
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Vítězslav Imrýšek

WPF Style GUI Library for MonoGame Framework

Department of Distributed and Dependable Systems

Bachelor thesis supervisor: Mgr. Pavel Ježek, Ph.D.

Study program: Computer Science

Specialization: General Computer Science

Prague 2015

Special thanks to Mgr. Pavel Ježek Ph.D. for supervising this thesis, and most of all

for his patience and all his invaluable advices.

I declare that I carried out this bachelor thesis independently, and only with the cited

sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.

121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles

University in Prague has the right to conclude a license agreement on the use of this

work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In Prague, date 3.12.2015 signature

Název práce: MonoGame knihovna pro tvorbu GUI ve stylu WPF

Autor: Vítězslav Imrýšek

Katedra / Ústav: Katedra distribuovaných a spolehlivých systémů

Vedoucí bakalářské práce: Mgr. Pavel Ježek, Ph.D.,
 Katedra distribuovaných a spolehlivých systémů

Abstrakt: MonoGame je populární multi-platformní open-source framework používaný pro

vývoj her a dalších grafických aplikací. Nicméně tento framework samotný neposkytuje

žádnou implicitní podporu pro vytváření uživatelských prostředí. A zatímco existuje řada

knihoven třetích stran, které se tuto podporu snaží poskytnout, žádná z nich nemá za svůj cíl

implementaci nějakého existujícího a hojně využívaného frameworku pro tvorbu
uživatelských rozhraní.

 Tato práce se zaměřuje na tento nedostatek a poskytuje reimplementaci Windows

Presentation Foundation (WPF) frameworku ve formě knihovny pro MonoGame. V rámci této

práci jsme vybrali vhodnou podmnožinu vlastností, které budou implementovány a rovněž

jsme vyřešili i řadu technických problémů, jako jakým způsobem renderovat naše geometrická

primitiva, či jak implementovat podporu pro neobdélníkové ořezávání. V průběhu této práce
byl kladen velký důraz na co nejpřesnější dodržování existujícího WPF API a jeho chování.

Klíčová slova: MonoGame, WPF, Knihovna pro tvorbu uživatelských rozhraní

Title: WPF Style GUI Library for MonoGame Framework

Author: Vítězslav Imrýšek

Department: Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: Mgr. Pavel Ježek, Ph.D.,

 Department of Distributed

and Dependable Systems

Abstract: MonoGame is a popular cross-platform open-source framework used for developing

games and other graphical applications. However, this framework has no out-of-box support

for user interface creation. And while there exist many third party UI libraries, none of them
has the goal of implementing some existing, widely used user interface framework.

For this thesis, we decided to target this shortcoming and reimplement the Windows

Presentation Foundation framework, in form of a library, to MonoGame. As part of this work,

we chosen a viable feature subset that is going to be implemented and solved many technical

issues. Issues like how to render our graphical primitives or how to implement a non-

rectangular clipping. The emphasis of the thesis was to follow the well-known WPF API and
its behavior during the implementation process as closely as possible.

Keywords: MonoGame, WPF, Library for creation of user interfaces

Contents

 Graphical User Interface.. 4

 GUIs in games ... 6

 The API choice .. 7

 Windows Forms .. 7

 Windows Presentation Foundation ... 8

 Conclusion .. 9

 Thesis goals ... 9

 Appearance and logic code .. 11

 Controls ... 12

 Input ... 13

 Layout .. 14

 UIElement ... 14

 FrameworkElement ... 15

 Containers ... 16

 Dependency properties .. 17

 Dependency objects .. 18

 Data Binding .. 19

 Graphics ... 20

 2D geometrical shapes .. 20

 3D geometrical shapes .. 22

 Visual .. 22

 Clipping .. 23

 Text ... 24

 Animations .. 24

 Custom controls ... 24

 UIElement and FrameworkElement model 24

 User Control model ... 25

 Control model ... 25

 Existing projects .. 27

 Feature set .. 28

 XAML markup code ... 29

 Stock controls ... 29

 Stock controls customization .. 29

 Custom controls .. 30

 Shapes and brushes ... 31

 Clipping .. 31

 Data Bindings ... 32

 Handling user input ... 32

 Technical issues ... 33

 Drawing user interface .. 33

 Drawing geometrical shapes ... 33

 Rendering the fill of graphical shapes .. 34

 Rendering the stroke of graphical shapes 39

 Vertex buffer ... 41

 Text rendering ... 41

 Clipping .. 42

 Optimizing the rendering .. 44

 Processing user input ... 45

 Handling input .. 45

 Hit Testing .. 46

 Partial XAML markup support .. 47

 Structure of the library... 49

 Overview of the rendering system ... 49

 Class PresentationManager ... 52

 Class Window ... 53

 Class Visual .. 53

 Class RenderDataDrawingContext ... 54

 Class RenderObject... 55

 Class RenderObjectLine ... 56

 Class RenderObjectEllipse ... 57

 Class RenderObjectRectangle... 58

 Class RenderObjectRoundedRectangle 59

 Class RenderObjectText ... 59

 Class Geometry ... 60

 Class RenderContext... 60

 Class Brush ... 61

 Class SolidColorBrush .. 62

 Class GradientBrush ... 62

 Class TileBrush ... 65

 Overview of the User input system ... 65

 Class EventManager ... 69

 Class RoutedEvent .. 69

 Class EventRoute .. 69

 Class RoutedEventClassHandler .. 69

 Class RoutedEventInstanceHandler .. 70

 Class EventHandlersStore... 70

 Class RoutedEventArgs .. 70

 Overview of the property system .. 71

 Class DependencyProperty ... 76

 Class DependencyPropertyKey .. 78

 Class PropertyMetadata .. 78

 Class FrameworkPropertyMetadata .. 79

 Class DependencyObject .. 79

 Class EffectiveValueEntry .. 80

 Class DependencyObjectType .. 81

 Class Dispatcher ... 82

 Class Freezable ... 83

 Overview of the binding system .. 85

 Class Binding .. 89

 Class BindingOperations .. 89

 Overview of the control system ... 89

 Class UIElement ... 89

 Class LayoutManager ... 90

 Requirements ... 93

 How to set up a project .. 93

 How to load up fonts ... 95

 Examples ... 95

 Hello world ... 96

 Button example ... 98

 Fonts example ... 100

 Data binding example ... 102

 More examples .. 104

 Features overview .. 104

 Dependency properties and objects .. 104

 Property metadata ... 105

 Data Binding ... 105

 Freezables ... 105

 UIElement and FrameworkElement ... 106

 Controls ... 107

 Window ... 108

 Routed events .. 108

 Brushes.. 109

 Final results ... 111

 Known issues ... 114

 Future Work .. 115

1

 Introduction
 Nowadays, there is an enormous amount of various computer games. As the

developer tools and graphical frameworks are getting more powerful and easier to use,

even more developers are getting attracted to this area. This leads to a certain trend

that can be observed lately that not only the big game studios are capable of producing

successful computer games but there is now also a high number of independent game

developers that can achieve the same success. Those developers work either

individually or in small teams composed mainly by their friends or other people

interested in helping to create a game with a given topic. Those developers are being

called the Indie game developers and their games the Indie games respectively. We

can mention the games like Minecraft [1] or Terraria [2] as examples of highly

successful Indie games.

 The process of creating a game can be however very challenging and time

consuming. This is especially the case with the previously mentioned Indie game

developers whose development resource are limited. By development resources we

mean free time, developer experience and the size of their development team. From

now on, our focus will be mainly on those Indie game developers.

 The first thing a developer needs to do before starting to work on the actual game

is to choose a viable graphical framework. We already mentioned that the Indie game

developers usually have limited development resources and therefore the framework

should be easy to learn and easy to use. One of the popular graphical frameworks

among the Indie developers is the MonoGame [3].

 MonoGame is a cross-platform and open-source graphical framework that

provides to developers access to high-performance graphics. It is trying to achieve the

same as DirectX and OpenGL graphical frameworks but while those frameworks are

designed to work with the C++ low-level language, the MonoGame provides

developers with a convenient managed environment and coding is done in C# or other

.NET languages. It is also worth noting that MonoGame is not a project designed from

scratch. It is an open-source implementation of the proprietary XNA framework that

was originally designed by Microsoft to be used in their Xbox and Windows Phone 7

devices. The situation today is that XNA is no longer in active development and the

latest release of the MonoGame – version 3.4 in the time of writing this thesis – claims

to be fully API-compatible with this latest XNA release – version 4.0 Refresh in the

time of writing this thesis.

 However, while the MonoGame does provide the developer with a comprehensive

set of graphical capabilities and performance, as it uses DirectX and OpenGL under

the hood, it does not implement any sort of out-of-box support for defining user

interfaces.

2

 Given to this fact the developer has three possible options how to handle the

graphical user interface:

1) Create a custom graphical user interface framework that suits the game’s needs

from scratch.

2) Render the MonoGame output into some graphical user interface framework

that supports this interoperation like the Windows Forms or Windows

Presentation Foundation. Alternatively, the other way around, render the

Windows Forms or Windows Presentation Foundation into pure MonoGame.

 Before we get to the last option, we will examine the two options we just

described. The problem with the first option is that such a framework is often not very

reusable and will provide serious challenge to adapt to changing needs. As for the

second option, the problem with this approach is that this interoperation must be

supported on a given platform and could therefore limit the cross-platform support the

MonoGame provides. For example, the Windows Presentation Foundation framework

is only supported on the Windows platform, which would make the developed

application unusable on platforms other than Windows. We can see that neither of

these two approaches is the ideal solution for our problem.

3) Finally, the third option is to use some existing library that implements the

graphical user interface functionality.

 This approach allows the developers to concentrate on game itself and not to

worry about the GUI functionality. Moreover, by using a viable library we can also

expect it will not suffer the same reusability and adaptability issues as we described

for the first option. We will now go through some of the publicly available libraries

that are available to use with the MonoGame and show why they are still not the ideal

solution we are looking for. The following were picked as examples because they are

either still under active development or are at least compatible with the

MonoGame/XNA 4. Those examples are taken from the gamedev.stackexchange [4],

which is a site where the developers debate about the game development and therefore

we can expect that the libraries mentioned there represent some of the most viable

libraries to use. The picked examples are: xWinForms [5], Squid [6], NuclearWinter

[7], Ruminate [8], and Nuclex Framework [9]. By doing an internet search we can add

even more, MonoGame Gui4U [10] and Coherent UI [11]. All these frameworks, with

an exception of the Coherent UI, have one thing in common. Each of them comes with

its own new API. While some of those libraries might be convenient to use for some

developers and for those developers this would be an acceptable solution for the GUI

issue, it also brings along it the need to learn a new API.

 Coherent UI is an exception as it allows the use of Windows Forms and Windows

Presentation Foundation APIs. Unfortunately, this is achieved by using the existing

proprietary .NET libraries, therefore limiting the usefulness only for Windows

platform and making it unsuitable as a solution for our problem.

3

 However, the idea with providing the developers with access to an existing API is

worth pursuing as the developers might prefer to program their GUI using an API they

are already familiar with or an API that is more widely spread so they could reuse their

existing code in other environments. Therefore, it would be useful to have a GUI

library that would implement some already existing and wide spread API for creation

of graphical user interfaces and in the same time would be appropriate for use in game

development.

 In this thesis, we would like to choose such an API and then create a MonoGame

library that will implement the missing MonoGame’s graphical user interface

functionality and will use the selected API as the template.

 In the rest of the chapter, we will examine what is expected from every graphical

user interface framework and what our library must be capable of doing as well. Then

we are going to examine what is important for a user interface library that targets game

development and finally we will decide on what GUI framework API we are going to

implement in this thesis.

4

 Graphical User Interface

 A Graphical User Interface – or in short GUI – is a mechanism of interaction

between the machine and human. User interfaces are usually divided into two types.

First one is the Command Line Interface – CLI - and the second one is the already

mentioned Graphical User Interface. The difference between the two is that while the

CLI uses text output and input to interact with the application user the GUI is using

interactive visual objects for this interaction. These visual objects are then interacted

with by using various input devices like mouse, touch or keyboard. By visual objects,

we mean menus, icons, buttons, sliders, etc. We can see an example of a GUI on the

Figure 1:

Figure 1: Lisa Office System 3.1 – an example of one of the first GUIs (reprinted from [12])

Rendering

We already stated that a GUI in general contains various visual objects. These

visual objects need to be rendered in order for them to appear on the screen. Therefore,

our library should be capable of rendering its GUI. The GUI rendering process consists

mainly of rendering geometric primitives that in the end form the final GUI. These

primitives can also be filled with a color or a texture. For example, if we take yet

another look at Figure 1 and decompose these visual objects into a set of geometrical

primitives then we can see that this GUI example is composed of primitives like lines,

rectangles, rounded rectangles, polygons etc. Moreover, we can see that text is also an

important part of GUI and some icons are also present. It is clear that our library should

be capable of rendering some of the most common geometrical primitives so they can

be used to compose a resulting GUI. In addition to these, we should also support

drawing text and images as these two play a big role in the GUI area.

5

Handling user input

Once we manage to have our GUI rendered, we need to be able to handle user

input so the user of the application can actually interact with it. This is why our library

needs to implement a mechanism that will provide a feedback every time a user

interacts with any of the GUI’s elements. This feedback should provide information

about which element was interacted with and what kind of user input that was. By user

input we mean state changes like mouse button pressed/released, keyboard key

presses/releases, etc. These two information are import to the developer so he can

correctly decide on how to handle the user input. The most viable and the most widely

spread technique to notify about those user inputs is to deploy a so-called event-driven

input system. Using this approach, the developers can register only for the types of

user input that they want to handle and only on the elements where it makes sense for

them.

We already mentioned that the user can interact with the GUI using many different

devices. We mentioned the most widely used ones – the mouse, the keyboard and the

touch input. In our library, we would like to support at least the mouse and the

keyboard based types of inputs.

Stock Controls

We already determined that our library should be able to render itself on to the

screen and that it should be able to handle user input for the individual UI elements.

Another functionality every GUI framework provides is a set of premade and included

elements - so-called controls - that can be used by the developer right out-of-box.

Those elements should cover basic GUI usage areas. Included controls usually are:

button, controls designed for text input, controls that only present text, image

presenters, and various variations of control containers that allow to easily position

child controls to form a desired layout for the application. We should include those

basic controls in out library as well.

Requirements

Here is the summary of GUI requirements we determined in this chapter:

R1) Our library should be able to render basic geometrical primitives and color

or texture them

R2) Our library should provide an event based system of notifications on user

input

R3) Our library should include a set of basic GUI controls

6

 GUIs in games

 Now that we have examined the basic features, a GUI library should implement

and provide to the developers, the next step is to examine whether there are any

specific requirements for GUIs in the world of games. On the Figure 2, we can see an

example of game GUI.

Figure 2: Game GUI example, Wacraft III: Reign of Chaos (reprinted from [13])

 On the Figure 2, we can see that games are trying to be visually appealing and to

differentiate from one another. What this means for the GUI is that they try to make

the GUI look right just for the game they are developing at that moment. So in order

to make things easier for the developers our library should provide some level of visual

customizability for our controls. Moreover, there might be cases when the developers

just want to make a new control all on their own so it fully corresponds to their needs

so we should support this custom control creation too.

Requirements

 Here is the summary of GUI requirements we determined in this chapter:

R4) Our stock controls should be partially customizable

R5) Our library should provide a way to create a custom GUI controls

7

 The API choice

 So far we already examined the GUI concept and determined what are the basic

requirements on our library, now we need to decide on what graphical user interface

framework API we are going to use as the API template for our library.

 Our requirement was that the selected API should be widely used. Moreover, we

target the MonoGame platform, therefore we want to concentrate on the APIs that are

being coded using .NET languages. By applying these two conditions, we get the

following list of GUI frameworks: Windows Forms, Silverlight, Windows XAML and

the Windows Presentation Foundation – in short the WPF.

 The Silverlight, Windows XAML and WPF frameworks share many similarities

and have a converging API, which is why we are going to count them into one group.

Now we need to decide for one representative of this group, whose API we will

consider to use as a template for the API of our library. The Silverlight is a framework

that is being deployed primarily inside the web pages and lately has been marked as

obsolete. Next is the Windows XAML framework. This framework is only available

on Windows 8 and newer which is currently limiting its adoption. Finally, the WPF is

considered a first class citizen in the area of desktop GUI frameworks, is still under

active development and provides support for wide range of Windows operating

systems. This makes the WPF the best representative of this category of frameworks.

 We are now going to examine the Windows Forms and Windows Presentation

Framework, and determine whether any of them complies with all of our requirements

(R1) through (R5) as stated in the previous sections 1.1 and 1.2. Then we are going to

decide which of these two we are going to use as the API template for our library.

 Windows Forms

 The Windows Forms is a GUI framework created by Microsoft and included in

the .NET Framework since its first release, the version 1.0. It was designed to be a

wrapper for the native Windows controls, programmed using the Windows API, so the

developers would be able to easily create user interfaces using any managed .NET

language.

 As a GUI framework, it supports all our requirements as stated in points (R1)

through (R3). Let us now examine whether the Windows Forms also comply with our

requirements (R4) and (R5).

 Windows Forms allows customization of its stock controls by changing the

standard properties of controls, such as background color, border width and font size.

In the case where this is not enough and a completely different look is needed, it is

usually necessary to create a new control that will inherit from the control that is to be

visually customized, and override the method that is responsible for drawing the

control.

8

 It is also possible to create an entirely custom controls. This achieved by deriving

from the Control class and overriding appropriate methods that control how the events

and painting of the control are handled.

 Windows Presentation Foundation

 The Windows Presentation Foundation is also a GUI framework created by

Microsoft and is included in Microsoft’s .NET Framework 3.0 and higher. Most

notable features include GPU accelerated GUI rendering using DirectX and the ability

to define a custom GUI layout using declarative XAML code. In addition, the

developers can easily modify the visual look of existing stock controls as well as the

ability to easily create completely new controls. As its basic functionality is the

creation of GUIs, we can expect that it is compliant with all our learnt requirements

(R1) through (R3) for a GUI framework as described in the section 1.1. Then we just

need to examine our requirements (R4) and (R5) as stated in the section 1.2.

 In the section 1.2, we determined the requirement that our library needs to allow

visual customization of the stock controls (R4). We will now examine how we can

customize controls in the WPF.

 There are two ways how we can do this. The first way is to alter properties that

are already declared on those controls. Using this approach we can alter things like

width, height, background, border color and thickness, font color etc. The second way

is to define our own Template for that control. This way we can completely redesign

the looks of the control because we are altering the individual visual elements the

control is composed of. This approach is generally however only used in conjunction

with the XAML code. Both approaches are visualized on the following Figure 3:

Figure 3: Customizing Button Control

Next to point a) on the Figure 3 we can see the WPF’s Button Control with its

default look and its Content property set to the text „Button“. Then, next to point b)

there is the same control but with several of its properties changed to suit our needs.

The properties we changed are namely Foreground, Background, BorderBrush and

BorderThickness. Finally, next to point c), we can see the Button Control with its

Template changed. The Button does not provide by default any property that controls

9

its shape. Therefore, if we wanted for example a triangular Button then we would have

to edit the Button’s default Template. That is what we did and the result can be seen

on the previous Figure 3.

 The last requirement we stated in the section 1.2 is that we should allow the

developers to easily create a custom GUI elements all by themselves (R5). This is

achieved in the WPF by inheriting from either the UIElement or the FrameworkElement

class and overriding the appropriate methods that take care of element’s layout and

user input handling.

 Conclusion

 We see that both frameworks fulfill our requirements (R1) through (R5) as stated

in both the section 1.1 and the section 1.2. However, the WPF provides a more

powerful way of customizing existing controls, and its API is converging with the

Windows XAML, which is a part of the new Universal Windows Platform framework.

This makes the WPF API a better solution going forward.

 Therefore, we decide to use the Windows Presentation Foundation API as the

template for our library.

 Thesis goals

 In this thesis, we would like to create a GUI library that will enable the developers

to easily define a graphical user interfaces in their MonoGame projects. This library

will be implemented according to the Windows Presentation Foundation API that we

will try to implement as closely as possible. This will not only allow the developers to

reuse the existing skills they might already have with the WPF but also to share the

GUI code between their MonoGame and WPF projects. No need to learn yet another

new API if the developer is already familiar with the WPF. Moreover, we do not want

to use any platform-specific functionality while we implement our library, as this

would make it harder or even impossible to use this library on other platforms the

MonoGame supports. Finally, as the WPF is a very feature rich and complex

technology, in this thesis we will implement only a viable subset of the functionality

the WPF provides.

Library features

 Here we will go over the main features our library should provide.

(G1) MonoGame GUI Library

 We want to create a library that will be designed to work with the MonoGame

framework and will provide to the developers all the necessary APIs so they can easily

create GUIs on the MonoGame platform. In addition, we do not want to use any

platform-specific functionality that would make porting our library to other platforms

difficult or impossible.

10

(G2) Rendering

 Our library needs to be able to render the GUI as defined by the developer. For

this, we need to implement support for drawing various geometrical primitives. We

also need to be able to color and texturing them.

(G3) Event-driven user input

 The developers needs to be notified whenever user interacts with any control. That

is why we are going to implement an event-driven system of notifications.

(G4) Stock controls

 We should include stock controls in our library that would cover the basic usage

scenarios.

(G5) Controls customizability

 To be able to customize a GUI with as little work as possible we are going to

implement properties for our controls that would make it possible to change the

controls visual appearance. Those properties would be for example able to affect

control’s background, its border thickness or the border’s color.

(G6) Custom controls

 When the developers hit the limits of what can be changed about the visual

appearance of any of the stock controls then there is going to be a way how they can

create their own controls from the scratch with exactly their preferred visual looks and

behavior on user input.

(G7) WPF API

 Our library will implement a viable subset of the WPF functionality and use its

API as a template. In addition, we want our implemented API to resemble the

Windows Presentation Foundation’s API as close as possible to allow the developers

to reuse their code and skills.

Under the hood

 Now we will summarize the goals, which are not directly related to the library

features.

(G8) Programmed using MonoGame and .NET

 The library will be programmed using the MonoGame and Microsoft .NET APIs.

As for the programming language, we will use the C# language.

(G9) Operating systems support

 For the final version of this library, we want our library to work at least on the

Microsoft Windows operating system.

11

 Background
 In this chapter, we are going to briefly introduce the Windows Presentation

Foundation, its basic concepts and some of its features that make it so popular among

the GUI developers. We are going to reuse this knowledge in the later chapters.

 Appearance and logic code

 The WPF allows the developers to split their GUI appearance definition code and

logic code. The GUI code is usually stored in the markup code and the application,

while logic is coded in a managed programming language, like the C#.

 This approach has the benefit of developing both of these parts independently,

which may not only speed up the development but also allow the appearance code to

be easily reused in other projects. It also allow designers to work with the appearance

code without any extensive knowledge in any particular managed programming

language.

XAML Markup

 The XAML is a markup language based on the XML language that is used in the

WPF for declarative definition of application appearance. Generally, it is used to create

and customize various container objects like windows and pages and fill them with

content like controls or various geometrical shapes.

 On the following Figure 4, we can see an example of a XAML markup code. We

define a Window with some specified dimensions and a Grid element as the content

of this Window. Finally, we placed a Button element into the Grid and defined a

reference to the action that should happen when this Button is click.

<Window
x:Class="Markup_CodeBehind.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:local="clr-namespace:Markup_CodeBehind"
mc:Ignorable="d"
Title="Example" Height="100" Width="200">
 <Grid>
 <Button Content="Hello world!" Click="Button_Click" />
 </Grid>
</Window>

Figure 4: XAML markup code example

 At the run time, the elements defined in this XAML code are converted into

instances of WPF objects with attributes set as values of their respective properties.

12

Such a XAML markup code would produce the user interface we can see on the

following Figure 5:

Figure 5: The result of our XAML markup code

Some stylish aspects may vary depending on the Windows version. The

example on the Figure 5 is captured on a device running the Windows 10.

Code-Behind

 When designing an application, it must be capable of responding to user

interactions and perform the expected function. In the WPF, this functionality is

implemented in a code that is associated with the XAML markup code. This code is

in a form of any managed programming language and we call this the code-behind.

 Let us go back to our previous XAML code example. We used a Button element

in our XAML code and assigned a reference to the handler that should be invoked

when the Button is clicked. This handler is located in our code-behind.

public partial class MainWindow : Window
{
 public MainWindow()
 {
 InitializeComponent();
 }

 private void Button_Click(object sender, RoutedEventArgs e)
 {
 MessageBox.Show("Hello world!");
 }
}

Figure 6: Logic code example

 We can see that in the constructor method of our MainWindow class there is a call

to the InitializeComponent method. This method is responsible for merging the

markup and the logic code of our application. We can now also see the Button_Click

handler we referenced in our markup code for handling the Button’s Click event.

 Controls

 Users interact with the so-called “controls”. We need to mention that, for example

in the Windows Forms this naming would mean that the object derive from the Control

class, this is not true for the WPF controls. We can call a “control” every class that

visually participates in the user interface and implements some behavior.

13

Control categories

 Included is a rich set of controls that are available for developers to use. List of

the controls can be found the MSDN website [14]. Let us mention a few of them and

the category they belong to according to their function.

 Input: Button, TextBox, RichTextBox

 Layout: Border, Canvas, Grid, StackPanel

 Media: Image, MediaElement

 Selection: CheckBox, ComboBox, ListBox

 Information: Label, TextBlock

 Input

 Controls must be able to respond to the user interaction. For this, the WPF

includes an event-based system of input notifications.

Routed Events

 The WPF introduces a concept of so-called routed events. A routed event is a type

of event that can invoke handlers on multiple listeners in an element tree, rather than

just on the element that raised the event. Such an event can travel the element tree in

two directions. Either it can travel from the element that raised the event up through

the elements tree or it can travel from the root of the elements tree to the element that

raised the event. We call the event traversal that goes the first mentioned way the

Bubbling routing strategy and we call the event traversal that go the secondly

mentioned way the Tunneling routing strategy. Finally, we can create a routed event

that invokes the handlers only on the element that raised the event. We call this the

Direct routing strategy.

14

 The following Figure 7 demonstrates this concept. We can see an element, called

the “leaf element #2“, that raised a routed event and then we can see how would such

an event travel under the Bubble and Tunnel routing strategies.

Figure 7: Input Event Bubbling and Tunneling [15]

 To handle those events we can either register an event handler for a specific

instance of a control or we can register a static class handler that is defined by the class

and is also effective on any deriving types. This class handler has the opportunity to

handle an event before any registered instance handlers can.

 Layout

 Every element is defined by its location and its size. The WPF layout system uses

relative positioning for elements to form the desired layout. This process is composed

of two stages.

 During the first stage, which we call the Measure layout pass, the controls are

given an information about available space that they can use and their responsibility is

to return their desired size, based on this information, back to their parent. Finally, in

the second stage, which we call the Arrange layout pass, the parents tell their children

in what area they are supposed to contain themselves.

 UIElement

 The core layout functionality is implemented in the UIElement class. It defines

two public methods to initiate the layout pass on a specified element. These methods

are the Measure and Arrange - where Measure initiates the Measure layout pass and

Arrange the Arrange layout pass.

 Moreover, to allow any deriving class to define its own layout process, the

UIElement defines the virtual MeasureCore and virtual ArrangeCore methods that

are being called internally as a part of the Measure and Arrange methods. The

15

implementation for these two methods should also be provided in cases when class

that derives from the UIElement contains any additional elements.

 FrameworkElement

 The FrameworkElement class derives from the UIElement and further extends its

layout functionality. The Margin, HorizontalAlignment, VerticalAlignment, Width

and Height are among those new layout capabilities added by the FrameworkElement.

 These mentioned properties are demonstrated on the following Figure 8. There is

a Grid control that is the root of the UI. This Grid contains a Border control (with

yellow background) that has its Margin property set to position the Border

approximately somewhere to the middle of the Grid control. Finally, the Button control

is placed inside the Border with both the HorizontalAllignment and the

VerticalAllignment properties set to Center value, and Width along with the Height

properties set to a custom value.

Figure 8: Layout demonstration

 The MeasureCore and ArrangeCore methods are sealed in the FrameworkElement

as it is the place where the FrameworkElement implements this new layout

functionality. Instead of these, it provides the MeasureOverride and ArrangeOverride

methods which can be overridden to further customize the layout passes.

16

 Containers

 Every container control in the WPF derives from the FrameworkElement class

either directly or indirectly through other classes. The most common containers in the

WPF are the following:

 Canvas: Positions its child elements by using coordinates that are relative to the

Canvas.

 Grid: Positions its child controls into columns and rows.

 StackPanel: Positions its child controls either horizontally or vertically one

after another.

17

 Dependency properties

 To support some of its advanced features, the WPF uses its own implementation

for the property system. We call these properties the dependency properties.

 The purpose of dependency properties is to determine the effective value for a

property based on the values of other inputs. Those other inputs include the animations,

inherited values from parent controls or the mentioned bindings. The full list of inputs

and their precedencies is listed in the following Figure 9:

Figure 9: The list of dependency property value precedencies

 Moreover, a dependency property can be set up to contain a self-validating

mechanism, a pre-defined default value, a callback to notify on any value changes and

finally a coerce callback that allows to define a new value for the property based on

the actual runtime information. When needed, the deriving classes can change some

these characteristics by overriding the dependency property’s metadata.

18

 The dependency properties are usually declared in two steps. Firstly, a

dependency property identifier must be declared by calling the static

DependencyProperty.Register method. In this method, the property’s name, data type,

owner type and optionally a metadata and validation callback are defined. Secondly,

and this is optional, a new property with both the getter and setter is defined to make

the access to this new dependency property more natural. In the getter, the GetValue

method is called that takes a dependency property identifier as an argument and returns

an object that represents the effective value of the provided dependency property. To

set a value for this property, the SetValue method is called inside the setter. This

method accepts a dependency property identifier and an object that is to be set as local

value for this dependency property. This approach including the optional second step

is demonstrated on the following Figure 10:

public static readonly DependencyProperty TextProperty =
 DependencyProperty.Register(
 "Text",
 typeof(string),
 typeof(MyType),
 new PropertyMetadata("Hello World!"));

public string Text
{
 get { return (string)GetValue(TextProperty); }
 set { SetValue(TextProperty, value); }
}

Figure 10: Declaring a new dependency property

Attached dependency properties

 WPF allows setting properties on an object where those properties are not defined.

Those properties are called the Attached dependency properties.

 An example of a usage for the attached property is to allow different child

elements to specify unique values for a property that is actually defined on a parent

element.

 Dependency objects

 DependencyObject defines the base class that can register and own a dependency

property. It contains a database of locally set values for dependency properties and

also declares the two methods mentioned in previous chapter (0) that were used to get

and set a value of a dependency property – GetValue and SetValue. To ensure a

consistent state of those properties, a cross thread access to those dependency

properties is forbidden and this is checked whenever a property is accessed.

19

 Data Binding

 The controls are commonly used to present some data from a data source to the

application user. This data is not only presented but also edited. The WPF makes this

process easier by introducing a system that takes care about the automatic data

synchronization between the source and the target. The core functionality for this is

implemented in the Binding class.

 The binding can be created between any object instance on the source side of the

binding and any DependencyObject instance on the side of the target. However, there

is a limitation for the source object. If the source object is not a DependencyObject or

it does not implement the INotifyPropertyChanged interface then it does not notifies

the binding system about the bounded property changes. In this case, the binding

system synchronizes the value from the source to the target only upon setting the

binding and does not reflect any later changes.

There are several modes of binding:

 OneTime: Synchronizes the value from the source property to the target

property only at a time of applying the binding.

 OneWay: Synchronizes the value of the source property to the target property

on every source value change.

 OneWayToSource: Synchronizes the value of the target property to the source

property on every target value change.

 TwoWay: Synchronizes the value of the source property and the value of the

target property whenever the value of the bound properties changes.

 Let us now take a look at the binding example code on the following Figure 11,

where we are going to show how to create a binding between the Label (displays

content) and TextBox (accepts text input) controls to automatically synchronize the

value of the TextBox Text property and the value of the Label Content property.

// Create controls
Label label = new Label();
TextBox textBox = new TextBox();

// Define new Binding
Binding binding = new Binding();
binding.Path = new PropertyPath("Text");
binding.Mode = BindingMode.OneWay;
binding.Source = textBox;

// Set Binding between the label and textBox
BindingOperations.SetBinding(label, Label.ContentProperty, binding);

Figure 11: Binding example code

 We firstly created instances of the Label and TextBox controls, on which we are

going to demonstrate the binding. Secondly, we created an instance of the Binding

20

class, and set the source object and the appropriate path to its property we want to

bind. The binding mode was set to OneWay, meaning we get the property

synchronization from the source to the target. Finally, we bounded these two properties

by calling the BindingOperation.SetBinding method.

When we now run this example and type “Hello world!” into the TextBox, the

text gets automatically copied into the Label’s Content property. We can see the result

on the following Figure 12:

Figure 12: Binding example result

 Graphics

 User Interfaces are commonly composed of many graphically different objects.

For this purpose, the WPF provides a rich set of graphical capabilities. This is achieved

through a full hardware acceleration using the Graphical Processing Unit, in short the

GPU. Because of this, the WPF brings native support not only for 2D user interface

elements but also supports the use of 3D elements. Moreover, everything is based on

vector graphics, which is why the WPF-based user interface will look nice and sharp.

 2D geometrical shapes

 The WPF implements support for drawing several two-dimensional graphical

primitives. Those primitives are accessible at several layers of the WPF UI system. At

the top level, they are all implemented as individual controls. This makes them easy to

use and provides them with support for layout and access to the WPF routed event

system (because they indirectly derive from the UIElement and FrameworkElement

classes). All those shapes derive from the Shape class and can be found in the

System.Windows.Media.Shapes namespace.

List of Shape objects

 Here is a list of shapes that can be found in the System.Windows.Media.Shapes

namespace:

 Ellipse: An ellipse defined by width and height.

 Line: A line defined by start point and end point.

 Path: A series of connected lines and curves, defined in its Data

geometry property.

 Polygon: A polygon defined by a set of points that forms a closed shape.

 Polyline: A set of connected lines defined by points.

 Rectangle: A rectangle defined by width and height. Can be also made

round.

21

Fill and Stroke

Some shapes, where this is applicable, are composed of two visual parts. The

fill and the stroke. Fill describes how the interior of the shape should be drawn, while

the stroke defines the drawing of the shape’s outline. Shapes, for which this is not

applicable, like for Line or Polyline, also define the Fill property (as it is declared on

the Shape class from which all the shapes derive) but effectively use only the Stroke

property. Therefore, setting the fill property does nothing for those shapes.

This partition of a shape on the fill part and the stroke part allows us to

customize those shapes even further by specifying a different visual look for both.

We can see an example on the Figure 13. There are three different looks of the

same rounded rectangle. The first rectangle a) is drawn only using the fill, while in the

second triangle b) we used only the stroke and no fill. Finally, on the third triangle c)

we used both the fill and the stroke.

Figure 13: Fill and Stroke example

 Moreover, the WPF allows us to customize these shapes even further by altering

the default look of the stroke. We have the ability to alter the thickness of the stroke,

how it looks on its ends, or even turn the stroke into a set of dashes and many more.

 On the Figure 14, we have the rounded rectangle from the Figure 13, however this

time we used its StrokeDashArray property to create a different looking stroke.

Figure 14: Stroke customization

22

Brushes

 To determine how the area defined by the fill and the stroke is going to be painted

we use classes that derive from the abstract Brush class.

We can use several brush implementations:

a) SolidColorBrush: A brush that paints an area with a simple color.

b) DrawingBrush: A brush that paints an area using a Drawing object. Such

a brush can contain various shapes, images, text and others.

c) ImageBrush: A brush that paints an area using an image.

d) LinearGradientBrush: A brush that paints an area using a linear

gradient.

e) RadialGradientBrush: A brush that paints an area using a radial

gradient.

f) VisualBrush: A brush that paints an area using a Visual object.

We can see the example of these brushes a) through f) on the following Figure

15, where we applied these individual brushes to a rectangle as its fill property.

Figure 15: Example of individual brushes applied to Rectangle controls as its fill. Image in c) reprinted from

[16]

 3D geometrical shapes

 Included in the WPF is also the support for 3D geometrical shapes, which can be

mixed with 2D graphics data to create rich controls or provide complex illustrations of

data.

 To use this functionality, the WPF provides an element called the Viewport3D that

serves as a “bridge” between the 2D and 3D graphical worlds and can be used as a

child of any traditional 2D control.

 Visual

The actual rendering capabilities are included in the Visual class. The Visual

therefore serves as a basic building block of every UI element (UIElement derives from

the Visual class). Its main functions are to provide rendering and hit testing support.

23

In addition to these, the Visual also does the following: transformations, clipping, and

bounding box calculation. The connection between the rendering and hit testing is very

important and leads to a one of the WPF’s very useful abilities, and that is a perfect hit

testing on individual elements.

Rendering and hit testing

 The WPF was designed to take full advantage of the modern GPUs, and is capable

of doing all the necessary rendering solely using the GPU. To achieve this it was

decided the WPF to be based fully on vector graphics. Therefore, everything the WPF

wants to render on the screen needs to be broke down to a set of graphical primitives

the GPUs can understand (by those primitives are generally meant the triangles). GPUs

can process those primitives at a very high speeds and this makes this kind of rendering

quicker than the original way of performing this on the CPUs.

 Moreover, the retained rendering mechanism was put in place. Every time we call

any WPF’s drawing method, our rendering instructions are processed and persisted at

the Visual object and then are finally executed at a time the WPF’s rendering system

sees fit. This opens up not only space for performing rendering optimizations but also

allows the WPF to achieve the sooner mentioned feature, the perfect hit testing. It has

the description of every rendered geometry and thanks to the retaining system all those

information is stored, therefore it is just a matter of simple hit testing those individual

primitives.

 It is imperative to understand that in the WPF, only that which is drawn to the

screen is hit testable. Oppositely, if nothing is drawn, then there is nothing to hit test.

This is opposed to for example the Windows Forms, where the connection between

rendering data and hit testing is non-existent and only basic rectangular bounding box

hit testing is performed.

 Clipping

 Sometimes it is desired to clip a control (and its children) to make it look nicer

and more fitting for the designing user interface or to implement a control that supports

scrolling. The WPF supports clipping content with any Geometry object that is included

in the WPF. Included are many types of defining geometries, like: LineGeometry,

24

RectangleGeometry, and EllipseGeometry. On the following Figure 16, we can see an

Image control displaying an image while being clipped using the EllipseGeometry.

Figure 16: Example of an elliptical clip (reprinted from [16])

 Text

 To take full advantage of the vector rendering the WPF also interprets and renders

all glyphs as a vector graphical data while providing support for OpenType font

definitions. This process is fully hardware accelerated and the resulting text is also

being anti-aliased which results in high performance and high quality, resolution

independent text rendering.

 Animations

WPF supports a rich set of animations that can be applied to individual properties.

Next to this, it also defines animations that can be used to directly change the visual

state of a control, those are called the RenderTransforms. Those control animations

include the following: scaling, rotating, translating and more.

To animate a property, the following conditions must be met. The animated

property must be a dependency property, the object that owns it must implement an

IAnimatable interface and the type of the animated property must be supported by the

animation system.

 Custom controls

When the stock controls are not enough for a specific task, it is possible to create

a custom controls. In WPF, there are three possible models to do this.

 UIElement and FrameworkElement model

It was already mentioned in section 2.4 that the UIElement and FrameworkElement

actively participate in the layout process and define overridable methods that can be

used to change the default layout implementation. In addition to those, the UIElement

also defines a virtual OnRender method that can be used to draw graphical shapes.

However, when compared to the Shape objects, the shapes drawn during the OnRender

25

method are not individual controls, nor they support any advanced layout and eventing

features the Shapes objects does. This makes those OnRender shapes much more

lightweight and should be used instead of the Shape objects when creating a complex

graphical UI.

DrawingContext

 The drawing inside the OnRender method is done by using a DrawingContext object

that is passed into the OnRender method as a parameter. This object allows to describe

visual content by using draw, push and pop commands.

 In the following list are written all the things the DrawingContext allows us to

draw:

 Drawing: Draws the content of a Drawing object.

 Ellipse: Draws an ellipse.

 Geometry: Draws a custom geometry specified by a Geometry object.

 GlyphRun: Draws a non-formatted text.

 Image: Draws provided image.

 Line: Draws a line.

 Rectangle: Draws a rectangle.

 Rounded rectangle: Draws a rounded rectangle.

 Text: Draws a formatted text.

 Video: Draws a video.

 It also provides other tools that affect the drawings, like transformations, clippings

and opacity.

 User Control model

 When there is a need to reuse a specific set of existing controls more than once in

an UI, the easiest way to do that is by deriving from the UserControl control and

defining all the required controls in this new class. This element tree is then set in the

UserControl’s Content property and every time a new instance of this deriving class

is created, all the defined controls, along with their custom functionality, are created

as well.

 Control model

 A new custom element can derive from the Control class. This approach is used

to build control implementations that allow to separate their behavior from their

appearance. This is achieved by using the templates, styles and triggers, which are

defined using the XAML markup language.

 Most stock controls are using this approach to make their visual customization

easier while retaining their original functionality.

26

27

 Problem analysis
 In this chapter, we will go through possible realizations and implementations to

achieve our goals as stated in points (G1) through (G7). We will break the things we

need to decide into three categories. In the first category, we will go through existing

open source projects and determine whether we can reuse their code base for our

library. Then in the second category, there is the issue of determining a viable feature

set of the WPF framework we will implement for our library. Finally, in the last

category we will go through some concrete implementation problems and their

resolutions.

 Existing projects

 As the WPF is a wide spread API, we can assume that there might already exist

some efforts for creating an open source and cross-platform implementation of the

WPF framework. We should examine such projects as we could reuse some of their

codebase in our library. Such approach would bring us several advantages, as we

would not have to start coding from scratch and therefore could provide a much more

feature rich final version of our library. In addition to the previous, we find a project

that is still actively maintained then any new features or fixes released in the new

versions of the project could be easily applied to our library as well.

 On the other hand, we would like to avoid using any projects that are already

abandoned or without any proper documentation. This is due to the fact that such a

code would be hard to maintain and to further extend. Finally, we would like to

concentrate only on the bigger community project so we have the assurance that the

code does not have any undocumented flaws and follows the API properly.

 We already stated that the WPF is a part of the Microsoft .NET Framework 3.0

and newer. Therefore, we should start looking for a suitable project at the area of open

source implementations of the .NET Framework 3.0 and newer. The most widely used

project that meets our criteria is the Mono:

Mono

 The Mono [17] is a free and open source implementation of the .NET Framework

with support for several platforms including not only Windows but also the OS X,

Linux and more. At the time of writing this thesis the Mono project‘s aim is to fully

support the .NET 4.5 which is a feature superset of the .NET 3.0. Therefore, we can

expect the Mono to provide some kind of implementation for the WPF. Moreover, by

looking at the Mono’s source code we can see that it is being programmed in the C#

language. However, if we look at the Mono project’s webpage dedicated to the WPF

[18] we can see that not only the Mono does not provide any proper WPF

implementation but also there are also no plans for one. Stating, “We do not have any

28

plans because the project is too large and there has not been any serious interest from

the community to make this effort move forward”.

Moonlight

 Another area that we should explore are the GUI frameworks that have a

converging API with the WPF. The closest matching API we can find is the Silverlight

[19]. The Silverlight was created by Microsoft to serve as a cross-browser and cross-

platform application framework for creating rich Internet applications. The Silverlight

and the WPF are not fully API compatible but there are many things those two have in

common and the basic principles are the same. Therefore, we still might be able to

reuse some of its code for our purposes. However, as we cannot use the Silverlight’s

code directly due to its licensing we need to look for a free and open source

implementation. A project that provides the closest implementation of the Silverlight

framework and is open source is called the Moonlight.

 The Moonlight [20] is an open source implementation of the Microsoft’s

Silverlight framework. Moonlight was primarily developed to provide the ability to

run latest Silverlight applications on the Linux and other Unix/X11 based operating

systems as the version delivered by Microsoft for these operating systems got outdated

and did not implement latest Silverlight features. The Moonlight in its latest release

(Moonlight 4 Preview 1) claims to support the Silverlight 4. However, as Microsoft

shifted its focus away from the Silverlight framework so did the Moonlight team.

Therefore, the Moonlight was abandoned and is no longer maintained with the latest

release dating back in the year 2011. By looking closer at the source code, we can see

that all the executive code is written in the low-level C++ language and rendering is

implemented through using the Cairo [21] graphics library.

 However, this project is no longer maintained, which in combination with the fact

that it is coded using the C++ language and has no documentation would make it

difficult for us not only to add additional features but also to maintain as part of our

library.

 We see that neither of the considered projects is suitable for our needs and

therefore we decide to code our library from scratch.

 Feature set

 In the section 3.1 we decided to code out library from scratch. The WPF is a very

extensive library with very rich functionality and implementing the entire WPF would

be out of the scope for this thesis. Therefore, it is imperative to choose a viable feature

subset of the WPF that will be implemented.

 This feature subset should cover our goals (G2) through (G6) as stated in the

section 1.4. We will now go through these individual goals and we will decide on

which functionality of the WPF we are going to implement to achieve those goals.

29

 XAML markup code

 The WPF provides a support for defining the user interface appearance using the

declarative XAML code that is during the runtime merged with an instance of an object

it is bound with. We need to decide whether we are going to implement this support

for our library as well.

 To support the declarative XAML markup user interface definitions a XAML

parser is needed. A proper implementation of such parser is included in the .NET

framework, as the WPF itself uses it. Therefore, if we were to support only the

Windows platform this would be an acceptable solution and we could use the XAML

markup in our library. However, the problem raises on other platforms where only the

Mono framework is available as a replacement for the .NET framework. The Mono

does not implement a XAML parser that is capable of deserializing the XAML code

like the .NET parser does, therefore the functionality of our library would be

inconsistent in this area. Moreover, creating our own implementation of the XAML

parser would be out of the scope for this work because of how extensive the XAML

technology is. And because the XAML is only a supplement for the WPF and our goal

(G1) states that we do not want to use any platform specific functionality that would

limit our support for other platforms, we are not going to support the XAML user

interface declarations on the same level as the WPF does.

 Stock controls

 Our goal (G4) is to provide a set of controls that can be used right out of the box.

As the WPF comes with a large amount of controls and the work on the core

functionality of this library is going to take the majority of time, we are going to

include only a few controls to cover the basic usage scenarios and to demonstrate the

functionality that will be provided by the library.

 Among the provided controls should be representatives from the following control

categories: input controls, layout controls, media controls, selection controls, and

controls that provide information.

 Here is the list of these categories and appropriate controls we will implement:

 Input: Button, TextBox

 Layout: Canvas, Grid, StackPanel

 Media: Image

 Selection: CheckBox

 Information: Label

 Stock controls customization

Now we will examine how we are going to handle the support for customizing

our stock controls as stated in our goal (G5). In the Introduction chapter, we stated that

there are two possible ways how the stock controls can be customized in the WPF.

30

One way is to set the properties that are defined on those controls and the other way is

to use the Templates. Now we need to decide which of these two approaches we are

going to implement in our library. Alternatively, if we are going to implement both of

them.

The first approach provides the easiest way to modify a control’s basic visual

look and can be used in both the programming code, like C# code, and the design-

centric XAML code. We are going to implement this approach to allow developers

basic customization of our stock GUI controls.

 As for the second approach, the Template concept is very powerful and useful but

it is useful only in conjunction with the design-centric XAML code, as this is the place

where the Templates are defined and what makes them so convenient to use. We do

not plan any extensive interoperation with the XAML code, as this would be not

possible because of the state of available XAML parsers (more in section 3.2.1).

Therefore, we are not going to implement the Templates functionality.

 Custom controls

 It was decided that our library would include a set of controls that can be used by

developers right out of the box. Moreover, those controls are also going to be, to some

extent, customizable. However, we are creating a library that will be used to create a

user interfaces for games. It is necessary to provide a way for the developers to create

their own controls from the scratch (our goal G6) so those new controls can be fully

visually and logically customized.

 There are three different models, as stated in the chapter 2.8, that we are going to

consider.

UIElement and FrameworkElement model

 First model of creating a custom control is based on inheriting from either the

UIElement or the FrameworkElement and overriding the appropriate methods that

participate on the layout process. In addition, if there is need to draw some geometrical

shapes onto the screen, there is the ability to override the OnRender method.

 This model is at very core of the controls implementation in the WPF, therefore

we need to implement this model.

User Control model

 The User Control model is based on the UserControl control. This control simply

allows to define a set of children it includes and then reuse this definition multiple

times as different objects. This approach is a matter of implementing the UserControl

control and we are going to implement it.

31

Control model

 The control model is based on the Templates, Styles and Triggers, which are all

defined in the XAML markup code. We decided not to build our library around the

XAML (in section 3.2.1) and therefore we are not going to implement this model.

 Shapes and brushes

In the previous section 3.2.4, we decided that we are going to implement the

UIElement and FrameworkElement model for creating the user interfaces. These

classes use the DrawingObject object to draw any geometrical shapes or text to

compose their appearance.

The DrawingContext supports a wide range of shapes it can draw. We are going

to select only a few of those that we are going to support in the first version of our

library (our goal G2). We would like to be able to draw at least the following: line,

rectangle, rounded rectangle, ellipse, and of course text.

Moreover, the DrawingContext also allows customizing the stroke of shapes by

defining the thickness of the stroke and by turning the stroke into a set of dashes. We

would like to support the solid stroke with all of our shapes and the dashed stroke at

least at the cases of line and rectangle.

Finally, all these geometrical shapes need a definition that will describe how to

color or texture them (also part of our goal G2). For this purpose, we need to implement

some viable brushes. The most basic brush that we are going to include is the

SolidColorBrush that fills the shape with one solid color. Next, we need to allow the

game developers to use their artwork as the fill for those shapes. That is why we are

going to implement the ImageBrush. And the last brush we are going to include is the

LinearGradientBrush that can be easily used to make the user interface more

engaging.

 Clipping

 Every user interface should have the ability to clip controls and their children.

This is necessary for implementation of controls that simply need to clip their content,

like the TextBox, or controls with scrollable areas, like the ListView. Therefore, a way

to clip content should be included in our library.

 We need to decide to what extend we are going to support the customizations of

those clipping areas. There are basically two approaches we can take.

 First option is to implement a basic rectangular clipping areas. And the second

one is to provide a richer set of various geometries that can be used for clipping, much

like the WPF does.

 We are creating a library that will be used to create user interfaces for games, and

we want to provide the game developers with as much ability to customize their user

32

interfaces as possible. Therefore, we are going to implement the second approach and

provide support for at least following clipping geometries: line geometry, rectangle

geometry, and ellipse geometry.

 Lastly, the WPF allows setting the clipping on multiple levels. We would like to

support at least the VisualClip property of the Visual class so the developers can use

this while creating their own custom controls.

 Data Bindings

In the section 3.2.4, we decided to adopt to User Control model for creating

custom controls. The controls created using this approach are composed of other

controls, which are however not visible from outside as the entire control acts as a

single entity. Whenever any public property of this new custom control is altered, this

new value is propagated to a property of an appropriate child and thus updating the

appearance (or behavior) of the control.

To make this process more streamlined and automatic, we are going to implement

support for data bindings. For the final version of our library, we would like to provide

data binding support at least for properties that are defined directly on the level of

source and target objects.

 Handling user input

Our last goal (G3) we need to go through is to provide an event-driven handling

of user input. This is achieved in the WPF with the system of routed events. It is

necessary to decide whether we are going to implement this system and to what extent.

In the WPF, it is normal that controls are defined as a composition of several

others controls. The concept of routed events allows to handle events that are raised

on those child elements directly on their enclosing parents, which makes the creation

of new controls more convenient. The same approach of creating controls is going to

be possible in our library (more in section 3.2.4). Therefore, we are going to implement

the concept of routed events.

Now, there are two different event handlers the developers can register to handle

the individual events: Instance handlers, and Class handlers.

Developers need to be able to register their event handlers for the individual

instances of controls, therefore we will implement the support for registering the

Instance handlers.

Finally, we want to give the developers more control in handling the raised

events, therefore, we are going to implement the Class handlers as well.

33

 Technical issues

In the rest of this chapter, we are going to clear some technical problems that are

related to the feature subset of the WPF we selected in the previous section 3.2 and

examine whether we can provide at least a partial support for the XAML markup code.

We are going to break those technical problems into three areas. In the first area, we

are going to go through the problems that are connected to the drawing of a user

interface visual representation onto the screen (in section 3.4). Then, in the second

area, we are going to go through the problems connected to the processing of user input

(in section 3.5). And finally, in the last area we will examine whether we can provide

at least a partial support for the XAML markup code (in section 3.6).

 Drawing user interface

 In this section, we are going to decide on solutions for the problems related to the

drawing of our user interface.

 Drawing geometrical shapes

 Back in the section 3.2.5 we decided on the shapes we would make available in

our library. Now we need to decide on the ideal way in which we are going to draw

these shapes and how we are going to apply the appropriate color or texture. We are

going to consider two different approaches:

a) Drawing using the CPU

b) Drawing using the GPU

 The drawing using the CPU (a), also known as the software rendering, is an

approach where the CPU is responsible for coloring individual pixels to create a

desired shape. This approach has several problems. Firstly, if the shape were to be

drawn with a texture, it would be necessary to apply this texture correctly. Since the

CPU is a general-purpose processor and the MonoGame targets GPU accelerated game

development, there is no existing functionality that could be used and therefore we

would have to program this functionality ourselves. Secondly, going through every

pixel and calculating whether the shape is defined on the current pixel or not would be

CPU intensive. Therefore, limiting the game developers. Finally, this approach would

not only be CPU intensive but would also cause often CPU-GPU synchronizations to

transfer computed bitmaps from the system memory to the video memory on the GPU

so it can be drawn on the screen. As the GPU is stalled until the required

synchronization operation is finished, this would also cause GPU performance

degradation and therefore drops in the framerates.

 The drawing using the GPU (b), also known as hardware accelerated rendering,

is an approach where the GPU draws on the screen a set of geometrical primitives that

together form the desired shape. The GPU is a specialized hardware that is, with its

34

massively parallel computing structure, designed specifically for this kind of

workload. It can process the graphics much more efficiently than the CPU and is

therefore used to offload this work from the CPU. To take a full advantage of the GPU

it is necessary to break down every shape into the set of geometrical primitives the

GPU understands. The GPUs used to work with various kind of primitives but lately

this list went down only to points, lines and triangles (DirectX 10+ [2222] , OpenGL

3.1+ [23]), where the triangles are the most commonly used ones. Using the GPU

drawing we can also specify a color or texture coordinate for individual vertices and

the GPU takes care about properly applying these definitions on its own. An example

of rectangle definition using two triangles (wireframe) along with its colored form can

be seen on the following Figure 17:

Figure 17: Example of rectangle wireframe and solid form

 It can be seen now that the CPU drawing is not the ideal solution for the drawing

problem, while the GPU approach covers all our requirements and is more

performance efficient. That is why we decide to use the GPU approach. We are also

going to use the triangular form of representing our shapes as these primitives are

supported on all modern GPUs and are also the fastest ones to draw.

 Rendering the fill of graphical shapes

 We decided that we would support the drawing of the following four graphical

shapes: Line, Rectangle, Ellipse, and Rounded rectangle. Now we need to go through

these shapes and decide for each how it would be rendered.

 However, before we continue with our examination we are going to take a look at

some of the possible approaches that are mentioned often on various internet forums

and involve using the SpriteBatch class. Those approaches include for example

drawing a line using a 1x1 texture as described for example on the Game Development

Stack Exchange [24], or drawing a rectangle as described on Stack Overflow [25]. By

looking at the source code for the SpriteBatch class [26] and subsequently

SpriteBatcher class [27] that is used internally by the SpriteBatch, it can be seen that

the SpriteBatch uses a simple triangulated rectangle onto which it applies the provided

texture. We are not going to use any of these approached based on the SpriteBatch

class because we would like to have full control over the rendering process.

35

Line

 We will start with the Line shape, here we are going to consider two possible

approaches.

 The first approach is to take advantage of the graphical primitives that directly

provide support for rendering lines. The MonoGame provides support for the

following two types of line primitives: LineList, and LineStrip. The LineList primitive

represents a list of isolated, straight-line segments, while the LineStrip is a primitive

that is composed of connected line segments. Such a line can be easily colored and

textured through the exposed properties in the individual vertices of the line (through

their Color and TextureCoordinate properties). However, this line has a fixed

thickness of one pixel, and this cannot be altered.

 In the second approach, we consider using a triangular representation for our lines.

For this purpose, the MonoGame supports the rendering of the following triangle

primitives: TriangleList, and TriangleStrip. The TriangleList primitive represents a list

of isolated triangles and the TriangleStrip is a series of connected triangles. This

approach would require us to triangulate each line, which is more work but in return,

we can create lines of any thickness. This triangulation can be done by calculating the

normals for the two defining points of the line and expanding them outwards by half

the thickness on either side. On the following Figure 18 can be seen an illustration of

a line geometry created this way:

Figure 18: TriangleList based line geometry

 The first approach has a serious limitation in the inability to draw lines with

custom thickness, which makes it unsuitable for our needs. The second approach

provides a way to draw lines with various thickness and also allows us to color or

texture them. Therefore, we decide to implement the second approach.

Rectangle

 Next shape we need to be able to draw is the Rectangle. The rectangle can easily

be triangulated into two triangles and drawn either as the TriangleStrip or the

36

TriangleList set of graphical primitives. An illustration of such a geometry can be seen

on the following Figure 19:

Figure 19: TriangleStrip based rectangle fill geometry

 We are going to implement this approach.

Ellipse

 For the Ellipse shape, we will consider three approaches.

 Firstly, we can use a texture of the same size as the ellipse and “cut” it into an

ellipse shape by using a custom Pixel (Fragment) shader. This pixel shader would

receive information about the ellipse, such as its center and size of major and minor

axes, and for each pixel, it would compute the ellipse equation and determine whether

the pixel belongs to the ellipse or not. If the pixel would belong to the ellipse, the color

for the pixel would be sampled from the appropriate position in the input brush texture.

Otherwise, the pixel would be set as transparent.

 The additional two approaches consider drawing the ellipse using graphical

primitives. One approach is to triangulate the ellipse geometry so it could be rendered

as a TriangleList. This process of triangulation would consist of computing the outline

points of the ellipse (by using its sine and cosine properties and changing the angle)

and creating individual triangles, which would be composed of: center of the ellipse,

lastly computed point, and the current point. An example of resulting geometry of this

approach is illustrated on the following Figure 20:

Figure 20: TriangleList based ellipse fill geometry

 Finally, there is an article examining the way the WPF does its rendering, A

Critical Deep Dive into the WPF Rendering System [28]. If we take a look at the way

37

the ellipse is composed we can create a similar approach. Based on this observation,

our last approach is to triangulate the ellipse into a TriangleStrip geometry. This

triangulation would consist of walking down the y-axis of the ellipse (–minor axis

through +minor axis) by one pixel and for each calculating, using the ellipse equation,

the appropriate x-axis point. Then by subtracting this calculated point from the x-axis

center of the ellipse, we get both x-axis points on the current y-axis level and we add

them both to our geometry. Finally, when the walk across the y-axis is finished, the

GPU produces very nice representation of an ellipse shape. An illustration of this

approach can be observed on the following Figure 21:

Figure 21: TriangleStrip based ellipse fill geometry

 We are going to choose the last approach as it represents a fast and pixel-precise

solution, while saving up the memory by using only two vertices per each y-axis pixel.

Rounded rectangle

 Lastly, we need to decide on the way, how to draw a Rounded rectangle. We are

going to consider three possible approaches.

 The first one is to draw the rounded rectangle using a Pixel (Fragment) shader.

This approach is similar to the one we considered for the ellipse, but instead of

checking just for one ellipse equation we would be checking for four ellipsis, because

every corner of the rounded rectangle is an ellipse with its own center, and space in-

between. This would require a lot of branching work (if-else statements) in the Pixel

(Fragment) shader, which would not be very efficient and could limit the use only to

newer versions of the Shader Model due to instruction limitations imposed by various

versions of the Shader Model [29].

 Secondly, if we break down this shape into more basic shapes, then we see that it

is composed of four quarter-ellipses and some rectangles to fill the space between

them. To describe this shape to the GPU we can build a TriangleList primitive

geometry (to make it easy to compose the geometry of different shapes) and triangulate

each of the included shapes separately. Where the ellipse parts we would triangulate

38

using the second approach as examined in the Ellipse part. An illustration of a

geometry created by this approach can be observed on the following Figure 22:

Figure 22: TriangleList based rounded rectangle fill geometry

 Thirdly, after observing a rounded rectangle triangulation as pictured on one of

the Microsoft MSDN pages [30], we can add a third approach, based on the

TriangleStrip geometry. This approach is very similar to the one we chose for the

Ellipse. We would begin by precomputing the centers of the four quarter-ellipsis that

are a part of the rounded rectangle. And then we would walk down the y-axis and

compute the x-axis value by using the ellipse equation. For each y-axis step we would

compute two vertices – x-axis point of the top left ellipse center subtracted by the

computed x-axis point, and x-axis point of the top right ellipse center added to the

computed x-axis point. In both cases, the current y-axis level would be used as y-axis

coordinate for the two new points. This would continue until we would reach the height

of the provided minor axis (RadiusY property in the WPF). Then we would continue at

the y-axis level computed as the bottom of the rectangle subtracted by the length of

the minor axis. Finally we would continue the same process of computing vertices with

the bottom centers. As we are using the TriangleStrip based geometry, the possible

free space in-between the top part and the second part is automatically filled by the

GPU. On the following Figure 23 we can see an illustration of a geometry created this

way:

Figure 23: TriangleStrip based rounded rectangle fill geometry

39

 As this shape is not ideal to be processed by the Pixel (Fragment) shader, we

decide not to use the first approach. The second approach would not allow us to easily

build a pixel-precise geometry and its geometry would be also demanding for a number

of vertices defining its geometry (because of its TriangleList based geometry). Finally,

the last approach provides a simple way to compute a pixel-precise geometry and also

requires less vertices for its geometry (because of the TriangleStrip primitives), that is

why we are going to implement the last approach.

 Rendering the stroke of graphical shapes

 We decided on how to draw the fill of the graphical shapes but most of them also

can have a stroke (an outline). We now need to go through the ways how to draw a

stroke for the following graphical shapes: Rectangle, Ellipse, and Rounded rectangle.

The Line is only defined by its fill (Stroke property in the WPF), therefore we are not

going to make any decisions related to it in this part.

Rectangle

 The stroke of a Rectangle is composed of straight simple lines, therefore we will

use four lines using the TriangleList primitives to draw its stroke. An illustration of

this approach can be seen on the following Figure 24:

Figure 24: TriangleList based rectangle outline geometry

Ellipse

 There are two approaches we are going to consider for an Ellipse.

 First one is to use our lines to create its stroke. This can be achieved by using the

Bezier cubic curve, which can give us the individual points of the ellipse outline.

However, to create a smooth stroke we would be required to compute a large amount

of these lines segments.

 For the second approach we will once again look at the A Critical Deep Dive into

the WPF Rendering System [31] article. By observing the pictured stroke geometry of

the ellipse, we can propose the following approach. The stroke of an ellipse can be

drawn as a difference between the original ellipse and a new ellipse that is defined

40

with larger major and minor axis (by adding to both the major and minor axis the

desired thickness of the stroke). We would be once again walking down the y-axis by

one pixel and using the ellipse equation to calculate the x-axis coordinate of both the

larger and the original ellipse. Between these two points, we would then draw a line

using the LineList primitive type. We can see an illustration of this approach on the

following Figure 25:

Figure 25: LineList based ellipse outline geometry

 The second approach is easier to produce and provides a way to draw a smooth

stroke, that is why we decide to use it.

Rounded rectangle

 Finally, let us look at the Rounded rectangle. The situation here is similar to the

one we already examined with the Ellipse. We can either draw the stroke by drawing

individual line segments or we can build a LineList geometry and cover the outline

with horizontal lines. The latter would be done similarly to the way we decided for

ellipse, however we would be drawing the stroke of four quarter-ellipsis and then

filling the space between them. The following Figure 26 illustrates an outline geometry

created this way:

Figure 26: LineList based rounded rectangle outline geometry

 As was the case for the ellipse, to provide a pixel precise stroke, we are going to

use the second approach.

41

 Vertex buffer

 We decided that we are going to represent all of our graphical shapes in the form

of a set of some graphical primitives and this approach provides the most optimal way

of using the GPU.

However, this computed data, in the form of the vertices describing the individual

primitives forming the desired shape, could be stored in a Vertex Buffer [24]. This

buffer is located in the video memory of the GPU, which makes it the ideal storage for

definitions of shapes that are not going to change very often. The use of Vertex Buffers

requires only the CPU to tell the GPU to draw a certain data it already has, therefore

eliminating the times the GPU needs to wait for the data to be transferred from the

system memory into the video memory during a draw call and thus further increasing

the performance.

 We are going to implement this optimization as well.

 Text rendering

 In the section 3.2.5, it was decided that the text would be one of the graphical

primitives we are going to support in our library and in the current section, we decided

that we want to draw all our primitives using some graphical primitives and the GPU.

However, there is no direct support for handling vector fonts in the MonoGame

(meaning the popular OpenType and TrueType font formats are not directly supported

either). When a font is to be used in the MonoGame, it is necessary to provide an

already rasterized bitmap of the font character set. This makes it impossible for us to

render the individual glyphs as a set of triangles or any other primitive.

This poses several limitations, like the inability to apply a texture as a fill or an

outline for a text, or the inability to apply spatial transformations (the resulting quality

of the bitmap would be very low). Moreover, even changing the desired font size

requires a creation of a new bitmap representation (otherwise the resulting text will

become blurry), which is not very convenient. We now need to decide how we are

going to solve this font limitation or if we are going to stay with the original bitmap

approach.

Firstly, we should consider reusing some existing project that is designed for use

with the XNA or the MonoGame and provides the support for drawing vector-based

fonts. There is one such a project with said functionality, the Nuclex framework [9].

This is one of the projects that provide support for creation of user interfaces we

considered in the Introduction chapter. However, this functionality is deeply integrated

into the framework and would require us to include large parts of this framework into

our library. We decide against this approach as it could interfere with the workings of

our library.

42

We can also try to implement this support ourselves. This approach would consist

of two necessary steps: being able to parse the font definition file, and then being able

to render the parsed data correctly. For parsing the font definition file, we can use the

FreeType [32] open source library. It is capable of parsing many font definition

formats, including the TrueType and OpenType fonts. Moreover, it provides support

for a wide range of operating systems. However, as it is coded using the C language,

it is more difficult to use. Fortunately, this issue can be overcame by using the

SharpFont library [33] instead. It still uses the FreeType library internally, but provides

a wrapper layer for convenient use with any managed .NET language. Finally, once

we are able to parse the data, we need to be able to render it. This parsed data usually

describe only the outline for individual glyphs. Therefore, in order to be able to fill a

glyph, for example with a solid color, we need to triangulate it first. And finally, it is

necessary to create a suitable cache store for all these parsed glyph definitions so they

do not need to be parsed again, whenever the same glyph is drawn. This approach

would be a useful addition to our library but would also require a lot of work and is

out of the scope for this thesis.

Because there is not any suitable project that we can use to implement this missing

functionality, and the implementation from scratch would be out of the scope for this

thesis, we decide to use the original MonoGame font implementation.

 Clipping

 In the section 3.2.6, it was decided to include support for clipping into our library.

In addition, it was also decided that this clipping should be usable with various

different geometries. We need to go through possible approaches and pick the one that

will suit our requirements.

 We are going to consider three possible approaches that can be taken to implement

the clipping functionality:

 Scissor test

 Stencil test

 Manual clipping

 Firstly, let us take a look at the Scissor test [34]. This test usually happens on the

GPU right after the Fragment shader stage. But there are also cases when this test can

happen even before the Scissor test, that is as a part of the Early fragment test [35].

The boundaries for this test are being set in the window space coordinates (natural

pixels) and the processing of the pixels that are located outside of the set Scissor test

boundaries is stopped, thus clipping occurs. This test should not bring any performance

drops as it is fully hardware accelerated and a pixel is only tested for inclusion inside

a rectangular geometry. Quite the opposite, using this test can sometimes even increase

the rendering performance, as there are some stages of the rendering pipeline that does

not need to be executed for that clipped pixel. However, the boundaries for the Scissor

43

test can be set only using a rectangular geometry, which makes it not a suitable solution

for our issue.

 Secondly, the Stencil test can be used. The Stencil test [36] is performed by the

GPU right after the Pixel (Fragment) shader and Scissor test but as is the case with

the Scissor test, there are cases when the Stencil test can be performed before the Pixel

(Fragment) shader as well. This test is being run on every pixel that is about to be

drawn on and determines whether to allow writing to the pixel or not. If it is determined

that the write is not allowed the GPU stops processing that given pixel. This decision

is based on a function set by the developer and the current stencil value for the pixel.

These stencil values are stored per-pixel in the form of 8-bit unsigned integer value

and the storage for all these stencil values is called the Stencil buffer.

 With the Stencil test, it is possible to define custom clipping masks. This is

achieved in two steps. Firstly, the stencil function is set to increment the stencil value

of every drawn pixel and then the desired geometry of the mask is rendered (with write

to color buffer disabled). Secondly, the stencil function is set to keep the stencil value

of drawn pixels and to only allow drawing on those pixels that have the desired stencil

value. At this stage, the shapes are drawn (write to color buffer enabled) and are

automatically clipped by the GPU and the custom stencil mask. This setting of stencil

masks is going to be used for all children of a user interface element and they can even

define their own clipping masks. Therefore, the actual level (the number of all

currently effective clipping masks) of stencil mask must be remembered and this is our

desired stencil value we are going to check when the shapes are being drawn. The other

way around, when returning from a child with a clipping mask set, the mask geometry

must be drawn again with a stencil function set to decrement the stencil value of

affected pixels.

 An example of this stencil work can be seen on the following Figure 27. Firstly

we draw three stencil masks (in an order: rectangular, rectangular, and finally

elliptical), each one incrementing the stencil value of a pixel it is drawn on. At this

moment, we have three effective masks (Figure 27.a). Finally, we draw a simple

rectangle (Figure 27.b) onto the screen, while setting the stencil state to allow drawing

on pixels whose stencil value is also three (valid only on those pixels that belong to all

44

our clipping masks). This produces a result in the color buffer that can be seen on the

Figure 27.c.

Figure 27: An example of stencil buffer based clipping. In order from left: composed clipping masks in stencil

buffer (a), rectangle to draw to color buffer (b), and the result of the stencil clipping after drawing the rectangle

to color buffer (c).

 As for the performance, the Stencil test should have a similar impact as the Scissor

test, as it is next step in the graphical pipeline right after the Scissor test and only an

integer value is being checked. However, with the Stencil test we are required to make

more draw calls as we need to define our stencil clipping mask first and then also clear

it.

 Lastly, we can do all the clippings manually before we send our geometry to the

GPU, determine what parts of the geometry are not supposed to be drawn and remove

them. This clipping (intersection of the clipping geometry and a geometry that is set

to be rendered) would have to be done for all geometries that are defined on the

clipping element itself and on all its children. This would be not only computationally

expensive but also nontrivial to implement.

 We decide not to use the Scissor test as this approach only allows clipping using

a rectangular geometry. Both the Stencil test and Manual clipping allow us to do clip

using a custom geometry. From these two we are going to choose the Stencil test as it

offers the functionality we need while offering a good performance and more intuitive

implementation.

 However, given to the stencil buffer per pixel size, which is 8-bit unsigned integer,

we are limited to 255 nested clipping masks. In any case, this should be more than

enough for any real use.

 Optimizing the rendering

Finally, we should consider that the game developers usually target

approximately 30 to 60 frames per second and they might clear the screen every frame

45

so they can draw a fresh image of the scene. What this means for us is that we need to

be ready to redraw our entire user interface for every frame. Such an approach can be

however costly on performance, especially if the defined user interface is complex and

contains many elements. We need to decide on optimizations so we do not have to

completely redraw our user interface for every frame.

Firstly, we are going to examine how is the situation on solely user interface

centric frameworks and environments. Those frameworks usually draw their user

interface and then keep the user interface representation without a change until they

are notified about some actual change in the user interface. In that moment the user

interface is redrawn to an updated state. Moreover, this process is usually optimized

in a way that only the affected area is redrawn and not the entire UI-containing

window.

From the previously stated, we can see two possible optimizations. The first

optimization is creating a safe place for our rendered data, so we do not have to render

them all over again. This can be achieved by using a texture that we will use as a cache

for our user interface. Such a texture would be redrawn only on changes affecting the

appearance of the user interface. Then in every frame, we would just draw this cached

representation. We are going to implement this optimization. As for the second

optimization, it should be implement as well to further increase the performance of our

rendering but we are not going to implement it for the first version of our library.

 Processing user input

 In this chapter, we are going to decide on solutions for the problems related to the

processing of user input, like mouse movement and keyboard key presses.

 Handling input

One of our goals (G3) is to have an event-driven system of handling the user

input. However, the issue is that the MonoGame does not provide an event based

notifications on user input. Instead, the MonoGame provides us on explicit demand

with the actual state of input devices, like whether mouse’s left button is pressed or

the collection of all the keyboard keys that are pressed at a moment. Therefore, we

need to bridge this gap ourselves.

We will solve this problem by watching for changes in the input ourselves. We

will do this from inside the MonoGame Update method, where every time this method

is called we will compare the current state of input devices to the state saved during

the last time Update method was called. This way we can determine the changes in the

user input that happened since the last time the Update method was called and then we

can raise the appropriate input events on the appropriate controls.

46

 Hit Testing

Another problem that is connected to handling user input and that we need to

decide is how we are going to determine whether a particular control was hit on a

mouse input. We would like to remain consistent with the behavior of the WPF (our

goal G7) and therefore we would like to implement a very precise support for hit

testing. Specifically, on the level of actually drawn graphical shapes.

This concept is demonstrated on the following Figure 28. On the figure, we can

see a Visual object that includes a drawing instruction for a circle. Hit test then

succeeds only on positions where this circle is actually being drawn.

Figure 28: Hit testing drawn content (reprinted from [37])

We now need to go through possible technical implementations and choose the

viable one that we are going to use. We are going to consider three different

approaches:

a) Hit testing the bounding box

b) Using the Stencil buffer

c) Hit testing the drawn geometry

 The most basic type of hit testing is by using the bounding box of a control (a).

This bounding box is of a rectangular shape and describes the smallest area that

contains all the shapes that are drawn as a part of the control. This approach however

does not take into consideration our requirement that we want to hit test the individual

drawn graphical shapes.

 Another way to achieve a perfect hit testing is by using the Stencil buffer (b). We

can set up the Stencil test in a way to write a number one value to all pixels that are

affected by our drawn shapes. After this, we would dump the Stencil buffer into a bool

array and store it with the respective control. This array could be then used to quickly

hit test any point by simply looking into the appropriate [x, y] position (as given by

the current mouse coordinates) in the array and returning its value. After the Stencil

buffer would be dumped, it is necessary to clear it so other controls can record their

own values. The problem with this approach is that it relies on the ability to dump the

Stencil buffer and this is not possible in the MonoGame.

47

 Finally, we will go through the last approach (c). In the section 3.4, we decided

that we are going to draw our geometrical shapes as a set of lines and triangles.

However, instead of disposing of all the computed information about the shapes (after

it had been transferred to the Vertex Buffer) from the system memory, we can retain

this information and use it for the hit testing. This approach would be dependent solely

on the CPU and would provide us with a precise hit testing.

 We are going to reject the first approach with bounding box hit test as it does not

provide the precise hit testing we want. The second approach relies on the ability to

dump the stencil buffer. This cannot be achieved using the MonoGame, therefore we

cannot use this approach either. Finally, the last approach provides a working way to

achieve our goal and allows us to reuse an existing data. That is why we decide to

implement this approach.

 Partial XAML markup support

 In the section 3.2.1 we decided not to include a full support for the user interface

definitions that are written using the XAML markup code. This was because of the

current state of the Mono XAML parser. By relying on the functionality provided by

the XAML parser, we would introduce a different behavior for our library when run

on the Windows and other platforms, which would be in conflict with one of our goals

(G1).

 There are however developers that want to target only the Windows platform and

these developers could benefit from support for the XAML markup. There are some

areas where we could provide XAML support and in the same time do not limit our

cross-platform support.

 Specifically, we are going to support the XAML in three areas:

 Markup attributes

 TypeConverters

 Attached properties

 The first area are the markup attributes. Those attributes are used by the XAML

parser to better understand the XAML data. They are defined in the

System.Windows.Markup namespace and to use them we need to reference the

System.Xaml assembly. This assembly exists in Mono as well and also includes these

attributes, therefore we can use it in our library. The attributes we are going to support

are:

 RuntimeNamePropertyAttribute: Defines which property of a type provides a

name for instance of the type. This allows access this object declared in the

XAML markup in the code-behind

48

 ContentPropertyAttribute: Defines which property of a type is the XAML

content property. This information is used by the XAML parser when

processing XAML child elements of the attributed type.

 The second area are the TypeConverters. They provide a unified way of

converting types of values to other types and are being used by the XAML parser to

parse deserialized description of an object in text form and then create the actual

instance of that object. The implementation consists of two steps, firstly it is necessary

to create a custom TypeConverter by inheriting from the TypeConverter class and

overriding CanConvertFrom and ConvertFrom methods. In the first method, it is

returned that it is possible to convert string data and in the second method the actual

conversion from string is done. Finally, the second step is to connect this custom

converter with the actual class. This is done by marking the target class using the

TypeConverterAttribute attribute and setting the new custom TypeConverter. This

TypeConverter stays in effect for all inheritors until overridden by a different

TypeConverter. Both the TypeConverterAttribute attribute and the TypeConverter

class are included in the System.ComponentModel namespace and the System

assembly. They are fully supported not only in the .NET framework but in the Mono

framework as well, therefore we can use them.

 Finally, the third area are the attached properties. During the XAML

deserialization the parser has the information about the type of a node it is currently

processing based on the node name. With this knowledge, it also knows what

properties are defined on that type. However, the attached properties are usually not

defined on any other type than on the attached property owner itself. Therefore, the

XAML parser needs to know where to look for these attached properties. The

Microsoft Developer Network website [38] states that, “The attached property

provider must also provide static GetPropertyName and SetPropertyName methods as

accessors for the attached property; failing to do this will result in the property system

being unable to use your attached property.”. Including these two methods in our

codebase for every attached property is going to make them visible for the XAML

parser. Implementing these two methods does not require any additional outside

functionality and therefore we are going to implement this functionality.

49

 Programmer documentation
 In this chapter, we are going to describe how the library is connected to the

MonoGame, what are the main parts of the library and what are the relations between

them.

We used the Microsoft Visual Studio 2015 to develop and compile this library

with the addition of the MonoGame libraries, version 3.4.

 Structure of the library

 All the functionality implemented in this library is included in one single managed

assembly file, called the “MonoGameWPF.dll”.

 The implemented functionality itself can be broke down into several areas. On the

following Figure 29, we can see the main parts of this library: Rendering system, User

input system, Property system, and finally Control system.

Library

Rendering

system

User input

system

Property

system

Control

system

Figure 29: Overview of the main parts of the library

 Overview of the rendering system

 The rendering system is responsible for traversing the entire user interface,

processing all the rendering instructions any element on the way might have and

storing the cached representation of the user interface.

 The rendering process is divided into two steps, firstly the entire user interface

representation is being rendered into an RenderTarget2D. Then in the second step, this

representation is being drawn onto the screen.

 The library can change the current Render target of the graphical device several

times during the user interface rendering process (to obtain the texture representations

of some brushes), and the user interface needs to be rendered as the last thing on the

screen during each frame so it does not get covered by the game itself. This can

however affect the rendering of the game (setting the render target might clear the

50

content of the Back buffer). Therefore, this two pass process of rendering the user

interface has been implemented.

 The pre-render process can be seen on the following Figure 30. The process starts

when the PreRender method of an instance of the PresentationManager class is called.

This PresentationManager sets an internal texture as the active render target, so it gets

the cached representation of the UI and then starts with rendering the specified user

interface. This is achieved by walking down the Visual Tree and calling on each Visual

element its internal Render method while passing it an instance of the RenderContext

class. The Window class (which also derives from Visual class) is used as the root for

every user interface and its instance is automatically created within instance of the

PresentationManager class. Therefore, the rendering process starts there. When the

Render method is called on an Window instance, it automatically calls the Render

method on its internal storage for rendering instructions, which is implemented as the

RenderDataDrawingContext class. An instance of this class then goes through all the

rendering instructions that are stored within it and renders them. Those individual

rendering instructions are represented in a form of individual instances of the

RenderObject class and are being rendered by calling their Render method. Through

all these Render methods the formerly mentioned RenderContext instance is passed.

This class provides the necessary methods to draw geometry on the screen and also to

affect the rendering process (like setting the opacity and offsets). This process of

accessing the render instructions and rendering them is then repeated for all the

children of the Window instance. The Render method is defined as abstract at the Visual

class level and all the children of the Window including the Window class itself derive

51

from UIElement class (derives from Visual class) which provides an actual

implementation for this method.

Render

PresentationManager

Window RenderDataDrawingContext

RenderObjectRender

Render

PreRender

Render

Render RenderObject

RenderObject

Window child

Render

Children Children Children

Render Render Render

Figure 30: The pre-render process

 After the pre-render process is finished, the PresentationManager instance

contains a cached representation of the user interface. At this point, the developers are

expected to render the contents of their games on screen. When the developers finish

with their own rendering it is finally time to draw the cached representation of the user

interface that is cached in the PresentationManager. This begins the second stage of

the user interface rendering.

 In the second stage, the render stage, occurs the actual drawing of the user

interface onto the screen. The process of this stage is demonstrated on the Figure 31.

This process begins when the developers call the Render method on the instance of the

PresentationManager class. There is only one thing the PresentationManager does at

52

this point, and that is using the SpriteBatch to simply draw the texture of the cached

user interface onto the screen.

PresentationManager

Draw

Texture of the cached user

interface

Screen

Texture of the cached

user interface

Figure 31: The render process

 Class PresentationManager

 The PresentationManager class serves as the connection between the user of this

library and this library.

 During the initialization, this class creates a new instance of the Dispatcher class

(described in section 4.4.8) and also the Window class (described in section 4.2.2) that

is then user as the root of the user interface.

 This class defines public methods PreRender and Render that provide the

rendering functionality. The LoadContent method is used to load the content of our

library which is them stored in the static ResourceDictionary class from where it is

accessible to all part of our library. And the Update method that starts the process of

updating the user input (more in section 4.3), processing queued Dispatcher items

(more in section 4.4.8), and processing layout requests (more in section 4.6.2).

 The static method SetWindowTitle sets a title for current MonoGame client

window and the SetWindowResizeMode sets whether the MonoGame client window can

be resized.

 It also contains a storage for the cached representation of the user interface in the

form of RenderTarget2D.

Class ResourceDictionary

 The public static class ResourceDictionary servers as a central depository for all

external content needed by our library. The storage for this content is implemented as

Dictionary<ResourceType, Dictionary<string, object>>, where the library

currently supports three types of resources. The first kind of resources are instances of

53

the SpriteFont. Those are being used for drawing fonts (used by RenderObjectText

class that will be described in section 4.2.10). The second kind are instances of the

Effect class. This library uses this to store its shader for Linear Gradient (described

in the section 4.2.15). Finally, the third kind are instances of the Texture2D class.

 This class is accessible to third party developers mainly so they can register their

own fonts for use in this library and RenderObjectText class is using it to access the

appropriate SpriteFont. However, it is possible to publicly use this storage to store the

other two kinds of resources as well.

 Class Window

 The Window class servers as the root of the user interface. It is implemented as any

other standard control. We will go through the system of control more deeply in the

section 4.6.

 The Window class does not include any special functionality except for its

ResizeMode and Title properties. These properties call on value change the static

methods of the PresentationManager to change the title of the client window and its

resize properties.

 Class Visual

 The abstract Visual class provides the basic rendering infrastructure, as seen on

the Figure 30. It defines virtual int VisualChildrenCount and virtual Visual

GetVisualChild. The VisualChildrenCount is overridden in classes inheriting from

the Visual class to expose the number of their children. The GetVisualChild method

is then called to get the actual child. The tree of elements defined this way we call the

same as in the WPF – the Visual Tree.

 The Visual class also defines internal abstract Render method, which is in our

library implemented only by the UIElement class (more in section 4.6). This class

provides an implementation that calls this Render method recursively on every element

of the Visual Tree.

 The storage of rendering instructions for a particular Visual is being stored

directly in the Visual class itself so it can be used by the hit testing mechanism directly

on the Visual level. This storage is implemented as the RenderDataDrawingContext

class.

 The Visual class also defines several properties related to the rendering. Among

these properties is the VisualOffset property, VisualOpacity property, and finally the

VisualClip property. The VisualOffset represents the offset of a Visual. In our library

it defines the position relative to its parent. The VisualOpacity defines the opacity for

a Visual and the VisualClip defines clipping geometry. This geometry is defined

using any of the provided classes that derives from the Geometry class.

54

 Every Visual contains a property identifying its parent in the Visual Tree. This

property is the VisualParent and can be publicly set using protected AddVisualChild

and RemoveVisualChild methods. There are also internal variants of these two methods

so classes like VisualCollection and UIElementCollection can call them and set the

VisualParent property for newly added children from outside the Visual.

 Finally, the Visual class is also the place where the support for hit testing is

implemented. This functionality is provided in the internal HitTest method. This

method firstly checks whether a point is included in the currently set clipping

geometry, and then uses the depth-first (and backtracking) passage through the Visual

children while always starting with the Visual element that has the highest index (this

means it was added lastly and will be rendered on top of all other children). As soon

as it determines an element was it, it returns with a result. If none of the children was

hit, then the Visual hit tests its own content. This hit testing is achieved by using the

stored rendering instructions inside the RenderDataDrawingContext class. This class

exposes a method HitTest that checks all the defined rendering instructions for a hit.

This default behavior can be changed by overriding the virtual HitTestCore method.

 Furthermore, to optimize this process of hit testing, each Visual stores a cached

bounding box of its content and the content of all its children. Therefore before the

HitTest method of the Visual dives deeper into Visual Tree, it firstly checks for this

cached bounding box and determines whether that part of the Visual Tree can contain

the given point or not. The bounding box for a given Visual is determined by its

rendering instructions and is exposed as the ContentBoundingBox property of the

RenderDataDrawingContext class.

 The caching of the bounding boxes is implemented in the following private

methods: CacheVisualBounds, RecomputeBoundsDescendants, and

RecomputeBoundsAncestors. This process basically consists of getting the bounding

boxes for the content of individual Visuals and on those applying a union operation.

 Class RenderDataDrawingContext

 The internal class RenderDataDrawingContext serves as a storage for rendering

instructions. These instruction can be hit tested and also rendered.

 The following Figure 32 demonstrates the process of defining a new rendering

instruction. The rendering instructions are stored in the List<RenderObject> and are

added using various methods, each for a specific type of geometry. Currently

implemented public methods are: DrawEllipse, DrawImage, DrawLine, DrawRectangle,

DrawRoundedRectangle, DrawText, PushOpacity, and PopOpacity. These methods create

55

an appropriate variant of the RenderObject and store it to the storage of the rendering

instructions.

RenderDataDrawingContext

DrawLine DrawEllipse

Create appropriate

RenderObject

Store in the storage of

rendering instructions

Store in the storage of

rendering instructions

RenderObjectLine RenderObjectEllipse

Figure 32: Process of creating a new rendering instruction

 To keep everything around rendering unified, whenever a VisualClip property of

the Visual element is changed the SetClippingGeometry method of the

RenderDataDrawingContext is called and provided with the specified Geometry.

According to the provided Geometry a representation in a form of RenderObject is

created and then saved in the public ClippingGeometry property. This RenderObject is

then also used by the Visual class to determine whether a point belongs to its clipping

geometry.

 Class RenderObject

 The internal RenderObject class is an abstract class that defines a unified way

for rendering all the graphical primitives, including their hit testing, and exposing their

containing box bounds.

 Every inheritor is expected to provide an implementation for the following two

abstract methods: Render and HitTest. The first method is called to render the

graphical primitive and is provided with an instance of RenderContext, while the latter

is used to hit test the geometry of the primitive for a point inclusion.

 The RenderObject also provides several support (protected) methods to its

inheritors. The methods DetermineFillBrush(Brush) and

DetermineStrokeBrush(Brush) are used to determine whether the provided brush

requires getting a defining texture or it simply provides a solid color that should be

used to color the individual vertices. This information is then stored in the

IsStrokeTextured and IsFillTextured bool properties. The method bool

HitTestTriangleListGeometry hit tests a point against a provided

VertexPositionColorTexture array (passed as a reference because the geometries can

get complex, thus saving the unnecessary memory allocations). This method is for

testing a geometry defined as TriangleList primitive. There are also methods designed

56

to test the TriangleStrip and LineList geometries, the HitTestTriangleStripGeometry

and the HitTestLineListGeometry. Finally, the last protected helper method is the

VertexBuffer StoreVertexDataColorTexture. This method receives an array of

VertexPositionColorTexture, which defines a geometry for some primitive, and

stores this geometry in the Vertex Buffer that is then returned to the caller.

 Lastly, because the RenderObject inheritors can contain an instances of the

VertexBuffer, which is an unmanaged data storage on the GPU, it is imperative to

have an infrastructure in place that will make sure all its data are safely disposed. For

this purpose, the RenderObject implements the IDisposable interface and the

Disposable pattern [39].

HitTestHelper class

 The internal static HitTestHelper class contains two methods that are used by the

RenderObject class for hit testing.

 First is the bool IsTriangleHit. This method is responsible for determining

whether a provided point is inside of triangle. For optimal performance, all the

parameters for this method are passed as references (ref keyword) because they are

not being modified and the calls to this method happen very often. The triangle hit

testing itself is performed by checking the triangular Barycentric coordinates. The

code implementation for this method has been adopted from the following source [40].

 The second is the bool IsLineHit. This method is used to hit test lines. Like the

previous one accesses the provided data using a reference for performance reasons.

The hit testing for a point inclusion on a line is implemented using standard Two-Point

form [41] of the line equation.

 Class RenderObjectLine

 The internal class RenderObjectLine provides an implementation for the abstract

RenderObject class and serves as the means to compute, render and hit test the line

graphical primitive.

 When an instance of the RenderObjectLine class is created, it is provided with

several information. These are the line defining Pen object, start point of the line and

the end point of the line. All this information is used to triangulate the final line

geometry. For this purpose, the ComputeStrokeRenderingData method is called.

 This method either creates a geometry for one solid line (in case when the

Pen.DashStyle.Dashes is empty) or creates a geometry for a dashed line. To produce

this kind of line the equation for Linear Bezier curve [42] is used. Moreover, both

geometries are generated as the TriangleList primitives.

57

 On the following Figure 33, we can see a demonstrational wireframe for the

computed geometry of line:

Figure 33: The stroke geometry of a line

 This computed geometry is then stored into a VertexBuffer by calling

StoreVertexDataColorTexture and when requested in the Render(RenderContext)

method, rendered either by calling the RenderContext

.RenderGeometryTextureFromVertexBuffer or the RenderContext

.RenderGeometryColorFromVertexBuffer depending on Brush (Brush will be described

later in section 4.2.13) defined.

 Class RenderObjectEllipse

 The internal class RenderObjectEllipse is another implementation for the

RenderObject class and provides the support for rendering the ellipse geometrical

shape.

 There are two types of geometries that could be computed for the ellipse primitive.

The geometry defining its fill and the geometry defining its outline. The fill geometry

is computed by the ComputeFillRenderingData method, while for the stroke the

ComputeStrokeRenderingData is used. These methods are concrete implementations for

the triangulation approaches decided in the Analysis chapter (sections 3.4.2 and 3.4.3).

 On the following Figure 34, we can see a demonstrational wireframe for the

computed geometry of an ellipse:

Figure 34: The fill and stroke geometry of an ellipse

58

 The fill geometry is generated in the form of TriangleStrip primitives, while the

outline geometry is in form of LineList primitives. The image of both these geometries

was taken with lower geometry quality, so their structure can be actually observed.

That is why the ellipse on the left part of Figure 34 looks deformed near its top and

bottom.

 This computed geometry is then stored into a VertexBuffer by calling

StoreVertexDataColorTexture and when requested in the Render(RenderContext)

method, rendered either by calling the RenderContext

.RenderGeometryTextureFromVertexBuffer or the RenderContext

.RenderGeometryColorFromVertexBuffer depending on Brush (Brush will be described

later in section 4.2.13) defined.

 Class RenderObjectRectangle

 The internal class RenderObjectRectangle is an implementation for the

RenderObject class that provides the support for rendering the rectangle geometrical

shape.

 The RenderObjectRectangle can have two different geometries. One for the fill

and the second for the outline. The fill of the rectangle is computed simply by

dissolving the rectangle into two triangles using the TriangleStrip primitives, while for

the outline is used the same approach as for the line primitive in RenderObjectLine.

However, as the outline should be textured as a whole with a texture of the same size

as is the rectangle, the process of defining the texture coordinates differs from the one

used in RenderObjectLine.

 On the following Figure 35, we can see a demonstrational wireframe for the

computed geometry of a rectangle:

Figure 35: The fill and dashed stroke geometry of a rectangle

 This computed geometry is then stored into a VertexBuffer by calling

StoreVertexDataColorTexture and when requested in the Render(RenderContext)

method, rendered either by calling the RenderContext

.RenderGeometryTextureFromVertexBuffer or the RenderContext

.RenderGeometryColorFromVertexBuffer depending on Brush (Brush will be described

later in section 4.2.13) defined.

59

 Class RenderObjectRoundedRectangle

 The internal class RenderObjectRoundedRectangle provides an implementation of

the RenderObject that supports the drawing of the rounded rectangle geometrical

shapes.

 For the rounded rectangles, there is support for computing and drawing fill

geometry and full stroke geometry. The fill geometry triangulation is implemented in

the private ComputeFillRenderingData method and stroke triangulation in the private

ComputeStrokeRenderingData method. These methods are concrete implementations for

the triangulation approaches decided in the Analysis chapter (sections 3.4.2 and 3.4.3).

 On the following Figure 36, we can see a demonstrational wireframe for the

computed geometry of a rounded rectangle as defined in (e) and a stroke geometry

computed for the same shape:

Figure 36: The fill and stroke geometry of a rounded rectangle

 The fill geometry is generated in the form of TriangleStrip primitives, while the

outline geometry is in form of LineList primitives. The image of both these geometries

was taken with lower geometry quality, so their structure can be actually observed.

That is why the rounded rectangle on the left part of Figure 36 looks deformed near its

top and bottom.

 This computed geometry is then stored into a VertexBuffer by calling

StoreVertexDataColorTexture and when requested in the Render(RenderContext)

method, rendered either by calling the RenderContext

.RenderGeometryTextureFromVertexBuffer or the RenderContext

.RenderGeometryColorFromVertexBuffer depending on Brush (Brush will be described

later in section 4.2.13) defined.

 Class RenderObjectText

 The internal class RenderObjectText provides an implementation of the

RenderObject that supports the drawing of text.

 This class uses the ResourceDictionary (described as part of the section 4.2.1) to

get the proper SpriteFont as defined by given font (string) name. Finally, when asked

60

to render itself during its Render(RenderContext) it calls the RenderText method of

the provided RenderContext instance to actually draw the text on the screen.

 Class Geometry

The abstract class Geometry is implemented solely to provide a consistent API

with the WPF in the area of Visual.VisualClip property.

 Deriving classes of the Geometry class store basic information that describe a

certain geometry. This information is then used by the RenderDataDrawingContext

class to construct an appropriate RenderObject. There are currently three

implementations for the Geometry class, each representing one of the currently

implemented RenderObjects.

Class LineGeometry

 The LineGeometry class stores information about a line geometry. It is used by the

RenderDataDrawingContext class to produce a RenderObjectLine object.

Class RectangleGeometry

The RectangleGeometry class stores information about a rectangular geometry

(including the corner roundness). It is used by the RenderDataDrawingContext class to

produce either a RenderObjectRectangle or a RenderObjectRoundedRectangle object.

Class EllipseGeometry

 Finally, the EllipseGeometry class stores information about an elliptical

geometry. It is used by the RenderDataDrawingContext class to produce a

RenderObjectEllipse.

 Class RenderContext

 Let us now look at the class that is being referenced through all these Render

methods.

 The internal RenderContext class is at the very core of all rendering functionality.

When an instance of the RenderContext is created it creates several resources that are

then being used for rendering. Among these resources are two instances of

BasicEffect class (which are basically stock shaders). One is set up to be used for

rendering geometry with texture and the other one for rendering using the color defined

in vertices. Then three instances of DepthStencilState are created. Each one is used

for a different type of rendering. One is used to set up a new stencil mask, another one

to render user interface geometry while allowing to write only where the stencil buffer

has the needed value and finally the last is used to clear a stencil mask. Finally two

BlendState instances are defined. One is used while rendering the geometry of a user

interface and the second one has writes to Color buffer disable and is used while

rendering stencil mask.

61

 The public PrepareForRendering method is used by the PresentationManager

before starting the Pre-Render stage. During this method the RenderContext makes

sure it clears its content from the previous Visual Tree passage, sets the appropriate

BlendState and DepthStencilState to the GraphicsDevice and computes a new

Projection matrix in case the resolution changed.

 Then there are several public methods that are being used during the Visual Tree

traversal to affect the position of rendered geometry, its clipping, and opacity. These

methods are PushOffset, PopOffset, PushClip, PopClip, PushOpacity, and

PopOpacity.

 There are four available rendering methods then are being used by the individual

RenderObject instances, in their Render methods, to render a textured or colored

geometry. All these methods are provided with a VertexBuffer instance representing

the geometry and the PrimitiveType.

 The public RenderGeometryTextureFromVertexBuffer has two overloads. The first

one takes as a parameter an instance of Brush. This method firstly creates a Texture2D

representation of the provided Brush by calling the Texture2D Brush.GetTexture

method and calls the second overload of this method while providing it the created

Texture2D. This method then sets up the BasicEffect shader to use the provided

texture by calling the private PrepareTextureRendering method. During this method

all the necessary information are stored in the texturing BasicEffect. Among these

information is a Translation matrix that is created based on the current offset (set up

by PushOffset and PopOffset methods), current opacity (set up by PushOpacity and

PopOpacity methods), and finally the texture. Finally, the

RenderGeometryTextureFromVertexBuffer method calls the private

RenderGeometryFromVertexBuffer method.

 The public RenderGeometryColorFromVertexBuffer method is used to render

colored geometry. It firstly calls the PrepareColorRendering that prepares the coloring

BasicEffect shader and then calls the RenderGeometryFromVertexBuffer method.

 The last rendering method exposed to any RenderObject is the RenderText. This

method renders the provided text, using the provided SpriteFont through calling the

SpriteBatch.DrawString method.

 The private RenderGeometryFromVertexBuffer method receives a VertexBuffer,

BasicEffect, PrimitiveType and actually renders the provided geometry with

provided shader by calling the GraphicsDevice.DrawPrimitives method.

 Class Brush

 The Brush class is an abstract class that is used by all brushes in the library. It

defines the Opacity property and Texture2D GetTexture(Size) method that should be

implemented by deriving classes to actually provide their texture representation.

62

 The classes that are included in the library and provide an actual implementation

for getting the defining brush texture are the SolidColorBrush class, ImageBrush class,

and the LinearGradientBrush class.

 Class SolidColorBrush

 The SolidColorBrush class is responsible for providing a texture colored using a

single solid color. For this purposes it exposes public Color property.

 It provides implementation for the abstract Brush class by implementing the

abstract Render method. During this method a new RenderTarget2D instance is created

with the size as requested for the brush and set as the active render target. This render

target is then cleared by calling the GraphicsDevice.Clear method while providing it

the requested color. Finally the render target is returned as a result for the GetTexture

method.

 This GetTexture method is however usually not used in the case of the

SolidColorBrush because the GPU can color the rendered vertices with the provided

color on its own. This is a more optimal approach then switching active render targets

and generating whole texture. Therefore, the usual approach is to get the value of the

Color property and use it to directly color the individual vertices.

 Class GradientBrush

The abstract GradientBrush class provides a common ground for all deriving

classes that define gradient-based brushes. For this purpose, it exposes a public

GradientStops property, which is implemented as the GradientStopCollection class

and defines a collection of GradientStop objects.

Class GradientStop

 The GradientStop class represents a single gradient stop and includes two pieces

of information. The first is the Color property and the second is the Offset property.

Class GradientStopCollection

The class GradientStopCollection is a strongly typed collection to be used solely

for storing individual instances of the GradientStop class. Internally, this class

positions its GradientStops elements according to the value of their Offset property.

The LinearGradientBrush relies on this fact when constructing data texture.

Moreover, this class derives from the Freezable class, which makes it usable as a

read-only resource. For this purpose, any public method that can make any changes to

the included collection firstly checks internally whether changes are allowed.

Class LinearGradientBrush

 The LinearGradientBrush class is responsible for providing a texture filled by

linear gradient. This gradient is affected by the GradientStops property and by two

63

newly defined public properties defined on this class: the StartPoint property and

EndPoint property.

 The LinearGradientBrush class provides this functionality in its implementation

of the GetTexture method. As was mentioned, our linear gradient is affected by the

GradientStop objects that are stored in the GradientStops property. Each of these

GradientStop objects contain two vital information for every gradient stop. The first

is the Color and the second is the Offset of that particular gradient stop. To illustrate

this issue, we provide the following Figure 37. On this figure, we can see an example

of a linear gradient. The StartPoint on coordinates (0,0) and the EndPoint on

coordinates (1,1) form an interpolation path for the linear gradient. Then, there are four

gradient stops, each at different offset and with different color.

Figure 37: Example of linear gradient with description. Reprinted from [43]

 To achieve optimal performance, these linear gradients are created with the help

of a graphical shader, coded specifically for this purpose. The functionality of the

shader will be described later in this subsection.

 Because the number of the gradient stops located in the GradientStops collection

is varying and the shader cannot be setup to contain a dynamic array to hold all the

necessary data, it was decided to create a custom Texture2D that will serve as a

replacement for this limitation.

 The creation of this data texture is the first operation in the LinearGradientBrush

GetTexture implementation. For the creation of this texture there is private Texture2D

GradientMap method. In this method a new Texture2D is created with the height of two

pixels. For the width, the count of the gradient stops is used. Next up, a one-

dimensional array of colors is created with the size of GradientStops.Count * 2. The

array is then filled in a way, in which the color information about the gradient stops

are stored first and then, in the same order, the offsets are filled in. Then finally, the

Texture2D.SetData<Color> method is called to fill the texture with the provided Color

array. The resulting texture is then in a format where the color information about the

64

gradient stops are located at the zero height index of the texture, while the data about

the offsets of these individual stops are stored directly “beneath” them, at the height

index of 1.

 When this data texture is returned from the GradientMap method, a new

RenderTarget2D is created with the dimensions as required and set as the active render

target. At this moment, the linear gradient shader (in the MonoGame represented as an

instance of the Effect class) is requested from the static class ResourceDictionary by

calling its GetResource method and several values inside the shader are set. These

values are StopCount (int), StartPosition (float), EndPosition (float), and

GradientStopsMap (Texture2D). Now the shader is applied and the render target is

rendered into itself. After that, the render target is returned as the desired linear

gradient texture.

LinearGradient.fx shader

 The LinearGradient.fx shader is located at

Content\Shaders\LinearGradient.fx file in the provided solution for this library. This

shader is created and is expected to be compiled with the ps_4_0_level_9_3 DirectX

feature level (that is Shader Model 3). It is also necessary to mention that the

MonoGame is capable of creating an OpenGL-compatible shaders (GLSL) directly

from their DirectX (HLSL) counterparts [44]. Therefore, this shader can be also used

for the OpenGL platforms. It is just a matter of substituting the following line at the

end of the shader:

PixelShader = compile ps_4_0_level_9_3 PS();

 For the following line:

PixelShader = compile ps_3_0 PS();

 When the shader is set up with the data texture that contains the individual gradient

stops and run, the first thing it does is to compute a stepping value for this data texture.

This is because the computed data in the texture cannot be accessed directly through

pixel coordinates but only in the normalized range from (0,0) through (1,1). This step

value is computed by: 1.0 / 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑆𝑡𝑜𝑝𝐶𝑜𝑢𝑛𝑡. Finally, by stepping by this

amount, the texture sampling would occur directly in-between two pixels, which

would distort the read value. That why it is necessary to add another half step whenever

the data texture is sampled.

 Next up, the offset for the currently processed pixel in relation to the StartPoint

and EndPoint is computed. This is achieved by applying the Scalar projection [45]

equation.

 There are two border case scenarios that are being checked first and in which the

final color of the pixel is known immediately. This is when the offset of a given pixel

is smaller (or larger) than the lowest (or highest) offset of the gradient stop collection.

65

This is checked simply, by just sampling the data texture at (0,1) and (1,1) texture

coordinates.

 If neither of these two cases applies, than it is necessary to go through the

individual gradient stop offsets. For this the for cycle is used. However due to loop

limitations of the Shader Model 3 based shaders, the number of maximum gradient

steps is artificially limited to 12 (set by the [unroll(12)] attribute right before the for

cycle). When it is determined that the offset of a pixel is smaller than the offset of the

currently sampled gradient stop, the values of the previous gradient stop and the

current gradient stop are stored. Finally it is determined at what offset the pixel is

located between the previous and current gradient stop (which produces a value

between 0-1), and this information is passed, along with the color of the previous

gradient stop and the current gradient stop to the shader lerp method. This method

produces a linear interpolation of two vectors based and on a weight. The resulting

value is then used as a final color for the pixel.

 Class TileBrush

 The abstract TileBrush class further extends the Brush class by defining the

Stretch property. This property determines in the deriving classes how the generated

brush should be mapped into the requested brush size.

Class ImageBrush

 The only currently provided implementation of the abstract TileBrush class is the

ImageBrush class. This class provides support for using an image in the form of

Texture2D type as a brush.

 This is achieved in the implementation of the abstract GetTexture method. Firstly,

a new RenderTarget2D instance is created with the size as requested for the brush and

set as the active render target. Then, it is firstly determined the necessary scale factor

for the provided image to reflect the current setting of the Stretch property. Finally, a

SpriteBatch is used to render this image with provided scaling into the active render

target. Finally, the render target is returned as a result for the GetTexture method.

 Overview of the User input system

 Another area of functionality is the User input system. The responsibility of this

system is to detect changes in the user input and then raise the appropriate events on

the individual elements of the user interface. The events are implemented with the

concept of Routed events in mind with support for both the Instanced handlers and the

Class handlers.

 This process can be seen on the following Figure 38. It starts in the moment when

the Update method of the PresentationManager is called. The PresentationManager

then calls the static EventManager.RaiseInputEvents, while providing it with the root

66

element of the user interface, an instance of the Window class. Inside this method the

EventManager checks for inputs that changed (like position of the mouse changed since

the last time, a certain keyboard key is pressed now, etc.) and starts the process of

raising the appropriate Routed event. The methods that start the processing of

individual input types are: RaiseMouseMoveInputEvents,

RaiseMouseButtonInputEvents, RaiseMouseWheelInputEvents,

RaiseKeyboardInputEvents. Next step is to get the element where the specific routed

event representing the input should be raised. In the case of mouse input, this is done

by pure hit testing the Visual Tree starting in the root element provided by the

PresentationManager. In the case of keyboard input we just take the element with

keyboard focus (this element is determined during the RaiseMouseButtonInputEvent

methods). After the hit element is found, all these methods create appropriate variant

of RoutedEventArgs and fill in the information about the event. Then, an instance of

the EventRoute class is created, while provided with path for the event and the created

routed event arguments. Finally, the InvokeHandlersOnRoute method of the

EventRoute instance is called.

PresentationManager

EventManager

RaiseInputHandlers

RaiseMouseMoveInputEvents

RaiseMouseWheelInputEvents

RaiseKeyboardInputEvents

RaiseMouseButtonInputEvents

Get hit element in Visual Tree Get focused element

Create EventArgs and

EventRoute

Call eventRoute.

InvokeHandlersOnRoute

For every element on route

process Instance and Class

handlers

Update

Figure 38: Process of handling user input #1

67

 This process continues by examining individual elements on the event route.

Following process is demonstrated on the Figure 39. During the

InvokeHandlersOnRoute method EventRoute goes through every element (order of

elements is determined by the RoutingStrategy of the current routed event) and checks

for registered Class and Instance handlers for that element. It firstly gets all the

registered class handlers in form of RoutedEventClassHandler for a specified routed

event by calling the static List<RoutedEventClassHandler>

EventManager.GetRoutedEventClassHandler method, while providing it the current

routed event identification. Then, it goes through this list and for each class handler

checks whether the Type of currently visited element is equal to or inherits from the

owner type of the class handler (specified in OwnerClass property of the

RoutedEventClassHandler class). If this is true, the registered class handler is called

by calling its Invoke method. Next up, it is determined whether the current element is

UIElement. If this is the case, its Instance handlers for the current routed event are

invoked by the calling the InvokeHandlers method of the EventHandlerStore, that is

located within each UIElement.

object

Is object

UIElement

Yes

Invoke

Instanced

handlers on

the element

Call

uie.RegisteredEventHandlers.

InvokeHandlers(EventArgs)

Go through

registered Class

handlers

EventManager.

GetRoutedEventClassHandler

(RoutedEvent)

Does object

inherit from

handler owner

Yes

Raise the handler

Call

routedEventClassHandler.Invoke

(object, EventArgs)

No

Figure 39: Process of handling user input #2

68

Raising Class handlers

 The individual Class handlers are implemented as instances of the

RoutedEventClassHandler class. When the Invoke method is called, it is provided with

an object and RoutedEventArgs. It is firstly checked whether the provided

RoutedEventArgs are still marked as not handled or whether the current Class handler

is set to be raised on handled events too. If this check passes, the Invoke method checks

whether the defined Delegate handler (handler that was registered for current Class

handler) is of type RoutedEventHandler, if this is true, then the Delegate is called

directly by casting it to the RoutedEventHandler and provided with the object and

RoutedEventArgs. Otherwise, the Delegate is of different type and in this case, the

internal InvokeHandler method of the provided RoutedEventArgs is called.

Raising Instance handlers

 The Instance handlers are stored in instance of the EventHandlersStore class.

Every instance of UIElement class comes with its own storage. When the

InvokeHandlers method of an EventHandlersStore is called and provided with a

RoutedEventArgs the EventHandlersStore firstly checks its Instance handler storage

whether there are any handlers registered for the provided routed event (specified in

the RoutedEventArgs), if so, it goes through all of them and on each it calls its Invoke

method, while providing it the owner of the storage (a UIElement) and the

RoutedEventArgs. The individual Instance handlers are implemented as instances of

RoutedEventInstanceHandler class. The implementation of the Invoke method is the

same like in the case of RoutedEventHandler.

Registering routed event

 The routed events are represented by the RoutedEvent class, whose instance is a

unique identifier for a given routed event. A routed event contains several pieces of

information. Every routed event has a string-based name, defines its RoutingStrategy

(Direct, Tunnel, Bubble), Type of its handlers, and finally the owner Type. The

registration of such a routed event is started by calling the static RoutedEvent

EventManager.RegisterRoutedEvent method. This methods checks whether all the

provided information for the new routed event is correct and then creates a new

instance of the RoutedEvent class while passing it the information provided for this

routed event. This new routed event is then registered into the global storage and

returned to the caller.

Registering Class handler

 The registration process of a Class handler begins by calling the static

EventManager.RegisterClassHandler method. This methods checks whether the

provided information about the new Class handler is valid. Part of this check is also

examination of the provided handler Type and the Type of the handler as defined for

69

the provided routed event. If they do not match, an exception is thrown. If all checks

pass, the new Class handler is stored in the global storage for Class handlers.

Registering Instance handler

 The registration process of an Instance handler starts when the AddHandler

method is called on an instance of the UIElement. This method then calls the

AddHandler method of the internal EventHandlersStore and passes it all the received

information. If all this information is valid (including the Type check on the provided

Delegate), a new instance of RoutedEventInstanceHandler is created and the

EventHandlersStore inserts it into its storage of local handlers.

 Class EventManager

 The public static class EventManager also serves as the storage for all defined

routed events and includes information about all the registered Class handlers. The

storage for the routed events is defined as internal static Dictionary<Type,

HashSet<RoutedEvent>> and the Class handlers are stored in internal static

Dictionary<RoutedEvent, List<RoutedEventClassHandler>>.

 Besides the previously mentioned methods the EventManager also include the

public RoutedEvent[] GetRoutedEvents, and RoutedEvent[]

GetRoutedEventsForOwner methods that can be used to access this global storage for

routed events.

 Class RoutedEvent

 The public RoutedEvent class serves as unique identification for a routed event

and its instance can be created only internally. It includes information about a routed

event like its name, RoutingStrategy, Type of handler, and finally the Type of its

owner.

 Class EventRoute

 The public EventRoute class is used to invoke all Class handlers and Instance

handlers for given RoutedEventArgs on every element on the provided event route. If

no route is provided, one is created. For this purpose is used the internal static

GetEventRoute method that takes an object as a source for the event route and routing

strategy according to which the route is created. This method returns a List<object>

that defines the event route. Last method the EventRoute class exposes is the internal

InvokeHandlersOnRoute method. By calling this method, the EventRoute starts

invoking the appropriate routed event handlers on the event route.

 Class RoutedEventClassHandler

 The internal RoutedEventClassHandler class represents a single Class handler. It

contains information about the Type of the owner, Delegate that should be called and

70

a bool that defines whether this handler should be also invoked for RoutedEventArgs

that are already marked as handled.

 Class RoutedEventInstanceHandler

 The internal RoutedEventInstanceHandler class is very similar to the previously

described RoutedEventClassHandler. The only difference is that it does not define the

OwnerClass property.

 Class EventHandlersStore

The internal EventHandlersStore class provides a storage for Instance handlers.

This class is being used only with the UIElement and its deriving classes. It provides

internal methods to add a new handler (AddHandler) to the handler storage, remove a

handler from the storage (RemoveHandler) and finally to invoke registered handlers

(InvokeHandlers). The storage for those registered routed event handlers is defined as

Dictionary<RoutedEvent, List<RoutedEventInstanceHandler>>.

 Class RoutedEventArgs

 This public class is a base class for all the other routed event arguments that are

used with routed events.

 In its base implementation it provides information about the routed event it is

associated with, the original source for the raised event and whether the event

represented by current instance of RoutedEventArgs was already handled.

 This class also defines an infrastructure that is used by the

RoutedEventClassHandler and the RoutedEventInstanceHandler when the provided

Delegate handler is not of RoutedEventHandler Type. This class defines an internal

InvokeHandler(Delegate, object) method that is called in this case. This method

then calls the protected virtual InvokeEventHandler(Delegate, object). This method

then allows any RoutedEventArgs deriving classes to invoke their appropriate

Delegate directly. If not overridden, this virtual method contains a standard

implementation that will once again check whether the provided Delegate is

RoutedEventHandler, otherwise it will use DynamicInvoke to invoke the specified

Delegate.

 This library contains several other classes that derive from the RoutedEventArgs

class to provide the routed event handlers with additional information about the raised

routed events. It is also worth noting that every of these classes is coupled with a

specific Delegate handler and every one of them provides an override method for the

virtual InvokeEventHandler so the Delegates are called in an optimal way.

Class KeyboardEventArgs

 The KeyboardEventArgs provides information about the current keyboard state. It

is coupled with the KeyboardEventHandler.

71

Class KeyEventArgs

 The KeyEventArgs class further extents the information provided by the

KeyboardEventArgs class. It introduces information about the keyboard key state

changes. This event arguments is used with KeyUp, KeyDown routed events and their

preview versions. This variant is coupled with the KeyEventHandler.

Class MouseEventArgs

 The MouseEventArgs class extends the RoutedEventArgs class with the information

specific to the mouse input device. It provides information about the state of the mouse

left and right buttons and defines a public method GetPosition that returns a mouse

position to the specified Visual instance. This class is used with the PreviewMouseMove,

MouseMove, MouseEnter and MouseLeave routed events and is coupled with the

MouseEventHandler.

Class MouseButtonEventArgs

 The MouseButtonEventArgs class inherits from the MouseEventArgs class and

provides specific information about mouse button changes and is used with the

MouseDown, MouseUp routed events and their preview versions. It is coupled with the

MouseButtonEventHandler.

Class MouseWheelEventArgs

 The MouseWheelEventArgs class extends the information provided by the

MouseEventArgs class. It provides additional information about the mouse wheel status.

It is coupled with the MouseWheelEventHandler and is used with the MouseWheel and

PreviewMouseWheel routed events.

 Overview of the property system

 The property system of this library is built on the concepts of dependency

properties and dependency objects. This concept enforces thread-safe access to

properties, provides support for resolving the value of a property based on multiple

inputs (value precedencies) and finally enables the use of attached properties.

 Like in the WPF, the dependency properties are implemented in the

DependencyProperty class, the dependency objects in the DependencyObject class, and

the Visual class and all the other classes that participate on the appearance and

behavior of the user interface derive from the DependencyObject class.

 The workings of the property system can be broke down to three stages. These

individual stages are, registering a dependency property, setting its value, and finally

getting its currently effective value.

72

Registering a dependency property

 Let us firstly look at how a dependency property is registered. This process is

illustrated on the following Figure 40. As the DependencyProperty serves as a unique

identification for a dependency property it is necessary to make sure each dependency

property has only one such as identification. This is why there are no public

constructors for the DependencyProperty class and the only way to create a new

DependencyProperty instance is to register it through the static DependencyProperty

Register method (or RegisterReadOnly for a read-only variant) of the

DependencyProperty class. Internally the DependencyProperty firstly determines

whether it was supplied with a PropertyMetadata instance for the new dependency

property. If this turns to be false, it creates one. After this, the static int

RegisterProperty method belonging to DependencyObject class is called. In this

method, the DependencyObject determines whether the provided instance of

DependencyProperty can be registered into the global properties store or not. This is

determined by checking whether the properties store already contains a dependency

property with the same name that is registered for the same owner. If the property can

be registered then the calling DependencyProperty class receives back an index of the

property in the global store, which is assigned to the property, and the

73

DependencyProperty returns to the caller a new instance of the DependencyProperty

class.

DependencyProperty.Register

Call DependencyObject.

RegisterProperty

Is property with

the name already

registered on the

Type

Yes

Throw exception

Is

PropertyMetadata

provided

No

Create default

one

No
Save new dependency property to

global storage and return its index

Figure 40: Process of registering a new dependency property

Setting the value of a dependency property

When the dependency property is successfully registered, it is possible to use its

identifier to set its value. The following Figure 41 demonstrates the process of setting

a value for a dependency property. The process starts when the SetValue method is

called on an instance of the DependencyObject class where the value is to be set. It

firstly checks whether the SetValue method was called on the same thread that created

the dependency object by calling the VerifyAccess method and checks whether the

current dependency object is sealed (by checking IsSealed property). If any of these

two checks fail, an exception is thrown. If the check passes then the system checks if

the provided value is correct. This is done in two stages, firstly it is checked whether

the Type of the provided value is valid for the dependency property and then the system

calls a ValidateVallueCallback if there is any set for the dependency property. If any

of these two checks fails, an exception is thrown.

After the value is validated, the internal SetValueInternal method is called. This

method allows setting of a value for a dependency property with provided precedence.

The SetValue saves values using the Local value precedence, therefore it always

74

passes this value. The SetValueInternal checks whether the local storage of values

already contains a record for the provided dependency property. If the record does not

exist, one is created. This one record for a dependency property is implemented as the

EffectiveValueEntry class and contains a storage for all the possible precedence

values.

Now it is determined whether the effective property metadata for the given

dependency property contains a set CoerceValueCallback.

If this callback is not defined, the new value is set into the EffectiveValueEntry

for the given dependency property by calling its bool SetEffectiveValue method

while providing the precedence value. If the this method returns true, that means the

effective value for the property has changed and the dependency object calls the

OnPropertyChanged method.

Otherwise, if the callback is defined, the system sets the provided value into the

EffectiveValueEntry with Local value precedence but does not listen for value

change. Then the CoerceValueCallback is called to calculate new value for the

property. Once this value is calculated the system once again stores this value into the

appropriate EffectiveValueEntry by calling its SetEffectiveValue method and

75

providing a Coerce value procedence. Finally, if this new value changes the effective

value for the property, OnPropertyChanged method is called.

DependencyObject

SetValue

Call SetValueInternal

(DependencyProperty,

int, object)

Validate value

Get the current value

Is Coerce

callback

defined

No

Set Local value

effectiveValueEntry.

SetEffectiveValue

EffectiveValue

changed

Yes

Call

OnPropertyChanged

Call

VerifyAccess

Is sealed

Throw exception

Get effective metadata by

calling

DependencyProperty.

GetMetadata(this)

Check Type of value and

Type of property

Call

DependencyProperty.

ValidateValueCallback

Yes

Set Local value

effectiveValueEntry.

SetEffectiveValue

Call CoerceValueCallback

and let it calculate new

value

Validate value

Set Coerce value

effectiveValueEntry.

SetEffectiveValue

Figure 41: Process of setting a value for a dependency property

76

Getting the value of a dependency property

 The current property system gets the possible value for a dependency property

from two possible places. The first place is the local storage of values in every instance

of the DependencyObject and the second is the default value for a dependency property

as given by effective PropertyMetadata.

 The GetValue method returns the currently effective value for a dependency

property. The process or getting a value for a given dependency property is

demonstrated on the Figure 42. Much like the SetValue, the GetValue firstly checks

whether it can be called from the current thread by calling the VerifyAccess method.

If this check passes, then it looks up the local value storage for a record for the provided

dependency property. If this record exists (once again represented as an instance of

EffectiveValueEntry class), it asks it to provide the currently effective value by

calling its GetEffectiveValue method. This value is then returned as a result. On the

other hand it the record does not exist the system returns the default value for the given

dependency property.

DependencyObject

Local storage

contains record for

property

Yes

Return locally set value by

calling effectiveValueEntry.

GetEffectiveValue

No

Get effective metadata by calling

DependencyProperty.

GetMetadata(this)

Call

VerifyAccess

Throw

exception

GetValue

Return default value

PropertyMetadata.DefaultValue

Figure 42: Process of getting a value for dependency property

 Class DependencyProperty

The public DependencyProperty class serves as a unique identifier for a certain

dependency property. When the static Register method is called then the private

RegisterAny method is called. This method handles all the variants of the Register

method including RegisterAttached and RegisterReadOnly methods.

77

The private GetDefaultPropertyMetadata method determines the default value for

the specified property Type and returns a new instance of the PropertyMetadata.

In case of calling the static RegisterReadOnly method, which produces a read-

only version of DependencyProperty, the process of creating a new

DependencyProperty object has yet another step. After a new instance of the

DependencyProperty is created and successfully registered, as described above, a new

instance of the DependencyPropertyKey object is created and the DependencyProperty

object is passed to it as parameter in the constructor. Once an instance of this

DependencyPropertyKey is created, it is returned to the caller and represents a key to

the newly created read-only DependencyProperty.

The DependencyProperty instance also allows registering itself to a Type different

from the one it was initially registered to. This functionality is exposed through the

AddOwner method. The AddOwner method accepts a Type and an instance of

PropertyMetadata as its parameters, and internally calls the formerly mentioned

DependencyObject.RegisterProperty method, which registers this

DependencyProperty to the provided Type. The last step is to register for this Type a

PropertyMetadata instance, by calling the OverrideMetadata method while providing

it the Type and the PropertyMetadata. The PropertyMetadata instance can be provided

by the AddOwner caller, otherwise the default PropertyMetadata of the

DependencyProperty is used.

An instance of the DependencyProperty contains a storage for all

PropertyMetadata that have been registered for the given DependencyProperty. This

storage is implemented as Dictionary<DependencyObjectType, PropertyMetadata>.

As the defined PropertyMetadata is supposed to be applied to the specified Type

and all its subclasses until it is overridden by yet another instance of

PropertyMetadata, it is necessary to be able to determine the currently effective

PropertyMetadata for a given Type. This functionality is implemented in the private

GetEffectiveMetadata method. It receives an instance of the DependencyObjectType as

a parameter and then it checks the storage. If the dictionary contains the given instance

of the DependencyObjectType as a key, it returns the associated PropertyMetadata

directly. If the dictionary does not contain it, the BaseType property of the provided

DependencyObjectType instance is checked. This provides another instance of the

DependencyObjectType that represent its direct Type parent. Now the storage is checked

again. This process continues until either the currently checked DependencyObjectType

is found in the storage, and in that case, the associated PropertyMetadata are returned

as a result, or until the BaseType property of currently checked DependencyObjectType

instance is equal to null (the DependencyObject Type itself has been reached). In that

case, the DefaultMetadata property of this DependencyProperty is returned.

The GetEffectiveMetadata method is also used to implement the public versions

of the GetMetadata methods variants.

78

The process of setting a custom PropertyMetadata for a Type starts in the public

OverrideMetadata method. This method checks whether all the provided parameters

are correct and whether the current DependencyProperty is not market as read-only. If

this is the case and the OverrideMetadata method is not called in its overloaded form

that accepts a DependencyPropertyKey, then an InvalidOperationException is

thrown. On the other hand, if the key is passed but is not valid for the current

DependencyProperty, an ArgumentException is thrown. Then the provided

PropertyMetadata and Type are passed to the private OverrideMetadataInternal

method. The OverrideMetadataInternal method resolves the provided type into a

DependencyObjectType instance by calling the static DependencyObjectType

DependencyObjectType.FromSystemType and checks two things. Firstly, it checks

whether the local PropertyMetadata storage already contains the resolved

DependencyObjectType as a key. If it does, then it means that the default

PropertyMetadata have been already overridden for the provided Type and an

ArgumentException is thrown. Secondly, it checks whether the default value in the

provided PropertyMetadata is valid for this DependencyProperty. If not an

ArgumentException is thrown. Finally, if every test passes then the PropertyMetadata

is sealed by calling its Seal method and the resolved DependencyObjectType, along

with the provided PropertyMetadata are being added to the local PropertyMetadata

storage.

 Class DependencyPropertyKey

The public DependencyPropertyKey class represents a key that must be used

whenever the changes are to be made on a read-only DependencyProperty. This

includes setting a value for the DependencyProperty on a DependencyObject using the

SetValue method or overriding the PropertyMetadata on a DependencyProperty using

the OverrideMetadata method. These methods check whether the DependencyProperty

property set on the provided DependencyPropertyKey instance matches the

DependencyProperty instance where the changes are to be made.

The security of this approach is enforced through internal constructor, which

provides the only way to set the included DependencyProperty property.

 Class PropertyMetadata

The public PropertyMetadata class allows defining certain aspects of a

DependencyProperty. It allows setting a custom default value for the

DependencyProperty and defining two callbacks. The PropertyChangedCallback, that

is called whenever the value of a DependencyProperty changes and the

CoerceValueCallback. The CoerceValueCallback is called whenever the value of a

DependencyProperty changes and expects an object to be returned. This returned

object is then used by the DependencyObject as the effective value for the

DependencyProperty.

79

This class contains two methods. The first one is the internal Seal method. This

method is called internally by a DependencyProperty instance whenever a

PropertyMetadata instance is being applied to it. During this method, it is checked

whether the provided default value Type is Freezable (described in more details in

section 4.4.9). If this is true, its Freeze method is called to make it read-only. Finally,

the Seal method calls the second included method, the virtual OnApply method. This

last method is not being actively used in the library, but is included because the WPF

includes it.

 Class FrameworkPropertyMetadata

 The public class FrameworkPropertyMetadata further extend the information

provided by the PropertyMetadata about the ways how value changes of the

dependency property affect dependency object owner. Individual possibilities are

implemented in the FrameworkPropertyMetadataOptions enum by using Flags.

 Class DependencyObject

The public DependencyObject class is the base class for the dependency property

system. An instance of this class can only be created on a thread that contains the

Dispatcher that is being created as part of the PresentationManager initialization

process. This fact is checked whenever an instance of the DependencyObject created

directly in the constructor. If it is determined, that this is not true and the thread calling

the constructor is not the same as the thread that owns the Dispatcher, an exception is

thrown. If the threads match, then a new instance of the DependencyObject class is

successfully created. This is done so a thread-safe working of the library is assured.

 The DependencyObject class contains four different storages. The first storage is

a storage for all currently registered instances of the DependencyProperty class. This

storage is implemented by using the static Dictionary<Type, Dictionary<string,

DependencyProperty>> data structure, where the Type represents the individual owners

for dependency properties and the nested dictionary provides access to the dependency

properties that are registered for a specific Type by their names.

Besides this global storage for the registered dependency properties, each instance

of the DependencyObject also contains a storage for the locally set values of the

individual dependency properties. This storage is implemented as

Dictionary<DependencyProperty, EffectiveValueEntry>. The keys of the dictionary

are the individual dependency properties that have their local value set and the values

are instances of the EffectiveValueEntry class. The EffectiveValueEntry class

provides the functionality to support the system of value precedencies. The concrete

implementation of the EffectiveValueEntry class will be covered in the next

subsection 4.4.6.

The last two storages are used for the Binding system infrastructure. The first

storage is implemented as Dictionary<DependencyProperty, BindingExpression>

80

data structure and provides a record of all registered bindings that are currently active

on a DependencyObject. The second storage is implemented as Dictionary<string,

List<DependencyPropertyChangedEventHandler>> and allows to set a list of handlers

that would be invoked whenever a dependency property with a given name changes.

Although this library does not support bindings with complex property paths that

define passage through multiple dependency objects, the last Dictionary is

implemented this way so it could in the future possible support those “bubbling”

binding notifications.

The basic functionality of the DependencyObject class is to provide a way to read

and write values of the dependency properties. This functionality was already

described at the section 4.4.

Whenever it is determined that a value for a dependency property changed in the

current dependency object, the protected OnPropertyChanged method is called. There

are three pieces of functionality implemented in this method:

1. Raising PropertyChangedCallbacks

2. Calling registered DependencyPropertyChangedEventHandlers

3. Processing FrameworkPropertyMetadataOptions

The last area of functionality that is implemented in the DependencyObject is

support for dependency property bindings. This is achieved by two internal methods.

The first method is the internal SetBinding(DependencyProperty,

BindingExpression, DependencyPropertyChangedEventHandler). This method

provides a way to register a new binding for a specified dependency property. It firstly

determines whether there is already a binding set for the provided dependency

property, if this is true, it unregisters it. Then it inserts the provided BindingExpression

into the local binding storage and provided DependencyPropertyChangedEventHandler

is registered to the storage of dependency property handlers.

The second method is the ClearBinding(DependencyProperty). This method gets

the active binding from the local storage of active bindings and then uses the reference

to its SourceListener and TargetListener handlers to clear them from the storage of

dependency property value changed handlers. Finally, it also removes this binding

from the storage of active bindings.

 Class EffectiveValueEntry

 The internal class EffectiveValueEntry implements the storage for multiple value

precedencies for one dependency property. This storage is implemented in form of

object[], where the size of the array is determined by a number of value precedencies

(currently ten).

 It also provides the public bool SetEffectiveValue(DependencyProperty, int,

object) that is being used to store specified value with specified value precedence.

81

The EffectiveValueEntry keeps record about the currently highest value precedence

and uses this information while determining whether the effective value has changed.

In the case when the current highest value precedence is the same as the provided value

precedence in the SetEffectiveValue method, the current and new object are

compared for equality (object.ReferenceEquals for reference types, and

object.Equals otherwise). The object GetEffectiveValue is used to return the value

with highest currently registered value precedence. While the object

GetEffectiveValue(int) returns to the caller the value of the requested value

precedence record. If the value is not defined, it returns DependencyObject.UnsetValue

object.

 Class DependencyObjectType

 The public DependencyObjectType class serves as a type cache for all

DependencyObject deriving types. Such a caching is important because of how the

PropertyMetadata system with the support for metadata overrides works. This would

require a lot of Reflection work to determine the effective metadata for a Type.

 This class creates a one-way to root referenced tree-like cached structure of

relations between various dependency objects. Each instance of the

DependencyObjectType contains DependencyObjectType BaseType property that

references the cached representation of the base Type, and Type SystemType that

represents the Type of the cached dependency object. The storage for this cached tree

is implemented as the static Dictionary<Type, DependencyObjectType> data structure.

 The public static DependencyObjectType FromSystemType(Type) provides a

public way of getting the DependencyObjectType representation for a given Type. This

method firstly checks whether the provided Type derives from DependencyObject Type

and then calls internal static DependencyObjectType FromSystemTypeInternal(Type).

This method not only returns the appropriate DependencyObjectType that represents

the provided dependency object deriving Type but also caches parts of the tree that are

not cached yet.

 The following Figure 43 displays how this system works. When the

FromSystemTypeInternal method is called while provided with a Type to get cached

representation of, the method firstly checks whether the storage already contains a

record for the given Type. If it does, it immediately returns the resulting

DependencyObjectType instance. If the record does not exist yet then the methods calls

recursively itself while providing Type.BaseType Type. This recursion is repeated

until either the appropriate record is found or the cached representation of the

DependencyObject itself is met. The first element that is manually “cached”-registered

to this storage is in the static constructor of this class the DependencyObject itself,

therefore at the border case every recursion stops there. Finally on the way out of the

82

recursion new instances of every visited Type are being created and inserted into the

storage.

Call to

DependencyObjectType.

FromSystemTypeInternal(Type)

Does storage

contain the provided

Type

Yes

Return associated

DependencyObjectType

No

Return new instance of

DependencyObjectType(

FromSystemTypeInternal(

Type.BaseType))

Figure 43: Process of caching the DependencyObject types

 Class Dispatcher

The Dispatcher class provides functionality related to threading that is used

heavily in the DependencyObject class. It provides public access to the thread the on

which the current Dispatcher instance was created and a way for a foreign thread to

queue operations so they can be executed on the owning thread of the Dispatcher

instead.

Our library uses only one instance of the Dispatcher class, which is why the

constructor is marked internal. This one instance of the Dispatcher represents the main

thread that is used for rendering and processing the user input.

The Dispatcher also contains a queue for all the queued operations that should be

executed on its owning thread. This queue is implemented as

Queue<DispatcherOperation>, where the DispatcherOperation represents one queued

operation. An instance of the DispatcherOperation is created and queued whenever

the Invoke method is called.

To process all the queued requests the Dispatcher exposes the internal Dispatch

method that goes through every queued DispatcherOperation and call its Invoke

method. This method invokes the queued operation on the thread of the Dispatcher.

83

Class DispatcherOperation

The DispatcherOperation represents one operation that is queued to be executed

by the Dispatcher on its owning thread. This class is used only for internal purposes,

and therefore its constructor is marked as internal.

It contains two pieces of information. The first is a Delegate that should be

invoked by this queued operation and the second is a list of arguments in form of

object[] that should be passed to the provided Delegate. These two things are

provided to the DispatcherOperation instance in constructor.

Finally, when the Dispatcher wants to invoke a stored DispatcherOperation, it

calls the internal Invoke method.

 Class Freezable

The public abstract Freezable class inherits from the DependencyObject class and

provides functionality to make itself read-only. This is then used for sealing default

values of various PropertyMetadata.

This functionality is implemented in the public Freeze method. The following

Figure 44 demonstrates the process of making a Freezable object read-only. This

method sets the private bool _isFrozen to true (accessible through public bool

IsFrozen property), so any outside class can check whether the class is writable. Then

calls the internal Seal method that is defined on the DependencyObject, this sets the

internal bool _isSealed property to true and affects the SetValue method, which

checks this property before it allows any value writes. When the current Freezable is

sealed, the internal storage for local values (as mentioned in the DependencyObject

section 4.4.5, this storage is implemented as

Dictionary<DependencyProperty,EffectiveValueEntry>) is enumerated for values

(of Local precedence) of dependency properties. This enumeration functionality is

implemented in the public struct LocalValueEnumerator. This enumerator then goes

through the value storage and calls EffectiveValueEntry.GetEffectiveValue(int)

while asking only for Local value precedence values. The Freeze method then uses

this enumerator to go through all the values. For each value, it checks whether is of

type Freezable. If this is true, it casts the object to Freezable and calls its Freeze

method. This causes a recursive walkthrough of all Freezable instances accessible

from the initial Freezable object. Finally, this method calls the virtual FreezeCore

84

method. This method is meant to provide a way to every inheritor that defines any data

not stored as dependency properties to seal its stored data.

Called Freezable.Freeze

Set IsFrozen = true

Call

DependencyObject.Seal

Go through all locally set

values with Local value

precedence

Is Freezable Yes

Call FreezeCore

Figure 44: Freezing a Freezable object

An example of usage for this FreezeCore in this library is the

GradientStopCollection class that stores all the GradientStop instances in an ordinary

List that is not stored as DependencyProperty nor derives from the Freezable class.

Therefore, it is necessary to go through every GradientStop and Freeze it manually.

Finally, the Freezable class also implements Deep cloning functionality. The

process of Deep cloning is initialized by calling the public Freezable Clone method.

The process is demonstrated on the following Figure 45. The Clone method firstly calls

the protected abstract Freezable CreateInstance, which returns a new instance of the

given Freezable. Then it calls the CloneCore(Freezable) method of the newly created

object while passing itself as the parameter. Similarly, to the Freeze method the values

with Local precedence are enumerated. However, in this case, this happens on the

provided target Freezable. Then for every value, it is determined whether it derives

from Freezable class or not. If not then the target value is set to the current (the new)

instance by calling the SetValue method. If the value derives from Freezable, its

Freezable Clone method is called and this newly created Deep copy of the value is

once again saved to the current Freezable by calling the SetValue method. Once all

85

the values are enumerated, the CloneCore methods ends and the Clone method returns

this newly created and filled Freezable object.

Called Freezable.Clone

Create a new instance of this

Freezable by calling

CreateInstance

Call newInstance.CloneCore

(this)

Go through all locally set values

in source Freezable with Local

value precedence

Is Freezable Yes

SetValue

No

Deep clone the value

Figure 45: Deep cloning a Freezable object

 Overview of the binding system

 On top of this property system is placed a system for bindings. The binding system

implemented in this library provides a way to bind two properties of two objects.

Namely, it supports the OneWay and TwoWay binding modes.

 There are always two entities that participate on a binding operation. The first is

called the Source of the binding, while the second is called the Target of the binding.

This source object can be any random object. However, the system is designed in a

way, that if the source either implements the INotifyPropertyChanged or derives from

the DependencyObject class, the system automatically propagates changes to the

Target. As for the Target, it must always be a DependencyObject instance.

86

 The core functionality of the binding system is implemented in the following

classes: Binding, BindingExpression, BindingOperations, and DependencyObject.

 The Binding class provides a basic information about the binding, like the source

of the binding, and source property that should be bound.

 The BindingExpression class represents an active binding and provides

information about the individual binding participants, status of the binding and also

defines two internal DependencyPropertyChangedHandler. One is the SourceListener

and the second is the TargetListener.

 The functionality to set and remove bindings is implemented in the static

BindingOperations class.

 Finally, an infrastructure to support this binding functionality is implemented in

the DepedencyObject class itself.

Process of setting up the binding

Let us now look at how the bindings are being set and how they operate. After the

static SetBinding method of the BindingOperations class is called and provided with

a Binding instance, target dependency object and a dependency property on the target

that should be bound, a new instance of the BindingExpression is created. This

instance is provided with all the information included in the Binding instance and the

parameters from the SetBinding method as well. Then the Seal method of the new

BindingExpression is called. During this method, the system parses information about

the source of the binding, determines the source kind (object,

INotifyPropertyChanged object, DependencyObject) and tries to locate the source

property. If the property is not found on the source object, then the binding sets its

BindingStatus property to PathError. If the source property was resolved

successfully, then the binding system tries to set the binding on both the source and

target. If the source is INotifyPropertyChanged object, then it subscribes to its

PropertyChanged event. If the source is DependencyObject, it calls the internal

SetBinding method, which registers this binding for the dependency property value

change notifications (through registering either the SourceListener or TargetListener

DependencyPropertyChangedHandler into list of property value changed listeners).

Same process happens for the target DependencyObject instance. Finally, the

BindingExpression calls its UpdateTarget method, which gets the value of the bound

source property (using Reflection for ordinary objects, and using GetValue method for

dependency objects) and sets it on target (using the public SetValue method). Now the

process is done and BindingOperations.SetBinding return the new instance of

BindingExpression that represents this new binding back to the caller.

Updating value

Let us now look at how the changes of values are handled.

87

Firstly, we will describe a model, where there is a binding set up between two

DependencyObjects, using the TwoWay binding. The following process is showed on

the Figure 46. Both of these two dependency objects have registered

DependencyPropertyChangedHandler for the bound dependency property. The source

has the SourceListener registered, while the target has the TargetListener. Whenever

a change happens in either of these two dependency objects, the appropriate handler is

called. As was already mentioned, these handlers are defined in the BindingExpression

instance itself and their function is very simple. The SourceListener calls the

UpdateTarget method, while the TargetListener calls the UpdateSource method.

These methods firstly get the current value from the respective source (in this place is

also called the Converter of the binding, if defined) and then call internally the

SetValue method on the target dependency object. The SetValue checks whether the

new value is the same as the one currently set. Therefore, once the value is set on either

binding entity, the next one is updated, calls property value changed handlers, and

88

finally the BindingExpression tries to update the original entity, it already has the same

value set, effectively stopping the value change cascade.

DependencyObject DependencyObject

Effective

value

changed

Yes

Calls

OnPropertyChanged

Calls registered

DependencyPropertyChangedEventHandlers

for affected dependency property

TargetListener SourceListener

BindingExpression

Calls the UpdateSource

method

Gets the target

property value

Calls SetValue on

Source

Calls the UpdateTarget

method

Gets the source

property value

Calls SetValue on

Target

Converter Converter

Set the value of a bound property Set the value of a bound property

Source Target

Figure 46: Process of TwoWay binding between two dependency objects

 The situation with OneWay is the same, but there is no listening for value changes

on the side of the Target (no TargetListener registered).

 The situation for the INotifyPropertyChanged object as a source in TwoWay

binding mode is again similar. The BindingExpression is at this case registered on the

PropertyChanged event, where it checks whether the property that raised the event is

the bound source property. If so, it once again calls the UpdateTarget method to update

the target dependency object. If the value is different from the current one, the

dependency object notifies the BindingExpression about the change and

BindingExpression will update the source object using the Reflection. This can raise

89

the PropertyChanged event on the source once again. However, this value cascade is

stopped by the target dependency object that determines that the value is the same as

the currently set one and does not raise any further property changed handlers.

 Class Binding

 The Binding class provides a set of basic information for the biding process.

Besides setting the source object for the binding and name of the source property that

should be bound, it also allows to define value converter (object that implements the

IValueConverter interface) that would be used for the binding.

 Class BindingOperations

 The public static BindingOperations provides services in the area of bindings. It

also includes a storage that contains references to all currently active bindings. This

storage is implemented as Dictionary<DependencyObject,

Dictionary<DependencyProperty, BindingExpression>>.

 Overview of the control system

This library implements the same structure for the control system as does the

WPF. The base class for all controls is the UIElement class. This class inherits from

the Visual class and provides an implementation for its Render method. The UIElement

also include a storage for routed events Instance handlers and finally serves as the

entry point to the layout system that is also based on the layout system of the WPF and

consists of the Measure and Arrange stages. This layout system is then extended in the

FrameworkElement class.

 Class UIElement

The UIElement class contain a storage for routed event Instanced handlers

(described back in section 4.3.6). Every instance of the UIElement comes with own

instance of this storage.

The Measure layout pass is implemented in the public Measure method, which

calls internally the protected virtual MeasureCore method. The UIElement always

caches the value provided in the original Measure method, so it can be used next time

the Measure method is called to determine whether the available size has changed or

not (if not and the measure is marked as valid, the MeasureCore is not being called,

thus stopping the recursive Measure stage). Moreover, this value is also used by the

LayoutManager (described in the following section 4.6.2) when the InvalidateMeasure

method is called on a UIElement.

The Arrange layout pass is implemented in the public Arrange method. This

method calls internally the protected virtual ArrangeCore method. The UIElement

always caches the value given in the original Arrange method, so it can be used next

time the Arrange method is called to determine whether the arrange information has

90

changed or not (if not and the arrange is marked as valid, the ArrangeCore is not being

called, thus stopping the recursive Arrange stage). Moreover, this value is also used by

the LayoutManager when the InvalidateArrange (or InvalidateVisual) method is

called on a UIElement.

The UIElement allows its inheritors to define their custom rendering instructions.

This functionality is exposed in the OnRender method through provided instance of the

abstract DrawingContext class. In the case of this library, this method is called during

the Arrange method and we pass into this method an instance of the

RenderDataDrawingContext class (described in the section 4.2.4), which is an internal

class that stores rendering instructions for every Visual and also implements the

abstract DrawingContext class.

It also provides several methods to invalidate the layout state of a UIElement

instance. These methods are the previously mentioned InvalidateMeasure,

InvalidateArrange, and InvalidateVisual. When called, these methods mark

internally the appropriate layout pass as invalid and queue this element for a new

layout pass using the static LayoutManager class.

Finally, the UIElement class provides an implementation for the abstract

Visual.Render(RenderContext) method. During this method, UIElement adds its

VisualOffset, VisualOpacity, and VisualClip to the RenderContext. Then it renders

its own rendering instructions, and finally calls the Render methods on all its Visual

children. When children finish with their own rendering the Render method starts the

process of “clean up” and removes its VisualClip, VisualOpacity, and finally the

VisualOffset from the RenderContext.

 Class LayoutManager

The internal static LayoutManager class serves as a storage for all the layout

requests coming from UIElement objects and when asked by the PresentationManager

it also processes them.

These layout requests are the Measure and Arrange requests. A request is queued

when either the InvalidateMeasure or the InvalidateArrange method is called (also

indirectly by InvalidateVisual, as this method calls the InvalidateArrange

internally) on any instance of UIElement. The requests are stored in two private queues

of type Queue<UIElement>, where one is dedicated to Measure requests and the second

one for Arrange requests.

A UIElement can is queued for a specific request by using one of the following

static methods: EnqueueMeasureRequest, EnqueueArrangeRequest. Each of these two

methods accept a UIElement object as a parameter and queues it to the right queue.

The entry point for processing all the queued requests is the public static

ProcessRequests method. When this method is called, the Measure and Arrange

queues are processed and the LayoutManager goes through both queues, all queued

91

elements, and with every UIElement object calls either its Measure method or the

Arrange method (depending on which queue it is processing). As parameters for these

two methods, the LayoutManager uses the cached values that were used last time when

the Measure and Arrange methods were called on the UIElement. These cached values

are defined as internal and stored directly on the individual UIElement objects.

Finally, the LayoutManager also includes information indicating whether the user

interface should be redrawn. This information is exposed in the public static bool

ShouldRedraw property and is manipulated using two methods. The public static

InvalidateVisualTree method sets this property to true, while the Redrawn method

sets it to false. The firstly mentioned method is being called as a part of the

InvalidateVisual method on a UIElement instance, and also whenever VisualClip

property of a Visual instance changes. The Redrawn method is being called by the

PresentationManager to notify the LayoutManager about the fact that the user interface

was successfully redrawn.

92

93

 Library API documentation
 In this chapter, we will look at the user side of this library, therefore the

programmer. We will go through the requirements to use this library and show how to

setup a MonoGame project for use with this UI library and provide a few code

examples. Finally, we will go through the list of implemented features.

 Requirements

 To use this library in a project, it is necessary to have the .NET Framework 4 (or

newer) and the MonoGame 3.4 (or newer) installed. The installation file for this

version of the MonoGame is included as the Attachment C. Moreover, the compiled

version of this library as provided across the attachments is compiled to be used with

the MonoGame Windows Project. The MonoGame Windows OpenGL Project is not

currently supported.

 On the hardware side, this library requires a GPU with support for at least the

Shader Model 3.

 How to set up a project

 There are two possible ways how to set up a project. First way is to simply use the

provided template (Attachment D, only for Visual Studio) and everything gets set up

automatically. Alternatively, the project can be set up manually using the following

steps.

 Start by creating a new MonoGame Windows Project. Then reference the provided

MonoGameWPF.dll to the project and add the provided LinearGradient.xnb file into a

folder named MonoGameWPF inside the root of your Content folder. This is the place

where the library will be looking for the content file. This managed assembly and a

content file, contain all the necessary functionality of this library.

 Now open the Game1.cs file that was created along the new MonoGame project

and declare somewhere in the code of this class a variable that will contain the instance

of PresentationManager. This instance will be accessed along the entire life span of

the app.

public partial class Game1 : Game
{
 GraphicsDeviceManager graphics;
 SpriteBatch spriteBatch;
 …
 // Define a variable for PresentationManager
 PresentationManager presentationManager;
 //
 …

94

}
Figure 47: Defining variable for PresentationManager

 In the Initialize method of the Game1 class, create a new instance of the

PresentationManager and save it to the previously defined variable.

protected override void Initialize()
{
 // Initialize a new instance of PresentationManager
 // Pass it the reference to your Game class, GraphicsDeviceManager,
 // and finally specify whether to enable window resizing
 presentationManager = new PresentationManager(this, graphics, true);

 base.Initialize();
}

Figure 48: Creating a new instance of PresentationManager

 In the LoadContent method of the Game1 class, call the LoadContent method of

the newly created PresentationManager instance. During this method, the

PresentationManager loads up the LinearGradient.xnb content file.

protected override void LoadContent()
{
 // Call the LoadResource method and pass it instance of ContentManager
 presentationManager.LoadResource(Content);
}

Figure 49: Loading content

 Finally, the PresentationManager needs to be able to react on input changes and

to actually render its content. Therefore, a call to the Update method of the

PresentationManager needs to be placed into the Update method of the Game1 class and

the calls to the PreRender and Render methods (in this order) of the

PresentationManager inside the Draw method of the Game1 class.

protected override void Update(GameTime gameTime)
{
 // Raise input events and process Dispatcher
 presentationManager.Update();
}

Figure 50: Listening for updates

protected override void Draw(GameTime gameTime)
{
 // Prepare the visual representation of the user interface
 presentationManager.PreRender(gameTime);
 // Clear the screen
 GraphicsDevice.Clear(Microsoft.Xna.Framework.Color.White);
 // TODO: Add your game drawing code here

 // Draw the user interface onto the screen
 presentationManager.RenderUI();
}

Figure 51: Structure of the Draw method

95

 This concludes the setting process for this library. Then, any custom game

drawing instructions must be placed between the PreRender and Render methods.

 How to load up fonts

 This library uses the standard MonoGame font system based on the SpriteFont

class.

 By default all controls of this library look for a font family named “DefaultFont”.

This font is being loaded up from a file named DefaultFont.xnb located in the same

place as the LinearGradient.xnb (folder named MonoGameWPF inside the root of your

Content folder). This font is registered during the content loading stage of the

PresentationManager (as seen in section 5.2, Figure 49) so the controls can use it.

 There are two fonts included with this library for every developer to use right

away. Those fonts files are located in the Attachment E and are called

DefaultFont.xnb and DefaultFontItalic.xnb. They are based on the Ubuntu-M and

Ubuntu-RI fonts and have been downloaded from the Ubuntu website [46].

 Now we will go through the process of registering any additional fonts to be used

with this library.

 This process consists of two steps. Firstly, the font needs to be loaded using the

MonoGame ContentManager. And secondly this new SpriteFont must be registered as

a font resource for this library. This achieved by calling the

ResourcesDictionary.RegisterFont static method, while providing it the loaded

SpriteFont and the desired font family name. The following two lines of code on the

Figure 52 illustrate the process of registering a new font:

// Standard way of loading Fonts in MonoGame
SpriteFont NewFont = Content.Load<SpriteFont>(PathToFontXNBFile);
// Now register this loaded font as a resource for this library
ResourcesDictionary.RegisterFont(NewFont, FontFamilyName);

Figure 52: Registering a font

 Examples

 In this sub-chapter, we will provide some examples of how to work with this

library and what can be achieved. We will also expect that the appropriate solution for

use with this library (as described in the section 5.2) has been already created.

 Finally, all the following examples will be defined in the LoadContent method of

the Game class, unless specified otherwise. In addition, if the project was created

manually it might be necessary to add the following namespaces:

 System.Windows

 System.Windows.Controls

96

 System.Windows.Data

 System.Windows.Input

 System.Windows.Media

 System.Windows.Shapes

 All the following examples are included in the form of individual Visual Studio

solution in the Attachment F.

 Hello world

 We will start with a simple example. We are going to put a TextBlock control into

our custom user interface and make it to display a “Hello world” text.

 The code for this example can be seen on Figure 53. Firstly, start by creating a

new instance of the TextBlock class. This control is designed specifically to be used

for displaying text. Then, use its Text property and set it to the “Hello world” text.

 At this point, this control exists and has a Text property set to out custom text.

However, this control is still not connected in any way to the PresentationManager

therefore, it will not be rendered. To connect this newly created TextBlock we are

going to use the Window property of the PresentationManager. This property serves as

an entry point to adding custom controls into the UI.

 Next up, we set our TextBlock instance as the value for the Content property of

the mentioned Window. This connects the TextBlock to the root of the user interface and

allows it to be rendered.

protected override void LoadContent()
{
 // Part of the PresentationManager initialization process
 presentationManager.LoadResource(this.Content);

 // Creates new instance of the TextBlock
 TextBlock textBlock = new TextBlock();
 // Sets the "Hello world!" as its text
 textBlock.Text = "Hello world!";

 // Assigns the textBlock into the user interface tree
 presentationManager.Window.Content = textBlock;

}

Figure 53: Hello world code example

97

 When run, this code produces what can be seen on the following Figure 54:

Figure 54: Hello world example screen #1

 However, we would like the text to be centered in the middle of the window.

Because the TextBlock control derives from the FrameworkElement, we can use its

HorizontalAllignment and VerticalAllignment properties to position it accordingly.

Let us add the following lines of code to the previously written code:

 textBlock.HorizontalAlignment = HorizontalAlignment.Center;
 textBlock.VerticalAlignment = VerticalAlignment.Center;

Figure 55: Setting alignment properties

 Now when the above code is added, let us run the application again. On the

following Figure 56 we can see the result:

Figure 56: Hello world example screen #2

 We can see the TextBlock control, showing us the provided text while being

perfectly aligned to the middle of the window, as requested.

98

 Button example

 Now we will showcase something more complex. In this example, we will use the

Button control and its Content property to create a customized look. For this new look

we will use the Ellipse and TextBox controls.

 We start by creating a new instance of the Button control. We would also like the

control to be in the middle of the screen like in the last example. For this, we reuse the

code from the Figure 55. Then we need to create instances of the Ellipse control and

the TextBlock control.

 However, for the Ellipse to actually display, it is necessary to set its Width and

Height properties along with the brush of its fill. We are going to use some smaller

number for the size example, like 50 pixels. As for the fill, there are three possible

types of brushes that can be used in this library: solid color, linear gradient, and image.

For this example will use simple green color. On the following Figure 57 we can see

our code so far:

protected override void LoadContent()
{
 // Part of the PresentationManager initialization process
 presentationManager.LoadResource(this.Content);

 // Create a new instance of the Button control
 Button button = new Button();
 // Set its alignment properties, so it stays in the middle of the
 // window
 button.HorizontalAlignment = HorizontalAlignment.Center;
 button.VerticalAlignment = VerticalAlignment.Center;

 // Create a new instance of the Ellipse control
 Ellipse ellipse = new Ellipse();
 // Set its size
 ellipse.Width = 50;
 ellipse.Height = 50;
 // Set the fill of the ellipse to green color
 ellipse.Fill = new SolidColorBrush(Color.Green);

 // Create a new instance of the TextBlock control
 TextBlock textBlock = new TextBlock();
 // Set its text
 textBlock.Text = "Hello world";
 // Assigns the button into the user interface tree
 presentationManager.Window.Content = button;

}

Figure 57: Button example code #1

 On the previous Figure 57 can be seen the first difference between our library and

the WPF. The WPF uses the Colors class to store all the predefined colors, while this

library uses the stock MonoGame color definitions, which are stored at the Color class.

99

 The last problem we are facing is how to set both the TextBlock and the Ellipse

as the Content of the Button control. The Content property of the Button class accepts

a single object, therefore it is necessary to store our two controls in some container

control. We will position our controls one above the other and for this is the most

suitable the StackPanel control. After we create a new instance of the StackPanel

control, we need to add our controls as the children for this container, for this, we use

its Children property, which exposes the Add method. Into this method, we gradually

pass our two controls. Finally, we add the StackPanel as the Content for the Button.

On the following Figure 58 is the code we added since the beginning of this paragraph:

 // Creates a new instance of the StackPanel container control
 StackPanel panel = new StackPanel();
 // Now add both our controls
 panel.Children.Add(ellipse);
 panel.Children.Add(textBlock);
 // Set the StackPanel as the Content of the Button
 button.Content = panel;

Figure 58: Button example code #2

 Now, if we were to run this code, we would get the result as can be seen on the

following Figure 59:

Figure 59: Result of the previous Button example code

 However, this is the Button control. It is used to perform some action when the

user clicks on it. For this purpose, the Button defines the Click event. We are going to

demonstrate this event by changing the color of our Ellipse from green to yellow. For

the purpose of easier demonstration, we are going to register for this event using a

Lambda Expression. Therefore, the following code was added to our previous code:

 button.Click += (s, e) => {
 ellipse.Fill = new SolidColorBrush(Color.Yellow);
 };

100

 Now, if we run again our code example and click on the Button control, the

included Ellipse will turn yellow. The final result of this example can be seen on the

following Figure 60:

Figure 60: Result of the Button example code after clicking on the Button

 Fonts example

 For this example we are going to showcase loading another font to use with this

library and using two instances of the TextBlock control to display text using different

fonts.

 We will start by putting our custom MonoGame font file into the root of the

Content folder. For this example we are going to use the included

DefaultFontItalic.xnb.

 Like in the previous two examples, we write our code as part of the

Game1.LoadContent method. On the Figure 61 we can see the code for first part of this

example. Firstly, the provided font needs to be loaded into the MonoGame and saved

as a SpriteFont instance using the standard MonoGame ContentManager whose

instance is available as part of the Game1 class. Secondly, this SpriteFont must be

registered into the resource dictionary of this library and provided with a font family

name. We are going to name this new font as "Italic font".

// Load the custom font into the MonoGame
SpriteFont DefaultFontItalic =

 Content.Load<SpriteFont>("MonoGameWPF\\DefaultFontItalic");
// Register the font with the library
ResourcesDictionary.RegisterFont(DefaultFontItalic, "Italic font");

Figure 61: Loading a custom font

 The code for both the first part of this example and the following second part can

be seen on the Figure 62 below. Now we create two instances of the TextBlock control

and set them both with yellow background and centered horizontal alignment.

Moreover, we set the first TextBlock control to show “Hello!” text, while the second

101

one we set up to show “Hello Italic!” text. Finally, we create a new instance of

FontFamily class, provide it with the name of our custom font, “Italic font”, and set it

as FontFamily property of the second TextBlock. In the end, to put both of these

TextBlock controls onto the screen we need to use a container control. We are going

to use again the StackPanel control and also set it to be centered on the screen.

protected override void LoadContent()
{
 // Part of the PresentationManager initialization process
 presentationManager.LoadResource(this.Content);

 // Load the custom font into the MonoGame
 SpriteFont DefaultFontItalic =
 Content.Load<SpriteFont>("DefaultFontItalic");
 // Register the font with the library
 ResourcesDictionary.RegisterFont(DefaultFontItalic, "Italic font");

 // Prepare a new black color brush
 SolidColorBrush yellowColor = new SolidColorBrush(Color.Yellow);

 // Initialize first TextBlock
 TextBlock textBlock = new TextBlock();
 textBlock.Text = "Hello!";
 textBlock.Background = yellowColor;
 textBlock.HorizontalAlignment = HorizontalAlignment.Center;

 // Initialize second TextBlock
 TextBlock textBlock2 = new TextBlock();
 // Here create a new instance of FontFamily
 // and provide it with the name of our custom font.
 textBlock2.FontFamily = new FontFamily("Italic font");
 textBlock2.Text = "Hello Italic!";
 textBlock2.Background = yellowColor;
 textBlock2.HorizontalAlignment = HorizontalAlignment.Center;

 // Create new StackPanel to hold our TextBlock controls
 StackPanel panel = new StackPanel();
 // Set it to remain in the center of the screen
 panel.HorizontalAlignment = HorizontalAlignment.Center;
 panel.VerticalAlignment = VerticalAlignment.Center;

 // Add these two TextBlock controls to our StackPanel
 panel.Children.Add(textBlock);
 panel.Children.Add(textBlock2);

 presentationManager.Window.Content = panel;
}

Figure 62: Font example code

102

 If we were to compile and run the following code, we would get the user interface

as seen on the following Figure 63:

Figure 63: The result of font example

 Data binding example

 In this example we are going to show how to create a Data binding between two

dependency objects and two dependency properties. To showcase this, we are going

to use the TextBox control and the TextBlock control. We are going to set up the data

binding in a way where whenever a text is inputted to the TextBox, the TextBlock is

updated with this text as well.

 We will start by creating an instance of the TextBox and TextBlock controls. We

set the TextBox control to be located on the bottom-left corner of the window, while

the TextBlock will be located in the bottom-right corner. We will also set the

background of the TextBlock control to SlateGray color, so we can see the area taken

by it. On the following Figure 64 we can see our code so far:

 // Create a new TextBox and place it in bottom-left corner
 TextBox textBox = new TextBox();
 textBox.Width = 200;
 textBox.Height = 50;
 textBox.HorizontalAlignment = HorizontalAlignment.Left;
 textBox.VerticalAlignment = VerticalAlignment.Bottom;
 textBox.VerticalContentAlignment = VerticalAlignment.Center;

 // Create a new TextBlock and place it in bottom-right corner
 // This TextBlock will be always target for the binding
 TextBlock textBlock = new TextBlock();
 textBlock.HorizontalAlignment = HorizontalAlignment.Right;
 textBlock.VerticalAlignment = VerticalAlignment.Bottom;
 // Set background so we can see the area of the TextBlock
 textBlock.Background = new SolidColorBrush(Color.SlateGray);

 Figure 64: Binding example, setting up controls

103

 As we are once again using more than one control, we need to use some container

control. In this case we are going to use the Grid control and place these two controls

inside it.

 Finally, we are going to set up our data binding. This process consists of two parts.

In the first part, we create a new instance of the Binding class. The Binding class allows

us to define the source object of the binding, name of property on the source that should

be bound, and finally the binding mode. For this example we are going to set our

TextBlock instance as the source object of the binding and its Text property as the

source property. As for the binding mode, we are going to set the OneWay mode. We

can see the code for creating a new Binding and setting its properties on the following

Figure 65:

 // Create a new Binding
 Binding binding = new Binding();
 // Set the TextBox as our source object
 binding.Source = textBox;
 // Set the source property as the Text property
 // (this is a dependency property)
 binding.Path = "Text";
 // Set OneWay binding mode
 binding.Mode = BindingMode.OneWay;

Figure 65: Setting up a Binding object

 Secondly, we need to apply this binding definition to a target and its dependency

property. This is done through the static BindingOperations class, by calling its

SetBinding method, as illustrated on the following Figure 66:

 BindingExpression bindingExpression =

 BindingOperations.SetBinding(

 textBlock, // Target dependency object

 TextBlock.TextProperty, // Target dependency property

 binding); // Binding definition

Figure 66: Applying binding to a dependency object

104

 Finally, if we run this code and write something to the bound TextBox control then

this text would be immediately transferred to the TextBlock control. We can see the

result of this example on the following Figure 67:

Figure 67: The result of the Binding example

 Like other examples, also this example is a part of Attachment F. However, the

included version of this example also contains a showcase of using an object

implementing the INotifyPropertyChanged interface as a source for this binding.

 More examples

 All the above and even more examples are included as part of the Attachment F.

The following are additional examples included in the mentioned attachment:

 Extended data binding example

 Dispatcher example

 Scrollable user interface example

 Creating custom scroll control example

 As this library targets the full compatibility with the WPF API, more examples

can be found on the appropriate page on the Microsoft Developer Network.

 Features overview

 In this section, we will provide an overview of all the features that have been

implemented into the final version of this library as well as provide information about

functionality with different behavior in comparison with the WPF API.

 Dependency properties and objects

 The system of dependency properties is implemented with the same API as the

WPF provides. Dependency properties can be registered, read, and written to through

the same methods as in the WPF. Support for creating read-only dependency properties

105

is provided. The thread-safety of this system is assured. However, opposed to the WPF,

this library allows the creation of dependency objects only on the main thread.

 Dependency properties can register their ValidateValueCallback and also their

PropertyMetadata. The system of overridable metadata for dependency properties is

supported and deriving classes can provide their own metadata, which will take

effective precedence.

 Property metadata

 The PropertyMetadata and FrameworkPropertyMetadata can be used to define

certain behavior aspects of a dependency property.

 Support is included for defining default values (which are also made

unmodifiable), PropertyChangedCallback, and CoerceValueCallback.

 In the case where FrameworkPropertyMetadata are used for a dependency

property, there is also support for the following FrameworkPropertyMetadataOptions

flags: AffectsMeasure, AffectsArrange, AffectsRender, AffectsParentArrange, and

AffectsParentMeasure.

 Data Binding

 This library supports creation of data bindings through the static

BindingOperations class. Those data bindings can be created either between two

dependency objects or a dependency object and object. Like in the WPF, the

dependency object must always be on the Target side of binding. Moreover, if the

source object implements the INotifyPropertyChanged interface, data binding also

supports automatic data updates.

 The Value Converters are supported and so are the OneWay and TwoWay binding

modes.

 Freezables

 The Freezable class is implemented in this library and contains functionality that

enables cloning and freezing of deriving classes.

 However, the cloning of expressions is not implemented and only value cloning

can be performed. Therefore, whenever the Clone method of any Freezable object is

called, it actually performs the work of the CloneCurrentValue method. The process

of implementing the necessary functionality for these features in deriving classes is the

same as in the WPF.

 Support is also implemented for the ReadPreamble and WritePreamble methods

that can be used to check whether the appropriate action can be performed on

properties that are not dependency properties.

106

 Finally, the Freezable class raises the Changed event whenever value of a

dependency property is changed.

 UIElement and FrameworkElement

 All controls are based on the UIElement. This library implements the WPF way of

creating controls and allows the developers to step into the layout process through

MeasureCore, ArrangeCore method on the core-level layout and through

MeasureOverride, and ArrangeOverride methods on the framework-level layout.

 The FrameworkElement is implemented only partially, specifically this library

provides only an implementation for its framework-level layout. Therefore, the

following properties are taken into consideration on this layout level:

 MinWidth, MinHeight

 MaxWidth, MaxHeight

 Width, Height

 VerticalAlignment

 HorizontalAlignment

 Any custom control can also make use of the VisualOffset property to position

itself.

 For the UIElement this library also supports the way of defining custom rendering

instructions through its OnRender method. The provided DrawingContext includes

support for the following rendering actions:

 PushOpacity, PopOpacity

 DrawLine

 DrawRectangle

 DrawEllipse

 DrawRoundedRectangle

 DrawText

 The syntax for these methods, with the exception for DrawText, is the same as in

the WPF. The DrawText only supports unformatted text and its parameters were altered

to suit the needs of this library. There is also one method that is not defined in the

WPF. The PopOpacity method is used to remove lastly applied Opacity for rendering

instructions. In the WPF this is achieved by unified Pop method that removes any lastly

pushed instruction that affects the rendering (like Opacity, Effect, or a

Transformation).

 As can be seen on the names of the mentioned DrawingContext methods, this

library supports the rendering of the following graphical shapes:

 Line

 Rectangle

 Ellipse

107

 Rounded rectangle

 For these shapes this library can render both their fill and their stroke. However,

only a line and a rectangle can have a dashed stroke.

 This stroke is being set up in the same way as in the WPF, through an instance of

the Pen class. The Pen class supports currently only three properties: Brush, Thickness,

and DashStyle. This library provides some premade dash styles that can be found as

static resources in the static DashStyles class.

 Finally, every UIElement inheritor can use the VisualClip property, that allows to

set up a clipping (even non-rectangular) that is effective for the element itself and all

its Visual children. Due to the way how this clipping is implemented the maximum

number of nested clippings is limited to 255.

 Controls

 In this section we are going to go through the controls available in this library.

Layout controls

 This library implements a version of the following controls: Border, Canvas, Grid,

ScrollContentPresenter, StackPanel, UserControl.

 The Border control provides support for Padding its content and is capable of

drawing its border with differently thick sides.

 The Canvas control allows to position its children based on the value of their

Canvas.Left and Canvas.Top attached properties. Support for Canvas.Right and

Canvas.Bottom is not currently provided by this library.

 The Grid control provides support for positioning the children controls inside its

available space. Support is included only for RowDefinitions and ColumnDefinitions

with a fixed size.

 The ScrollContentPresenter control is just an example of a scrollable control. It

can hold an element and mouse wheel can be used to scroll through its content.

 The StackPanel control can be used for stacking child elements either vertically

or horizontally. Both of these orientations are supported.

 The UserControl control defines the Content property that can be used while

inheriting from the UserControl to define custom element structure for the new

control.

Input controls

 This library implements a basic version of the following input controls: Button,

TextBox.

108

 The Button control defines several visual properties that can be used to change its

look, like in the WPF. It also provide Click event and allows any object as its content.

 The TextBox control is used to enter text. This control is very basic and currently

supports deleting current text using either Backspace or Delete, selecting text using

mouse, and of course inserting a new text by writing on the keyboard.

Information controls

 This library implements a basic version of the following information controls:

Image, Label, TextBlock.

 The Image control can be used to display an image. The source of an image is set

through the Source property, that accepts a Texture2D, which is different than in the

WPF.

 The Label control can be used to show any content. For this it defines the Content

property. This content can be any object (ToString is called and the result is shown

inside the Label) or UIElement (in this case the content is rendered as part of the Visual

Tree).

 The TextBlock control is a simple control that is capable of displaying

unformatted with defined color.

Selection controls

 This library implements a basic version of the CheckBox selection control. This

controls provides event notifications when checked and unchecked and allows to

define its description through the Content property. This can be any object.

Shape controls

 This library implements the Shape-based controls that are also supported for

rendering by this library (as stated in section previous section 5.5.5). The implemented

Shape controls include Line, Ellipse, and Rectangle.

 The Ellipse and Rectangle also support the Stretch property.

 Window

 The Window class is used as the root element of the user interface. The Title

property can be used to change the title of the MonoGame client window and its

ResizeMode property can be used to define whether the MonoGame client window can

be resized or not.

 Routed events

 This library implements the system of routed events. It supports registering new

routed events, supports subscription to instanced events defined on a UIElement (even

handled events). It is also possible to register Class handlers using the static

109

EventManager. Routed events can be manually raised by calling the RaiseEvent method

of the UIElement.

 Included is support for all three kinds of routing strategies – Bubble, Direct, and

Tunnel. The included event system raises both, the Non-Preview and Preview types of

input events.

 The following list contains all supported input events that are being raised on

UIElement-based objects:

 PreviewMouseMove | MouseMove

 PreviewMouseWheel | MouseWheel

 PreviewMouseDown | MouseDown

 PreviewMouseUp | MouseUp

 MouseEnter

 MouseLeave

 PreviewKeyDown | KeyDown

 PreviewKeyUp | KeyUp

 GotFocus

 LostFocus

 Moreover, because the Triggers are not supported and the UIElement.IsMouseOver

property is considered to be important during the creation of custom controls, this

library implements a workaround so the developers get notified on value changes of

this property. For this purpose, the UIElement contains a protected virtual

OnIsMouseOverChanged method that is called by the event system whenever necessary.

 Touch events and touch input are currently not supported by this library.

 Brushes

 This library implements three kinds of brushes:

 SolidColorBrush

 LinearGradientBrush

 ImageBrush

 The SolidColorBrush supports defining a custom color or can use one of the

predefined colors. As a source for these predefined colors, this library uses the static

color resources defined in the Microsoft.Xna.Framework.Color struct. However, the

WPF uses the Colors struct, which causes incompatibility with color definitions.

 The LinearGradientBrush is used the same way as in the WPF and allows setting

the StartPoint, EndPoint for a gradient, including a collection of gradient stops.

However, the maximum number of gradient stops is limited to 12.

 The ImageBrush supports the Stretch property and to set the image source, it

provides the ImageSource property. However, the type of this property is Texture2D,

which is a break from the WPF API.

110

111

 Conclusion
 In this chapter, we will conclude this thesis. We will break this chapter into three

parts. In the first part (6.1) we will sum up what was achieved in this library. In the

second part (6.2) we will go through known issues at the final version of this library

and finally in the last part (6.3) we will go through some ideas on how to enhance the

functionality of this library in possible future versions.

 Final results

 In this section, we will assess the results of this thesis and compare it with the

goals we established for this thesis in the section 1.4.

(G1) MonoGame GUI Library

 This library is composed of one managed assembly for the MonoGame, and one

content file containing a shader. The assembly does not have any platform-specific

dependencies and the shader can be compiled for use with either the DirectX or the

OpenGL. Therefore, there should be no serious problems with porting this library to

other platforms.

(G2) Rendering

 Included is support for rendering four different graphical shapes – line, rectangle,

ellipse, and rounded rectangle. With all these primitives, we also support drawing their

strokes. In the case of line and rectangle these can be dashed. Moreover, the rendering

system was designed in a way so it can be easily extended with support for additional

primitives. The primitives can also be textured or colored. For this, our library provides

three different types of brushes: SolidColorBrush, LinearGradientBrush, and

ImageBrush.

(G3) Event-driven user input

 We provided an event-based input system based on the concept of Routed events.

These events can be registered to travel through the user interface in either of the

following ways: Direct, Tunnel, and Bubble. This library makes it also possible to

subscribe to these events using either Instanced handlers or Class handlers. Exposed

events include various keyboard and mouse events ranging from KeyDown to

MouseWheel events.

(G4) Stock controls

 The stock controls include various controls from each control area. There are two

input controls: Button and TextBox. In the area of data presenting controls we provided

the Image, Label and TextBlock controls. To support various positioning of our

controls we implemented layout controls like the Border, Canvas, Grid and

112

StackPanel. There is also included a demonstrational version of a control providing

scrolling functionality, the ScrollContentPresenter, and one selection control, the

CheckBox. Finally, a Shape class based variants of our supported graphical shapes are

implemented too.

(G5) Controls customizability

 The customization of our stock controls is done through setting their public

properties. This is mostly used to set a thickness of a border or the brush for various

appearance properties like Background or BorderBrush.

(G6) Custom controls

 What our basic stock controls cannot do can be easily achieved by the developers

by creating their own custom controls. To make this process most easy and feature-

rich our library implements the layout system of the WPF, including the ability to

affect the Measure and Arrange layout process either on UIElement or

FrameworkElement level. To provide custom rendering instructions for any custom

element we implemented the OnRender method. This method provides

DrawingContext that is capable of rendering all the graphical shapes mentioned at the

beginning of this chapter. A VisualClip property is also made available to clip the

content of a custom control and its children. This property supports clipping using all

the geometrical shapes we are able to render and can be also used by any third party

developer to implement a custom version of scrolling control.

(G7) WPF API

 Finally, all the functionality implemented in this library follows strictly the WPF

API with only a minor variations to enable easy code porting and make it possible for

the future versions of this library to continue implementing the WPF API.

113

 On the following two figures, we can see the same user interface code running on

the WPF (Figure 68) and on this library (Figure 69). The solutions for both these

applications are included among the examples as part of Attachment F.

Figure 68: The result of the same user interface code. Code running on the WPF.

Figure 69: The result of the same user interface code. Code running on this library.

114

Additional features

 On top of those features requested by our goals, we also implemented additional

features like support for OneWay and TwoWay Data bindings, and cloning and

freezing objects that derive from the Freezable class.

Evaluation of goals

 When we compare our library with the goals mentioned in the chapter 1.4, we can

conclude we have fulfilled all of them.

 Known issues

 The final version of this library also have some known issues. Below is the list of

the most notable ones.

 When an opacity is applied to a parent control, this opacity is also applied

during rendering to individual children and their own rendering. This causes

any overlapping children elements to alpha blend. This is however in contrast

with the WPF that seems to render the children first and apply the opacity for

all this rendered content in the end. Possible solution for this issue is to use a

temporary RenderTarget2D that will contain all the rendered children and

when the rendering of child elements is finished, this RenderTarget2D would

be drawn with the set opacity.

 Graphical shapes rendered by this library have aliasing problems. MonoGame

includes an anti-aliasing solution, however this is available only for OpenGL

platforms and not the DirectX [47]. A solution for this would be to create a

custom shader that would implement some anti-aliasing technique like FXAA

[48] or MSAA [49] and would be applied while rendering the user interface.

This unified approach could be used to enable anti-aliasing on both the

DirectX and the OpenGL platforms.

 Changes in sub-properties of an object that is set as a value for a dependency

property do not cause controls deriving from the UIElement to be invalidated

(as set in the FrameworkPropertyMetadataOptions flags for the dependency

property). Because this functionality seems to be implemented only for the

Freezable-based dependency properties, possible fix for this issue would be

to subscribe for the Changed event whenever a Freezable object is set as a

value for a dependency property.

 The stroke of the rounded rectangle is not rendered correctly under

circumstances when the RadiusX or RadiusY property is smaller than the

requested thickness of the stroke.

 When an empty TextBox is focused by mouse and some text is typed in, it is

necessary to click once again somewhere on the TextBox. Otherwise, an

115

unhandled exception is thrown when trying to delete a text using either

Backspace or Delete key.

 Future Work

 While the library matches our goals, it is still merely a subset of functionality the

WPF provides. Therefore, this still represents many features left to implement. We

will mention only those that would be of highest benefit at this point. Moreover, there

are some areas of the library, where the functionality can be improved.

 During the work on this library, main emphasis was on implementing the core

functionality of the library. This was to provide the developers a powerful way

to create their custom controls. This lead to the fact that the included controls

in this library are basic and lack some functionality. Therefore, now when the

core of the library is finished, more work would be needed on the included

controls. Including the possibility of implementing additional controls.

 The library currently implements only four different graphical shapes. There

are however many more in the WPF. Implementing these additional shapes

would provide more ways to developers how they can customize their user

interfaces.

 The library does not offer a quick way to affect the rendering of a shape

geometry. By implementing support for Transformations and

RenderTransforms we would be able to provide the developers with a simple

to manipulate computed geometry without forcing the library to recompute it.

 If the Transformations are to be supported, all geometries generated for use as

LineList primitives (currently the stroke of ellipse and rounded rectangle) need

to be changed to be generated either as the TriangleList or TriangleStrip

primitives, otherwise they might not retain the intended geometry.

 All the rendering operations are handled by the RenderContext class, this

makes it possible for us to consider the possibility of completely abstracting

the rendering process. This would allow this library to run on many different

rendering back-ends.

 Support for Animations could be implemented to make the user interfaces look

more alive.

 This library works on the level of individual pixel units, this can be however

problematic for someone attempting to use this library on a modern

smartphone. The density of the pixels is enormous on these devices, and this

would cause the user interfaces rendered by this library to be way too small

for any reasonable interaction. Therefore, support for rendering in Device

independent pixels [4846] would make this library more usable.

 In the Analysis chapter, we examined the possibility of using a vector font for

our library (section 3.4) and in the end decided that we will use the standard

bitmap-based font. This vector font would be a good addition for any future

116

version of this library as it would allow not only to directly use fonts that are

already present with the operating system but would also provide a way to

produce scalable and transformable high quality text.

 Some implementation of Style or Template system is needed to provide more

advanced control customization support for individual controls.

117

 Attachments
 This thesis comes with a CD that includes the following attachments.

Attachment A: Source code

 The Visual Studio solution for this library can be found in the /MonoGameWPF

directory. This solution contains the MonoGameWPF project with the source code of the

library.

Attachment B: Documentation

 The documentation is located in the /Documentation directory and is made from

the source code using the Sandcastle Help File Builder project [51].

Attachment C: MonoGame setup file

 The setup file for the MonoGame 3.4 is located in the /MonoGameSetup directory.

Attachment D: Visual Studio Template

 The template file for the Visual Studio is included in the /Template directory.

Attachment E: Compiled library for Windows DirectX platform

 The compiled managed assembly of this library along the compiled shader file

and two included fonts can be found in the /Compiled directory.

Attachment F: Solutions with code examples

 Examples of user interfaces showcased in the chapter 5.4, along with some others

not mentioned there, are located in the form of individual solutions in the /Examples

directory.

118

119

 References
1. Minecraft. Retrieved December 3, 2015, from https://minecraft.net/

2. Terraria. Retrieved December 3, 2015, from https://terraria.org/

3. Write once, play everywhere. Retrieved December 3, 2015, from

http://www.monogame.net/

4. GUI Library for MonoGame. Retrieved December 3, 2015, from

http://gamedev.stackexchange.com/questions/42142/gui-library-for-monogame

5. XWinForms. Retrieved December 3, 2015, from

http://sourceforge.net/projects/xwinforms/

6. IONSTAR Studios. Retrieved December 3, 2015, from http://www.ionstar.org/

7. Bitbucket. Retrieved December 3, 2015, from

https://bitbucket.org/sparklinlabs/nuclearwinter

8. Ruminate MonoGame GUI. Retrieved December 3, 2015, from

http://xnagui.codeplex.com

9. Nuclex Framework. Retrieved December 3, 2015, from

http://nuclexframework.codeplex.com

10. MonoGame Gui4U. Retrieved December 3, 2015, from

https://gui4u.codeplex.com

11. Coherent Labs. Retrieved December 3, 2015, from http://coherent-labs.com

12. Apple Lisa. Retrieved December 3, 2015, from

https://en.wikipedia.org/wiki/Apple_Lisa. Image from

https://upload.wikimedia.org/wikipedia/en/5/52/Apple_Lisa_Office_System_3.1.

png

13. Warcraft III: Reign of Chaos. Retrieved December 3, 2015, from

https://en.wikipedia.org/wiki/Warcraft_III:_Reign_of_Chaos. Image from

https://upload.wikimedia.org/wikipedia/en/f/fa/Reign_of_Chaos_campaign.png

14. Common WPF Controls. Retrieved December 3, 2015, from

https://msdn.microsoft.com/en-us/library/bb655881(v=vs.90).aspx

15. Routed Events Overview. Retrieved December 3, 2015, from

https://msdn.microsoft.com/library/ms742806(v=vs.100).aspx. Image from

https://i-msdn.sec.s-msft.com/dynimg/IC130301.png

16. UIElement.Clip Property. Retrieved December 3, 2015, from

https://msdn.microsoft.com/en-

us/library/system.windows.uielement.clip(v=vs.110).aspx. Image from

https://i-msdn.sec.s-msft.com/dynimg/IC167464.png

17. Mono. Retrieved December 3, 2015, from http://www.mono-project.com

18. Mono on WPF. Retrieved December 3, 2015, from http://www.mono-

project.com/docs/gui/wpf/

19. Microsoft Silverlight. Retrieved December 3, 2015, from

https://www.microsoft.com/silverlight/

https://en.wikipedia.org/wiki/Apple_Lisa
https://upload.wikimedia.org/wikipedia/en/5/52/Apple_Lisa_Office_System_3.1.png
https://upload.wikimedia.org/wikipedia/en/5/52/Apple_Lisa_Office_System_3.1.png
https://upload.wikimedia.org/wikipedia/en/f/fa/Reign_of_Chaos_campaign.png
https://i-msdn.sec.s-msft.com/dynimg/IC130301.png
https://msdn.microsoft.com/en-us/library/system.windows.uielement.clip(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.uielement.clip(v=vs.110).aspx
https://i-msdn.sec.s-msft.com/dynimg/IC167464.png

120

20. Mono (Moonlight). Retrieved December 3, 2015, from http://www.mono-

project.com/docs/web/moonlight/

21. Cairo. Retrieved December 3, 2015, from http://cairographics.org/

22. Primitive Topologies included in DirectX 10. Retrieved December 3, 2015, from

https://msdn.microsoft.com/en-

us/library/windows/desktop/bb205124(v=vs.85).aspx

23. OpenGL Primitive. Retrieved December 3, 2015, from

https://www.opengl.org/wiki/Primitive

24. How can I draw a simple 2D line in XNA without using 3D primitives and shders.

Retrieved December 3, 2015, from

http://gamedev.stackexchange.com/questions/44015/how-can-i-draw-a-simple-

2d-line-in-xna-without-using-3d-primitives-and-shders

25. Draw Rectangle in XNA using SpriteBatch. Retrieved December 3, 2015, from

http://stackoverflow.com/questions/5751732/draw-rectangle-in-xna-using-

spritebatch

26. SpriteBatch class source code. Retrieved December 3, 2015, from

https://github.com/mono/MonoGame/blob/develop/MonoGame.Framework/Grap

hics/SpriteBatch.cs

27. SpriteBatcher class source code. Retrieved December 3, 2015, from

https://github.com/mono/MonoGame/blob/develop/MonoGame.Framework/Grap

hics/SpriteBatcher.cs

28. Morrill, J. (2011, February 13). A Critical Deep Dive into the WPF Rendering

System. Retrieved December 3, 2015, from

https://jeremiahmorrill.wordpress.com/2011/02/14/a-critical-deep-dive-into-the-

wpf-rendering-system

29. Flow Control Limitations. Retrieved December 3, 2015, from

https://msdn.microsoft.com/en-

us/library/windows/desktop/bb219848(v=vs.85).aspx

30. Petzold, C. (2015, March 1). DirectX Factor: Triangles and Tessellation. Retrieved

December 3, 2015, from https://msdn.microsoft.com/en-

us/magazine/dn605881.aspx

31. Vertex Buffer Object. Retrieved December 3, 2015, from

https://en.wikipedia.org/wiki/Vertex_Buffer_Object

32. FreeType project. Retrieved December 3, 2015, from http://www.freetype.org/

33. SharpFont library. Retrieved December 3, 2015, from

https://github.com/Robmaister/SharpFont

34. Scissor Test. Retrieved December 3, 2015, from

https://www.opengl.org/wiki/Scissor_Test

35. Rendering Pipeline Overview. Retrieved December 3, 2015, from

https://www.opengl.org/wiki/Rendering_Pipeline_Overview

36. Stencil Test. Retrieved December 3, 2015, from

https://www.opengl.org/wiki/Stencil_Test

https://msdn.microsoft.com/en-us/library/windows/desktop/bb205124(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb205124(v=vs.85).aspx
https://github.com/mono/MonoGame/blob/develop/MonoGame.Framework/Graphics/SpriteBatch.cs
https://github.com/mono/MonoGame/blob/develop/MonoGame.Framework/Graphics/SpriteBatch.cs
https://github.com/mono/MonoGame/blob/develop/MonoGame.Framework/Graphics/SpriteBatcher.cs
https://github.com/mono/MonoGame/blob/develop/MonoGame.Framework/Graphics/SpriteBatcher.cs
http://www.freetype.org/
https://github.com/Robmaister/SharpFont
https://www.opengl.org/wiki/Scissor_Test
https://www.opengl.org/wiki/Rendering_Pipeline_Overview
https://www.opengl.org/wiki/Stencil_Test

121

37. Hit Testing in the Visual Layer. Retrieved December 3, 2015, from

https://msdn.microsoft.com/library/ms752097(v=vs.100).aspx. Image from

https://i-msdn.sec.s-msft.com/dynimg/IC9903.png

38. Attached Properties Overview. Retrieved December 3, 2015, from

https://msdn.microsoft.com/en-us/library/vstudio/ms749011(v=vs.100).aspx

39. Implementing Finalize and Dispose to Clean Up Unmanaged Resources. Retrieved

December 3, 2015, from https://msdn.microsoft.com/en-

us/library/b1yfkh5e(v=vs.100).aspx

40. Point in triangle test. Retrieved December 3, 2015, from

http://www.blackpawn.com/texts/pointinpoly/

41. Two-Point Form of line equation. Retrieved December 3, 2015, from

http://mathworld.wolfram.com/Two-PointForm.html

42. Bézier curve. Retrieved December 3, 2015, from

https://en.wikipedia.org/wiki/B%C3%A9zier_curve

43. LinearGradientBrush Class. Retrieved December 3, 2015, from

https://msdn.microsoft.com/en-

us/library/system.windows.media.lineargradientbrush(v=vs.110).aspx. Image

from https://i-msdn.sec.s-msft.com/dynimg/IC143073.jpeg

44. Getting Effect .fx files to compile and run Hints, Tips and Gotchas. Retrieved

December 3, 2015, from https://github.com/mono/MonoGame/wiki/Getting-

Effect-.fx-files-to-compile-and-run---Hints,-Tips-and-Gotchas

45. Scalar Projection. Retrieved December 3, 2015, from

https://en.wikipedia.org/wiki/Scalar_projection

46. Ubuntu Font Family. Retrieved December 3, 2015, from http://font.ubuntu.com/

47. DirectX can’t enable Anti Aliasing. Retrieved December 3, 2015, from

https://github.com/mono/MonoGame/issues/3571

48. FXAA. Retrieved December 3, 2015, from

http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_White

Paper.pdf

49. Multisample anti-aliasing. Retrieved December 3, 2015, from

https://en.wikipedia.org/wiki/Multisample_anti-aliasing

50. Device independent pixel. Retrieved December 3, 2015, from

https://en.wikipedia.org/wiki/Device_independent_pixel

51. Sandcastle Help File Builder project. Retrieved December 3, 2015, from

https://github.com/EWSoftware/SHFB

https://i-msdn.sec.s-msft.com/dynimg/IC9903.png
https://msdn.microsoft.com/en-us/library/vstudio/ms749011(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/b1yfkh5e(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/b1yfkh5e(v=vs.100).aspx
http://www.blackpawn.com/texts/pointinpoly/
http://mathworld.wolfram.com/Two-PointForm.html
https://en.wikipedia.org/wiki/B%C3%A9zier_curve
https://msdn.microsoft.com/en-us/library/system.windows.media.lineargradientbrush(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.lineargradientbrush(v=vs.110).aspx
https://i-msdn.sec.s-msft.com/dynimg/IC143073.jpeg
https://github.com/mono/MonoGame/wiki/Getting-Effect-.fx-files-to-compile-and-run---Hints,-Tips-and-Gotchas
https://github.com/mono/MonoGame/wiki/Getting-Effect-.fx-files-to-compile-and-run---Hints,-Tips-and-Gotchas
https://en.wikipedia.org/wiki/Scalar_projection
http://font.ubuntu.com/
https://github.com/mono/MonoGame/issues/3571
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
https://en.wikipedia.org/wiki/Multisample_anti-aliasing
https://en.wikipedia.org/wiki/Device_independent_pixel
https://github.com/EWSoftware/SHFB

