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Katedra: Katedra softwaru a výuky informatiky
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umožňuje vyv́ıjet organizmy, které mohou dynamicky měnit svoji stavbu těla
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design of virtual robotic creatures. First, we introduce a nature-inspired method
that allows virtual robots to modify their morphology through lifetime learning.
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Chapter 1

Introduction

As robots are becoming more widely used in today’s society, techniques used for
their design are gaining importance. Traditional methods of design where an
engineer designs both physical structure and controller of the robot are being
increasingly supplemented by automated techniques made possible by recent ad-
vances in machine learning and automated manufacturing methods such as 3D
printing. Such advances are bringing the field of robotics closer to a point when
full end-to-end automation of robot design and construction will be possible.
Once such level of automation is accomplished, the task for the human designer
will be to provide a high-level description of the tasks which the robot should per-
form and a set of constraints on robot’s body and the target environment. Both
physical structure and control system of the robot will be designed automatically
and the resulting robot will be manufactured. While this level of automation is
is still years away, many of the building blocks have already been achieved.

One of the most promising approaches to automatic robot design are methods
inspired by natural evolution. The astounding diversity and level of adaptation
of organisms found in nature is a testimony to the power and flexibility of au-
tonomous evolutionary processes. The field of evolutionary robotics is motivated
by the hope that this power can be harnessed and used for automated design of
robots as well. The fact that evolutionary algorithms can be used for designing
both body structure and behavior of simulated robots (also called virtual crea-
tures) has first been demonstrated in a landmark paper published by Sims [84]
in 1994. Evolutionary robotics has been an active area of research since then (an
overview of results achieved so far is provided in Section 2.1, a more comprehen-
sive version also published in Krčah [44]).

This thesis builds on results presented in my master thesis [40] and several
subsequent publications [41, 42, 43, 46] which introduced a new algorithm for
evolution of virtual creatures called HierarchicalNEAT (see Section 2.4 for a de-
scription of the algorithm). In 2014, virtual creatures evolved using the new
algorithm have placed second in a competition of similar projects [48] and soft-
ware developed as part of the thesis (ERO framework—Framework for Evolution
of Robotic Organisms) has since been used by other researchers internationally
for further research on virtual creatures [58, 39, 63].

This thesis contributes two new methods to the field of evolutionary robotics.
First, we study the impact of morphological plasticity on evolution of virtual
robotic creatures. Nature provides many examples where animals benefit from
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being able to adjust their morphology to the environment they are placed into.
Such morphological plasticity often allows animals to increase their chances for
survival and reproduction compared to animals not capable of such adaptation.
However, the effects of such morphological plasticity have not yet been studied
in the context of evolutionary robotics. The first contribution of this thesis is
that we show (motivated by examples from nature) that allowing robots to make
even minor alterations to their morphology during their lifetime through learning
can significantly reduce computational cost required to evolve a robot capable
of successfully solving given task. Moreover, we show that such plasticity makes
it possible to evolve creatures capable of adapting their morphology to different
environments to increase their fitness [49].

In the second contribution we address a common problem in evolutionary
robotics and evolutionary computation in general—premature convergence to a
local optimum in the search space. We show that when the problem is inher-
ently deceptive, suitable body structure and behavior of a robot can sometimes
be discovered significantly faster by ignoring the original objective completely
and instead searching for virtual creatures exhibiting any previously unseen be-
havior [45, 46, 47, 50, 51]. These results are based on a method called Novelty
Search recently introduced by Lehman and Stanley [57] initially in the context of
evolution of neural network controllers.

1.1 Publications

Partial results have been presented in the following publications and a competi-
tion (at the time of writing, results have been cited by 44 publications according
to Google Scholar, 14 according to Scopus and 4 according to Web of Science,
excluding self-citations):

Competitions

Peter Krčah. Virtual creatures evolved using speciation and historical mark-
ings, 2014. Runner-up in Virtual Creatures Contest, GECCO 2014: conference
on Genetic and evolutionary computation http://www.cs.utexas.edu/~joel/

virtual_creatures_contest/.

Book Chapters

[1] Peter Krčah. Solving deceptive tasks in robot body-brain co-evolution by
searching for behavioral novelty. In Tauseef Gulrez and Aboul Ella Hassanien,
editors, Advances in robotics and virtual reality, volume 26 of Intelligent Systems
Reference Library, pages 167–186. Springer, 2012.

[2] Peter Krčah. Evolučný návrh robotických organizmov. In Umelá inteligencia
a kognit́ıvna veda I, pages 195–229. STU Press, Bratislava, Slovak Republic, 2009.
Editors: V. Kvasnička, J. Posṕıchal, Š. Kozák, P. Návrat and P. Paroulek.
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Conference Proceedings

[3] Peter Krčah. Adaptation of virtual creatures to different environments
through morphological plasticity. To appear in SAB 2016: The 14th International
Conference on the Simulation of Adaptive Behavior, Lecture Notes in Computer
Science (Subseries: Lecture Notes in Artificial Intelligence). Springer, 2016.

[4] Peter Krčah. Effects of speciation on evolution of neural networks in highly dy-
namic environments. In Youssef Hamadi and Marc Schoenauer, editors, Learning
and Intelligent Optimization, volume 7219 of Lecture Notes in Computer Science,
pages 425–430. Springer, 2012.

[5] Peter Krčah and Daniel Toropila. Riešenie zavádzajúcich úloh v koevolúcii
ovládania a morfológie robotov pomocou ȟladania noviniek v správańı. In Jǐŕı
Jeĺınek and Radim Jiroušek, editors, Znalosti 2011. VŠB-Technická univerzita
Ostrava, Fakulta elektrotechniky a informatiky, 2011.

[6] Peter Krčah. Solving deceptive tasks in robot body-brain co-evolution by
searching for behavioral novelty. In 10th International Conference on Intelligent
Systems Design and Applications (ISDA), pages 284–289. IEEE, 2010.

[7] Peter Krčah and Daniel Toropila. Combination of novelty search and fitness-
based search applied to robot body-brain co-evolution. In Proceedings of the 13th
Czech-Japan Seminar on Data Analysis and Decision Making in Service Science,
Otaru, Japan, pages 1–6, 2010.

[8] Peter Krčah. Towards efficient evolutionary design of autonomous robots. In
Gregory S. Hornby, Lukas Sekanina, and Pauline C. Haddow, editors, ICES ’08:
Proceedings of the 8th international conference on Evolvable Systems: From Bi-
ology to Hardware, volume 5216 of Lecture Notes in Computer Science, pages
153–164, Berlin, Heidelberg, 2008. Springer-Verlag.

[9] Peter Krčah. Towards efficient evolution of morphology and control. In
GECCO ’08: Proceedings of the 10th annual conference on Genetic and evolu-
tionary computation, pages 287–288, New York, NY, USA, 2008. ACM.

[10] Peter Krčah. Evolving virtual creatures revisited. In GECCO ’07: Proceed-
ings of the 9th annual conference on Genetic and evolutionary computation, page
341, New York, NY, USA, 2007. ACM.

Research presented in this thesis was supported by Charles University Grant
Agency under contract no. 9710/2011 and under Grant-No.358/2006/AINF/MFF.

1.2 Structure

The thesis is organized as follows. Chapter 2 provides an overview of evolutionary
robotics including different methods of designing genetic representation of robots
and methods how robots evolved in simulation can be constructed in reality. The
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chapter continues by introducing software used for all experiments in this thesis
(a framework called Evolution of Robotic Organisms, or ERO) and the represen-
tation of virtual creatures used in this thesis. Chapter concludes with the de-
scription of HierarchicalNEAT algorithm—an efficient algorithm for co-evolution
of body and control system of virtual creatures. Chapter 3 introduces a new
method of accelerating evolution using morphological plasticity achieved through
lifetime learning. Chapter 4 then describes results showing how novelty search
can be used to evolve virtual creatures with highly deceptive problems. Conclu-
sions are provided in Chapter 4.6, followed by two appendices. First appendix
(Appendix A) contains algorithms and configuration parameters for generating
and mutating virtual creatures. The second appendix (Appendix B) provides an
overview of supplementary materials provided on a CD attached to the thesis.
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Chapter 2

Background

This chapter provides an introduction to the area of evolutionary robotics and to
some of the underlying methods used in the rest of the thesis. The chapter starts
with an overview of recent advances in evolutionary robotics, including different
methods for generating robots from their genetic description (Section 2.1.1) and
the problem of transferring evolved behaviors to real robots (Section 2.1.2). More
comprehensive review of evolutionary robotics can be found in Krcah [44]. In the
next section we describe in more detail the structure of virtual creatures used
in the rest of the thesis (Section 2.2), the ERO framework (software used for all
experiments presented in this thesis) and the algorithm used to evolve both body
and behavior of virtual creatures efficiently (Section 2.4).

2.1 Evolutionary Robotics

Evolutionary robotics is a technique for designing robots using methods inspired
by evolution of natural organisms. While evolutionary computation is a relatively
young field (started just four decades ago [29, 78]), it has been used already to
solve difficult problems in a range of domains such as automated design of elec-
trical circuits [38], invention of new algorithms for quantum computers [87] or
solving open problems in mathematics [88]. In many cases evolutionary algo-
rithms have been shown to be able to find better solutions to a problem than
a human designer [38, 3]. While evolutionary computation has been applied to
many domains, the similarity with nature is perhaps most apparent in the field
of evolutionary robotics. Robots have a lot in common with their living counter-
parts: both must solve tasks in a world governed by the same physical laws, both
have a body and a control system which are both optimized by evolutionary pro-
cesses. These similarities make robotics a very tempting area for application of
evolutionary algorithms. An interesting consequence of these similarities is that
robots designed using evolutionary algorithms often resemble animals evolved in
nature in both structure of their bodies and their behavior (examples can be
found in virtual creatures evolved by Sims [84] two decades ago, up to recent
works with damaged robots by Cully et al. [14] or soft robots in [11]).

The term evolutionary robotics was first used in 1993 by Cliff at al. [12]. The
study of evolutionary robotics started from two different directions. In the first
direction, the goal was to evolve control system of a real robot with fixed body
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structure (using robots such as Khepera or e-puck) and to solve the problem of
crossing the reality gap, i.e. ensuring that the behavior of a robot evolved in sim-
ulation can be maintained after transferring it to a real robot [73]. The second
direction was to evolve robots purely in simulation without attempting to con-
struct them in reality. This line of research approached evolutionary robotics from
the point of view of artificial life. Since projects in this category did not attempt
to construct physical robots, they were free to design robots with much richer set
of features and to evolve not just the behavior of the robot but also the structure
of its body. Properties of the robot and of the fitness function used to measure
its performance were in this case limited only by the creativity of the researcher
and constraints imposed by the physics simulation. The first landmark paper in
this area by Sims in 1994 [84] introduced evolved virtual creatures performing
simple tasks such as jumping, swimming, land locomotion or following an object.
The striking similarity of evolved creature to organisms in nature continues to
inspire researches to this day. In recent years, these two research directions are
starting to converge in projects which attempt to evolve both body and behavior
in simulation and then build the resulting robot in reality [31, 62, 101, 27].

2.1.1 Representation of Robots in Evolutionary
Algorithms

The ultimate objective of evolutionary robotics (and evolutionary algorithms as
such) is to automate the design of robots and bring the complexity of their behav-
ior and morphology closer to the complexity found in living organisms. Evolution
in nature is capable of discovering extremely complex organisms made up of tril-
lions of cells. How can an evolution efficiently navigate search space of such
enormous size? It would be impossible for evolution to optimize each attribute of
each cell directly (and independently). The answer to this question lies in the fact
that in evolution of natural organisms, the genetic representation (or genotype)
is very different the physical form of an individual (its phenotype). Genotype is
the primary carrier of information, it is inheritable and it is acted on by muta-
tion and recombination. Phenotype, on the other hand, is the body of a living
individual which has developed from a single cell through ontogenesis. The rela-
tionship between the genotype and the phenotype of an individual forms a crucial
component of evolution in nature and increasingly in simulated robots as well.
A non-trivial mapping between genotype and phenotype of an animal or a robot
can greatly simplify and restructure the space of all solutions, making it much
easier for evolution to navigate. For instance, genotype could be constructed in
a way where a single mutation can duplicate a limb of a robot (including all of
its properties), making it possible to reuse previously discovered element in a dif-
ferent part of the robot. Evolution could then reuse elements discovered through
a previous long search process without having to rediscover them from scratch
again. In nature, perhaps the most striking example of a compact description of
a complex object is human brain, whose hundred billion neurons are described
using DNA molecules containing just tens of thousands of genes.

In order for the genotype to phenotype transcription to increase the ability of
organisms to evolve it must have a set of attributes [73]. The first is expressive
power, i.e. ability to represent a wide range of different phenotypes. In evolu-
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tionary robotics this includes the structure and physical properties of a robot (its
morphology), the control system of a robot, or even properties of the transcrip-
tion process itself. Expressive power increases diversity of robots accessible to
evolutionary search, making it easier to find a robot better adapted to a given
task. For example, if both morphology and control system of a robot are part
of the genotype, evolution can optimize both together, allowing morphology and
control system to cooperate when solving a task.

The second attribute is compactness. The relationship between complexity of
the genotype and the complexity of the phenotype should be weak, so that even
simple genotypes should be able to represent complex phenotypes. This attribute
is important because evolution searches the space of all possible genotypes, not the
space of all possible phenotypes. Smaller genotypes results in search space with
smaller number of dimensions, which means it can be searched more effectively.
There are several approaches for achieving compactness of the genotype, but most
approaches use the idea of modularity and symmetry to make it possible to use
a single gene to represent many parts of a robot.

Another important attribute that genotype to phenotype encoding should ad-
dress is evolvability, the ability of the encoding to not just generate diversity of
creatures through mutations, but to generate diversity that is adaptive. Success
or failure of an offspring robot is influenced by (1) the shape of the fitness land-
scape in the vicinity of the parent robots (2) on genetic operators (which alter
the offspring in some way) and (3) on the method used to transcribe genotype to
phenotype, which influences how changes in genotype affect the phenotype.

The most straightforward method of representing robots in evolution is using
direct encoding. In direct encoding, structure of genotype is identical to the struc-
ture of the phenotype and transcription from genotype to phenotype is therefore
reduced to a copy operation. There are many cases when direct encoding is suffi-
cient to represent a robot (e.g. when the problem is simple and solution requires
only a small number of elements that need to be optimized). The main advantage
of this approach is ease of implementation, which is one of the reasons why some
projects in evolutionary robotics use it [62, 7].

A more powerful set of methods for representing robot phenotypes are inspired
by formal grammar systems. First use of grammars for modelling of biologi-
cal systems can be found in the works of Lindenmayer [61], who used rewriting
systems to model the growth of plants. Resulting models are also known as
L-systems. While the original L-systems have been used to model biological sys-
tems, they can be used to describe a wide variety of different structures including
robots. An example of a very simple grammar could be two rules ”A→B” and
”B→AB” and a starting symbol ”A”. Applying rule ”A→B” results in each oc-
currence of symbol ”A” to be replaced by symbol ”B”. Repeated application
of these two rules (starting for a selected starting symbol) results in sequence
A→ B→ AB→ BAB→ ABBAB→ BABABBAB→ . . . (in each step, a rule is
applied to each symbol in the string). Even two very simple rules and a starting
symbol can create long strings of symbols with complex internal structure. Re-
cursive nature of L-systems leads to self-similarity of generated structures which
often result in complex fractal shapes. If strings of symbols produced by such
grammar are interpreted as commands for building a robot, resulting robots can
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(a) (b)

Figure 2.1: Virtual creatures evolved by Sims [84, 83]. Creatures were
evolved for swimming (left) and land locomotion (right). Figure on the left shows
how the swimming creature was incrementally improved in successive generations.

have very complex morphologies represented by a very compact L-system.
The first system where such recursive construction of phenotype of a robot

was used can be found in work on Sims [84, 83]. The subject of evolution in
Sims’ work were virtual creatures living in a simulated three-dimensional world
with simulated laws of rigid body dynamics. Phenotype of a creature is in this
case represented by a rooted tree of nodes, each of which represents body part of
a creature (a single block) and connections between nodes represent joints con-
necting the body parts. Genotype of a robot is the same as phenotype with one
crucial difference: cycles are permitted in the graph representing the genotype.
Transcription of genotype to phenotype starts in a designated root node and pro-
ceeds in traversing the genotype graph in depth-first order, adding copies of all
encountered nodes to the phenotype tree. To prevent infinite recursion during
this traversal, each node defines a recursive limit which determines the maxi-
mum number of times transcription is permitted to visit the given node during
the depth-first traversal. Moreover, each genotype connection can have a reflec-
tion flag enabled which causes a mirrored copy of the subtree to be added to
the phenotype graph. Recursive transcription and reflection flags allow com-
pact representation of symmetric structures (see symmetric arms of creature
in Figure 2.1b) and of appendages composed of repeated segments (see tail of
the snake-like creature in Figure 2.1a). For instance, mutation can increase the
number of segments in creature’s tail by increasing value of a single parameter
(recursive limit of the node forming the tail). Due to the flexibility and com-
pactness of this encoding, it has become a common choice in evolution robotics
research [77, 43, 58, 37, 52, 59, 67, 66]. Notably, Lessin [59] has recently extended
Sims’s model to allow virtual creatures to learn new behaviors while retaining
previously learned behaviors (see Figure 2.2). Since experiments in this thesis
use encoding based on encoding used by Sims, a more detailed description is pro-
vided in Section 2.2. For a step-by-step demonstration of how a virtual creature
is constructed see Figure 2.11.

Transcription from genotype to phenotype used by Sims in many ways resem-
bles L-systems. While genotype is not stored explicitly as a series of rewrite rules
of a formal grammar, nodes and connections of the genotype chart can be viewed
as symbols used in the grammar and the root node can be viewed as a starting
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Figure 2.2: Virtual creatures evolved to perform multiple tasks by
Lessin [59]. Actuation is provided by muscles (rendered in red color in the
figure above) attached to two different body parts of a creature as opposed to the
force being exerted directly at joints connecting two body parts.

symbol. A set of rewrite rules could then be defined to perform transcription of
genotype to phenotype in a similar way to the model used by Sims.

There are examples of models where the robot is constructed directly from a
set of symbols generated by a formal grammar. One such example is a work by
Hornby et al. [33, 31]. In this work the string of symbols created by the grammar
is used as a sequence of instructions for controlling a LOGO-like turtle. Examples
of such instructions are: step forward, step back, turn, etc. Structure of robot’s
body is determined by the path of the turtle. Joints are created using a special
joint command. Joints have only one degree of freedom and the angle of the joint
is controller by an oscillator. Turtle can also use a stack for saving and restoring
its state (symbols ”[” and ”]”) and commands can be performed a fixed number of
times (symbols ”{” and ”}”). The power of the grammar is increased by allowing
parameterized and conditional rewrite rules. Example of rules defining genotype
of a robot:

A(n)→ {A(n− 1)}(n) for n > 2 (2.1)

→ joint(1)B(2n) clockwise(2) for n ≤ 2 (2.2)

B(n)→ [B(n/4)] for n > 2 (2.3)

→ joint(1) forward(1) for n ≤ 2 (2.4)

Using the starting symbol of A(3), the following sequence of strings will be
generated by applying the genotype above:

A(3) (using rule 2.1)

{A(2)}(3) (using rule 2.2)

{joint(1)B(4) clockwise(2)}(3) (using rule 2.3)

{joint(1)[B(1)] clockwise(2)}(3) (using rule 2.4)

{joint(1)[joint(1) forward(1)] clockwise(2)}(3)

Resulting robot constructed using the final generated string is shown in Fig-
ure 2.3a. Robots are evolved for locomotion in two- and three-dimensional en-
vironments. Some of the evolved robots were constructed in reality as well (see
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(a) (b) (c)

(d) (e)

Figure 2.3: Examples of robots evolved using L-system encoding in
Hornby [33, 31]. Robots were evolved in simulation (a, b, d) and subsequently
constructed in reality (c, e).

Figure 2.3). Authors claim that encoding using L-systems achieved better results
than direct encoding, by leveraging the ability to express repeated structures and
symmetry.

All genotype to phenotype mappings described so far are limited in the number
of independently operating body parts that the genotype describes (most robots
shown so far consist of less than a hundred parts and often less than ten parts).
While L-systems and Sims-like encodings can theoretically describe robots with
large number of body parts, such robots have not yet been demonstrated using
these encodings. One method that has achieved morphological complexity of 103

body parts recently (Cheney et al. [11, 10]) is based on the idea of describing
robot morphology using a three-dimensional grid of voxels where each voxel can
have different physical properties (see Figure 2.4). Some voxels provide actuation
(red and green) while others are passive with different degree of stiffness. Geno-
type of a robot needs to specify the type of each voxel and whether the voxel is
present or not. While this information can be encoded in the genotype directly
for each voxel (a direct encoding), a much superior encoding is provided by a
Compositional Pattern-Producing Network (or CPPN) evolved using a method
called NEAT (see Section 2.4 for more details about NEAT). CPPN networks are
a variation of artificial neural networks originally created to compactly represent
two-dimensional images—network receives coordinates of a pixel on its input and
produces an output representing color of the pixel using a set of internal neu-
rons (neurons in this case use a wider set of activation functions, such as sine and
Gaussian). When used to describe robots, CPPNs ”paint” the morphology of a
robot instead of painting an image. CPPN receives three-dimensional coordinates
of a voxel and outputs the type of material and a flag indicating whether the voxel
should be present or not. Transcription of genotype to phenotype thus consists
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(a) Robot evolved for fast locomotion.

(b) Presence of each voxel and its type is
determined by evaluating a CPPN for each
voxel independently.

(c) Prototype of a physically constructed
voxel-based robot actuated by changing air
pressure [27].

Figure 2.4: Voxel-based robots with morphology defined by a CPPN
network. Green voxels periodically change their size with a fixed frequency,
red voxels also periodically change their size but with reversed phase, light blue
voxels are passive but deformable [11].

of evaluating CPPN for each voxel separately. Besides making it possible to de-
scribe complex morphologies compactly, the advantage of this approach is that
CPPN is resolution-independent so robots at different resolutions can be gener-
ated from the same evolved CPPN. The CPPN-based model of robot morphology
has recently been extended with more flexible actuation where oscillations of dif-
ferent voxels do not occur at the same time but spread through the body using
simulated electrical signals [9].

The problem of how to best represent robots during evolution is an active area
of research. Some of the other nature-inspired approaches include a method by
Gruau based on simulation of cell growth [26, 25], methods based on gene regula-
tory networks [4, 18, 79] or methods based on simulating soft muscle tissue [60].
More detailed survey of methods is provided in Stanley et al. [93], Nolfi et al. [73]
and Krcah [44].

2.1.2 From Simulation to Real Robots

The traditional way of designing physical robots using evolutionary algorithms
is to use a robot with fixed structure and optimize only its behavior. A popular
type of platform for such experiments is a small circular robot such as e-puck or
Khepera (see Figure 2.5). These robots have circular footprint with diameter of
5-6cm and height of 3cm. They move using two wheels and they support a range
of sensors. Several simulators are available for the robots as well (e.g. Webots).
Such simple two-wheeled robot were used in a large number of early studies of
evolutionary robotics (see [73] for examples).
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(a) E-puck robot. (b) Khepera II robot. (c) Simulation of Khepera in Webots
simulator.

Figure 2.5: Examples of robots with a fixed structure.

A more complex platform for evolutionary experiments is robotic dog called
AIBO [20]. AIBO is a four-legged robot with 18 degrees of freedom, a set of
sensors and a processor powerful enough to run evolutionary computation on the
robot directly. This made it possible to use the robot for online evolutionary
experiments in Hornby et al. [30]. Evolutionary search in this case was a fully
automatic process requiring no human intervention. Fitness function was set up
to evolve fast walking gaits. Authors claim that the evolved style of walking was
faster than any walking style designed by a human designer.

Robots described so far all use a fixed construction. The first robotic project
that attempted to break away from that constraint was Funes et al. [21]. The
goal of the project was to evolve static LEGO structures capable of performing a
task, such as being able to function as a crane holding a large weight. Simulator
was used for actual evolution and resulting structures were then constructed and
tested. While the resulting structures were static, this work paved way for future
projects which attempted to build mobile robots.

One of the first examples of projects constructing evolved robots capable of
locomotion was Hornby et al. [31]. While the main purpose of the work was to
study genetic representation of a robot, some of the two- and three-dimensional
evolved robots were successfully constructed in reality (see Figure 2.3).

Another early example of constructing robot based on evolved blueprint was
project GOLEM (Genetically Organized Lifelike ElectroMachines) by Lipson et
al. [62]. Robots were evolved offline in a simulator designed with an emphasis on
making it possible to build resulting robots in reality and retain their performance.
In project GOLEM, the robot is represented by a series of segments connected
using ball joints. Robot is controlled by a neural network. Each neuron can be
attached to one of the segments, in which case the length of the segment starts to
be controlled by the current value of the neuron (in real robot this is realized by
a linear actuator). Robots were manufactured from an evolved blueprint using
a 3D printer, with motors and controllers manually inserted into the printed
plastic skeleton afterwards (see Figure 2.6 for an example of resulting robots).
Similar approach has been used recently Megaro et al. [65] in a method which
allows casual users to design a robot using an intuitive editor—controller and
blueprints for 3D-printing the robot are then created automatically by evolution
in a simulated environment.

The ultimate goal of evolutionary robotics is to be able to fully automate
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(a) (b)

(c) (d)

Figure 2.6: Examples of robots evolved for locomotion in GOLEM
project [62]. Robots were evolved in simulation (left) and then constructed
using a 3D printer (right).

design and manufacturing of a robot. A recent new approach to this problem
uses 3D printed robots consisting of a grid of voxels of different types (e.g. static
rigid voxels or flexible voxels). An early prototype of such printed robot has
been demonstrated which can achieve locomotion using changes in ambient air
pressure [27] (see Figure 2.4c).

An alternative approach to using 3D printers for building robots is to use a
set of pre-manufactured building blocks that can be attached to each other to
form the body of the robot. Several researcher teams have proposed methods of
building such reconfigurable robot platforms (e.g. M-TRAN [70], Molecubes [101],
Sambot [98] or SuperBot [82]). Zykov et al. [100] have demonstrated that it is
possible to build a system where individual modules can rearrange themselves
without human intervention. Each module contains a servomotor and electro-
magnets embedded in its walls which it can use to attach itself to other such
modules. Robots constructed this way (see Figure 2.7a) have been shown to be
able to self-replicate (recreate a copy of themselves). Studer et al.[94] has shown
(in simulation) that an ecosystem consisting of large number of such cubical mod-
ules shows emergence of self-replicators, i.e. different types of chains of modules
that copy themselves at the expense of other modules.

The need for including morphology of a robot in evolutionary optimization
may be required even for robots with fixed structure. For example if a robot
becomes damaged during normal operation (e.g. one of the servomotors stops
functioning or part of its construction is damaged or broken off), it needs to adapt
its behavior to the damaged morphology. In Bongard et al. [7], the subject of
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(a) (b)

Figure 2.7: Reconfigurable modular robots. Self-replicating reconfigurable
robots [100] (left) and open-source Molecubes platform for experimenting with
reconfigurable robots [101] (right).

(a) Resilient robots by Bongard that use evo-
lutionary algorithm to find the best model
of their own morphology after damage oc-
curs. [7].

(b) Robot that can adapt to damaged morphol-
ogy rapidly (in less than 2 minutes) by perform-
ing a small number of experiments.[14]

Figure 2.8: Examples of robots with fixed structure that can adapt to
different types of damage to their body.

optimization was a four-legged robot actuated by 8 servomotors (see Figure 2.8a).
Robot has 8 sensors, each reading the current angle of one of the servomotors, and
two additional tilt sensors. The goal of the project was to make it possible for a
robot to recover from damage by discovering the extent of damage automatically
and adapting its gait to it. The robot infers changes in its morphology using
only the sensors described above (no additional information about the damage
is provided). The process of adaptation works incrementally: at the start of the
experiment, robot performs a set of random movements and remembers sensor
values received during those actions. In the first adaptation phase robot uses
evolutionary optimization (in simulation) to find 15 models of its own morphology
which best describe values measured by sensors. The second phase of adaptation
then looks for the single best action that could be performed by a robot to find
out which of the 15 models best represents the damaged robot. This action is
then performed by the real robot. When this process is repeated 16 times, the
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robot finds enough information to correctly guess its new morphology. The best
model is then used to find (again through evolution in simulated environment)
the set of actions that move the robot forward most efficiently. The result of this
process is a robot that learns how to move forward efficiently even after one or
more parts of its body are damaged.

While the method tries to use the smallest possible number of fitness eval-
uations, its main disadvantage is that the amount of time required to perform
evolutionary optimizations between tests with a real robot can be quite long.
Cully et al. [14] recently proposed a method called Multi-dimensional Archive of
Phenotypic Elites (MAP-Elites) that works around this problem by using evolu-
tionary search to construct a behavior-performance map. For each behavior, the
map stores the robot with highest performance discovered during the preliminary
evolutionary search. In the case of hexapod robot (shown in Figure 2.8b), the
behavior vector consists of 6 values (one per leg), each value representing the pro-
portion of time a given leg spends touching the ground. After the damage occurs,
the behavior-performance map is used to find the most promising controller for
the robot and the controller is tested on a robot. After the test, the actual be-
havior and performance of the robot is used to upgrade the behavior-performance
map using Bayesian optimization and new controller is found. While the method
requires significant amount of computation time for the initial construction of the
behavior-performance map (authors report two weeks of computation time on a
single multi-core CPU), the map then allows the robot to rapidly (within two
minutes) adapt to previously unseen damage.
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Figure 2.9: Examples of manually designed creatures and their geno-
types.

2.2 Virtual Creatures

This section introduces the encoding of virtual creatures used in the rest of the
thesis (detailed description is also available in [40]). Creature representation is
inspired by the work of Sims [84, 83]. In the following text, the term genotype
refers to the genome of a virtual creature (analogous to DNA in animals) and the
term phenotype refers to the body of the creature constructed from the genotype.

Section 2.2.1 describes creature morphology and a procedure of constructing
physical body of a creature from the genotype. Section 2.2.2 presents a distributed
control system of creatures. Section 2.2.3 describes mutation and mating of crea-
tures. Section 2.2.4 describes fitness evaluation. Finally, section 2.2.5 introduces
a testing mechanism for early removal of faulty creatures.

2.2.1 Creature Morphology

Body of the creature is represented by a rooted tree of morphological nodes. Each
node corresponds to a single body part (e.g. a box) and each connection between
two nodes corresponds to a physical joint between two body parts (see Figure 2.9
for examples of manually designed creatures and their genotypes).

Creature phenotype is created from a corresponding genetic template (i.e. a
genotype). Genotype is a directed graph (not necessarily a tree; cycles are permit-
ted). In each genotype graph, one node is marked as the root node. Phenotype
is created from genotype by first copying the root node and then recursively
traversing connections in depth-first order and adding encountered nodes and
connections to the phenotype graph. Since the genotype graph may contain cy-
cles, recursive traversal could run indefinitely. To prevent this, each genotype
node has a recursive limit, which limits the number of passes through the given
genotype node. Each genotype node can thus be copied multiple (but finite)
times to a phenotype graph. Each genotype connection also has a terminal flag.
Terminal flag can be used to represent structures appearing at the end of chains
or repeating units.
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Figure 2.10: Creature genotype (left) and phenotype (right). Dashed line
represents a terminal connection. Recursive limit of each node is shown under
the node mark (A, B).

The transition from a genotype graph with a terminal connection to the cor-
responding phenotype graph is illustrated in Figure 2.10.

Both genotype node and genotype connection have a set of properties used
for building their phenotype counterparts. Each genotype connection contains
information about the position of the child node relative to its parent node. The
position is represented by child and parent anchor points, relative rotation, scaling
factor and a set of three reflection flags (one for each major axis).

Each of the two anchor points lies on the surface of the child or parent node.
Position of an anchor point on the surface of the node is specified by two angles
α ∈ [0, 2π] and β ∈ [−π/2, π/2]. These two angles specify (in polar coordinates)
the direction of the vector originating at the center of the body part. Position of
the anchor point is determined by the intersection of the vector with the surface
of the body part (see Figure 2.12a). Local coordinate system is defined at each
anchor point using the surface normal vector and two vectors tangent to the
surface (see Figure 2.12b).

When building a creature from its genotype, child and parent nodes are first
aligned, so that child and parent anchor points become identical and surface
normals at anchor points become opposite. Afterwards, the child node is scaled by
the scaling factor and rotated by the rotation parameter. Each enabled reflection
flag causes a mirrored copy of the child node to be added to the phenotype graph
(along with the original non-mirrored child node). All enabled reflection flags are
always applied (if one, two or three reflection flags are enabled, two, four or eight
mirrored copies of a child node are created in the phenotype graph, respectively).

All geometric transformations (such as scaling, rotation and reflection) are
cumulative, i.e. they are applied to an entire subtree of the phenotype graph
during its construction. For example, when the scaling factor of a connection
doubles, the size of each node in the subtree started by this connection in the
phenotype graph is doubled. The effect of individual morphological parameters
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Joint type n u v DOFs
fixed no no no 0
hinge no yes no 1
twist yes no no 1
hinge-twist yes(2) yes(1) no 2
twist-hinge yes(1) yes(2) no 2
universal no yes yes 2
spherical yes(1) yes(2) yes(3) 3

Table 2.1: Joint types used for connecting parts of creature’s body.
Values in columns n, u and v specify whether two body parts connected by the
given joint are permitted to rotate freely around the given vector of the anchor
point local coordinate system (as shown in Figure 2.12b). Numbers in parentheses
show the order of non-constrained rotations. Last column shows the number of
degrees of freedom for a given joint type.

is further illustrated in Figure 2.11.
Each genotype node contains information about the shape and size of the

resulting morphological node (in the case of a box, its dimensions are specified)
and a joint-type. A joint-type defines properties of a joint connecting the cur-
rent node and its parent in the phenotype graph. The following joint types are
used: fixed, hinge, twist, hinge-twist, twist-hinge, universal and spherical. Each
joint type is defined by a set of rotational constraints imposed on two connected
body parts. Constraints are expressed in terms of vectors n, u and v in anchor
point local coordinate system of the child node (as shown in Figure 2.12b). For
example, two connected body parts can be allowed to rotate freely around the
normal vector n, but are not permitted to rotate around tangential vectors u
and v (the twist joint). Moreover, the order of non-constrained rotations is also
important, because different order of torque application results in different joint
behavior (this is the reason why both hinge-twist and twist-hinge joints exist).
Table 2.1 defines individual joint types with respect to non-constrained rotations
around vectors n, u and v.

2.2.2 Control System

Creature’s control system is distributed along its body. Each morphological node
contains local sensors, effectors and a local controller. Besides local controllers,
a single global controller (the brain) is also present to allow global coordination
among organism parts. Global sensors and effectors could also be implemented,
although they are not currently used. Local controller in a child node can also
communicate with its parent node controller (neural connections in both direc-
tions are allowed). This way, a neural signal can spread through the organism
body in a fashion similar to real organisms. An example of a creature with such
distributed control system is shown in Figure 2.13.

Controller is a processing unit, which receives input values and produces out-
put values. Each controller has a set of input ports (which can receive signals
from local sensors, output ports of parent/child controllers or output ports of the
brain) and a set of output ports (which can send signals to local effectors, input
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(a) Creature genotype. Recursive limits of
nodes A and B are 1 and 4, respectively.
Node A is the root node of the graph.

(b) Physical creature created from the geno-
type shown on the left. Four copies of node
B are created during the recursive traversal
of the genotype. Copies of node B are con-
nected using connection d, while nodes A
and B are connected using connection c.

(c) Scaling factor of connection d has been
changed from 1 to 0.8.

(d) Reflection flag for x axis of connection c
has been enabled.

(e) Reflection flag for z axis of connection c
has been enabled.

(f) One of three rotation angles of connection
c has been changed from 0 to 45 degrees.

Figure 2.11: Step-by-step construction of a creature. The structure of
the creature genotype (a) is fixed during all steps. Creature is constructed by
successive application of scaling (c), reflection for x axis (d), reflection for z
axis (e) and rotation (f).
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(a) Position of an anchor point P
on the surface of the body part is
determined by two angles α and
β (included in the genotype of the
creature).

(b) Anchor point local coordinate
system is specified by surface nor-
mal vector (n) and two vectors tan-
gent to the surface (u and v).

Figure 2.12: Joint placement. Position of the anchor point is specified in
polar coordinates (left). Local coordinate system is then defined for the anchor
point (right).

Figure 2.13: Example of a creature genotype illustrating the distributed
control system. The brain (represented by the box on the top) is connected
to local controllers of morphological nodes using neural connections (blue lines).
Neural connections also connect the controller of the root node (bottom left) with
controller of its child node (bottom right). Each morphological node contains
local sensors (on the top of each box) and local effectors (on the bottom of each
box).
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ports of parent/child controllers and input ports of the brain).
In this thesis artificial neural network (ANN) controllers are used exclusively

as controllers. Neurons in the ANN form a directed graph and are connected by
weighted connections. Connection weights are limited to the range [−2, 2] (max-
imum value of connection weight is referred to as wmax in the subsequent text).
Furthermore, each connection can be enabled or disabled. Disabled connections
are not used during the signal propagation (i.e. the only difference between dis-
abling a connection and its removal is the possibility of re-enabling previously
disabled connection). Disabled flag is subject to mutation and recombination.
Each genetic operator must, however, ensure that each neuron of the resulting
network has at least one enabled incoming neural connection and one enabled
outgoing neural connection. This constraint is introduced in order to prevent ge-
netic operators from disrupting the signal flow of the network. Only feed-forward
networks are permitted. Feedback loops are prohibited and signal propagation
evaluates neurons in the order given by a topological sort.

Sensors

Sensor is a part of the creature control system, which measures some property of a
virtual world. Each sensor is contained in a specific morphological node. Sensors
allow a creature to respond to changes in its environment. The value of each
sensor is measured during each simulation step and propagated to the input port
of the corresponding controller. While many sensors are possible, experiments in
this thesis only use the joint angle sensor, which measures the current angle value
for each degree of freedom of a joint. Each node contains a single joint sensor
measuring the joint connecting a node with its parent.

Neurons

Neuron is the basic computing unit in an artificial neural network. Each neuron
has a transfer function, which is one of sigmoid, osc-saw, osc-wave (see Table 2.2
for description). The set of transfer function has been selected based on exper-
iments with different sets of transfer functions described in [40]. The neuron
receives input values either from a controller input port (which can be connected
to a sensor, the brain or another controller), another neuron’s output or it simply
receives a constant value. Neuron’s output is connected to a controller’s output
port (which, again, can be connected to an effector, the brain or another con-
troller) or to another neuron’s input. Multiple connections can be connected to a
neuron input. Neuron computes its value by summing weighted values of all en-
abled connections for each input and computing transfer function value on these
inputs.

Effectors

Effector is a part of the creature control system which allows the creature to
change some aspect of the virtual world. Only one type of effector, the joint
effector, is currently used although other effector types could also be implemented.
Joint effectors allow the creatures to move in the physical world by applying
torques to the physical joints of the creature body parts. Each degree of freedom
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Transfer function Description
osc-saw(x) ϕ = ϕ+ x · dt/1.5, return 2 · ϕfrac − 1
osc-wave(x) ϕ = ϕ+ x · dt/1.5, return cos(2πϕ)
sigmoid(x) 1/(1 + e−5(x−b)), where b is the bias

Table 2.2: Transfer functions. The output of all transfer functions is limited
to the range [−1, 1], to prevent signal congestion. The following notations are
used in the descriptions: x denotes value of the input variable in the current
simulation step and dt denotes elapsed simulation time in seconds since the last
simulation step. ϕfrac is the fractional part of ϕ.

of a joint is controlled by one effector output value. Effector receives its values
from a controller.

The straightforward application of the effector values to physical joints has
shown to be impractical, because unconstrained values often cause undesirable
effects and instability in the simulation. Therefore, several transformations are
applied to effector values before their application.

Effector values are first clipped to the range [−1, 1] and then scaled by a
factor proportional to the mass of the smaller of two connected body parts. This
transformation limits the maximum size of a force to some reasonable value and
consequently improves simulation stability.

Effector values are then smoothed by averaging previous ten clipped values.
The average value is used as the torque applied to a joint of the creature. This
modification eliminates sudden large forces and also improves stability of the
simulation.

2.2.3 Genetic Operators

Algorithms and parameters used for random generation and mutation of virtual
creatures are provided in Appendix A. An algorithm for performing recombination
of two creatures into an offspring creature is part of HierarchicalNEAT algorithm
and is described in Section 2.4.

2.2.4 Fitness Evaluation

This section describes the process of evaluating fitness of an individual creature.
This process is common to all fitness functions (e.g. swimming or locomotion
on the ground). Specific fitness functions are described in sections describing
individual experiments (see Chapter 3 and Chapter 4).

Fitness of a creature is evaluated by first performing a validity test. The
purpose of the validity test is to detect invalid creatures early, so that they do not
consume computational resources during full-scale physical simulation. Validity
testing is described in detail in section 2.2.5. If the creature is valid, it is placed
in a virtual 3D world. ODE library [86] is used to simulate rigid body dynamics
in the virtual world. Simulation proceeds in discrete simulation steps at the rate
of 60 steps per simulated second. During each time step the following phases
occur for each simulated creature:

1. Sensor values are set according to the current creature environment.
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2. Neural signals are propagated throughout the distributed control system of
the creature.

3. Torque is applied to each joint between body parts, according to the current
value of the corresponding effector.

4. Physics simulation step is taken and the positions of all objects in the world
are updated.

The simulation runs for a specified amount of time during which the creature is
evaluated.

Physical Simulation

Open Dynamics Engine (ODE) is used to simulate the rigid body dynamics (in-
cluding collision detection and friction approximation). ODE provides reasonably
robust physical simulations and it proved to be sufficient for the purposes of the
simulation of evolving creatures. Evolved creatures, however, often exploit er-
rors and instabilities in the physics engine to their advantage. The following
mechanisms were used to prevent such instabilities:

1. Simulation watchdog. During the fitness evaluation, relative displacement
of each two connected parts of each creature is watched and when the max-
imum displacement rises above a specified threshold (which suggests that
the creature starts to behave unrealistically), the creature is immediately
assigned zero fitness and its simulation is stopped. Individual body parts
are also prohibited to reach angular or linear velocity above the specified
threshold. Creature with such body parts is assigned zero fitness. Finally,
a simple oscillation detector is used to prevent creatures from moving using
unrealistically rapid oscillations (e.g. when position of creature’s body part
rapidly alternates between two states). If an oscillating creature is detected,
it is also discarded.

2. Validity testing. Validity test has been introduced to quickly remove or-
ganisms, which are likely to abuse the physics engine. The validity test is
described in detail in Section 2.2.5.

3. Physical forces used by creatures to move, are carefully controlled so that
creatures cannot apply forces, which would result in unrealistic simula-
tion (as described in Section 2.2.2).

4. ODE configuration. ODE was configured to be as robust as possible to dif-
ferent kinds of creature behavior, while retaining realism of the simulation.
In ODE physical engine, this was accomplished by the proper setting of
the CFM (set to 0.01) and the ERP (set to 0.2) parameters (see [86] for
details).

The water environment is simulated by adding viscous forces and turning off
gravity. ODE engine does not include a simulation of the viscous force. The
viscous force is, therefore, computed by a simple approximative method: the
viscous force is added for each face of each box in the direction opposing the
surface normal, proportional to the surface area and the velocity of the face
projected to the face normal vector.
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2.2.5 Validity Testing

As mentioned in the previous section, many organisms tend to exploit properties
of the physical simulation to their advantage. However, several pre-simulation
tests can be carried out to discover such abusive creatures early. The following
creature properties are tested before the simulation starts:

1. The count of nodes in the phenotype graph must not exceed specified limit
(organisms with a large number of nodes tend to be unstable).

2. In their initial position, none of the body parts is allowed to overlap with
any other body part except for body parts connected by joints.

3. The volume of each body part must be larger than the specified threshold
(extremely small body parts also cause instability in the physical engine).

Such simple validity tests are much faster to compute than the entire physical
computation. It is therefore preferable to exclude unsuitable creatures as early
as possible, so that they do not consume computer resources later. Therefore,
every newly introduced genotype (created by the creature generation, mutation
or recombination) is tested immediately and if the test fails, the genotype is dis-
carded and a new genotype is introduced followed by the same testing procedure.
This process repeats until a genotype passing the test is introduced or a speci-
fied number of unsatisfactory genotypes is created, in which case the last created
genotype is returned.

The process of testing slows down genetic operators, but it significantly in-
creases the overall computation speed, since genotypes do not have to be evaluated
by the computationally expensive fitness function in order to be discarded.

Another approach would be to completely avoid generating faulty creatures.
This approach results in a more effective and faster computation and it is used
often (e.g. the scaling of effector forces described in Section 2.2.2). There are few
cases, however, when avoiding faulty creatures would inadequately complicate the
operations of generation, mutation and crossing, making them less flexible (e.g.
avoiding self-penetrating creatures). In such cases, the use of validity testing is a
reasonable compromise.

2.3 ERO Framework

ERO (Evolution of Robotic Organisms) is an evolutionary framework developed
as a student software project at Faculty of Mathematics and Physics, Charles
University in Prague. Since its development, ERO has been used in several
publications and theses by teams at Charles University [40, 39, 43, 44, 50, 45, 51,
46, 47, 48, 49] and also outside of the university [58, 53, 63].

At its core ERO is a generic Java-based parallel computation system. A single
parallel computation in ERO is called a project. For each project, ERO provides
a user-friendly way to configure the project and an interactive environment for
observing progress of the computation.

ERO consists of four separate applications:
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Figure 2.14: Overview of main ERO components.

• a server application (or the server) responsible for keeping the state of the
project and synchronizing work among all computational clients,

• a computational client (or the worker) responsible for performing a single
computation,

• a graphical user interface (GUI) application (or the user-client), and

• a command-line client which can be used to automate starting and stopping
of projects and downloading project results for further analysis.

The relationship between these components is illustrated in Figure 2.14 (user-
client refers to either command-line or GUI user client). Server and workers
together form the computational layer. The goal of the computational layer is
to receive a project from the user-client and to compute its result in a parallel
fashion, while continuously providing preliminary computation results to all user-
clients currently watching the project. The computational layer is described
in more detail in the following section. User clients (either command-line or
graphical) provide interactive interfaces to ERO. Graphical user-client can be
used to configure new projects, send configured projects to a server, view project
results, pause/unpause project computation or remove existing projects from a
server. Each user-client can connect to any project on any server.

While ERO can perform arbitrary parallel computations, primary use of ERO
has been to serve as a tool for experiments with evolution of neural networks and
virtual creatures. In this case the evolutionary algorithm runs on the server and
CPU-intensive tasks (such as fitness computation or complex genetic operators)
are sent to the workers for computation.

2.3.1 Parallel Computation

The computational layer consists of the server and workers. The server runs
projects and coordinates user-clients and workers. Several projects may run on
a server simultaneously, sharing the same computational resources. Worker is a
computational client, which receives a small part of computation from the server,
computes it, and returns the result to the server (server provides the result to
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Figure 2.15: Computational efficiency of evolutionary computation using
5 workers.

the project which created the task). Number of workers connected to the server
is not limited. To take advantage of multi-core processors, multiple workers can
be started on the same computer (one per CPU core).

User-client offers various statistics about the parallel computation. Besides
basic information (number of generated/finished tasks, total runtime, etc.) a
graph showing how the number of tasks concurrently computed by workers changes
over time is shown. The graph has proved to be an invaluable tool for detecting
problems with the parallel computation and for improving the efficiency of the
computations. Parts of the project which cannot run in parallel (such as organism
selection or fitness transformation), are computed directly by the server and are
not shown in the graph (see Figure 2.15 for an example of the efficiency graph).

Experiments presented in this thesis have been performed using a cluster of
80 computers. To prevent communication overhead caused when large number of
workers are connected to a single server, computers in the cluster were divided into
15 groups of 5 or 6 computers (analysis used for selecting the optimum number
of computers per group is described in more detail in Krcah [40]). One computer
in each group was dedicated for running the server process for the group and the
remaining computers were running 4 worker processes each (one worker per CPU
core). Each of the 15 servers was therefore using between 20 and 24 workers and
the total number of worker processes across all machines in the cluster was 260.
Typical run of a single evolution using this setup took between 30 and 60 minutes
(depending on the complexity of the physics simulation required by the fitness
function). The entire cluster could therefore typically finish between 15 and 30
evolutionary runs in one hour (each run using one of 15 groups of computers).

2.3.2 Implementation Notes

ERO is implemented in the Java programming language. Open Dynamics Engine
(ODE) [86] is used for rigid body dynamics simulation using modified OdeJava
for Java bindings. OpenGL is used for real-time 3D rendering using JOGL for
Java bindings. RMI interface is used for communication between all components
of the system. XML file format is used for saving project results (such as evolved
creatures) and project configuration.

Choosing Java as the primary programming language brings the advantage
of the cross platform software. The usage of ERO is therefore only limited to
platforms supported by ODE/JavaODE and OpenGL/JOGL (native C/C++ li-
braries). ERO was tested (and fully works) on recent Linux and Windows oper-

28



ating systems on 32-bit architectures.
Java’s ability to dynamically load classes is used to automatically download

code for projects from the user-client to the server and from the server to the
workers. New versions of projects can be thus tested without the need to restart
neither the server nor the workers.

29



2.4 Evolving Virtual Creatures Using

HierarchicalNEAT

This section introduces HierarchicalNEAT – a method for evolving virtual crea-
tures introduced in my master thesis [40, 43]. The main innovation of Hier-
archicalNEAT is the use of historical markings to track all structural elements
comprising a virtual creature (body parts, joints, neurons, neural connections)
through the evolution. Such markings make it possible to define an efficient re-
combination algorithm for virtual creatures and to quantify similarity of any two
virtual creatures in a robust way. HierarchicalNEAT uses similarity values to as-
sign creatures to species which are used to maintain diversity of the population.
This helps to prevent evolution from getting trapped in local optima of the fitness
landscape.

The algorithm takes its name from NEAT (NeuroEvolution of Augmenting
Topologies) – an algorithm for efficient evolution of neural networks by Stan-
ley [91, 92] who first introduced the concept of historical markings. Hierarchi-
calNEAT extends concepts introduced in NEAT to the nested (or hierarchical)
structure of virtual creatures where body parts of creatures form a graph and
each node in this graph (i.e. each body part) contains a nested graph describing
structure of the neural network. HierarchicalNEAT has been shown to outper-
form standard genetic algorithm in evolution of virtual creatures [40, 43] and it
has therefore been chosen as basis for all experiments in this thesis.

This section consists of five parts. The first part (Section 2.4.1) provides
more detailed motivation for using HierarchicalNEAT for evolving virtual crea-
tures. The second section describes how historical markings can be used to evolve
structure (regardless of what the structure represents) and provides details on how
the general part of the algorithm (i.e. part independent of the specific organism
type) has been implemented in ERO framework. The third and the fourth sec-
tions provide a description of how historical markings are applied to controllers
and bodies of virtual creatures, respectively. Section 2.4.5 then provides visual-
izations of speciation and similarity matrix in HierarchicalNEAT in typical runs.

2.4.1 Motivation

Standard genetic algorithm traditionally used for evolution of virtual creatures
(e.g. by Sims [84]) have been observed to have the following shortcomings [40]:

1. Recombination operators work only on the level of morphology. Examples
are grafting and crossover operators used by Sims [84], both of which cre-
ate an offspring by first copying a subset of body parts from each parent
and then ensuring that all selected body parts remain connected in the off-
spring. Such operators often result in an invalid genotype. Such genotype
is assigned zero fitness, or it is discarded by the validity testing procedure
in ERO framework (as described in Section 2.2.5). This suggests that these
recombination methods do not combine properties of parental genotypes
but instead act more like disruptive mutation operators.
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2. Recombination operators described above do not recombine internal pa-
rameters of morphological nodes and connections. Instead, both operators
work on the morphology level and recombination thus works only with en-
tire morphological nodes and connections. Internal parameters include all
morphological parameters (scale, rotation, reflection, joint type, etc.) and
also local controllers present in each body part. Recombination has been
shown to improve the performance of the artificial neural network evolu-
tion [89]. Its absence in evolution of virtual creatures might therefore retard
the evolutionary search.

3. Evolution of the creatures often gets trapped in a local optimum. Maximum
fitness value stops increasing after reaching only a small value and new
generations of organisms converge towards homogeneity.

HierarchicalNEAT addresses the first observation by introducing a new method
of creature recombination. While grafting and crossover might be beneficial for
exploration, they do not appear to work as robust methods of recombination.
Also while both grafting and crossover do combine properties of the parents, the
resulting offspring is very likely to be invalid (e.g. self-penetrating). The recom-
bination method used in HierarchicalNEAT ensures that the resulting offspring
combines properties of both parents in a less disruptive way.

The second observation could be addressed by introducing a new recombi-
nation method. This method should be able to combine internal properties of
individual morphological structure elements (i.e. nodes and connections). At a
high level of abstraction, an analogy with natural crossover method can be drawn.
In the nature, the genetic information of an animal is contained in several chro-
mosomes (specific number of chromosomes varies from tens to hundreds among
different life forms). During crossover in nature, matching chromosomes are
aligned, and matching parts of matching chromosomes are randomly exchanged.
Crossover is thus performed on individual base pairs of each chromosome, instead
of on entire chromosomes. Grafting and crossover methods, however, exchange
entire “chromosomes” (nodes and connections), instead of individual “DNA base
pairs” (internal properties of nodes and connections).

To illustrate further disadvantage of recombination on the level of morphology,
consider the following example. Each of two creatures, both descendants of the
same common ancestor, accidentally discover an innovation of one of their local
neural networks. Innovations are different, but both of them are advantageous.
Moreover, innovations occur in the corresponding body parts (i.e. affected body
parts are descendants of the same ancestral body part in the common ancestor
of the creatures). Using only grafting and crossover, these two innovations can
never be combined in a single local neural network of their offspring. The absence
of recombination on the level of internal parameters (e.g. neural networks local to
each body part), hampers the evolutionary search significantly, because advanta-
geous innovations of neural networks discovered by different creatures cannot be
combined in their offspring.

In order to be able to perform genetic recombination of internal parame-
ters of each structural element, a correspondence of body parts of the parents
has to be found. Before HierarchicalNEAT was introduced, this was a difficult
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problem because body plans of parent creatures often differ in their topology.
Finding correspondence of body parts without any a priori knowledge then re-
quires application of one of the topology matching algorithms. These algorithms
are computationally expensive and do not guarantee correct results.

One of the possible workarounds to this problem is to perform recombination
only between creatures with the same topology of their morphological graphs.
Evolution could, for instance, work in two repeating phases. During the first
phase, the morphology of the creatures would evolve using only the mutation
operator, without recombination (avoiding the problem of topology matching
during recombination altogether). After a specified number of generations, all
creatures except the best one would be discarded, and the second phase would
start with a population filled with copies of the best creature from the previous
phase. During the second phase, only internal parameters of each node and con-
nection would be subject to mutation. Morphological structure would not change
in this phase and the recombination would, therefore, work on graphs with the
same topology (again avoiding the problem of topology matching). There are,
however, two major drawbacks. The first one is that the absence of recombina-
tion is still present during the first phase. The second is the loss of diversity
during each transition from the first to the second phase (in order to make easy
recombination possible in the second phase).

It would be advantageous if the two phases (the first one evolving morphology
without recombination, while the second one evolving internal parameters using
recombination on structures with the same topology) could be combined to run
simultaneously, instead of one after another. This would be possible, using a
concept of species. Species would be defined as a group of creatures with the
same topology (thus capable of recombination with one another without a need
for topology matching). A new, improved, algorithm would start with a popu-
lation filled with copies of the same initial organism, each copy belonging to the
same species. The next generation would be assembled using both mutation and
recombination. However, if the mutation changes the morphology of a creature,
the new creature would be placed in a new species. Each new generation would
therefore include several new species. Problem of topology matching would be
avoided by allowing recombination only within a species (where all organisms
have the same topology of their morphological graphs). This algorithm would
solve both issues of the previous algorithm.

HierarchicalNEAT algorithm is a further extension of these ideas. Using the
concept of historical markings, correspondences of the parental body parts can
be found even if their morphological graphs differ in topology (the concept of his-
torical markings is described in Section 2.4.2). This correspondence then allows
recombination algorithm to exchange genetic information in a sensible way (in-
cluding the internal properties of the structural elements). HierarchicalNEAT,
therefore, solves the problem of recombination even without the need of species,
which would group together creatures with the same topology, as proposed in the
previous algorithm. Historical markings thus offer an elegant solution to both
the first and the second observed problems.

HierarchicalNEAT does use the concept of species, but to address a differ-
ent issue. The primary reason for species is borrowed from the original NEAT
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algorithm, to “protect innovation through speciation” [91]. Each population is
divided into several species and each organism competes only against organisms
in the same species. This allows new structural innovation (which might be dis-
advantageous initially) to optimize in a separate species, instead of being imme-
diately dominated by currently better neural networks in the entire population.
A structural innovation is thus being protected by speciation.

An interesting side-effect of speciation is that the evolution is less likely to
“get trapped” in a local optimum. Each species attempts to solve a problem
in a different way and if one species fails (i.e. stops improving its fitness value),
another one can take its place. This aspect of speciation addresses the third ob-
servation mentioned at the beginning of this section.

To summarize, HierarchicalNEAT addresses all three observations mentioned
at the beginning of this section. New method of recombination (based on his-
torical markings) makes it possible for creatures to combine their advantageous
innovations in their offspring (even at the level of internal parameters of individ-
ual nodes and connections). Speciation makes the evolution less likely to “get
trapped” in a specific solution too early.

2.4.2 Evolving Structure Using Historical Markings

The central concept used in HierarchicalNEAT is the concept of historical mark-
ings. This section describes how historical markings can be used for evolution of
any organisms with changing internal structure. In subsequent sections we will
show how can this generic approach be used for evolution of neural networks and
virtual creatures. Historical markings bring the possibility of tracing individual
structure elements (e.g. neurons and neural connections in an artificial neural
network, or body parts and joints in virtual creatures) throughout the evolution.
Each structural element is assigned a unique identifier (i.e. a historical marking)
upon its creation (either during the construction of the initial population or dur-
ing mutation). Historical markings are inherited, so each node and connection
can be traced back to its oldest ancestor.

Another way to look at the historical markings is as an age indicators. The
higher value of the marking means that the marking has been introduced later
in the evolution and is therefore more recent. This also brings an interesting
possibility of determining the relative age of different parts of an organism after
it has evolved.

Historical markings are also computationally inexpensive. The genetic algo-
rithm only needs to keep track of the value of the most recent marking used in
any virtual creature so far. Upon each request for a new marking (e.g. when the
mutation creates a new node or a new connection), the value of the most recent
marking is incremented and returned.

Historical markings play a key role in many parts of the HierarchicalNEAT
algorithm. Next section describes how they are used to recombine creatures with
different topology. Section 2.4.2 then describes the process of speciation and
what is the role of markings in this process. Section 2.4.2 summarizes motivation
for another key concept – starting the evolution with organisms with a minimal
structure.
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Recombination

Historical markings offer an elegant method of performing recombination of struc-
tures with different topology. Parental structures are first scanned for the pres-
ence of structure elements with matching historical markings (these are the ones
which share the common ancestor and are thus considered compatible). Since
most organisms during the evolution are typically close relatives, the number
of matching structure elements is expected to be fairly high. An offspring is
constructed by first copying the parent with a higher fitness value, followed by
random exchange of internal parameters of all matching nodes and connections
with another parent. This way, new offspring inherits all non-matching nodes
and connections from its better parent, while all matching elements are formed
by a random recombination of properties of both parents.

Since matching structural elements (one from each parent) are descendants
of a common ancestral element, it is very likely that both elements serve the
same “purpose” in both parents (or at least occupy the same position in the
genotype graph). It is therefore reasonable to expect that the recombination of
their internal properties is likely to sensibly mix genetic information, without
introducing destructive changes in the offspring (which is often the case with
other recombination methods such as grafting and crossover).

Speciation

Speciation is the evolutionary process by which new species arise. Speciation in
HierarchicalNEAT serves two purposes:

• to maintain diversity of the population,

• to protect structural innovation.

The mechanism for speciation is based on the idea of fitness sharing, as pro-
posed by Goldberg [23]. Fitness sharing is inspired by natural systems. In the
nature, different species of animals occupy different ecological niches, taking ad-
vantage of different sets of resources. Organisms in the same niche inevitably
reach a point when the demand for resources overgrows the amount of resources
available. In this situation, a conflict arises and organisms are forced to share
their resources. With more and more organisms taking advantage of the given
niche, it becomes harder for any given organism to succeed (its “fitness” value is
lowered). The number of organisms occupying a given niche is thus limited by
the amount of available resources in that niche.

In genetic algorithms there is not a clear definition of a resource or a niche.
Fitness sharing is, therefore, based solely on similarity of organisms instead of the
niche they occupy (assuming that similar organisms occupy the same niche and
different organisms occupy different niches). A similarity measure is defined be-
tween each pair of organisms. While several schemes of speciation based on fitness
sharing exist, explicit fitness sharing is used in HierarchicalNEAT algorithm (this
method is also used in the original NEAT algorithm [91]).

Genetic algorithm with speciation using explicit fitness sharing is outlined
in Algorithm 2.4.1. Genetic algorithm is controlled by a series of parameters.
The parameters are listed (along with the descriptions and default values) in
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Algorithm 2.4.1 Genetic algorithm with speciation

1: divide initial population into species
2: while not terminated do
3: evaluate fitness function for all organisms in the current generation
4: copy the organism with the highest fitness (the superchampion) to the

next generation
5: compute the size of each species in the next generation
6: for all species in the current population do
7: copy the champion of the species to the next generation
8: produce offspring by recombination and mutation of selected organisms

until the size allocated in step 5 is reached
9: end for

10: assign newly created organisms into species (create new species if needed)
11: end while

Parameter name Description Default
Interspecies recomb.
prob.

Probability that the recombination part-
ner will be selected from another species

0.1

Mutation only % Portion of organisms created by using mu-
tation operator only.

25%

Recombination % Portion of organisms created by recombi-
nation.

75%

Mutation after re-
comb. prob.

Probability that an offspring created by
recombination will be mutated afterwards.

0.8

Maximum stagnation Maximum allowed stagnation (in gener-
ations) of a species. After this period
elapses the species is discarded.

15

Youth age threshold Species younger than this value are pro-
tected by multiplying their fitness by
cyouth.

10

cyouth The fitness of young species is increased
by this factor.

1.5

Initial c. d. threshold Initial value of the compatibility distance
threshold.

0.5

Dynamic c. d. thresh-
old

Specifies whether dynamic thresholding is
used for compatibility distance.

yes

Desired number of
species

Desired number of species used for dy-
namic compatibility distance threshold-
ing.

10

Table 2.3: Parameters of the genetic algorithm with speciation.
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Table 2.3. These default values are used in all experiments in this thesis, unless
stated otherwise. The default method of selecting organisms for reproduction
is the truncation selection, i.e. parents are selected randomly from the elite r%
organisms of the given species (r = 20 is the default value).

The algorithm starts by dividing the initial population of organisms into
species according to their similarity. The measure of similarity is called the com-
patibility distance and is computed in such way that more similar organisms have
lower value of compatibility distance. If the compatibility distance is zero the
two organisms are identical from the point of view of the genetic algorithm. One
more constraint is imposed on the compatibility distance: the maximum compat-
ibility distance of any pair of organisms must not exceed one. This constraint is
not necessary, but simplifies visualization of compatibility distance and also the
construction of a compatibility distance for virtual creatures (see Section 2.4.4
for details).

The algorithm for computing compatibility distance of two organisms takes
advantage of historical markings of individual structure elements. Non-matching
nodes and connections increase the compatibility distance and matching nodes
and connections decrease it. The exact implementation of compatibility distance
depends on the specific organism type (procedures of computing compatibility
distance for neural networks and the virtual creatures are outlined below in Sec-
tion 2.4.3 and Section 2.4.4, respectively).

Organisms are assigned to species using the following algorithm: each organ-
ism is compared to a representative of each species one at a time (representative
is chosen randomly, e.g. as the first member of a species). If the value of compati-
bility distance is smaller than the specified compatibility threshold, the organism
is placed in that species (the organism is placed in the first species that satisfies
the condition). If none of the species satisfies the condition, a new species is
created. To ensure the continuity of the species over generations, representatives
of the species are chosen from the previous generation.

The choice of the compatibility threshold greatly influences the progress of the
evolution. Lower values make it easier for mutations to shift an organism from one
species to another, while large threshold may prevent new species from forming at
all. For better control over the compatibility threshold, a dynamic thresholding
has been introduced [89] and is also used in this thesis. Dynamic thresholding
tries to keep the average size of a species constant, by adaptively changing the
compatibility threshold. Desired size of a species (or, alternatively, the desired
number of the species in the population) is provided by the experimenter in
advance. During the genetic algorithm, compatibility threshold is automatically
increased if the average size of the species is below the desired value and vice versa.
To change the value of the compatibility threshold, its current value is divided
or multiplied by the adjustment factor (value of 0.7 is used for all experiments in
this thesis). The threshold is not permitted to exceed the value of one.

The number of species in the next generation is computed (during step 5 in
Algorithm 2.4.1) using the following series of steps. First, shared fitness value is
computed for each organism as follows:

f
′

ij =
fij
Nj

(2.5)
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where fij and f
′
ij are the original (i.e. measured using the fitness function) and

shared fitness of an organism i in species j, respectively and Nj is the number of
organisms in species j. In order to provide larger portions of the next generation
to more fit species (and vice versa), free slots in the next generation are divided
among species proportionally, according to the fitness of the species. Fitness Fj of
a species j is defined simply as a sum of the shared fitness values of its organisms
or, equivalently, as an average of their original fitness values:

Fj =

Nj∑
i=1

f
′

ij =

∑Nj

i=1 fij
Nj

. (2.6)

Therefore, if N positions in the new generation are to be divided among S species,
then the number of organisms in a species j will be:

N
′

j = N
Fj∑S
i=1 Fi

. (2.7)

Sizes of all species (N
′
j) are then rounded to integer values, such that the following

condition also holds for the rounded values:

S∑
j=1

N
′

j = N.

This speciation scheme ensures that any single species is unlikely to dominate the
population, which is the key concept in maintaining the diversity.

Another key role of the speciation is to protect innovation. The speciation
algorithm described above already protects innovation, but its ability to do so can
be enhanced even more by directly “helping” new species. This is accomplished
by replacing Equation 2.6 with the following equation in case when the species
is “young” (i.e. it has existed for less than the given number of generations –
specified by parameter “youth age threshold”):

Fj = cyouth

Nj∑
i=1

f
′

ij (2.8)

The parameter cyouth determines how much help will be given to the new
population (the value of 1.5 has been used in all experiments in this thesis).

To further eliminate the problem of stagnation, a species which fails to improve
its maximum fitness for a specified number of generations is discarded (i.e. its
fitness value Fj is set to zero).

Incremental growth from minimal structure

Many approaches to the evolution of structure start with a population of or-
ganisms with randomly generated structure (Sims [84], Grau [26, 25]). Authors
of NEAT algorithm argue (and also prove their arguments experimentally [89])
that starting from a complex randomly-generated structure might decrease the
performance of the evolution, because the random generation introduces a lot of
unjustified structure, not tested by a single fitness evaluation. Starting with a

37



small structure and increasing complexity as the evolution proceeds also mini-
mizes the dimensionality of the search space during the early stages the search,
which is beneficial. These positive effects have also been confirmed in experiments
with HierarchicalNEAT [40].

2.4.3 Evolving Control System of Virtual Creatures

This section describes application of historical markings to the evolution of neural
network controllers of virtual creatures described in Section 2.2.2.

Historical markings

NEAT algorithm, as proposed in [92], uses historical markings for tracing neurons
and neural connections. In this thesis, a modified version of the algorithm is used.
Historical markings are tracked for each neuron. Neural connections, however,
do not need historical markings, because they are identified by their position in
the network. This simplification is possible because of the prohibition of multiple
connections between an output of one neuron and an input of another neuron. For
the purposes of finding matching neural connections during recombination, each
connection is identified by a triplet of integer values: (msource,mtarget, i), where
msource and mtarget are the historical markings of the source node and the target
node, respectively, and i is an identifier of an input port of the transfer function.
This kind of identification does not provide information about common ancestry
of two connections (because connections created by different mutations can have
the same identifier if they appear at the same position in the network), but it is
sufficient for the topology matching.

Recombination

Recombination of two neural network controllers follows the process described in
Section 2.4.2. Matching pairs of neural connections are determined using con-
nection identifiers (described in the previous section) instead of using historical
markings.

There are three internal parameters which are subject to recombination: trans-
fer function of a neuron, the weight of a neural connection and the disabled flag
of a neural connection.

Transfer functions differ in the number of inputs. Therefore, in order to be able
to safely exchange transfer functions of matching nodes, both transfer functions
must have the same number of inputs. This is, however, easily guaranteed by
allowing the mutation operator to only exchange the transfer function with a
compatible one.

Disabled flags of neural connections are recombined in such way that at least
one enabled incoming connection and one enabled outgoing connection exist in
each neuron of the offspring. This is achieved by using one of the enabled con-
nections of a better parent (at least one always exists, thanks to the constraint
imposed on the network structure in Section 2.2.2) in case when recombination
results in a neuron with all connections disabled.
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Compatibility distance

Measuring the compatibility distance of two neural networks is again based on
historical markings. This section presents a hierarchical method of compatibility
distance measurement, which slightly differs from the method proposed in NEAT.
Advantages of this approach become apparent when computing compatibility
distance on a complex morphological structure.

The hierarchy is set up in the bottom-up approach. To compose a compati-
bility distance of two neural networks, two other compatibility distances are first
defined: one between nodes (δn) and another one between connections (δc).

δn(a, b) =

{
1 if transfer functions of nodes a and b differ
0 otherwise

The compatibility distance between neural connections d and e is computed
as follows, if their disabled flags are the same:

δc(d, e) = s · |wd − we|
2 · wmax

and if their disabled flags differ, the following equation is used:

δc(d, e) = (1− s) + s · |wd − we|
2 · wmax

where wmax is the maximum absolute weight of a connection (the maximum dif-
ference of two weights is thus 2 · wmax), wd and we are weights of connections d
and e, respectively, and s ∈ [0, 1] is the parameter used by experimenter to adjust
the relative impact of disabled flags and connection weights on the outcome of
the compatibility distance. Parameter wmax has been set to 2 for all experiments
in this thesis (as discussed in Section 2.2.2).

To compute compatibility distance δ for neural networks A and B, the dis-
tance of all nodes Dn(A,B) and the distance of all connections Dc(A,B) is first
computed:

Dn(A,B) = |Nn(A,B)|+
∑

(n1,n2)∈Nm(A,B))

δn(n1, n2)

Dc(A,B) = |Cn(A,B)|+
∑

(c1,c2)∈Cm(A,B)

δc(c1, c2)

where Nn(A,B) and Cn(A,B) are the sets of all non-matching nodes and con-
nections of A and B (i.e. nodes and connections, which do not have counterpart
with the same value of historical marking in the other parent), respectively, and
Nm(A,B) and Cm(A,B) are the sets of pairs of matching nodes and connections
of A and B (i.e. each of two nodes or connections in the pair comes from a dif-
ferent parent, but they have the same value of historical marking), respectively.
Finally, the compatibility distance δ between two neural networks is computed
as follows:

δ(A,B) =
t ·Dn(A,B) + (1− t) ·Dc(A,B)

t · (|Nn(A,B)|+ |Nm(A,B)|) + (1− t) · (|Cn(A,B)|+ |Cm(A,B)|)
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where t is the parameter used by experimenter to adjust the relative impact of
nodes and connections on the resulting compatibility distance. In the case of small
networks (i.e. |Nn(A,B)|+ |Nm(A,B)| ≤ Nmax or |Cn(A,B)|+ |Cm(A,B)| ≤ Cmax

), the total number of nodes and connections in denominator is replaced by Nmax

and Cmax, respectively. The range of all compatibility distances (δ, δn, δc) is [0, 1].

2.4.4 Evolving Morphology of Virtual Creatures

This section describes how historical markings can be used in the evolution of
both morphology and control system of virtual creatures. The generic algorithm
described in Section 2.4.2 requires definition of two components to adapt it to
virtual creatures: compatibility distance measure (which the speciation is based
on) and recombination of virtual creatures.

In order to evolve both morphology and control of the virtual creatures, his-
torical markings are needed on both levels of the creature structure. Therefore,
a new – hierarchical – approach is taken. Markings on the level of morphology
work the same way as markings in the evolution of neural networks described
in Section 2.4.3. In addition to that, historical markings are also assigned to
all newly created neurons. Markings on the morphological level are independent
of markings on the control system level (i.e. they are never compared to each
other). Moreover, so are independent markings of neurons in different morpho-
logical nodes (i.e. they are not compared to each other, neither during recom-
bination nor during compatibility distance measurement). Therefore, separate
counters of historical markings (counter keeps track of the last used marking, in
order to assign unused markings to newly created structure elements) could be
kept for each morphological node, along with a single global counter used on the
morphology level. Thus, a hierarchy of counters could be used. The hierarchy
is not strictly necessary since a single counter can be used to create historical
markings for all structure elements on both levels. The disadvantage of using a
single counter is lower readability of the genotype graph, because the value of the
counter would increase very fast, leading to very high values of historical mark-
ings. Other than readability, the number of counters does not affect the progress
of evolution in any way. This thesis uses a compromise solution of three counters:
one counter for morphological nodes, one for morphological connections and one
for neural nodes (neural connections do not need to use historical markings at
all, as described in Section 2.4.3).

Speciation, as a mechanism by which new species arise, is entirely indepen-
dent of virtual creatures once the compatibility distance measure is given. The
method of measuring compatibility distance of two creatures is similar to the
method introduced in Section 2.4.3 for measuring the compatibility distance of
two neural networks. However, there is one important difference between evolu-
tion of neural networks and evolution of virtual creatures. Neural networks are
included in their genotype directly. There is no transcription phase from geno-
type into phenotype; the phenotype and the genotype of each creature is identical.
Therefore, it does not matter whether the compatibility distance measures dis-
tances between genotypes or between phenotypes. On the other hand, creatures
are grown from a genotype recursively, using a method described in Section 2.2.1.
Genotype and phenotype of a creature are typically two very different structures.
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HierarchicalNEAT algorithm takes the approach of measuring compatibility dis-
tance of the creatures using their genotype. Historical markings offer a simple
and straightforward way of measuring compatibility distance on genotypes. Mea-
suring distances between phenotype graphs would be a lot more complex, because
phenotype graphs might contain copies of nodes (thus several nodes in the pheno-
type might share the same historical marking), which makes historical markings
useless for finding correspondences. This, again, opens up the problem of topol-
ogy matching which has been successfully solved by historical markings in the
case of genotypes. Measuring compatibility distance of genotypes is also much
faster, simply because phenotypes do not need to be built. Measuring compati-
bility distance on genotypes is described in detail in Section 2.4.4.

Recombination

Recombination of virtual creatures proceeds hierarchically, based on the corre-
spondence given by historical markings. Recombination on the level of morphol-
ogy works in the same way as described above in Section 2.4.2. The morphology
graphs of parents are first searched for the presence of nodes and connections
with the same values of their historical markings. The first parent is then copied
to become the first draft of an offspring. The values of all internal properties of
all matching nodes and connections in the offspring are then randomly chosen
either from the first or from the second parent.

The only exception from this rule are local neural networks contained in each
morphological node. When a pair of corresponding morphological nodes is found,
the neural network of the offspring is not created by copying one of the parental
neural networks. Instead, neural networks themselves are combined internally,
based on the historical markings of individual neurons. Recombination of neural
networks works in the same way as described in Section 2.4.3.

The following internal properties are subject to recombination in morpho-
logical nodes: joint type, shape (including its size) and recursive limit. And the
following ones in connections: terminal flag, source anchor, scale factor, reflection
flags and rotation angles.

Thanks to the historical markings, recombination is capable of sensibly mixing
genetic information even on the level of individual weights of neural connections.

Compatibility distance

The compatibility distance between two creatures is defined in a similar way as
the compatibility distance between two neural networks defined in Section 2.4.3.
Thanks to the historical markings, which provide a correspondence between nodes
and connections of two morphological graphs, the compatibility distance can be
computed hierarchically, measuring even a small difference in weights of two
corresponding neural connections. Nodes and connections of the morphologi-
cal graphs of both creatures can be divided into four sets: a set of all pairs of
matching nodes (Nm), a set of all pairs of matching connections (Cm), a set of
all non-matching nodes from both parents (Nn) and a set of all non-matching
connections from both parents (Cn). Non-matching nodes and connections are
those which do not have counterpart with the same value of historical marking in
the other parent, while matching pairs nodes or connections consist of elements
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coming from different parents having the same value of historical marking. To
compute the final compatibility distance, a hierarchy of several simple compati-
bility distance functions is defined first.

The compatibility distance between two morphological nodes a and b is defined
as a weighted sum of normalized differences between individual properties of two
morphological nodes:

δn(a, b) =
wp · |a

r−br|
rmax

+ wm · δs(a
s, bs) + wm · δj(a

j, bj) + wc · δ
′
(ac, bc)

wp + 2 · wm + wc

where ar, br are recursive limits of nodes a, b; rmax is a maximum possible difference
between recursive limits of two nodes; as, bs are geometric shapes of nodes (e.g. a
box, a sphere, etc.); aj, bj are joints and ac, bc are local neural network controllers
of nodes a and b, respectively. A set of parameters specified by the experimenter
is used to set relative weights of morphological properties (wm), control proper-
ties (wc), and properties affecting the structure of the phenotype graph (wp). The
compatibility distance of neural networks δ

′
, as defined in Section 2.4.3, is used

to compare local neural networks of corresponding nodes. Compatibility distance
between two joints is defined simply as

δj(a
j, bj) =

{
1 if joints aj and bj differ
0 otherwise

and compatibility distance of shapes is defined as:

δs(a
s, bs) =

{
1 if as and bs differ
normalized difference in volume of shapes otherwise

The compatibility distance between two morphological connections d and e is
defined as a weighted sum of normalized differences between individual properties
of two morphological connections:

δc(d, e) =
wm ·

∑6
i=1 δ

i
c(d, e) + wp ·

∑11
i=7 δ

i
c(d, e)

6wm + 5wp

where wp and wm are the same parameters as used in constructing δn function (i.e.
used by experimenter to adjust the relative weight of morphological parame-
ters and parameters affecting the structure of the phenotype graph). Each of
eleven functions δ1

c , · · · , δ11
c compares values of a specific internal parameter of

two morphological connections. First six functions compare morphological pa-
rameters (two source anchor coordinates, three angles of rotation and the scale
factor) and next five functions compare parameters affecting the structure of
the phenotype graph (the terminal flag, the recursive limit and three reflection
flags). The range of these functions is [0, 1] and each of them outputs zero if the
properties are the same and one if the properties are as different as they can be.

Finally, the compatibility distance between two morphological graphs A and B
is defined similarly as for the neural networks in Section 2.4.3. The distance of all
morphological nodes Dn(A,B) and the distance of all morphological connections
Dc(A,B) is first computed using distance functions defined above:

Dn(A,B) = |Nn(A,B)|+
∑

(n1,n2)∈Nm(A,B)

δn(n1, n2)

42



Dc(A,B) = |Cn(A,B)|+
∑

(c1,c2)∈Cm(A,B)

δc(c1, c2)

where Nn(A,B) and Cn(A,B) are the sets of all non-matching nodes and connec-
tions of morphological graphs A and B, respectively, and Nm(A,B) and Cm(A,B)
are sets of pairs of matching nodes and connections of morphological graphs A
and B, respectively. Finally, the compatibility distance δ between two creatures
A and B is computed as follows:

δ(A,B) =
t ·Dn(A,B) + (1− t) ·Dc(A,B)

t · (|Nn(A,B)|+ |Nm(A,B)|) + (1− t) · (|Cn(A,B)|+ |Cm(A,B)|)

where t is the parameter used by experimenter to adjust the relative impact of
nodes and connection on the resulting compatibility distance. In the case of
small morphological graphs (i.e. |Nn(A,B)|+ |Nm(A,B)| ≤ Nmax or |Cn(A,B)|+
|Cm(A,B)| ≤ Cmax), the total number of nodes and connections in denominator
is replaced by Nmax and Cmax, respectively.

In summary, this section introduced a method of hierarchical comparison of
two complex morphological graphs based on correspondences given by historical
markings. Behavior of the compatibility distance function can be controlled by
a set of weights. Weights can be conveniently used to put more emphasis on a
specified set of properties of the creatures (e.g. morphological properties, or prop-
erties of a control system). Also, the range of all compatibility distances defined
in this section is [0, 1], which makes them modular and easy to visualize (see the
next section).

2.4.5 Visualizing HierarchicalNEAT

HierarchicalNEAT has been shown to evolve creatures with a given target fitness
value significantly faster than the standard genetic algorithm. The speed-up
factor varied between 1.5 and 2.5 for different tasks (swimming, jumping, light
following and land locomotion). Further experiments have shown that most of
the performance gain is provided by speciation, although recombination based on
historical markings also has a significant positive effect [40].

This section presents visualizations of various parts of HierarchicalNEAT al-
gorithm. Three visualizations are introduced: compatibility distance map (which
provides visualization of compatibility distances among a set of organisms), graph
of the fitness values (showing an overview of fitness values of all organisms in all
generations) and speciation graph (which visualizes development of species over
time).

Compatibility Distance Map

Compatibility distance is a function, which measures similarity of any two or-
ganisms. Given a sequence of organisms s1, . . . , sn and a compatibility distance
function δ, the matrix M of distances among all organisms can be constructed:
Mi,j = δ(si, sj) for each (i, j), where 1 ≤ i ≤ n and 1 ≤ j ≤ n. Since δ is
symmetric, matrix M is also symmetric. Also, each organism is equal to itself
and therefore ∀i Mi,i = 0.
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Figure 2.16: Visualization of similarities among 14 individuals. Black color
corresponds to the zero distance and bright green corresponds to the distance of
one. The figure shows individuals ordered by the species they belong to. Species
are marked with letters A, B, C, D, E.

Compatibility map is a visualization of matrix M . All compatibility functions
used in this thesis are constructed in such way that their range is [0, 1]. Their
values can, therefore, be mapped to a range of colors for visualization purposes.
Black color is assigned to the value of zero and bright green is assigned to the
value of one. Other shades of green are assigned proportionally to the values
between zero and one.

Compatibility map is also a useful tool for visualization of the species assign-
ment (and thus, the correctness of the species assigning algorithm). Figure 2.16
shows compatibility map of individuals sorted by their species. Species should
group together organisms, which are very similar to each other. The map shows
that this is exactly the case, since large black square areas are formed on the
diagonal for individuals belonging to the same species.

Graph of Fitness Values

The fitness graph shows an overview of fitness values of all organisms created dur-
ing the process of evolution. Example of a fitness graph is shown in Figure 2.17.
Horizontal axis shows increasing generations, while the vertical axis corresponds
to the fitness values. Each individual created during the evolution is marked on
the graph using a semi-transparent red mark. The darkness of red thus repre-
sents number of individuals at the same position on the graph. Semi-transparent
marks allow experimenter to see the fine structure in the fitness graph, where
there would be a solid area otherwise. Best individuals from each generation are
connected by a blue line.

Fitness chart can also be used to visualize speciation. Since each species
contains individuals that are similar to each other, fitness values of individuals
from the same species tend to cluster around the same value in the chart. As
a result, individuals from the same species form “strands“ in the fitness chart.
Figure 2.17 illustrates how innovation introduced in one species is improved over
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Figure 2.17: Graph of the fitness values. Species correspond to red “strands”
in the fitness graph. Points A, B and C highlight the moments in the evolution,
when the fitness of one species overgrows the fitness of another species.

successive generations, eventually overtaking older well-established species. This
is the process by which speciation helps evolution maintain diversity and escape
local optima in the search space.

Speciation Graph

A more direct way of visualizing speciation is to show how size of each species
changes across generations (this visualization was first used in [91]). Figure 2.18
shows an example of species development over time. Vertical axis represents
time (i.e. generations), increasing from the top to the bottom, and horizontal axis
shows individuals. Each row represents all organisms in a fixed-size population,
sorted by their species. Each species is assigned gray color with random darkness
to distinguish it visually from other species. New species appear on the right side
of the graph. The red triangles represent the extinction of a species, while green
triangles represent birth of new species.
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Figure 2.18: Visualization of the speciation process. Vertical axis shows
generations increasing from the top to the bottom, while horizontal axis shows
the sizes and distribution of individual species. Each species is colored using a
random shade of gray to distinguish it from other species. Red triangles represent
the extinction of a species and green triangles represent birth of new species.
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Chapter 3

Adaptation Through
Morphological Plasticity

Phenotypic plasticity, defined as the capacity of a single genotype to exhibit a
range of phenotypes in response to changes in the environment [99], is a well
studied phenomenon in biology. Some of the most striking examples of such
plasticity occur in animals that are capable of modifying their morphology during
their lifetime. Water flea (see Figure 3.1a) has been shown to grow protective
spines when exposed to chemicals released into water by its predators. Wasps and
ants adjust size and shape of their bodies depending on which caste they are born
into [76] (see Figure 3.1b). Morphological changes in these cases are not a result
of mutations, but occur purely in response to some property of the environment
experienced by the individual during its lifetime. Such morphological plasticity
can allow individuals to adapt to different environments quickly, without having
to wait for slow mutations to discover the necessary changes [99, 1, 76].

In some cases morphological traits discovered during animal’s lifetime can,
over generations, be assimilated into the genotype of the animal. Evolutionary
mechanism for such transfer has first been proposed by Baldwin in 1896 [2] and
is since referred to as the Baldwin effect. The Baldwin effect occurs in a situation
when individuals in the population are capable of acquiring some beneficial trait
during their lifetimes (e.g. by learning new behaviors). Since the beneficial trait
increases their chances for survival and reproduction, such individuals are pre-
ferred by natural selection. Moreover, individuals that are capable of acquiring
such trait faster than the rest of the population will be promoted by natural se-
lection (since they will be able to start making use of the new trait earlier in their
lifetime) and as a result selection pressure will lead evolution towards increased
ability to acquire the trait. Such selection pressure can lead to a point where the
trait becomes available to individuals automatically without the need to acquire
it (i.e. the trait is assimilated into the genotype). While on the surface this pro-
cess might resemble Lamarckian evolution (which assumes that traits acquired
during the lifetime of an individual are passed on to its offspring directly), the
transfer of acquired traits to the genotype in this case happens through a purely
Darwinian process (all changes to the genotype are introduced through random
mutations and are acted on by natural selection).

A classic example in nature of such assimilation of morphological traits into a
genotype can be found in ostriches [96]. Ostrich skin (same as skin of many other
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(a) (b)

Figure 3.1: Examples of morphological plasticity exhibited by animals:
(a) Daphnia Lumholtzi when exposed to chemicals produced by a predatory fish
(long spines in the individual on the left reduce predation compared to individual
on the right that has not been exposed to the chemicals) [1] and (b) minor vs.
major worker ant of Acanthomyrmex species [76] (drawn by Turid Hölldobler).

(a) Presence of the sea floor induces increased body
mass allowing creature to gain more traction against
the ground (right) compared to morphology used for
swimming in open water (left). Video is available at
https://youtu.be/GX1BNduCvmo.

(b) Decreased viscosity of the sur-
rounding fluid (left) induces reduc-
tion in the body mass of a swim-
ming creature. Video is available at
https://youtu.be/hFzeowtPmmk.

Figure 3.2: Examples of morphological plasticity in evolved robots.
Robots are adapted for swimming in different environments using the method
presented in this thesis.

vertebrates) can become thickened and hardened as a result of repeated pressure
and friction applied to it during the lifetime of an individual. The ability of
the skin to harden is itself an adaptive trait – when ancestors of an ostrich first
started to sit down on the ground for longer periods of time (to avoid predators
or to sit on their eggs), the ability to develop calluses (patches of hardened skin)
on their rump provided an evolutionary advantage because it enabled them to
sit on the ground for longer periods of time without developing sores or tears in
their skin. Individuals that could develop calluses more rapidly in the correct
locations had an advantage over individuals that developed calluses more slowly.
This provided selection pressure which over large number of generations lead to
calluses being present already in an ostrich embryo, before the skin was exposed
to environmental stimuli that normally cause skin to harden (such as friction
or pressure on affected skin areas). A trait which initially required input from
the environment to be expressed was instead expressed automatically before any
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input from the environment was available, which shows that the trait has been
assimilated into the genotype.

Cases of such genetic assimilation in nature have also been demonstrated ex-
perimentally (e.g. in Drosophila Melanogaster by Waddington [97]). It has been
hypothesized that Baldwin effect may have played a major role in the evolu-
tion of instinctive herding skills in dogs bred for that purpose (herding behavior
initially acquired through learning becomes assimilated into the genotype over
generations) or development of language and lactose tolerance in humans [16].

The importance of the Baldwin effect lies in the fact that it makes it possi-
ble for evolution to discover traits that would otherwise be unreachable or very
hard to reach. In the words of Dennett [15] (p. 186): “Thanks to the Baldwin
effect, species can be said to pretest the efficacy of particular different designs
by phenotypic (individual) exploration of the space of nearby possibilities. If a
particularly winning setting is thereby discovered, this discovery will create a new
selection pressure: organisms that are closer in the adaptive landscape to that
discovery will have a clear advantage over those more distant. This means that
species with plasticity will tend to evolve faster (and more ”clearsightedly”) than
those without it.”

Motivated by these examples from nature, we pose the following questions in
the context of evolutionary robotics (in the following text, terms virtual robots
and virtual creatures will be used interchangeably):

1. Can virtual creatures benefit from the ability to adapt their morphology
to different environments when solving a given task? (Similar to water flea
modifying its body when it detects presence of a predator, i.e. specializing
its morphology to the environment in which it was placed.)

2. Can morphological plasticity achieved through learning make evolution of
virtual creatures faster even in a single environment, i.e. decrease the num-
ber of generations required to evolve a creature with a given level of fitness?
(Similar to how Baldwin effect can speed up evolution in nature.)

3. Can learning make evolution more efficient even in a strictly computational
sense, when the extra computational cost required for learning is compared
to evolution without learning? I.e. can evolution of virtual creatures which
can change their morphology during their lifetimes reach a given target
fitness value with less total computational resources than evolution without
learning?

To answer these questions, we propose a method of evolving virtual creatures
that can adapt their morphology during their lifetime to the current environ-
ment. Adaptation is performed using a hill-climbing learning rule (described in
Section 3.2). Creatures used in all experiments are composed of blocks connected
by joints, and represented in evolution using genotype-to-phenotype mapping de-
scribed in Section 2.2 (an example of evolved creatures is shown in Figure 3.2).
Morphological changes during the learning phase are limited to adjustments to
the size of each block while the overall structure of the creature (number of blocks
and positions of joints used to connect them) remains unmodified. While such
changes may not be sufficient to adapt the creature to a completely new task
(which might require learning new behaviors or making more radical changes to
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the morphology), we show that they are sufficient to allow virtual creatures to
adapt to significantly different environments and perform given tasks more effi-
ciently than creatures not capable of such adaptation. Limiting morphological
plasticity to only adjustments of block sizes also makes it more feasible to apply
this technique to construction of robots capable of such adaptations in reality—
constructing a robot that can adjust sizes of its parts is likely to be more practical
than building a robot that can restructure its morphology more dramatically (a
simple physical robot consisting of a single resizable box has already been demon-
strated by Roper et al. [81] in Voxbot system).

The rest of this chapter is organized as follows. Section 3.1 provides an
overview of previous works that study interaction of evolution and learning. Sec-
tion 3.2 describes a generic learning algorithm that can be used to optimize
morphology of a creature during its lifetime and Section 3.3 describes how it can
be applied to the swimming task. Section 3.4 then describes experiments demon-
strating the ability of creatures to adapt to different environments and Section 3.5
show how learning can be used to improve evolution even in a single environment.
Finally Section 3.6 and Section 3.7 provide ideas for future work and conclusion.

3.1 Previous Works

Interaction of evolution and learning has first been investigated by Hinton and
Nowlan [28] and by John Maynard Smith [85] in 1987, who have demonstrated
that ability of individuals to learn can lead to faster evolution. Hinton and
Nowlan [28] have shown how Baldwin effect can speed up evolution using a simple
model: the subjects of evolution were neural networks consisting of 20 potential
neural connections (each connection can be either present or absent and connec-
tion weights were not subject to optimization). One of the 220 possible neural
networks was arbitrarily chosen to be the good network and all other networks
were bad networks. The goal of the search was to find the one good network.
While such setup is quite artificial, it can be used to clearly demonstrate possible
benefits of the Baldwin effect. The problem of finding the one good network is
too difficult for a standard genetic algorithm, because the fitness landscape does
not provide any gradient which the genetic algorithm can use. Evolutionary algo-
rithm therefore has to resort to randomly testing different networks. To combine
evolution with learning, Hinton and Nowlan used genetic encoding consisting of
20 genes where each gene specified whether a given neural connection was present,
absent or whether its presence was undecided (left to be determined by learning
during the lifetime of each individual). Fitness evaluation in the genetic algo-
rithm was modified to test a fixed number of different random combinations of
all undetermined genes (a simple simulation of lifetime learning), and the fit-
ness of the individual was set to the number of combinations remaining when the
good network was found. This method of evaluating fitness meant that genotypes
which were ”closer” to the good network (i.e. it was easier to the lifetime learn-
ing to guess the correct value of all undetermined genes) received higher fitness
score than individuals further away. Over generations, the number of unspeci-
fied genes was reduced because genes that were guessed correctly during learning
were (over time) assimilated into the genotype by mutation and crossover. Evo-
lutionary search with learning therefore converged on the good network unlike
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evolution without learning. While their model was limited, Hinton and Nowlan
have shown that learning can make evolution faster by providing a gradient which
can be used by the genetic algorithm to find the solution.

One of the main limitations of Hinton and Nowlan’s model is that learning
uses exactly the same objective function as evolution. As argued by Nolfi and Flo-
reano [72] this is rarely the case in nature, where the environment rarely provides
direct hints on how an individual can improve its evolutionary success. Clues
from the environment can instead be used only as an indirect guide for learning
that might lead to increased ability to reproduce. Nolfi et al. [74] address this by
studying a model which uses different tasks for learning and for evolution. The
subject of evolution are artificial agents living on a two-dimensional grid. The
goal of each agent is to collect food tokens scattered randomly on the grid. Each
agent is controlled by a neural network with the following inputs: direction and
distance to the nearest food token and the motor action planned in the next simu-
lation step (possible actions are: turn 90◦ left, turn 90◦ right, go forward, remain
still). Neural network outputs the next planned motor action and a prediction
of what the inputs will be in the next step. While the goal of each agent (from
evolutionary point of view) is to collect as many food tokens as possible, the goal
of learning is different: to predict the state of sensors in the next simulation step.
Learning is performed in each simulation step using a standard back-propagation
algorithm. Weights of neural connections are not copied back to the genotype
after learning (evolution is Darwinian, not Lamarckian). Nolfi et al. show that
even though learning in this case does not attempt to directly improve the abil-
ity of agents to collect food, evolution with learning significantly outperforms
evolution without learning.

Since the goals for learning and for evolution in this experiment are different,
the explanation provided by Hinton and Nowlan (i.e. learning provides the gra-
dient for evolution) is on its own not sufficient to explain increased performance.
Nolfi et al. explain the performance increase by using a concept of dynamically
correlated surfaces. In this explanation, they first imagine all individuals exist on
two different search surfaces: learning surface and evolutionary surface. Each in-
dividual can have different fitness values on these two surfaces (robot can collect
many food tokens even if it cannot predict its sensor values well and vice versa).
The process of learning leads each individual towards higher areas in the learning
surface, while evolution leads individuals towards higher areas in the evolutionary
surface. Nolfi et al. propose that when learning and evolution are used together,
evolution will tend to select individuals for which learning increases not only their
fitness in the learning surface, but also their fitness on the evolutionary surface
(i.e. individual is in an area where the two surfaces are dynamically correlated).

Both works described so far have concentrated on studying interaction of
learning and evolution in the context of neural networks. Other works have
studied interaction and learning using control systems of simple robots with fixed
morphology [72, 19, 75]. Robots can, however, benefit from being able to adapt
other components of their phenotype to the environment. As we have shown in
the introduction to this chapter, many species of animals benefit greatly from
morphological adaptations. In this thesis we study plasticity of robot’s body as
opposed to plasticity of its control system.

Previous works in evolutionary robotics have traditionally focused on opti-
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mizing morphology of robots purely by evolution [84, 62, 33, 5, 59] (also see
Section 2.1 for an overview) while investigations of phenotypic plasticity have
been limited to the control system of robots with fixed morphology [72, 19, 75].
One exception is work by Bongard [6] which demonstrates that modifying mor-
phology during the lifetime of the creature according to a predetermined plan
can lead to evolution of more robust creatures with higher fitness. However, mor-
phological changes in this case were predefined and did not change in response
to the environment or behavior of the robot. The purpose of the study was not
to study learning of morphology during individual’s lifetime, but to improve op-
timization of the control system by evolution through changes in morphology.
Effects of morphological plasticity achieved through lifetime learning have not
been studied yet to the author’s knowledge.

3.2 Learning Algorithm

Motivated by examples of morphological plasticity in nature (described at the
start of this chapter) and by previous works that studied plasticity of the control
system of a robot, we propose a new method where morphological plasticity
of a robot is achieved through lifetime learning. The main insight which this
learning method is based on is that for many problems, the final performance of
a given morphology can be predicted (at least to some extent) using a significantly
shorter (and therefore less expensive) test. Examples of such problems include
any problems where the evolved behavior needs to be sustained by the robot for
a longer period of time. Common cases of such problems in evolutionary robotics
include various forms of locomotion, such as walking on the ground, swimming
in water or flying in the air.

The motivation for using shorter tests during learning can be further illus-
trated using the following analogy. Imagine a circus owner needs to find out who
from a group of tightrope walkers has the best chance of successfully walking over
the entire length of a rope. The most reliable method is to allow each tightrope
walker to walk the full length of the rope and select the winner from the ones
who successfully reach the end of the rope. However, if the time for such a test
is limited, the owner might decide to ask each tightrope walker to make only a
small number of steps on the rope before climbing down. Although such short
test will not have as much predictive power as test on the full rope (it will not
distinguish between walkers who will fall in the middle of the rope from the ones
who successfully walk the entire length), it can still give the owner valuable in-
formation about the capabilities of different test participants. Co-evolution of
morphology and control system of a robot can be in many ways similar to the
tightrope walking example. Virtual robots are subject to the laws of physics
and can get into situations which they cannot recover from (e.g. flip on one side
preventing any further locomotion, or cause an unrecoverable instability in the
physics simulation). While the short test cannot predict the outcome of a full
test perfectly, the information can be sufficient to help guide evolution towards
more promising areas of the search space.

To combine evolutionary search with learning, we modify each fitness evalua-
tion to start with a learning phase during which the robot attempts to discover
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Figure 3.3: Learning and evolutionary landscapes. Learning based on
short-duration experiments searches a different landscape (bottom) than evo-
lution where the landscape is based on full-duration experiments (top). Even
when the information used by learning is less accurate, learning can still aid evo-
lution by searching the local neighborhood of each individual as long as there
is some correlation between gradients of the two landscapes. Evolution without
learning would (incorrectly) allocate more offspring to individual B compared to
individual A (since B has higher fitness than A), while evolution with learning
will allocate more offspring to individual A when learning during the lifetime of
individual A increases its fitness value.

better morphology through experimentation. The learning phase consists of a
fixed number of short-duration experiments designed to test if the selected mor-
phology adjustment has the potential to improve the fitness of the individual.
After the learning phase, full-duration fitness test is performed to verify if the
robot can sustain discovered improvements for a longer period of time. Result of
the full-duration test is used as the final fitness score.

The hypothesis tested in this chapter is that if the computational cost of
learning is reduced (by reducing duration of individual learning experiments) the
benefits gained from learning during evolution can outweigh the cost of learn-
ing (despite the fact that learning acts on less accurate information). As a result,
evolution with learning might be able to outperform evolution without learning
not just in terms of the number of generations required to evolve creature with a
given fitness, but also in a strict sense—in terms of the total computational cost
required.

The mechanism through which learning can influence evolution is illustrated in
Figure 3.3. Since all dimensions of all blocks of the creature are being optimized
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Algorithm 3.2.1 Lifetime Learning of Morphology.

Require:
N , the number of learning steps
tlearn, duration of each learning step
ttest, duration of the final fitness evaluation
Lgeno, array of block sizes encoded in the genotype of a virtual creature

1: Initialize Lbest = Lgeno, fbest = 0
2: for all i ∈ {1, ..., N} do . Hill-climbing learning phase
3: Lcurrent ← RandomlyAdjust(Lbest)
4: fcurrent ← TestMorphology(Lcurrent, tlearn)
5: if fcurrent > fbest then
6: fbest ← fcurrent

7: Lbest ← Lcurrent

8: end if
9: end for

10: ffinal ← TestMorphology(Lbest, ttest) . Final fitness evaluation
11: return ffinal

by learning at the same time, learning occurs in 3n-dimensional space (where
n is the number of blocks forming creature’s body, excluding any mirrored and
repeated blocks). We can therefore imagine that both evolution and learning are
searching through a multidimensional space of all morphologies 1. To illustrate
the benefits of learning, imagine that a population contains individuals A and
B. Individual B has higher fitness than individual A, but individual A lies in a
more promising area of the search space. Evolution without learning will focus
on exploring the neighbourhood of individual B over individual A (i.e. individual
B will product more offspring due to its higher fitness value). In evolution with
learning, the process of learning for individual A can discover higher fitness values
by exploring the local gradient around individual A (grey arrow in the figure).
The hypothesis is that this can occur even if the information used by learning is
imperfect (because of shorter test durations). The gradient can still be preserved
sufficiently for learning to make use of it and transmit information about higher
fitness values to evolution (similar to the cases of the Baldwin effect discussed at
the start of this chapter).

As described in Section 3.1, Nolfi et al. in [74] used back-propagation algo-
rithm to learn the weights in a neural network during the lifetime of a robot. In
the case of morphological plasticity, there are no known analytical methods that
can be used to predict the best morphology for a given creature and a given task.
The process of learning therefore has to rely on black-box optimization methods.
While any black-box optimization method could be used, hill-climbing has been
chosen due to its focus on exploitation of the local gradient around the individual.

Pseudocode for the learning process is shown in Algorithm 3.2.1. Morphology
changes during the learning phase are limited to the sizes of individual blocks,
while the number of blocks and their connections remain unchanged. The learning
phase (lines 2-9) performs a hill-climbing search over the space of all possible

1This is only an approximation because unlike learning, evolution can add and remove blocks
as well which changes the dimensionality of the search space.
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sizes of all blocks comprising the creature. In the first learning step, sizes of
all blocks are set to the values encoded in the individual’s genotype (Lgeno in
the pseudocode). In each subsequent step, the best block sizes found so far
are modified by a small random amount (RandomlyAdjust(Lbest) function
call on line 3 randomly adjusts the size of each block along each dimension).
Both magnitude and direction of the adjustment are selected uniformly from
a predefined range of values using a standard pseudorandom number generator.
The sequence of pseudorandom numbers is never reset (new pseudorandom values
are generated in each learning step through the entire evolution run). Block sizes
are not permitted to exceed predefined upper and lower limits. Sizes of blocks
generated using recursive limits and reflection are adjusted by the same amount
in each step to preserve symmetry (see Section 2.2.1 for a description of reflection
flags and recursive limits). After each learning step, the relative positions of all
blocks are reset to their initial positions to ensure that early unsuccessful learning
steps do not interfere with subsequent learning steps.

Each generated morphology is tested by TestMorphology(L, t) function
(parameter L contains morphology encoded as an array of block sizes and pa-
rameter t contains the duration of the test). The test can measure any aspect of
the creature during the allocated time. As an example, a test designed for evolu-
tion of swimming virtual creatures returns the distance travelled by the creature
during the test (swimming task will be described in more detail in the following
section).

3.3 Learning Applied to the Task of Swimming

In this section we describe how is the generic learning algorithm described above
applied to the task of swimming. Swimming is a task ideally suited for the learn-
ing algorithm described above since it requires the robot to sustain an efficient
swimming behavior for a longer period of time to be considered successful.

To test robot’s swimming ability, robot is placed in a water environment
simulated by turning off gravity and adding viscosity forces. Fitness of the robot
is set to the average speed achieved over the course of the simulation by the
center of mass of the robot. Forward motion is favored over circular motion by
computing fitness as a distance between starting and final position of the robot
divided by the duration of the test. For more details about fitness evaluation
in general, see description in Section 2.2.4. Swimming task can be modified in
various ways by changing properties of the environment such as viscosity or by
adding a sea floor and enabling a weak downward force.

The same fitness calculation method is used during learning and for the final
fitness evaluation. The effect of shortening the test on the search space can be
seen in Figure 3.4 which shows how fitness changes for a specific evolved creature
when varying the length of two sides of one of its blocks. While the landscapes
are different, the main features remain similar. For example, creatures with large
block width and large block depth (top right corner of each chart) achieve low
fitness while creatures with small block depth tend to achieve larger fitness.

Learning landscapes shown in Figure 3.4 and Figure 3.7c provide clear gradi-
ents, suggesting that the problem might be well suited for a hill-climbing learning
algorithm.
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Figure 3.4: Cross-section of a learning landscape (left) and evolutionary
landscape (right). Learning test is limited to two seconds while full fitness
evaluation takes 48 seconds. The main result is that while the landscapes are
different, they are sufficiently similar in order for the learning to inform evolution
about promising areas worth exploring. See Figure 3.7c for an image of the
corresponding robot (evolved for swimming near the sea floor).

The learning rule described in the previous section has three parameters:
(1) the duration of the final fitness evaluation, (2) the duration of each learning
step and (3) the number of learning steps. The rest of this section describes how
the value for each of these parameters was selected.

The first parameter (duration of the fitness evaluation after learning) signif-
icantly impacts the behavior of evolved creatures. With short duration of fit-
ness evaluation, evolution favours creatures which simply perform a strong initial
push at the start of the simulation, but often fail to continue moving afterwards.
Longer fitness evaluations are needed to prevent such behaviors, however long
durations also incur extra computational cost. A set of preliminary experiments
was performed to find the minimum duration of the fitness evaluation that results
in creatures that maintain their speed for a long time period. Each evaluation
duration was tested using 50 independent evolutionary runs each ending after
200 generations. Average speeds of the best evolved creatures for each duration
are shown in Figure 3.5 (left). The fastest creature evolved in each run has then
been re-evaluated using a long (64 second) fitness evaluation to see if the aver-
age speed was maintained. Results (shown in Figure 3.5, right) show that very
short durations of fitness evaluation result in creatures that fail to maintain their
fitness (average speed) in the longer simulation2. Based on these preliminary
experiments, 48 second duration of the fitness evaluation was chosen for all ex-
periments in this chapter – the smallest value that reliably results in creatures
that perform at least as well as creatures evolved using the longest duration.

The second parameter (duration of the learning step) was set to 2 seconds –
a time in which most evolved creatures complete their first swimming stroke.
On its own, learning based on such short tests is not guaranteed to produce
creature good at swimming for long periods of time (in fact, short learning steps
can fail to correctly predict the outcome of the full test), but as results of our

2All boxplots in this thesis use the whisker bars for minimum and maximum value, box
boundaries for 1st and 3rd quartile, horizontal line for the median and black dot for the mean.
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Figure 3.5: Evolution of stable swimming behavior requires long fitness
evaluation. Fitness of the best creatures evolved for swimming using different
fitness evaluation durations (left) compared to the fitness of the same creatures
evaluated using a long (64 second) fitness evaluation (right). Note the difference
in the ranges of the vertical exes between the two graphs. Short fitness evaluation
durations result in creatures that achieve high average speed initially but fail to
maintain the speed during longer period.

Learning Evaluation

2s 2s 2s 2s 2s 2s 2s 2s 48s

Figure 3.6: Duration of learning compared to fitness evaluation. Each
fitness evaluation starts with a hill-climbing learning phase in which different
morphology changes are tested.

experiments show, even such a short test provides enough information to guide
evolution towards more promising areas of the fitness landscape if each creature
is also evaluated in a long-duration test after learning.

The third parameter controls the number of learning steps performed for each
individual before it is evaluated in a long-duration final fitness test. Larger values
allow hill-climbing to explore neighborhood of the individual more extensively,
while also increasing the computational cost. To keep the computational cost of
learning low, 8 learning steps have been used in all experiments in this chapter.
Diagram visualizing the amount of time used for learning steps and for the final
fitness evaluation is shown in Figure 3.6.

3.4 Adaptation to Different Environments

In this section we attempt to answer the first question posed at the start of
this chapter. We show how learning can be used to evolve virtual creatures
capable of taking advantage of differences in the environment by adjusting their
morphology to increase their fitness (similar to water flea growing spikes when
it detects presence of a predator or ants growing bodies of a different size and
proportions depending on which caste they are born into).

To evolve virtual creatures capable of adapting their morphology to different
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(a) Open Water
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(b) Low Viscosity
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(c) Sea Floor

Figure 3.7: Learning landscapes. Two-dimensional cross-sections of nine-
dimensional learning space for a simple evolved swimming creature (each dimen-
sion of each block contributes one dimension). Each plot shows swimming speeds
achieved in a given environment for varying widths and depths of the central
block of the creature. Creature displayed next to each plot shows the best size
of the central block (also marked using black dot in the plot). Size of the central
block is varied along two axes: depth (into the page) and width (horizontal across
the page).
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environments we use HierarchicalNEAT algorithm as described in Section 2.4
with a modified fitness evaluation. The new fitness evaluation consists of two
independent tests of a given virtual creature, each in a different environment. The
minimum per-environment fitness value is used as the final result. An individual
therefore needs to perform well in both environments in order to receive a high
fitness value. Morphological changes discovered by learning are not copied back
into the genotype (the evolution is Darwinian, not Lamarckian).

Three different environments were used to test the ability of virtual creatures
to adapt their morphology to the environment through learning:

Open Water Virtual creature is placed in a simulated water environment with-
out any obstacles. No extra gravity or buoyancy forces are added so the
creature is suspended in water unless it actively performs movement. Forces
simulating viscosity of water are enabled.

Sea Floor A single plane is added to the environment simulating the sea floor.
At the start of the simulation, creature is positioned such that its lowest
point is in contact with the plane. Reduced gravity of 2 m/s2 is enabled to
simulate density of blocks higher than the surrounding water. The environ-
ment is otherwise identical to the open water environment.

Low Viscosity Fluid Viscosity forces applied to the virtual creature are re-
duced by 50% to simulate a low viscosity fluid surrounding the creature (such
as water at moderately higher temperatures). The environment is otherwise
identical to the open water environment.

Two different experimental setups are used, each using a different pair of
environments. The goal of the first experiment is to evolve creatures capable of
swimming in both open water and in the sea floor environment. In the second
experiment open water and low viscosity fluid environments are used instead.

While creatures can generally use the same movements to propel themselves
forward in all three environments with some degree of success, the differences
in environments can be exploited to achieve higher fitness in each of them. For
example, since the sea floor is immovable, creatures can push against it more
effectively than against the water to achieve movement. Since the floor is perfectly
smooth such push must rely on the surface friction forces to be effective, which in
turn depend on the weight of the creature. Heavier creatures thus might be able
to push against the floor more effectively and achieve higher speeds. Figure 3.7
illustrates the differences between the three environments in more detail. The
shape and ruggedness of the learning space are different in each environment, as
is the position of the optimum.

The following configurations have been tested for each pair of environments:

Evolution with learning Learning was performed during evolution as part of
each fitness evaluation as described in Section 3.2 and Section 3.3. This
configuration allows creatures to learn morphology specific to each environ-
ment.

Evolution without learning No learning was performed as part of fitness eval-
uation. In this configuration, creatures were forced to use the same mor-
phology in both environments.
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Evolution in one environment only (baseline) Creatures were evolved us-
ing only one of the environments and without learning. After evolution
finished, the best creature from each generation was evaluated in both en-
vironments and the smaller fitness was used as the resulting fitness (the
same as in the first two configurations). This configuration serves as a
baseline to see how do the creatures evolved in one of the environments
perform in the other environment without any previous exposure to it.

3.4.1 Parameter Settings

HierarchicalNEAT algorithm described in Section 2.4 was used in all experiments,
using the same configuration parameters unless stated otherwise. Population
size was set to 300 in all experiments. All evolutionary runs were stopped after
200 generations. Each configuration was tested 50 times. Significance levels
were calculated using Student’s t-test. Maximum size of each block along each
dimension was set to 1. Volume of any block was not permitted to decrease below
0.008 during learning or during mutation. Random changes to each side of each
block were selected uniformly from range [-0.05, 0.05] in each learning step.

3.4.2 Results and Discussion

In both experiments, evolution combined with learning achieved higher average
fitness values in the last generation compared to evolution without learning (an
improvement of 15% in both cases, p < 0.01, see Figure 3.8). Moreover, evolu-
tion with learning outperforms evolution without learning not just in terms of
fitness achieved after a fixed number of generations, but also when accounting for
the extra computational cost that learning incurs. Since learning increases the
total cost of each fitness evaluation by one third (the total simulation time re-
quired for a single evaluation increases from 48s to 64s, see Figure 3.6), the extra
computational cost was accounted for by comparing results from generation 150
of evolution with learning with results from generation 200 of evolution without
learning. Such comparison shows that evolution with learning outperforms evo-
lution without learning by 9% in open water/sea floor experiment and by and 7%
in lower/higher viscosity experiment (p < 0.05 in both cases). These results show
that allowing creatures to specialize for each environment through learning allows
them to reach higher fitness values compared to creatures that are constrained
to use the same morphology in both environments.

Large diversity of creatures has been evolved in all experiments. The most
common type was a snake-like creature swimming in a sinusoidal pattern. Snake-
like creatures were more common in evolution with learning (14% of all runs)
than in evolution without learning (6% of all runs), suggesting that this type of
creature benefits from being able to adapt to different environments (see Fig-
ure 3.9 for an example of a snake-like creature). In general, evolved creatures
made significant use of features provided by the encoding, such as symmetry and
repetition. Examples of evolved creatures are shown in Figure 3.2 at the start of
this chapter and in Figures 3.12 and 3.13.

Morphological adaptations learned through creature’s lifetime strongly reflect
the environment (see Figure 3.10). Learning in low viscosity environment on
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(a) Evolution of creatures capable of swimming in both open water and on the sea floor
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(b) Evolution of creatures capable of swimming in fluids with different viscosities

Figure 3.8: Results of experiments with creatures adapting to a pair of
environments. Allowing creatures to adapt their morphology to each environ-
ment improves performance compared to evolution without learning.

(a) Open Water

(b) Sea Floor

Figure 3.9: Different phenotypes of a snake-like robot. Different pheno-
types resulting from adaptation of a single virtual robot to different environments.
Video is available at https://youtu.be/VbP8CN53nWk.
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Figure 3.10: Volume of phenotypes expressed in different environments.
The main result is that in the viscosity experiment, phenotypes expressed in
low-viscosity environments are significantly smaller than phenotypes expressed
in higher-viscosity environments. The relationship is reversed with open water
and sea floor environments.

average lead to reduction of the total volume (and therefore mass) of creature’s
body by 30.1% compared to environment with higher viscosity (0.51 vs. 0.73,
p < 0.02). Conversely, in the open-water/sea-floor experiment the volume of
phenotypes expressed in the sea floor environment was on average 44% larger than
for phenotypes swimming in open water (1.13 vs. 0.78, p < 0.05). As discussed
above, the difference likely comes from the fact that larger blocks provide more
weight, and thus more friction against the sea floor allowing the creatures to make
better use of the floor for locomotion.

Results of baseline experiments confirm that evolution of creatures exposed
to only one of the environments results in creatures that perform significantly
worse in the other environment compared to creatures exposed to both environ-
ments (p < 0.01 in all cases). For instance, creatures evolved for swimming near
the sea floor without being exposed to open-water environment often rely on sea
floor friction to such an extent that they are not able to move forward at all
without the sea floor (see Figure 3.8a). On the other hand creatures evolved
for swimming in higher-viscosity fluid without being exposed to lower-viscosity
fluid performed quite well in low-viscosity fluid without any further adaptation
(although still significantly worse than creatures exposed to both environments).

To see the effect of morphological plasticity more clearly, the best creature
discovered in each run of evolution with learning was subjected to learning in one
of the environments and then placed in each of two the environments with no
further learning. Results (shown in Figure 3.11) show that morphological adap-
tations discovered through learning are specific to one environment and cause
degradation of performance in the other environment (in other words each crea-
ture performs better in the environment it used for learning than in the other
environment).

Morphological plasticity thus allows creatures to increase their fitness in each
environment independently. The same effect is also demonstrated in Figure 3.12
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Figure 3.11: Performance of robots when tested in a different environ-
ment than the environment used for learning. The main result is that
morphological changes discovered through learning are beneficial in the environ-
ment used for learning but detrimental when used in the other environment.
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Figure 3.12: Environment-specific phenotype adaptations (open water
vs. sea floor). Comparison at the top shows that phenotype adapted for swim-
ming in open water performs better in open water than phenotype adapted for
swimming near the sea floor. Performance of these two phenotypes is reversed in
the sea floor environment (bottom). Both phenotypes are a result of learning al-
gorithm applied to the same genotype. Phenotypes are also shown in Figure 3.2a.
Video is available at https://youtu.be/GX1BNduCvmo.
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Figure 3.13: Environment-specific phenotype adaptations (lower and
higher viscosity). Comparison at the top shows that phenotype adapted
for swimming in higher viscosity fluid performs better in higher viscosity fluid
than phenotype adapted for swimming in lower viscosity fluid. Performance
of these two phenotypes is reversed in the lower viscosity environment (bot-
tom). Both phenotypes are a result of learning algorithm applied to the same
genotype. Phenotypes are also shown in Figure 3.2b. Video is available at
https://youtu.be/hFzeowtPmmk.
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and Figure 3.13. Each of these figures shows two morphological adaptations of
a creature encoded by the same genotype, and the performance of each of those
two adaptations in both environments. Performance in the environment that was
used for learning is better than performance in the other environment.

Results presented so far do not make it clear whether learning improves evo-
lution by altering the paths evolution takes through the fitness landscape, or
whether learning is orthogonal to evolution, i.e. final result of evolution with
learning would be the same if learning was performed only at the end of evolu-
tion. To answer this question, the best creature from each run without learning
was subjected to a learning phase consisting of 100 learning experiments each
48 seconds long (in each environment separately) and its fitness was measured
afterwards. The average improvement from this extended learning was only 0.8%
in the sea floor experiment and 0.9% in the low viscosity experiment. Large pro-
portion of creatures failed to improve at all (42% and 47% respectively). This
suggests that when learning is performed during evolution as opposed to after evo-
lution, it helps evolution guide the search to more promising areas in the fitness
landscape and it cannot be replaced by performing learning only after evolution.

3.5 Learning in a Single Environment

In previous section we have shown that evolution with learning can outperform
evolution without learning when each creature uses learning to adapt to each of
the two different environments. Performance improvement observed in previous
section can be explained by two processes:

Specialization Being able to adjust morphology for each environment gives
learning creatures wider set of options when searching for high fitness val-
ues than options available to “generalist” creatures which are constrained
to use the same morphology in both environments. As shown in previous
section, the best evolved creatures take advantage of the fact that they
can use learning to adapt their morphology and moreover, adaptations are
systematic—all creatures tend to reduce their body mass in one of the en-
vironments compared to the other environment.

The Baldwin Effect As discussed at the beginning of this chapter, learning
alone can make evolution faster by efficiently exploring the local neighbour-
hood of the individual in the learning landscape. Even when the changes
discovered by learning are not passed to the genotype of the creature, the
information discovered by learning can inform evolution about promising
areas of the search space.

In this section we attempt to separate the effects of Baldwin effect from the
effects of specialization by running evolution with learning using single environ-
ment only. Since fitness evaluation only occurs in one environment, performance
gains cannot come from the ability of creatures to specialize, but must come only
from the interaction of evolution with learning.
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Figure 3.14: Evolution with and without learning in a single environ-
ment. Evolution combined with learning outperforms evolution without learn-
ing even when creatures are evolved for one environment only (swimming in low
viscosity fluid).

3.5.1 Experiment Setup

All methods and configuration parameters used to run the experiment are iden-
tical to experiments described in the previous section with two exceptions. First,
to evaluate fitness of an individual, the individual is subjected to learning (using
Algorithm 3.2.1) in only one environment and the fitness achieved after learning
in this environment is returned to the evolutionary algorithm. The environment
used for the experiment has been chosen arbitrarily to be the low viscosity fluid.
Second, the number of runs was increased to 200 to take into account smaller
magnitude of the observed effect.

3.5.2 Results and Discussion

Results of experiments (averaged over all runs) are shown in Figure 3.14. Evo-
lution without learning achieved average fitness value of 56.04 in in the last gen-
eration compared to 51.52 for evolution without learning (an improvement of
8.7%, p < 0.03). When extra computational cost used by learning is taken into
account (i.e. results of generation 150 of evolution with learning are compared to
generation 200 of evolution without learning, the same as in Section 3.4.2), evo-
lution with learning still outperforms evolution without learning by 4.0%. These
results show that learning has a significant positive effect on evolution and they
suggest that Baldwin effect plays a significant role even in multi-environment
tests presented in the previous section. Examples of several evolved creatures are
displayed in Figure 3.15 (note examples of repetition of segments and two-fold
and four-fold symmetry).
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Figure 3.15: Examples of robots evolved for swimming. Robots exhibit
two-fold and four-fold symmetry and repeating segments. Video is available at
https://youtu.be/A9gj7taU0SM.
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3.6 Future Works

In this chapter we have shown that morphological plasticity (achieved through
lifetime learning) can improve performance of evolutionary search and it can allow
robots to adapt their morphology to different environments. We have shown
that the benefits provided by the new method generalize across different pairs
of environments. One interesting area of future research is to investigate which
tasks other than swimming and which other environments can benefit from such
morphological plasticity. The method should be applicable to any problems where
the robot needs to maintain its performance for a longer period of time and where
future performance of the robot is correlated with its performance at the start of
the test. Examples of such problems are flying, following a distant light source
or terrestrial locomotion.

This work focused solely on morphological plasticity which has not been stud-
ied before in the context of body-brain co-evolution (to the author’s knowledge).
While we have shown that such plasticity can provide significant benefits, the
fact that learning cannot modify the behavior of the robot or make more signifi-
cant changes to its morphology limits the extent of adaptation achievable using
this method. One natural extension of this work would be to apply the same
method to the control system of the robot or to allow learning to experiment
with more significant changes to robot’s morphology. Examples of such morpho-
logical changes could be adding or removing a block or changing a recursive limit
(resulting in new copy of an existing block being added to the creature). With
regards to plasticity of the control system, preliminary experiments with Hebbian
learning (where weights of neural connections are updated based on how are they
used by the individual during its life) and with learning based on black-box op-
timization of neural networks (using similar hill-climbing algorithm as presented
here) have been conducted but they have not yielded interesting results yet.

Due to high demands on computational resources, each evolutionary run in
this thesis had to be terminated after 200 generations. It would also be useful
to compare performance of different configurations of evolutionary algorithms in
terms of the maximum achievable fitness. However, this would require running
each experiment to the point where the fitness stops improving. In practice this
can take thousands of generations and such experiments were not feasible for this
thesis due to their high computational cost.

High computational cost was also the primary reason for the following issue:
many of the creatures evolve behavior which is sensitive to the exact conditions
creature starts in. This problem can be solved by evaluating each creature many
times, in different starting configurations, and returning the mean (or minimum)
fitness. This approach has not been used for evolution of virtual creatures in this
thesis due to its high computational cost. This effect also required resetting the
creature to its starting configuration after each learning step. While this approach
complicates transfer of evolved creatures to real robots, it is used commonly
in evolutionary robotics [7, 14] due to high computational cost of making the
behavior of robots less sensitive to starting conditions.

Learning method presented in this thesis uses hill-climbing algorithm to search
the local neighborhood of the individual. Other variations of hill-climbing (or even
other black-box optimizations methods) could be used instead. However, prelim-
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inary experiments have shown that hill-climbing provides significant advantage
over random search (where morphology encoded in the genotype is randomly
modified in every step instead of modifying the best morphology discovered by
learning so far, i.e. Lbest on line 3 in Algorithm 3.2.1 is replaced by Lgeno). Pre-
liminary experiments have also shown that increasing the learning rate (i.e. mag-
nitude of random changes introduced in each learning step) hurts performance
of the algorithm suggesting that it is more advantageous to gradually climb the
local gradient as opposed to attempting to guess a larger step. Preliminary ex-
periments with Lamarck-style evolution (where improvements discovered by evo-
lution are copied back to the genotype) have not shown significant improvements
in the achieved performance, but further research is required to confirm the result
conclusively.

Another interesting avenue of future research would be to provide more direct
evidence of different components of the Baldwin effect. As an example, assimi-
lation of acquired traits into genotype (as described in the introduction to this
chapter) could be shown to occur in virtual creatures in a similar way as in ani-
mals, i.e. morphological changes discovered through learning become part of the
genotype of the creature later in evolution.

3.7 Conclusion

In this chapter we studied interaction of evolution and learning in the context
of body-brain co-evolution of virtual robotic creatures. We introduced a method
which allows evolution of robots capable of adjusting their morphology to different
environments—the method is inspired by several cases of such morphological
adaptations found in nature. We show that the evolution of learning creatures
outperforms evolution without such morphological plasticity, both in terms of the
fitness value reached after a fixed number of generations and also in a more strict
sense, when taking into account extra computational cost of learning during each
fitness evaluation. The main insight of the new method is that the computation
cost of learning can be significantly reduced by shortening the learning phase.
While this reduces accuracy of learning (i.e. learning can result in morphology
which fails to maintain good performance during a full-duration test), the gradient
of the search space is preserved sufficiently for evolution to use it efficiently.

We show that resulting performance improvements generalize across different
sets of environments (swimming in fluids with different viscosities and swimming
near the sea floor vs. in open water) and that evolved creatures tend to adjust
their bodies in similar ways in the same environments (e.g. swimming near the
sea floor leads to increased body mass compared to swimming in open water).
Further experiments have demonstrated that when learning is performed during
evolution (as opposed to after) it results in improved performance of the search,
showing that learning is not orthogonal to evolution, but has significant impact
on the evolutionary search itself (even when improvements discovered by learning
are not copied back to the genotype in the next generation).

In the second part of this chapter we have shown that learning improves
performance of evolution not just when robots can learn different morphology in
each of several environments, but also when robots are evolved in one environment
only. The improvement in this case cannot be explained by ability of robots
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to specialize for each environment. Instead, it is explained by the fact that
learning explores the neighborhood of the individual in the learning landscape
and this exploration can guide evolution towards more promising areas of the
search space.

In summary, we have shown that morphological plasticity can make evolution
of robotic creatures more efficient and can therefore be a valuable tool in the field
of evolutionary robotics.
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Chapter 4

Overcoming Deceptiveness with
Novelty Search

Evolutionary algorithms are an often used technique for designing morphology
and controller of a robot (an overview of methods is provided in Chapter 2). The
advantage of using evolutionary algorithms compared to other optimization meth-
ods is that only a high level fitness function and a set of genetic operators (such
as mutation and crossover) need to be specified. While such fitness-driven search
can be very successful, a common problem in evolutionary algorithms is prema-
ture converge to local optima. Premature convergence occurs when the search
finds the locally best solution in some part of the search space, however the search
stagnates because none of the genetic operators can produce an individual better
than the locally best individual found so far. A typical symptom is that the pop-
ulation converges to a point where all individuals are very similar to each other,
i.e. diversity is lost.

The first solution to this problem might be to try to increase mutation rate to
produce individuals further away from the local optimum. However, such tech-
nique on its own is unlikely to succeed. While large random mutations can move
the search to a completely different part of the search space, they seldom produce
good solutions without further optimization (which often does not have a chance
to occur before the individual is pruned by selection). A large mutation applied
to an individual which has already been finely tuned by a long series of success-
ful mutations is more likely to break the functionality discovered so far than to
improve it further. One solution to this issue is to shield individuals created by
such large mutations from direct competition with previously best individuals for
a number of generations to see if they can be significantly improved by further
mutations (i.e. if the performance lost after the large mutation can be recovered
through further search in the neighbourhood of the newly created individual).
This idea forms the basis of the speciation algorithm used in HierarchicalNEAT
algorithm presented in Section 2.4. While it has been shown to delay evolution
from getting trapped in local optima (see Figure 2.17 for an example of evolu-
tion escaping a local optimum), HierarchicalNEAT does not solve the underlying
problem completely.

In general, premature convergence to local optima is caused by too much fo-
cus on exploitation of already discovered areas of the search space as opposed
to exploration of yet unknown solutions. The trade-off between exploration and
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exploitation is well understood and a number of methods for addressing this is-
sue have been proposed (overview is provided in [22]). The standard approach
to prevent convergence to a local optimum is to use methods that attempt to
increase the rate of exploration by maintaining the diversity of individuals in a
population through techniques such as fitness sharing [23, 91], age-layered popu-
lation structure [32], multi-objectivization [36], hierarchical fair competition [34]
or fitness uniform selection [35]. Several of such diversity maintaining methods
have also been applied to evolutionary robotics [69, 8], including shielding of novel
individuals from competition mentioned in the previous paragraph.

While such diversity-preserving methods can delay convergence to local op-
tima, recent works suggest that the underlying problem lies not just in the balance
of exploration and exploitation, but in the deceitfulness of the fitness function
itself [54, 80, 17, 90]. Novelty search, a method recently proposed by Lehman
and Stanley [54], introduces a radical idea that convergence to local optima can
be completely avoided by simply ignoring the original objective altogether and
instead only searching for any novel behaviors regardless of their quality with
respect to the original fitness function. While seemingly counter-intuitive, this
approach has already been successfully applied to problems in several domains:
evolving neuro-controllers for robot navigation in a maze [56, 54], evolving ge-
netic programs [17, 55, 64, 95], evolution strategies [13], evolving learning ar-
tificial neural networks for maze navigation [80], swarm robotics [24] and data
clustering [71].

In this work, we use search for behavioral novelty as a method for avoiding
premature convergence to local optima in the evolution of body and controller
of a virtual robotic creature. Both body and controller of the robot are subject
to optimization by evolution, forming a larger and more complex search space
than in domains where novelty search was previously tested. We demonstrate the
advantages and disadvantages of novelty search in this domain in two experiments:
one with a deceitful fitness function with constrained space of possible behaviors
and one with a large behavioral space and a less deceitful fitness function.

We start the chapter by describing the novelty search algorithm (Section 4.1).
Section 4.2 then describes the setup of experiments with virtual creatures. Re-
sults of experiments along with examples of evolved behaviors are provided in
Section 4.3. Chapter concludes with the discussion of results (Section 4.4), a
summary of future works and a conclusion.

4.1 Novelty Search

Instead of following the gradient of the fitness function, novelty search (originally
introduced by Lehman and Stanley [54] in the context of evolution of neural
controllers) directs the search towards any yet unexplored parts of the behavior
space. This is achieved by modifying the search algorithm (in this case Hierarchi-
calNEAT described in Section 2.4) to use the measure of individual’s behavioral
novelty instead of the fitness function. No other modifications to the underlying
search algorithm are required.

Pseudocode for the algorithm calculating behavioral novelty is shown in Algo-
rithm 4.1.1. As a first step, robot’s behavior is measured (MeasureBehavior(α)
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Algorithm 4.1.1 Measuring Behavioral Novelty.

Require:
α, phenotype of the individual being measured
ε, threshold for adding an individual to the archive
M , archive of previously discovered behaviors

1: x← MeasureBehavior(α)
2: δ ← CalculateNovelty(x,M)
3: if δ > ε then
4: AddToHistory(x,M)
5: end if
6: return δ

function call on line 1) by placing robot in its simulated 3D environment, letting it
perform the given task and measuring a vector of real values representing robot’s
behavior.

Measure of individual’s novelty is then calculated (function CalculateN-
ovelty(x,M)) using an archive of previously discovered behaviors M , as an
average distance of the individual’s behavior from k closest behaviors recorded in
the archive:

δ(x) =
1

k

k∑
i=1

dist(x, µi) (4.1)

where µi is the ith-nearest neighbor of x and with respect to distance metric
dist (in this work Euclidean distance was used, but other metrics could be used
as well). Such measure provides an estimate of local sparseness in the vicinity
of the behavior being measured. Novelty search thus promotes individuals which
are further away from already discovered behaviors.

If novelty of an individual exceeds a threshold value, individual is added to
the archive (function AddToHistory(x,M)). Threshold is used to reduce the
size of the archive while keeping the archive sufficiently accurate. In this work the
size of an archive was unlimited (previous works have successfully used limited
archive [55] as well).

4.2 Experiments

By searching only for novelty in behavior, novelty search is less prone to falling
into traps set up by the objective-based fitness function in the form of local
optima. However if the behavior space is too large and unconstrained, novelty
search may spend most of the time exploring behaviors that are uninteresting with
respect to the objective and never find any useful solutions. To test both ends of
this scale in the domain of body-brain co-evolution, we perform two experiments:
one non-deceptive with a large unconstrained space of behaviors (the swimming
experiment) and one highly deceptive with a constrained behavioral space (the
barrier avoidance experiment).

In each experiment, the performance of novelty search was compared to the
performance of standard fitness-based search. Random search was used as a
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Start

Target

Figure 4.1: Barrier avoidance experiment. Dimensions of the environment
are 20m x 20m x 25m. The barrier is located between the starting position of the
robot and the target and is formed by a hollow 10m x 10m x 5m box (shown in
green) with the bottom face left out (front face of the barrier has been left out
from the figure only for visualization). The target is located at the top of the
container at the initial distance of 20m from robot’s initial position.

baseline when comparing performance in each experiment (random search was
implemented by performing selection randomly, regardless of the fitness of an
individual). HierarchicalNEAT as described in Section 2.4 was used at the un-
derlying evolutionary algorithm in all three experiments (with fitness evaluation
replaced by novelty measure in the novelty search setup and with selection per-
formed randomly for the random search experiment).

4.2.1 Swimming Experiment

The objective in the swimming experiment is to evolve robots capable of moving
in a water environment the largest distance from the starting position in the
allocated time. The difficulty in this task is that the robot must evolve useful
morphology and control to successfully move through water. At the start of each
test, robot is placed at the origin of the coordinate system. Robot is then free
to move in any direction for 60 seconds after which the position of its center of
mass is recorded. Fitness function is defined as the distance between the final
and starting positions of the robot. Behavior of a robot is defined as the position
of the robot at the end of the test and thus consists of a vector of 3 real values.
Behavior metrics is defined as Euclidean distance between the final positions of
two robots. There were no barriers for the robot to avoid and no constraints on
the behavior of the robot apart from the limits of the physics simulation.
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4.2.2 Barrier Avoidance Experiment

In the barrier avoidance experiment, the robot is placed at one end of a box-
shaped container filled with water (size of the container is 20m x 20m x 25m)
while the target is placed at the other end of the container (see Figure 4.1).
Robot’s goal is to reach the target within the time limit of 60 seconds. The
task is made deceptive by placing the barrier directly in front of the robot, so it
obstructs the direct path to the target. Moreover, the shape of the barrier only
makes it possible to reach the target if the robot first moves away from it, which
makes this task highly deceptive. Fitness function for a robot with final position
x is defined as

f(x) = max(0, d(pstart, ptarget)− d(x, ptarget)) (4.2)

where d(pstart, ptarget) is the constant distance from the starting position of the
robot to the target (in this case 20m) and d(x, ptarget) is the distance from the
final position of the robot to the target. Behavior of the robot is defined as
robot’s final position (the same as in the swimming experiment) and behavior
metrics is defined as the Euclidean distance between final positions of two robots.
Target position is fixed for all experiments and robot has no information about
the position of the target. As in the swimming experiment, barrier avoidance
experiment is performed in a simulated water environment.

4.2.3 Parameter Settings

The number of individuals in a population is set to 300, with 150 generations
per run. In all experiments, initial generation was initialized with uniform robots
consisting of a single box with no neurons except for inputs/outputs. All pa-
rameters of the underlying HierarchicalNEAT algorithm were set to the same
values in both the standard fitness-based configuration and in the novelty-based
configuration. The configuration of HierarchicalNEAT was the same as in other
experiments presented in this thesis. Parameter k for computing the novelty of
an individual (equation 4.1) was set to 15 and the novelty threshold for adding an
individual to the archive was set to 0.1. Archive size was not limited. Each config-
uration was tested independently 25 times. All significance levels were computed
using Student’s t-test.

4.3 Results

In the swimming experiment, both novelty search and fitness-based search were
able to consistently find effective solutions (see Figure 4.2a). Average maximum
distance of the robot from the starting position after 150 generations was 108.32m
for fitness-based search, 96.23m for novelty search and 14.46m for random search.
Fitness-based search thus outperformed novelty search by 12.47% (p < 0.05),
confirming that unconstrained behavior space without deceptive fitness function
is favourable to the standard fitness-based approach1.

In the barrier avoidance experiment, fitness-based search never successfully
found a way out of the barrier, reaching an average maximum fitness of 4.56m (see

1Video of evolved swimming robots is available at https://youtu.be/0xvabl1DRyw.
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(b) Barrier Avoidance

Figure 4.2: Comparison of maximum fitness achieved by novelty search
and fitness-based search. The average maximum fitness is shown for the swim-
ming experiment (4.2a) and for the barrier avoidance experiment (4.2b) averaged
over 25 runs. Results show that novelty search significantly outperforms fitness-
based search in constrained deceptive task (barrier avoidance), while reaching
similar performance in unconstrained non-deceptive task (swimming).
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Figure 4.2b). Performance of the fitness-based search was in this case only
marginally better than random search which achieved maximum average fitness
of 3.68m (although the difference was statistically significant; p < 10−8). Novelty
search was the only method that consistently escaped the trap and reached an av-
erage maximum fitness of 13.16m, significantly outperforming both fitness-based
and random search (p < 10−10).

Figure 4.3 shows examples of creatures evolved in barrier avoidance exper-
iment. Best creatures evolved using novelty search were consistently able to
navigate around the barrier. Common strategy employed by successful creatures
was to move along one face of the enclosure box (using the enclosure box as a
guide) to move closer to the goal. Best creatures evolved in the fitness-based
search, on the other hand, typically simply moved forward towards the goal until
they hit the barrier and then stopped. To further improve the fitness value (i.e.
reduce distance to the goal), several evolutionary runs discovered that flattening
the body of the creature will bring its center of mass closer to the barrier wall and
therefore closer to the goal. Examples of such creatures are shown in Figure 4.4.
Creatures with such flat bodies evolved as a consequence of the fact that the
position of each creature was defined as the center of mass of the creature’s body.
If the position was instead defined as the point on the creature’s body which is
closest to the goal, there would be no selection pressure for flat body structure
and creatures with flat morphology most likely would not evolve (however, evo-
lution might find other ways to exploit the fitness function in that case, such as
creating long thin bodies, resulting in creatures that get closer to the goal even
without moving).

4.3.1 Analysis of Behavioral Diversity

To provide better insight into how individual search methods explore the space
of behaviors, the coverage of behavior space was computed for each experiment.
The coverage was computed as a total number of cells from a 1m x 1m x 1m
grid that contained the final position of at least one robot. This statistic was
computed after each generation using all behaviors seen since the start of the
run. Resulting values were averaged over 25 runs (see Figure 4.5).

Comparison of the amount of behavior space covered by individual methods
shows that novelty search was exploring the behavior space faster than the fitness
based search in both experiments (p < 10−10). In swimming experiment the re-
sults demonstrate that, although novelty search achieved on average lower fitness
values than fitness-based search, it was able to explore the behavior space more
efficiently. The difference in how the two methods explore the behavior space
can best be seen in the set of typical runs shown in figures 4.6a and 4.6b. While
novelty search thoroughly and evenly explores the search space progressing in an
ever-expanding sphere (Figure 4.6a), fitness-based search tends to exhaustively
search a small number of promising directions (4.6b).

In the barrier avoidance experiment, coverage of the behavior space for fitness
based search never exceeded 500m3, which corresponds to the volume of the
interior space of the barrier. A typical distribution of behaviors for such run
is shown in Figure 4.6d. While standard fitness-based approach always failed
to escape the barrier, novelty search consistently explored the entire container,
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Figure 4.3: Examples of three creatures evolved in barrier avoidance
experiment. The barrier is shown in green color and the enclosing box in white
(see Figure 4.1 for a diagram of the experiment). Front face of the barrier and
of the enclosure have been removed for the purpose of visualization. Red lines
show how the position of the center of mass of each creature changed during
simulation. All creatures start at the same starting point at the bottom of the
barrier. Two creatures that successfully navigate around the barrier (creatures on
the left and right) were evolved using novelty search. The third creature (center)
has been evolved using the standard fitness-based approach—this creature moves
directly forward towards the barrier and stops when it reaches the barrier, without
ever reaching the goal at the top of the enclosure box. Video is available at
https://youtu.be/I9ggqjVp6Po.
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Figure 4.4: Close-up view of two of the creatures evolved using fitness-
based search at the moment when they touch the barrier. Red lines show
positions of the center of mass of each creature prior to touching the barrier. Since
neither of the creatures can swim around the barrier, the only option for evolution
to increase their fitness value further is to bring their center of mass as close to the
barrier as possible (and therefore closer to the goal) by modifying the structure
of their bodies. As a result, many creatures evolved using fitness-based search
evolve flat bodies resting as close to the barrier as possible. Video is available at
https://youtu.be/Uc5wDbHz_-I.

eventually reaching the target as well. Example of a typical run is shown in
Figure 4.6c.

4.3.2 Combining Novelty Search with Fitness-based
Search

To further analyze both search methods, additional experiments were performed
using a combination of the novelty search and the fitness-based search. The
combined search starts with novelty search and switches to fitness-based search
after 20, 40, 60 or 80 generations. The motivation for switching the methods in
the middle of the search is to more efficiently exploit strengths of each method
in the barrier-avoidance experiment. Once novelty search overcomes the barrier
(by focusing on the exploration part of the search), fitness based search may be
able to quickly converge to a solution (by focusing on the exploitation).

Results of experiments with combination of novelty search and fitness-based
search (shown in Figure 4.7) show that the later the switch was made, the higher
the final fitness value was achieved. The best average fitness values were reached
by the novelty search (13.16m), and the combined method switching at generation
60 (12.26m) and generation 80 (13.65m). The differences between these best
methods were not statistically significant (p > 0.25). Other two combined search
methods achieved average fitness value of 10.39m (switch after 40 generations)
and 6.81m (switch after 20 generations).

Comparison of the amount of behavior space covered by individual methods
confirms that novelty search explores the behavior space faster than the fitness
based search. In combined experiments, later switch to fitness-based search con-
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Figure 4.5: Comparison of behavioral diversity in novelty search and
fitness-based search. Behavioral diversity of a single evolutionary run is mea-
sured as a number of cells in 1m x 1m x 1m grid that contain at least one robot
behavior discovered during the run. The cumulative behavioral diversity per gen-
eration averaged over 25 runs is shown for the swimming task (4.5a) and for the
barrier avoidance task (4.5b). The main conclusion is that in both tasks, novelty
search discovers significantly more behaviors than fitness-based search.
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(a) Swimming (Novelty) (b) Swimming (Fitness)

(c) Barrier Avoidance (Novelty) (d) Barrier Avoidance (Fitness)

Figure 4.6: Final positions of the robot visited in typical runs. Final
positions of all robots discovered in selected typical runs is shown for the swim-
ming experiment (4.6a, 4.6b) and for the barrier avoidance experiment (4.6c,
4.6d). Novelty search in both experiments explores the space of behaviors more
evenly, while fitness-based search focuses on optimization of few chosen areas.
For swimming experiment (4.6a, 4.6b) a 260m x 260m x 260m part of the behav-
ior space is shown. Final positions are three-dimensional and are shown using a
two-dimensional orthogonal projection.
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(b) Behavior Space Coverage

Figure 4.7: Comparison of behavioral diversity and maximum fitness
for different combinations of novelty search and fitness-based search.
Combined algorithm performs fitness-based search for the first fixed number of
generations and then switches to using novelty search for the rest of the search.
Figure 4.7a shows the average maximum fitness averaged over 25 runs and Fig-
ure 4.7b shows the cumulative behavioral diversity per generation averaged over
25 runs.
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sistently resulted in higher coverage of behavior space. Combined search methods
switching at generation 20, 40, 60 and 80 reached 10.57%, 17.33%, 23.48% and
26.49% of the container, respectively. Standalone novelty search reached the
highest behavior space coverage of all methods: 28.87%. All differences in behav-
ior coverage are statistically significant (p < 0.05) except the difference between
novelty search and combined search switching after 80 generations (p < 0.06).

The hypothesis that switching to fitness-based search after the barrier is over-
come will improve the performance of the search was not confirmed by the ex-
periments. Experiments with combined search switching at generations 60 and
80 indicate that switching to fitness search may provide a speedup. However,
the speedup was only temporary and the difference from novelty-search was not
sufficiently significant (p > 0.1). Moreover, behavior space analysis shows that
after switching to fitness-based search, the exploration rate slowed significantly.

4.4 Discussion

In the swimming experiment the behavior space was only constrained by the
limits of the physical simulation (the speed at which a robot can move is limited
by the maximum amount of torque it can exert by its joints). Such large space
of possible behaviors together with absence of any obvious deceptiveness makes
this problem unfavorable to the novelty search. This intuition was confirmed by
the results of the swimming experiment, where novelty search was outperformed
by the fitness-based search, although it was able to explore more of the behavior
space (figures 4.2a and 4.5a).

However, the results of the swimming experiment do not confirm the expec-
tation that in such unconstrained environment the novelty search will perform
just as poorly as a random search. On the contrary, novelty search performed
almost as well as the fitness-based search and it significantly outperformed ran-
dom search. The reason is that even though novelty search does not explicitly
optimize solutions towards the main objective, it still explores behavior space in
a structured way (even when the behavior space is practically unlimited) pro-
gressing incrementally from simple to more complex behaviors. This is unlike the
random search which often revisits the same solutions repeatedly.

In the barrier avoidance experiment, the deceptiveness of the task lies in the
fact that fitness-based search leads the robot directly to the target until it reaches
the barrier. At that point, in order to find better solutions, the search needs to
explore behaviors that are temporarily further away from target. In the standard
objective-based approach, getting further away from the target decreases the
fitness value; fitness function thus has a local optimum inside the barrier where
fitness-based search is likely to be trapped. This was confirmed by the results of
the barrier experiment with fitness-based configuration, where individuals never
fully escaped the barrier. Evolution gets trapped in the local optimum because
single mutations of robots that reach this local optimum are very unlikely to
produce a robot which can (1) continue to be able to successfully swim and at
the same time (2) change direction to get around the obstacle. In the same
environment, robots discovered by novelty search were able to explore the entire
container and were capable of consistently finding the target. The effectiveness
of the novelty search in this experiment can be explained by the fact that the
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space of all possible behaviors was constrained to the size of the container; the
boundaries of the container in this case served in a sense as a guide directing the
search towards the target.

4.5 Future Works

Experiments presented in this chapter have been selected to test novelty search
using two extremes on the spectrum of deceptive tasks—at one extreme we tested
novelty search in an unconstrained environment with large space of possible be-
haviors and fitness function with no obvious deceptiveness. On the other extreme
we tested novelty search in a constrained environment with a highly deceptive
fitness function. One area of further research is to investigate the effects of dif-
ferent ways to define behavior of an individual on the progress of the search. For
example, the space of possible behaviors in the unconstrained swimming exper-
iment could be reduced by simply collapsing large section of the behavior space
to the same point, so that novelty search would not treat individuals in that part
of the behavior space as novel (a related technique has been tested by Lehman
and Stanley in [56] for evolution of neural controllers). For instance, in the un-
constrained swimming task all behaviors with negative value of the x coordinate
could be replaced with zero vector. Such change would remove half of the be-
havior space, potentially resulting in novelty search being able to explore the
remaining half of the behavior space at a higher rate and achieve higher fitness
values more quickly. A similar technique could be used in the barrier avoidance
experiment. In this case a physical container was added to the environment to
limit the size of the behavior space. It is possible that similar search performance
could be achieved by replacing the container with a virtual container, created by
replacing all behaviors outside of the original container with zero (and therefore
discouraging novelty search from exploring area outside of the container, even
without a physical container being present). Alternatively, it might be possible
to accelerate the search by replacing behaviors in one half of the container with
zero, same as in the swimming experiment.

Novelty search is a generic search method that could be applied to many
problems in evolutionary robotics. However, as we have shown not all tasks are
suitable for novelty search. Further investigation is needed to investigate which
problems are deceptive enough to warrant the use of novelty search and what is
the most suitable definition of the behavior for each of them (examples of such
tasks are locomotion on the ground, flying, following a light source, fleeing from
a predator or jumping).

Experiments presented in this chapter focus on behavior measures based on
the position of the evolved robot at the end of the simulation. However, behav-
ior could include other properties of robot’s phenotype. For example, including
properties of robot’s morphology (number of blocks, types of joints connecting
the blocks) could encourage novelty search to explore different morphologies more
aggressively. Other researches have started exploring this idea, e.g. Lehman and
Stanley [58], who have shown that defining behaviors as height and weight of the
robot increases the diversity of evolved robots, or Cully et al. [14] who used a
related technique to create a catalogue of hexapod robots with their morphology
altered in different ways (this work has been described in more detail at the end
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of Section 2.1.2).
Novelty search as presented in this chapter could also be combined with the

learning algorithm presented in the previous chapter. The goal of learning in
that case would be not to increase the fitness of an individual, but to maximize
individual’s novelty. An open question in this approach is whether the target
behavior can be predicted from a short experiment the same way as fitness can
be predicted—a property required for efficient combination of both methods.

In Section 4.3.2 we have shown that combining novelty search with fitness-
based search by switching from one to the other after a specified number of
generations does not provide measurable benefits. Other researchers have also in-
vestigated using different methods of combining fitness-based and novelty-based
search. Lehman and Stanley used fitness-based competition only among robots
with similar morphologies, while novelty was used to encourage diversity [58].
Mouret has shown that Pareto-based multiobjective evolutionary algorithm can
be used to optimize both novelty and fitness at the same time [68], using sim-
ulated Khepera-like robots with fixed morphology (only the control system was
optimized). It would be interesting to know if the same benefits would apply in
body-brain co-evolution of virtual creatures.

4.6 Conclusion

In this chapter we have shown that evolution of virtual creatures can greatly ben-
efit from disregarding the objective and the searching for any previously unseen
behaviors instead (a method called novelty search). We demonstrated advantages
and disadvantages of novelty search in evolution of virtual creatures on two tasks:
(1) swimming in an environment without obstacles and (2) barrier avoidance. Re-
sults from the swimming experiment have confirmed that novelty search does not
provide an advantage for tasks where behavior space is unconstrained and fitness
function is not deceptive. For such tasks, novelty search may still explore the
space of possible behaviors more effectively than fitness-based search, but due
to the large space of possible behaviors it takes longer to optimize solutions to-
wards the objective. However, the barrier avoidance experiment has shown that
if the range of possible behaviors is limited (in this case by putting the robot
inside a container) and fitness function is deceptive then the novelty search algo-
rithm significantly outperforms fitness-based search. In summary, we show that
the benefits of novelty search can be successfully leveraged in the co-evolution of
body and brain of robots, provided that the fitness function is deceptive. Results
presented in this work demonstrate that directing the search towards behavioral
novelty can help in solving deceptive problems in body-brain co-evolution that
standard fitness-based search methods often struggle with.
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Conclusion

This thesis studies methods of automatic design of both bodies and controllers of
simulated robots using evolutionary algorithms. The thesis has successfully ful-
filled its goals by making two contributions to the field of evolutionary robotics:

In the first part of the thesis (Chapter 3), a novel nature-inspired algorithm
that combines lifetime learning of robot morphology with evolutionary search
is presented. The algorithm is motivated by two processes found in nature:
(1) many animals use morphological plasticity to increase their chances of survival
and reproduction by adapting their bodies to different environments during their
lifetime and (2) animal’s ability to learn and adapt during its lifetime can accel-
erate evolution by exploring alternative phenotypes more rapidly than evolution
alone which must rely on discovering beneficial changes only through random
mutations (changes discovered during animal’s lifetime can also, over time, be
assimilated into the genotype of an animal—through a mechanism called the
Baldwin effect). The algorithm proposed in this thesis reproduces these effects
in the domain of body-brain co-evolution of simulated robots.

The proposed algorithm automatically designs robots capable of achieving
high performance in different environments by making environment-specific al-
terations to their bodies. Robots evolved using this method outperform robots
which cannot alter their morphology and must therefore use the same generic mor-
phology in all environments. We show that the performance increase is achieved
across different types of environments—when varying viscosity of the fluid sur-
rounding a swimming robot, or when varying density of the robot so that it either
swims near the sea floor or it is suspended in open water. Significant performance
improvements are achieved even when changes to the morphology of the robot are
relatively minor (when only sizes of the individual building blocks of the robot are
modified)—making it feasible that it will be possible to construct such adapting
robots in the near future.

We also demonstrate that morphological plasticity achieved through learning
can accelerate evolution even for robots that need to perform well only in a single
environment. Morphological plasticity is in this case used purely to make evo-
lutionary search more efficient and it is not required in the final evolved robot.
The performance improvement comes not from the robot being able to adjust
its morphology differently in different environments, but from the interaction be-
tween evolution an learning. We show that learning reduces the computational
cost required to evolve a robot with a given minimum performance compared to
evolution without learning. The performance gain is based on an insight that
shortening the learning phase in each fitness evaluation can significantly reduce
the cost of learning, while maintaining the accuracy of learning required to accel-
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erate evolution—as a result the benefits of learning outweigh its computational
cost. Morphological plasticity achieved through learning is therefore a generic
new tool in evolutionary robotics toolbox which can be used to facilitate more
efficient evolution of robot morphology and behavior.

The second part of the thesis (Chapter 4) addresses the problems of fitness
function design and premature convergence to local optima in the context of evo-
lutionary robotics. Fitness function lies at the core of an evolutionary algorithm—
its purpose is to guide the search towards the objective. However, for many prob-
lems objective-based fitness functions can be inherently deceptive. For example,
a robot navigating a maze does not always get closer to reaching the target by
moving directly towards it (since moving directly towards the target can lead to
a dead end in the maze). Similarly, the most direct way for evolution to start
optimizing the speed of a swimming robot might be to learn how to perform a
single powerful swimming stroke, although a more effective long-term strategy
would be to use a series of less powerful periodic swimming strokes. Such evolu-
tionary dead-ends correspond to local optima in the fitness landscape and are a
common problem in evolutionary robotics.

This thesis shows that for some problems convergence to local optima in evolu-
tionary robotics can be avoided by replacing the objective-based fitness function
with a measure of behavioral novelty of the robot (a technique called Novelty
Search introduced by Lehman and Stanley [54]). By searching for any novel
behaviors (with the behavior definition supplied by the user) and ignoring the
original objective, evolution explores the space of all possible behaviors in a
structured way and by doing so can also reach the original objective without
the risk of getting trapped in a local optimum of the fitness function. We demon-
strated the effectiveness of this method experimentally and we have shown that
when the fitness function is deceptive, novelty search successfully avoids the trap
present in the fitness function. We also studied the limits of this method on
a problem which is not deceptive, and although it improved the objective more
slowly, it still discovered larger diversity of behaviors than objective-based search.

With the recent advances of automated manufacturing techniques (such as
3D printing), methods for automated design of both morphology and control of a
robot are becoming more and more relevant. This thesis contributes novel insights
into the field of evolutionary robotics, forming a basis for future research in this
area. In particular, a combination of both techniques presented in this thesis
(lifetime learning of robot morphology and novelty search) could be a promising
area for new investigations.
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for different combinations of novelty search and fitness-
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Appendix A

Mutation and Generation of
Creatures

This appendix describes algorithms and parameters used for generating random
virtual creatures and for performing mutation of virtual creatures. First section
presents algorithms operating on the morphology level. The following section
then presents algorithms operating on neural networks within each morphological
node.

A.1 Morphology

Algorithms used for random generation and mutation of morphology of vir-
tual creatures are provided in Algorithm A.1.1 (random generation) and Algo-
rithm A.1.2 (mutation). Algorithm parameters are provided in Table A.1 (random
generation) and Table A.2 (mutation).

Algorithm A.1.1 Random generation of a creature morphology.

1: generate root node of the morphological graph
2: generate the brain of the creature (i.e. the global controller)
3: repeat
4: create new random node (use neural network generator described in Al-

gorithm A.2.1 to generate neural networks)
5: create new random connection pointing from randomly chosen existing

node to the new node
6: until given number of nodes has been generated
7: while graph contains less connections than the given number of connections

do
8: create new random connection between two randomly chosen nodes
9: end while
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Parameter name Description Default
Node count Number of newly created morphologi-

cal nodes.
3

Connection count Number of newly created morphologi-
cal connections.

3

Terminal flag prob. Probability that newly created connec-
tion will be terminal.

0.2

Reflections per connection Desired average number of enabled re-
flection flags per connection.

0.1

Table A.1: Parameters of the algorithm for generation of random virtual
creatures (Algorithm A.1.1).

Algorithm A.1.2 Mutation of a creature morphology.

1: add a new random node with given probability and connect it immediately
to the network either using one incoming randomly generated connection, or
using one incoming and one outgoing randomly generated connection

2: add a new random connection with given probability, connecting two ran-
domly chosen nodes

3: count the number of all parameters np of the creature (in all nodes and con-
nections), which affect the structure of a phenotype graph (such as terminal
flag, reflection flag or recursive limit)

4: mutate each parameter from step 3 with probability of kp/np, where kp is
parameter provided by the user, which determines how many parameters
affecting the structure of a phenotype graph should be mutated per run

5: repeat steps 3 and 4 for all non-structural morphological parameters using
value km (number of morphological parameters to mutate per run) provided
by the user

6: repeat steps 3 and 4 for all controllers using value kc (number of controllers
to mutate per run) provided by the user
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Parameter name Description Default
Value replacement prob. Probability that mutated value will

be replaced by new randomly picked
value. This probability applies to all
mutated values.

0.1

Value perturb. amount (x) Each mutated value will be per-
turbed by the random value with
normal distribution with standard
deviation of x/2.

0.25

Add node prob. Probability of adding a new node to
the neural network.

0.05

Add connection prob. Probability of adding a new connec-
tion to the neural network.

0.02

Morphology mut. amount. Specifies an average number of mor-
phology parameters to mutate per
run.

1

Phenotype graph structure
mut. amount.

Specifies an average number of pa-
rameters affecting the structure of a
phenotype graph (such as terminal
flag, reflection flag or recursive limit)
to mutate per run.

5

Controllers mut. amount. Specifies an average number of con-
trollers to mutate per run.

10

Table A.2: Parameters of the algorithm for mutating virtual crea-
tures (Algorithm A.1.2).

107



Parameter name Description Default
Neuron count Number of neurons created. This may

differ from the number of neurons after
garbage collection.

0

Saturation % Number of connections to create, ex-
pressed as a percentage of the number of
all neuron inputs. Value of 200%, for ex-
ample, results on average in two incoming
connections per neuron input.

60%

Garbage collection If enabled, all nodes which, are unreach-
able from inputs of the neural network,
will be deleted.

yes

Transfer functions A set of transfer functions to use in the
generated neurons.

{sigmoid}

Table A.3: Parameters of the algorithm for generation random neural
networks (Algorithm A.2.1).

A.2 Controllers

Algorithms used for random generation and mutation of controllers inside each
body part of a creature are provided in Algorithm A.2.1 (random generation)
and Algorithm A.2.2 (mutation). Both algorithms are controlled by a set of
parameters provided in Table A.3 (for random generation) and Table A.4 (for
mutation).

Algorithm A.2.1 Random generation of a neural network controller.

1: generate specified number of neurons with the transfer function chosen ran-
domly from a specified list of transfer functions

2: for all inputs of all generated neurons do
3: choose random number of new connections for this input according to the

saturation parameter (described in Table A.3)
4: for all new connections do
5: use current node as a target node for the new connection
6: pick a random source node
7: if recurrent connections are not permitted, repeat previous step until

a non-recurrent connection is found
8: create new connection with random weight between the source and the

target node
9: end for

10: end for
11: perform garbage collection on the graph, if requested
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Parameter name Description Default
Add node prob. Probability of adding a new node to

the neural network.
0.03

Add connection prob. Probability of adding a new connec-
tion to the neural network.

0.1

Trials for new connection Number of attempts to create a new
non-recurrent connection.

5

TF change prob. Probability, for each node, of picking
a new transfer function.

0.1

Disabled flag mutation prob. Probability, for each node input, of
enabling/disabling a random con-
nection.

0.1

Weight mutation prob. Probability, for each connection,
that a weight of a connection will be
mutated (either by perturbation or
by replacement with a new random
value).

0.3

Weight replacement prob. Probability, for each mutated
weight, that its value will be re-
placed by a new random value (oth-
erwise, it will be perturbed).

0.1

Weight perturb. amount (x) If a weight is perturbed, then it is
changed by a random value with the
normal distribution with standard
deviation x/2.

0.25

Bias mutation prob. Probability, for each node with sig-
moidal transfer function, that its
bias will be mutated.

0.3

Bias mutation amount (y) Each mutated bias will be perturbed
by the random value with normal
distribution with standard deviation
of y/2.

0.1

Table A.4: Parameters of the algorithm for mutating neural networks
(Algorithm A.2.2).
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Algorithm A.2.2 Mutation of a neural network controller.

1: for all neurons do
2: pick a new transfer function for each node with given probability
3: if this neuron has sigmoidal transfer function, mutate its bias with given

probability
4: end for
5: for all connections do
6: mutate connection weights of each connection with given probability
7: end for
8: for all inputs of all neurons do
9: choose a random incoming connection

10: if chosen connection is not the last enabled incoming or last enabled
outgoing connection then

11: invert disabled flag of chosen connection
12: end if
13: end for
14: with given probability, add a new random node by splitting an existing con-

nection and adding two new connections in its place (old connection is dis-
abled)

15: add random new connection with given probability
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Appendix B

Supplementary Material

The following supplementary material is provided on the CD attached to the
thesis:

1. Electronic version of the thesis

2. Software used for experiments in this thesis (ERO framework) including the
source code

3. Configuration files for experiments used in this thesis

4. Videos and XML-encoded genotypes of selected robots evolved using algo-
rithms presented in this thesis

For more information please refer to the README.pdf file on the CD.

Videos of evolved robots are also available online at the following URLs:

Usage Description Online Video
Figure 3.9
(page 61)

Snake-like robot adapted dif-
ferently for swimming in open
water and near the sea floor.

https://youtu.be/VbP8CN53nWk

Figure 3.2a
(page 48)

Crab-like robot adapted differ-
ently for swimming in open wa-
ter and near the sea floor.

https://youtu.be/GX1BNduCvmo

Figure 3.2b
(page 48)

Lionfish-like robot adapted dif-
ferently for swimming in fluids
with different viscosities.

https://youtu.be/hFzeowtPmmk

Figure 3.15
(page 68)

Robots evolved for swimming
using morphological plasticity.

https://youtu.be/A9gj7taU0SM

Section 4.3
(page 76)

Robots evolved for swimming
using novelty search and
fitness-based search.

https://youtu.be/0xvabl1DRyw

Figure 4.3
(page 79)

Robots evolved for barrier
avoidance using novelty search.

https://youtu.be/I9ggqjVp6Po

Figure 4.4
(page 80)

Robots evolved for barrier
avoidance using fitness-based
search.

https://youtu.be/Uc5wDbHz_-I
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