers are now encouraged to use a new way of modifying file-system
behaviour, called minifilters.
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2.5 Recapitulation

At this point, it should be clear how the drivers, devices and actual connected
hardware are related. To reiterate, when a user program wants to write into a file,
the following actions happen:

1. The user program uses Windows API CreateFile to open C:\test.txt.

2. CreateFile then rewrites the path to \GLOBAL??\C:\test.txt and calls
NtCreateFile in ntdll.

3. NtCreateFile calls the kernel, using syscall.

4. Kernel calls the NtCreateFile from Kernel API.

5. NtCreateFile locates the device node in the object manager namespace.
Because \GLOBAL??\C: is a symlink, the request gets redirected to the path
\Device\HarddiskVolume1.

6. NtCreateFile checks the security descriptor of HarddiskVolume1.

7. NtCreateFile creates the FILE_OBJECT, fills in the name of the file (test.txt),
pointer to the DEVICE_OBJECT and asks the driver attached at the top of the
HarddiskVolume1 device stack to open the file. The driver will either handle
the request itself or pass it down the chain of attached drivers.

8. If the creation was successful, a handle is created for the FILE_OBJECT and
returned to the user-space program.

Once the file is opened, the user program owns a handle to the requested file
and can issue the write operation:

1. The user program calls Windows API WriteFile with the handle from the
open request and the data.

2. WriteFile calls NtWriteFile in ntdll.

3. NtWriteFile calls the kernel, using syscall.

4. Kernel calls NtWriteFile from Kernel API.

5. NtWriteFile resolves the handle and obtains the FILE_OBJECT from the open
request. It checks if the file was opened with write permissions.

6. NtWriteFile asks the topmost driver of the file’s device node to write the
data. The driver will either handle the request itself or pass it down the chain
of attached drivers.
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2.6 I/O

We have shown how the system keeps tracks of files, devices and drivers and how it
can find the suitable drivers for handling the given I/O request. The I/O request
is directed to the topmost driver in the stack, and a function from its dispatch
table will be called. How do these functions look?

NTSTATUS (DispatchDoSomeIO*) (DEVICE_OBJECT* DeviceObject, IRP* Irp)

All dispatch routines look the same, regardless of the type of the I/O request.
The key is in the IRP structure. This structure is a self-contained description of
the whole I/O request and has all necessary fields for describing all the types of
the request (open, read, write etc.). The name stands for I/O request packet.

For example, a write request should certainly fill in these fields of the IRP
(will be filled in by NtWriteFile in the kernel):

1. The function requested, in this case having code IRP_MJ_WRITE.

2. The FILE_OBJECT pointer on which we should operate.

3. The buffer containing the data to be written.

4. Size of this buffer.

5. File position from which to read.

6. The thread that has called NtWriteFile (remember that IRP is self-contained).

The IRP also contains a field for returning information: the number of bytes
read/written and the error code.

Having a central structure describing any type of I/O allows the kernel to apply
unified treatment to many operations and to reduce the number of arguments to
functions. Also, because IRPs are self-contained, the request can exist on its own
(it is not an implicit part of a function call), which in turn allows NT to have
asynchronous I/O.

2.6.1 I/O locations

IRPs are typically shared by all drivers in the driver stack. In other words, when
a driver needs to pass a request down the chain, it reuses the existing IRP.

IRP contains members for storing per-driver information. The information is
stored in IO_STACK_LOCATION structure. There is one I/O location for each driver
on the driver stack.

Fields common to all drivers on the stack (e.g. buffers, thread) are stored in the
IRP itself, whereas the request details – the function code, data size, FILE_OBJECT
etc. – are stored in the I/O locations. This gives each filter driver a chance to
modify the request it wants to pass to the driver below it, without constructing
new IRP.
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2.6.2 Asynchronous I/O

The dispatch routines as we have described them so far are blocking – when they
return, the I/O is already completed. However, if the device is slow compared to
the CPU, most of the time will be spent by waiting for the device to react. More
useful work could be done in the meantime.

The solution is to let the dispatch routine return as soon as the request has
been handed over to the hardware. The application is then notified about the
completion of the I/O by signaling a synchronization event (or a NT specific
mechanism called I/O completion port). This kind of I/O handling is called
asynchronous and is generally accepted to have better scalability.

NT has supported asynchronous I/O from the start. If a driver returns
STATUS_PENDING from its dispatch routine and sets a pending flag in the IRP, it
signals to the caller that it has not completed the request and will do so at a later
time. The function IoCompleteRequest(IRP*) is later called by the driver, when
the hardware has finished the request. This functions is responsible for the last
steps of I/O processing, such as notifying the caller.

If the driver wants to complete the request synchronously, for example when the
data is in cache, it can still do so. It just needs to first complete the request using
IoCompleteRequest and then return status code other than STATUS_PENDING
from its dispatch routine, so that the caller will know the request is already
completed.

2.6.3 I/O completion routines

The asynchronous I/O processing, as described, has one disadvantage. The
filter drivers that have passed the IRP down the driver stack have no way of
manipulating it after the request is completed, because they have already returned
from their dispatch routines.

For this reason, each driver can associate so called completion routines with
the lower-level driver’s I/O location. When the lower-level driver finally calls
IoCompleteRequest, the completion routine associated with its I/O location is
invoked. To make matters more complicated, the completion routine itself may
return STATUS_MORE_PROCESSING_REQUIRED to indicate that its driver needs more
time to process the request and will call IoCompleteRequest at later time to
resume the completion. If the completion routine does not interrupt the completion
in this way, completion routines in the higher-level I/O locations are called. When
all completion routines have been run, the IRP is finally complete and the caller
is notified about it.

Completion routines are typically used by filter drivers to monitor the results
of the I/O, or to clean up their internal structures associated with the request.
Example of the completion routine operation and the organization of an IRP is
given in figure 2.5. The stack consists of two drivers, the base NTFS driver and
the anti-virus filter driver. Each of them is represented by its own device objects
(see figure 2.4 for an example of driver stack). Both drivers will operate on the
same file object.

Additionaly, the anti-virus drivers has registered a completion routine, that
will be triggered when the NTFS driver has finished reading the data. At this
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point, the data can be scanned for malicious code and the completion routine
would return a failure code if the data is infected, denying the request. 2

NTFS Device Object

Anti-virus 
Filter Device Object

Buffer

IRP

…

DeviceObject

IRP_MJ_READ

CompletionRoutine

…

DeviceObject

IRP_MJ_READ

CompletionRoutine

…

Anti-virus scanner 
completion routine

…

...

FileObject

FileObject

FileObject

\text.txt

...

IRP Header

First I/O location

Second I/O location

Figure 2.5: Illustration of a anti-virus scanner setting a completion routine.

Since most applications use traditional blocking I/O, it may look as if IRPs
are rarely processed asynchronously. This is however not the case, because even if
the user-mode application uses a blocking API, the IRPs are internally processed
asynchronously and the API used by the applications simply blocks until the
asynchronous processing is complete.

2.6.4 I/O without IRPs

The I/O handling process as described so far is used for majority of I/O, but
processing I/O using IRPs tends to have higher overhead than regular function
calls or direct hardware access. There are two instances in NT kernel, where the
I/O requests are not represented by IRPs.

When application accesses a file, the system may decide to use the fast I/O
dispatch routines first. These routines receive the parameters directly (they do
not need an IRP) and are always synchronous. However, they may return FALSE
to indicate to the operating system that it needs to use the regular IRP -based
dispatch routines. Usually, fast I/O routines only perform the operation if all
needed data is already in the cache. If it is not and hardware must be accessed,
they return FALSE.

The second case is using a device directly connected to a bus. The driver
controlling the device writes to the I/O ports or memory mapped regions directly,
without using any other driver. A lower-level driver for a bus to which the device
is connected may be used to map those I/O ranges into memory.

2If the program is reading the file byte-by-byte, the anti-virus scanner would not detect the
malicious code. Commercial scanners use different approach.
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2.7 Interrupts and synchronization
Handling interrupts brings additional complexity to the kernel. The main problem
is that interrupts can occur at any time and the system may be in an inconsistent
state.

Let us first look how a naive solution for this problem could be implemented
and then explain its performance problems. Then the we will cover the way NT
solves these problems, using two mechanisms already covered in the introduction –
DPCs and IRQL.

2.7.1 Disabling interrupts

The kernel often needs to access global data-structures from different threads.
An example of such data-structure is the list of threads that are ready to run,
maintained by the scheduler.

This list needs to be accessed frequently, every time threads are created, become
ready to run or wait. Because NT is a pre-emptively multi-tasked operating system,
it needs a way of switching threads when they have been running for too long.
An interrupt periodically generated by the system clock is used to switch threads,
so it too must access this list.

To prevent corruption of the ready-to-run list we need a synchronization
primitive governing the exclusive access. Ordinary synchronization mechanisms,
like mutexes, are not usable, because they themselves need to access the ready-to-
run thread list when the caller needs to wait for the primitive.

Spinlock is a synchronization primitive similar to the mutex, but instead of
pausing the waiting thread, it busy waits – repeatedly checks if the lock is already
free. However, interrupts must be disabled when the spinlock is held, to prevent
the clock interrupt from firing and trying to lock the list again.

The frequent disabling of interrupts is the performance problem NT is trying
to avoid. Disabling interrupts for a long time means that the delay between the
hardware requesting interrupt and the processor responding (an interrupt latency)
can be significant. This is undesirable, because some hardware needs a quick
response. For example an audio card uses interrupt to signal that it is running
out of data to play and needs a next part of a song [8]. Large interrupt latency
could lead to buffer underrun and glitches in the playback. Network cards and
other types of real-time hardware faces similar problems.

Apart from interrupts being disabled when the kernel is holding the spinlock,
as described above, interrupts are also disabled in interrupt handlers. This is
necessary to prevent re-entrancy. NT is able to cut down the time spent in both
these spin-locks and in interrupt handlers.

2.7.2 DPCs

NT offers drivers a mechanism to reduce the time spent in their interrupt handlers
and in turn reduce the interrupt latency.

It is based on the presumption that interrupt handlers have two parts. The
first part is time critical, and needs to be serviced immediately. The second part
however, can be delayed. The second part is mostly concerned with additional
processing of data and includes the call to IoCompleteRequest.
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The mechanism for running the second part is called deferred procedure
call (DPC ) and defers the execution until all time-critical parts of interrupt
handlers are completed. The reverse is also true, the DPC can be interrupted by
the critical interrupt processing.

As an example, the timeline in figure 2.6 shows how regular threads, hardware
interrupts and DPCs interrupt each other. Threads can be interrupted by both
DPCs and hardware, while DPCs can be interrupted only by hardware interrupts.

Currently running thread

DPC #2

Interrupt #1 Interrupt #2

DPC #1 DPC #3

Interrupt #1 
requested

Interrupt #3 
requested

DPC #1
scheduled

DPC #2
scheduled

DPC #3
scheduled

Ordinary thread

DPCs

Interrupts Interrupt #3

Interrupt #2 
requested

Figure 2.6: Timeline of interrupts and DPCs running. The gray areas represent
interrupted code.

Now let us return to the synchronization problem from section 2.7.1, where
both interrupt handlers and regular threads needed to manipulate the scheduler’s
ready-to-run list. This lead us to disabling interrupts when the list’s spinlock was
held.

If the scheduler takes advantage of DPCs, it can move the code for switching
threads from a clock interrupt handler to the associated DPC. Therefore, a regular
thread locking the ready-to-run list does not need to disable interrupts, but just
DPCs, further reducing the time spent with interrupts disabled.

2.7.3 IRQL

The introduction of DPCs in previous section (2.7.2) has decreased the time spent
in interrupt handlers. DPCs actually resemble hardware interrupts, but have
lower priority – this can be seen from their behaviour in figure 2.6. The difference
is only that they are triggered by the system, not by external hardware.

The priorities of DPCs, interrupts and regular code are called interrupt request
levels (IRQL) in NT terminology. They are represented by numeric constants
defined in the kernel headers, where numerically lower value means a lower priority.
The basic rule of IRQL is that code with higher IRQL may interrupt code with
lower IRQL.

So far we have seen regular threads, DPCs and interrupts. PASSIVE_LEVEL
corresponds to regular threads (the lowest priority), DISPATCH_LEVEL is the priority
of code running in DPC. Hardware interrupts have various levels, according to
the device, but higher than DISPATCH_LEVEL. NT defines several other levels but
they are rarely used by device drivers.

A lot of behaviour in NT is described in terms of IRQL and there is additional
terminology. If code wishes to disable interrupts or DPCs, it can raise its IRQL.
As we have seen, disabling DPCs or interrupts is often done when acquiring
spinlock, so it is often called acquiring spinlock at certain level. In our scheduler
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example, we would say that we need to acquire the spinlock at DISPATCH_LEVEL.
Also lot of functions require at least certain IRQL, meaning that their behaviour
is undefined, unless running at that IRQL or lower.

2.8 Plug and Play
Features like device stacks, object manager namespace and IRQL hierarchy were
already present in the original Windows NT 3.1 and form the core of the I/O
system. The last important I/O piece of a modern consumer system is the Plug
and Play (PnP) support. This refers not only to the ability to connect devices
to the running system (hotplugging), but also to the autodetection of devices
like PCI cards. Originally, this required manual driver installation and often
configuration of I/O ports and interrupts.

Windows 2000 was the first in the NT line of systems to introduce a support for
automatically enumerating and configuring the devices connected to the computer.
The name Plug and Play (PnP) reflects the fact that user should be able to
connect the device and use it right away.

This section will cover the way PnP support is implemented in the terms of
the device objects and drivers. However, the concrete interface, such as the new
dispatch functions used for communication with the kernel PnP manager will not
be be described. More advanced concepts like device removal, power relations etc.
will not be mentioned either.

2.8.1 Enumeration and PnP driver stacks

There are two phases of installing new PnP devices. The first phase involves
noticing that a new device was added to the system. This is the task of a bus
driver and the bus device node it manages. The bus device node represents a bus,
port, hub or any other entity to which other devices can be connected.

The driver enumarates the physical devices connected to the bus and if it
notices a new one, it must create a new device node for it. However, at this point
the driver for the detected device is not installed, and so the bus driver itself acts
as the driver for the device. The device object managed by the bus driver is known
as Physical Device Object (PDO).

Let us use a video capture card connected to PCI slot as an example. When
the PCI driver will notice a new device connected to the bus, it will create the
PDO for it. However, this does not mean that the new device node knows how
to tune the video card and receive channels. The purpose of the PDO is to
represent the raw device. In the case of PCI PDO, it will allow access to the PCI
configuration registers. The bus device and the PDOs are the two devices at the
bottom of the example figure 2.7.

After creating the PDO, there is a second phase. The PnP manager is notified
about the new device. It will ask the PDO about the device type. For PCI, this
is the vendor and product ID stored in the configuration data. Based on this
information, Windows can lookup the appropriate driver, load it and ask it to
attach itself to the driver stack of the new device node. Thus the driver stack
will be composed of the PDO and the new device object, called Functional Device
Object (FDO). The PnP manager will configure the new device in cooperation
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Figure 2.7: Organization of the devices configured by PnP manager.

with the FDO and video capture applications will be able to use the card. When
a request to tune to a specific channel arrives, it is first handled by the FDO,
which will issue hardware-specific commands to the PDO.

2.8.2 PnP tree

The device nodes in a system form a parent-child relationship, where the parent is
the bus and the child is the connected hardware (which in turn can be a bus too).

This device tree, formed by the parent-child relationship, can be viewed by
a tool distributed with Windows, called the Device Manager. By default it lists
devices by their category, but can be made to show the device tree using the
“Devices by connection” option in the menu.

The following example of this tree (figure 2.8) should help the reader realize
the role driver stacks and filter drivers play in the NT I/O subsystem. To fit the
example image on one page, we have omitted most of the devices and show only a
subtree.

The root device of this tree is called “ACPI x86-based PC” and its driver is
the PnP manager itself. The devices listed under the root node are not connected
to any bus and are called root-enumerated devices. They represent the devices
that are not PnP capable, possibly because they are integral part of the system
or they are purely virtual devices.

One of those devices is named “Microsoft ACPI-Compliant System”. This
device is not a regular bus to which devices can be physically plugged in, but
instead uses the Advanced Configuration and Power Interface (ACPI ) standard
to discover the devices present on the computer’s motherboard. Excluding simple
devices like buttons and laptop lid sensors, most devices are connected through
the PCI bus. This includes the USB controller controller that hosts the root USB
hub. The only device connected to the hub is the on-board Realtek WiFi adapter.
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Figure 2.8: Device Manager MMC snap-in showing a portion of a device tree on
a laptop.

The figure 2.8 also illustrates another interesting phenomenon, the use of
virtual devices and gives another example of how filter drivers can be used. In
this case, the Realtek WiFi adapter should not have any child devices, since no
other devices can be attached to a WiFi adapter.

However, Windows 7 includes a technology for connecting to multiple networks
with a single wireless card [9]. To the user it looks as if two adapters are present on
the system – one is the original one, the second one is a new virtual adapter (since
there is no corresponding physical adapter on the system). The technology works
by rapidly switching the physical adapter between the two connected networks.

This functionality is not provided by the Realtek’s driver, but instead by a
filter driver sitting above the Realtek’s driver. First the filter driver maintains the
illusion that the original adapter is connected to only one network and second it
changes the Realtek network adapter into a bus, to which the virtual adapter is
connected. The device nodes used are illustrated in figure 2.9.
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Figure 2.9: Virtual Wifi driver stack illustrating the situation from figure 2.8.
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3. Existing utilities
Our first goal, defined in Chapter 1, is to evaluate the existing tools that could be
useful to a student learning how Windows NT handles I/O requests. To design
our tool, it is important to know what areas of the I/O system the existing tools
cover and how user-friendly they are.

The tools were selected on the basis of being useful to the student of NT I/O
internals. This excludes tools that either focus on different part of the operating
system then I/O and tools that are intended for specific driver development tools.

The selected tools come mainly from three sources: OsrOnline [14] (a website
for driver developers), SysInternals [7] (authors of the respectedWindows Inter-
nals [4] book) and tools distributed with Windows and its Windows Driver Kit [6].
Readers who want to know more about Windows internals (not specifically the
I/O subsystem) are encouraged to visit the two mentioned sites and experiment
with the utilities.

The tools can be divided into three categories. The first one are debuggers,
represented by WinDbg. They are hard to use, but are very powerfull and flexible.
The second category are specialized tools for inspecting the data-structures kept
by the NT kernel, such as executive objects. WinObj is a typical example of such
a tool. The last category are tools for monitoring activities in the system, such as
the Event Viewer application distributed with Windows

To have a better idea what are the I/O concepts that the tools should explain,
this chapter will start with the review of the most important ones, based on the
introduction to the NT ’s I/O architecture in Chapter 2. After that, the available
tools will be described, grouped by the categories mentioned above, followed by
the analysis of their weakness and what types of functionality is not covered.
Finally, we will propose the feature-set for our new tool, based on the previous
analysis.

3.1 I/O system concepts

The basic principles of the Windows I/O were explained in Chapter 2. To better
understand the goals for our new tool, the concepts from Chapter 2 will be
repeated here (but without explaining them).

The concepts should be taken as a feature suggestions for our new tool. This
does not mean that the tool must cover all of them. Some of the concepts are
sufficiently covered by existing tools. For others, it might be technically difficult
to gather any information about them.

The starting point for our explanation was the communications between the
kernel and the applications. This involves the Windows API, Native API and the
Kernel API and the translation between them.

The next area are the data-structures kept by the kernel and the relationships
between drivers, devices and open files. Several NT specific concepts in this area
are the executive objects and their concrete examples: device objects, driver objects
and file objects. These objects are also important for explaining the Plug and Play
(PnP) mechanism. The key PnP concepts are functional device objects, physical
device objects, filter drivers and the relationship between buses and their children.
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The next area is the actual handling of the I/O requests, centered around
interrupt request packets (IRP). Because the Windows I/O system is asynchronous,
the life-cycle of an IRP is complicated. The handling of an IRP may involve other
IRPs (for sub-requests), driver dispatch routines, completion routines, interrupts
and deferred procedure calls (DPCs). Unifying the interrupts and DPCs is the
interrupt request level (IRQL), describing the priority level of a code.

Of course, all of the areas are related. For example, the PnP manager uses
IRPs for discovering and configuring the devices. The Kernel API must translate
the application’s request into an IRP and relies on the object manager namespace
for finding the correct device and its drivers.

The concepts mentioned above are sufficient for understanding most of the
I/O system. There are certain areas we have omitted, because they are either
rarely encountered (I/O cancellation, fast I/O), or they are special cases of the
basic concepts (user-mode drivers, driver frameworks, minifilters, minidrivers).

3.2 Debuggers

Debuggers are useful for understanding the the internal operation of the I/O
system. They can inspect memory, pause the debugged system, set-up breakpoints
at interesting events and even change variables.

Our area of interest will be debuggers capable of debugging the whole operating
system, as opposed to debugging a single program running on that system.

3.2.1 WinDbg

A natural choice for debugging an NT operating system is WinDbg, because it
is well-integrated with the NT kernel and is the “official” Windows debugger,
supported by Microsoft. It is distributed as part of the Windows Driver Kit [6].

WinDbg comes with the usual features one would expect of debugger, e.g.
breakpoints, watched variables, expression evaluation, single stepping, symbolic
names for memory addresses and line numbers. In addition to these basic
capabilities, it comes with debugger extensions for displaying NT structures
like IRPs, executive objects and device stacks.

Before using WinDbg, the user must set-up two connected computers (or at
least virtual machines), if he wants to use the full power of the debugger. The first
computer will run WinDbg, and debug the Windows operating system running on
the other computer. The supported methods for connecting the two systems are
direct serial port connection, special USB cable, FireWire or Ethernet.

The easiest way for a student to configure it is probably to set-up virtual
machine with bridged mode networking and configure WinDbg to connect to this
virtual machine. Serial port connection is also supported by virtual machines, but
it is very slow. The other modes are not usable with any common virtualization
software.

To have a better idea how WinDbg can be used and what are its problems,
two examples of inspecting the I/O system will be given. One will show how
to monitor system activity using breakpoints, the second one will show how to
browse executive objects.
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Monitoring dispatch functions

As an example, suppose that we want to illustrate how dispatch routines are called
in order to handle I/O. WinDbg will be used to put a breakpoint on a dispatch
routine call and display some details about the call.

Figure 3.1 illustrates such WinDbg session. Before explaining the actual
commands and their purpose, notice the GUI. Even though WinDbg is a graphical
debugger, it is controlled using text-based commands, entered into the command-
line at the bottom. Only simple commands, like Go, are available in the toolbar
and the menu. The output of the commands is also textual and is displayed in the
output area in the middle of the WinDbg window. The output area also includes
the entered commands, prefixed with kd>.

Command: Set-up breakpoint

Command: Go (resume system)

WinDbg stops and 
reports current position

Command: Display the driver object

Address of the driver object

Command prompt

Driver object field offset, name and value

Driver object field offset, name and value

Driver object field offset, name and value

Figure 3.1: WinDbg session used to illustrate the calling of dispatch routines.

The WinDbg session in figure 3.1 was started by connecting to the debugged
system and pausing it (this is not seen in the screenshot). Next, a breakpoint
(bp command) was setup on IofCallDriver, a function that invokes the driver
dispatch functions. This way, the debugger will pause when any dispatch function
is called. The system was resumed (g command, short for go). However, the
breakpoint was hit immediately and the debugger informs us that we are now in
the IofCallDriver function and about to execute instruction mov edi, edi.

We would like to know which driver is going to be called. We can extract the
DRIVER_OBJECT pointer from the DEVICE_OBJECT that IofCallDriver accepts as
a first argument. A command for displaying C data-structures like DRIVER_OBJECT
is ?? (query command). However, we must know that according to the calling
convention, the first parameter to IofCallDriver is stored in register ecx. The
debugger responds by listing all the fields in DRIVER_OBJECT and their values.

This example illustrates well the problems with using WinDbg. First of all, the
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user must know the WinDbg commands and their syntax. Moreover, the user must
find out where to set-up breakpoints, what variables to query etc. Sometimes it
gets even more complicated and he/she must resort to querying registers, as in
our example.

Inspecting executive objects

Purpose of this example is to demonstrate the WinDbg extensions for working
with the NT kernel, concretely executive objects. Other extensions (not used
in this example) can be used for browsing the driver stacks and the Plug and
Play (PnP) tree.

Example session is recorded in figure 3.2. The !object command is used to
show the \GLOBAL?? directory in the NT namespace. The debugger first shows
the properties common to all executive objects (memory address, reference counts
etc.). It then proceeds to list the names and addresses of the objects stored in
this directory.

Command: Display object \??GLOBAL

General object information

Start of directory listing

Command: Display object \??GLOBAL\C:

General object information

Symbolic link information

Figure 3.2: WinDbg connected to a Windows 8 virtual machine, displaying part
of the NT namespace using the !object extension.

Finally, the same command (!object) is used to find out the real device name
of the symlink \GLOBAL??\C:. Using the !object command, it is possible to
iteratively browse all NT objects.
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3.2.2 Live WinDbg

The inability to run on the same system as the one it is debugging is natural
limitation for a kernel debugger. If the entire operating system is paused by the
debugger, including the debugger’s user interface , there is no way to resume the
system. For this reason, the user interface must not be part of the debugged
system.

However, if the debugger is not used to set breakpoints, handle exceptions
and break into the system, it is safe to run it on the same machine. Support for
this was added to WinDbg by the LiveKd [12] utility from SysInternals [7]. The
support is now included directly in recent versions of WinDbg.

All of the extensions for showing kernel objects work and the session seen in
figure 3.2 could have been run on a live system. However, LiveKd does not solve
any of the problems with WinDbg ’s commands and terse output.

3.2.3 Third-party debuggers

There are alternative debuggers from third parties, which can be used instead
of WinDbg. However, they mostly share the same problems (text-based, hard to
learn) and are not well-integrated with the NT kernel. On the other hand, they
have different approach to system debugging, that can eliminate the two-machine
problem.

Virtual machines like VirtualBox and VMWare can also act as debuggers
for the guest operating system. VirtualBox provides its own debugger [10] with
custom syntax and commands. It does not provide even basic Windows-specific
support, like symbol names. VMWare [11] allows the The GNU Project Debugger
(GDB) or any other debugger using the same protocol to debug the guest operating
system. Again, GDB is Unix -centric and does not support the PDB file format
for debug symbols.

Debuggers that can debug the same system that they are running on are
available (also called single-host debuggers). They solve the problem of requiring
two systems, but due to their nature, require their own drivers and have portability
issues. One of the early examples is SoftIce by NuMega, now discontinued. Another,
contemporary examples are the BugChecker [15] and HyperDbg [16] debuggers.

3.3 Object inspection tools

One of the sources of information about the I/O subsystem are the memory
structures it maintains, primarily the device objects and the driver objects. There
are specialized tools for viewing these NT objects.

In contrast with debuggers, the following tools are fully graphical and present
information in a nicer way. On the other hand, they only show global data-
structures that do not change. They do not capture the operation of the kernel
and the temporary data-structures (e.g. IRPs).
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3.3.1 WinObj

Executive objects in the object manager namespace can be viewed usingWinObj [18]
from SysInternals [7]. It displays the namespace in form of a tree, in a similar
way Windows Explorer displays files and directories.

For each executive object it can display reference counts, handle counts and
access rights. For some object types, like events, symbolic links and mutants it
can display additional information.

However WinObj is limited to basically listing the executive objects and does
not provide any details for device objects and driver objects and their relationships.
Moreover, it can only display executive objects that have a name. It also does not
show memory locations of the executive objects, which might be useful if this tool
is used together with a debugger.

Example screenshot of the tool can be seen in figure 3.3 (this is the same
screenshot as in Chapter 2, repeated for convenience).. Here WinObj displays the
same directory that was previously listed by WinDbg in figure 3.2.

Figure 3.3: WinObj displaying the same part of Object Manager namespace as
WinDbg in figure 3.2.

3.3.2 Device Manager

To display the devices installed on a system a Microsoft Management Console
snap-in called Device Manger can be used. This tool is pre-installed on all
Windows systems and even if it looks simple on the surface, a careful user can
learn a lot of information from it.

By default Device Manager simply lists the devices by categories and does
not display lot of devices. This can be changed by selecting the “Devices by
connection” option and checking the “Show hidden devices” option in the View
menu. This displays the actual PnP device tree of the system. Example of this
tree is in figure 3.4, with detailed explanation in section 2.8.2 of the Chapter 2.

Combined with the “Details” tab in the properties of each device it provides
nearly complete picture of the PnP manager’s structures. However, when it comes
to device nodes and driver stacks, the information is neither complete nor well
formatted, although Windows 8.1 has made improvements in this regard.
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Figure 3.4: Device Manager MMC snap-in showing a portion of a device tree on
a laptop.

A slightly more powerful commandline version of the Device Manager, called
devcon, is included with the developer tools for Windows (e.g. Visual Studio,
WDK ).

3.3.3 DeviceTree

Another tool similar to Device Manager is DeviceTree fromOSR Online [14]. While
Device Manager is designed for system administrators, DeviceTree is intended for
driver developers and includes more low-level detail.

The utility displays driver objects and device objects. The information about
these objects is presented in a way that closely resembles the actual implementation
of these objects, including memory addresses. The tool is also fully aware that
devices and drivers are also executive objects and displays their names and reference
counts.

It can show the devices and drivers from two perspectives. One of them is
the device tree, the same one that can be displayed by Device Manager, but this
time it includes the individual device objects in the driver stack. The second
perspective is the driver perspective and lists the devices by the drivers they are
managed by.

Example of the the device tree perspective is in figure 3.5. It shows the same
device tree as Device manager in figure 3.4. Some of the devices from figure 3.4
are not shown here, because DeviceTree and Device Manager show the devices in
different order.

You can also notice that in DeviceTree there are more intermediate nodes
between the root of the tree and the selected devices. This is caused by the fact
that DeviceTree displays the entire driver stacks as part of the device tree, not
just the individual device nodes (the acronym PDO is used for Physical Device
Objects and FDO for both Functional Device Objects and filter drivers).

The example nicely illustrates how the virtual WiFi discussed in 2.8.2 is
implemented, because we can see the filter driver \Driver\vwifbus. This shows

31



Figure 3.5: DevTree displaying the same device tree as Device Manager in
figure 3.4.

that the more complex tree displayed by DeviceTree can be useful.
DeviceTree does a fairly good job and fulfills our goals when it comes to dis-

playing kernel objects. However, improvements could be made to the presentation
of the tree, which is cluttered and does not display human-readable device names.

3.4 Monitoring tools
A lot can be explained about the I/O subsystem by looking at the objects it
maintains. Another method of learning about it is to actually watch it at work.
This is the purpose of monitoring tools that record certain aspect of the I/O
subsystems activity and show the events that have happened.

Unlike debuggers, they do not pause the whole system when the interesting
event happens, but only record it and continue. Hence, they are generally able to
run on the system they are monitoring.

They can be divided into two categories, depending on the set of events they
monitor. One group of tools is similar to debuggers, because they are configurable
and can monitor practically any code execution. The second group is designed to
monitor only some well-defined set of events (in this case I/O activity).

3.4.1 Process Monitor

Process Monitor [19] by SysInternals [7] can monitor I/O, registry, network and
process creation/termination operations on the whole system. For each of these
events, it records the parameters passed to the system (such as file path), the
thread and process of the caller, timestamp, duration of the request, and the
results of the request.

While Process Monitor can show which files are read and written, it stops at
the level of Kernel API. It does not monitor how the I/O request is processed
internally and does not show the I/O handling activity mentioned in Chapter 2.

On the other hand we have to note that it has no installation requirements
and is very easy to use. The only thing the user has to do is click the Capture
button and browse the events.

There are many tools similar to Process Monitor in scope and functionality,
such as SystemSpy [20] or Strace for NT [21]. They will not be discussed, because
they provide more or less the same level of detail.
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3.4.2 Event Viewer

Windows includes a centralized infrastructure for collecting events reported by
the system and applications, called Windows Event Log. The collected events can
be viewed using Microsoft Management Console snap-in named Event Viewer.

We are particularly interested in one group of logs, named Applications and
Services Logs → Microsoft → Windows → Kernel-* . These event logs record
detailed system activity, including I/O.

An example, event recorded by the Kernel-Disk log is in the figure 3.6. Event
Viewer can view the events in either Friendly View or XML View, however the
Friendly View is only a simple reformating of the data. The figure 3.6 shows the
XML View.

Interestingly enough, Event Viewer also provides pointers to the IRP and the
file object. While the IRP pointer is not very useful, because by the time the
event gets to the user the IRP will be deallocated, the user can use a debugger to
view information about the associated file object.

<Event
xmlns="http://schemas.microsoft.com/win/2004/08/events/event">
<System>

<Provider Name="Microsoft-Windows-Kernel-Disk"
Guid="{c7bde69a-e1e0-4177-b6ef-283ad1525271}" />

<EventID>11</EventID>
<Version>0</Version>
<Level>4</Level>
<Task>0</Task>
<Opcode>0</Opcode>
<Keywords>0x8000000000000000</Keywords>
<TimeCreated SystemTime="2015-04-08T14:02:45.247344800Z" />
<EventRecordID>1</EventRecordID>
<Correlation />
<Execution ProcessID="4" ThreadID="64" ProcessorID="0"

KernelTime="641" UserTime="0" />
<Channel>Microsoft-Windows-Kernel-Disk/Analytic</Channel>
<Computer>rntb</Computer>
<Security />

</System>
<EventData>

<Data Name="DiskNumber">0</Data>
<Data Name="IrpFlags">0x60043</Data>
<Data Name="TransferSize">8192</Data>
<Data Name="Reserved">0</Data>
<Data Name="ByteOffset">3146170368</Data>
<Data Name="FileObject">0x86494008</Data>
<Data Name="IORequestPacket">0x85888d48</Data>
<Data Name="HighResResponseTime">547</Data>

</EventData>
</Event>

Figure 3.6: Data provided by kernel event about disk IO.
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3.4.3 Logman

The API underpinning the Windows Event Log is called ETW (Event Tracing for
Windows). Some of the events ETW [13] can provide are not displayed in Event
Viewer, but can instead by captured using a command-line utility called logman.

To list the kernel events available on your system, use this command: logman
query providers "Windows Kernel Trace". Apart from the disk I/O and file
I/O, there are events that inform about DPCs and ISRs.

The data can be captured using the logman utility, stored in a file and viewed
using tracerpt tool.

While both logman and Event Viewer are interesting, their level of detail is
limited. For example, they can provide information about file, disk and network
I/O, but not other device types . Furthermore they do not show how the I/O is
processed by the driver stack layers. The log does not contain any links between
the interrupts, DPCs and the I/O activity. Judging by the given usage examples
on MSDN, the toolset is probably geared towards debugging performance problems
using xperf.

3.4.4 IrpTracker

It is clear that a utility that provides monitoring of the actual execution of dispatch
and completion routines is needed to track the life of the request. This is exactly
the goal of IrpTracker, available from OSR Online [17].

It can track entry to a dispatch routine, the completion of an IRP and
invocation of completion routines. It does not show the exit from dispatch routines
and the user must chose beforehand which device object to track. There is no
convenient option to track the whole driver stack for a given device node.

However, for each IRP completion event and dispatch routine entry, a snapshot
of the whole IRP is available. Part of the IRP snapshots are the I/O locations of
previous drivers, which gives at least some insight to the working of the driver
stack.

An example IrpTracker session, demonstrating its depth of infromation, is
shown in figure 3.7. Here, we have decided to track the \Harddisk0\DR0 device.
The detailed IRP view can be activated by clicking on the individual events. If the
event is right-clicked, all other events concerning the same IRP are highlighted.

The disadvantage of IrpTracker is that it does not work on 64-bit systems and
there are no plans to rectify this.

Figure 3.7: IrpTracker tracking the \Harddisk0\DR0 device.
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3.4.5 Function tracing tools

Another approach to monitoring system activity is to let the user choose what to
monitor. This is usually done at a function call granularity. Like with debuggers,
the disadvantage is that the user must know which functions to look for. On
the other hand they leave the system undisturbed, whereas debuggers cause a
significant slowdown each time a breakpoint is hit.

We have to emphasize that we need a tool that supports monitoring an
application without access to its source code and is able to work in kernel’s
environment. Many of the available tools are intended for managed languages and
user-space applications.

Tools capable of monitoring the kernel are available for other platforms.
DTrace [1] and SystemTap [2] are two examples of such tools for Solaris and Linux.
For Windows, there are two following research projects with similar goals.

NTrace

One tool for monitoring functions is NTrace [23] a research framework for function
boundary tracing, meaning that it can report the enter, exit and abnormal exit
from a function. Unfortunately, the project is still in research phase and it is not
publicly available.

Fay

Another suitable choice when it comes to monitoring function execution is Fay [22].
The basic functionality is the same as for NTrace, but it is extended with the
support for remote operation and aggregation of data over a cluster of computers.
This is however not any significant advantage for our audience. It is not clear if it
can be used as stand-alone command-line tool, but provides an easy to use C#
API based on the LINQ technology.

However, it is not clear if the project is publicly or commercially available.

3.5 Tool comparison

Each presented category of tools (debuggers, object inspection and monitoring)
has their own weaknesses and strengths. Let us summarize the capabilities of the
tools presented so far and look at the type of functionality that is missing in each
category.

The main problems of debuggers are their user unfriendly user interfaces
and cryptic commands. The only suitable one is WinDbg, because the others are
not designed with NT kernel in mind.

The utilities for object inspection cover most of the kernel’s data structures
related to I/O. Specially the DeviceTree program (section 3.3.3) covers almost
all aspects of the driver and device organization, although its presentation might
be improved in minor ways (icons, more perspectives, translation of pointers to
symbolic names, etc.). The only missing feature in this category is the ability
to inspect opened files (FILE_OBJECT structures), this can only be done using
debugger
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Monitoring tools can offer much more detailed explanation of I/O activity
than inspecting global data-structures. The problem with tools like Event Viewer
(section 3.4.2) or Process Monitor (section 3.4.1) is that they do not provide
the sufficient level of detail for understanding the life-cycle of an I/O request.
IrpTrakcer is able to provide some of the details, but not as much as would
be available with a general function tracer, namely information about Interrupt
Service Routines(ISRs), Deferred Procedure Calls(DPCs) and dispatch function
exits. Function tracers, on the other hand are very general tools and the user
must know what functions to monitor. Moreover, no function tracer is currently
publicly available for Windows.

The common problem of the monitoring tools is also the nature of the output,
which is a simple unformatted stream of events. IrpTracker tries to help the user
by highlighting related events, but this idea could be extended further.

There are certainly uses cases for a new tool. It could be either a more
user-friendly graphical debugger specialized for the NT kernel, or a low-level
monitoring tool with easily understandable output.

3.6 Proposal for our tool
Based on the knowledge of the existing tools, we want to specify a feature-set for
our new tool. The first concern is the nature of the tool – if it is going to be able
to stop and inspect with the system (like debugger), or record the system activity
(monitoring tool) or only inspect the kernel’s global data-structures.

The previous section (3.5) already concludes that tools for inspecting objects
cover their ground pretty well. The next decision is if our new tool will be a
full-blown debugger, or just a monitoring tool.

It might seem that writing a debugger (with improved graphical interface)
might be a better option, because it is more powerful. However, it is doubtful
if our users (students) require the ability to stop and inspect the system and
the powerful features might be just confusing. Moreover, we would inherit the
technical problems of full system debuggers.

Monitoring tools are typically simpler and we consider the user interfaces of
programs such as Process Monitor or IrpTracker very easy to use. They also
encourage “exploration”: the user can run his favorite application and see all the
I/O requests it is making and chose the interesting ones, whereas the debugger
would pause the system each time it encounters a request. We would like to retain
this this design, where the user just has to click “start” and go through the results.

IrpTracker already provides a lot of low-level information, so we will use it as
a starting point of our design (description of IrpTracker is in section 3.4.4). We
propose the following improvements:

• Include more I/O concepts, namely the execution of deferred procedure calls
and interrupts in the event log.

• Support both x86 and x64 platforms.

• Instead of highlighting events handling the same request (like IrpTracker
does), provide alternate view of the event stream, that groups events by the
requests they handle.
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• Show summary of the request using a graphical diagram.

• Integrate it with limited WinObj functionality, so that users can explore
objects mentioned in the IRPs.

IrpTracker monitors only selected devices. Because there is no easily detectable
connection between a DPC and a device, there is no way to filter DPCs. The same
is true for interrupts. For this reason, the selective capture feature of IrpTracker
will be dropped and the whole system will be monitored instead.

This is the basic outline. As our tool gets more concrete form, we might want
to add more useful features, if they do not clash with the basic usage pattern.

To actually implement this tool, the two remaining goals (as defined in
Chapter 1) must be solved. The first one is to find a way of monitoring the
system that can provide all the information our tool should display – this will be
the focus of the two following chapters. The second way is coming up with a way
to show and organize this information – covered in Chapter 6.
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4. Gathering information
The main task of our tool will be to monitor the kernel’s I/O activity. The purpose
of this chapter is to find a suitable way of doing so. The available APIs will be
evaluated along with alternative unsupported methods.

The most important criteria for choosing a methods of collecting the informa-
tion is the type of events they support and the information they reports about
each event. The events that our tool should were defined in the previous chapter
(namely section 3.6). They are:

• start and end of a driver dispatch routines, including important information
about the IRP (operation, file name, etc.) and the return value from the
dispatch routines

• completion of the request

• start and end of a completion routines, including its return value

• start and end of deffered procedure calls (DPCs)

• start and end of interrupt service routines (ISRs)

• scheduling of DPCs

Together with the ability to explore executive objects and the PnP tree (as
covered by existing tools), this list covers the basic concepts of Windows I/O –
IRPs, DPCs, dispatch routines, interrupts and the asynchronous I/O handling
(for explanation of these concepts, see Chapter 2).

Of course, supporting any other types of events is an advantage. For example,
the tool could monitor alternative I/O paths, I/O cancellation and similar more
advanced topics.

Secondary criteria is the degree to which the method relies on internal operation
of the system that might change in the future. In an ideal case, it should be using
a stable, documented API.

The method should also be reasonably fast. This requirement is not about
exact measurements, but it only points out that we are going to monitor fairly
frequent events and the system should not grind to halt completely. However, the
tool we are writing is not meant to be used on productions systems and even a
slowdown in the order of magnitude is tolerable.

4.1 Methods

The following list is a summary of the APIs and methods that offer the opportunity
to inspect the kernel’s operation at certain points. Their documentation can be
found on MSDN (with the exception of the code instrumentation approach). The
methods presented here are used by the existing tools described in the Chapter 3.
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Debugger can be used to set-up breakpoints in the functions we are interested
in. WinDbg offers an API to access its debugging engine. However, this would
bring in the requirement of two computers.

Additionally, even when using the relatively fast Ethernet connection, WinDbg
can respond slowly even during regular debugging. It is not certain if it could
handle monitoring frequently-called functions.

+ anything can be monitored

+ stable, documented API

− speed

− common debuggers require two systems

Event Tracing for Windows API can be used to record predefined events in
the kernel such as disk access, file access, interrupts, DPCs or Network IO. This
API is used by the Event Viewer and logman tools. It is also used by Process
Monitor for logging network access.

However, the set of events is limited and new ones can not be added to an
existing kernel code. As an example it is able to report the execution of a DPC,
but it is not able to distinguish when it was scheduled, entered and left.

+ stable, documented API

+ designed to be very fast

− no detailed events about request handling

− only some informations about interrupts and DPCs

Callbacks are provided at certain points in the kernel to monitor and alter
system activity. One function to register callbacks is ObRegisterCallbacks for
monitoring thread and process operations. Similar API is provided for registry,
called CmRegisterCallback and for file-system requests, in the form of file system
mini-filters.

These APIs are used by Process Monitor to capture information and are fully
documented. However, there are not any callbacks for other events (like ISRs,
DPCs and dispatch routines).

+ stable, documented API

− only events related to file and network access

− no detailed events about request handling

− no events for ISRs and DPCs
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Filter drivers are drivers inserted above or below the driver in the driver stack.
All I/O requests targeted to the driver will hence go through the filter driver.

One of the ways to accomplish this is to convince PnP manager to insert the
filter driver. This change will only be applied after the system is restarted or the
device is reconnected. Additionally it can not be used for devices not managed by
PnP manager, like file-systems or non-PnP capable devices.

Another way is to rewire the device stack ourselves, which is prone to race-
conditions and bugs, because device objects are not meant to be attached to the
bottom of an existing stack, only to the top.

Finally, it does not solve the problem of monitoring DPCs and ISRs.

+ stable, documented API

+ events for completion routines and dispatch routines

− may be difficult to install for all devices

− no events for DPCs and ISRs

Dispatch routines provided by the driver can be replaced with our own.
Pointers to the driver’s dispatch routines are stored in its DRIVER_OBJECT. These
function pointers can be replaced by pointers to our functions, which will collect
the events and call the original dispatch routines.

IrpTracker is probably using this technique, but reverse engineering would be
needed to prove this.

Since Deferred Procedure Call routines are registered with the system in a
similar way to driver dispatch routines, they could also be replaced. However,
unlike the DRIVER_OBJECT structure, which can be found through the Object
Manager namespace, the corresponding KDPC structures are scattered through
memory and can not be easily found.

ISRs are stored in a global table called IDT and can be replaced there. However,
on 64-bit systems, this table is monitored for unauthorized modifications, by a
mechanism known as PatchGuard.

+ unsupported, but not likely to change

+ events for completion routines and dispatch routines

+ can handle interrupts, but with problems

− no events for DPCs

Code instrumentation Kernel’s code can be modified (instrumented) to insert
our own monitoring points into the existing code. This is exactly what tools like
Fay [22] and NTrace [23] do. This means rewriting the machine code of individual
functions, either in memory or on-disk, to invoke additional monitoring code.

This is naturally not supported by Windows and code changes in future version
may make the instrumentation method fail. Moreover, 64-bit Windows include

41



a mechanism called PatchGuard, designed to catch precisely these unsupported
kernel modifications.

Code instrumentation also offers versatility similar to a kernel debugger,
because it is not limited to pre-defined set of events, but can be easily extended
to monitor new functions.

+ the set of events is extendable

− undocumented and unsupported

− interferes with PatchGuard

4.2 Conclusion
Unfortunately, the supported APIs (with the exception of a debugger API) are
limited. For example, none of the supported methods can monitor the scheduling,
start and end of a deferred procedure call.

Using a debugger for monitoring the execution of the code would probably be
a performance problem. WinDbg is barely able to keep up with regular debugging,
and it would probably slow down the system to an unusable rate if breakpoints
were placed on the code we need to monitor.

So if we really want our tool to show all the events, the only suitable method
is code instrumentation. Its biggest disadvantage is that it is unsupported and
Microsoft has even taken active measures to prevent unauthorized kernel modifica-
tions, in the form of PatchGuard protection. However, there are ways to combat
PatchGuard (will be discussed in section 5.4.5) and we feel that the flexibility
offered by the code instrumentation method outweights this disadvantage.

The ability of code instrumentation to monitor any function means that we
can later extend our tool with new events, if we discover the need for it. It will
also be extendable by the user, who will be able to define new kernel functions to
monitor. This will give him/her the full power of a function tracer, like NTrace,
and will make the tool more useful to driver developers.

Because our tool will use similar approach to other function tracing tools, we
have decided to name it WinTrace. This name will be used to refer to the software
in rest of the thesis.
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5. Instrumentation
WinTrace, our tool for monitoring I/O requests, needs to record I/O related
events inside the kernel. In section 4.1 of the previous chapter we have shown that
no documented API suits our needs and we will need to instrument the kernel’s
code.

First, it needs to be clarified what does code instrumentation mean in context
of our tool. One of the meanings of this term is the complete rewriting of the
machine code, for example for the purpose of program analysis or profiling (this
is done by libraries like name PIN [25] or DynamoRIO [26]).

WinTrace needs more limited form of instrumentation than defined above:
Chapter 4 has specified the that should be monitored and all of them correspond
to either an entry to kernel function or its exit. For example, one of the monitored
events is the dispatch routine entry, which corresponds to the IofCallDriver
function entry.

Thus, the only requirement for our instrumentation method is that it must
be able to intercept function entry and exit and call a function that will record
this event. This is also often called hooking and the called functions is called hook
handler. These term will be used in the following parts of the text.

There are three main decisions that must be made regarding the instrumenta-
tion component of our tool. First, the right way of hooking the functions, suitable
for kernel environment, must be chosen and implemented. We will look at available
libraries and common hooking methods. Second, a set of kernel functions that
will be hooked must be selected, in a way that will allow monitoring of all needed
events. Last problem is choosing an appropriate way of storing those events.

5.1 Libraries

In this section, we will present two libraries for hooking functions. More libraries
exist, but they are not prepared to work in the kernel environment that has
different APIs and restrictions compared to the user-mode.

For this reason, we have selected only libraries that explicitly advertise kernel-
mode support: Detours and EasyHook.

5.1.1 Detours

The best-known library for hooking on theWindows platform is called Detours [30],
developed by Microsoft Research. Unfortunately, the free version supports only
32-bit processors and does not work in kernel mode.

However, a kernel mode port is provided in a third party version by Vito
Plantamura [31], but it does not support 64-bit machines at all.

5.1.2 EasyHook

A self-proclaimed replacement for Detours is the EasyHook [32] library. It provides
additional features, like managed C# API, algorithm for avoiding deadlocks and
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most importantly support for kernel-mode hooking. It is available under LGPL
license and supports both x86 and x64.

However, it looks like the kernel-mode hooking support is a second-class citizen.
We have tested this library, specifically we took the test distributed with the
library and modified it slightly, just to test if the kernel can really run with a
hooked function. Unfortunately, the tested function was not hooked properly and
the kernel crashed.

This is a design problem: EasyHook allocates memory during the redirection
of the execution from the hooked function to the hook handler. This is fine in user
mode, but memory allocations in kernel-mode may fail if IRQL >= DISPATCH_LEVEL.

Furthermore, EasyHook is not able to intercept recursive calls, this is again a
design decision. Since lot of the functions we want to monitor can call themselves
recursively (such as dispatch functions), EasyHook would have to be heavily
rewritten to fix the problems and make it suit our needs.

5.2 Methods
Because both Detours and EasyHook libraries are not suitable for our purpose,
this section will cover what techniques can be used to hook methods without
them.

The methods presented in this section are commonly used for writing rootkits
and other malware. The Phrack Magazine (http://phrack.org) offers lot
of articles on this topic, for example NTIllusion: A portable Win32 userland
rootkit [27]. The methods are also used by software like NTrace [23] (hotpatching)
or Linux tracing backend – KProbes [24] (breakpoints, prologue overwriting) and
Detours and EasyHook themselves (prologue overwriting).

5.2.1 Breakpoints

The first technique relies on mechanism used by debuggers to pause the executing
program at certain location. When a debugger sets a breakpoint, it does so by
overwriting the program code with an INT 3 instruction. The same mechanism
can be used to hook a function entry and exit. To do that, INT 3 instruction
needs to be placed at the beginning of the function and every RET instruction
must be replaced with INT 3.

The INT 3 instruction works by causing a software interrupt, invoking interrupt
vector #3. The interrupt handler for this vector would be replaced with a function
recording the event. After recording the event, the function must also simulate
the effects of the instruction overwritten by the breakpoint and resume the code
execution.

The instrumentation itself is easy to implement, because INT 3 instruction
has one-byte opcode and thus can replace even the shortest instructions. Most of
the complexity lies in replacing the interrupt vector and writing a correct handler.
The handler must simulate the overwritten instruction. It also needs to cooperate
with the OS debugger and pass any unrecognized breakpoints to it.

The one-byte opcode also makes the hooking and unhooking race condition
free, even when other threads are running the code. If the opcode was longer, the
processor might execute partially overwritten instructions.
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5.2.2 Hardware breakpoints

There are four debug registers (DR0-3) available on Intel processors. Each of
them can be programmed with a memory address that will generate an exception
if accessed. This allows us to intercept function calls, without modifying the
function code itself.

The appeal of this method is that it is not detected by integrity checking
mechanisms like PatchGuard.

Unfortunately, the limited number of available breakpoint registers makes it
impractical to monitor more functions, which we need to do. The cooperation
with OS ’s debugging support is also problematic, because it uses the same debug
registers.

5.2.3 Import table hooking

Knowledge of the PE (Portable Executable) file format used by the NT kernel
and its drivers can be used to replace operating system functions with our own.

PE contains a structure called IAT (Import Address Table), for dynamic linking
of modules (which is how drivers are linked to the NT kernel). When the module
is on disk, IAT contains pointers to names of functions to import. The loader
resolves the imported functions and replaces the name pointers with the addresses
of the functions with that name. The module then uses indirect jump instructions
to call the imported function (such as CALL dword ptr [IAT_entry]).

To replace the hooked function, import table hooking hooking simply overwrites
the IAT entry for the hooked function with the hook handler. If the hook handler
accepts the same arguments and has the same calling convention, it will be
successfully executed instead of the original function. The address in IAT entry
is backed up and used to call the original function from the handler, to preserve
the original behaviour.

This mechanism has the advantage of being selective, with module granularity
– some modules may have their API calls instrumented, some not. However this
method cannot be used, when the call does not go thought the dynamic linking
mechanism. This is true for private (non-exported) functions, which we do not care
about, but also for calls inside one module. As an example, IoCompleteRequest
calls KeSetEvent (both exported functions), but we would not capture this call,
because it occurs inside of ntoskrnl.exe without crossing the module boundary.

5.2.4 Prologue overwriting

Another hooking strategy is to directly overwrite the beginning of the function
with unconditional jump instruction. The jump redirects execution to the hook
handler, which acts as a wrapper around the original function, but gives us the
chance to execute the monitoring code.

To preserve the behaviour of the original function, the hook handler first
simulates the effects of the previously overwritten instruction(s) and then continues
the execution in the unmodified rest of the function.

There must not be any jump to the overwritten bytes of the function, but
typical code does not jump to function prologue. Additionally, the programmer
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must be careful to pause all other threads when it is modifying the code, or a
partially overwritten instructions could be executed.

Hotpatching

Hotpatching is an ability to install software updates without restarting the
computer. To support it, Windows must be able to replace functions at runtime
and uses technique very similar to prologue overwriting, but with additional
support of the compiler and the linker.

The compiler and linker place certain restrictions on hotpatchable code, that
make hotpatching considerable easier and race-condition free. More information
about the way Windows Update applies hotpatches is available in an OpenRCE
article [34].

Prologue overwriting can take advantage of the restrictions Microsoft C
compiler and linker place on code. This will make it easier to implement and it
will avoid the need to pause all other threads.

5.2.5 Analysis

In general, IAT hooking, breakpoints, hardware breakpoints and prologue over-
writing are all suitable methods for hooking functions.

Hardware breakpoints and IAT hooking can not be used. Hardware breakpoints
are ruled out, because there are only four of them and we need to hook more
locations than that. Import Address Table hooking is not suitable, because it is
not able to intercept all calls.

The two suitable methods are breakpoints and prologue overwriting. Because
the breakpoint method requires implementing the debug exception handler and
dissecting functions to find all RET instructions, it is harder to implement. Prologue
overwriting is simpler, compared to breakpoints, especially when we take advantage
of the hotpatching support.

There are two libraries that could make prologue overwriting easier, but
Detours does not support the x64 platform in kernel-mode and EasyHook crashes.
Instead, we will implement a variant of the prologue overwriting ourselves, while
taking advantage of the hotpatching mechanism.

5.3 Implementation

The function hooking method that WinTrace is going to use (prologue overwriting)
was already described in section 5.2.4, but only in general terms.

There are lot of details that are not evident from the general description.
Because hooking is a central part of WinTrace, his section will show the concrete
code modifications that must be done. The following text should also be useful for
anyone implementing this technique, because the materials describing the system
behaviour (especially in 64-bit cases) is scattered over the internet.

WinTrace, our tool overwrites the beginning of selected kernel functions in
order to place jump to our monitoring code there. The goal of this section is to
show the exact code modifications that are performed
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The problem of code modification can be divided into two parts. The first one
is redirecting the execution, using jumps to our hook handler. The second one
is calling the original function (which is now patched) from the hook handler, to
preserve the original behaviour of the system.

The hooking method for 32-bit systems is slightly different from the method for
64-bit systems. Because 32-bit systems are easier to hook, they will be described
first.

5.3.1 32-bit execution redirection

Our hooking method relies on the fact that the NT kernel was compiled with
hotpatching support.

Functions in 32-bit executbales compiled with the /HOTPATCH switch are
guaranteed to begin with no-op instruction MOV edi, edi (this has been described
by Raymond Chen [33]). Thanks to the /FUNCTIONPADMIN linker switch they will
also be preceded with a 5 byte padding area. The layout of a hotpatchable function
can be seen in 5.1, in the left part of the diagram.

The redirection consists of two jumps. The first one is a short jump to the
padding area and replaces the MOV edi, edi instruction. The second jump is in
the padding area, which has enough space for a full 32 bit absolute jump. The
destination of the second jump is the hook handler.

MOV edi, edi

Function body

RET

NOP

NOP

NOP

NOP

NOP

Hooking  First instruction 
of the function JMP padding

Function body

RET

JMP hook handler
Hook handler

Record 
function entry

Call original function

Record function exit

#1

#2

#3

#1

#2

#3

#4

#5

#6

#7

RET#8

Figure 5.1: Execution schema for hooked 32-bit functions.

The hook handler is an ordinary C function, but it must of course have the
same signature and use the same calling convention as the original function.

The two byte no-op provided by the compiler is very important, because
the whole patching operation can be made atomic like this: first, the absolute
jump instruction is written to the scratch space. This is safe, because no code is
executing the padding. To activate the hook, the no-op instruction is atomically
replaced. This can be done, because the compiler guarantees that it will be
word-aligned.
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5.3.2 32-bit call to original

The hook handler must call the original function to retain is functionality. This
is simple with hotpatchable code, since we can be sure that the MOV edi, edi
instruction is not an essential part of the patched function. When we need to call
the original function, it can be done by calling original_function + 2bytes.

The complete execution order of individual instructions is shown in figure 5.1,
both for original and hooked functions.

5.3.3 64-bit execution redirection

Compared to hooking 32-bit executables, there are two complications for 64-bit
ones.

First, the compiler no longer provides the no-op instruction at the beginning
of every function. Instead, the compiler guarantees that the first instruction is at
least two bytes long. This behavior is not publicly documented, but it has been
noticed that compiler generated functions often contain redundant REX instruction
prefix to make the first instruction longer. It also seems to be confirmed by MASM
code sample [35] on MSDN.

Second, the padding area is not long enough for a full 64-bit jumps. The
guaranteed function padding is 6 bytes on 64-bit platforms, which is enough to
hold a 32-bit relative jump, but not a full 64-bit absolute jump.

The not-yet hooked 64-bit function can be seen in the left part of figure 5.2.
The right part shows the hooked functions and will be described in the following
text.

Overwritten
 first instruction

First instruction

Function body

RET

NOP

NOP

NOP

NOP

NOP

Hooking  
JMP padding

Function body

RET

JMP hook handler

Hook handler

Record 
function entry

Call original function

Record function exit

#1

#2

#3

#1

#2

#5

#6

#8

#9
#10

Trampoline

MOV rax, 
hook_handler

JMP rax

RET

#7

#11

#3

#4

NOP

Figure 5.2: Execution schema for hooked 64-bit functions.

The solution to the problem of small padding area is to introduce yet another
jump, in a memory allocated in the range of the 32-bit jump in the padding.
Those three chained jumps will redirect the execution to our hook handler.

Because direct jump with 64-bit immediate value is not supported on x64. We
instead use this replacement:
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MOV rax, target
JMP rax

Allocating space for this 12-byte code sequence is problematic, because the
kernel does no export any suitable function for mapping memory at arbitrary
locations in kernel memory range (in user mode, this could be done using
VirtualAlloc function). Instead of allocating memory, the surrounding memory
can be scanned for large enough function padding that can be overwritten. We
are currently not aware of any better solution.

5.3.4 64-bit call to original

Unlike in the 32-bit hotpatchable functions, where the first instruction was a
replaceable no-op, the first instruction is necessary for successful execution of the
patched function on 64-bit platforms. Before overwriting the function, we must
copy the first instruction aside and concatenate it with a jump to the second
instruction of the original function. Calling this constructed peace of code has
the same effect as calling the original function.

This is a slight complication, because in order to back-up the first instruction,
we need to know its length. This involves at least partially understanding the
instruction encoding of x64 processor. To do this, our implementation uses a
library called Hacker Disassemblers Engine 64 [36], because it is a lightweight
library with no dependencies on user-space functions.

5.4 Pitfalls

Should a reader decide to implement some of the presented hooking methods
in kernel-mode, there are few problems he/she might encounter. They are not
particularly hard to work-around (with the exception of PatchGuard), but it is
better to know about them beforehand, because some of them are hard to identify
and debug.

5.4.1 Memory protection

Kernel’s code pages are marked as read-only and modifying them will cause a
blue screen of death. One possible way to turn of this protection is to disable the
Write Protection bit in the processor’s control register, to circumvent this.

This problem might not manifest on a testing machine, because the protection
mechanism is not activated on certain configurations, namely if the kernel uses 4
MB pages.

5.4.2 Non-standard functions

Some of the functions exported by the kernel are not full-fledged functions, but
only short dynamic dispatch stubs like this:

nt.IoCompleteRequest:
JMP qword ptr [nt.pIofCompleteRequest]
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The purpose of this stub is to transfer execution to address stored in variable
nt.pIofCompleteRequest.

Most hooking methods will choke on this instruction sequence, because it does
not start with a MOV edi,edi (our hooking on 32-bit platforms), it contains a
jump (our 64-bit hooker would not recognize this function prologue) and is too
short (which would be a problem for EasyHook).

The key is recognizing these special functions and applying a work-around.
For example we find the final target of this jump instruction (stored in the
nt.pIofCompleteRequest variable) and hook that function instead. We rely on
the fact that the value of the variable rarely changes when the system is running.
Another possibility is to avoid hooking these functions altogether or make the
hook handlers do the dynamic dispatch themselves.

5.4.3 Compiler optimizations

In section 5.3 it was mentioned that the hook handler must have the same signature
and calling convention as the function we are replacing. One of the things that
the calling convention defines is the set of preserved registers, i.e. registers that
the callee may not change.

However, since the whole kernel is one module, the compiler (or its link-time
optimization phase) may apply additional optimization to calls inside one module.
For example, it may notice that the callee preserves more registers than is defined
by the calling convention and rely on this when allocating registers inside the
caller.

Our hook handler must then play by the same rules as the original function
and also preserve those registers. In WinTrace, we wrap the hook handler in a
short assembly function that takes care of saving all registers.

5.4.4 Structured Exception Handling

64-bit versions of Windows have changed the exception handling mechanism.
Functions no longer register their exception handlers in a linked list when they
execute. Instead, all exception handling data is described in special PE image
section and the operating system parses this information when it needs to handle
exception. Because this mechanism relies on the exception handling tables, it is
known as table-based model.

A programmer writing in assembly-language must generate these exception
handling tables himself for every function that may cause an exception or call a
function that may cause exception. Assemblers like MASM [35] or YASM [37]
both support a convenient pseudo-operations for generating exception handling
tables.

In our case, the assembly wrapper function responsible for saving registers
must have this exception handling data.

5.4.5 Kernel Patch Protection

Since Windows Server 2003 Service Pack 1, critical kernel data (kernel code,
service dispatch table, interrupt dispatch table etc.) on 64bit editions of Windows
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is protected by mechanism informally known as PatchGuard. This is a piece of
code that periodically checksums protected memory areas and crashes the system
if the checksums do not match with unmodified kernel data.

The dynamic instrumentation approach is in clash with PatchGuard. For-
tunately, attaching a debugger to the system disables the protection, because
the debugger needs to overwrite kernel code too. Forcing our user to attach a
debugger to the system is an unfortunate solution, considering that ease of use
and minimal configuration are one of our goals.

PatchGuard, like all software protections, can be subverted. PatchGuard is
a moving target and changes regularly with new version and service packs. An
example for subverting a recent Windows 8.1 PatchGuard is given by Positive
Technologies [28]. Unlike attaching debugger, this does not need user cooperation
(and is used by some malware). We distribute a similar utility for disabling
PatchGuard with WinTrace.

The kernel modifications can also be hidden from PatchGuard. One of
the approaches is to utilize the separate instruction and data TLBs on Intel
architecture processors. An example of this approach is the SPIDER (Stealthy
Binary Program Instrumentation) [29]. The basic idea is to mark the page with
stealth modifications as invalid and handle the page fault exception. For data
access, the page is pointed to the original contents, for execute access the page is
pointed to the modified code. The faulting instruction is then single-stepped over,
which poisons the appropriate TLB. After the instruction is executed, the page
table entry is marked as invalid again. The result is that processor will execute
modified code, but PatchGuard will not detect any checksum changes, because it
gets the original data.

Implementing some for of this advanced technique would be ideal, but is out
of scope of this thesis.

5.5 Monitoring events
The goal for the monitoring part of our utility is to be able to provide information
about at least the events mentioned in Chapter 4. This monitoring is based on
hooking, which replaces selected kernel functions with hook handlers that record
the events and call the original function.

The goal of this section is to find out what functions we need to hook to cover
all the events we want, as defined in Chapter 4.

5.5.1 Hooked functions

Often, it is evident which function should be hooked for monitoring which event.
For example the scheduling of a Deffered Procedure Call directly corresponds to
KeInsertQueueDpc function. In other cases, this may be more complicated.

Where possible we want to avoid hooking internal, non-exported, operating
system functions, because their addresses may change between different versions
and even service-packs of the OS. Finding their address would then involve
either version-specific code (generally bad idea), signature detection (fragile) or
downloading and parsing debug symbols. These problems are avoided altogether
by using only functions exported by the kernel.
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The following list describes the functions we are going to hook and why:
• KeInsertQueueDpc is used by drivers to schedule invocation of Deferred
Procedure Calls. Our tool uses it to intercept the execution of DPCs
by replacing the dpc routine supplied to KeInsertQueueDpc by its own
monitoring call.

• IoCallDriver is short function for calling the appropriate dispatch routine
of a driver. Thus all dispatch routine invocations go throught this function..

• IoCompleteRequest is used for completing IRPs. It also runs all the
completion routines registered inside the IRP structure. Our tool replaces
the addresses of those completion routines with its own monitoring code.

• HalBeginSystemInterrupt is called before the actual Interrupt Service
Routine registered by a driver is run.

• HalEndInterrupt is called just after the execution of driver-registered ISR.
Hooking these functions and replacing DPC and completion routine pointers

enables us to monitor all of the events in Section 4.

5.5.2 32-bit interrupts

There is a problem with monitoring interrupt using HalBeginSystemInterrupt
and HalEndInterrupt, because HalEndInterrupt is sometimes not called by the
operating system. We need to understand why this happens, in order to eliminate
the problem.

The inconsistency is caused by a mechanism called lazy IRQL, used byWindows
to implement its concept of Interrupt Request Level efficiently. When lazy IRQL
is used, raising IRQL does not immediately disable interrupts with lower priority.
The disabling of interrupts would require communication with interrupt-controller,
but I/O is slow. Instead when IRQL is raised, the new IRQL is only written to a
per-processor variable.

When an interrupt comes, HalBeginInterrupt first checks if the interrupt
should have been masked. If this is the case HalBeginInterrupt returns FALSE
to signal that handling of this interrupt should be aborted.

The system remembers that an interrupt was aborted and re-executes it when
the IRQL drops and the aborted interrupt is no longer masked. More detailed
description of interrupt handling on NT, based on hal disassembly, is given in the
haldisasm.md file (part of the WinTrace source). Lazy IRQL is also described in
the Windows Internals book [4], int the section 3.1.1 (Interrupt Dispatching).

So the lack of HalEndInterrupt call is explained by the fact that its counter-
part, HalBeginInterrupt, sometimes returns FALSE, thus aborting the interrupt
handling. The inconsistency can be eliminated by ignoring HalBeginInterrupt
altogether when it returns FALSE.

The missing HalEndInterrupt call would be a problem for a user going
through the events, because it gives him the wrong idea about system activity. It
would be even more serious if the events would be processed automatically by a
program, because the missing call would have similar effect to unclosed bracket
in a programming language. Since one of the proposed features of WinTrace is
automatic grouping of events, we needed to fix this.
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5.5.3 64-bit interrupt hooking

HalBeginInterrupt and HalEndInterrupt functions unfortunately do not exist
on 64-bit platforms, because the HAL (Hardware Abstraction Layer) interface is
different.

The only comparable equivalent is the kernel’s interrupt handler, a function
called KiInterruptDispatch and its sister functions like KiChainedDispatch.
These methods are registered as interrupt handlers in the processor’s IDT (Interrupt
Descriptor Table). However, they do not support the Windows hotpatching
mechanism (because they are written in assembler) and they are not exported.

Instead of hooking these internal functions, our tool actually replaces entries
in the IDT. This mechanism is not used on 32-bit systems, because the hooking
of Hal*Interrupt methods is sufficient there. Moreover, replacing the interrupt
handler in IDT requires very careful, architecture-specific implementation.

The new interrupt handler must duplicate some of the work done by regular
Windows interrupt handler, before it can safely call kernel functions. First of all, it
needs to save all registers. Then it needs to prepare the environment kernel code
expects, concretely load pointer to processor control block into the gs register (this
is done by SWAPGS instruction). The processor control block stores information
about the task running on current processor and is needed by functions such as
PsGetCurrentThreadId and KeGetCurrentProcessorNumber.

Since the goal is to also monitor the end of an interrupt, the regular Windows
interrupt handler we are going to call must be convinced to return execution to us.
This is done by constructing a replica of processor’s interrupt frame on the stack.
Processor’s interrupt frame contains information about code executing before the
interrupt has happened. The IRET instruction is used to return from interrupt
handlers and restores the state of processor from the interrupt frame. Our replica
of it, however, instructs the processor to execute rest of our monitoring code.

The downside of this approach (compared to Hal*Interrupt) is that it
monitors interrupts as seen by the processor. Because of lazy IRQL, the interrupts
are actually handled a bit differently. This may cause slight inconsistencies in the
reported events, but we are not aware of any easy fix.

5.6 Collecting events

The chosen instrumentation method (prologue overwritting) allows us to run
arbitrary code when functions are executed. This code will gather information
about the current system state (like thread id), function call arguments and
function return values. The problem is where and how to store this data.

The collection method must be able to sustain the amount of events generated
by WinTrace. WinTrace generates events for interrupts, DPCs and I/O requests.
The number of interrupts and DPCs can be measured using Performance Monitor
(part of Windows). The I/O activity can be estimated using Process Monitor [19].
Each DPC generates three events (start, end, schedule), interrupt two (start, end)
and each I/O request about 40 (dispatch start, dispatch end, completion routine
start, completion routine end, multiplied by the maximum expected depth of
driver stack – 10). The concrete numbers will vary by system and load, but it is
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safe to say it will be several thousand events per seconds1.
The amount of events gathered also makes it impossible to store them only

in memory, they need to be moved to disk eventually. Storing them in memory
would limit the length of monitoring sessions to minutes at most (depending on
the memory capacity).

The collection method must also be able to work in the restricted environment
where it may be invoked (like interrupt handlers). The method should also
take into account that it is running as a part of an arbitrary function – there
is a potential of causing deadlock or infinite recursion by calling other hooked
functions.

5.6.1 Writing to a file

A naive solution to the problems is directly using an API such as ZwWriteFile,
to store the events to a file on disk.

However, this is not possible. First of all, ZwWriteFile can not be called
during interrupts and DPCs (it requires IRQL == PASSIVE_LEVEL). Even if we
could use ZwWriteFile, its per-call overhead is too big.

5.6.2 Event Tracing for Windows

There is an API that could be used for our purpose. ETW was already mentioned
in Chapter 3 as the provider of events about disk I/O, DPCs, etc. However, other
applications including drivers can register as event providers and consumers. This
allows ETW to be used as a backend for transferring events from kernel to either
a file or user-space application.

We have tried using ETW, but we were having problems with deadlocks in
interrupt routines. According to MSDN, EtwWrite should be callable at any
IRQL, but our machine was locking up in EtwpReserveTraceBuffer, where it
was trying to acquire an already taken spinlock. For this reason, we have moved
to a custom solution.

5.6.3 Lockless circular buffer

Because the solutions presented so far are inadequate, our implementation uses a
global shared circular buffer with one reader and multiple concurrent writers.

The writers reserve space in the buffer by moving the buffer head using atomic
compare-and-swap. They write the event data into the reserved space and mark
the segment as written. If the writer notices the buffer is getting full, it signals a
buffer-is-full notification event.

The buffer is serviced by a single reader (started by the control utility) that
periodically flushes the data directly to file using ZwWriteFile API. It then moves
the buffer tail forwards, freeing up space. Moving the tail pointer forward is not a
synchronization problem, because writers relying on old value of tail pointer see
less free space and will drop the event (which is not desirable, but does not lead

1 This estimate is consistent with the amount of events we have measured once WinTrace
was implemented.
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to data corruption). Details about the trace file format and subsequent handling
of the data can be found in Chapter 8.

ETW uses per-processor buffers, which should make it more scalable than our
method. We feel that by having a single buffer, we get easier implementation, less
copying of data and better ordering of events across different processors, which
outweighs the possible performance issues.

5.6.4 Dropping events

What happens when the buffer becomes full? New events are dropped. Sadly, this
is the only sensible decision for a monitoring utility watching the very same I/O
system it uses. If the ring-buffer is full, flushing it would cause more I/O to be
generated.

Depending on the usage, some users can tolerate dropped events, while the
same trace may be useless for others. This is even more important for our tool,
that does post-processing on the data and relies on the fact that some start/end
events are balanced. A lost event about interrupt end may then cause a whole
stride of subsequent events to be considered part of that interrupt.

Our goal for the logging subsystem is to have no dropped events on a regular
system used for desktop activities (applications starting, file copying, etc.). This
is mostly a question of choosing appropriate buffer sizes.
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6. Visualization and parsing
One of the goals for our tool (WinTrace) is to present information in easily
understandable way (we have defined this goal in Chapter 1). One of the ways of
achieving better understandability is grouping the events according to the I/O
operations they are part of and providing diagrams of those operations. that the
captured events describe.

After that it first introduces the Object view, our way of visualizing the same
data. Then it explains the algorithm for extracting information displayed by the
diagrams Object view.

Apart from Object view and the chronological listing of events, WinTrace
also supports two other types of views, one based on sequence diagrams and the
other on the graphical visualization of the function call tree that both show some
information that is not evident from Object view.

6.1 Event view

The monitoring component of WinTrace produces stream of events about system
activities. The simplest method of displaying this information is to list the events
in chronological order. This is similar to they way tools like ProcessMonitor [19]
or IrpTracker [14] display their data.

An example of the event view is given in figure 6.1. The view is divided into
two panes. The left pane lists the events in their chronological order, each event
having its name and brief description. The right pane shows all the details the
instrumentation code has recorded for the currently selected event.

Figure 6.1: Raw stream of events, as displayed by WinTrace.

Showing this stream of events to the user as-is is far from ideal. One of the
problems is the interleaving of events that belong to different requests (because of
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threading and asynchronous completion). One improvement would be to group the
events by the request they belong to. It would be event better to show subordinate
requests together (such as disk I/O caused by filesystem read).

The other problem is the verbosity of the information. Even simple requests
that take advantage of the driver stack model may take screen full of events.

6.2 Object view

The goal of the object view is to solve the problems connected with event view,
while emphasizing the I/O handling concept of driver stacks.

A common way of illustrating the layered driver model is a list of driver
stack diagrams. Example of such device stack is the diagram from MSDN [38]
in figure 6.2. Each device node is represented by a block consisting of boxes
representing the individual device objects (and in turn drivers). The device nodes
are connected with arrows representing the parent-child Plug and Play (PnP)
relationship.

When figure 6.2 mentions device stack, it corresponds to our term driver stack.
Both terms are used interchangeably on MSDN.

Figure 6.2: Illustration of the device stack for USB Joystick, taken from
MSDN [38].

The driver stack diagrams display the data structures maintained by kernel
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(the Plug and Play relationship and the driver stacks), whereas we need to display
live requests. However, by replacing device nodes by IRPs and device objects with
I/O locations, we can draw very similar diagrams. Two IRPs will be connected
with arrows if one is the creator of the other.

Example of this diagram can be seen in figure 6.3. This time, we are reading
data from USB harddisk (author does not have a joystick). The upper IRP is the
original request created by user application and shows the drivers in the storage
stack. The storage stack has created two subordinate IRPs to perform the disk
reads and writes.

Figure 6.3: Illustration of the requests used to service a read from USB disk, as
reconstructed from the recorded events.

6.2.1 Threads

The driver stack diagram gives us nice overview about the participating drivers
and the IRPs, but does not show the low-level operations like invocation of the
dispatch functions and IO completion, which are available in the event view. For
example it is not possible to know, if the request was completed synchronously or
asynchronously.

To connect Object view and low-level events, so called pins (dots) are placed
near each row in the driver stack. These pins represent the operations on the IO
location: pins to the left represent the start of the driver dispatch routine, pins to
the right the end of the dispatch routine and pins in second column to the right
the completion of the location by IoCompleteRequest.

To show the order in which the operations happened, the pins are connected
by a line, in chronological order. This line starts with a marker at the top of the
diagram and represents one logical thread of execution.

In figure 6.4, we can see an example of a request with pins and connecting lines.
This time the requests do not have deep driver stacks or subordinate requests.
Instead one of the requests completes the other one.
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The application causing this behavior is Google Chrome communicating with
its tabs throught named pipes. It first tries to read from the pipe, but the request
is pended, because no data is ready yet. This first request is the one on the right.
The thread first enters the dispatch routine, but then immediately exits it. If we
were to click on the pin to the right of the READ request, we would see that the
dispatch routine returned STATUS_PENDING.

After that comes another thread (shown on the left) and starts a WRITE
request to the same pipe. The pins on this thread line are numbered for convenience.
The next thing the thread does is completing the previous READ request, because
new data has been written to the pipe. Finally, it completes its own request and
returns from the dispatch routine.

Figure 6.4: Chrome reading and writing to a named pipe.

Evaluation

These diagrams do not show the order of execution of events on different threads.
In the figure 6.4, there is actually no way to see which of the threads came first.
This is not a serious problem, because most of the time the user can infer order of
the threads from their actions – in our example the thread on the left could not
have completed the READ request, before it was started by the thread on the
right. For the actual interleaving of the threads, the user can always consult the
event view.

During testing we noticed that it is hard to follow the thread lines, especially
when they are long and tangled. For this reason several visual cues are provided,
like drop-shadows, mouse-hover effects and numbering of the pins on a selected
line. The lines are also routed carfully and only right angle intersections are
alowed. The details of the line routing algorithm will be described in section 6.4.

We are not aware of any formal name or prior description for this kind of
visualization. Compared to simple chronological listing of events it is certainly an
improvement. It is able to illustrate the driver stacks and the completion process
for IRPs, including synchronous and asynchronous completion.
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6.2.2 Interrupts and DPCs

As described, object view displays most of the information available, except
DPCs (Deferred Procedure Calls) and ISRs (Interrupt Service Routines).

Showing their execution is important, because most asynchronous requests are
completed by interrupts (indirectly via DPCs). The straightforward way is to
connect events that happen during interrupt using a line, like we do for threads
(perhaps using different color). Another line will connect the DPC events.

The problem is that the actual request completion does not happen in the
interrupt. The interrupt only reads the volatile hardware state and schedules a
DPC routine, which in turn completes the IRP. This means that no event on the
interrupt line is pinned to the IRP objects and the line would be empty.

Our solution is to explicitely show the relationship between the interrupt and
DPC by introducing a new type of block. So in addition to device stacks, we will
have DPC objects in our diagram. The pin to the left of DPC object will represent
the scheduling of the DPC and will usually be connected to the interrupt handling
line. The pin to the right will represent the execution of the DPC routine and
will always be the first pin on the line connecting the DPC events.

Example of a simple request that was completed asynchronously using interrupt
is shown in figure 6.5. This time, it is a request fetching data from the operating
systems’s paging file. There are two IRPs, the higher level one (1) responsible for
file system and partitions, the lower level one (2) responsible for the actual ATA
disk. The requests are started by a regular thread (the green line), but it returns
without completing either of the IRPs. Both requests are completed by a DPC
(the red line). The link between the DPC and the interrupt that has scheduled it
is the Deferred Procedure Call object (3), which is connected to both lines.

6.2.3 Events

A common occurence in I/O handling is the use of kernel events for synchronization.
This is typically done by a driver wishing to synchronously wait for an asynchronous
IRP. Thus, we have decided to extend object view with the ability to display this
kind of synchronization.

Blocks will be used for displaying kernel events (as they are for DPCs and
IRPs). This event block will have two pins, the one on the left will represent the
wait operation, the one on the right will represent the signalling of the event.

It is traightforward to extend the monitoring component to report these
events by hooking KeInitializeEvent, KeSetEvent, KeWaitForSingleObject
and some of their variants.

An example of a request using an event is given in figure 6.6. The Ntfs driver
passes the I/O down to lower-level drivers, but decides to wait synchronously for
result of the IRP (1) using an event (2).

The event is signaled by a DPC when it tries to complete the request. The
waiting Ntfs driver is woken up and completes the rest of the request synchronously.
If we didn’t include the event object in the diagram, the user might by puzzled.
Without it, it is not obvious how does the Ntfs driver know that the DPC routine
has completed the lower-level parts of the request.
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Figure 6.5: Page fault handling request, displayed in object view

6.3 Parsing

Object view displays various objects (IRPs, DPCs, kernel events). Thanks to
the instrumentation, we can monitor all the events needed for displaying the
information in object view. However, is not yet clear, how to:

• know which events should be on the same connecting line (in other words,
group events into threads, DPCs and interrupts),

• find the objects (IRPs, DPCs, kernel events),

• organize the objects into a parent-child relationship,

• recognize which events constitute a group of related requests that should
share one diagram.

6.3.1 Goals

The component responsible for solving this problem is called parser in WinTrace
(we do not wish to imply any similarity with the usual context-free language
parsers). The parser component reads the input events one by one, solves the
problems mentioned above and reports the visual components that make up each
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Figure 6.6: File read request, displayed in object view. Ntfs driver uses an event
to synchronously wait for completion of the rest of the request.

request diagram (without information about their layout). The diagrams are then
listed in the GUI and the user can choose which one to display.

In case events are lost, the sequence of events may appear to be nonsensical,
but the parser must be prepared for that. It is inevitable that it will display
garbage, but it should not crash under any circumstances. Ideally, it should be
able to recover over time and start showing meaningful diagrams again.

The parser must not rely on keeping all events resident in memory, because
the trace files can easily grow to hundreds of megabytes. It should instead read
them incrementally and display the requests in near real-time as new events come
in.

6.3.2 Data model

The purpose of this section is to more formally clarify what should be the output
of a parser (the previously mentioned “diagram description”). This data model
is meant to be a middle step between the raw events and a fully drawn diagram.
It contains information about the visual elements displayed by the object view –
IRPs, IO locations, DPCs, kernel events, pins and the lines connecting those pins.
It also contains the labels and colors of these objects, but does not include any
information about their positions and sizes.
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The rendering and layout of the diagram is responsibility of the object view
component. There are also performance reasons for this split, because laying out
each and every request diagram is unnecessary, considering that the user will
never view most of them.

ER diagram of the parser output is shown in figure 6.7. The most important
objects in the diagram are blocks. This is a common representation for IRPs,
DPCs and kernel events. The blocks have a name and can be hyperlinked with
the details of the underlying kernel object, if its available in Object Manager
namespace. If the block represents an IRP, it will be subdivided into block parts,
each representing the IO location. Again each block part has a label and can be
linked to a kernel object.

Figure 6.7: ER diagram of parser output.

The next responsibility of the parser is to separate events into their respective
execution contexts: threads, DPCs and interrupts. It reports those execution
contexts, the color that should be used for the connecting line and the type of
the context. Each execution context is a list of events, in the order they have
happened. In the following text, we will call the execution contexts parser threads,
or just simply threads if it is obvious from the context that we do not mean regular
OS threads.

The events themselves consist of a brief description, ID of the event (for
opening the event in event view) and the number of enclosing function calls (we
will show later, why it is useful). Events can also be pinned to the blocks (or their
parts), on either side, with additional explanation text available as a tool-tip.

Each diagram has a one event designated as a “main event”. This event is used
to deduce the name of the whole diagram and it is typically then event that has
started the first request.
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6.3.3 Parser threads

The first task we must solve is identifying the separate execution contexts – parser
threads. This is important, because the next improvements to the parser (like
reconstruction of the I/O stack) will require the ability to maintain per-thread
state.

Fortunately, each monitored event is tagged with the OS ’s thread ID, where
it happened. But as we have mentioned, OS threads do not map directly to
our parser threads. One of the reasons is that DPCs and interrupts do not have
separate thread IDs, because they execute in an arbitrary thread context.

Moreover, we do not want an OS thread to be represented by one parser
threads, but instead by multiple smaller parser threads, each containing just one
request. The parser threads can then be thought of as either DPCs, interrupts
or syscalls (the analogy with syscalls is a bit loose – the request may have been
issued by kernel mode component, in which case there is no syscall).

If we were to represent an OS thread by a single parser thread, we would
probably end up with a long thread, spanning the whole length of the recorded
events, issuing large numbers of unrelated I/O requests. Since a thread is part of
one diagram, all its requests would have to be in the same giant diagram.

These are the reasons, why the parser maintains a stack of parser threads for
each OS thread, modeling the interruption of parser threads by each other (DPCs
interrupt regular threads, interrupts can interrupt any type of parser thread). The
topmost parser thread on the stack is the currently executing one. The threads
below them are the ones that were interrupted.

New threads are pushed onto the stack, when either an event marking the
start of DPC or interrupt is spotted, or when a start of “interesting” function call
is spotted. Currently, we consider only the function IoCallDriver as interesting
– all PASSIVE_LEVEL I/O handling happens inside this function.

Symmetrically, threads are popped from the stack when an event marking the
end of DPC or interrupt is spotted. Regular threads (not interrupts or DPCs)
are popped from the stack when the interesting function exits.

However, to know that a function has exited, we must maintain a call stack
for each parser thread, changing it each time function entry or exit event is
encountered. We will also make use of the call stack we are going to maintain
later on.

To see and example of the events being parsed, look at figure 6.8. For
simplification, we assume all of the events happened on the same OS thread. The
names used for the events are the actual event identifiers, as used by WinTrace.

The parser threads are marked with colored vertical lines. If there is a line
of corresponding color to the left of the event, it means that the event is part of
that thread (and all such events will be connected by a line in object view).

The first two events, describing entry and exit from KeWaitForSingleObject
function are not marked with any color, because this function is not “interesting”.
The next event, start of IoCallDriver function, pushes a thread onto the thread
stack, and so is part of this new thread. But the three following events are part
of different thread, because the interrupt start event pushes a new thread on the
stack. The thread is popped by interrupt end, but is immediately replaced by
a DPC thread. The events after KeInsertQueueDpc:dpcexit, which pops the
DPC thread, are again considered part of the original request.
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Figure 6.8: Result of parsing a sequence of events. We assume all events in this
example have occurred on the same OS thread. Duration of threads is marked by
vertical lines.

We also show how the thread stack looks (the thread stack is actually
implemented as a linked list), just between the calls to IoCompleteRequest:enter
and IoCompleteRequest:exit.

6.3.4 Grouping requests

The next problem is to decide what an individual diagram should contain. This is
a question of finding a balance between drawing all requests in one giant diagram
and giving each IRP it’s own diagram. The latter option looks satisfactory, until
we realize that drivers often issue additional subordinate IRPs to service the
original one. As an example, refer to previously mentioned figure 6.5, where the
file-system driver uses another IRP to read from the disk. We would like the
diagrams to include at least this subordinate I/O requests.

However, saying that a request is subordinate to another is a different way
of expressing the fact that the request is the cause of the other one. In some
cases, reconstructing this kind of relationship from the recorded events is basically
impossible. This is common problem when reconstructing information from the
events, because the kernel code can communicate by means we do not monitor,
like setting shared variables. Shared variables are contrived example, but it is
common that new I/O request is issued inside a DPC routine, which in turn is
scheduled by interrupt. Finding the cause of the interrupt is not easy and multiple
request may even be serviced by a single interrupt. For this reason, the diagrams
will always be an approximation in some regards.

We have chosen another, more broad criterion, for grouping requests. This
helps us capture the cases where either the detection of subordinate I/O has failed,
or where the requests are related by other means, such as in figure 6.4.

First, we define that two requests are in a relationship, precisely if there is
a parser thread that operates on both of these requests. We can see that in
figure 6.4, the two request are related, because the highlighted thread operates on
both of them. First, it starts the WRITE request (pin 1) and then it completes
the READ request (pin 2). The relationship can be straightforwardly extended to
the remaining two types of objects: DPCs and events.
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The relationship rule is symmetric with respect to the objects and it is also
reflexive – if we know about an object, it is because some thread included an
event operating on it. When we take transitive closure of the relationship, its
equivalence classes are the sets of objects we will show in each diagram. The
threads displayed will be those threads that have touched at least one object in
the diagram.

This algorithm is able to correctly assigns subordinate I/O to the same diagram
as their cause (in majority of cases, including the one where the I/O request is
created by a DPC routine).

Objects still need to be in parent-child relationship, but only for the purpose
of organizing the diagram in a shape of a tree. A simple set of heuristics is used,
namely:

• IRP is child of the other if their dispatch routines are nested on the stack.

• DPC is child of either the IRP it completes or the event it signals.

• event is child of the request that has initialized it.

6.3.5 Identifying objects

The next requirement is to identify the different objects in the request, because we
need to show objects in the resulting diagram. However, there is another reason:
the algorithm for grouping requests (described in the previous section 6.3.4) needs
to know whether two events refer to the same object.

At first glance it looks simple, since the instrumentation can store the memory
addresses for all functions that manipulate objects. We could then assume that
if the function call uses the same memory address, it refers to the same object.
However this reasoning is flawed, because objects can reuse memory addresses.
Consider the following piece of C code:

void Foo(){
KEVENT done;

KeInitializeEvent(&done, NOTIFICATION_EVENT, FALSE);
StartWorkOnNewThread(&done);
KeWaitForSingleObject(&done, Executive, KernelMode, FALSE, NULL);

KeInitializeEvent(&done, NOTIFICATION_EVENT, FALSE);
StartWorkOnNewThread(&done);
KeWaitForSingleObject(&done, Executive, KernelMode, FALSE, NULL);

}

The code starts some work on background thread and waits for the event that will
be signaled when the work is done. It then repeats the whole process once more.

Both calls to KeWaitForSingleObject use the same memory address (&done),
but the objects they refer to should be considered separate for all practical
purposes, because they were re-initialized in the meantime. The solution is to
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notice the KeInitializeEvent call and consider the address &done as containing
a new object from that point.

Less obvious is the case of DPCs. Each DPC is represented by a C structure
struct KDPC and is initialized by a call to KeInitializeDpc. This structure
is often initialized when the driver for particular device is started and is then
repeatedly scheduled by the interrupt service routine (using KeInsertQueueDpc).
Technically, all the KeInsertQueueDpc calls refer to the same DPC object.

However, that would mean that all requests serviced by this particular driver
share a common DPC object. According to the rules for grouping requests, they
would be drawn in the same diagram.

We solve the identification of objects by tracking their states. When the object
reaches the destroyed state, it is assumed that all following functions using the
same memory address refer to a different object. We should keep in mind that a
particular definiton of object’s lifetime affects how tightly are requests grouped
into diagrams.

So, instead of equating the DPC object to the KDPC structure, it will represent
a single invocation of the deferred routine.

I/O locations

Instead of tracking lifetime of the whole IRPs, we track their individual IO locations.
State diagram of an IO location can be seen in figure 6.9. The IO location’s
life always starts with the entry to its dispatch routine (IoCallDriver:enter).
It becomes destroyed, when it has been both completed (IoCompleteRequest:
completed) and its dispatch routine has exited (IoCallDriver:exit). Syn-
chronous requests are completed first and then their dispatch routine exits,
asynchronous requests are completed some time after the dispatch routine returns
IO_STATUS_PENDING.

Figure 6.9: Lifecycle of an I/O request.

The IO locations are then represented as block parts, inside a block representing
the whole IRP. IO locations are part of the same block if their IRPs have the
same memory address and their dispatch routines are nested on the call stack.
The second rule guards against problems with re-used IRP memory addresses.
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Events

When we first implemented tracking of events, we occasionally got huge diagrams
(more than 100 requests). This is caused by drivers signaling and waiting for
kernel-wide events, which groups otherwise unrelated requests. For this reason,
we have decided to reduce the tracking to only events created inside the request.
Thus an events lifetime is defined by the scope of its enclosing function (we
optimistically assume it is allocated on the stack).

The state tracking diagram is shown in figure 6.10. The event is created by its
initialization function, KeInitalizeEvent. Since we keep track of call stacks for
all threads, we know the function executing at the time KeInitalizeEvent was
called. The kernel event is alive until this function exits. While the event is alive,
all KeWaitForSingleObject and KeSetEvent functions using the same memory
address are assumed to refer to this event.

Figure 6.10: Lifecycle of a synchronization event.

DPCs

DPC objects capture the relationship between the thread(s) that have queued
the DPC and the thread that is executing the DPC routine.

DPC is first noticed when it is scheduled for execution by KeInsertQueueDpc
(figure 6.11). After that it can be scheduled again (may happen when two
interrupts arrive in rapid succession), until it is finally executed by the OS
(KeInsertQueueDpc:dpcenter). At that point the lifecycle restarts and any new
scheduling of the same DPC will be considered as a new DPC object.

6.3.6 Sequential operation

The parser should be able to work by reading the events one by one and emit the
diagrams as soon as possible. Both tracking of threads and of object lifetimes, as
described, works this way. The problem is with grouping of threads and objects
into diagrams, which takes a transitive closure of the objects relation. However,
the equivalent result can be obtained by the following algorithm that only reacts
to new events.

The algorithm keeps set of unfinished diagrams, where each diagram is a set
of objects and threads that will be displayed in it. Each thread and object is in
exactly one diagram. The set of unfinished diagrams is initially empty.
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Figure 6.11: Lifecycle of a Deferred Procedure Call.

When a new parser thread is registered, it forms a new diagram by itself. If
the thread creates a new object, the object is added to the threads diagram. If
the threads

When a new thread is born (see Parser threads section 6.3.3), it forms a
single new diagram. If the thread then creates an object (for example using
IoCallDriver:enter), the object is added to the current activity. If the thread
accesses already existing object (KeSetEvent on a currently live event), we replace
the object’s and accessing thread’s diagrams with their union (in other words, we
merge them).

From the rules above it follows, that there is no way for a diagram to change,
if all its threads have exited and all its objects have been destroyed. Therefore, as
soon as the last thread exits or the last object is destroyed, the diagram can be
removed from the set of unfinished diagrams and shown to the user.

6.3.7 Tolerance to malformed data

The events may be “malformed”, in a sense that a given sequence of the operations
should never happen. This is most often caused by lost events, but we can not
rule out the possibility of our parser relying on false assumptions (I/O handling
in Windows can be very complex). In each case, the parser should never crash,
but that is solely a question of programming discipline and proper error reporting.
It is more difficult to make sure that the parser recovers after while and starts
producing correct diagrams again.

One solution is allowing the threads and objects to tim-eout. Any object that
is not touched for certain number of events, is forcibly moved to the destroyed
state in its lifecycle. Likewise, if no new event appears on a thread, the thread is
forcibly exited.

Sadly, this is only partial solution, since some types of malformed data can
make the parser confused for a long time. For example a lost end interrupt event
can lead it to conclusion that the interrupt thread has never ended. In the future,
we may look into imposing a length limit on threads, for example. The actual
limit values must be set in such way that they will be useful, but will not cause
problems for real-life legitimate requests.
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6.3.8 Saving the diagrams

To reduce storage requirements, we have decided not to store the diagrams
produced by the parser, but only indexing information, from which they can be
re-parsed. This also has the additional benefit of not having to design a storage
format for those diagrams.

When the trace data is parsed, we throw away all the information produced by
the parser, apart from the list of events contained in that diagram. We then store
the diagram’s first, last and main events into a separate index file. The diagram
can be reconstructed by parsing it’s range of events for a second time.

On the downside, this may cause speed degradation when the user tries to
access the diagram. But in our experience, parsing the diagram takes less time
then laying it out and drawing it.

6.4 Line routing
In the first prototype of object view, we have connected the pins using straight
lines. This made the lines hard to follow for these reasons:

• Lines can be hidden behind blocks.

• When lines intersect at small angles, it is easy to confuse them.

• More lines in the same area can create an untraceable mesh.

The problems were improved by introducing visual cues. Drop shadows make
the lines easier to follow, the same way outlined fonts can be read against complex
backgrounds (all film subtitles have outlines). The lines also react to mouse
pointer, changing their visual appearance.

6.4.1 Analysis

However, the routes the lines take must be improved. The problems we have
identified are similar to the description of ideal graph edge, taken from a paper [41]
describing the method used by Graphviz [42] package:

Though we cannot formally define what it means for an edge connecting
two vertices to appear natural, we believe good solutions avoid other
vertices in the graph, stay close to a shortest path between the
endpoints, do not turn too sharply, and avoid unnecessary inflections.

Typical diagram drawing software offers the user some form of zig-zag lines or
splines to connect the edges. Often the user is expected to find a suitable route
for the lines themselves, which is not acceptable for us . An example can be seen
in application PraxisLive, based on the NetBeans Visual Library (figure 6.12).
Edges drawn by this library do not need manual placement and are automatically
routed. Since the lines are zig-zag, they they will most likely intersect in right
angles (which is desirable). However, the lines do not try to avoid each other –
indeed, in the left part of the figure, two lines are routed dangerously close and
can be easily confused.
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Figure 6.12: Node editor in the PraxisLive applicatio, taken from Mac Softpe-
dia [43].

The Graphviz paper [41] identifies the line routing problem as a variant of
path-finding in a two-dimensional space. They solve the problem by finding a
shortest path between the two connected points and fitting a spline along the path.
However, for simplicity the authors of the paper route the lines independently,
meaning that they can not make any effort to avoid each other (the actual Graphviz
implementation may be improved in this regard).

The problem is also remarkably similar to the routing of single-layer printed
circuit board. Routing a circuit is a process of finding paths for the copper traces
connecting pins of individual board components. The common solution for printed
circuit boards is to impose a grid on the layout space and use a grid path-finding
algorithm instead. The only difference is that we want to allow perpendicular
traces to intersect.

We prefer the grid-based approach, although both come close to satisfying
the visual requirements. Since our diagrams have a high density – a larger IRP
has about 8 IO locations, each having three pins, we were worried about the
mutual line avoidance in the Graphviz approach. Apart from that, it is a matter
of aesthetic taste (zig-zag lines vs. splines).

6.4.2 Algorithm description

Grid path-finding is implemented by Lee’s maze routing algorithm [39]. The
algorithm is designed to find a shortest path from a source cell to a sink cell,
avoiding obstructed cells. In our case, the obstructed cells are obstructed by
blocks and previously routed lines.

Lee’s maze routing is a wave propagation algorithm. It’s operation is illustrated
in figure 6.13, where it tries to find a path between legs of two chips (marked s
and T ). There are two phases. The first phase begins by marking the neighbors
of the s cell with 1. The digits represent shortest distance from the cell to the
cell s. In each step, the shortest-distance information is propagated to neighbors
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of already marked cells, in a wave-like fashion, until the T cell is reached. The
digits in the figure are given distinct colors to emphasize the wave-like patterns
they form.

When the T cell is reached, a second phase, called retrace, begins. This phase
reconstructs the actual shortest path from the marked cells by going to a cell
with a lower mark in each step. This way it will eventually reach cell marked 1, a
direct neighbor of the s cell.

Lee Algorithm

• Find a path from S to T by “wave propagation”.
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Figure 6.13: Operation of the Lee’s algorithm, taken from Northwestern University
slides [40]

The algorithm is slightly modified to recognize four types of cells: free, fully
obstructed, horizontaly obstructed and vertically obstructed. The fully obstructed
cells correspond to blocks and turning points (corners) of previously routed lines.
The straight line segments are represented by horizontally or vertically obstructed
cells. This allows the wave propagation phase to find the shortest path even if it
crosses another line at right angle.

The algorithm is linear with regards to the number of cells in the grid. This
means it is quadratic with regard to the size of the diagram. To speed up routing
process for large diagrams, we make the wave not reach too far from the ideal
connection line between the source and sink. We consider the ideal connection line
between two cells to go first in straight horizontal then straight vertical direction.
This makes the algorithm O(n) with respect to the connection distance.

6.5 Additional views

In addition to object view, two other types of views are provided. They both
emphasize different concepts (call stacks and object ownership). Unlike object
view, the retain the chronological order of event view and complement it in this
regard.

Since we consider object view to be the most important and because all three
views use the same information provided by the parser, only a quick description
is given for both views.

6.5.1 Call stack view

Call stack view consists of threads organized into columns with constant spacing.
Events are drawn in the order they appear in the trace data, top to bottom, each
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in the respective column.
Each event is drawn as a circle, with its name to the right of it. The names

are indented, depending on the call stack depth.

6.5.2 Sequence diagram view

Sequence diagram is similar to call stack view, but does not show the names of
the event (unless, of course, the user hovers above the event). Instead, lines are
drawn between the columns, if there is a transfer of ownership of a block.

The transfer of ownership is deduced from the pinning of the events to objects.
An object is considered to be owned by a thread, if the last event pinned to that
object is on that thread. If an ownership changes, a line is drawn between the
new and old pinned events.

Call tree view does not display kernel objects, but threads with events laid
out in linear fashion. Each event is indented according to the call stack depth,
forming a tree.

In Sequence diagram view, threads are displayed side by side. When a kernel
object changes ownership, the handover is represented by an arrow between the
two threads.
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7. User Documentation
WinTrace is a program for helping students understand the internals of the NT
kernel. It is focused on the way NT handles I/O. It records detailed information
about the system activity (e.g. what drivers are called to handle I/O) to a trace
file and displays to the user the events that have happened.

This chapter will explain how to use WinTrace. It is structured into common
uses-cases, such as how to record system activity (section 7.2) or browse the
recorded events (section 7.4).

It also contains the explanation of the supported kernel objects and their
properties (sections 7.8). Events are not documented, because they directly
correspond to function calls and the relevant documentation can easily be found
on MSDN.

7.1 Requirements
WinTrace was tested on Windows 7 and Windows 8, both 32-bit and 64-bit version.
However, if you have 64-bit edition, extra steps described in section 7.2.1 must be
taken.

If you only plan to view existing files captured on another system, all Windows
versions higher then Windows XP SP3 are supported.

7.2 Recording

Before recording new events, keep in mind that WinTrace is highly invasive
debugging utility and it might crash the whole operating system. Save all your
work before recording any events using WinTrace.

There are two options for recording events usingWinTrace. The preferred one is the
GUI utility, wintrace.exe. A reduced-footprint console version, cwintrace.exe
is also avaialable.

7.2.1 64-bit versions of Windows

If you are running a 64-bit version of Windows, there are extra steps that must
be taken before you can successfully record system activity with WinTrace. If
you only plan to view existing events or have a 32-bit system, you can skip this
section.

WinTrace requires modification of the monitored operating system. By default,
Windows includes mechanism to prevent those modifications. This mechanism is
known as PatchGuard.

A utility for disabling PatchGuard is included in the WinTrace distribution,
in the patchguard-killer directory. Follow the included readme.txt to disable
PatchGuard on your system. After disabling patchguard, you can proceed with
the rest of this guide.
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7.2.2 WinTrace GUI

First, you have to start WinTrace GUI application, by running the wintrace.exe
file. To record system activity, WinTrace must be running with administrator
privileges.

After starting WinTrace, wait a few seconds until the “Installing monitoring
driver ...” message disappears and the “Record” button will become enabled. If
WinTrace is not running as an administrator, the “Record” button will be grayed
out and an error message shown in figure 7.1 will appear. Relaunch WinTrace as
an administrator.

Figure 7.1: WinTrace running without sufficient priviledges.

Before starting the capture, you should decide where you want to store the
events. The name of the currently opened file is shown in the WinTrace’s titlebar.

By default, WinTrace captures to a temporary file that will be deleted when
the application is closed. If you plan on keeping the captured events, choose a
location for the trace file. This is done by selecting “File → Capture to...” menu
item and choosing the file. If you change your mind, you can get back to capturing
to a temporary file using the “File → Capture to temporary” menu item.

After you have chosen the location for your capture file, you can start capturing
events using the “Record” button or using the “Capture → Record” menu item.
As soon as you click the “Record” button, you should see new events the “Events”
tab and the statistics at the bottom of the screen will update.

To stop the capture, click the “Record” button again. WinTrace may still
continue with some background processing of the events, but it does not capture
any new ones. You can add new events to the capture file using the “Record”
button again.

Process ignore

By default, WinTrace does not monitor its own activity. To include events caused
by WinTrace itself in the capture, uncheck the “Capture → Ingore WinTrace
Events” menu item.

7.2.3 Console

Events can also be captured using the cwintrace.exe utility. The easiest way to
use it is just to run in it (again making sure that you launch it with administrator
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privileges). cwintrace will automatically install the driver, and start capturing
into a file in the current directory.

The file will be named trace_YYYYmmdd_hhmmss.etr (after the current time)
and can be viewed by wintrace.exe at a later time or on different machine.

To stop the capture, simply close the cwintrace.exe window, kill the process
or stop it using Ctrl+C key combination.

cwintrace also supports two command-line parameters:

• /S will enable silent mode, supressing most cwintrace output.

• /I will include events caused by cwintrace’s own activity in the recorded
events. By default, they are excluded.

7.3 Opening previous traces

Recorded events, stored in the files with an extension .etr can be viewed by
WinTrace GUI. These files are either produced by the WinTrace GUI itself or by
cwintrace.

To browse an existing file, start wintrace.exe. It does not require adminis-
trator priviledges, if you want to open existing files. Select the “File → Open ...”
menu item and choose the previously captured trace file.

As soon as you open the file, you should see events in the “Events” tab
(assuming the file is not empty) and you can start browsing them. If the file is
large, additional events will be loaded from the file in the background (reported by
the “Indexing” and “Parsing” progress bars). The contents of the “Kernel Objects“
tab will also be loaded from the file, so that you will have a snapshot of NT
executive objects matching the time when the events were captured.

7.3.1 Index file

You may have noticed that a file with extension .idx was created in the same
directory where your .etr file resides. This file speeds up the opening process
and eliminates the “Indexing” and “Parsing” phases when opening the files, so that
all your events and activities are available instantly. However, you can delete the
file and it will be recreated.

This also means that the .etr file you are opening must be located on writable
media, otherwise the .idx file can not be created and the opening will fail.

7.4 Browsing

Once you have started WinTrace and captured some events or opened an existing
file, you have three ways of looking at the information in the file, selected by the
tabs at the left side of the screen: “Events”, “Kernel Objects”, “Requests”

“Events” tab shows table of all the events that were captured. Each row in the
table shows the event’s order in the file, the type of the event (the “Event name”
column) and the summary of the event (“Details” column).
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To view all details about the event, select it in the table and it will show in
the panel on the right. If some property of the event does not fit in the table,
select it to display it in the text-area below.

“Kernel Objects” lists the named executive objects that were in the NT object
manager namespace when the file was created. It is similar to the popular utility
WinObj, but displays more details about the devices and drivers. It is controlled in
similar manner to the “Events” tab, with the difference that the executive objects
are organized into a tree. If you select and object from the tree, its details will
be shown on the right, in the same way “Events” tab shows event’s details. The
various object types and their properties will be described in section 7.8.

“Requests” does not show individual events, but instead lists the whole I/O
requests. If the user selects a request, the request will be shown as a diagram on
the right.

7.5 Understanding request diagrams

There are three ways of showing requests in WinTrace. “Objects” view focuses on
the data-structures used for I/O handling (IRPs, drivers, I/O locations), “Call
tree” focuses on the function calls and “Sequence” shows the interaction of different
threads in a form of sequence diagram. The diagram types can be selected using
the push buttons in the diagram.

7.5.1 Object view

The first type of diagram is the “Object view”. An example of a mouse I/O request
shown in object view is in figure 7.2. The main information is the three objects
that can be encountered in the diagrams: IRPs, DPCs and synchronization events.
They are shown as blue blocks (for example the “Deferred Procedure Call” block
in the diagram). IRPs also have a list of I/O locations displayed under the blue
block (in this case, there is only one I/O location for the mouclass driver). There
are no synchronization events in the figure 7.2.

The objects have brown dots (pins) on their sides. They represent the
operations on those objects. For IRPs, the pins on the left side represent the entry
into the dispatch routine and the pins on the right represent the exit from the
dispatch routine and the completion of the I/O location using IoCompleteRequest.
Similar convention is used for scheduling DPCs (left side), running DPCs (right
side), signalling events (right side) and waiting for events (left side).

The pins are connected using lines representing the execution contexts. Green
lines are ordinary threads, red lines are deferred procedures and blue lines are
interrupts. The lines connect the pins in the order in which the operations were
executed. There are also small white pins on the lines, representing other events
that have happened in the execution context (but are not linked to any object in
the diagram).

The diagram shown in figure 7.2 should be interpreted as: this request for
reading from device PointerClass0 consists of one IRP. The IRP has one I/O
location, corresponding to the mouclass driver. The dispatch routine for the
mouclass driver was called, but it has exited without completing the request
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Figure 7.2: WinTrace diagram of a mouse I/O request in object view.

(green line). Later an interrupt arrived (blue line), scheduling a DPC. The DPC
was executed (red line), finally completing the request.

7.5.2 Call tree view

The second type of diagram is the “Call Tree” view. It shows the execution
contexts (interrupts, DPCs, threads) sides by side, with events represented by
brown circles on the lines. The events are indented according to the nesting of
function in the execution context.

One advantage of call tree view is that unlike object view, it maintains the
order of the events accross different execution contexts.

The same request as in figure 7.2 is shown in figure 7.3, but rendered using
the call tree view.

NtIoCallDriver:enter
NtIoCallDriver:exit

InterruptStart
NtKeInsertQueueDpc

InterruptEnd
NtKeInsertQueueDpc:dpcenter
NtIoCompleteRequest:enter
NtIoCompleteRequest:completed

NtIoCompleteRequest:exit
NtKeInsertQueueDpc:dpcexit

TH
READ

D
PC
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T 113

Figure 7.3: WinTrace diagram of a mouse I/O request in call tree view.
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7.5.3 Sequence diagram view

The last avaialble type of diagram is loosely based on the “Sequence diagrams”.
It focuses on how the objects are handled by different execution contexts, by
emphasizing the change in the execution context currently handling the object by
arrows.

The same request as in figure 7.2 is shown in figure 7.3, but rendered using
the sequence diagram view.

NtKeInsertQueueDpc:dpcenter

NtIoCompleteRequest:completed

TH
READ

D
PC

IN
T 113

Figure 7.4: WinTrace diagram of a mouse I/O request in sequence diagram view.

7.6 Searching

Usually, the trace file contains a lot of events. If you are looking for a specific one,
say the one related to your application, it may be burried among the vast number
of other events related to the system’s other activity.

WinTrace provides highlighting feature to solve the problem. Select “View →
Highlight” and use the dialog to select the highlighting criteria you want to use.
The highlighting criteria consists of multiple filters or’ed together (new filters are
added using the “New filter“ button). Each filter matches a given type of event.

Additionally, the filter can be restricted to match only events with certain field
values. The field values you can match again depend on the event type you have
selected for the filter. The available matching operators depend on the type of the
field. Numeric fields (including pointer) can use the standart relational operators,
while strings and binary buffers can use the “Contains”, “Equal” ’ and “Not-Equal”
operators.

Also be sure to specify the correct data-type if your are matching agains strings.
For example, most NT file-paths are UTF-16 encoded and you have to select that
you are entering an “Unicode“ string , not “ASCII” string.

This dialog is shown in figure 7.5. The highlighting criteria is configured to
highlight start of dispatch routines for READ requests (function code 3) from a file
name containing chrome.

After the user sets up highlighting criteria, it can select highlighted events
using the “View → Next highlighted” and “View → Previous highlighted” menu
items.
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Figure 7.5: WinTrace highlighting dialog.

WinTrace does not offer a functionality to search through activities (request
diagrams). However, you can view activity for a given event, using the “Find
Related Activity”. Combined with event highlighting, it allows you to find the
activity you want.

7.7 Export

WinTrace can export data to be used by other programs. It can export the
recorded events into XML format and also the individual diagrams, one by one as
PDF files.

7.7.1 XML

This feature is available from the “File → Export as XML menu Item”. It exports
all the events stored in the curently opened file, in a XML format.

The exported file has the following structure:

<wintrace-export>
<events>

<event id="320906" type-id="2" type="NtIoCallDriver:enter">
<int name="ProcessId">2304</int>
<int name="ThreadId">2496</int>
<int name="Processor">0</int>
<int name="IRQL">0</int>
<!-- ... skipped some fields for brevity ... -->
<pointer name="DriverObject">0x85d0c4c0</pointer>
<int name="IrpStackLocation">10</int>
<utfstring name="FilePath">\tmp\bench.fio</utfstring>

</event>
<!-- ... rest of the events ... -->

</events>
<wintrace-export>

WinTrace internally supports five types of event properties, exported as
following tags:

• pointer – contains hexadecimal integer, with 0x prefix.
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• int – contains decimal integer

• string – contains text.

• utfstring – contains text.

• buffer – contains hexedecimal representation of the data, each byte with
0x prefix.

7.7.2 Diagrams

Individual diagrams can be exported using the “View → Export request diagram”.
It exports the diagram currently displayed in the “Requests“ tab.

The diagram is exported as vector graphics, in PDF format. The resulting file
contains the whole diagram, not just the part currently displayed on screen.

7.8 Kernel objects reference

This section describes the supported executive objects in the “Kernel Objects” tab
and explains their properties.

All executive objects have the following properties:

• TypeName – the type name of the object, as defined by the NT kernel

• Path – complete NT path to the object

• HandleCount – number of handles referencing the object.

• ReferenceCount – number of kernel pointers and handles referencing the
object.

• Pointer – the memory address of this object inside the kernel.

The last three properties (Path, HandleCount, ReferenceCount) may not
be displayed for some objects (mostly devices). This is caused by technical
limitations inside WinTrace. The HandleCount and ReferenceCount properties
have nonsensical value on 64-bit systems. For explanation of these values, see The
Case Of The Bloated Reference Count article [44].

For devices, drivers and symlinks, WinTrace can display additional properties.

Devices

WinTrace can display additional properties for executive objects of type Device.
Since devices are represented using DEVICE_OBJECTs, WinTrace can display

many of its properties: DeviceReferenceCount, Flags, Characteristics,
AttachedDevice, NextDevice and DriverObject. For their explanation, see
the MSDN documentation of DEVICE_OBJECT.

For faster navigation through the device stack, WinTrace also displays a
property named TopmostDevice. This is link to the topmost device in the driver
stack.
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Driver

Driver objects are represented by the DRIVER_OBJECT structure. It contains
the linked list of devices managed by the driver. This list is shown as the
ManagedDevices property.

As with devices, there is the second list, called TopmostDevice, that contains
the topmost devices in the managed device stacks, for easier navigation.

Symlinks

The only additional property displayed for symlinks is the target NT path,
displayed in the property Target.
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8. Developer Documentation
WinTrace is composed of several cooperating components. The most user-visible
one is its GUI executable, named wintrace.exe. It can capture the monitoring
data, display it and draw request diagrams.

The GUI cooperates with a driver, named tracedrv32.sys (or for 64-bit
systems tracedrv64.sys). It is the core component that actually records the
monitored events and transfers them to the GUI, where they are further processed,
before being displayed. The driver is used, because it runs in kernel memory and
so can do the hooking described in Chapter 5.

Instead of using the GUI, the user can choose to use the console version of
WinTrace, called cwintrace.exe. This version is very lightweight, but can not
display the events, it is only meant to capture them, to be later displayed by
WinTrace.

Both utilities rely on a shared component, called etr (event trace) library.
This is a static library, responsible for the communication with the driver and for
accessing the files used by WinTrace. You can see in figure 8.1 how the various
components fit together.

tracedrv32.sys NT Kernel

WinTrace GUI

ETR Library

WinTrace console 
application

ETR Library

Event flow

Hooking

Figure 8.1: The major components of WinTrace.

The chapter will first describe the general organization of the project – its
technologies and its directory organization. Before describing the individual
components, the central piece of the WinTrace must be covered – the events and
how are they stored in a file and memory. The individual components will be
described in the order of their dependency on each other – first the driver, then
etr, GUI and the console app)
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8.1 Technologies
WinTrace is written in C and C++ and built with Microsoft Visual Studio 2013
compilers (but other versions should work too).

The kernel driver is written in pure C, a traditional choice for writing kernel
drivers. It uses a lightweight third-party disassembler library, called Hacker
Disassembler Engine [36], to correctly hook functions.

The userland components are written in C++. WinTrace uses the Qt library for
displaying its GUI. The etr library and the console executable (cwintrace.exe)
intentionally avoid using the Qt framework, to keep their footprints smaller.
Another library used by the WinTrace GUI is SQLite 3 [46], for indexing the
trace files and keeping other information facilitating random access.

WinTrace uses two build systems, for the kernel and userland components.
The kernel components are built using Visual Studio project files. QMake build
system is used for the userland components, because it is the easiest way to build
Qt-based applications. It is used even for the components not linked to Qt.

The last piece of the build process is the evtgen.exe utility. It takes XML
descriptions of the events and generates code for both the kernel mode component
(that captures the events) and the WinTrace GUI (that displays the events). The
use of evtgen utility and the build process will be discussed in Chapter 9 in more
detail.

8.2 Directory organization
The directory structure reflects the organization of components inside theWinTrace
project.

/ cwintrace – console utility for capturing data

/ etr – shared library for access to trace file

/ tracedrvcomm.h – the definition of the communication interface be-
tween the driver and the application

/ events – XML definitions of events

/ evtgen – utility for generating driver and kernel code from the event XML
definitions

/ gen – files generated by evtgen

/ tracedrv – the hooking and monitoring driver

/ hooks – code for hooking functions

/ disasm – Hacker Disassembler Engine

/ capture – ring buffer implementation, code for listing the executive
objects and other code used by the monitoring code

/ tracedrv.sln – Visual Studio driver build file

/ wintrace – GUI utility

/ dist.cmd – helper script for copying build artifacts to one directory
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/ evtgen.cmd – helper script for running evtgen

/ wintrace.pro – QMake project for cwintrace, etr, evtgen and wintrace

8.3 Events
WinTrace monitors lot of activities in the kernel. The descriptions of those
activities are called events and are the backbone of WinTrace.

Events are produced by the monitoring code in the kernel, each time a hooked
function is executed. They include the processor id, thread id, process id, IRQL
and the type of the event (e.g. interrupt start, dispatch routine called). In
addition to these fields common to all events, each type of event has its additional
information (e.g. interrupt vector number for interrupt start).

The supported types of events are described by XML files in the events
directory. Each XML file describes what function to hook, the monitoring code
(code run before and after the hooked function) and description of the events
produced by the monitoring code, including the additional information about the
events.

Our utility, called evtgen.exe reads those XML files and generates the
hooking code for the driver (gen/kernel_hooks.c). It also produces the code
necessary for parsing and displaying the events in the WinTrace UI (this code is
in gen/client_hooks.c). This enables us to keep event definitions at one place,
instead of splitting them across the GUI that consumes them and the driver than
generates them. The detailed description of the XML will be described later, in
Chapter 9.

During their lifetime, events are stored at various places. When events are
created, they are first stored in a ring-buffer in the driver component. The client
application (GUI or console) periodically issues IOCTL requests to the driver,
flushing all events from the ring-buffer to a file. The GUI reads the events from
this file when it needs to display or process them.

8.4 File format
To store the event data, a file format must be defined for the storage of events.
The file format must support both random access (used by the GUI ) and very
fast appending of new data to avoid losing events when capture is in progress. To
support these two contradictory goals, we have decided to actually use two files,
each designed for one of the goals: trace file, containing the events and index file,
providing random-access.

This section will only describe the trace file. The index file is only used by the
WinTrace GUI and will be described in the section covering the GUI component.

8.4.1 Trace file

The events collected by the kernel are stored directly in trace file, a binary log
with extension etr. The file starts with a simple header (struct Header in
etr/traceile.cpp), containing signature, architecture of the system where the
data was captured and version of the file.
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The architecture (32-bit vs 64-bit) defines the sizes of some fields in the
following parts of the file. WinTrace GUI is able to read both 32-bit and 64-bit
versions of the file, regardless of the system it is running on.

8.4.2 Executive objects

After the header follows dump of all NT execuive obejcts at time of the file creation.
They are used to provide WinObj -like capabilities in WinTrace GUI and also to
show object names instead of pointers in the listing of events in the GUI.

The file format of the executive objects is defined in diagram 8.2. All objects
start with a common header. The first field is the length of the following data.
After that follows the object path (i.e. \GLOBAL??\C:), the type of the object and
a flag specifying if more data follows.

4/8 B Topmost Device

4/8 B Driver Object Pointer

4/8 B Next Device Pointer

4/8 B Attached Device Pointer

4 B Characteristics

4 B

Pointers to Topmost 
Devices

2 B

Pointers to Managed 
Devices

2 B Devices Length

Topmost Devices Length

2 B Target Length

Target
(UTF16)

4 B Device Reference Count

Device Flags

4 B Reference Count

4 B Handle Count

4/8 B Pointer

1 B Has More details?

Object Path (UTF16)

2 B Object Path Length

2 B Object Type Length

Object Type 
(UTF16)

Optional
part

Driver

SymbolicLink

Device

4 B Object Data Length

Figure 8.2: On-disk format of the supported NT executive objects.

The path and type strings are stored in common format used throughWinTrace.
The first two bytes specify the length of the string in bytes (not characters). After
that follows the string characters encoded using UTF16 encoding, without any
zero termination.

If the object’s “has more details flag” is set (this flag is not be set, if the object
could not be opened by the driver), the following data is the pointer and reference
counts. If the objects is either device, driver or symlink, it has even more extended
information, as defined in the diagram.

The end of executive objects listing in the file is marked with a special object
of length zero. After that follows the captured events.
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8.4.3 Events

The remainder of the file contains only the events themselves. Each event consists
of event header and data. The header is defined as the following C structure:

struct Header{
uint16_t size; // size of the whole event, including this header
uint16_t processor; // index of processor on which the event occured
uint16_t irql; // Interrupt Request Level at the time
uint16_t typeId; // type of the event, as defined in gen/client_hooks.h
uint16_t pid; // process ID
uint16_t tid; // thread ID

}

After the header follows the actual payload, consisting of individual event
fields, specific to the given event type. Each event field may be either UTF16
string, ASCII string, binary data or number. Numbers are stored as 32-bit or
64-bit big-endian values, depending on the platform. Strings and binary data
are stored as 16-bit length with the binary data immediately following (the same
format as used in executive objects).

Although the events in the file are not explicitly numbered, we use their order
in the file as IDs. By convention, the first event in the trace file has ID = 1.

8.5 Driver

WinTrace relies on a driver to provide its monitoring and object inspection
capabilities. The driver is built in two version, 32-bit and 64-bit one, from a
common source. The correct driver version is loaded by WinTrace when it is first
started.

The WinTrace GUI or console applications communicates with the driver by
means of a virtual device named \GLOBAL??\TraceDrvMff. This device handles
IOCTLs for starting and stopping the monitoring, reading the events, listing
executive objects, querying the driver version and changing settings. The list of
IOCTL codes and related command structures are in the file etr/tracedrvcomm.h.

The core of the driver is the main.c, which calls in to the various components
of the driver, when IOCTLs arrive. The components can be seen in diagram 8.3.

The core components are the executive object lister, hooking engine, event ring
buffer, special hooking component for interrupts (only used on x64, see section 5.5.3
for details and the component maintaining the currently ignored process.

The above mentioned components in turn rely on other helper components,
namely the library for in-memory I/O (buffers), the third-party disassembler
and the list of functions to hook along with their hook handlers (generated by
evtgen). The monitoring and hooking code also has two special memory allocating
requirements. The first one is allocating memory during DPCs (ExAllocatePool
does not support this) and the second one is allocating memory in 32-bit range of
some other address (used for hook handler trampolines on 64-bit systems).

The following text will describe the top-level components, in the diagram’s
order, along with the components they rely on.
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Figure 8.3: Components of the driver. Arrows denote dependencies.

8.5.1 Executive object listing

The file capture/query_objects.c supports listing of a given NT object manager
directory and storing the list of encountered objects in a buffer. The format of the
provided information is the same as the format of objects in trace file (described
in section 8.4.2).

To write the object information into the buffer provided by the user application,
WinTrace uses the file etr/buffers.c. This file provides functions for reading
and writing to binary streams (similar to C#’s MemoryStream).

8.5.2 Hook engine

The key part of the driver is the hooking engine, that implements the hooking
methods described in Chatper 5. The API is provided in file hooks/hooks.h
and revolves around the FUNCTION_HOOK structure. User of this API allocates
memory in non-paged pool for the FUNCTION_HOOK structure, initializes it using
InitializeHook, giving information about the function to hook and the hook
handler.

After that, the hook can be activated and deactivate at any time, using
ActivateHook and DeactivateHook. The hook engine automatically takes care
of choosing the appropriate hooking technique for the current architecture. The
caller must be prepared that the hook activation and deactivation may fail, for
example because of unusual function code.

The architecture-independent hook management functions (like initialization,
getters, setters) reside in the hooks/hook.c file. The functions doing the hooking
itself, that is ActivateHook and DeactivateHook are architecture specific and are
in the hooks/hook32.c and hooks/hook64.c files. These files also rely on short
assembler stubs (for saving registers), implemented in hooks/hook_stub32.asm
and hooks/hook_stub64.asm. The project’s build settings ensure that a correct
file gets built for the target architecture.

The hooking needs to rewrite code, however, code segments are typically write
protected. hooks/write_protection.c file exports functions for enabling and
disabling write protection on the processor.
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On 64-bit systems, the hook engine also needs to partially disassemble the
hooked function. The third-part Hacker Disassembler Engine 64 is included in
the disasm directory in source code form.

Another problem that the 64-bit hook engine needs to solve is the allocation
of memory for a full 64-bit jump, which does not fit in the function’s padding.
The memory for this trampoline must be in the range of the 32-bit jump in the
functions padding. This support is realized in hooks/near_memory.c.

To find a suitable place for the memory allocation near another address,
the driver obtains a list of loaded kernel modules and find to which one the
given address belongs. It then tries to allocate memory before this module, using
MmMapLockedPagesSpecifyCache and keeps track of this memory, for deallocation
and sharing with other trampolines.

8.5.3 Hook definitions & handlers

The hook handlers are generated from the XML definitions by evtgen. They are
placed in the gen directory, in file named kernel_hooks.c. This files contains
the list of functions to hook, along with their hook handlers. The main.c file can
then correctly setup FUNCTION_HOOK structures based on information in this file.

The hook handlers contain some boilerplate code needed to do process filtering
and call the original function. They also include code segments from the XML
definitions, to be executed before and after calling the original function. These
segments collect the needed information and post events to the ring buffer, using
the EventPost API from capture/event_buffer.h.

One of the common requirements of the hook handlers is to replace callbacks
with a hooked version. As an example, consider this function for scheduling DPCs :

KeInsertQueueDpc(PRKDPC Dpc, PVOID arg1, PVOID arg2)

Apart from monitoring this function, we want to know when the DPC was even-
tually executed. To do this, we replace the KDPC->DefferedRoutine callback, so
that our own code is run. However, our monitoring code needs to execute the orig-
inal function, with the two arguments originally provided to KeInsertQueueDpc.
To pass this information using the arg1 pointer, memory needs to be allocated,
but ExAllocatePool can not be used, because the IRQL is probably too high.
Instead, atomic lookaside list defined in capture/dpc_buffer.c is used.

8.5.4 Event ring buffer

The ring buffer for storing events is provided by file capture/event_buffer.c.
It supports multiple concurrent writers, without locking (using only atomic
operations).

If a hook handler wants to post event to this buffer (and does not want to use
the macros generated by evtgen), it can use the EventPost API. This calls takes
an array of EventField structures, each field describing memory location and its
size. The memory locations’ contents will be stored to the ring buffer, along with
data common to all events: process id, thread id, processor id and IRQL. Special
version of this API for interrupt routines, with explicit IRQL parameter is named
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EventPostExplicitIrql (remember that IRQL during interrupt handling may
not be reliable on some platforms).

Second set of routines is provided for the readers of the buffer and for setting
and tearing it up. The driver has two options of reading the buffer (both exposed
to the userspace using IOCTLs). ReadOutEventBuffer copies the events from the
buffer to caller-supplied memory and returns the number of copied events, their
size and number of dropped events since the last call. This is a legacy mechanism
used by older version of WinTrace.

Another option is to call WriteEventBuffer. This call will write the events
directly to a file handle provided by the caller, avoiding copying the data to
userspace. WriteEventBuffer returns statistics about the events transferred in a
ReadOutResult structure. It contains not only information about event counts,
but also indexing information. This information allows random access to the
written events, without parsing them sequentially.

Both functions for flushing the ring-buffer wait for until the buffer is sufficiently
full (about one third), before flushing it. However, it waits for only maximum of
about one second. This mechanism prevents eating up of CPU by unnecesarilly
frequent flushing of the buffer, yet still keeping the UI updated at reasonable rate.

8.5.5 64-bit interrupt hooks

64-bit interrupt hooking is realized in the file idt.c. Externally, the file exports
a simple API for disabling and enabling the IDT hooks. When the interrupts are
hooked, all hardware interrupts generate events in the ring buffer.

The hooking works by going through all processors on the system and modifying
their Interrupt Descriptor Table, replacing interrupt handlers with our own. The
interrupt handler is constructed from the template in the hooks/idt_hook_64.asm
file, by filling in the interrupt vector number and the original handler.

8.5.6 Process filtering

WinTrace contains a rudimentary form of process filtering – it can exclude
PASSIVE_LEVEL events from the utility’s own process. This is to filter out
superfluous trace events capturing the WinTrace’s own activity. The filtering
must be activated be the userspace utility when it connects and is managed by
process_ignore.c.

The process_ignore.c file also contains functions for querying if a given
event should also be filtered out.

8.5.7 Reliability

Crashes in drivers usually bring down the whole system with a Blue Screen of
Death. For this reason, the driver should be able to survive the crash of the more
complicated and bug-prone controlling utility. When the handle of the controlling
device is closed, all hook are automatically removed.
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8.6 ETR Library

A small library is used for code shared betweenWinTrace GUI and cwintrace.exe.
The library is named ETR (event trace). It provides convenience classes to
manipulate the trace file and communicate with the driver.

It also contains two files defining the communication interface of the driver. The
first one is tracedrvcomm.h, it contains IOCTL numbers, event header definition
and other structures used by the IOCTls.

The second one is buffers.c and provides support for storing more complex
structures (such as descriptions of executive objects) in a in-memory buffers.

8.6.1 Driver controller

TraceDriver is a class representing the driver described in section 8.5. It provides
methods for installing, uninstalling, starting and stopping the driver.

After the client application (WinTrace GUI or console) has installed and
started the driver using the TraceDriver class, it can use the TraceCommand class
to communicate with the driver. TraceCommand describes the IOCTl request to
be sent to the driver. To actually send requests, the TraceCommand object must
be paired with TraceBuffer object, representing the buffer for receiving the data
back from the driver. The application must set-up TraceBuffer large enough to
accomodate the largest expected response from the driver.

8.6.2 Trace file

Second role of the ETR library is providing support for reading and writing events
in the trace file. The trace file is represented by the TraceFile class. It can be
used both to create a new trace file and open an existing one.

When a trace file is created, the TraceFile class can be used to write its
header. It also cooperates with the TraceDriver to list all named executive objects
and store then in the file. After the header is written, the application can use the
TraceFile instance to append new events to the file.

On the other hand, if a trace file is opened, TraceFile reads the header and
the list of executive objects stored in the file. The executive objects are passed to
the provided TraceFileObjectListener, so that they can be displayed to the
user.

While the application will only be appending new events at the end of the file,
it may be reading events from multiple points in the file, using multiple threads
(we will later see that WinTrace GUI actually does lot of background processing).
For this reason, a separate class, TraceFileCursor, is used to read events from
the file. It support sequential reading of events and also seeking. However, the
seeking is not based on event IDs, but the application must provide raw file offsets.
It is the application’s responsibility to remember the offsets.

The events are read in blocks, each block comprising several events. In the
current implementation, blocks contain exactly one event. The block mechanism
is present to support event comppression, a feature that is not yet implemented.
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8.7 WinTrace GUI

The main utility that the users will run is the Qt Widgets [45] GUI, wintrace.exe.
It can capture new events, open existing trace files and show the data in the form
of diagrams.

Conceptually, WinTrace is divided into four components, shown in figure 8.4:
the data model, providing access to the data stored in the trace file (with the
help of an index file), Qt models, feeding the tables and lists, custom widgets and
background workers.

Data Model
(TraceFileDocument, ObjectRegistry, Event, KernelObject)

Qt-compatible Model
(QAbstractItemView subclasses)

Qt Data Widgets
(QTable, QList)

Background Workers
(Indexer, Parser living on bg. QThread)

Qt Widgets and Custom Widgets
(QPushButton,  ObjectDetailsView etc.)

Trace File
(*.etr)

Index File
(*.idx)

Figure 8.4: Layers of the WinTrace GUI application.

These components communicate using regular method calls and also using the
signals and slots mechanism of Qt framework. Signals and slots behave similary to
events in C#, but have a different threading semantics that is used to implement
the background workers. For more information, see the Qt documentation topic
Signals and slots [47].

8.7.1 Data model

The data model is collection of classes that keep track of the currently opened file,
its events, executive objects and graphical diagrams (called activities internally
and “Requests” in the UI ).

The root of the data model is the TraceFileDocument class, representing the
current trace file and its associated index file. The index file is a SQLite database,
storing information facilitating random access to the trace file. The index file is
created when a new trace file, or an existing one without index file, is opened. If
an existing trace file is opened, the index file is recreated in the background, if
necessary.

TraceFileDocument manages the life-cycle of these two files and supports
the open, new, newTemporary and close operations. All other components are
connected to TraceFileDocument and listen to the closed and opened signals
(and their variants) and refresh accordingly.

TraceFileDocument itself does not keep events in memory, but only maintains
the current number of events and activities. Other components (Qt models,
custom widgets and background workers) only load the events when they need
them.

New events and activities can be added to the TraceFileDocument, because
new events may be recorded, or an existing trace file may be indexed in the
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background. TraceFileDocument keeps other components up-to date when this
happens, using signals.

Events and kernel objects

The events and kernel objects themselves are derived from class DataObject,
which in turn is derived from Cache::Object.

Cache::Object is the common base class for reference-counted objects. Even
if their reference-count reaches zero, they are not destroyed but are kept in a cache.
This mechanism is used by the UI to keep recently accessed events in memory.

DataObjects are objects that have a description and certain number of
properties (for example, interrupt vector number for and interrupt start event).
Subclasses of DataObjects may also implement methods for displaying their
description and formatting their fields in a human-readable manner.

Events are subclasses of class Event, deriving from DataObject. The concrete
subclasses of events are generated from their XML descriptions and are stored
in the gen/client_events.h file. They provide the concrete fields for the event
type and the code for custom descriptions.

When the application needs to load an event from disk, it must have its own
TraceFileCursor (from ETR library, described in section 8.6.2). Components
running on UI thread may use the special class UiTraceFileCursor instead.
It can ask TraceFileDocument to position its cursor at the wanted event ID.
Because the file indexing is not precise, the seek may end up positioning the file
a few events before the wanted one. It is the responsibility of the caller to skip
those events.

For example, if the application wants to load a new event from a file, it can be
done like this:

size_t block_size, current_id;
// ask the TraceFileDocument to position the file
traceFileDocument->seekToEvent(traceFileCursor, EVENT_ID, &current_id);
while(true){

cursor.readBlock(&block_size); // read a next block of events
for(size_t i = 0; i< block_size; i++){

if(current_id++ == EVENT_ID)
return Event::createEvent(traceFileCursor, traceFileDocument->is64();

else
// skip events until we find the one we want
traceFileCursor->readEvent(NULL, NULL);

}
}

The event’s properties (or properties of any DataObject) can be accessed like
this:

printf("Irp = 0x\%p\n", evt->number(NtIoCallDriver_enter::Irp);

The executive objects are also represented as DataObjects, they are instances of
KernelObject class. Unlike events, they are kept completely in memory, because
there is a limited number of them. Other then that, they work similarly to
events. The class responsible for keeping track of them is ObjectRegisry, part of
TraceFileDocument. Unlike events, their classes are not generated from XML,
but hard-coded in the file NtObject.h.
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Since both events and executive objects are derived from DataObject, they
can be searched using the same mechanism. The ObjectQuery class is used for
finding DataObjects that meet certain criteria. It enables the programmer to
write a set of conditions over the object fields, like “PathName contains Windows”.
It also comes with an UI class FilterDialog for constructing these queries using
drop-down lists. It is used for highlighting events and for resolving pointers to
symbolic events.

8.7.2 Background workers

Most of the monitoring operation of WinTrace takes place in background. This
consists of the recording of events, their indexing and parsing. The background
workers are tied to the TraceFileDocument and update it as a works gets done.
The changes in TraceFileDocument then propagate to the UI.

There are four background worker classes in WinTrace:

• CaptureProvider – installs and starts the WinTrace driver, flushes the
driver’s ring buffer regurarly using IOCTL.

• OnlineIndexer – fills the events table in the index file, as new events are
captured.

• ActivityParser – parses the newly indexed events, grouping them into
activities and storing them into the activities table.

• FileIndexer – reconstructs the events table in the index file by reading
the trace file.

Each of those workers is derived from QObject and lives on a separate
background QThread. They react to changes in the TraceFileDocument (opening,
closing, new indexed events) by starting and stopping their background work.

In figure 8.5, you can see how the workers cooperate and process the events.
In this case, WinTrace is capturing new events (the worker configuration is a bit
different when processing an existing trace file).

Life of an event starts in the monitoring code inside hooked interrupts or
functions. All event data is gathered and written to the lockless ring-buffer (5.6.3).
If the buffer is full, they are dropped. The format of the events in the ring-buffer
is the same as the on-disk format in trace file.

The user modeWinTrace application communicates with the kernel driver using
IOCTLs. This is the responsibility of the CaptureProvider worker. It repeatedly
instructs the driver to flush the ring-buffer by sending it the CMD_WRITE_EVENTS
command.

The driver splits the information from the ring-buffer into two parts. The
events themselves get written to the file provided by the CaptureProvider, but
the driver also produces indexing information, consisting of file offsets of the events.
For efficiency, these file offsets are recorded only once for each 4 kB segment of
events. The indexing information is returned to the CaptureProvider. Howeover,
the information does not get immediately stored in the slot SQLite index file, but
is only queued for storage. This helps to avoid event drop, because the controller
can be fully devoted to reading the ring-buffer.
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Figure 8.5: Flow of information in the GUI application and kernel driver. Active
participants are blue, storage components are orange.

The responsibility of writing the index data to the event index (table events
in the index file) is given to another thread, called OnlineIndexer. As soon as
OnlineIndexer writes the indexing information to the event index, it informs the
TraceFileDocument that new events are available.

The information about the newly indexed events propagates to the UI, which
updates its list of events.

The newly indexed events also get noticed by the ActivityParser. It reads
the new events from the trace file and identifies which events should be shown
together in a diagram (algorithm in section 6.3.4). It stores the first and last
events in the diagram to the table activities and informs TraceFileDocument
that new activities are available. The change again gets propagated to the UI.

This was the description of WinTrace capturing new events. WinTrace can also
regenerate the index file for an existing trace file. In that case, FileIndexer sequen-
tially sequentially scans the trace file, periodically informing TraceFileDocument
about newly indexed events. The rest of the pipeline is the same.

The remainder of this section will describe the background workers in more
detail.

CaptureProvider

This is the driver’s controller and manages its installation. But, most importantly,
it is responsible for instructing the driver to flush the kernel ring-buffer to a file
periodically.
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When WinTrace GUI is started, CaptureProvider tries to connect to the
kernel driver using the TraceDriver class from ETR library. If it can not
connect, it tries to install the driver and connect again. If an error occurs,
the CaptureProvider will go into failed mode and will not allow any tracing to
happen (and the GUI buttons will be grayed out).

If the CaptureProvider has not failed, the capture of the events can be started
using the Qt slot start(HANDLE). The HANDLE is obtained from the currently
open TraceFile. When capture is started, first all hooks are enabled and then the
CaptureProvider periodically flushes the kernel buffer. Capture can be stopped
using the stop slot, or automatically when TraceFileDocument is closed.

OnlineIndexer

The CaptureProvider also obtains indexing data from the kernel, in the form
of ReadOutResult and array of IndexPoints (defined in the shared interface
tracedrvcomm.h). It queues a message to the OnlineIndexer class running in
its own background thread.

The OnlineIndexer waits for these messages and for each IndexPoint received
it creates a row in the events table of the index file. It then emits a signal notifying
the TraceFileDocument (running on the UI thread) about the addition of newly
indexed events. The EventTableModel is connected to TraceFileDocument and
will show these new events

ActivityParser

Another component listening for addition of new events is ActivityParser. It
runs when it detects that there are unparsed events in the index file (either
unparsed file is opened or new events are added to an index).

ActivityParser maintains its own TraceFileCursor for reading the new
events and feeds them to the EventStreamParser. It listens to the description of
activities by the parser and stores the ranges of events displayed in each acitivty
into the index file.

FileIndexer

WinTrace GUI can open files with missing or incomplete index. FileIndexer
is run when an existing file is opened and it seeks to the last indexed event. It
then goes throught the rest of the file using a TraceFileCursor and recreates the
missing indexing information.

8.7.3 UI and Qt models

The root of the UI hierarchy is the class MainWindow. This class is also directly
responsible for the menus, toolbar and the mode selection bar on the left. It gives
commands to the background workers and displays their status.

A screenshot of the GUI in all three modes is shown is in figure 8.6. The
classes implementing the concrete areas of the GUI have been marked and will be
described in more detail. The three modes are embedded inside QStackedWidget
to select between them.

98



Figure 8.6: Screenshot of the GUI with the responsible classes marked.

EventTableModel

QT uses the model-view concept for its classes and EventTableModel implements
the QAbstractTableModel for the event view. The model has two columns, one
displaying the type of the event, the second one displaying the description provided
by the event.

On the backed it is connected to the TraceFileDocument to keep track of the
amount of events in the file. When it needs to actually display the events, it uses
the UiTraceFileCursor to load them from the file.

Because each loading of event from the trace file means consulting both the
SQLite database and seeking in the trace file, the class uses Cache class to cache
the most recently displayed Event instances.

It reacts to the signals from TraceFileDocument about closing, opening and
adding new events to the document to keep its view up-to date.
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ObjectDetailsWidget

Part of the event view are the details of the currently selected object. They are
displayed by widget called ObjectDetailsWidget that is capable of displaying
any DataObject (and hence also Event). This widget is also used for displaying
the details of KernelObjects on the second screen.

Upper part of the ObjectDetailsWidget is a QT table displaying data from
EventDetailsTableModel . This model simply displays all fields of a given
DataObject. It can also ask the DataObject for more appropriate text for the
existing ones. For example, Interrupt Request Level values are shown including
their symbolic names, such as PASSIVE_LEVEL. It can also ask the DataObject
to provide link to a relevant KernelObject, using ObjectQuery. The property
then has link appearance and will take the user to the object described by the
ObjectQuery if clicked.

Lower part of the ObjectDetailsWidget just provides a QTextEdit area for
displaying the currently selected property and to choose display mode for binary
data.

KernelObjectTreeModel

The executive objects are displayed using QTreeView class from Qt. The under-
laying model is KernelObjectTreeModel, that connects to ObjectRegistry and
constructs a tree from the list of KerelObjects and their paths (e.g. \Device\xyz)

ActivityTableModel

Internally the groups of requests that constitute one diagram are called activities in
WinTrace. Their list is shown using QListView from Qt, with the underlying model
being ActivityTableModel. This model is connected to the TraceDocument and
uses the activities table in the SQLite index file.

The names of the activities are derived from the first events of the activity.
This model, like EventTableModel uses cache to remember the currently displayed
names of activities (in the form of Activity class). Without the cache it would
be even slower than EventTableModel, because the main events of activities tend
to be scattered across the trace file, requiring more seeking.

ActivityGraphicsView

This view shows the currently selected activity as a diagram. Because outside
this view activities only exist as a name and range of events, its graphical
representation must be reconstructed. This is done by re-parsing the range of
events constituting the activity. The parsing algorithm is factored out into the
class EventStreamParser and its operation and interface will be explained with
other Utilities classes.

The view itself is based on QGraphicsView, a scene-graph based drawing library.
Each of the displayed widgets is implemented using a subclass of QGraphicsItem.
The following graphical items are used for displaying the view:

• BlockItem – the whole block (IRP, DPC, kernel event).

100



• BlockPartItem – one text line inside the block, usually a IO location, but
the block’s name is drawn using this item too

• PinItem – either a big pin, next to a BlockPartItem, or a smaller free pin
representing an operation not related to any BlockItem

• ExplanationItem – additional text displayed as a tool-tip when user has
the mouse positioned above a pin.

• ThreadItem – displays the marker at the start of thread line and is respon-
sible for keeping track of all the pins on the line.

• ConnectingLine – a line connecting two pins (or a pin and marker). It is
composed of multiple control points, depending on how it was routed.

• Arrow – show the arrow between blocks, representing their parent-child
relationship.

• TransitionLine – arrow representing change of ownership of one object
(used in sequence diagram view)

Construction of the view’s scene is done in ActivityGraphicsView::show
and consists of following phases:

1. The activity is parsed and the blocks, block parts, pins and threads reported
by the parser are created as graphical items.

2. The blocks are positioned (as a tree).

3. The arrows marking the parent-child relationship are drawn in the tree.

4. The pins are positioned near the block parts they belong to.

5. Connecting lines are routed and drawn, using class LineRouter implementing
the algorithm described in section 6.4.

This construction sequence is valid for object view, the primary view. The call
stack view and sequence view lack some of the features like blocks and routing of
connecting lines and do not implement the respective phases.

8.7.4 Utilities and helpers

The classes described so far rely on set of utility classes to solve particular problems
we have encountered. The two most complex ones, worth mentioning, are:

EventStreamParser

The interface of the event parser (as described in section 6.3), is represented by
abstract class EventStreamParser. It uses the push parsing model. Events are
fed to the parser using parse method and it in turn calls the consumer using the
::Callback and ::SimpleCallbacks listeners.

The Callback listener gives information about all the entities defined in the
parser data model in section 6.3.2. ::SimpleCallbacks reports only the events
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that form an activity, on the grounds that the full description can later be re-parsed
from those events.

The concrete implementation of parser for NT I/O requests resides in the class
NtRequestParser. It recognizes synchronization events, DPCs and I/O requests.
It is based on the RequestParser that provides common functionality for parsing
function calls and tracking the current states of objects.

Collapsible slots

Qt offers the ability to connect signals and slots across threads. It then automati-
cally takes care of sending messages between threads when the signal is emitted.
This mechanism is well suited for controlling the background workers.

However, using this mechanism for sending the results of background workers
to the UI thread easily overwhelms the UI threads, which can not catch up with
the rate of updates and the cross-thread messages start queing.

Two classes, CollapsibleEvent and CollapsibleSlot are solution to this
problem. They provide a transport mechanism for messages where the last message
override all previous messages. An example of such message is the update of the
number of indexed events. These two classes then take care of discarding old
messages if the UI thread becomes overwhelmed.

8.8 Console utility
cwintrace.exe is a utility for capturing the trace files, but without the capability
to display them. It does not even generate index files, since they can be recreated
by the GUI.

cwintrace.exe delegates most of its functionality to the ETR library. It
installs the driver using TraceDriver, initializes the TraceFile, dumps the NT
manager objects to it and starts collecting events using TraceCommand.
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9. Customization
WinTrace can be extended (at compile time) with new types of hooked functions
and events. This is done using XML files defining the functions to hook and the
structure of the events they report.

The XML files are processed by an evtgen utility, generating C code for the
driver and the GUI.

9.1 Building WinTrace
To extended WinTrace, the code generated by evtgen must be compiled, with
the rest of the WinTrace code.

WinTrace was built with the following tools:

• Visual Studio 2013 Professional, with Windows Driver Kit

• Qt 5.3 built for Visual Studio 2013 toolchain

• Qt Creator – optional, QMake can be used instead

Open the wintrace.pro project file with Qt Creator. Qt Creator will ask
you to configure the project’s debug and release build. Select the Qt 5.3 for
MSVC 2013 (or other configuration you are using). You also needs to create build
directories. We recommand ../build/debug and ../build/release (relative to
the source directory), because these paths are used by our scripts.

Then open the tracedrv/tracedrv.sln solution file with Visual Studio 2013
and follow these steps:

1. Build Debug version of the evtgen subproject using Qt Creator.

2. Run evtgen.cmd to generate code.

3. Build all versions of tracedrv using Visual Studio (Batch Build can be used).
This includes Debug, Release, 64-bit and 32-bit (and combinations).

4. Build Debug and Release versions of the wintrace project and its subprojects
using QtCreator.

5. Run dist.cmd to gather build artifacts in the dist-debug and dist-release
directories (optional).

9.2 EvtGen code generator
WinTrace relies on code generator to generate files for hooking functions and
displaying events. These files are included in the tracedrv and wintrace projects.
The following files are generated by evtgen:

• kernel_hooks.c – list o functions to hook and the related hook handlers

• kernel_hooks.h – hook ID constants and kernel_hooks.c interface
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• client_hooks.c – list of hooks for the GUI (currently unused)

• client_hooks.h – interace for the list of hooks (currently unused)

• client_events.c – list of events, their names and their fields, code for
generating event descriptions

• client_events.h – classes representing each type of event and interface to
the event list

• driver_version.h – timestamp for the generated file version (used to detect
driver/client version conflicts)

The syntax for running evtgen is:

evtgen $source_xml_dir $output_code_dir

$source_xml_dir is the path to the events directory containing the XML
definitions. $output_code_dir is path to the gen directory, where the generated
files will be placed.

9.3 Writing a new hook

This section will describe the XML definitions of hooks. The main parts of the
definition are the description of the hooked function, definition of the events that
are produced by the hook and the hook handling code.

Each hook is defined in its own XML file and looks like this:

<hook cc="stdcall/fastcall" function="HookedFunctionName"
irql="override IRQL level">

<!-- event descriptions -->
<event name="event name">

<int name="field name 1" />
<pointer name="field name 2" />
<utfstring name="field name 3" />
<string name="field name 4"/>
<buffer name="field name 5" />
<description>description generation C++ code</desription>
<properties>properties formatting C++ code</properties>

<event name="event name">
<!-- hooked function details -->
<signature>argument list of the hooked function</signature>
<retval>return value type</retval>
<!-- hooking code tags -->
<code>C code executed before the hooked function</code>
<post-code>C code executed after the hooked function</post-code>
<additional-code>void helper_function(){ ... }</additional-code>
<include>additional_header.h</include>

</hook>

When writing hook definitions, you can check the XML for validity agains the
schema bundled in events/schema.xsd. The meaning of the tags is explained in
the following text:
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attr cc inside <hook>, optional, default: stdcall

Calling convention of the hooked function, valid values are stdcall and
fastcall. The calling convention is ignored when hooking on x64 machines.

attr function inside <hook>, required

Name of the function. This function must be exported by the kernel, as it will
be looked up by MmGetSystemRoutineAddress

.
attr irql inside <hook>, optional, default: KeGetCurrentIrql()

By default, the hook engine gets the current IRQL by calling
KeGetCurrentIrql. The IRQL is used for process filtering. However, some
hooked functions are executed at times when KeGetCurrentIrql can not be
called. In that case, use this override to supply the hook engine with constant
IRQL, like HIGH_LEVEL. You probably do not need to use this attribute, unless
you are hooking interrupt handlers.

tag <signature> inside <hook>, required

Argument list of the hooked function, in C syntax, eg.:
PVOID ptr, INT number

tag <retval> inside <hook>, optional, default: DWORD_PTR

Return value of the hooked function. Can use any valid type defined in C or
in ntddk.h, such as NTSTATUS.

tag <code> inside <hook>, required, unless <post-code> is provided

C code segment executed before the hooked function. This code will be
executed by the driver and will typically post an event about the function entry
to the ring-buffer. The functions and variables available to this code segment are
discussed in section 9.4.

tag <post-code> inside <hook>, required, unless <code> is provided

C code segment executed after the hooked function. This code will be executed
by the driver and will typically post an event about the function exit to the
ring-buffer. In addition to the functions and variables discussed in section 9.4,
this code segment can also access the retval variable (its type is defined by the
retval tag), containing the value returned by the hooked function.

tag <additional-code> inside <hook>, optional

Additional C declarations and definitions included in the generated.
These definitions and declarations will be available in code, post-code and
additional-code segments.

tag <include> inside <hook>, optional

Additional C includes. These includes will be available in code and post-code
segments.
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attr name inside <event>, optional, default event

Name of the event. The GUI will display event names prefixed with their
hook, in the form hook:event. The hook’s name is taken from the file name in
which it is defined. Because the event name is also used as a class name for the
event, it must be valid C identifier.

tag <int> inside <event>, [0..n]

Defines an integer field in the event. Integer fields can have values corresponding
to the architecture’s int type (32-bit or 64-bit).

tag <pointer> inside <event>, [0..n]

Defines a pointer field in the event. Pointer fields can have values corresponding
to the architecture’s pointer type (32-bit or 64-bit). Technically, they are alias for
<int>, but can be used for clarity.

tag <bufffer> inside <event>, [0..n]

Defines a buffer field in the event. Buffer fields can have variable length and
will be displayed as a hex-dump by the GUI (altough this can be overriden).

tag <string> inside <event>, [0..n]

Defines an ASCII field in the event. String fields can have variable length and
will be displayed as a text by the GUI (altough this can be overriden).

tag <utfstring> inside <event>, [0..n]

Defines an UTF-16 field in the event. String fields can have variable length
and will be displayed as a text by the GUI (altough this can be overriden).

tag <name> inside <field>, required

All field definitions (<pointer>, <int>, <buffer>, <string>, <utfstring>)
must have this attribute. The name must be a valid C identifier.

tag <description> inside <event>, optional, default returns the event name

C++ code for generating short summary of this event as QString. This code
will be embedded inside the GUI inside the Event subclass representing this
event. For description of the methods and variables it can access, see section 9.5.
Example:
return QString("Function xyz entered");

tag <properties> inside <event>, optional, no formatting by default

C++ code for formatting existing properties. The formatting is done
throught calling functions of the DataObject::PropertyListener provided in
the properties variable. For more information about the avaialable methods
and variables, see section 9.5. Example:

properties.add("MajorFunction",
KernelConstants::majorFunctionName(number(MajorFunction)));

106



9.4 Driver code segments
The tags code and post-code define code segments that will be included in the
hook handler. Apart from these two code segments, the hook handler function also
contains some generated boilerplate code and code to call the original unhooked
function.

The code in the code and post-code segments is guaranteed to have access to
several variables it needs. First of all, it has access to the arguments of the hook
handler (as defined by the signature tag). In addition to that, it can use the hcb
variable of type PFUNCTION_HOOK, if it needs access to this structure. post-code
segment also has access to the return value of the hooked function, in form of
retval variable.

The code tag can change the values of the arguments in order to modify system
behaviour. The post-code tag can change the return value of the function. In
both cases, be careful because it is very easy to crash the system.

Because the code segments usually post events to the ring-buffer, evtgen
provides several convenience wrapper macros around the ring-buffer API. The
fields of an event are described by an event descriptor: an array of memory
locations from which the field values should be copied (essentially a gather list).

The following macros are provided, supposing that event is an event with
field field.

• event(x) – defines an event descriptor with the variable name x.

• event_field(x, value) – fills the event decriptor field field. value
must be pointer to DWORD_PTR and must be valid until the event is posted.
Moreover, the field must be defined as int or pointer.

• event_field(x, size, value) – fills the event decriptor field field. value
must be pointer to memory buffer of given size in bytes and must be valid
until the event is posted. Moreover, the field must be defined as buffer,
string or utfstring.

• event(x) – posts an event event, with the values taken from the event
descriptor.

9.5 GUI code snippets
One of the tasks of evtgen is to generate a class for each event found in the
definitions. This class will implement methods for generating description of the
event and formatting properties, with bodies taken from the description and
properties tag.

Thus, both code segments have full access to the Event using this pointer.
The most important methods of the Event class are the number and buffer
methods, providing access to the event’s fields contents. Both methods accept field
index constants defined inside the generated class (e.g. number(MajorFunction)).

In addition to the event methods, both code segments have access to the
ObjectRegistry class, using the registry variable. ObjectRegistry holds the
executive objects and allows them to be queried using variety of criteria. This is
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usefull for resolving pointers to the object names, or linking properties to those
objects.

The central class for finding executive objects is the ObjectQuery class, con-
structed by ObjectRegistry::query. ObjectQuery consist of several conditions
or’ed together, represented by Filter class. Each Filter defines the type of
object that will be matched and a list of and’ed conditions over the object’s fields.
To actually build the ObjectQuery, you can use a fluent interface, like this:

registry.query().filter(NtObject::ktype())
.where(NtObject::Pointer, 0xFA809090).next()

The where is used to add new conditions to a filter and next is used to close the
current filter (and return the whole query). The result of a query can be obtained
using the run method. NtObject::Pointer is the field index of the memory
address field for an executive object. For other supported fields, see the generated
documentation. NtObject::ktype() returns the generic type of all executive
objects. Other supported objects are NtDriver, NtDevice and NtSymlink.

Queries often come useful when formating existing properties. This is the job
of the code inside properties tag. This tag has access to additional variable,
properties of type DataObject::PropertyListener. Through this object, it
can change the property list of an event in two ways.

First, it can add completely new property. The add method accepts the
property name and the property value. If a name of an existing property is given,
the property is overwritten (this is often used to replace enumeration values by
their names).

Second, it can link the property to some executive object. The user can then
click the property to open that object. This is done using the link method, which
takes the property name and an ObjectQuery.

If you are not sure about any details, consult either the generated documenta-
tion for the GUI or the existing definitions in the events directory.
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Conclusion
The goal of this thesis was to write a tool for inspecting the I/O system in the
Windows kernel, focused on the needs of students. Three main goals were specified
in the Chapter 1:

1. inspection and monitoring of I/O objects, offering more information than
comparable tools

2. easy and understandable representation of the information

3. minimal configuration and set-up, ease of use

Goal evaluation
Based on the analysis of the existing tools in Chapter 3, we have designed our
tool, WinTrace. It is similar to existing tools like IrpTracker [17] and Process
Monitor [19], but offers more information. Notably, we include information about
DPCs, interrupts and synchronization.

To make the information easier to understand, WinTrace formats the infor-
mation in the form of graphical diagrams. It even offers three types of diagrams,
each having different level of detail and emphasizing different concepts. This
greatly enhances the tools usability for students, who do not have to “decrypt”
the raw streams of events and make sense of it. Instead, the data can be viewed
on a request-by-request basis, graphically. Our algorithm for visualizing the data
can even find interesting relationships between requests and show them in one
diagram.

WinTrace is also reasonably easy to use. On 32-bit systems, it requires no
installation and set-up and the user only needs to click on the “Record” button.
Regretfully, to monitor low-level system activity, WinTrace must be very intrusive
and modify the running system. Thus, special precautions must be made on
64 -bit machines. Kernel Patch Protection (aka PatchGuard) must be disabled, by
using a third-party utility shipped with WinTrace. This is a slight inconvenience
for the user.

Despite this last technical problem we consider the work to be successful and
WinTrace to be useful addition the existing set of tools.

Additional achievements
WinTrace can also be useful to driver developers and other experienced users,
as a debugging tool, because an ability to extend WinTrace with monitoring of
new functions was implemented. WinTrace can be extended with new monitoring
points by writing their XML definitions and recompiling.

The thesis has also shown some of the caveats of hooking functions and
interrupts in Windows NT kernel by abusing the hotpatching mechanism and
could be used as a guide. Many articles available on the Internet are not complete
and may fail on 64-bit platforms, so this will be useful to anyone doing kernel
hooking.

109



Future work
During the development of WinTrace, we have gathered lot of ideas how the tool
could be improved, that were not implemented due to time constraints.

The most important addition would be the ability to make WinTrace more
similar to existing tracing software, like DTrace [1] or SystemTap [2]. The
difference between WinTrace and this software is that new monitoring points are
added to WinTrace at compilation time, whereas DTrace and SystemTap have
rich scripting languages that allow run-time definition of new monitoring points
(called probes in their terminology). Allowing run-time configuration of probes
would make WinTrace even more useful as a general debugging tool, while it could
retain the current easy to use GUI.

Apart from this ideas, there are lot of minor features that could be implemented:

• Make WinTrace work on 64-bit systems out of the box, ideally by masking
itself from PatchGuard using virtualization.

• Monitor communication between the hardware and the driver (io register
read and writes), possibly using virtualization to do so.

• Monitor alternate I/O paths, like fast I/O.

• Monitor API calls, like NtReadFile, to put IRPs into perspective.

• Extend the integrated Object Manager viewer with more properties and
PnP relations, to bring it on par with DeviceTree [14].

• Further improve line routing by using weighted cells to avoid concentration
of lines in small areas.

• Test the hooking implementation on bigger sample of exported methods.

• Make the file format compatible between different versions of WinTrace.

• Compress captured data transparently.
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