
Univerzita Karlova v PrazeMatematicko-fyzikální fakultaDIPLOMOVÁ PRÁCEMASTER THESIS

Alexandr Kára
Optimalizace binárního kódu pro Intel IA-32Optimization of binary machine code on Intel IA-32

Katedra softwarového inºenýrstvíVedoucí diplomové práce: Mgr. Mikulá² Pato£kaStudijní program: Informatika, Softwarové systémy

I would like to thank Mikulá² for great encouragement in writing this thesis and forvaluable suggestions and corrections � both to the text and to the program. Manyothers supported me throughout the work. A big thanks goes to Linda for a lot ofpatience and support. Homer and Nast¥nka helped me with the last time corrections.I am also grateful of all the work of thousands of volunteers who created invaluablesources of information, such asWikipedia or the abundance of other online materials,and to the programmers who wrote the tools and libraries I worked with.

Prohla²uji, ºe jsem svou diplomovou práci napsal samostatn¥ a výhradn¥ s pouºitímcitovaných pramen·. Souhlasím se zap·j£ováním práce. V Praze dne 14.12.2006Alexandr Kára

Název práce: Optimalizace binárního kódu pro Intel IA-32Autor: Alexandr KáraKatedra (ústav): Katedra softwarového inºenýrstvíVedoucí diplomové práce: Mgr. Mikulá² Pato£kae-mail vedoucího: mikulas@artax.karlin.m�.cuni.czAbstrakt: P°eklada£e dnes pouºívají mnoho technik pro zrychlení p°eloºeného pro-gramu a dal²ích zlep²ení se dosahuje pom¥rn¥ komplikovanými zp·soby. Cílem tétopráce je vyzkou²et na základ¥ pro�lovacích dat optimalizovat jiº p°eloºený a slinko-vaný program. Tento p°ístup má n¥kolik potenciálních výhod. Umíst¥ní jednotlivých£ástí kódu a jejich relativní vzdálenosti jsou jiº známy a díky tomu lze zvy²ovatlokalitu a linearitu kódu, které v d·sledku zvy²ují efektivitu cache pam¥tí. Dal²ívýhodou je moºnost pracovat s programy, u kterých není k dispozici zdrojový kód.Takový program je pak moºné bez dal²ích informací upravit pro efektivn¥j²í prácina jiném typu procesoru (Intel Core nebo AMD Athlon64).Klí£ová slova: optimalizace "binární optimalizace" "binární kód" pro�lováníTitle: Optimization of binary machine code on Intel IA-32Author: Alexandr KáraDepartment: Katedra softwarového inºenýrstvíSupervisor: Mgr. Mikulá² Pato£kaSupervisor's e-mail: mikulas@artax.karlin.m�.cuni.czAbstract: Compilers use currently many techniques for optimizing compiled code.To further enhance their e�ciency, complicated methods are required. The goal ofthis thesis is to try to optimize a compiled and linked program, using pro�ling data.This binary optimization approach has several potential advantages. It is only afterthe linker stage that the exact positions and especially relative distances betweenindividual chunks of code are known - and improved code locality and linearity cansigni�cantly in�uence the e�ciency of processor caching. Another advantage is theability to work with programs without access to source code. These programs can bewithout any additional information modi�ed to work faster on a particular processorfamily (such as Intel Core or AMD Athlon64).Keywords: pro�le-driven install-time optimization "binary code"

Table of contents1 Introduction . 11.1 Code optimization on native and intermediate code 11.2 Overview of the IA-32 Binary Optimizer system 31.3 Potential uses and limits of the optimization 51.3.1 Limitations of a binary optimization framework 51.3.2 Other uses of the framework . 61.4 Related work . 71.4.1 IMPACT . 71.4.2 Spike . 81.4.3 Digital FX!32 . 81.4.4 Sun Studio Binary Code Optimizer 91.4.5 Charm . 91.4.6 Morph . 101.4.7 Etch . 101.4.8 Valgrind . 101.4.9 Pin . 111.4.10 Qemu . 111.4.11 aiPop . 111.4.12 Comparison with other binary code systems 122 Processor architectures . 142.1 Execution pipeline . 142.1.1 Instruction fetch and decoding . 142.1.2 Microoperations . 152.1.3 Register renaming . 152.1.4 Instruction scheduling and reservation station 162.1.5 Reorder bu�er and retirement . 162.1.6 Latency and throughput . 162.2 Branch prediction . 172.3 Di�erences in pipeline between processors generations 192.4 Intel Pentium and Pentium MMX processors 202.5 Intel Pentium Pro, II and III processors 202.6 Intel Pentium 4 processors . 222.7 Intel Pentium M and Core processors . 242.8 Intel Core 2 processors . 262.9 AMD Athlon and Athlon 64 processors 272.10 Major bottlenecks and possible optimizations 302.10.1 Memory access performance . 302.10.2 Code cache performance . 312.10.3 Trace cache . 312.10.4 Reducing branch misprediction penalty 322.10.5 Instruction fetch and decoding . 322.10.6 Breaking dependency chains . 34

2.10.7 Partial register, memory and �ags stalls 342.10.8 Instruction scheduling and ROB bottlenecks 352.10.9 Using execution ports and execution units evenly 362.10.10 Optimizing execution units usage 362.10.11 Instruction selection . 362.10.12 Taking advantage of �op and macro-op fusion 372.10.13 Reducing stack synchronization �ops 372.10.14 Retirement limitations . 373 ELF �le format and BFD library . 383.1 BFD library . 383.2 ELF �les . 383.2.1 File header . 393.2.2 Program segments . 393.2.3 Sections . 403.2.4 Dynamic section . 423.2.5 Symbols . 423.2.6 Relocations . 434 Program overview . 444.1 Reading input �le and decoding . 454.1.1 Opening �le . 454.1.2 Analysing potential jump targets 454.1.3 Cloning code section . 464.1.4 Parsing basic blocks . 464.2 Writing resulting program . 464.2.1 Placing blocks . 464.2.2 Trampolines . 474.2.3 Other information transfer . 484.2.4 Creating the output �le . 484.3 Instrumenting . 494.3.1 Inserting counters . 494.3.2 Code helpers . 504.3.3 Helper object �le . 524.4 Analysis . 534.4.1 Analysis of the stack pointer . 534.4.2 Analysing free locations . 534.5 SSA Form . 544.5.1 Dominator tree . 544.5.2 Building the SSA form, J-reduced CFG, !-DF 554.6 Optimization . 564.6.1 CacheUnalias plugin . 564.6.2 BranchAlign plugin . 584.6.3 AthlonBTB plugin . 594.6.4 HotColdSeparate plugin . 594.6.5 FunctionInline plugin . 60

Table of contents 1

1

4.6.6 DeadCodeRemove plugin . 605 Experimental results . 615.1 Benchmark measurement . 615.1.1 Tests . 615.1.2 Timing . 615.1.3 Various test programs . 625.1.4 Test machine con�guration . 635.2 Results . 635.2.1 Instrumented versions . 635.2.2 Optimized versions . 635.2.3 Impact of optimization parameters 656 Future work . 666.1 SSA form . 666.2 Support for exception handling . 666.3 Support for the x86-64/x64 architecture 676.4 Using processor-speci�c performance counters 676.5 Improved control �ow analysis . 686.6 On-line optimizations . 686.7 Optimization of dynamic libraries . 686.8 Other optimizations . 696.8.1 Completely inline small functions 696.8.2 Dead code elimination . 696.8.3 Instruction scheduling . 706.8.4 Data �ow optimization . 706.8.5 Instruction selection . 706.8.6 Additional code reordering . 706.8.7 Improving cache performance . 716.8.8 Inter-procedural analysis . 716.8.9 Peephole optimizations . 717 Conclusion . 72Appendix A Program source code reference 73A.1 Instructions . 74A.2 BasicBlock class . 76A.3 Function class . 77A.4 ProgramCode and ProgramSection classes 77A.5 ProgramConvertor and SectionConvertor classes 79A.6 Code conversion . 80A.7 Code tracking . 81A.8 Instrumentation and pro�ling . 82A.9 Optimizer support structures . 83A.10 Invariants . 86A.11 Optimizer plugins . 87

2 Section

2

A.12 System-dependent parts . 87A.13 Containers and other universal data structures 87Appendix B Usage of the tools . 89B.1 Building and installation of the tools . 89B.2 Con�guration �le . 89B.2.1 CacheUnalias plugin . 89B.2.2 BranchAlign plugin . 90B.2.3 AthlonBTB plugin . 90B.2.4 HotColdSeparate plugin . 90B.2.5 A sample con�guration �le . 91B.3 Command-line options . 92B.3.1 ia32bopt_prepare . 92B.3.2 ia32bopt_optimize . 93B.3.3 ia32bopt_analyse . 94B.3.4 ia32bopt_disassemble . 94B.3.5 ia32bopt_cpuinfo . 94Appendix C Example session . 95C.1 Preparation . 95C.2 Instrumenting . 95C.3 Analysis . 96C.4 Optimization . 96Bibliography . 98Index . 102

Table of contents 3

3

1 IntroductionIn this thesis, I propose a IA-32 Binary Optimizer framework for optimization ofbinary executable programs on the IA-32 architecture. It is a general optimizationand pro�ling framework for Linux working with ELF binary �les. It reads, analysesand modi�es binary code without a need for sources, special symbols or debugginginformation. In the current implementation, the main performance can be expectedfor programs where instruction cache performance is a bottleneck. The thesis isaccompanied by source code of the framework programs that perform the optimiz-ation.The text is organized as follows: The rest of Chapter 1 gives a short introductionto various optimization approaches and an overview of the framework, Chapter 2discusses processor microarchitecture and presents possibilities for optimizations,Chapter 3 brie�y introduces the ELF �le format used for the optimization and aslibrary to work with it, Chapter 4 is a detailed description of the architecture of theframework and documentation of choices made during development. Experimentalresults and benchmarks are presented in Chapter 5, other optimization techniques,that could be implemented in future, and room for improvement are summarized inChapters 6 and 7.Overview of the program source code and important data structures used ispresented in Appendix A. Usage, installation, con�guration and command-lineoptions of various tools in the framework is set out in Appendix B. For a step-by-step example of an optimization session, visit Appendix C.1.1 Code optimization on native and intermediate codeMany approaches are used to produce optimized binary code. For languages whichtraditionally compile to native code directly, such as C++, optimization is donein the compiler in most cases. Languages that use a non-native intermediate codeor bytecode, such as Java or C], compile to native code by a JIT (Just-In-Time)compiler just before execution. This has a number of potential bene�ts: it can adaptto the particular machine it is running on, it can be compiled on the �y and partsmay be recompiled when necessary or when a change in usage pattern is detected.For languages that don't have an intermediate code, all decisions are made duringcompilation. In many cases, the target machine is not known and the usage patternis not taken into account. It is possible to use pro�ling data from previous executionsof the program to enhance optimization in compiler, but this approach is rathercumbersome, requires modi�cations to the build process, and is not used very often.Even if pro�ling data is used during compilation, the resulting application is oftendesigned to run on many di�erent microarchitectures, such as various generationsof Intel or AMD processors. This forces the compiler to use the lowest commondenominator of all supported processors which often have very di�erent schedulingrequirements or support particular instructions or instruction combinations more

1 Section 1

1

e�ciently than other microarchitectures. Even if code was compiled in several ver-sions for di�erent processors, it may become outdated when a new processor line isintroduced. Specially optimized code for one processor often runs more slowly onnewer generations of the processor than code optimized less aggressively.In many situations, neither the source code nor a version compiled for a currentprocessor is available.Another disadvantage of compilation to native code is that the compiler usuallynever sees the whole program at once, because the compilation is performed oncompilation units, usually one source �le at a time. Optimizations are often per-formed on even smaller scale, one function or even one basic block at a time. Thecompiler must therefore make rather conservative assumptions and may miss manyoptimization opportunities.Interprocedural optimizations may work on a whole compilation unit at a time, buttime-critical hot-spots1 often cross boundaries of compilation units. For tight loops,all code might be put in one �le to be compiled at once. This, however, might notbe always possible or desirable because of manageability or coding style. Compilersalso don't know about �nal addresses of the code and have little opportunity toprevent cache con�icts between two parts in di�erent compilation units.Applications can be loosely classi�ed into two categories: loop-intensive programsand call-intensive programs. In loop-intensive programs, the important loops areusually inside one function or at least in one compilation unit. This type of programcan be optimized fairly well by a conventional compiler. In call-intensive programs,on the other hand, the most important loops may span multiple functions which areoften distributed among several compilation units. Control �ow is complicated andit is di�cult to recognize correctly the most frequently used parts. Optimizations forsuch programs must therefore be interprocedural and sometimes covering the wholeprogram, not just a single compilation unit. For this type of programs, a post-passor install-time optimizer, which uses pro�le data and optimizes the �nal binary code,can provide a useful supplement to a traditional compiler, in cases when performanceis critical.After a program has been compiled, there is very little structural information left andit is therefore di�cult to analyse and modify such �les. It is sometimes impossibleto predict a possible control �ow or distinguish data from references to code. Thiscan happen when using indirect calls through function tables, virtual method tables,passing a function callback reference to another function and in other cases. If thecode at the original position changes, the addresses in the data, which referenceit, should be updated � but only if they really did represent the address, not if thevalue just happened to be the same.One approach to solving this problem is to require that the optimized programs havesome additional meta-information embedded. Other possibilities include leavingparts of the program on the original addresses or attempt to analyse the programdeeper, which is often not possible.1. A hot-spot is a place in the code, which is most frequently executed.

Introduction 2

2

There have also been attempts to use run-time optimizations for native code withspecial hardware support in the processor for pro�ling [1], but as far as I know, nosuch hardware has ever been constructed. Research is now also more focused onoptimizations for JIT compilers, even if many speed-sensitive applications are stillbeing written in the C/C++ or similar languages.1.2 Overview of the IA-32 Binary Optimizer systemIn this thesis, I propose a framework for install-time2 optimization for the Linuxoperating system called the IA-32 Binary Optimizer . It processes binary executableprograms and generates new executable �les that should be better tuned for theparticular processor it runs on.3
Injected code

Instrumented program

Original program

Phase 1: Instrumenting

Phase 2: Optimization

Profiling data

Optimized program

Configuration

Figure 1. Overview of the optimization frameworkIt operates in two stages. First, the binary �le is instrumented to generate pro�lingdata during execution. Special small pieces of code are inserted at the beginningand at the end of most basic blocks4 and an initialization code is injected before theprogram entry. These bits of code record how many times the control has passedthrough the particular block, how many times a conditional branch has been takenand possibly other information.When the instrumented binary is run, the pro�ling data is gathered and then storedto a �le under a special directory. The pro�ling data size is constant and doesn'tgrow with the execution time or multiple executions.2. Also called post-link, post-pass or late-code optimization in literature.3. Currently, only AMD Athlon XP and to some extend Intel Pentium-M and Core/Core2 processorfamilies are supported, but support for other processors should be straightforward.4. Basic block is a linear stretch of instructions with control �ow in�ow only at the beginning and exit onlyat the end, with no jumps inside except possibly at the end. In some de�nitions, calls are also not allowed.

3 Section 1

3

Some pro�ling data could be obtained using statistical sampling-based pro�ling,which has a lower overhead and doesn't need to modify the executable. It would beuseful for hot-cold optimizations, but it would be di�cult to obtain more detailedinformation about the execution behaviour. Sampling-based methods have alsoproblems with high correlation to timer interrupts or other event sources, but thishas supposedly been solved in some applications [2].The pro�ling data gathered is used in the next stage of the framework, the optimizer.It reads both the original �le and the instrumented �le to correctly interpret thepro�ling data. Before optimization begins, various analysis of the program are made.A control �ow graph, annotated with pass counts, and a dominator tree of the basicblocks are constructed. Stack pointer value is analysed and live5 registers and stackareas are identi�ed.The actual optimization is performed by di�erent optimization plugins. There arefour plugins actually implemented, but adding new plugins shouldn't be too di�cult.The �rst one � CacheUnalias plugin � aims at eliminating cache aliasing problemsby trying to make the most frequently executed paths straight, group code thatexecutes together and to a smaller extend also separate hot parts6 of the programfrom the cold parts.7 This can help with processor code cache utilization as well aswith paging, requiring less pages to be resident.The second plugin, called BranchAlign, aligns blocks that are targets of frequentjumps and lay at the start of a hot area to a multiple of a number, usually 8 or 16on AMD architectures. This helps some processors to process loops more e�ectively.The AthlonBTB plugin improves branch target bu�er performance of the RETinstruction on Athlon processors by changing its encoding to be two bytes long.The last implemented, the HotColdSeparate plugin, separates hot and cold code �but on a function granularity, unlike the CacheUnalias plugin.After all con�gured plugins perform their work, the optimized code is written toa new �le. Because some code references cannot be identi�ed with certainty, somecode from the unoptimized binary needs to remain in place. At addresses in theoriginal code that are selected as likely targets of a jump, a trampoline is placed. Itis a jump to the corresponding location in the new code � optimized or instrumented.An implementation of SSA analysis is under way and when �nished, should openpossibilities for other optimization techniques. For example eliminating super�uouschecks for return values from functions that only return a constant or checking avalue that has already been checked before. Also dead code elimination or registerreallocation may be done more e�ciently with the SSA form available. Such optim-izations are already well supported in current compilers, but it will be possible toperform them across compilation units.5. A variable (or a register or memory place) is said to be live at a certain point in the program, if itsvalue may potentially be used later.6. A hot part of a code is an area that is executed often.7. By analogy, a cold part is an area that is not executed so often.

Introduction 4

4

1.3 Potential uses and limits of the optimization1.3.1 Limitations of a binary optimization frameworkAs was said before, a binary optimization framework is limited in the optimizationcapabilities by the lower amount of information it has about the optimized program.It is not meant to replace a compiler backend, but to provide additional possibilitiesin optimization, such as an optimization targeted for a particular processor.If the optimized binary doesn't have relocation information, all code that couldpossibly be executed by an indirect jump which cannot be predicted with certainty,must be left at its original address. Such programs will therefore necessarily growduring optimization and jumping into the original code parts that were left at theiroriginal addresses can impair the optimization done on the �le.Of course, compilers could generate relocation information and other data thatwould help to process the binary on the target machine, but why not then compileto an intermediate code and do the work before running the application �rst?One of the problems of systems working with intermediate code is the need to havea runtime framework support to compile and run the program (while binary codeworks �out-of-the-box�). In future, it is probable that such support will become astandard part of every computer and there will be no need to distribute native codeany more. Compilation of intermediate code on the �nal machine has probably thepotential to outperform native code unless compiled for the speci�c processor itlater runs on. Distributing applications in the source code format can have the samepossibilities, but there are problems with long build times, virtual non-existence ofstandard ways to specify compiler options8 or dependencies on other applications orlibraries.9 A traditional compiler is also much more heavyweight than a JIT compilerand many vendors are not willing to provide source code of their applications. Untilintermediate code is widely supported, binary programs are the most convenientway to distribute applications.A success full binary optimization framework must therefore be able to operate onprograms that are already heavily optimized for a particular or generic processorand ready to run. Binaries can then be shipped without the need of an optimizationframework and only users that require the optimization can process the binary forthemselves.A special problem for analysing binaries is hand-written assembler code that doesn't8. Compiler and other tools options are often incompatible between di�erent versions of the same compiler.The Autoconf/Automake/Libtool is one approach to overcome the problems, CMake is another, but bothhave their limitations.9. The Gentoo Linux distribution uses this approach and compiles all packages from source code on thetarget machine. It requires all packages to be �Gentoo-enabled� and have a standard build �recipe�, whichalso speci�es all dependencies.

5 Section 1

5

respect certain paradigms such as that a CALL instruction is used to call a functionor that functions may not overlap. I tried to deal with such programs as much aspossible by not relying on a particular structure of the code, but if a code is veryunusual in some aspects, it may be refused or poorly optimized. Self-modifying codewill likely not work as expected, either.Although in theory it is possible to work with programs that use exceptions, it iscurrently not supported.The exception handling ABI is not uni�ed � the Gcc compiler uses its specialvariant of DWARF2 debugging format for stack unwinding, but can also usesetjmp()/longjmp() for exceptions. Other compilers may use di�erent exceptionhandling schemes. The work on DWARF exception support is in progress, though.1.3.2 Other uses of the frameworkOptimizer plugins don't need to modify the code � it is not hard to imagine pluginsthat check correctness or security aspects of a closed-source application. Plugins mayalso insert some code into arbitrary places, such as before system calls, to check ormodify their parameters, or before an indirect jump to check its target.The analyser could be used to check assertions about program behaviour which arehard to verify on source code level because of various preprocessor modi�cations andcompilation options. It may also be used as a pro�ler that doesn't need a specialbuild procedure. With some modi�cations, it might be used as a JIT compiler, whichwould optimize (or translate) code on the �y. This concept could prove useful inlong numeric calculations, where hot spots and jump patterns may depend on thenature of data and change during a calculation.The framework is written to impose as little requirements on the optimized pro-gram as possible. It can work without any symbols or relocations present in theprogram. One of the purposes of this thesis was actually to demonstrate that even astripped binary with no relocation or debug information10 may be further processed.Functions are therefore not that important and may be freely merged, joined orpartially/fully inlined.The system can be extended to use the x86-64 (AMD-64) instruction set, and somework has already been done on that.10. If there is some debug information in the DWARF format, the framework tries to adjust it for the �naloptimized program. Currently, it works with line numbers to improve experience with debugging optimizedor instrumented �les.

Introduction 6

6

1.4 Related work1.4.1 IMPACTThe Impact binary reoptimization framework from the University of Illinois [3][4][5]is a system for optimizing Windows NT programs on the IA-32 architecture. It aimsat optimizing programs for the particular machine the framework is running on,without requiring source code for the application.The program is �rst instrumented by adding counters to the code. When runningthe instrumented version, pro�ling data is gathered and used later for optimization.IMPACT works by parsing x86 instructions �rst and translating them to an interme-diate code called Mcode. This code is not tied to x86 architecture, but has a speci�cone-to-one mapping to x86 target machine instructions. It also contains control �owand data �ow information. Both instrumentation and optimization is performed onMcode which is then translated back to machine code and written to a new program.Several optimization techniques are used, most notably code reorganization to sep-arate hot and cold parts of a program and instruction rescheduling.Code is parsed conservatively, following only possible branches to avoid accidentallyparsing non-instruction data embedded in a code section. Special care is taken forindirect jumps through jump tables. Displacement in the instruction is used to locatethe range of the jump table and heuristics are used to �nd the bounds of such tables.The optimized and instrumented code is written to the same address range as the ori-ginal code, but addresses of particular functions or blocks may change. All referencesto code addresses must therefore be updated to new locations of the correspondingblock in the optimized code. IMPACT uses a special relocation table (on Windows,it is called Base Relocation Table, BRT). This table is used to �nd all absolutereferences to code and to identify constants that should be treated as addresses andwhich should be treated as data. If a constant doesn't fall into the address space ofthe program, it can be safely assumed that it doesn't represent code address, butnot the other way round. If a constant, which is not a pointer, was treated as suchand updated to point at the new location of the transformed code or moved data,it could result in a program malfunction.Unfortunately, Visual Studio .NET by default doesn't generate BRT table any morefor programs (as described in [6]), so IMPACT probably couldn't be easily used ona more recent system.The instrumented binary is executed in debug mode as a child process of a con-trolling process called monitor. The monitor gathers and interprets all pro�ling dataand can take appropriate actions upon noti�cations of events such as loading of adynamic library or process exit. Just before the controlled process terminates, themonitor reads its counters and other pro�ling data and stores them to a �le.

7 Section 1

7

1.4.2 SpikeThe Spike Optimization Environment [8] from Digital (now part of Compaq) is asystem for performing pro�le-feedback optimizations of code for Windows NT on theDigital Alpha processors. It modi�es the code layout to improve instruction cachebehavior, and also uses hot-cold optimization and register allocation. It can reachup to 33% improvement of execution time.In the �rst step, it instruments the binary to be optimized. To perform its job,it requires that the binary contains relocation information, so that all data thatrepresent addresses are understood and can be modi�ed when addresses changeduring instrumentation or optimization phases.Then, the instrumented application is run by the user to collect pro�ling data, whichwill be stored in a special system database. The optimizer then uses this informationto optimize the binary.Three optimizations are used: code layout optimization, hot-cold optimization andregister allocation. The code layout optimization tries to reduce the number of codecache used and also the number of active VM pages needed. It works on each routineseparately and rearranges basic blocks so that the most frequently executed path ismade straight, using a simple greedy algorithm. The hot-cold optimization separateshot and cold parts of each routine and tries to place hot code from all routines nextto each other and place the cold code at the end of the process image. Hot codefrom routines that frequently call each other is placed closer together.This reorganization should improve the code cache behavior by making code runstraight and reducing the probability that addresses of two routines frequentlycalling each other clash in the code cache. The instruction fetching should alsobe improved, because branches are mostly not taken and instructions are executedsequentially. It should also reduce the number of active, frequently used VM pages.The last optimization is a register allocation optimization which tries to improvepoor register allocation done by the compiler.The Spike optimizer has to �nd all references to code and data to be able to modifythem when the code or data is moved during optimization or instrumentation.Branch targets for PC relative branches are simple to recognize, and relocationsare used for addresses in data or literals in instruction encoding.It uses the original instruction encoding along with a small annotation as a base forits internal representation. On top of that, it constructs basic blocks, control-�owgraph, call graph and other data structures.1.4.3 Digital FX!32Digital FX!32 [10] is a commercially used package for running Windows NT applic-ations compiled for the IA-32 architecture on Digital Alpha processors. It combinesan x86 processor emulator with binary translation. When an application is �rstexecuted, FX!32 uses a x86 processor emulator which also captures execution pro�ledata used later by a binary code translator. The code translator converts x86 codeinto native Alpha code.

Introduction 8

8

The emulator records information such as addresses of CALL instruction targets,(source address, target address) for indirect control transfer instructions andaddresses of instructions that make unaligned access to memory. The collecteddata is further processed when the application terminates or the library is unloaded.The translator uses this information to generate native code for routines for whicha pro�le exists. The emulator looks up the target address every time it encounters aCALL instruction and calls native code if it exists. After the application terminates,a retranslator is triggered which translates code to native Alpha instructions everytime a new part of the program is executed in the emulator. This results in graduallyexpanding the native code after the application is executed several times.The emulator and the translated code both use so called �jackets� on every systemcall entry that translate the contents of the top of the stack from x86 to Alphaconventions. These jackets are highly dependent on particular Windows version,but the FX!32 system doesn't require any modi�cation to the underlying operatingsystem.1.4.4 Sun Studio Binary Code OptimizerThe Sun Studio Binary Code Optimizer [13] is a new pro�le-guided static optimiz-ation system for SPARC processors. It is a part of Sun Studio 11 release.It works with binary programs that contain additional information in a separate.annotation section produced when compiled with a special compilation option.The information in this section include location of executable code structures likefunctions, switch tables and data �ow information. This additional data increasethe binary by about 5% on average but doesn't incur any run-time performance cost.A binary, that is compiled with the necessary information, can be instrumented.When it is running, it collects pro�ling data. This data is later used in the optimiz-ation stage. The optimized binary retains the original code and places the optimizedcode in a new segment, which makes is about 50% to 80% bigger that the originalversion.Reports suggest performance increase of up to 10%, especially if the binary hasn'tbeen compiled with pro�le feedback or with a feedback di�erent from productionuse.1.4.5 CharmCharm [14] is a commercial static binary code optimizer for StrongARM, XScaleand other embedded processors. It uses pro�le data generated using a tool from thePin framework [15] (see below) to optimize the binary using dead-code elimination,limited inlining and code layout optimizations.It works with a limited set of compilers at speci�c versions, because it counts onmatching speci�c code patterns in the executable to recognize various control �owstructures. The stated run-time performance improvements can reach over 10%.

9 Section 1

9

1.4.6 MorphMorph [2] is a late-code pro�le-driven program optimization suite for the DigitalAlpha processor on Digital UNIX system which works with already compiled andlinked programs. It was created with three main key points in mind: it shouldoptimize on the target machine to adapt to the end user's usage pattern andpotentially target architecture, it shouldn't require source code and it should betransparent to the user.For pro�le data gathering, it uses a statistical sampling-based method with a lowruntime overhead but lower accuracy than pro�ling by instrumented code. Forsampling, it requires a modi�cation to the operating system by a special driver.It doesn't require source code of the program to be optimized, but it requires a spe-cial representation of compiler intermediate form of that program. This is generatedby a modi�ed version of a SUIF compiler from Stanford University.The optimizations performed by Morph include procedure layout to improve cachebehavior, basic block ordering and improving branch prediction and instructionlocality.1.4.7 EtchEtch [17] is an application performance evaluation and optimization system forWindows NT applications running on x86 systems. It works in three phases: �rst, thebinary is instrumented to collect pro�ling data. Then, after some data is gathered,the program is optimized by reordering basic blocks so that the most frequentlyexecuted blocks are placed together. Other uses of Etch are possible, because theinstrumentation framework can be given arbitrary instructions to insert into thebinary, so any type of pro�ling can be done.Etch is reported to achieve from under 5% to over 60% of instruction cache (codecache) miss reduction and 0% to over 10% of general performance improvement fortest programs.1.4.8 ValgrindValgrind [18] is a suite of free software tools for debugging and pro�ling Linuxprograms. Similarly to FX!32 or Pin, it uses dynamic code translation to emulatean x86 environment, but mostly on a x86 machine.11When used to debug programs, it loads itself as a shared library with them, seizescontrol and returns to initialize the other libraries and start the program � but noton the real CPU, only on a �synthetic�, emulated processor.11. There is support for other architectures than x86, but not for executing x86 code, because the pro�ledprogram has to use the same architecture as the Valgrind program that it is running in.

Introduction 10

10

Portions of code are dynamically translated to an intermediate code called UCode.This code is architecture neutral, but the same instruction set is used for input andoutput. Debugging and pro�ling code are included into the UCode representation,it is optimized and the result is translated back into native code. These translatedchunks of code are cached in a hash table and can be reused when the same code isexecuted again.Valgrind runs application programs in a very similar environment that they wouldbe executed in without it and does not need any modi�cation of the host operatingsystem or a kernel driver.1.4.9 PinPin [15] is dynamic instrumentation program provided free-of-charge by Intel. Itsupports a wide range of Intel processors on the Linux operating system. It doesnot optimize the code, but allows arbitrary code to be injected at various places inthe executable process while running, without modi�cations to �le on the disk.Similar to Valgrind [18] (described above), it fetches parts of code, adds requiredinstrumentation and translates them back to executable code using a JIT compiler.It also modi�es the code slightly to ensure that the Pin runtime regains controlafter the translated part of code has �nished executing. Although, it may have beenoriginally inspired by Valgrind , it is now much more e�cient in register allocationsand other optimizations and is reported to be about three times faster than Valgrind .The Pin framework is extensible and used by other tools, such as Charm (see above).1.4.10 QemuQemu [19] is a free x86, x86-64, PPC, ARM, Sparc or MIPS processor emulator,which uses binary translation to execute code on the host system. It uses a codetable for all guest processor instructions, where each entry is a C code compiled forthe guest system. It then concatenates entries from the code table to form a nativerepresentation of the basic block. It performs some optimizations on the resultingcode, for example it tries to chain basic blocks where the control transfer is knownat translation time, so that the code doesn't pass control to Qemu runtime too often.Qemu can run both application programs and a complete operating system anddoesn't need any modi�cation of the host operating system nor a kernel driver.1.4.11 aiPopThe aiPop optimizer suite [20] is a commercially available tool for post-link codesize reduction for C16x/ST10, HC08 and ARM processors. It works on assemblersources or object �les and employs several techniques to compact the code � such asfunctional abstraction (reverse inlining), tail merging, interprocedural optimizationsusing data-�ow information, loop invariant code motion, peephole optimizations andother. The exact method of operation is not known, but hints are that it performspattern matching on a pseudocode generated with other annotations such as control�ow and data �ow graph information.

11 Section 1

11

1.4.12 Comparison with other binary code systemsThe related systems for processing binary code described here can be divided intothree main categories.Optimizations systems are represented by IMPACT and Etch for the x86 platform,Spike and Morph for the Digital Alpha platform, Sun Binary Optimizer on theSparc platform and aiPop and Charm for embedded processors. They di�er inwhat type of input they require. Morph processes special compiler intermediateform, others process binary programs, but Sun Binary Optimizer requires specialadditional information embedded.Emulators and binary translation frameworks are another group, represented byDigital FX!32 , which translates x86 applications to run on Digital Alpha processorsas normal processes on the Windows NT Alpha systems, and Qemu, which createsa whole virtual machine for emulation and is therefore operating system agnostic.Such systems can make deeper changes of how the code is executed, because speed isnot usually as critical as compatibility. They can, for example, compile small partson the �y into a translated code pool and throwing out code from the pool if spaceis needed.The last group are programs that instrument the binary to gain some informationabout it. This category is represented by Valgrind , which is a debugger, Pin, a gen-eral instrumentation framework, and parts of IMPACT and Morph which providepro�ling data. Valgrind translates the code on the �y and adds various checks foruninitialized data, memory operation errors and similar, the other two programs areparts of an optimization framework and translate a whole program at once. Morphis an exception in the programs described here � in that its input isn't a binaryprogram but a compiler intermediate code.The IA-32 Binary Optimizer framework described in this thesis has two parts, one isan optimizer and the other is a pro�ler. It operates on unmodi�ed binary programs,which makes it similar to the IMPACT framework, Charm or Sun Binary Optimizer .It di�ers, however, in several aspects. It is, as far as I know, the �rst binary optimizerfor the Linux operating system on the x86 platform. It can also, unlike all otheroptimizers described here, work with standard, stripped binaries without requiringany additional information or assertions about compiler versions.The Sun Binary Optimizer is very similar, but requires a special format of theexecutable program, the Impact optimizer framework uses a special relocation table(on Windows, it is called Base Relocation Table, BRT) for distinguishing addressesin code from data that accidentally also fall in the address space of code. This tablehas been produced by Windows compilers but now it is not included by default.Charm requires special version of the GNU Gcc compiler to work.The IA-32 Binary Optimizer cannot count on relocations or additional data andmust therefore make conservative assumptions about the code. In certain situations,it must leave the code in the original location or provide a trampoline jump to thenew location. This can signi�cantly increase the resulting binary size.

Introduction 12

12

Similar to Spike it uses the original instruction encoding as a basis for its internalrepresentation. On one hand, it limits the portability of the system, on the otherhand, it is convenient for optimizers to know the exact instructions they work with.If another instruction encoding was used, and translated back to binary code, theoptimizer could inadvertently clash with compiler's instruction selection and hurtthe performance.Spike and FX!32 use a special agent called Transparent Application Substitution,which dynamically substitutes either the instrumented or optimized version of theapplication (if they are available) each time the original application is executed.While it is a convenient feature, it wasn't considered important enough to o�set theproblems in designing such system and justifying modi�cations to the underlyingoperating system.

13 Section 1

13

2 Processor architecturesProcessors employ various techniques to improve performance without increasingoperating frequency too much. New generations of microprocessors often use newmicroarchitectures, which o�er better performance with constructs that were slowerin older models and vice-versa. It is therefore important to study the di�erences inorder that we will be able to optimize code for a speci�c processor.I will describe several families of microprocessors with focus on their di�erencesand bottlenecks: Pentium/Pentium MMX, Pentium Pro/II/III, Pentium 4, PentiumM/Core/Core2, and AMD Athlon64. Even though the Pentium and Pentium Proarchitectures are not used much today, there is still a considerable amount of codein use, which is optimized for these processors.More information on processor architecture can be found in Intel manuals [21] [22],AMD Optimization Guide [23], overview of history of Pentium processors [24] andresearch papers by Agner Fog [25] [26]. Most of the low-level optimization tips comefrom [25] and [27].2.1 Execution pipelineTo achieve higher throughput, processors use pipelining, they execute operations inseveral stages. When an operation is �nished with one stage and advances to the nextstage, operations behind it can enter the vacant stage. Generally, this can happenevery clock cycle. The number of cycles between start of decoding of an instructionto the point where the results of the instruction are written is called latency , andgenerally increases as the pipeline gets longer. But as the number of instructionsin �ight12 can increase, the total throughput is not a�ected as long as the pipelineworks smoothly.The stages can generally be split into branch prediction, fetch and decoding, registerallocation and renaming, reordering and scheduling, execution, write-back andretirement. Some older architectures, such as Pentium 1, lack some of the stages.Intel and AMD pipelines di�er in many aspects but share the basic design.2.1.1 Instruction fetch and decodingThe instruction data is �rst read into a decode bu�er where the various �elds ofthe instruction, such as pre�xes or addressing modes, are decoded. The locationfrom where to read and decode the data is often determined by a branch predic-tion mechanism, which tries to identify where will the code continue. Decoding isa complicated problem with the x86 instruction set, where instructions can havelengths from 1 up to 15, so there is usually a separate stage for instruction lengthdecoding, which only determines where instructions start and how long they are.The fetch/decode unit can in many processors read 16 bytes and decode up to threeinstructions per clock cycle. The decoding stage is, however, often a bottleneck.12. In-�ight instructions/microoperations are operations that are being executed in one or another stageof the pipeline, at the same time. On some processors, there can be as many operations in �ight as thereare stages in the pipeline.

Processor architectures 14

14

2.1.2 MicrooperationsAfter decoding, instructions are usually split into one or multiple microoperations,which allow the execution core of the processor to use a RISC-like architecture.These microoperations13 are simple enough to be executed directly, often in onecycle, without need of microcode or similar measures. Simple instructions are oftentranslated into just one microoperation, but more complicated and less often usedones can translate to many microops.There can usually be several microoperations in every stage of the pipeline, allowinga throughput of up to three or four microoperations per clock cycle.Di�erent classes of instructions generate a di�erent number of microoperations.The simplest operations that only work on registers are often represented by onemicrooperation. Memory stores or read/modify instructions which read a memoryoperand and a register operand, perform some arithmetic or logic operation andmodify the register and possibly �ags, use two microoperations. Another class ofinstructions is read/modify/write instructions which read an operand from memory,perform an operation, possibly with a register, and write the result back to memory.These instructions usually translate to more microoperations, possibly up to 4 onsome architectures.The microoperations are gradually becoming more and more complicated to takeadvantage of the CISC design. Traditionally, RISC architectures had an advantageof being able to execute one instruction per cycle (in one execution unit), whileCISC, with their complicated instruction set, had to use slow microcode.Now, when memory access is growing into the major bottleneck, it becomes anadvantage of the CISC design to have small code memory footprint. Also, asadvances in processor design allow a more complicated execution unit logic, evensome of the more complex instructions can be executed in one clock cycle. TheRISC architectures often have to use more instructions to realize the same e�ectas a more sophisticated CISC instruction, which is a further advantage of CISC.In the Pentium M design, for example, a memory-write operation uses only one(fused) microoperation. In previous designs, it has been split into two microopera-tions, one that calculates the address and another that writes the data.2.1.3 Register renamingThe x86 architecture only has 8 integer and 8 �oating point registers, which limitsthe amount of data that doesn't have to be loaded and stored to memory or cache.Since Pentium Pro, processors actually have many more physical14 registers anduse a technique called register renaming. They assign to every operation inputand output registers from all the microarchitectural registers and store a mappingbetween these registers and the small number of virtual or architectural registers ina special register alias table (RAT).1513. Microoperations are sometimes called �ops or macro-operations. If they are constructed by mergingother microoperations together, they are sometimes called fused �ops.14. Physical registers are also called microarchitectural registers, they represent a physical memory avail-able in the microarchitecture but not directly accessible from code.15. The register alias table is called Integer Future File and Register File on AMD processors.

15 Section 2

15

This also reduces false dependency chains by reducing register reuse � the samearchitectural register may be mapped to di�erent physical registers when there isno dependency.2.1.4 Instruction scheduling and reservation stationSince Pentium Pro, microoperations are queued in a reservation station (RS) beforebeing executed to allow out-of-order execution. A scheduler dispatches them fromthe RS to execution units through ports, when all input dependencies are ready �either calculated by previous operations (using fast store-load forwarding) or fetchedfrom cache or memory. Di�erent execution units or ports may have additionalscheduling requirements, complicated operations, such as a multiplication or divi-sion can often not be executed in every execution unit or go through every port.The scheduler in Pentium 4 is di�erent in that it schedules operations speculatively,estimating the time when all input dependencies will be ready. When the estimationfails and dependencies are not yet ready, the execution is repeated again.162.1.5 Reorder bu�er and retirementInstruction retirement is the write-back of the results of the operation to its �naldestination and altering the user-visible processors state. This must be done withcaution, in order to always present a de�ned state to the exterior.On Intel microprocessors, before the microoperations go to Reservation Station, theygo through reorder bu�er (ROB), which records information for them.17 After theyare processed in the execution units, they return to ROB which ensures that all oper-ations retire in order. The ROB also ensures that interrupts and exceptions behavein the same way as if they interrupted a sequential stream of in-order instructions.It also reads values of all operands for an instruction from physical registers. Thesize of the ROB, together with the size of the RS, determines how many instructionscan be in �ight at a time.18The separation of physical and architectural registers using renaming and the con-cept of retirement allows speculative execution. As long as an instruction is not yetretired, it doesn't have an e�ect on anything else but the other instructions behind it,which are not retired, either. It is therefore possible to speculatively start executingcode after a conditional branch instruction even if it is not clear yet if the branchwill be taken or not.2.1.6 Latency and throughputExecution units have two important properties for a microoperation: latency andthroughput. Latency of a microoperation is the number of clock cycles from thestart of the operation until the operation is �nished and the result is available.Throughput is the number of clock cycles it takes the microoperation from the startof the operation until another microoperation can enter the same execution unit.16. One reason for failed estimations may be a cache miss. The cost of replaying an operation can be high.17. This applies to Intel processors. AMD processors use a similar technique for out-of-order execution,but things are a little more complicated as three independent pipelines are used.18. The number of instructions in �ight is sometimes also called an instruction window.

Processor architectures 16

16

In most modern processors, simple operations such as addition or bit operations havea throughput of one operation per cycle and a low latency, such as 1 to 3 cycles.Most execution units except division are usually fully pipelined, so they have athroughput of one operation per cycle. Only the most complicated operations, suchas division, are often not pipelined and take up to tens of cycles.Multiple microinstructions can usually �ow from one stage to another every clockcycle. Some paths are wider than other and between some stages a bu�er is usedwhich allows for some �ow delay compensation. If the pipeline is stalled for sometime at one stage, accumulated microoperations from following stages can continueto �ow and �ll the gap created by the stall. This is of course only possible if thereis some bu�er space where the microoperations can accumulate.2.2 Branch predictionThe pipeline length varies from processor to processor. When a branch instructionis encountered in the instruction fetch or decoding stage, it is not yet known if thebranch will be taken or not and if taken, then to which target address.Waiting for the target address to be ready would require, for direct jumps, the branchinstruction to be completely decoded. To decide for conditinal jumps whether theywill jump, and for indirect jumps also to determine the target address, it might benecessary to wait for retirement of all previous instructions.The processor solves this problem by predicting if the jump will be taken andto which address. It then starts speculatively executing instructions following thebranch instruction (in case it is predicted not to jump) or at the branch target(if it is predicted to jump).In case the prediction was correct, no cycles were lost and the pipeline is fully used.If the prediction was not correct, it is necessary to throw away the results of allspeculatively executed instructions and restart from the correct address. It usuallyrequires the whole pipeline to be �ushed, often waiting for all speculatively executedinstructions to reach retirement (but not retire). The cost of the pipeline �ushcorresponds roughly to its total length as one stage usually takes one clock cycle.Processor type Misprediction penaltyPentium MMX (U-pipe/V-pipe) 4/5AMD K6 4Athlon XP 10Athlon 64 12Pentium Pro, II, III 11 (10 � 12)Pentium M 13Pentium Core 14Pentium Core 2 15Pentium 4 � Northwood 20 (21)Pentium 4E � Prescott, D, ... 23? (31)Table 1. Table of branch minimal misprediction penalties.

17 Section 2

17

Typical minimal misprediction penalties are shown in Table 1. Values in parenthesisare from di�erent sources.19For Pentium 4 and Pentium 4E, additional approximately 8 cycles need to be addedfor instructions that are not in the trace cache and have to be fetched from theL2 cache. This happens slightly more often than a L1 code cache miss on otherprocessors, because of the lower trace cache e�ciency. For Athlon processor, thepenalty is 1 cycle more if the code segment base is not 0 (which is now rare).The AMD K6 had a 6 stage pipeline and a branch misprediction was not thatimportant (but was quite good, nevertheless). But as the pipeline gets longer, branchmisprediction penalties are also higher. On Pentium Pro/II/III the mispredictionpenalty is usually about 10 to 20 clock cycles. On Pentium 4E processors, whichhave the longest pipeline, the minimal penalty is around 23, but typically about 45cycles, and can be much higher, well over 100 clock cycles, if slow instructions, suchas division, are executed. This is due to the fact that all microoperations need toget to retirement stage before pipeline can be �ushed.The need for a accurate branch predictor is therefore high. For branches that havenot been taken recently and branch history is lost, a simple heuristics is used todetermine if the branch is likely to be taken. The simplest algorithm is to predictbranch as taken if and only if it points backwards, a more complicated solution alsouses the distance to the target. This is called a static prediction and is usually onlyused when there is no other information about the branch available.Processors usually have a branch target bu�er, or BTB. It is a cache that storesinformation about branch behaviour and a branch target address. It is usuallyaddressed using a part of the address of the control transfer instruction it predicts.However, the lowest bits are sometimes not used for addressing, because instructiondata is usually fetched in bigger chunks, and the instructions in the chunk are notyet decoded. The important thing is to decide which chunk to load next as soon aspossible, before decoding it. For example, if instruction data is fetched in 16-bytechunks, the BTB may be addressed by bits 4..9 of the address of the last byte of acontrol transfer instruction. All branch instructions in a 16-byte aligned block, whereall addresses di�er only in the lowest bits 0..3, thus share the same BTB entry. Thismethod is only used in some processors.The simplest predictor is a local saturating bit counter for every branch, storedwithin a BTB. Each such counter is a linear automata with states ranging fromstrongly not taken to strongly taken, updated after the outcome of a branch.A more sophisticated approach is a two-level adaptive predictor . It maintains abranch history of last n branches and uses it as an index into a pattern historytable.20 An entry in the table contains a simple predictor, such as the saturatingbit counter . This kind of predictor can perfectly predict periodic patterns with aperiod of n + 1 or less and longer patterns if all n-bit sub-sequences in the periodare di�erent.19. Pentium 4E misprediction penalty is reported di�erently in various sources, the often cited minimum31 cycles penalty is probably the pipeline depth, not misprediction penalty.20. This index can be combined with branch address or other value using a hash function to more evenlydistribute the entries and prevent some aliasing.

Processor architectures 18

18

To allow recording longer history patterns, a two-level adaptive predictor with aglobal history pattern table may be used. It pro�ts from the fact that a behavior ofa branch is often correlated with behavior of other branches. This type of predictoruses a global history of last n branches, but with a bigger value of n, because thereis only one global history pattern table and it can be larger. A look-up in the BTBtable is performed in parallel with a look-up in the history pattern table.21There can also be an additional local agree predictor which is stored locally in everyBTB entry and speci�es if the �nal result of the prediction should be based on theoutcome of the regular prediction by another method, such as a two-level predictor,or if it should be the opposite. This eliminates problems with branches that sharethe same entry in the pattern table but behave di�erently.Most processor also have a return address stack that records return addresses forCALL instructions so that a RET instruction target can be accurately predicted.For typical loops, a regular branch predictor is always wrong at the end of the loop.A special loop counter can be constructed which predicts the branch by the numberof previous occurrences of the branch. When the branch is �rst encountered, itcalculates the number of iterations and in subsequent cases, if the code is identi�edas having loop behaviour, it predicts the same number of iterations of the loop. Aloop counter is usually combined with another base predictor which is used whenloop character is not detected.It is also important to identify the target address of a branch, not only if the branchwill be taken. For direct branches, the target can be known soon, when the branchinstruction is decoded. But for indirect branches, the target is known only after theoperation that calculates it has been executed and possibly retired.In a BTB entry, a target address is provided, which helps in the cases the target isalways the same. In the Pentium M predictor, the branch history stores not only ifa branch was taken, but also what was its target. The history pattern table containsa reference to a speci�c BTB entry that holds the predicted branch target address.Every time a new branch target is used, a new BTB entry is created for it. Thisway, even indirect jumps to di�erent target addresses can be predicted if the addresscorrelates with previous branch history.2.3 Di�erences in pipeline between processors generationsThe pipeline di�ers considerably between processor microarchitectures. There was asplit in Intel product line after the Pentium III processor. Pentium 4 concentratedon increasing clock frequency and extending the pipeline and used a completely newdesign. On the other front, Pentium M, which was based on the Pentium III design,went in a di�erent direction. It focused on improving performance at the same clockfrequency and a reduced power consumption. It now seems that the power-hungrydesign of the Pentium 4 microarchitecture was a dead end, because of the growingconcern over power consumption and heat dissipation. The newer Core and Core 2families are based on the Pentium M microarchitecture.21. On some processors (Pentium M), the BTB may be partly addressed from the pattern table, so anadditional step might be required.

19 Section 2

19

2.4 Intel Pentium and Pentium MMX processorsIn the original Pentium and Pentium MMX design, there is no reservation stationor reorder bu�er, the decoding front-end is tightly coupled with execution units andpermits no instruction reordering. Other techniques, such as register renaming, don'tmake sense with such design.The Pentium processor can provide some execution parallelism, albeit in a fairlylimited way. It has two parallel pipelines called U and V, which can sometimesoperate simultaneously � an instruction can �pair � with another one. Some can pairin either pipe, some can pair only if they are in the U pipe, some only in the V pipe.There is a list of instructions which are pairable in one or two pipes and rules forpairing in [25].The original Pentium uses a simple saturating counter for branch prediction withone peculiarity in that it moves from strongly not taken to strongly taken after onetaken branch. Pentium MMX uses a two-level predictor, similar to mechanisms usedby Pentium Pro, II and III.When an address used in an instruction depends on the result of a previous calcu-lation, the pipeline is stalled for one clock cycle to calculate the address. This iscalled an AGI (Address Generation Interlock) stall.2.5 Intel Pentium Pro, II and III processorsThe architecture of the P6 processors � Pentium Pro, Pentium II and Pentium III �is rather di�erent from the previous Pentium MMX in that the front-end is detachedfrom the execution core and the processor can therefore execute microoperationsout-of-order.The P6 family processors have a two-level adaptive predictor with a 16-way 512-entry BTB and a 16-entry return address stack to correctly predict 16 successivereturn addresses.The Pentium Pro fetches instruction data in aligned 16-byte raw blocks into a bu�er,one block each cycle. The bu�er can hold two such blocks. From there the data arepassed to an instruction decoder in instruction fetch blocks, or IFETCH blocks,which are up to 16 bytes long and start at an instruction boundary, except in somecases after taken branches. The next IFETCH block can be generated after theinstruction lengths and the end of the last instruction in the previous block havebeen determined. The next block will start at the beginning of the last instructionnot fully contained in the previous block.The instruction fetch unit can be a bottleneck in fetching around (predicted) jumps.If both the IFETCH block containing the branch instruction and that containing thetarget of the branch span two aligned 16-byte raw blocks, the fetch unit is stalled fortwo clock cycles, because it needs to fetch two raw blocks to generate the IFETCHblock of the target instruction for the decoder. If only one of them is not aligned,only one clock cycle is lost. It may therefore be advantageous to align targets offrequent jumps at a multiple of 16 if instruction fetching is a bottleneck.

Processor architectures 20

20

Instruction length decoder unit reads data from IFETCH blocks and determinesinstruction boundaries. It is able to detect lengths of up to three instructions in oneclock cycle, so instructions can be passed to three parallel decoders. It is also usedto decide where to start the next instruction fetch block.There are three instruction decoders D0, D1 and D2. Only D0 is able to decodemore complicated instructions that are either longer than 8 bytes or generate morethan one �op. The D0 decoder can generate up to 4 �ops per clock cycle, which isenough for most instructions.The �rst instruction from an IFETCH block always goes to D0. If one of the nexttwo instructions would need more than one �op, the decoding is stalled until D0 isvacant. To prevent the stall, instructions should be preferably organized accordingto the 4-1-1 rule, which means that between instructions that generate more than1 �op, there should be 2 simple instructions generating only one �op each.The IFETCH boundaries can break the 4-1-1 rule if they occur after the �rst orsecond instruction in a 4-1-1 pattern, because the �rst instruction in the fetch blockhas to go to D0. It is di�cult to predict where the boundaries will be, but in certaincases, it can be predicted. If a target of a jump is 16-byte aligned, the IFETCH blockwill always start at the beginning. After a misprediction, which always occurs aftera loop, an IFETCH block will start at the nearest multiple of 16. Also, when twoconsecutive instructions have more than 16 bytes combined, the second instructionwill always start a new block.To allow out-of-order execution, a reorder bu�er (ROB) with 40 entries is used. Inthis bu�er, instructions are prepared for out-of-order execution and they have anentry stored there until they retire in correct order. The ROB also prepares valuesof input registers for all operations. If the operation that modi�ed the register hasbeen executed recently, the value is read directly from the not-yet-retired ROB entryof the operation. If is has been executed earlier than about 3 or 4 cycles, it has to beread from a permanent register �le using one of the two available ports. A �op canhave two input registers, so if none of them was modi�ed recently, the throughputof the ROB stage is limited to only one �op per cycle.The register alias table (RAT) is able to process up to 3 �ops and rename up to 3registers every clock cycle, but doesn't have other limitations and can even renamethe same register three times in one cycle. The RAT has 40 physical registers whichare mapped to architectural registers. The larger number of registers is needed tosupport speculative execution and to remove false dependencies.The microprocessor generates 1 �op for simple operations on registers. For memorywrites 2 �ops are used. The �rst one is a store �op and the other one calculatesthe operand address. For read/modify instructions, also 2 �ops are generated, oneis a memory load operation and the other is the arithmetic operation. The morecomplicated read/modify/write instructions require 4 �ops. The �rst calculates thememory address and loads the value, the second �op calculates the result, andwrites registers and possibly a temporary value for the store, the third one readsthe temporary value calculated in the preceding step. The fourth �op calculates thememory address again and stores the result. PUSH generates 3 �ops, POP 2 �ops,CALL and RET 4 �ops each.

21 Section 2

21

There is a stall called partial register stall which a�ects code that writes a smallpart of a register and then reads a bigger part of the same register. This stall occursbecause smaller parts of a register are renamed to di�erent temporary physicalregisters to prevent a false dependency between, for example, AH and AL. If the stalloccurs, the �op that needs the data has to wait for the �op that wrote a part of thevalue to retire, which gives a delay of 5 to 6 cycles. This problem can be solved byusing MOVZX instructions to read small values from memory or by XOR-ing the wholeregister with itself. The processor will mark that the register is 0 and when a smallpart is modi�ed, it can be padded with 0s to make a bigger value without a delay.A problem called partial memory stall is similar to a partial register stall and occurswhen reading a bigger part of memory that includes a part that has been recentlywritten to. It also occurs when reading a smaller part of a memory that has beenwritten to if they don't start at the same address. The stall may also occur whenwriting and reading di�erent addresses that happen to share the same set in thedata cache. These stalls usually incur a delay of about 7 or 8 clock cycles.Another stall called partial �ags stall occurs with instructions using parts of the�ags register after instructions that modify some of the �ags but not all bits thatare used. It occurs most likely with LAHF, PUSHF and PUSHFD instructions which readall �ags, and gives a delay of about 4 clock cycles. A similar stall also occurs whenreading �ags after shifts and rotates by more than one.2.6 Intel Pentium 4 processorsPentium 4 has a very di�erent design from previous Intel processors. The Prescottcore supporting the EMT64T technology, sometimes abbreviated as Pentium 4E orP4E, introduced many changes in the design � most notably support for the 64-bitx86-64 instruction set introduced by AMD, even if it was disabled in early models.Pentium 4 architecture introduced a new concept called trace cache to improve theinstruction decoding stage and also branch prediction, both of which were, and stillare, bottlenecks in many cases. It replaces the code cache that is used on otherprocessors and is usually much larger but uses space less e�ciently.Instruction stream which is decoded is sent down the pipeline and at the same timestored in the trace cache. The sequence of instructions is stored there as a continuousstretch of microoperations, even across conditional branches in the original instruc-tion stream. This allows to avoid the expensive instruction decoding and operate asa RISC processor, because the microinstructions stored in the trace cache are usuallysimple RISC-like instructions. It also helps with branch prediction as it feeds thepipeline with a continuous sequence of instructions.Trace cache lines22 are sequences of up to 6 decoded �ops (microoperations) thatcan cross conditional branches. The lines are addressed by their virtual address23and possibly also by a set of last n branch decisions bits (taken/not taken). This22. Multiple trace cache lines can be linked to make a trace .23. Conversion to physical addresses doesn't need to be done until working with the L2 cache.

Processor architectures 22

22

allows to store di�erent trace paths starting at the same instruction but predictedto behave di�erently on branches. The same sequence of microoperations can bestored at di�erent locations in the trace cache if there are multiple execution pathsleading to the same code.There is a separate trace cache branch predictor with a BTB in addition to a front-end branch predictor similar to the one used by previous processors. When tracesof the code that is being executed have been built, the front-end branch predictoris not used and only the trace predictor is active.Decoding on the Pentium 4 is quite slow, it can only process one instruction perclock cycle, but when a code has been executed recently, microoperations are notdecoded from instruction stream but read directly from trace cache. Trace cache candeliver up to 6 �ops every second clock cycle, which corresponds to the maximalthroughput of the rest of the pipeline of about 3 �ops per cycle.More information about trace cache can be found in [32], [33] and [34].The Pentium 4 has 4 execution ports that forward microoperations to executionunits. Each execution unit is connected to only one port. Ports 0 and 1 have bothan ALU24 that operates on double of the base frequency of the processor.The execution units operate on various speeds with some accepting two operationsper clock cycle, some only once per two clock cycles and some, such as �oating pointdivision, have a much higher latency because they are not pipelined.Unlike in previous architectures, register renaming is not used to di�erentiatebetween non-overlapping smaller parts of a register but the whole register is updatedby every instruction that modi�es a part of it. This creates false dependenciesand sometimes requires an extra �op when accessing a part of a register but avoidsstalls from synchronization of various parts.There is a penalty of one clock cycle when mixing dependent instructions notexecuted by the same execution unit.Some instructions which move �oating point, MMX or XMM registers have a longlatency of 6 cycles on Pentium 4 and 7 on Pentium 4E.There is also a large penalty of about 10 to 20 cycles on Pentium 4 with a writeto memory followed by a read from the same address if the write has not yet beenexecuted because the value is not yet ready. The processor will speculatively try toread the value from memory over and over and cause a large delay.25 The Pentium4E processors are not a�ected by this problem.The retirement unit can handle 3 �ops per cycle but taken branches must retire inthe �rst slot. Small loops where retirement can be a bottleneck should thereforepreferably have a number of �ops a multiple of 3.24. Arithmetic-Logical Unit, performs integer operations, such as addition or bit operations.25. The main reason for the delay is that other �ops, which depend on the speculatively read values, willbe repeatedly executed and discarded before retirement.

23 Section 2

23

2.7 Intel Pentium M and Core processorsThe microarchitecture of Pentium M processors is similar to the architecture of theP6 family (Pentium Pro/II/III). The Intel Core processors are very similar to thePentium M processor but can use the 64-bit x64 instruction set,26 like the Pentium4E variants.The pipeline is 3 or 4 stages longer and the processor has some new features, suchas an improved branch prediction or so called �op-fusion that allows merging of two�ops that were executed separately in previous processors.There is a more complicated branch prediction mechanism on the Pentium M pro-cessor than on previous processors. It uses a two-level predictor combined with aloop counter. The BTB is 2-way associative and contains only 128 entries. It is quitesmall, so entries often push each other out, but the prediction mechanism works wellon smaller hot-spots.A loop counter is stored in every BTB entry and can predict repeated executionsof loops with up to 64 iterations. There is a 2-bit saturating counter for detectingwhether a branch has a loop behaviour or not. For branches that don't have a loopbehaviour (the loop behaviour �ag is not marked in its BTB entry), a two-levelpredictor with a global branch history table is used. Based on the outcome of thelast 8 branches, an entry in the global history pattern table is selected to predictthe jump.The branch prediction is also able to predict indirect jumps to many di�erent targets.More than one bit is recorded into the branch history table to di�erentiate not onlyif the branch was taken or not, but also what was the target of the branch.There is a also a new loop bu�er that can cache predecoded instructions for smallloops that �t into 4 blocks of 16 aligned bytes.Instruction fetching is improved, so fetching after a predicted jump is not delayedif the jump is not aligned � the IFETCH block will always start at the targetaddress. This reduces the delays in fetching and makes IFETCH boundaries morepredictable. Rules for decoder selection and throughput of the decoding unit aresimilar to those in the P6 processors.Thanks to a method called �op-fusion, the throughput of the pipeline can be higherthan 3 �ops. The processor is able to join together some �ops in the pipeline, whichwere separate in previous designs. The fused �ops use only one entry in the ROB andin most other stages of the pipeline. They are separated again into the original �opsjust for the execution stage, where both of them can go to di�erent execution units.A memory write operation which was split into two �ops in P6 processors is nowjoined back to only one fused �op. It is executed as two separate operations thatalways go to di�erent units. Most read/modify instructions, except those using XMMregisters, now also translate to one fused �op.26. The x64 instruction set is sometimes called x86-64. It is a name for either the AMD64 or Intel's EMT64,which are very similar.

Processor architectures 24

24

The ROB has been updated to allow a �op to have 3 input dependencies and toread 3 registers per clock cycle from the permanent register �le. These modi�cationswere necessary because a fused �op may now have up to 3 inputs.To reduce dependency chains on the ESP register, a stack engine is used, whichreduces the need to frequently update the ESP stack register. It stores a deltao�set ESPd needed to obtain the true ESP value in some of the common �ops thatmanipulate stack, such as PUSH, POP, CALL and RET. These instructions thereforedon't need to wait for previous updates to the stack pointer.Other instructions that read the stack pointer but don't use the stack engine, such asADD ESP,4 or MOV [ESP],EAX will need a special �op inserted before them to updatethe value of ESP by ESPd and set the delta o�set ESPd to 0. This �op is also addedwhen the 8-bit ESPd is near over�ow. It has a latency of 1 clock cycle. A specialtable is used to undo the e�ects of the stack engine in case of a branch mispredictionor an exception. To prevent the decoders from inserting the synchronization �op,instructions using the stack engine shouldn't be mixed with instructions not using it.The POP and PUSH instructions translated on earlier processors to 3 and 4 �ops,respectively, because they used the ALU for adjusting the stack pointer. Now,thanks to �op fusion, they use only one �op. The two store microoperations of PUSHare now fused together and the modi�cation of the stack pointer is done by the stackengine without additional cost.Memory store instructions may translate to 1 or 2 �ops, depending on use of the SIBbyte.27 If the SIB byte is not used, that is if there is no scaled index register and thebase register is not ESP, the instruction uses only 1 �op. Memory load operationsdon't have such issues and always translate to 1 �op.The Pentium M processor has 5 execution ports that forward �ops to executionunits. Ports 0 and 1 are for arithmetic instructions, memory read �ops go to port2 and memory writes are split into two operations which go to ports 2 and 3,respectively. Some execution units, such as the �oating point addition unit, areconnected to both ports 0 and 1. Unfortunately, when using many instructions thatgo to an execution unit connected to two ports, one of the ports will be stalled mostof the time, because the scheduler is not aware of the fact that two operations, whichgo to di�erent ports, might need the same resources and schedules them to occupyboth ports, even if they cannot execute in parallel and another instruction could goto one of the ports instead, without a stall.The retirement stage can process 3 �ops per cycle but taken branches can only retirein the �rst slot in the retirement station. If a branch instruction is not the �rst ofthe three �ops that may come to retirement (instructions retire in order), it willhave to wait for the next cycle to retire.On some models, partial register access generates a similar stall as in the P6 archi-tecture, but on newer models, a special �op that joins the di�erent parts of a registeris inserted where necessary, which reduces the delay from 5 or 6 to only 1 or 2 clockcycles.27. A SIB (Scale-Index-Base) byte is added to the instruction encoding to support more complicatedaddressing modes, such as when a scaled index register is used.

25 Section 2

25

2.8 Intel Core 2 processorsThe Intel Core 2 processor is similar to the Pentium M design, but contains someimprovements. It supports the x64 instruction set and has a higher maximumthroughput of 4 �ops along the whole pipeline instead of 3 in the Pentium M.The pipeline was upgraded and is 128-bit wide.The instruction length decoder is also more advanced, it can decode up to 6 instruc-tions in up to 16 bytes per clock cycle. Predecoding of next block cannot start untilall instructions in the previous 16 byte block have been predecoded. If there are7 instructions in the 16-byte block, it will take two clocks before the block will bepredecoded and next block can be fetched.There is a loop bu�er between the predecoder and the decoder, similar as in thePentium M, which allows to reuse predecoded instructions from previous runs. Theloop bu�er is only 64 byte long and can store four aligned 16-byte blocks.There are 4 decoders, which can decode together up to 4 instructions per clockcycle, but only the D0 decoder can handle more complicated instructions. Thedecoders can provide up to 7 �ops per clock cycle if the instructions use the 4-1-1-1pattern. This means that there are 3 simple instructions generating only one �opeach between instructions generating up to 4 �ops. There can be an unlimitednumber of pre�xes without penalty if the total length doesn't get over 15, butpre�xes that change instruction length require more time to decode and the penaltycan be up to 6 cycles.Decoders D1�D3 can only generate a single �op each, but it can be a complex fused�op which is treated as a single �op for most of the pipeline except in the schedulerfor the execution units. Fused �ops can also be produced for instructions usingXMM registers and for read/modify/write instructions which now only produce 2�ops instead of four, because the two read/modify �ops are fused and the two write�ops are also fused.Even two �ops that originated from di�erent instructions can now be joinedtogether, using so-called macro-op fusion. For example a CMP or TEST instructioncan now be fused with the next conditional instruction to form a compare-and-branch macro-op. Such macro-ops are not split even for the execution stage andare treated as one �op during the whole pipeline. There are, however, several con-ditions that limit the use of macro-op fusion. For example, it doesn't work in 64-bitmode,28 requires certain compare, test and jump instruction forms, there cannotbe any instructions between the two operations which should be fused and thereare also requirements on the alignment and position in a decoder block.The ROB still has the limitation of only 3 read ports to the permanent register �le.Reading the value from the permanent register �le is necessary if the register hasn'tbeen modi�ed in the last 6 clock cycles. It is however di�cult to predict such stallsbecause it is di�cult to predict which �ops will arrive together to the ROB.28. The reason behind this is probably that 64 bit �ops occupy more space in the ROB and there is noroom for additional information required for fused macro-ops.

Processor architectures 26

26

There are 6 execution ports, ports 0, 1 and 2 are for arithmetic instructions, port is 3for memory read �ops, ports 4 and 5 for memory write instructions. Most executionunits can work with the full 128-bit length data. All arithmetic ports have their ownALU which can handle 128-bit moves and all except one also a 128-bit addition.There is one integer multiplier, one �oating point multiplier, one jump unit andone shared division unit. The division unit is the only execution unit which is notpipelined.29There is a delay of one clock cycle when using a result from the integer unit as inputfor the �oating point unit or vice-versa.A false dependency may be created when using di�erent parts of the same XMMregister, because no renaming to di�erentiate the parts, which is used for generalpurpose registers, is possible for XMM.The data cache in Core 2 processor can simultaneously prefetch two data streamsinto the L1 and L2 cache. It is not possible to read and write memory with addresseswhich have the same bits 4 and 5 in one cycle � this is called a cache bank con�ict .There are delays of around 12 cycles for reading across a 64-byte L1 cache lineboundary and 10 cycles for writing across this boundary. Misaligned reads after awrite to the same address have a 7 clock penalty. The access time for L1 and L2caches are 3 and 9 clocks, respectively, which is quite fast.2.9 AMD Athlon and Athlon 64 processorsAthlon and Athlon 64 processors30 use a pipelined out-of-order design, as did theprevious AMD K5 and K6 families, but the microarchitecture is di�erent. Athlon 64additionally supports the x64 instruction set, but is similar in design to the originalAthlon.Unlike Intel microarchitectures, Athlon uses three parallel pipelines from decodeunits until retirement. Some instructions are translated into macro-ops,31 which mayconsist of two microoperations each, one for data loading and another for performingthe actual operation. The maximum throughput of the pipeline is about 3 macro-ops per clock cycle.Athlon and Athlon 64 processors use a two-level adaptive predictor with a globalbranch history of 8 jumps, a 4096-entry branch history pattern table, and a 2-way2048-entry BTB.The BTB is connected to the L1 code cache. For every aligned 16-byte block in theL1 cache, there are nine branch selectors for storing information about branches.These selectors contain information if the branch has never jumped, always jumpedor if dynamic prediction or return stack should be used. All branches, except thosenever taken, also need a BTB entry.29. This means that the throughput of microoperations is equal to the latency of the unit.30. Athlon processors are also called the AMD K7 family, Athlon 64 are also called K8. Athlon/64 willbe used to denote both Athlon and Athlon 64.31. They are conceptually similar to fused macro-ops in Intel processors.

27 Section 2

27

The BTB is organized as 1024 blocks with 2 entries each. Every aligned 16-byteblock is normally assigned one BTB block based on its address, which means it canuse 2 branch target entries. If a 16-byte block needs more entries, one additionalentry can be borrowed from another block, possibly using a LRU algorithm to selectthe index. With every such allocation, however, an additional BTB entry is lost.32A 16-byte code block cannot have more than 3 BTB entries assigned. If there aremore branches in one block that can all be taken, they steal each other a BTB entryand cause a misprediction every time.Another problem is with the RET instruction, which is usually only 1 byte long. Thebranch selectors in the L1 code cache are organized in a way that the RET instructionmay share a branch selector with another immediately preceding branch instructionor, in certain situations, the branch selector for RET won't be loaded at all. Boththese problems will cause a misprediction.Branch selectors are preserved when the code is evicted from the L1 code cacheto the L2 cache and back, but the BTB entries are lost. If the branch target islater needed and there is no need for dynamic prediction, the target can be readfrom the instruction with a much lower penalty than if misprediction happened.Indirect jumps will always cause a misprediction because the branch target cannotbe calculated from the instruction.There is also a return address stack, which contains 8 entries for branches that havea �ag in the branch selector indicating return address stack should be used.The instruction fetch unit always fetches one 16-byte aligned chunk from L1 codecache per clock cycle in a 32-byte decode bu�er. After a predicted jump, two cyclesare needed to �ll this bu�er before decoding can start. The decoding can be abottleneck, especially if the code contains many jumps, because every taken jumphas a minimal overhead of 2 cycles.33 Non-aligned jumps can have a bigger overheadbecause a big part of the �rst 16-byte chunk may be wasted if the target is locatednear the end.Instruction length decoder can process only one instruction per cycle, but instructionboundaries are stored in the L2 cache, so the length decoder speed is not so critical.There is even more information in the L1 cache, which help in the decoding process,such as the type of instruction or location of the opcode in the instruction encoding.There are 3 decoders and each of them can process one instruction with a maximumof 3 pre�xes34 per cycle.Instructions can be categorized into two groups: single or double instructions, whichgenerate one or two macro-op, respectively, and vector path instructions whichgenerate more than two macro-ops. Other decoders are stalled when a vector pathinstruction is decoded. The original 32-bit Athlon treats all instructions which gen-erate more than one macro-op as vector path instructions.32. A hypothesis exists to explain this behavior: one BTB entry is used as a pointer to the BTB blockcontaining the next two entries.33. This means that the maximum throughput for taken branches is one per two clock cycles.34. It is rare to have more than two pre�xes in normal 32-bit or 64-bit code.

Processor architectures 28

28

Many instructions, such as read/modify , read/modify/write or complex operationswith more than two dependencies, which require two �ops on Intel processors, onlyuse one macro-op.Athlon has a 72-entry instruction control unit which serves a similar purpose as thereorder bu�er (ROB) in Intel processors. It schedules macro-ops into the separatepipelines. There are 88 physical registers, a 18-entry integer reservation station anda 36-entry �oating point reservation station.Each of the 3 integer pipelines has its own address-generation unit (AGU) and ALU.The three ALUs can execute all operations except multiplication, which can onlybe handled in the ALU0. The double-size multiplication operations (using RDX forthe high part) additionally use ALU1. The 3 �oating point pipelines share threespecialized execution units: FADD, FMUL and FMISC. All three execution unitscan handle memory loads, memory stores go to FMISC.Scheduling in the �oating point pipelines has several problems. Macro-ops thatcan go to two or all three �oating point execution units are often scheduled to aunit that is not vacant or could be used by another macro-op, which cannot go toanother unit. Another problem is that a macro-op cannot be scheduled to a �oatingpoint execution unit if it would �nish at the same clock cycle as another operationin the same unit, which will occupy the single result bus. The scheduler is not ableto redirect the waiting operation to another unit or start a di�erent macro-op witha di�erent latency instead.All operations with MMX and XMM registers are executed in the �oating pointunits. The execution units are only 64-bit wide, so every 128-bit instruction isdecomposed into at least two 64-bit macro-ops. Using 128-bit instructions thereforeonly improves the decoding time, not execution.Reading a 8-bit or 16-bit memory operand to a register produces a one clock penalty,because the original value of the high bits is taken as a dependency.There is a delay when XMM instructions for di�erent data types, such as packeddouble versus packed integers, are used in a dependency chain. This doesn't applyto instructions that only read/write memory and don't perform any other task, suchas MOVAPD.35A false dependency is introduced between using di�erent smaller parts of the sameregister or even between writes to the same part of a register. The processor assumesthat a write to one part is dependent on the contents of the previous write, even if itused the same part. This dependency can be eliminated by clearing the full register�rst, for example by a XOR with itself. This false dependency is also not generatedwhen using a 64-bit low or high part of a 128-bit XMM register, as these are storedas two di�erent registers anyway.False dependencies can also be introduced between di�erent parts of �ags. Someoperations are recognized as independent, if the �ags written and the �ags testedare from di�erent groups of �ags.35. The MOVAPD and MOVDQA instructions may therefore be replaced by the one byte shorter MOVAPS forreading and writing memory.

29 Section 2

29

Cache memory is accessible by two ports, both can be independently used for readingor writing. Cache lines are 64 bytes long and organized into 8 banks of 8 bytes. Itis not possible to read from the same bank in di�erent cache lines in one cycle.Writes to cache memory proceed in order and before subsequent reads from thesame address. Reads proceed in order unless the data are not in the L1 cache. Inthis case, reads may go in any order, as they arrive from L2 cache or main memory.No memory read or write operation can proceed before addresses of all previousoperations are calculated.2.10 Major bottlenecks and possible optimizationsSome code will work well on a whole range of processor microarchitectures but someconstructs only help certain processors but hurt the performance on others. It isimportant to know where are the bottlenecks of a particular processor or of modernprocessors in general.2.10.1 Memory access performanceData memory access can be one of the biggest bottlenecks in code. Every L1 datacache miss may delay the execution by about 10 cycles and much more if the datais out of L2 cache as well. Especially when data needed in a dependency chain haveto be loaded from the main memory, the processor is basically stalled.Memory is cached in cache lines, which hold aligned blocks from memory, usually64 bytes long. Alignment of important memory structures by 64 may help to keepa bigger part of the structure together in one cache line and reduce the probabilityof eviction from cache.Another optimization involves storing values on stack, which usually contains a lotof frequently used data on its top, and therefore will probably be present in the L1cache. Data that are used together should be stored together to minimize cachefootprint and reduce probability of eviction of a part of the data from cache.The Pentium 4 processor has a small 8kB or 16kB (on P4E) write-through L1 cache,which can therefore be a bottleneck. More e�ort in using the cache e�ciently byalignment and packing data together may be necessary.On Pentium 4, there is also a large penalty of up to 20 cycles for reading memoryafter a write to the same address, which has not been completed yet. This canhappen for example in integer to �oating point conversion: IMUL EAX,10;MOV [mem32],EAX, followed by FILD [mem32]. It can be improved by producing afalse dependency of the load operation on the value, that is waiting to be written,to force a serialization. In this case it means inserting, for example, AND EAX,0before the load operation36 and replacing the load by FILD [mem32 + EAX]. The ANDinstruction will not break the dependency chain of EAX and FILD will be delayeduntil the value of EAX is calculated, long enough to prevent the stall.36. A XOR operation cannot be used, because the processor would understand that it is clearing the registerEAX and breaking the dependency chain in it, which is undesirable in this case.

Processor architectures 30

30

Memory prefetching can be used, either using the PREFETCH instruction or by loadingthe data into memory or using something like CMP ESP,[mem].37On Athlon 64, 128-bit memory reads and writes38 are treated as two 64-bit macro-ops, which can be executed only in the FMISC execution unit. If memory perform-ance is a bottleneck, read/modify instructions may be used instead, because theycan go to either FADD or FMUL units, and two such operations can be performedin parallel.For copying memory, it is better to use 64-bit general purpose registers, if they areavailable. When using the 32-bit mode, 64-bit MMX or �oating point registers,which can go to any �oating point execution unit, may be used.For Athlon/64, data that are often used together shouldn't be spaced 64 bytesapart, because it could cause cache bank con�icts when reading both values at thesame time. On Core 2, there is a similar problem when simultaneously reading andwriting to addresses that fall into the same 16-byte block modulo 64, i.e. that havethe same bits 4 and 5.2.10.2 Code cache performanceCode cache39 misses can be an important performance bottleneck if the frequentlyexecuted code, hot-spot , doesn't �t into the cache. Hot-spots may be reorganizedto better �t into the cache by separating out less frequently executed code to otheraddresses and compacting the hot code together.Alignment of the code also helps to keep the cache footprint smaller and decreasesthe chance that some of the code will be evicted from cache or that several addresseswill fall into the same cache set and force each other out of the cache, if there aremore such addresses than the associativity of the cache.Pentium 4, which doesn't have a code cache, has less problems with hot spots thatare distributed in a larger area, but there are other problems.2.10.3 Trace cacheFor the Pentium 4/4E processors, trace cache has to be taken into account. To savespace in the trace cache, instructions which generate fewer �ops should be preferredand conditional jumps should be replaced by conditional moves unless it wouldcreate delays due to extra dependencies.On Pentium 4, but not 4E, operands and relative memory addresses should bepreferably kept in the range between -215 and 215 in order to �t into the 16 bits ofstorage in a trace cache entry, which are reserved for operands of a �op. If it doesnot �t, space needs to be borrowed from another entry, possibly requiring allocationof a new entry.37. The CMP instruction is used because it only changes �ags. The ESP register can be used on processorswhich don't have a stack engine, because it is usually not a part of a long dependency chain. Other registerswithout long dependencies can be used instead on processors with a stack engine.38. The 128-bit memory operations can be done only with a XMM register.39. Code cache is also called instruction cache.

31 Section 2

31

Small loops with branches inside can also limit the performance of the trace cacheto less than 3 �ops per clock cycle, because they may break trace cache lines.2.10.4 Reducing branch misprediction penaltyA long pipeline has some advantages, but a signi�cant portion of the pipeline mayget �ushed by a branch misprediction and cause a stall proportional to a signi�cantportion of the pipeline length. Reducing this stalls is an important optimization goal.One way to reduce mispredictions is removing some of the branches. Beyondincreasing chances of a misprediction, code with many branches can also �ll theBTB bu�er and decrease the e�ciency of the prediction mechanism for other jumps.To reduce the number of branches, small procedures may be inlined and someconditional jumps may be replaced by conditional moves (CMOVcc instructions) orconditional sets (SETcc instructions).Sometimes, conditional branches may be replaced by arithmetic calculation. Forexample in the standard signed integer arithmetic, the min functions can be writtenas min (x; y) = y + ((x � y)� (n � 1))&(x � y), where n is the number of bits inwhich the machine stores variables x and y, because (x� y)� (n� 1) is either 0 ifx> y or has all bits set if x < y. Care must be taken, that the resulting code cansometimes be slower than if using branches, especially when the branches would bewell predicted in most cases.On Athlon/64 processors, BTB entries are lost for every aligned 16-byte block ofinstructions that contains more than 3 branches, except those never taken. If ablock contains more than three branches, they will contest for the BTB entries andthere will be a misprediction every time. Aligned 16-byte blocks should thereforenever contain more than 3 branches and unless there are enough BTB entries, theyshould even contain at most 2 branches. A large number of branch instructions insmall space is most commonly found when coding a switch statement as a series ofconditional branches. It can be replaced by an indirect jump in this case.Another problem with Athlon/64 is that the RET instruction, which is usually only1 byte long, might share a branch selector with another branch. This happens if theRET instruction is at an odd address and there is a branch immediately before it.Similar problem, caused by not loading the branch selector at all, can occur if theRET instruction is at an even address not divisible by 16 and is either jumped at orimmediately follows a mispredicted branch.Both problems, which can cause mispredictions, can be solved by making the RETinstruction at least 2 bytes long, for example by pre�xing it with a REPZ pre�x,which doesn't change its semantics. This should only be done if the RET instructionimmediately follows a branch instruction or if it is on an even address not divisibleby 16 and is a target of some jump.2.10.5 Instruction fetch and decodingInstruction fetching is a likely bottleneck in the more powerful Core 2 and Athlon64 processors, because the decoders do not evolve as fast as the rest of the pipeline.

Processor architectures 32

32

If decoding is a bottleneck, the 4-1-1 rule should be used for P6 and Pentium M andthe 4-1-1-1 pattern for Core 2. This means that instructions which produce morethan one �op should be interleaved by 3 or 4 simple instructions translating to onlyone �op.The Pentium Pro/II/III processors have delays when a branch instruction crossesIFETCH boundaries or if the target instruction is not aligned to a multiple of 16. Toprevent the stall, targets of a jump should be aligned to a multiple of 16. Pentium Mand Core 2 don't need such branch alignment. This optimization can actually makethe performance worse on these processors, because it results in code size growth,which can impact code cache performance.Athlon/64 processors always fetch blocks aligned by 16, so targets of frequent jumpsshould not be near the end of a 16-byte aligned block, because the subsequent blockwould also have to be fetched, delaying decoding by one cycle. Decoding of tiny loopsthat cross a 16-byte boundary will also need one clock cycle more every iterationbecause a new block will have to be fetched every iteration. Alignment of importantjump targets by 16 can be useful if decoding is a problem. This can be done usinga NOP or similar instructions or by making previous instructions arti�cially longer,for example by using redundant pre�xes.Complicated instructions involving microcode should be avoided if decoding is abottleneck, because they decode slowly on Pentium 4 and other processors. Thedecoding is, however, a bottleneck on Pentium 4 processors only if the critical partsof code don't �t into the trace cache. Otherwise, decoded �ops are fed directly fromthe trace cache.Using more than one pre�x should be avoided, especially on the Pentium M pro-cessor. On Core 2 processors, additional pre�xes cause no delays.Small loops shorter than 64 bytes in four 16-byte aligned parts can be predecodedin the loop bu�er in Pentium M, Core and Core 2 processors. Longer loops may besplit into several 16-byte aligned loops shorter than 64, if decoding is the bottleneck.For Core 2 processors, the instruction predecoder cannot fetch another 16 byte blockuntil it has fully decoded the previous one. In case predecoding is a bottleneck, itcan be better to make some instructions a little longer to �ll the 16 bytes with just6 instructions if there are 7 or 8 instructions in the block.Core 2 and other processors have a large penalty when decoding operand size pre�x(66H) or address size pre�x (67H). It is therefore advisable to replace instructionssuch as MOV AX,1 by MOV EAX,1 in 32-bit and 64-bit code.For memory operands, it is better to use MOVZX EAX, BYTE PTR [mem8] instead ofMOV AL, BYTE PTR [mem8], and likewise with 16-bit operands.For the same reasons, using a 16-bit immediate operand in 32-bit code should beavoided because it uses the operand size changing pre�x.

33 Section 2

33

A code using 16-bit parts of a register and an immediate operand, which cannotbe represented as a 8-bit signed integer, should be preferably replaced by a variantthat uses the full register. For example ADD AX,200 could be written using the fullregister as ADD EAX,200. Note that no change is needed for ADD AX,100, becausethe number 100 can be represented as a 8-bit signed integer and no operand sizechanging pre�x is needed.Some instructions that work with XMM registers come in several variants withdi�erent encodings, but doing the same thing. It is therefore preferable, for example,to use the shorter MOVAPS instruction rather than the longer MOVAPD or MOVDQAinstructions. Care must be taken that some instructions, which could be replaced bya di�erently typed form,40 might cause a delay on the Athlon 64 processor if they aremixed in dependency chains with other instructions typed for di�erent data types41in XMM registers.2.10.6 Breaking dependency chainsLong dependency chains often make it harder for the processor to perform out-of-order and parallel execution. This can cause delays in the pipeline, especially whendependency chains contain slow operations such as division, multiplication or some�oating point operations.Some processors, which don't rename smaller parts of a full register, can su�er fromfalse dependencies. This can happen even between two writes to the same part ofa register, because the processor treats such writes as dependent on the previouscontents of the register. On Pentium 4, Core 2 and Athlon/64 processors, it ispossible to use XOR or SUB of a register with itself as a way to break the dependencychain for a register.On most processors, it is possible to use the MOVZX instruction instead of movingdata to a part of a register. This also breaks a dependency chain, but this methodis slower on Pentium 1/MMX.2.10.7 Partial register, memory and �ags stallsPartial register and memory stalls occur when a write of a value is followed by aread of some larger part of register or memory containing the value that has justbeen written. The problem with writing to a part of a register and then readinga di�erent dependent part, is that the parts have to be combined together, oftenrequiring that the write is retired �rst. Partial memory access prevents e�ectivestore-to-load forwarding. The read operation therefore needs to wait until all partsof the value are combined together.4240. For example, some bit instructions, such as PXOR with a XMM register operand, XORPS and XORPD, usea di�erent encoding but perform the same operation.41. The only di�erence that matters here is between integer operands and �oating point operands. Thereis no delay when mixing instructions typed for packed single and packed double values, according to [25].42. Similar problems may be experienced even for reads and writes with di�erent addresses which havethe same set value in the cache.

Processor architectures 34

34

Partial �ags stall is a similar problem which can occur when only some �agsare written and other �ags are then used, generating either false dependencies orrequiring combining of the di�erent parts of �ags together.Partial memory stalls are similar on most processors, partial �ags stalls are lessfrequent on Athlon processors, because they keep �ags in several di�erent groups,which reduces false dependencies.Testing �ags immediately after shifts and rotates by more than one can cause apartial �ags stall on most Intel processors. To reduce the stall, other instructionscan be scheduled between the shift/rotate and using the �ags.Some processors (such as Athlon/64 and Pentium 4) don't have partial register stallsbecause they always keep the whole registers together, but this introduces anotherproblems � false dependencies. The Core, Core 2 and some versions of Pentium Mprevent partial register stalls by introducing special �ops that combine parts of theregister together, reducing the penalty to only 1 or 2 cycles.On most processors, it is possible to work with full registers instead, for exampleuse the MOVZX or MOVSX instructions instead of loading smaller data from memoryonly to a part of a register. These instructions break dependency chains and removepartial register stalls.Another solution is to neutralize the full register before writing to a part of it, forexample with a XOR operation of the register with itself.Using the 8�15 bit parts of registers, such as AH, BH, CH or DH, gives a penaltyon several processors including Pentium 4 and Core 2 architectures. On Athlon andAthlon 64, there is a penalty if AH, CH, BH or CH is written to memory that issoon afterwards read from.2.10.8 Instruction scheduling and ROB bottlenecksThe Pentium Pro/II/III processors have only two ports in the ROB stage to readfrom the register �le (physical registers). This can limit the throughput signi�cantly.The Pentium M and Core 2 processors both have a limitation of 3 reads from aregister �le, which is also a likely bottleneck, especially on the Core 2 which canfeed the ROB stage with more instructions each clock cycle.This stall can be improved by scheduling �ops so that most of the input registersare modi�ed by preceding �ops and can therefore be read directly from other ROBentries without accessing the permanent register �le. Care must be taken not tointroduce any slow instructions in the dependency chain, though.The registers which are likely to cause this problem problem are the stack and framepointers, loop invariants stored in a register or `this' pointer used in object-orientedlanguages to point to the current object, because they are all frequently read andless frequently written to. Scheduling instructions so that reads of a register arenot too far from writes to the register can help. Another solution would be to storesome values in memory instead, but it is necessary to take into account that therecan be other bottlenecks introduced instead.

35 Section 2

35

On Athlon/64 processors, macro-ops which go to a �oating point execution unit mustwait for the result bus to be vacant at the time the result will be ready. So if a longerlatency instruction, which is not in the dependency chain, is executed �rst, a macro-op with a shorter latency cannot go to the same execution unit pipeline and can bepostponed for a relatively long time. This bottleneck can be prevented if instructionsgenerating macro-ops with a shorter latency are put before instructions generatingmacro-ops with a longer latency when they both go to the same execution unit.To prevent delays caused by suboptimal scheduling in the �oating point units, it isrecommended to mix integer and �oating point instructions for Athlon/64.No memory read or write operation can proceed before addresses of all previousoperations are calculated. It is therefore recommended to calculate values that areused in addressing as early as possible.2.10.9 Using execution ports and execution units evenlyOn Pentium M, it is sometimes advantageous to replace MOVs between registers andfrom immediate data to registers by moving data from memory, because it allowsto shift load away from execution ports 0 and 1 to the memory load port 2.On Pentium 4, some execution units operate on higher frequencies and have lowerlatencies than other units. If some �ops go to a slower unit through a port thatcan feed �ops to a faster unit, the port is limited by the latency of the slower unit,delaying other �ops that could go to the faster execution units. It can help changethe instructions that go to slower units using fast ports to other similar instructionsthat use a di�erent port. This can be done for example with the MOV instructionwhich goes to a faster port when used with an immediate operand, but uses port 2if loading a memory operand.2.10.10 Optimizing execution units usageOn some architectures, such as Pentium 4 or Core 2, there is a penalty when mixingthe use of integer and �oating point units in a dependency chain, because of theneed to forward data between di�erent units. These data transfers between the unitsshould be minimized � it is better to place integer and �oating point instructionsseparately and then join the results as seldom as possible.On Athlon/64, a there is a similar penalty for mixing instructions working withXMM registers that operate on di�erently-typed data, except instructions that onlymove data or read data from memory.Code that uses a lot of multiplications on Pentium 4 might consider using MMX orXMM registers because the integer unit needs to transfer values for multiplicationto the �oating point unit and back.2.10.11 Instruction selectionThe Pentium 4 processors don't have a dedicated barrel-shift unit for fast shifting.Simple shifts, perhaps by up to 3 or 4, can be replaced by repeated addition of thesame register with itself. The Pentium 4E doesn't have this limitation and shifts areas fast as on other processors.

Processor architectures 36

36

Also the LEA instruction is slower on P4, because it is split into additions and shifts.Patterns like LEA EAX,[EAX + EAX*4]/SHL EAX,1 for multiplying the contents ofEAX by 10 are now considerably slower. Partly because of the SHL instruction,partly because of the ine�cient LEA instruction.On Pentium 4, the INC and DEC instructions are slower than using ADD/SUB and canalso create false dependencies on the carry �ag and cause partial �ags stall.Also on Pentium 4, some forms of memory store instructions which use the SIBbyte produce more �ops than others. If possible, the SIB byte should not be usedfrequently for memory store instructions. This means that ESP should not be usedas a base pointer and there should not be a scaled index register for memory targets.2.10.12 Taking advantage of �op and macro-op fusionWhen using 32-bit mode, a combination of a CMP/TEST instruction with a conditionalbranch can take advantage of macro-op fusion to become a single fused macro-op. There are however other requirements, certain combinations of compare/testinstructions are not possible, such as a test between a memory and an immediateoperand. Additional requirements specify that the conditional jumps cannot test theover�ow �ag,43 there can be no other instructions between the compare/test and thebranch instructions, and there are other alignment requirements. If it is possible tomeet all these requirements, code with a lot of branches can be signi�cantly speededup.On Pentium M, it is sometimes better to use �oating point registers instead of XMMregisters if �op fusion can improve performance.2.10.13 Reducing stack synchronization �opsOn Pentium M and later Intel processors, it is sometimes faster to replace MOVinstructions relative to the stack pointer by PUSH or POP. It can save some instructionlength and can reduce the number of ESPd synchronization �ops.Instructions such as ADD ESP,4 to clean up after a function call can be replaced bya POP ECX (or similar) if the next instruction is a PUSH, POP, RET or another CALL,because no synchronization �ops need to be inserted when all instructions use thestack engine.2.10.14 Retirement limitationsOn Pentium M and Core processors, three instructions can retire in one clock cycle,but taken jumps can only retire in the �rst retirement unit slot. Small, time-criticalloops should therefore preferably have a length divisible by 3, if retirement is abottleneck. The retirement units in the Core 2 and Athlon/64 architectures don'thave such limitations.43. The over�ow �ag is more di�cult to calculate.

37 Section 2

37

3 ELF �le format and BFD libraryThe IA-32 Binary Optimizer framework works with binary �les in the ELF format.I will brie�y introduce binary �le formats in general, the Executable and LinkableFormat ELF and the BFD library, which is used to access them.3.1 BFD libraryThe BFD (Binary File Descriptor) library allows manipulating many di�erent object�le formats in a uni�ed way. It can even read, create and modify Windows PE �les,so extending the optimizer to work with .exe �les for the IA-32 Windows platformshould not be too di�cult.The library works with handles to binary �les and provides abstractions for manycommon concepts, such as sections, symbols, relocations or debug information. Itprovides a uni�ed interface for most of the work in modifying binary program �les.After the program is processed by the BFD library, some small �xes to the �le areperformed, but the ELF-speci�c part is very small, most of the work is done by BFD.More information about BFD can be found in the BFD Manual [36].3.2 ELF �lesThe ELF �le format can be used for executable programs, dynamically linked lib-raries of for relocatable object �les. It is used in many UNIX-like systems on severaldi�erent 32-bit and 64-bit architectures.The optimizer is currently only able to process binary executable programs. Supportfor dynamically linked libraries should not be too di�cult to add. It might be eveneasier to analyse them, because they contain additional information which makes itpossible to place the code anywhere in the address space. This information couldbe used to disambiguate code memory references and trampolines would not benecessary.Processing relocatable �les might also be interesting, especially for results of partiallinking, because they also contain relocation information which could be used todisambiguate code addresses and improve optimization process, while not growingthe resulting �le size. The optimized relocatable �le would then be processed by alinker to create the resulting executable �le.The focus of the ELF �le format is on fast processing. All records in the �le have a�xed length and structure.44 Variable-length information must be stored elsewhereand referenced. Strings are stored in special string tables.ELF �les can be analysed with tools, such as readelf or objdump.44. The structure is di�ers between 32-bit and 64-bit variants of the ELF format.

ELF file format and BFD library 38

38

3.2.1 File headerEvery ELF �le starts with a �le header which contains various information aboutthe object �le, such as a description of the architecture, and also location of otherdata, stored as o�sets into the �le.The ELF �les provide two di�erent views on their content. One is represented bythe concept of sections, which provides more structured and detailed informationabout di�erent parts of the �le. The other are program segments which represent amore run-time perspective of the �le, focusing more on the properties of the imageof the program in memory and fast loading.There is a section header table describing sections and a program header tabledescribing program segments. One of the entries in the program header table refersto the location of the dynamic section, which provides necessary information fora run-time loader and dynamic linker. Relocatable �les most often lack programheaders.3.2.2 Program segmentsProgram header table is an array of simple structures that specify run-time behaviorof the program. There are di�erent types of program headers. The DYNAMIC programheader points to the dynamic section (described later), which is used in dynamiclinking. So called interpreter, usually a dynamic linker, is speci�ed in the INTERPprogram header. The interpreter is called �rst, when the application is about tostart. It performs some necessary actions, such as loading required libraries andrelocating some of the content.The last important type is the LOAD program header,45 which describes programsegments. These segments de�ne how should data from the �le be loaded in theprocess image in memory.Each LOAD header speci�es an o�set and length of data in �le, a virtual address,where the content should be positioned, and length in memory. If the length inmemory is larger than the length in �le, the rest of the pages not loaded from �leare �lled with zeros.Segments should not overlap in memory, but their images often overlap in �le. Thisis caused by the way in which the mapping of the pages from �le is done. Memorymanagement in most operating systems only allows to load pages from �le whichstart at o�sets aligned to page size. Code and data are loaded by two di�erent LOADsegments and don't share pages,46 but code and data sections are usually close toeach other in the �le, so two pages at di�erent virtual memory addresses may loadthe same data.4745. A LOAD header speci�es what is also called a LOAD segment. It has nothing to do with processorsegmentation, however.46. One reason for this is page protection. It is possible on some processors to disallow execution of datapages or modi�cation of code pages.47. As a result, there is often a part of the beginning of data in the last page of the code segment and apart of the end of code in the �rst page of the data segment.

39 Section 3

39

3.2.3 SectionsA binary object �le is divided into sections , which are described in the entries ofthe section header table linked from the �le header.Every section has its name, various �ags, o�set and size in the �le and an assignedvirtual memory address.48Most of the contents of an ELF �le, except for the �le header, section headers orprogram headers, is covered by a section. Sections may overlap by de�nition, butalmost never do, because standard compilers or linkers don't produce such �les.Sections are used extensively by the compiler and linker. In relocatable object�les, there is often a large number of sections used for special purposes.49 Someof them contain executable code, some data and other additional information usedfor linking, executing or debugging.Section name Description.text Binary code of the program.data Global initialized data.rodata Global read-only initialized data.bss Uninitialized data, not loaded from �le.init, .fini Process initialization and termination code.got, .got.plt Global O�set Table � used for dynamic linking.plt Procedure Linkage Table � used with .got.symtab Symbol table.strtab String table for .symtab.rel.plt Relocations in the .plt section.dynamic Dynamic section, used at run-time.dynsym Symbol table for dynamic loading.dynstr String table for .dynsym.eh_frame Exception handler frame information.debug_aranges Map from address ranges to debug information.debug_info Global debug information about for one compilation unit.debug_abbrev Abbreviations used in .debug_info.debug_line Line information used by debuggersTable 2. Sections of a typical executable �leTypical sections in an executable program are presented in the Table 2 above. Thesection names and their function is not strictly speci�ed by the ELF de�nition, butmost compilers follow this convention.48. For relocatable object �les, the virtual memory address is set to 0, because it is not yet determined.49. For example, in C++, some functions can occur in multiple source �les but should not be duplicatedin the resulting binary. They are placed in individual sections and referenced in a COMDAT section. Thelinker can then merge all such sections and remove all of them except one, so there is only a single copyof the code. This kind of linkage is sometimes called �vague linkage�.

ELF file format and BFD library 40

40

The code of the program can reside in multiple sections, but for executable �les, itis usually all concentrated in the .text section. This section is also the only onethat is instrumented and optimized by the optimizer framework.Initialization code, which should be executed before the main entry point, is placedin the .init section. It is used for example for global constructors in C++. Termina-tion code, used for global destructors and cleanup code, is put into the .fini section.Data of the program are stored in .data and .rodata and .bss sections. Symboltable is stored in .symtab with symbol names in .strtab and dynamic symbols in.dynsym with names in .dynstr.For dynamic linking, there is a procedure linkage table (PLT) stored in the .pltsection and a global o�set table (GOT) in the .got section. For every functionwhich is used in the program but de�ned in a dynamically linked library, a smallpart of stub code in the PLT is generated and a place to store the �nal address ofthe function is allocated in the GOT. This stub code in the PLT is statically linkedto all invocations of the function in the code. Every usage of the function will resultin calling the stub in the PLT.When a stub in the PLT is invoked, it uses the address of the function in its GOTentry to indirectly jump to the function. When the stub is invoked for the �rsttime, the entry in the GOT table will usually50 direct execution to a resolver of thedynamic linker which will determine the correct location of the function and updateits GOT entry. Next time the stub for the function is called, the control will betransfered to the function directly, using a single indirect jump.The reason for a PLT is that a compiler, when generating code for a function call,cannot �nd out if the de�nition of the function will be in a dynamic library or inanother object �le. It therefore always uses a direct call. This is the reason why theGOT cannot be used directly, but a stub in the PLT has to be generated.On the IA-32 architecture, on the other hand, it would be possible to use onlythe PLT with �nal addresses of functions directly embedded and relocated insidethe stub, but this would prevent the often larger PLT to be read-only and sharedbetween all process instances of the binary. On other architectures, there could beproblems that absolute addresses cannot be directly embedded in code, or that theywould require special alignment.The debug sections .debug_* are only used for debugging, so they are normallystripped out for installation and distribution. Data stored there are usually in theDWARF2 debugging format. The IA-32 Binary Optimizer is able to transfer thisdata, especially the line information, into the instrumented or optimized binaries.Tables used for exception handling are put into the .eh_frame section. The formatof this data is similar to the DWARF2 frame data, which are often stored in the.debug_frame section.50. In special cases, an early binding may be requested which �lls the �nal address into the GOT forall entries before the program is started. This behaviour may be triggered by de�ning the LD_BIND_NOWenvironment variable on most systems.

41 Section 3

41

The duplication of the information has two reasons: one is that the .eh_frame datacan be smaller, because it only captures information on stack frames which may useexceptions, the other is that debug information may be stripped altogether from a�nal installation of the binary.An executable program could work without any sections,51 all that matters for theprogram loader and dynamic linker is in the program segments and in the dynamicsection. However, compilers and linkers always keep sections for content that is leftin the �le, even when the binary is stripped.The binary optimizer relies on sections to �nd out the area where the executable coderesides. From the LOAD segments, the exact boundaries of code cannot be reliablydetermined. If necessary, a heuristic approach and control �ow graph search couldprovide this information, but is was not considered important as all �les I haveencountered had sections.3.2.4 Dynamic sectionThe most important data needed when executing or dynamically linking an object�le are stored in a dynamic section.52 It is usually stored in the .dynamic programsection53 and is also referenced from the program header table by a DYNAMIC programheader.The dynamic section contains information on required libraries and their versions,addresses of the init and �ni code, usually stored in .init and .fini sections, adynamic symbol table with its string table and dynamic relocations.The dynamic symbol table and dynamic relocations are only used by the dynamiclinker, so they only include those symbols and relocations, which are involved inrun-time linking.3.2.5 SymbolsSymbols are used to assign a name to an address or range of addresses in theprocess image of the program. In relocatable object �les, where addresses are not yetknown, o�sets in the �le are used instead of VM addresses. There can be symbolsrepresenting functions, variables or sections.Some symbols may be de�ned and have an address associated with them and somemay be unde�ned. De�ned symbols reside in the �le, unde�ned symbols are matchedagainst a de�ned symbol in another object �le during static linking or in a dynamiclibrary during dynamic linking. The usages of an unde�ned symbol are connected,in a process called relocation, to the symbol that was found for it in another �le.Symbols used for dynamic linking are called dynamic symbols. For every entry inthe GOT, a dynamic symbol with the name of the entry's function is generated.51. There is a tool called sstrip, which is able to remove section headers from program �le.52. The dynamic section is, however, not an ELF �section� in the sense as de�ned before.53. This is only a common practice, there is no need for any sections at all in an executable �le.

ELF file format and BFD library 42

42

3.2.6 RelocationsRelocations, or relocation entries, are used to relocate object �les during linking anddynamic linking. It is a process of connecting usages of a symbol with its de�nition.Every relocation entry has one of the prede�ned types and references a location inthe process address space54 and a symbol.During linking,55 every relocation entry is processed and the location it representsis updated to refer, in some way, to its symbol.The means of updating the location di�er according to the type of the relocation.The value written can be a relative o�set between some reference point56 and theaddress of the symbol. Other possibilities include writing the absolute address ofthe symbol or the address of the GOT entry for the symbol.In relocatable object �les, there are often relocations which update locations in code,in data and in the debug information. In executable �les, there are usually onlyrelocations for the GOT table and possibly for some data,57 because code is usuallymapped read-only and is shared between all processes executed from the same �le.The dynamic linker processes relocations and �lls the addresses of the importedfunctions in the GOT (either on demand or all at once) and addresses of importedvariables in the data segments.54. In relocatable object �les, �le o�sets are used instead of memory addresses � for the same reason aswith symbols.55. The method is similar for static and dynamic linking. Relocations, which are used in dynamic linking,are sometimes called dynamic relocations.56. Such reference point can be the location referenced by the relocation or, for example, the start of asection.57. A dynamic relocation is often added for variables such as errno.

43 Section 3

43

4 Program overviewIn this chapter, I will introduce the optimization system IA-32 Binary Optimizer ,which consists a part of this thesis. It is written in C++ language, uses BFD anddietlibc libraries and requires autoconf/automake for building. It is published underthe GNU GPL license and the latest sources can be obtained from the followingURL: http://sweb.cz/Alexandr.Kara/IA32_binopt/Some examples of using the framework can be found in Chapter C.The C++ language was selected because it is fairly portable, has a good supportfor higher level constructs and abstractions, while maintaining e�ciency and goodcontrol over the generated code. It also allows to easily use existing C libraries, likeBFD or dietlibc.The BFD library is used for reading and writing executable program �les, becauseit allows higher level view of the �le and manages the internal details on its own.Another advantage of using this library is that it supports many di�erent �leformats, including a.out, used in older UNIX and similar systems, or PE/COFF,used on Windows machines. This, combined with the fact that the optimizer doesn'tdepend on any other library except BFD, dietlibc and the standard C++ library,means that porting to other systems � either as a host or as a target � shouldnot be too di�cult.The dietlibc library is used to support embedding of a small independent and self-contained initialization code written in C into the instrumented binary program.More information related to the source code structure and description of importantclasses can be found in Appendix A. There is a Doxygen-generated documentation,which can be built from the source tree by running the doxygen program in the topdirectory of the project.The system is split into several programs, which use the same infrastructure. Thereis an instrumenting program called ia32bopt_prepare, which prepares a programfor optimization by inserting counters on all basic blocks and branches. The outputof the instrumentation phase is a program which writes the counters to a counting�le ${IA32BINOPT_BASE}/path/to/executable.58Another program of the toolchain, called ia32bopt_optimize, takes the instru-mented �le, reads the counters from the counting �le, performs some optimizationsand writes the result to the optimized program �le.Other programs, such as ia32bopt_analyse and is32bopt_disassemblecan be used to analyse either instrumented or input �les. The last programia32bopt_cpuinfo shows some more detailed information about the processor itdetects. Some default optimization options are selected according to the currentprocessor, so it may be useful to see the details of the CPU interpreted by theframework.58. If the IA32BINOPT_BASE environment variable is not available, /tmp/counters is used instead.

Program overview 44

44

4.1 Reading input �le and decodingThe �rst phase of both instrumentation and optimization is decoding of the inputbinary �le. It is done in several steps described in this section.4.1.1 Opening �leThe BFD library is set-up using bfd_init(), then the input �le, either the originalor instrumented program, is opened using bfd_openr(), its symbols, dynamic sym-bols and relocations are read.A test for programs using C++ exceptions is carried out. Code that uses excep-tions may behave incorrectly59 when executed from a di�erent location, because theexception handler tables are not created for the new code section.The check for exceptions currently works by testing for presence of an importeddynamic symbol __cxa_throw, which is a good indication of code using exceptions.It doesn't detect code that only catches exceptions from library functions, however.Updating of exception tables is scheduled to be added to the framework, so it shouldnot be that much of an issue in future.4.1.2 Analysing potential jump targetsAll sections of the input program are processed and potential addresses into thecode are gathered (in ConversionHelper::analyseProgram()). This is necessary toidentify places in the program, that could be a target of an unexpected jump. Directjumps that have the target address in the instruction operand are easy to predict.60The problem is with indirect jumps. The target address is usually stored either inthe constant data or as a part of instruction encoding, potentially anywhere in theprogram.The address of a jump may actually be computed, but this is very unusual anddi�cult to solve, so it is ignored. The only exception from this is the call insideglibc from call_gmon_start() to gmon_start(), which is explicitly handled in theconvertor.The detection of potential jump targets is done in two steps. All code sections are�rst scanned to �nd the range of code addresses and to identify the start addressesof instructions (in ConversionHelper::analyseSection()). The detected instructionstarts are written into a bitmap.Then, data sections are scanned for aligned values that fall into the code range andpoint to a start of an instruction. Similarly, code sections are scanned for similarvalues in immediate data or in displacement of the LEA instruction.59. It will usually crash when throwing an exception.60. Except for far jumps, but they are rare in 32-bit mode and almost never jump into the same code section.

45 Section 4

45

The detected jump targets are stored into a bitmap (called possibleTargets) andwill be used later, to add trampolines back to the optimized code. Addresses ofsymbols are also stored in a bitmap (called symbolAddresses).Along with the bitmap, the location of the reference, which caused the address tobe marked as a potential target, is stored with every target. It may be later used toavoid a trampoline.4.1.3 Cloning code sectionWhen code should be converted, the original version is left in its place and clonedto a new section61 code is modi�ed. Parsing of the basic blocks and all other stepsare performed on the new (cloned) section. The cloning of the code section is donein ConversionHelper::cloneCodeSection().If only analysing the �le, this step is skipped and data are parsed from the originalsection.4.1.4 Parsing basic blocksBasic blocks are parsed in ProgramSection::parseBlocks(). A bitmap of addresseswhere blocks should be forced to end is passed to the function. In the beginning, asingle basic block is formed and instruction parsing is initiated. As parsing continues,blocks are split after branch instructions and calls, at targets of a branches or callsand at addresses speci�ed as forced block ends.For far jumps and jumps outside of the code section, a Relocation object is created,and the instruction is relocated before new code is written to a �le.If removing of empty blocks is requested (using --keep-empty-blocks=n option),blocks that end with NOP instructions62 are trimmed or removed completely ifnothing is left.4.2 Writing resulting programWhen all instrumentation or optimization work is �nished, the code is prepared forwriting. This is done in several steps.4.2.1 Placing blocksAll blocks are assigned an address so that they do not overlap. If a command-lineoption --condense-blocks was speci�ed, blocks are placed so that a next blockstarts immediately after the block before. This may improve code locality, but alsodisrupt alignment. Block placement is done in ProgramSection::condenseBlocks()and ProgramSection::�xBlockOverlaps().61. The original section is appended a su�x '.orig'.62. Instructions which are used as multi-byte NOPs, such as MOV EAX,EAX or LEA EDI,[EDI + 0], are alsoincluded.

Program overview 46

46

The next step is done in ProgramConvertor::�nishChangingAddresses(). All sec-tions are placed in memory so they don't overlap, while honouring alignment require-ments. Symbol and relocation addresses are updated. Unlike local symbols andrelocations, which are moved with their blocks while code is changed, external sym-bols (represented by SymbolInfo and RelocationInfo objects) retain the originaladdress and are translated only after all modi�cations to the code are �nished.Local relocations (Relocation objects) are also performed (relocated) at that point.If additional code from another object �le needs to be added to the new program,63it is added into a new code section in �llHelperSection() in prepare_counting.cpp.The new code is relocated just after being copied to the new section.If section end alignment was requested (using the --page-align-section-endcommand-line option), it will be aligned, possibly by �lling the end it with NOPinstructions. This is done in ConversionHelper::�xupClonedSection().4.2.2 TrampolinesTrampolines are jumps from original code addresses to corresponding locations inthe new code. When all addresses are �nalized, trampolines may be processed.Addresses where a trampoline should be added are marked in the possibleTargetsbitmap.64 If the --trampolines-on-counters command-line option is speci�ed, alllocations with a pro�ling counter will also get a trampoline.Some addresses, where trampolines should not be placed, may be speci�ed with the--avoid-trampoline=<address> option. Values in the data that reference suchaddresses are updated to point to the new location. There is a risk that the valuewill not represent a code address and will get updated by mistake. If such value ischanged, it may result in program malfunction. That is why no addresses where toavoid trampolines are speci�ed by default.Trampolines are also not inserted on special symbols, such as call_gmon_start(),which uses a relative addressing of data outside of code and needs to be executedin the original code.At addresses, where a trampoline should be added and has not been avoided, a jumpto the equivalent address in the new (instrumented/optimized) code is inserted. Thisis done in ConversionHelper::insertTrampolines().There are 3 algorithms for placing the trampolines: immediate, delayed and any-where. They all use a bitmap of the original code address space to mark the addressesthat have been used to place jumps and which must therefore not be overwrittenagain.63. This is only used when instrumenting, not for optimization.64. Additional addresses may be speci�ed using the --trampolines-on-syms command-line option.

47 Section 4

47

The immediate mode is the most sophisticated method. It analyses all locationswhere a trampoline should be added and adds it directly if it cannot clash with othertrampolines. At places, where only a shorter jump may be placed, because there areother trampoline locations in the way, only a short jump to a near full-length jumpis inserted.In some cases, the place with the trampoline can be left intact if there are nobranches in the way � the trampoline can be safely deferred a couple of instructionslater. If there is a RET instruction, no trampoline is needed, because the code willreturn to the caller anyway. If there is another trampoline, the two may use onlyone jump together, with one path running a little longer in the original code.When using the delayed mode, basic blocks are used. All blocks that should havea trampoline inserted are pushed in a queue. Blocks from the queue are processed,one by one. If there is enough space, a trampoline is inserted, overwriting the block.Otherwise, the next block and the branch block (if there is a branch) are added tothe queue and processed later.In the anywhere mode, trampolines are placed in every basic block where a full-length trampoline jump may �t.4.2.3 Other information transferTo enhance debugging in the instrumented or optimized sections, some debugginginformation in the DWARF2 format, such as line info, is created for the new code.The information is taken from the original code and is translated using VMA trans-lation.65There is a plan to create exception information for the new code, but it is not imple-mented yet. The exception handler uses stack frame information similar to DWARF2format frame info, but stored in the .eh_frame section, to unwind the stack and�nd appropriate handler for an exception. Once this work is done, exceptions shouldwork even in the instrumented and optimized programs.When all information is transferred, the start address of the program is updated topoint to the new code.4.2.4 Creating the output �leJust before writing the new code to the instrumented/optimized program,BasicBlock objects are destroyed and their raw data is written to data bu�erin ProgramSection::prepareSectionData().The raw data from all sections, symbols, relocations and various �ags are fed to theBFD library, which produces the result �le.65. The VMA translation, implemented in CodeTracker, translated between original and new virtualmemory addresses (VMA).

Program overview 48

48

Sometimes,66 it produces a program that could not start. The most obvious reasonis that it doesn't create an appropriate LOAD segment for some of the sections. Onereason for this is that it cannot move the ELF program header table, which is usuallyat the beginning of the �le, to another location. The header therefore cannot growand new segments cannot be added to it.The code in Elf32_utils::�xFile() goes through all sections from the section headertable and determines if there is a LOAD segment with appropriate permissions whichfully covers the section. If not, an existing LOAD segment must be extended or a newsegment must be added to cover the section.A new section .elf-prgm-headers, which serves as a placeholder for a new �leheader, is inserted into the program at the beginning of the optimization process.If the new program header table would not �t in the original space, it is written tothis new section and a pointer in the ELF header is updated to reference it.4.3 InstrumentingInstrumenting is the process of adding pro�ling-gathering code into a program. Thiscode provides pro�ling information to the optimizer. Currently, the pro�ling datacontains the number of passes through all basic blocks and the number of passesthrough taken branches in all blocks. All control �ow on edges, except on branchesthat jump to multiple targets (using indirect branches), is therefore known.In the future, additional information, such as counting the times a register ormemory variable is 0 or counting passes for indirect jumps, may be added.4.3.1 Inserting countersAt the entry of every basic block, a counter is placed. When the block doesn't endwith an unconditional jump, another counter is placed at the end of the block. Thisway, the number of straight passes through the block and branches can be calculated.For indirect branches, which have multiple branch targets, the number of passes isestimated. The total number of taken branches from a particular block is divided� either equally or in proportion to target blocks input pass counts � to all branchtargets.The code for a single counter for the IA-32 architecture is written in the assemblylanguage (source code is in instrumenting/helpers-i386/counting_bits.s) fora complete control over the code:PUSH ECXMOV ECX, counterLOLOOP 1PUSHFLOCKINCL counterHIPOPF1: MOV counterLO, ECXPOP ECX66. Most of the time, actually.

49 Section 4

49

The counter consists of two 32-bit values: counterLO and counterHI. It needs toincrement quickly the lower value, preferably without changing �ags.67 The LOOPinstruction can be used for this on all processors. The only thing is that it decrementsthe value, instead of incrementing it. The lower part of the counter must thereforebe inverted before use. The high part of the value is seldom incremented, thereforeall �ags are pushed and the INC instruction is used.The pro�ling mechanism should not interfere with the other code. Even though stackis used to store temporary values, this should not a�ect any well-written program.The reason is that interrupts may normally arrive at any time during programexecution and they may change anything below the stack pointer. The pro�ling codeonly uses memory that must not be used anyway, because of interrupts.There can be another problem with the pro�ling code: concurrent access. This isbecause static variables counterLO and counterHI are used. Updating these valuesmay not be atomic when running in multi-threaded environment. For the sake oflimiting the impact on performance, the lower part � counterLO � is not protected,because writes are atomic and small errors in the value are not a big problem. Thehigher part � counterHI � is protected by a LOCK instruction, because the overheadis lower (due to lower update frequency) and a change in the most signi�cant partcould alter the interpretation of pro�ling data signi�cantly.On the x64 architecture, the situation is a little bit more di�cult, because programsmay use up to 128 bytes below the stack pointer as a scratch space. The stack pointerhas to be lowered �rst68 and then, data may be written below the original boundary.Symbols that marked a basic block start in the original code, are placed on thecounting code at the entry of the corresponding basic block in the instrumented code.Another symbol, with �-direct� su�x appended, is placed just after the countingcode.Information about every counter is stored in the .info.ia32binopt section of theinstrumented program. Other info, such as the framework version, number of blocksand counters or section sizes, is placed in the .data.ia32binopt section. Data fromboth sections are later used for analysing the counters in the optimizer.4.3.2 Code helpersThere are several tasks that need to be done before counters can be used. Therefore,an initialization code is injected into the code and the entry point of the programis redirected to it.The initialization code is fairly complicated to be written in pure assembler, so it issplit in two parts. Most of the code is written in C, only a short routine is coded inassembler.67. Saving and restoring �ags is an expensive operation on modern processors.68. This has to be done to protect the data of the pro�ling code against interrupts, which may overwriteanything below the 128-byte protected area.

Program overview 50

50

The initialization assembler code, which is run before any other code of the program,is located in instrumenting/helpers-i386/counting_bits.s and looks like this:PUSH EAXMOV EAX, [ESP + 4]MOV program_argc_ia32bo, EAXLEA EAX, [ESP + 4*EAX + 12]MOV program_envp_ia32bo, EAXLEA EAX, [ESP + 8]MOV program_argv_ia32bo, EAXPUSH ECXPUSH EDXCALL initializeCountingPOP EDXPOP ECXPOP EAXJMP origStartVMAIt �lls some important variables which will be used later and calls the C initializationroutine in initializeCounting(). At the end, it jumps to the original entry point.The part of code written in C needs to do a lot more � prepare �le to store thecounter values and make changes to the memory layout.The path to the counter �le is determined by appending the absolute path of theprogram after the root directory for counter �les. The root directory for all counter�les is normally either /tmp/counters or � if the environment variable is de�ned �${IA32BINOPT_BASE}. This location assures that the instrumented �le doesn't needany special permissions for updating the counter �le.The initialization code has to create the counting �le if it doesn't exist,69 and erase itscontents if it describes an older version of the program.70 The directories are createdwith special permissions, similar to those usually used by /tmp, which ensures thateverybody can write to their own counters, but not to anybody else's.If the counter �le cannot be created or loaded, the area used by the counting codeis allocated and cleared. The code will work normally, only values of the countersfor that particular execution of the program will be lost.The counter values are preserved and reused across di�erent invocations of theprogram. To achieve this, counters are mapped from a �le using mmap() systemcall, which automatically updates the values on program exit and on other occasions.A problem might occur when two di�erent instances of the same program would beloaded into memory. This is resolved by using an optional locking of the counter�le. If the locking fails, which means that another instance of the same program is69. All directories on the path must also be created if they don't exist.70. This is detected using the .info.ia32binopt section, which contains information about the programand also describes all counters.

51 Section 4

51

running, the initialization code must mmap() anonymous memory instead of the�le, because the counting code will be writing to the area in all cases.Some systems also incorrectly set the brk value � which marks the end of the datasegment and start of an area available to heap � to a low value. This can cause acollision between the counter area and heap. The initialization code therefore checksthe brk value and updates it if necessary.The instrumented program doesn't necessarily dynamically link to the standard Clibrary or may import only a couple of functions. It would be therefore di�cult touse standard functions in the C initialization code. To allow the initialization codeto use a C library, it needs to be statically linked. The standard glibc library wasevaluated, but it cannot be used two times, both statically and dynamically linked,in one program. The solution was to use the dietlibc library, which provides all basicfunctions and is very light-weight. The initialization self-contained code is roughly2.5kB, including the parts of dietlibc it uses.4.3.3 Helper object �leEmbedding the initialization code or the code of the counters into the program thatperforms the instrumentation would limit �exibility. This code is therefore readfrom a relocatable object �le, which is located in helpers-i386/counting_bits.o,relative to ia32bopt_prepare program path.71 This default location may be over-ridden using the --code-utils-file command line option.The counter code and the initialization code are placed into separate sections, called.text.cntblock and .text, respectively.The counting code is placed into a BasicBlock object and then cloned to all placeswhere a counter is needed. It uses two relocations on IA-32 � for the counterLO andcounterHI symbols. For every occurrence of these symbols, a Relocation objectis created and the location is relocated before the section data is written to thedestination �le.The initialization code is copied (in �llHelperSection() in prepare_counting.cpp)into a new section .text.ia32binopt. All data used by this code are copied intonew sections .data.ia32binopt and .bss.ia32binopt. Symbols and relocationsare copied from the helper object �le, too.Some unde�ned symbols from the helper �le, such as origStartVMA, counters,counters_count or program_argv_ia32bo are de�ned, allocated space and pointedat their �nal place in the new sections. The errno symbol needs a special attention.In the helper object �le, there is a relocation for this symbol pointing at the �rst byteof the .bss section. In the instrumented �le, this location is occupied by informationabout counters, so a new place for errno is created in the .data.ia32binopt section.71. This applies to the IA-32 architecture. Code for the counters and the initialization rountine for thex64 architecture is stored in helpers-AA64/counting_bits.o.

Program overview 52

52

4.4 AnalysisBefore the program can be optimized, it is �rst analysed. The routine which conductsthe analysis is analyseInvariants() in optimize.cpp.First, a control-�ow graph (CFG) graph and reverse CFG are built for all blocks inthe code section. An InstructionInstanceWI object, which contains data struc-tures for storing invariants, is created for all instructions.4.4.1 Analysis of the stack pointerStack pointer value relative to a base value is recorded for all instructions. This isdone for all Function objects. The value of the stack pointer at the entry of thefunction, or at the �rst block � in case there are multiple entries � is used as thebase value. All operations with the ESP register are recorded and the stack pointerposition relative to the base value is updated. A check if all stack positions matchthe stack position of target block in cases of a jump, and also if the stack positionat a return from a function is the same as at the entry.4.4.2 Analysing free locationsAfter stack pointer analysis is done, free space in registers and on stack is exploredusing an iterative algorithm.In the beginning, all blocks are added into a queue and all sets of empty (or free)locations are cleared. Blocks are then taken from the queue, and their free locationsare analysed.For each block, empty locations from the beginning of all subsequent blocks inthe control �ow are taken and their intersection is used as the state of the emptylocations at the end of the block. The instructions in the block are then processedbackwards, adding all locations that are overwritten to the empty locations set.When the empty locations at the beginning of the block change, all predecessors inthe control �ow graph are added to the queue to be processed again, because theinitial set of empty locations at the end of the block may have changed.All changes in the set of empty locations are monotone, new empty locations areonly added, never removed. The algorithm is �nite, and can be stopped at any time,yielding a valid set of empty locations, even though it may not be the largest one.There is currently no limit on the number of iterations, as the algorithm tends toconverge quite fast.The OptimizeFramework::analyseEmptyLocations() contains the code for theanalysis.

53 Section 4

53

4.5 SSA FormThe static single assignment form (SSA) is an intermediate code representationoften used in compilers. In this form, variables are versioned and every version of avariable is assigned to exactly once. When a variable is assigned a di�erent value,a new index is chosen for it and for all subsequent usages of it. When two di�erentversions of a variable come to a basic block from two di�erent control �ow branches,a new version is created. The new version is assigned the result of a �-function withall the input versions as parameters.x = 2; x1 = 2;y = 3; y1 = 3;z = 5; z1 = 5;if (...) { if (...) {x = x + 5; x2 = x1 + 5;} else { } else {x = x + y + z; x3 = x1 + y1 + z1;y = 2 * y + x; y2 = 2 * y1 + x3;} }x4 = �(x2; x3);y3 = �(y1; y2);x = 2 * x + y + z; x5 = 2 * x4 + y3 + z1;Figure 2. An example of translating a program to SSA formThe SSA form has the advantage that many properties of the data �ow becomeevident. For every usage of a variable, it is easy to track its de�nition and all otherusages of the same value.For a binary framework, all usages of registers, and stack locations will be assignedan index.72 This index will be kept in the InstructionInstanceWI object, whichrepresents the instruction. Additionally, a database mapping from indexed variablesto their de�nitions and all usages will be created, if necessary.The SSA form is constructed in several phases, discussed in subsequent sections. Thesource code for SSA form building is in SSAForm::buildSSA(). It is almost �nished,except for the last step � the actual construction of the form. No optimizer pluginscan take advantage of it yet.More information about SSA can be found in [37] and [38]. Dominators and dom-inance frontier construction are analysed in [39], [40], [41], [42], [43] and [44], datastructures used in building of the dominator tree are described in [45], [46] and [47].4.5.1 Dominator treeThe dominator and post-dominator are important constructs in the control �ow.They are used in the SSA construction, but can have many other uses in control�ow and data �ow analysis.72. The SSA analysis is usually done inside one function, so stack locations are stable. If building globalSSA form, indexes for stack locations would have to be built separate for di�erent functions and thenunited for each analysis across calls, considering stack base di�erences.

Program overview 54

54

A node through which all possible control-�ow paths from entry to node x must go,is called a dominator of x . Similarly, a node through which must go all paths fromx to the exit node is called a post-dominator of x . The immediate dominator of anode x is the last dominator of x on any path from entry to x . It can be shown thatit is unique. The immediate post-dominator is de�ned accordingly. The immediatedominators form a tree called a dominator tree.In the optimizer framework, dominator trees are built separately for each function.Nodes in the de�nition are represented by basic blocks and the entry node is theblock with the entry to the function. Any basic block with a RET instruction is anexit node.To evaluate di�erent algorithms, four methods can be used to build a dominatortree: Lengauer-Tarjan [39], Semi-NCA [43], iterative DFS [42] and iterative BFS [43].4.5.2 Building the SSA form, J-reduced CFG, !-DFThe dominance frontier of a node (basic block) x , denoted DF(x), is the set of nodesthat are not dominated by x , but some of their immediate predecessors in the CFGare dominated by x . This means that the nodes in the dominance frontier of x arenodes that have a path leading to them from x and also a di�erent path from theentry node, which does not pass through x . The nodes in the dominance frontierof x are candidates for placement of a �-function for all variables modi�ed in theblock x. Building a complete DF may be too expensive, as suggested in [37], so the� placement algorithm doesn't build the DF explicitly.To build the �-function, a J-reduced CFG is built, which collapses all stronglyconnected components of the dominance frontier graph into a single node. Thesecomponents are the same as the strongly connected components of the !-DF graph,which is a restriction of DF on siblings in the dominator tree and is smaller thanthe complete DF graph.When a J-reduced CFG is constructed, siblings in its dominator tree are orderedaccording to a topological order of the !-DF graph. The post-order visit to thedominator tree of the J-reduced CFG gives a an ordering called !-ordering and itcan be shown that it also constitutes a topological sorting of the dominance frontiergraph.The nodes are then processed in the !-order and for each node a pruned dominancefrontier (PDF) is built, using information from its children in the dominator tree73.Nodes in the PDF(v) set of block v will inherit variable versions assigned in v andalso versions from other blocks, so a �-function must be placed there for all variablesassigned in v.We only need a single pass, because the !-ordering is also a topological sorting of thedominance frontier relation, so dominator tree children are always processed beforetheir parents and also blocks in the DF relation are processed in the right order.73. Because the !-ordering is a post-order ordering in the dominator tree, all children must have beenprocessed before their parent.

55 Section 4

55

4.6 OptimizationWhen the analysis of the code is �nished, the program is ready to be optimized. Alloptimizer plugins that are included in the build are instantiated and registered atan OptimizePluginRegistry object. It reads a con�guration �le, updates valuesin plugin con�gurations and executes the plugins. All plugins inherit from the baseclass OptimizePlugin, which provides the interface and con�guration handling.Every optimizer plugin gets an OptimizeContext and OptimizeFramework objectswhich contain analysis info about the code, such as counters, empty locations, con-trol �ow graph, dominator tree and in the future also the SSA form.Most plugins work only on �hot �, or frequently executed, code. This is usually setas a relative value, using a percentage of the most frequently executed block in theprogram.4.6.1 CacheUnalias pluginThe CacheUnalias plugin74 aims at improving instruction cache performance bymoving or copying basic blocks to di�erent addresses. This plugin yields the biggestperformance gains, as experimental results in Chapter 5 suggest.Instruction cache performance can be limited by two problems: address aliasing andpartial cache line utilization.When several addresses contend for the same set in the instruction cache, they keeppushing each other out from the cache. This is called address aliasing and can impactperformance, especially when the aliased addresses are inside a tight loop. This caneasily happen for example when a code in a tight loop calls a function placed at adistance approximately equal to a multiple of the cache size.75Another problem is called partial cache line utilization. Code is always cached incontiguous blocks, usually 64 bytes long. When the frequently executed code isscattered around memory, lot of other unused (or less used) memory can be cachedwith it.Both problems can be solved by improving code locality � compacting frequentlyexecuted blocks together. The partial cache line utilization is improved by movingfrequently used blocks to �ll cache lines, address aliasing is minimal when addressesare sequential. The algorithm for cache addressing usually takes the address modulocache line modulo number of sets as the set index. This way, when the frequentlyexecuted blocks are placed next to each other and they �t into the cache, there isno aliasing.The algorithm works by going through basic blocks. It ignores all blocks that arenot in a hot-spot � that have a lower pass count76 than a speci�ed percentage of thehighest pass count.7774. Source code of the CacheUnalias plugin is in optimizer/plugins/CacheUnaliasPlugin.[h|cpp].75. It will happen more precisely when the distance is a multiple of n, which is the cache size modulo thenumber of ways of the cache.76. The number of passes through the block, determined from the pro�ling data.77. This setting is controlled by the percentTreshold setting in the con�g �le.

Program overview 56

56

For other blocks, it tries to put the most frequent (�hottest �) path straight. Thismeans that if the most frequent path is using a branch, then the branch target block(the most frequent of all target blocks) is moved just after the current block andsearching continues from that block.This way, frequent paths are linearized and hot-spots are compacted. Normally,branches that go to another already processed hot-spot are ignored. When the con�goption mergeHotSpots is enabled, a hot-spot can be merged with another one.In some cases, a block is used from several places. This can be the case of a sharedfunction entry point. It can be moved next to only one block. If a block is usedextensively from many places, it can be copied next to each usage. This is controlledby con�g options enablePartialInlining and partialInlineTreshold. The �rstone enables or disables block copying, the second one speci�es (in percents) themaximal ratio of passes into the target block that come from the current block tocopy the target block next to the current block instead of moving it.If there is a larger percentage of passes coming from the current block, the targetblock is moved next to the current block. If there are less, the block is only copied.If there are fewer passes from current block to the branch block than to the nextblock, the branch target block is not moved and search continues with the next block.
A

B1

C1

B2

C2

...

A

B1

C1

B2

...

C2

A: JNE C1 A: JE B1B1: ADD EBX,7 C1: CMP EAX,5B2: XOR EAX,EBX C2: JGE AJMP outC1: CMP EAX,5 B1: ADD EBX,7C2: JGE A B2: XOR EAX,EBXJMP C1out: out:
Figure 3. The e�ect of the CacheUnalias pluginThe Figure 3 shows a CFG graph and assembler listing of an optimization changedone by the CacheUnalias plugin. The ellipses are basic blocks, solid lines representfrequently executed paths. The hot loop A!C1!C2 is linearized, at the expenseof some additional jumps. Note, that when the successors of a block ending with aconditional jump are changed, the condition must be inverted.While the CacheUnalias plugin works on basic blocks, the similar HotColdSeparateplugin operates on whole functions.More information about improving code locality can be found in [48], [49], for moreinformation about code positioning in general, see [50], [51].

57 Section 4

57

4.6.2 BranchAlign pluginSome processors always fetch aligned 16-byte blocks to the instruction decoder.When a jump target is not aligned to a 16-byte boundary, a part of the �rst fetchblock after a jump is unused. This plugin aligns the most frequent jump targets toan address which is a multiple of 16.78Only blocks, that have at least a certain frequency and a much larger input �owfrom branches than from normal control �ow are considered.If blocks that are not frequently executed were aligned, it could result in considerablecode size increase without much gain. The performance might probably even be hurtbecause of cache performance.If padding was inserted before a block with a signi�cant normal (non-branch) in�ow,the performance would be also degraded � both because of cache issues and becausepadding instructions also take some time to decode.0x17 MOV EAX,4 0x17 MOV EAX,40x1a LEA EDI,[EDI + 0]0x1a ADD ESI,1 0x20 ADD ESI,1... ...0x31 JNE 0x1a 0x37 JNE 0x20Figure 4. The e�ect of the BranchAlign pluginThe Figure 4 shows a snippet of code before and after the optimization, with instruc-tion addresses in the left column. The LEA instruction is used as a NOP and alignsthe ADD ESI,1 instruction, which is a target of a frequent jump from 0x31, to anaddress aligned to a multiple of 16.The padding instructions for alignment are not inserted into basic blocks in thisplugin, because the �nal addresses are not known yet and may still be changed byother plugins. The alignment requirements are only marked with the block. Paddingis inserted when blocks are positioned in ProgramSection::condenseBlocks().The globalPercentTreshold option speci�es the minimal pass count of the blockto be considered for optimization. It is a relative value speci�ed as a percentage ofthe maximal pass count of all blocks in the program.To align a target of a jump, the in�ow from jumps must be at least n times largerthen from normal control �ow. The n is speci�ed using the jumpAlignTresholdoption.More information about branch aligning can be found in [27].78. Alignment to 16 is the default value. It can be changed using the alignSize con�g option.

Program overview 58

58

4.6.3 AthlonBTB pluginOn Athlon processors, the RET sometimes doesn't load a BTB entry or aliases withanother branch in the BTB table.79 Both problems can be avoided if the RET instruc-tion uses a longer encoding, which can be achieved using a REPZ pre�x (0xf3).This is done only in the most frequently executed parts of the code, because it makesthe code longer.0x1c 39 c8 CMP EAX,EAX 0x1c 39 c0 CMP EAX,EAX0x1e 74 01 JE ADD ESI,1 0x1e 74 01 JE ADD ESI,10x20 e2 fa LOOP 0x1c 0x20 e2 fa LOOP 0x1c0x21 c3 RET 0x21 f3 c3 RETFigure 5. The e�ect of the AthlonBTB pluginResults of the optimization are shown in Figure 5, with addresses in the left column,instruction encoding bytes in the middle and instruction mnemonics on the right. AREPZ (0xf3) pre�x, which has no e�ect on the RET instruction, is added to increasethe instruction encoding size.More information about Athlon BTB can be found in [25].4.6.4 HotColdSeparate pluginThe HotColdSeparate plugin is similar to the CacheUnalias plugin when partialinlining is not used, but it moves whole functions instead of basic blocks.Functions that are used frequently will be grouped together and also functions thatcall each other will be kept close.
function A

function B

function C

function A

function C

function BFigure 6. The e�ect of the HotColdSeparate pluginResults of the optimization are shown in Figure 6. The function C, which is fre-quently called from A, is moved next to A. The function B is shifted to make placefor C.This plugin is marked experimental.79. For more information, see the Athlon description in Chapter 2.

59 Section 4

59

4.6.5 FunctionInline pluginThe FunctionInline plugin is similar to the CacheUnalias plugin with partialinlining, but it copies whole functions instead of basic blocks. Functions that areused frequently will be grouped together and also functions that call each otherwill be kept close.
function A

function C

...

function A (part 1)

function C (inlined)

function A (part 2)

...

function CFigure 7. The e�ect of the FunctionInline pluginResults of the optimization are shown in Figure 7. The function C, which is fre-quently called from A, is moved inside A, at the place, from which it is invoked. Thefunction B is shifted to make place for C.The hotspotTreshold option controls the area where the optimization will be done,maxInlinedSize speci�es the maximum size of a function that may be inlined. ThemoveTreshold option is the necessary treshold to use code moving instead of copyingfor inlining. If a caller of a function produces more than moveTreshold percents ofpasses into the function, the code will be moved. Otherwise, the code of the functionwill only be copied.This plugin is marked experimental.4.6.6 DeadCodeRemove pluginThis plugin eliminates unreachable code. It works by removing functions that arenot referenced from any other code or data. The reachability analysis is repeatedseveral times, until no more functions can be removed. This iterative approach isnecessary to remove code that is referenced only by other dead code.The e�ect should be a reduction of total code size and may also result in improvedcache locality.This plugin is not implemented yet.

Program overview 60

60

5 Experimental resultsTo determine the e�ciency of optimization, a number of benchmark experimentshave been conducted on di�erent processor architectures.Performance of optimized programs have been measured with various optimizationoptions. The results are summarized in the following section.All benchmark scripts and raw benchmark data are included on the CD.5.1 Benchmark measurementTo provide the same execution environment for all tests, a Linux live CD based onGentoo � Kororaa version 0.2 was selected, because it was supported on all targetmachines.All systems were booted from the CD with a boot option softlevel=nox, to startto a clean environment with as few running processes as possible.When the system is booted, an USB �ash disk with the benchmark suite has beeninserted, mounted and the run_benchmarks.sh script on it was started.This script �rst copies all tests into a ram-disk, compiles the framework and otherrequired libraries and runs the tests. The actual tests are performed by a perl scriptstored in scripts/benchmark.pl.5.1.1 TestsEach test measures the optimization impact on one program. It starts by instru-menting the program and running the instrumented version. This provides pro�linginformation for optimization and � as a by-product � it should bring all input datainto memory.After that, the timing starts. The execution length of the original �le is measured�rst, followed by that of the instrumented �le and the optimized �les.To measure the impact of various optimization options, a program is optimizedand timed with di�erent con�gurations. The con�guration �le for the optimizer ischanged before each measurement.There is a list of all values for one con�guration option that should be tested. Allcombinations, where only one optimization plugin is active at a time, are measured.The restriction to only one active plugin was added because of the large numberof combinations. Even with these restrictions, the number of individual timingsis 160 or 120, depending on the test. Each such timing consists of 35 executionsof the tested program. In later tests, the number of timing cases was reduced �con�guration option combinations which did not yield good results were discarded.5.1.2 TimingThe Time::HiRes perl library was used for measurement. Current time was takenbefore and after execution of the test program and the di�erence was taken as aresult.To suppress random disturbances, the program was run 35 times and worst resultswere discarded. They were regarded as deviations possibly caused by scheduling and

61 Section 5

61

interrupt events. These discarded results should also cover the �rst execution, whichbrings all important �les into memory and may therefore took longer (even thoughtests were run from a ram-disk). From the remaining 25 executions, the mean valuewas taken as the �nal result of the timing.5.1.3 Various test programsSeveral programs with various test data were analysed. They were selected to rep-resent diversi�ed test samples.Compression programs are represented by bzip2, gzip and rar. They were runon a compressed �le to test its integrity. The size of the �le was about 10.5MB forgzip, 9.5 MB for rar and 4.2 MB for bzip2. A bigger test �le was selected for rarto measure the impact of longer running time on the optimization level.Another group of tested programs were language interpreters: perl, php and python.They were called on sample scripts, written speci�cally to test di�erent aspects ofthe interpreter. For perl and php, two di�erent scripts were used.The GNU gcc compiler was tested with compilation of a simple program. It mayhave spent more time in various initialization routines than doing the actual com-pilation, because the compiled �le had just about 270 lines.As a result, the hot-spot was not clear and optimization didn't work very well forgcc, as will be shown later.The web browser links was tested to render a 5 MB HTML page with tables. It wasselected, because unlike the compression programs, it doesn't have a single compacthot-spot and many calls may be used in the inner loops.The last tested program was dcraw, which converts raw data from digital cameras.It was run on a 13.4 MB large raw picture from a camera. This program di�ersfrom the others in that it was compiled from a single source �le, so the compilercould perform all optimizations in one compilation unit. The test was also by a widemargin the longest running test.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

bzip2 gzip rar links perl 1 perl 2 python php 1 php 2 gcc dcraw

E
xe

cu
tio

n
tim

e
(s

)

ProgramsFigure 8. Total execution time of di�erent test programs.

Experimental results 62

62

The Figure 8 shows average execution times of the tests. The execution time inmany cases in�uences how important the hot-spot will be, relatively to other partsof the code and to program load time.All �les optimized by the framework have more code segments and longer code toload into the memory. Many memory pages in the original code are also loaded from�le when trampolines are frequently used. There is therefore an inherent penalty.Because of time constraints, the gcc and dcraw tests were not performed on allprocessors.The bzip2, gzip and rar were taken unmodi�ed from an installed system, otherprograms were con�gured and compiled on the test machine.5.1.4 Test machine con�gurationThere were four processors tested:� AMD Athlon XP 2500+ (1830 MHz)� Intel Mobile Celeron 2.0 GHz (based on Pentium 4), scaled at 1 GHz� Intel Pentium M 740 (1733 MHz)� Intel Core Duo T2300 (1666 MHz)The Celeron/Pentium 4, had 1 � 512 MB. Athlon worked with 2 � 512 MB dual-channel (at 400 MHz) DDR memory, Pentium 4 had 2 �256 MB (at 266 MHz) DDRmemory, Pentium M used 2 � 512 MB dual-channel (at 533 MHz) DDR2 and CoreDuo had 1 � 1024 MB DDR2 (at 666 MHz).The Mobile Celeron, based on Pentium 4, had signi�cant heating problems, so itwas scaled to work at 1 GHz.5.2 ResultsThe optimized programs have an inherent penalty associated with the use of tram-polines. If a program uses many indirect jumps, it may perform signi�cantly worsethan the original code.5.2.1 Instrumented versionsWhile not critical to the success of an optimization framework, it is neverthelessimportant to keep the overhead of the instrumentation as low as possible.On Athlon, the instrumented version ran about 2.5 times slower for most programs,3 times for php and python and 4.5 times slower for perl, on Pentium 4, it ran onlyabout 1.75 to 4.25 times slower, on Pentium M, it was about 2.2 to 4.5 times slower.5.2.2 Optimized versionsThe optimized versions performed reasonably well for some programs, even thoughnot on all processors. Because of time constraints, I wasn't able to �nish measure-ments of gcc and dcraw on some processors.

63 Section 5

63

The results of timings of optimized versions are presented in the table below:

 0.84
 0.85
 0.86
 0.87
 0.88
 0.89
 0.9

 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1
 1.01
 1.02
 1.03
 1.04
 1.05
 1.06
 1.07
 1.08
 1.09

bzip2 gzip rar links perl 1 perl 2 python php 1 php 2 gcc dcraw

S
pe

ed
up

 (
re

la
tiv

e
to

 o
rig

in
al

 ti
m

e)

Program

Athlon XP
Pentium M

Core Duo M
Pentium 4

Figure 9. Optimization impact with various test programs, relative to original time.The result of the optimization with the optimizer con�guration, which provided thebest results, was taken and compared with the original �le. Figure 9 shows the ratio,the original time divided by the time of optimized program.We can see that for certain programs, such as rar, the optimized program workedclearly faster on all con�gurations. This program has a hot-spot split into severalparts, and can bene�t from joining them.On the other hand, some programs, most notably gcc, performed worse on allprocessors. This can be explained by short running time and possibly using manyindirect jumps, which causes taking many trampolines back to the optimized code.An interesting case is the perl program with the �rst data set, which manifested theworse result � it scored 15% below the original program on Athlon! I am not ableto fully explain this drop in performance. The Pentium M and Core processors wereable to outperform the original program on the same data, which probably means,that excessive using of trampolines cannot be blamed for the result.It should be also be noted that optimized versions performed signi�cantly worse onthe Athlon for all interpreters: perl, python and php. The optimizer was not ableto reach even the performance of the original programs. It might be partly blamedon using a lot of indirect branches, but there has to be a reason, why the otherprocessors performed much better.

Experimental results 64

64

5.2.3 Impact of optimization parametersAnother interesting thing is to measure the correlation between optimization para-meters and performance.The rar program, which optimizes reasonably well on all processors, was selectedfor the measurement.

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 1.035

 1.04

 1.045

 1.05

 0 10 20 30 40 50 60 70 80 90 100

S
pe

ed
up

percentTresholdFigure 10. Correlation between optimization parameter percentTreshold and speedup.The strongest correlation was measured between performance and decreasing valueof the percentTreshold option of CacheUnalias plugin with the mergeHotSpotsoption enabled. Another options with strong correlation to performance increasewere settings concerning partial inlining.The percentTreshold option selects the working set or hot-spot. The smaller is thevalue, the larger is the area that is optimized. Measurements were taken from theAthlon benchmark measurement results with percentTreshold values 8, 15, 30, 50,80, 90, 95, 98, 99.Only measurements using CacheUnalias plugin with with mergeHotSpots optionenabled were taken into account. Every dot represents a measurement performedwith di�erent settings of partial inlining.The graph shows that for low values of percentTreshold, other options play animportant role. Especially the partialInlineTreshold value. For most lowervalues of percentTreshold, the dots are divided into two groups. The 3 higherones usually don't use partial inlining or use a low partialInlineTreshold valueof 40 or 65, lower dots use 90 and 95. When only the innermost loop is optim-ized, this option doesn't make such di�erences, because partial inlining is performedonly on the hot-spot.

65 Section 5

65

6 Future workAlthough some encouraging results were obtained from the optimizer framework,there are many open possibilities for improvement. Some features are not �nishedyet, such as the SSA analysis and optimizations based on that form. In this chapter,some of the possible future directions are explored.6.1 SSA formConstruction of the SSA form is complicated, but brings a whole range of newopportunities for optimization. The optimizer plugins will be able to tell what valuesmay a variable80 contain or with what other variables it is aliased.This can be useful for example to eliminate a check of a value for another value,when it can be deduced that the test will always be positive or always negative. Codewith these properties is often generated by functions that check their argumentsfor incorrect values, for example for a NULL. If the value passed to the function iscorrectly checked in all callers, it is useless to check it again.Closely connected to this is dead code elimination of unreachable code. If a testcondition of a branch always has the same output, the other branch is never executedand can be removed along with the check.Note, that a compiler cannot perform such checks for non-static functions, becauseit does not know all possible users of a function.The SSA form will also make it possible to easily �nd an assignment to a variable fora particular usage or �nd other usages. This can help, for example, to �nd possiblejump targets to improve control �ow analysis.6.2 Support for exception handlingException handling raises a couple of problems with binary code transformations. Itcan be implemented in di�erent, mutually incompatible, ways. If the code conversiondoes not understand exceptions, the resulting program will almost certainly crashon the �rst exception thrown in the converted code.When exceptions are raised, a function usually called __cxa_throw() is called.It searches all stack frames on stack for a handler of the exception. To �nd thehandler, there must be additional exception frame information, usually stored inthe .eh_frame section in the ELF �le. This section is mapped to memory, so thatthe routine which throws exceptions can use it. The stack frames are searched fromthe newest to the oldest until a handler is found. For each stack frame, the returnaddress is used to search the exception frame information. The address of the nextframe may also be di�cult to calculate, so it is taken from the frame info as well.80. By a variable, I mean either a register or a memory location on the stack.

Future work 66

66

When there are no records about stack frames and exception handlers for a par-ticular address, the handler for the exception will not be found and the program isterminated.The convertor should generate exception handling information for the new codesection, based on the information for the original code. When this is done, programswith exceptions will work much better.An alternative approach for exceptions is to use setjmp() and longjmp(). Thismethod should work better with converted code, because no hard-coded table ofaddresses is used, but this mechanism has been superseded by other methods andis not used very often any more. Other problems with unexpected control �owmay arise, though.Note, that even programs that use exceptions may work �awlessly if no exception isthrown. This is the case of the RAR program, which works well both instrumentedand optimized, unless an exception is thrown. It is normally thrown only if anunrecoverable error in the �le is encountered or when supplying incorrect command-line parameters.6.3 Support for the x86-64/x64 architectureCurrently, the framework only supports the x86 (or IA-32) architecture. The x64architecture is similar and is getting more popular, so it would be useful to addsupport for it. It has several notable di�erences � the ABI speci�es that there isa scratch space below the stack, where data must be preserved. This presents achallenge for counters, because they must move the stack pointer and then write tothe area that just became the new scratch space. The code for this is written butnot tested yet.Another problem is with RIP-relative addressing. This means that to understand theinstruction data, its original location must be known. In the current implementation,it is possible to query the original address for code that came from the original �le,but not for other code. The translation routines are also not meant to be called forevery instruction.To solve this problem, some information must be added to every instruction. TheInstructionInstance class can be used for that. All basic blocks will then containa list of such objects.For complete support of x64, some architecture-speci�c code dealing with instructiondecoding and modi�cation must also be completed.6.4 Using processor-speci�c performance countersProcessors o�er a wide range of data about execution of code. Cache miss rates,branch mispredictions, cache alias con�icts or pipeline �ush events can usually beobserved using architecture-dependent performance counters. They could provide animportant increase in pro�ling data gathering and help to identify the bottlenecksof the code.

67 Section 6

67

6.5 Improved control �ow analysisTo achieve good optimization level, a correct control �ow analysis, is necessary.81Direct jumps are well analysed and do not pose a problem. Some indirect branchesare practically impossible to predict, but a large group of indirect branches can bereasonably well analysed.Indirect branches are often generated for longer switch statements. They often usea simple jump table, where its start and end can be determined using instructioninvariants, obtained for example from the SSA analysis. It is sometimes even simpler,because many compilers generate checks for the bounds just before the indirectjump, in the preceding basic blocks. In this case, no complicated inter-block analysisneeds to be done.Another group of indirect branches stems from usage of virtual functions. They arecalled via a jump table called virtual method table (VMT). If a careful analysis isdone, many locations of these tables can be found. Often, the ECX register pointsto the VMT or at least a part of it can be easily deduced from the value of theregister. If all possible values of ECX at a certain point can be found,82 the jumptargets might be found, too.6.6 On-line optimizationsThe framework could be transformed into a general just-in-time (JIT) optimizerwhich might reorganize code on the �y, when usage patterns would change. Thecurrent analysis by instrumenting code would not be feasible because of the largeperformance overhead, but a statistic sampling method, with under 1% penaltycould be used.83The overhead of the code reorganization and of the sampling might be o�set byimprovements of the program performance. Of course, this approach could be onlypractical for long calculations, which would occasionally, such as once per two hours,change runtime behavior.The framework could also be used to optimize dynamically generated code. Using anoptimizer from a compiler would be in this case di�cult, because it usually requiresa larger framework and a di�erent type of input data produced from programminglanguage source code.6.7 Optimization of dynamic librariesInstrumenting and optimizing dynamic libraries can be useful in many cases. It isnot currently supported, but it could actually be easier than working with executableprogram �les, because dynamic libraries contain position independent code andinclude additional information about all references to code, as they need to berelocated to a di�erent address if needed.81. It is not required that all control �ow paths are discovered for indirect jumps � but the more is known,the better will be the possibilities for optimization.82. This may be possible with the SSA form available.83. There is already a statistical pro�ling system for Linux called oprofile, which might be used.

Future work 68

68

Adding support for dynamic libraries should therefore not be too di�cult.It would be interesting to allow instrumenting and optimizing an executable programwith all libraries it uses. Imported libraries speci�ed in the ELF header would bereplaced by instrumented/optimized versions. The dlopen() library call would berouted to an injected routine which would intercept the calls, instrument or optimizethe requested library and link the modi�ed version in place of the requested library.6.8 Other optimizationsAdditional optimizations of code may be implemented. Some are improvements ofcurrent optimizations, some are new. Many of them require a deeper analysis abovewhat is currently implemented.Some optimizations may be considered dangerous if they do not take into accountthat a value might be modi�ed from an interrupt context, from another thread orprocess84 or from the system. For values in registers, and under certain conditionsalso on the stack,85 it can be safe to assume that the value cannot be accessed froma di�erent context. In other cases, either a more careful analysis has to be performedor some values have to be left out of optimization.If the value of the stack pointer ESP gets out of sight of the analysis, it must beconsidered that all memory addressed by it may be unexpectedly overwritten. If itonly stays in, lets say, ESP and EBP, the optimizer may assume that no pointerreferences the stack space of the current function and therefore the values storedthere cannot be modi�ed except by the code of the function, which is under control.6.8.1 Completely inline small functionsSmall functions may be completely inlined and the CALL and RET instructionsremoved. This would require updating all stack references crossing the location of thereturn address on stack, because the return address would be removed from stack.The current code compaction plugins do a part of this, but they don't eliminate theCALL and RET instructions, which are super�uous.6.8.2 Dead code eliminationCode that can never be reached,86 including whole procedures, can be removed fromthe program. This will reduce code size and potentially improve cache performance.Some code, which is never referenced altogether, may be removed without furtheranalysis. Other code is referenced, but only from other dead code or as one of thetwo control �ow paths from a conditional branch, which jumps always in the otherdirection. This case requires further invariant analysis to �nd branches that alwaysgo in the same direction.84. This can happen for shared memory.85. In functions where the stack pointer is �leaked� to another place, it can used as a pointer and passedto any function or system call.86. Such code is called dead code.

69 Section 6

69

6.8.3 Instruction schedulingInstructions may be reordered, either inside one basic block or across blocks, toimprove performance of scheduling done by the processor. This has to observedependency chains, because instructions are partially ordered by dependency chainsand not respecting this will cause using or overwriting a wrong value.6.8.4 Data �ow optimizationMany optimizations can be done on data �ow. Instructions that write values, whichare never used, my be left out.87 Long data transfers, such as moving data viastack, may be shortened and the data written directly to destination � in case theintermediate values are not used. Usages of certain variables might be replaced bytheir aliases88 if it reduces dependency chains, improves memory access or preventsROB stalls. Constant variables may be replaced by constants.6.8.5 Instruction selectionInstruction selection can also signi�cantly in�uence performance. Some instructionsor instruction combinations are slow on certain processors and there is often possibleto use alternative instructions. On some processors, a PUSH instruction may bereplaced by a MOV + ADD ESP,4. On other processors, which have a stack engine, achange in opposite direction may improve performance.Some simple branches, where one of the alternative control �ow paths only updatessome variable89 may be replaced by SETcc or CMOVcc instruction(s).The Pentium 4 processor o�ers a lot of possibilities for improving performance bysubstituting similar instructions. Selecting ADD + JC instead of the ADC instructionis one example.Some optimizations are rather non-obvious. On the AMD K6, encoding the memoryreference [ESI] as [ESI+0] with a zero displacement improves decoding bandwidth.6.8.6 Additional code reorderingA more advanced procedure sorting, possibly using an algorithm such, as in Pettisand Hansen [51] or the Graph Walking algorithm from [49] may improve optimiza-tion results.Other techniques, which are partly already done, include procedure splitting,intraprocedural and interprocedural code positioning.An interesting technique used in aiPop is procedure un-inlining � commonly repeatedpatterns in code are searched and a general procedure is made from them, resultingin smaller size.87. This optimization may use the empty variable analysis to �nd out if a variable is used at a certain point.88. An alias of a variable is another variable that contains the same value.89. Such branches are actually quite often.

Future work 70

70

6.8.7 Improving cache performanceData prefetch instructions could be generated before loops. This has to be donecarefully, because it can sometimes also hurt the performance.6.8.8 Inter-procedural analysisThe SSA form will be mostly done on a function basis. The results of the analysisfrom di�erent functions can be merged for a particular purpose, such as tracking ofvalue propagation across function calls. For registers, this is straightforward, whenusing values on stack, the stack pointer position di�erences must be taken intoaccount.6.8.9 Peephole optimizationsSome optimizations may be done using a small window (�peephole�) inside whichinstructions are analysed and common patterns replaced.Such optimizations could for example remove subsequent PUSH/POP pairs that mayresult from earlier stages (such as function inlining) or replace PUSH chains by MOVinstructions and a single update of the stack pointer.9090. This particular PUSH/POP optimization should not be done on processors with a stack engine.

71 Section 6

71

7 ConclusionThe IA-32 Binary Optimizer framework presented in this thesis shows, that it isindeed possible to work with binary programs on Linux, even if they are stripped.Some encouraging results have been obtained from programs, that were compiledand optimized for the particular processor on which they ran. The performance ofsuch programs has sometimes been increased over 1.5%.For programs packaged with the Linux distribution, such as the rar program, whichwere not compiled speci�cally for the target machine, the impact of optimizationhas been almost 5% on some processors. The python interpreter has been optimizedeven over 5% on the Pentium 4 processor.With the SSA form, which should be soon available, even bigger gains may beexpected, because more information about the code will be known. The Sun BinaryOptimizer, which is a recent optimization system for Solaris on Sparc processors anduses similar optimizations targeted at cache usage, reports performance increases ofup to 10%. It uses additional information about the code from the compiler. Eventhough it uses a di�erent processor architecture, a similar improvement might bepossible, considering the similarities in caching mechanisms. Other optimizationsnot related to cache usage will provide additional performance increase.Anyone can develop new optimization plugins, which are relatively independent ofthe rest of the system, are easy to write and may perform almost any change to thecode. Many suggestions for new optimizations have been proposed in Chapter 6.The framework also o�ers many possibilities outside of optimization � it can be usedto instrument almost arbitrary programs to gather pro�ling information. With littlework, other information may be gathered from the program on the �y, security self-checks can be inserted into a third-party program.

Conclusion 72

72

Appendix A Program source code referenceThe source code for the IA-32 Binary Optimizer is organized into several subsystemslocated in di�erent directories as follows:91� common � Common de�nitions, macros and simple utilities, like die(), basicdata types (vm_offset_t, u8_t, s8_t, u16_t, s16_t, ...).� convertor � Code for cloning a section and maintaining a connectionbetween the original and the cloned sections. Also contains code for relo-cating and �xing the converted code.� decoder � Instruction and basic block decoder and basic functions for manip-ulating code in basic blocks and sections.� decoder/parts-IA32 � x86 architecture-dependent code.� decoder/parts-AA64 � x64 architecture-dependent code.� instrumenting � Support for instrumenting a program with counters andpotentially other information. The actual de�nitions of the data structuresused for instrumenting are in the profiling directory.� instrumenting/helpers-i386 � x86 architecture-dependent code.� instrumenting/helpers-AA64 � x64 architecture-dependent code.� optimizer � Code analysis and optimization, handling of optimizer plugins.� optimizer/plugins � The actual optimizer plugins.� profiling � De�nitions of counters and other pro�ling information.� sysdep � Code dependent on the operating system and binary �le format.� tests � Self-tests of the framework. Not required by any other subsystem.� utils � Universal data structures and more complex utility classes.The decoder and instrumenting subsystems contain a (relatively small) part thatis processor architecture dependent. Currently, only x86 code is supported, but partsof the framework for x64 are also written.91. The description applies to the 1.0 version released with this Thesis.

73 Appendix A

73

Code that depends on binary �le format or operating system is mostly placed intothe sysdep directory, except small �xes in the convertor, which contain special cases,such as a list of �dangerous� symbols that should be left at their original locations.Some of the most important source �les, classes, functions and data structures willbe described in the rest of the appendix.A.1 InstructionsThe Instruction class represents a single parsed x86 instruction. Its declarationand implementation are in decoder/Instruction.[h|cpp] �les. This structure is�lled from raw data every time information about instructions is needed.struct Instruction {/* Default setting of the segment (such as operand or address size) */const SegmentSettings *settings;/* Pointer to a structure describing the instruction */InstructionInfo *info;/* Start address of the instruction */vm_offset_t address;/* Instruction opcode as in the binary code */int opcode;/* Total instruction length including all prefixes */byte total_length;...};It additionally contains pre�x information, ModR/M and SIB bytes, immediate dataand displacement.The settings �eld contains the default addressing mode of the code segment. Theaddressing mode can change the interpretation of the whole instruction, that is whyit needs to be referenced by every Instruction object.The opcode �eld is an internal representation of the 1 or 2-byte raw instruction code,without pre�xes or ModR/M and SIB bytes. For instructions with a single-byteopcode, it is the opcode directly, for instructions with a two-byte opcode startingwith the F0H, it is 0x100 plus the second byte of the opcode. Some instructionsuse some bits of ModR/M byte or a pre�x as part of the opcode, but these do notin�uence the opcode value.The info �eld points to a description of the instruction type in a InstructionInfostructure. It speci�es a single variant of an instruction with description of instructionoperands in the op array. The type of the operand is de�ned by on Operand class,which speci�es a register or addressing mode and a generic size speci�cation. Theactual size of the operands depends on the model of the code segment and canonly be determined using various other information, such as SegmentSettings andoperand-size or address-size pre�xes.

Program source code reference 74

74

There are various methods in the Instruction class which can be used to analyseand modify the addressing mode, change operand sizes, displacement or immediatedata. Other methods include queries and modi�cations of branch instructions orcreating a new branch or a NOP instruction.The InstructionInfo class is de�ned in decoder/InstructionInfo.[h|cpp] �lesand the de�nition looks like this:struct InstructionInfo {/* Instruction type code (such as MOV or ADD) */const enum InsnCode code;/* Description of the operands */const struct Operand op[MAX_SPEC_OPERANDS];...};The code �eld corresponds to the instruction mnemonic. It distinguishes betweendi�erent instructions, but not when they di�er only in operand size or type,such as register and memory operands. Every type of an instruction has its ownInstructionInfo de�nition.For example, all MOV instructions share the same InsnCode, but may have severalInstructionInfo objects associated. On the other hand, all MOV instructions frommemory to a full-size register share a common InstructionInfo object.When additional information about an instruction is required, the InstructionTypeclass may be used. It is de�ned in decoder/InstructionType.[h|cpp].It is a more detailed description of an instruction. It contains details, such as explicitand implicit operands or used and modi�ed �ags.class InstructionType {/* Instruction type code (such as MOV or ADD) */enum InsnCode code;/* List of all source and destination operands */Vector<OperandRef> srcOps;Vector<OperandRef> dstOps;/* Mask of all used and modified flags */u32_t readsFlagMask;u32_t writesFlagMask;/* Other properties of the instruction */u32_t specialFlags;/* All variants of the instructions with the same code */Vector<InstructionVariant> variants;...};There is one InstructionType object for one InsnCode code. It contains referencesto all InstructionInfo variants with the same InsnCode code. This can be usedto modify an instruction to use di�erent operand types, such as a register insteadof memory or vice-versa.

75 Appendix A

75

A.2 BasicBlock classThe BasicBlock class represents a basic block � that is, a continuous stretch ofinstructions without a jump or with a jump only as the last instruction, in whichthe control �ow can only start at the beginning.The basic block de�nition used in the program does not even allow a CALL insidethe block, so basic blocks are also split after CALL instructions. This restriction isadded because when a block changes its address, all jump instructions that jumpfrom or to the block need to be updated. If a basic block is de�ned this way, theonly instruction that may use addresses into the code is the last one, so the updateneeds to be performed only on the last instruction in a block.A BasicBlock object doesn't contain any parsed instructions, only raw data. Ifinstructions are needed, they are parsed on the �y, because it is possibly cheaperthan maintaining the list in a data structure � and it doesn't use as much memory.The BasicBlock class contains many methods for modifying data of the block,splitting the block at the start, at the end or inside, changing its control �ow andposition among other blocks. There are also utilities that invert the condition of aconditional branch, change branch target or relax a branch.92The BasicBlock class de�nition (decoder/BasicBlock.[h|cpp]) looks like this:class BasicBlock {/* Start and end addresses of the block */vm_offset_t vm_start;vm_offset_t vm_end;/* Raw section data */const byte *data;/* Link to parent section */ProgramSection *section;/* Link to next block */BasicBlock *next;/* Link to a block that is a branch target */BasicBlock *nextBranch;...};Every BasicBlock is assigned to a ProgramSection object contained in the section�eld. The data �eld points to raw data of the basic block. It uses memory allocatedand managed by its containing section. When the basic block data changes, memoryfor the new data has to be allocated from the section.The block's ProgramSection object takes care of all data modi�cations and getsnoti�ed when anything in the block changes. It also updates mappings from originaladdresses to new addresses.92. Relaxing a branch is changing the size of the branch instruction to use the shortest possible encoding.

Program source code reference 76

76

A.3 Function classA Function class marks detected functions in the code. There is no need to detectfunctions in most plugins, so this information is optional. The optimizer pluginsmay use functions to improve optimization or to restrict the scope of changes to afunction.The source code is located in decoder/Function.[h|cpp] and looks like this:class Function {String name;/* Link to parent section */ProgramSection *section;/* Start and end addresses of the function */vm_offset_t vm_start;vm_offset_t vm_end;/* Lists of calling functions and function called. */SimpleSet<Function *> callers;SimpleSet<Function *> called;...};It contains the name of the function, information about whether it was possible todetect it from symbols or otherwise, its address range and a set of all callers andcalled functions.A.4 ProgramCode and ProgramSection classesThe base class for the whole program code is the ProgramCode class. It containssome global information and a list of all sections. Each section93 is represented bya ProgramSection object. Source code for both classes is in decoder/.The ProgramSection provides a lot of methods for BasicBlock objects, such asallocation of memory for block data, creating new blocks and maintaining theiroriginal memory mapping.A BasicBlock noti�es its section of all changes of its contents, such as adding,removing, moving or changing a part of code. The section noti�es all registeredlisteners about the change. One of the listeners updates symbols and relocations andmoves or removes them according to changes in the code they are associated with.A listener called CodeTracker tracks all modi�cations to the code to maintain amapping from original VMA94 before code cloning, instrumenting or optimizationto current VMA addresses and vice-versa. It gets noti�ed of every change, so thatthe mapping is always up-to-date.The base class of all content change listeners is BasicBlockManager. It containsvirtual methods for noti�cation of changes in the code. The concept of listeners wasintroduced because the code in the decoder is written to be universal. This way,tracking of content movement can be added as an optional part.93. This usually means an ELF section, but the decoder is independent of the object �le format.94. VMA stands for Virtual Memory Address.

77 Appendix A

77

There is also a list of local symbols and relocations. They are used to locally markand relocate content, but they are never used outside of the decoder.A ProgramSection object may be in one of two states. It is either without anyblocks parsed, containing only raw section data, or all data are stored within parsedblocks. For sections that are read from the original �le and not processed by theinstrumenting or optimization, only the raw data is used. In this case, mem_sizestores the size of the section in memory. For sections such as .bss, it can di�er fromthe size in the �le, so this information must be transferred to the �nal program.If there are any blocks in a ProgramSection object, raw data from the data �eldare ignored and only data from the blocks are used.All data allocation for basic blocks is done using the SectionDataBuffer objectfrom the allocator �eld, raw data are managed by the DataBuffer object data.The de�nition of ProgramSection (decoder/ProgramSection.h) looks like this:class ProgramSection {String section_name;/* Link to parent object */ProgramCode *code;/* Default setting of the segment (such as operand or address size) */SegmentSettings settings;/* Start address of the section */vm_offset_t vm_start;/* Buffer for all raw data (only used without blocks) */DataBuffer data;/* Section size in memory (only used without blocks) */u32_t mem_size;/* First basic block (NULL if there are no blocks) */BasicBlock *first;/* Allocator for new basic block data */SectionDataBuffer allocator;/* Allocator for basic blocks (they can be polymorphic) */BasicBlockFactory *factory;/* Map of all basic blocks */AVLTreeMap<vm_offset_t, BasicBlock *> blocks;/* Symbols, relocations and functions */HashMap<BasicBlock, Symbol *> localSymbols;HashMap<BasicBlock, Relocation *> localRelocations;AVLTreeMap<vm_offset_t, Function *> functions;...};The ControlFlowGraph class holds a control �ow graph of a section.

Program source code reference 78

78

A.5 ProgramConvertor and SectionConvertor classesThe code of the original �le is converted to the destination �le in both instrumentingand optimization. The subsystem responsible for the conversion and managementof the connection between the original and new code is the convertor .It uses the BFD library � unlike the decoder, which only takes care of the code withno relation to the original program �les. The convertor is responsible for loadingof the binary �le, handling all chores associated with its modi�cation, and �nallywriting the new program to a �le.The base class, representing the current state of the converted program and its linksto the original and new �le, is the ProgramConvertor. It contains a list of BFDsymbols and dynamic symbols, BFD �le handle of the original and destination �leand other information used in the BFD library. Additionally, it maintains a list ofall sections as SectionConvertor objects.The ProgramConvertor class (convertor/ProgramConvertor.h) looks like:class ProgramConvertor {/* Link to the corresponding object in decoder */ProgramCode code;/* All sections (including non-text) */SingleList<SectionConvertor *> sections;/* List of all symbols and dynamic symbols */SingleList<SymbolInfo *> symbols;SingleList<SymbolInfo *> dSymbols;/* BFD handle of the source and destination program */bfd *source;bfd *dest;/* BFD global program flags */flagword flags;/* Entry point of the program */bfd_vma start_addr;...};It corresponds to the ProgramCode class from decoder which also represents a wholeprogram, but includes additional information needed for conversion.A SectionConvertor object is similar to a ProgramSection object from decoder. Itcontains a reference to a ProgramSection object, and some BFD-speci�c data, suchas �ags, relocations and BFD section handles. It has also many proxy methods toProgramSection, original to current address translation routines, and functions forreading, modi�cation and writing of section data. Other functions include searchingfor blocks and functions, creating, removing and moving blocks around.

79 Appendix A

79

The SectionConvertor class (convertor/SectionConvertor.h) looks like this:class SectionConvertor {/* Reference to a ProgramConvertor object representing the whole file */ProgramConvertor *convertor;/* Reference to the ProgramSection object (contains the blocks) */ProgramSection section;/* Manages BasicBlocks - gets notification of their changes */CodeTracker *tracker;/* Original VMA of the section - as set by setOriginalVMA() */vm_offset_t orig_vma;/* BFD handle of the source and destination sections */asection *bfd_section;asection *dest_bfd_section;/* BFD flags of the section */flagword flags;/* List of all BFD relocations */SingleList<RelocationInfo *> relocations;...};Additionally, there is a CodeTracker class which is registered at a ProgramSectionobject, receives noti�cations about changes and maintains a correspondence betweensource and destination addresses as the code changes.Relocations, which correspond to BFD relocations, are stored in RelocationInfoobjects.A.6 Code conversionBoth instrumenting and optimization involve copying code from a source �le to adestination �le, with some modi�cations. In the �rst case, an initialization routinein the C language and counter code are also included in the result.The ConversionHelper is responsible for analysing the program, copying the codefrom the original code section into the new section and parsing it.It also handles all �xes to the conversion process, such as:� inserting trampoline jumps from original code to new code� �xing ELF program headers (BFD sometimes produces a defective �le)� producing debug line information for the new code� creating exception handler frames for the new code9595. This feature is being worked on and is not yet �nished.

Program source code reference 80

80

The ConversionHelper class (convertor/ConversionHelper.h) looks like this:class ConversionHelper {/* A ConversionHelper is tied to a single ProgramConvertor */ProgramConvertor &convertor;/* Bitmap of machine instruction start addresses */VMABitmap instructionStarts;/* Information about possible jump destinations in the original section */HashMap<vm_offset_t, TargetInfo *> targetsInfo;/* Map from VMA addresses to symbolInfo structures */HashMap<vm_offset_t, SymbolInfo *> symbolVMAMap;/* VMA addresses where basic blocks should be forced to end */VMABitmap blockBreakLocations;/* VMA addresses where trampolines should be added */VMABitmap trampolineLocations;/* VMA address of the start and end of the original section */vm_offset_t code_start;vm_offset_t code_end;...};Name of the new section and alignment of the its start and end is con�gurable inthe ConversionHelper object.Another class, SectionBlockManager (from convertor/SectionBlockManager.h),takes care of reordering blocks. It is able to add or remove jumps at the end of theblocks or invert branch conditions to optimize the reorganized code.The code to be included as counters or the initialization routine is stored inan object �le as di�erent sections, so that di�erent implementations might beprovided without altering code of the rest of the framework. For reading the �le,SimpleObjectFile and SimpleObjectSection classes are used. They are de�nedin convertor/SimpleObjectFile.h and convertor/SimpleObjectSection.h.A.7 Code trackingThere is a mechanism for tracking code movement. This is necessary to supportfeatures such as trampolines, producing debug line and exception frame informationfor the new code.The CodeTracker class (de�ned in convertor/CodeTracker.h), which inheritsfrom SectionBlockManager, implements this tracking.It maintains a map from BasicBlock objects to a ContentTraces object associatedwith the block. One ContentTraces object manages address tracking informationfor one basic block. It is a list of ContentTrace objects, which hold data about onespan of the block: its o�set, length and original VMA address. This data is used fortranslating addresses from new to original addresses.

81 Appendix A

81

There is also a map from original addresses to BasicBlock objects, which enables thetranslation in opposite direction. A special data structure called AVLSpanTreeMapis used for this translation. It is able to search for keys which are VMA slices.A CodeTracker object is registered with a ProgramSection object to be noti�edabout all changes to the code, so it can update the database of address mappingson the �y.A generic interface to a VMA translator is also provided in the VMATranslator class.It uses a CodeTracker object to provide the translations.A.8 Instrumentation and pro�lingInstrumenting uses simple 8-byte BBCounter data structures as counters. Everycounter also has a BBCounterInfo structure describing it.The BBCounter structure (common/SectionHeaders.h) holds the actual counter:struct BBCounter {u32_t counter_lo; /* Low part of the counter - inverted */u32_t counter_hi; /* High part of the counter */};The BBCounterInfo structure (common/SectionHeaders.h) has information abouta block and its counters:struct BBCounterInfo {vm_offset_t orig_vma; /* Original VMA address of the block with counter */vm_offset_t dest_vma; /* Destination VMA address of the block with counter */u32_t prologue_offset; /* Offset of the prologue counter in counters */u32_t epilogue_offset; /* Offset of the epilogue counter in counters */};The CounterMap class (in profiling/CounterMap.h) looks like this:class CounterMap {/* Map from VM addresses to counters info structures */AVLTreeMap<vm_offset_t, BBCounterInfo *> countersMap;/* MMaped counter values file. Holds the BBCounter values of the counters. */IA32BinOptCountersHeader *bssHeader;/* Info header of the counter info section with basic info about counters. */IA32BinOptInfoHeader infoHeader;/* Contents of the counter info section. Holds BBCounterInfo objects */byte *contents;/* Are the VMA addresses original or destination addresses? */bool usingOriginalFile;...};In countersMap, it contains a map from original or destination addresses96 toBBCounterInfo counter information objects. From them, it is possible to get theactual counter value stored in a BBCounter object.96. This depends on value of the usingOriginalFile �ag.

Program source code reference 82

82

The main instrumentation code is in instrumenting/prepare_counting.cpp.A.9 Optimizer support structuresOptimizer plugins typically need more information about the code than thestandard ProgramSection, BasicBlock and Instruction objects can o�er. Theyare provided with additional data in a OptimizeContext object.The OptimizeContext class (optimizer/OptimizeContext.h) looks like this:class OptimizeContext {/* The ProgramConvertor object representing the optimized program */ProgramConvertor *programConvertor;/* The section selected for optimization */SectionConvertor *selectedSection;/* List of all basic blocks */DListT<BasicBlockInfo> blocks;/* Map of counters for all blocks */const CounterMap *counterMap;/* Additional information for optimization, such as a CFG or SSA form */OptimizeFramework *optimizeFramework;...};It contains a reference to the code section,97 a separate double-linked list of allBasicBlock objects in the blocks �eld for easy reorganization, reference to acounter map to query about pass counts of basic blocks and an optional referenceoptimizeFramework to an OptimizeFramework object, which contains additionalinformation.The actual BasicBlock objects are wrapped in BasicBlockInfo structure, whichprovides additional information for the basic block, such as data about a counter ora more complete control �ow information.98The BasicBlockInfo objects are also used to reorganize the blocks. While theBasicBlock class has the next �eld to chain blocks, it cannot be easily used toshu�e the blocks, because it doesn't only determine the position of the block, butalso its control �ow.After the BasicBlockInfo objects are shu�ed, they can be passed for processingto a BasicBlockManager object which updates their position and control �ow data.Another information stored there is a reference to a counter information for theblock. The counter value cannot be directly obtained from it, however. It needs aCounterMap object, which contains the values.97. Every OptimizeContext works on a single section or a part of it.98. The BasicBlock object is a more low-level object and only contains a reference to the next block innormal control �ow and a branch block for direct jumps.

83 Appendix A

83

The BasicBlockInfo class (optimizer/BasicBlockInfo.h) looks like this:class BasicBlockInfo: public DNode {/* The basic block represented by this object */BasicBlock *block;/* Reference to a counter info for this block */const BBCounterInfo *counter;/* Next basic block - next in in control flow, not necessarily in code */BasicBlockInfo *nextBlockInfo;/* Pointers to all branch blocks */Vector<BasicBlockInfo *> branchBlocksInfo;...};The OptimizeFramework is constructed for a section or possibly for a part of it, suchas a function. It contains a ControlFlowGraph object, which may be consideredredundant, as BasicBlockInfo objects already contain this information, but thisallows using generic graph algorithms on the control �ow graph of the code.The OptimizeFramework class (optimizer/OptimizeFramework.h) looks like this:class OptimizeFramework {/* The section for which the object is constructed */SectionConvertor *section;/* Working set of the blocks, usually a function */BasicBlockSet *workSet;/* Entry point of the working set, eg. of a function */BasicBlockWI *rootBB;/* Array of all blocks in the working set */Array<BasicBlockWI *> blocks;/* Control-flow graph of the section */ControlFlowGraph CFG;/* The SSA form of the code */SSAForm ssa;...};The workSet �eld is a reference to a BasicBlockSet object, which determines theset of blocks that should be processed.The basic block objects used in the optimizer are not instances of the BasicBlockclass, but instead of its subclass BasicBlockWI. A BasicBlockWI object containsadditional control �ow information, such as a reference to the previous block ormultiple branch blocks, which may be used for indirect jumps. It also containsinvariants and free locations at the start and at the end of the block, its immediatedominator and post-dominator, dominance frontier and other information used whilebuilding the SSA form.

Program source code reference 84

84

The BasicBlockWI class (optimizer/BasicBlockWI.h) looks like this:class BasicBlockWI: public BasicBlock {/* List of all instructions */DoubleList<InstructionInstanceWI *> instructions;/* Pointer to the previous block */BasicBlockWI *prev;/* Invariants at the start/end of the block */InvariantsInfo inputInvariants;InvariantsInfo outputInvariants;/* Temporary invariants that will need to be merged with other branches */InvariantsInfo inputInvariantsMax;InvariantsInfo outputInvariantsMax;/* Free locations at the start/end of the block */LocationsInfo inputLocations;LocationsInfo outputLocations;/* Block number for the DFS/BFS search (search number) */int blockNumber;/* Immediate dominator */BasicBlockWI *idom;/* Immediate post-dominator */BasicBlockWI *ipdom;/* This block's dominance frontier */SingleList<BasicBlockWI *> dominanceFrontier;/* List of variables that can get into the block. */SimpleSet<MergeVariable> mergeVariables;/* Flags used in SSA construction */int flags;...};In the instructions �eld, there is also a list of InstructionInstanceWI objectsrepresenting parsed instructions and additionally containing invariants and emptylocations in LocationsInfo and InvariantsInfo objects.In future, this class might be removed and replaced by a mapping between basicblocks and the additional information it now contains. This would have theadvantage that when the data are not needed any more, they can be easily discarded.The SSAForm class should contain the SSA form of the code, but it is not �nished yet.The ProcessorInfo (de�ned in optimizer/ProcessorsInfo.h) and SystemInfo(de�ned in optimizer/SystemInfo.h) classes provide information about the CPUand operating system which runs the code.

85 Appendix A

85

A.10 InvariantsSome optimizer plugins need additional information about the properties of the codeat certain points. The LocationsInfo class holds information about free and usedplaces on stack and in registers and InvariantsInfo holds all known invariants(or properties) about the code. It can store information, such as what is the valuestored in a register, what value is for sure not stored in a register or if a value islower than another value, lets say, on stack.The LocationsInfo class (optimizer/LocationInfo.h) looks like this:struct LocationsInfo {/* Set of unused registers and their parts */SimpleSet<RegID> unusedRegisters;/* Set of unused stack spans */SpanSet<s16_t> unusedStack;/* Bitmask of unused flags */u16_t unusedFlags;...};The unusedRegisters �eld is able to track arbitrary parts of a register, theunusedStack �eld contains spans of bytes on stack that are not used. Both datastructures allow fast searching if a particular location or part of it is in use or free.Invariants store information which can formally be deduced from previous code. If,for example, there is a comparison of the EAX register with a number 5 and thena JZ branch, an invariant that EAX is 5 can be introduced in one branch and thatit cannot be 5 can be put into the other branch.In case some code has multiple control �ow paths that can lead to it, an intersectionoperation of invariants from all paths must be performed.The InvariantsInfo class (optimizer/InvariantsInfo.h) looks like this:class InvariantsInfo {/** A set of invariants for registers and stack */SingleList<Invariant> invariants;/** Bitmask of flags that are known to be set/clear */u16_t flagsSet;u16_t flagsClear;/** Current stack and FPU stack position relative to a base */s16_t stackPos;s16_t FPUStackPos;...};One Invariant (optimizer/Invariant.h) has 2 operands, both can be a register ora memory location, and the second one can also be a constant. The invariant thenstores a type of relation between the two values. The relation may be an equality,inequality, other comparison, or an information on bits which are set or clear.

Program source code reference 86

86

The registers or stack memory locations used in the invariants are represented by aVariableID class (optimizer/VariableID.h). It can represent a register, part ofa register or a stack memory area.99While the location tracking is already implemented, the invariants and SSA formconstruction are both work in progress and are not in a usable state yet.A.11 Optimizer pluginsAll optimizations are performed by optimizer plugins. They are all descendantsof the base class OptimizePlugin (optimizer/OptimizePlugin.cpp). It containsa con�guration of the plugin and a virtual method optimize(), which does theactual work. The plugins, such as CacheUnaliasPlugin, AthlonBTBPlugin orBranchAlignPlugin, are located in the optimizer/plugins directory.All plugins are registered at an OptimizePluginRegistry object (the de�nition isin optimizer/OptimizePluginRegistry.h). This object manages all plugins andis responsible for reading their con�guration from a con�g �le.The main code of the optimizer is in optimizer/optimize.cpp.A.12 System-dependent partsThe code which depends on the operating system or object �le format is located inthe sysdep directory.The base of the system dependent part is the ObjectFile_utils class. Currently,only one implementation is provided, for the ELF �le format and the Linux operatingsystem � Elf32_utils. It contains code that �xes an ELF �le after it is writtenby the BFD library. This is necessary because the BFD library, when used in adi�erent way than normally used, sometimes produces executable �les that don'twork properly. Sometimes, for example, LOAD segments are not produced for someloadable sections or are aligned in a wrong way.The is also a DwarfUtils class in the sysdep/dwarf directory. It adjusts debuginformation in the DWARF2 format to cover the new code, either instrumented oroptimized.A.13 Containers and other universal data structuresThere is a large number of supporting data structures and other common code in theutils directory. Some of the classes have a similar function as classes in the STLC++ library. A separate version was created to improve debugging possibilities andadd some functionality that was not present in the STL classes.For some data structures, di�erent implementations were considered to measureperformance and select the best data structure for the task, some might be betterdescribed as pet projects.99. It can represent up to 127 bytes in the range [stack_base - 32768, stack_base + 32767].

87 Appendix A

87

Several universal containers are de�ned. Array is a simple array with boundschecking wrapped in a class. Vector is similar to Array, but allows pushing newelements at the end or inside the array and provides automatic resizing. Heap, Stackand Queue are simple array-based implementations of a heap, stack and queue.There are several implementations of linked lists. They fall into several categories,some are single-linked, some are double-linked. Some use a �xed size of the nodes,some occupy less memory at the expense of restricting adding new nodes only atthe beginning (the classes with the �Simple� pre�x), some allocate data for thenode, some use the actual data as a node and require it to inherit from a baseclass (the classes SList* , DList*). The list classes are: SList, DList, SingleList,DoubleList, SimpleSingleList, SimpleSList.There are several versions of a universal set, each with di�erent capabilities ande�ciency for particular operations: AATreeSet implemented as an AA tree, HashSet,which uses a hash table, RBTreeSet implemented as a red-black tree, SimpleSetstored in a sorted array.There are also several map implementations: AVLTreeMap is using an AVL tree,HashMap, RBTreeMap, SimpleMap, are based on corresponding sets, SplayTreeMapis using splay trees. StringMap and StringIntMap use strings as keys.Several sets and maps are implemented which use a span of values as a key andallow interval searching: SpanSet (using SimpleSet) and AVLSpanTreeMap (usingAVLTreeMap).SimpleObjectSet is for storing objects implementing a particular interface. TheEvalLinkSet is an implementation of an eval-link set from [39], used for dominatoranalysis. HashMemberStack and HashMemberQueue are hybrid data structures, whichcombine a hash set with a stack or queue.For control �ow graph and other graphs, there is a Graph class for bidirectionalgraphs and SingleGraph for directed graphs.Bitmaps can use the simple Bitmap class or VMABitmap for VMA address bitmap,Flags when multiple bits per record (�ags) are needed instead of a 1-bit bitmap,VMAFlags for VMA address �ags. SimpleFlags is for �ags that �t into an integer.There are other special classes: ConfigFileParser which is used for parsingoptimizer con�g �les, String for storing dynamically changing character strings,PrintBuffer for string formatting, IOBuffer for reading line-bu�ered data from�les, DataBuffer for universal data storage used in ProgramSection.Other utilities include ArrayUtils for sorting arrays, EndianUtils for conversionof data between endianities, NumericUtils for working with rounding and primenumbers and FileUtils containing methods dealing with �le paths.

Program source code reference 88

88

Appendix B Usage of the toolsB.1 Building and installation of the toolsIf you want to build the IA-32 Binary Optimizer from sources, download the source�le package ia32_binopt-<version>.tar.bz2 and possibly additional librarieslibs.tar.bz2 and then run these commands:tar xjf ia32_binopt-<version>.tar.bz2cd ia32_binary_optimizertar xjf ../libs.tar.bz2make -f Makefile.cvsmkdir out; cd out../configure --enable-static-bfd --enable-static-ibertymakeIf you have a BFD version at least 2.16.91, you can skip unpacking of the additionallibraries and omit the --enable-static-bfd and --enable-static-iberty �agsto the con�gure script. The supported version of dietlibc is 0.30.Alternatively, you can install the provided binary RPM package.B.2 Con�guration �leThe optimization is directed by a con�guration �le. It consists of a list of con�gura-tion options organized into sections. A con�guration option consists of a name anda value, separated by a colon `:'. The list of sections and options in each section, aswell as types of values, are �xed and unknown values are reported as warnings.There is one global con�guration section called PluginsConfig. The names of othersections are the names of the corresponding optimizer plugins.Common options supported by most optimizer plugins are enabled and debug. Bothhave boolean values and control whether the plugin is enabled and whether someverbose debugging messages should be printed. The possible con�gurations for eachoptimizer plugins are presented below.If the con�guration �le is not speci�ed on the command-line, a ia32binopt.conf�le in the directory with the instrumented �le is used. If there is no such �le, thedirectory with the ia32bopt_optimize program is tried next. As the last resort,the �le ${HOME}/.ia32binopt.conf is used.B.2.1 CacheUnalias pluginThe CacheUnalias plugin compacts hot code in hot-spots by moving or copyingtogether blocks that frequently pass control among each other, optimizing code cacheusage.The percentage of the maximal basic block passes count, which should be considereda hot-spot (and optimized), is determined using the percentTreshold option. IfmergeHotSpots option is enabled, di�erent hot-spots are placed together if they useeach other frequently.

89 Appendix B

89

Normally, when compacting hot code, basic blocks are moved, not copied, from theiroriginal location. If enablePartialInlining is true, then some blocks may be eithermoved or copied from another part. The partialInlineTreshold controls howmany percents of passes must come into block B from block A, so that B is movednext to A. If there are less passes coming from from A, then B is only copied nextto A and also stays at its original location.B.2.2 BranchAlign pluginThe BranchAlign plugin aligns important targets of jumps (branches) to a multipleof alignSize (usually 16), which improves performance on some processors.The percentage of the maximal basic block passes count, which should be considereda hot-spot and optimized, is determined using the globalPercentTreshold option.To select branch targets that should be aligned, the jumpAlignTreshold optioncan be used. There must be at least jumpAlignTreshold times more jumps to theaddress than simple passes through from the previous basic block in order to alignthe block. The alignment is done to a multiple of alignSize.The padding can be up to alignSize - 1 long, and it is �lled with NOP instructions.If the padding is long, it may slow down normal passage to the block. A jump canbe inserted at the beginning of the padding to the next block if jumpOverPaddingis enabled. The minimal padding size where a jump should be inserted is controlledby jumpOverPaddingLength.Jumps generated over padding seldom improve performance and therefore shouldnot be used too often. If the padding hurts performance of the normal control �ow,maybe the jumpAlignTreshold option is set too low and there should not be anypadding at that location in the �rst place.B.2.3 AthlonBTB pluginThe AthlonBTB plugin increases the size of some RET instructions to solve problemswith Athlon BTB cache.There is only one con�gurable option, globalPercentTreshold, which controlswhich blocks should be a�ected by the optimization.B.2.4 HotColdSeparate pluginThe HotColdSeparate plugin separates hot code from cold code. It is similar to theCacheUnalias plugin, but it is simpler, because it doesn't work at a basic block level,but moves whole functions.There are no con�guration options, except for the standard enabled and debug. Itdoesn't make sense to separate hot and cold code only in a hot-spot.

Usage of the tools 90

90

B.2.5 A sample con�guration �leA sample con�guration �le may look like this:[CacheUnaliasPlugin]enabled: yesdebug: yespercentTreshold: 15.0mergeHotSpots: trueenablePartialInlining: truepartialInlineTreshold: 90.0[BranchAlignPlugin]enabled: nodebug: yesglobalPercentTreshold: 80jumpAlignTreshold: 60jumpOverPadding: truejumpOverPaddingLength: 5alignSize: 16[AthlonBTBPlugin]enabled: nodebug: yesglobalPercentTreshold: 80[HotColdSeparatePlugin]enabled: nodebug: yes

91 Appendix B

91

B.3 Command-line optionsAll tools support the --help option which will write a summary of possible optionsand, in the case of ia32bopt_optimize, also default values.B.3.1 ia32bopt_prepareThe ia32bopt_prepare program is used for instrumenting a �le intended to beoptimized. The command-line options are summarized in the table below:File names:--input-file <�lename> Input �le name to be instrumented-f <�lename> Same as --input-file--output-file <�lename> Output �le name (instrumented program)-o <�lename> Same as --output-file--code-utils-file <�lename> Helper �le with architecture-speci�c code-c <�lename> Same as --code-utils-fileCode handling options:--program-headers-fix=<y/n> Fix ELF program header table--page-align-section=<y/n> Align new code section to page boundary--page-align-section-end=<y/n> Align new code section end to page boundary--keep-empty-blocks=<y/n> Keep or delete empty blocks (�lled by NOPs)--breaks-on-syms=<y/n> Split basic blocks on symbol locations--insert-trampolines=<y/n> Insert trampolines from old to new code--trampolines-on-syms=<y/n> Insert trampolines on symbol locations--trampoline-mode=<mode> Select trampoline placing algorithm--avoid-trampoline=<address> Avoid inserting a trampoline on address--allow-exceptions=<y/n> Force instrumenting a �le using C++ exceptions--select-abi Select ABI � calling conventionsOther options:--dump-section-info Print information about sections--print-targets Print available BFD targets--dump-xtable=<�lename> Dump VM address translation table to �le--att-syntax Use AT&T syntax for disassembly--help, -h Print a help screenTable 3. Command-line options for ia32bopt_prepareTrampoline placing algorith can be immediate, delayed or anywhere. ABI can benormal, regparm or unknown.In most cases, standard options should be su�cient and only the input �le has tobe speci�ed. If some problems with trampolines are reported, another trampolinemode may be selected. For the 2.4.x version of Linux kernel, it may be necessaryto activate the option --page-align-section-end, because the kernel doesn't loadcode segments properly if they are not aligned to a page boundary.If the output �lename is not speci�ed, a su�x �.instrumented� is appended to theoriginal name.

Usage of the tools 92

92

B.3.2 ia32bopt_optimizeThe ia32bopt_optimize program takes the instrumented �le and optimizes it.Not all options can be speci�ed on the command-line. Most options dealing withoptimization can only be stated in the con�g �le which is selected using the option--config-file.File names:--input-file <�lename> Input �le name to be optimized-i <�lename> Same as --input-file--output-file <�lename> Output �le name (optimized program)-o <�lename> Same as --output-file--origial-file <�lename> Original �le name (usually automatically determined)-r <�lename> Same as --original-file--code-utils-file <�lename> Helper �le with architecture-speci�c codeCode handling options:--program-headers-fix=<y/n> Fix ELF program header table--page-align-section=<y/n> Align new code section to page boundary--page-align-section-end=<y/n> Align new code section end to page boundary--breaks-on-syms=<y/n> Split basic block on symbol locations--insert-trampolines=<y/n> Insert trampolines from old to new code--trampolines-on-syms=<y/n> Insert trampolines on symbol locations--trampolines-on-counters=<y/n> Insert trampolines at all places with counters--trampoline-mode=<mode> Select trampoline placing algorithm--avoid-trampoline=<address> Avoid inserting a trampoline on addressOptimization options:--no-optimization Disable all optimizations--config-file=<�lename> Con�guration �le for optimizer plugins--keep-empty-blocks=<y/n> Keep or delete empty blocks (�lled by NOPs)--condense-blocks=<y/n> Put blocks as close together as possible--align-hot-blocks=<y/n> A switch to enable/disable the BranchAlign plugin--optimize-athlon-btb=<y/n> A switch to enable/disable the AthlonBTB plugin--select-abi Select ABI � calling conventionsOther options:--disassemble-input Disassemble the code before optimization--disassemble-output Disassemble the code after optimization--disassemble-both Disassemble the code before and after--dump-block-map=<�lename> Dump map of input and output basic blocks--dump-block-checks=<�lename> Dump a map of blocks with origianl VMAs for checking--dump-xtable=<�lename> Dump VM address translation table--att-syntax Use AT&T syntax for disassembly--help, -h Print a help screenTable 4. Command-line options for ia32bopt_optimizeOptions with the same name as for ia32bopt_prepare have the same meaning.The original �le name may be speci�ed, otherwise it is obtained by removingthe �.instrumented� su�x from the instrumented �le.

93 Appendix B

93

In most cases, standard options should be su�cient and only the input �le has tobe speci�ed. If some problems with trampolines are reported, another trampolinemode may be selected. For the 2.4.x version of Linux kernel, it may be necessaryto activate the option --page-align-section-end, because the kernel doesn't loadcode segments properly if they are not aligned to a page boundary.If the output �lename is not speci�ed, the �.instrumented� su�x from the input�le is replaced by �.optimized�.B.3.3 ia32bopt_analyseThe ia32bopt_analyse is a tool that visualizes the information obtained frompro�ling with the disassembly of the program. The input �le is an instrumentedprogram speci�ed using the --instrumented-file or -f, optionally the original �lecan be entered with --original-file of -o. The AT&T syntax for disassembly canbe requested by the --att-syntax option.B.3.4 ia32bopt_disassembleThe ia32bopt_disassemble is a tool that disassembles a binary �le, providingadditional information. The input �le is any binary executable program speci�edusing the --file or -f. The utility can show recognized basic blocks and theircontrol �ow with the --show-basic-blocks option. Empty basic blocks can besuppressed by the --remove-empty option. Similarly to the other tools, AT&Tassembler syntax for disassembly is selected by the --att-syntax option.B.3.5 ia32bopt_cpuinfoThis program writes information about the CPU it runs on. There are no command-line options available.

Usage of the tools 94

94

Appendix C Example sessionC.1 PreparationIn this appendix, a typical session with the optimizer will be described. We will beoptimizing the Links browser.100We start by compiling the IA-32 Binary Optimizer framework from sources or byinstalling a binary package � as described in section B.1.If compilation fails because of dependency problems, running make again may help.To avoid incompatibilities between di�erent versions of libraries, local copies maybe used by specifying one or more of:--enable-static-bfd use the local copy of the BFD library--enable-static-iberty use the local copy of the iberty library--enable-static-dietlibc use the local copy of the dietlibc libraryto the configure script. If you use any of these options, please make sure that youdownloaded the libs package and unpacked it into the libs directory in the root ofthe source tree before running make.Note that every time after running the configure script (from the out directory),the make command must be executed again (from the same directory).We then compile the Links program and install it into /usr/local/bin/links.Now, we want to get the instrumented version, which will provide some pro�linginformation.C.2 InstrumentingTo instrument the program, we execute:101ia32bopt_prepare /usr/local/bin/linksA new program, called /usr/local/bin/links.instrumented is created. Whenexecuted, it will create pro�ling information. By default, this data would go to /tmp,but we may want to use ~/.counters instead, so we de�ne the IA32BINOPT_BASEvariable.IA32BINOPT_BASE=~/.counters; export IA32BINOPT_BASEWhen instrumenting a program which uses exceptions, the --allow-exceptions=yoption to ia32bopt_prepare may be necessary. Note that the instrumented oroptimized program may crash on the �rst thrown exception. This option shouldtherefore only be used for programs that use exceptions solely for unrecoverableerror conditions.100. The homepage of the Links browser is at http://links.sourceforge.net/.101. For this to work, ia32bopt_prepare must be on the path. Otherwise, the path to it must be put infront of the command.

95 Appendix C

95

As input for the Links browser, we prepare a test HTML page containing manydi�erent features we want to focus the optimization on. In our example, the test pagewill be placed in a �le called links-test.html. The command which will producepro�ling data is:102links.instrumented -dump links-test.html > links-test.txtWe redirected the normal output of the progarm to see any error messages. We thencheck the error output of the program. If the instrumented binary did not start,there may be a problem in the instrumenting process.If we use an older Linux kernel, we can add the --page-align-section-end=yoption to the invocation of ia32bopt_prepare. This is normally the default optionon Linux 2.4.x kernels, but the operating system version may be incorrectly detected.If the instrumented program still doesn't run, other options to ia32bopt_preparemay be speci�ed, such as changing the --trampoline-mode mode.If everything worked well, a counter �le should be placed under ~/.counters.We may run the links.instrumented program again with di�erent data. If wewant to optimize for a mix of usage patterns, we may create another test page inthe links-test2.html �le and update pro�ling data:links.instrumented -dump links-test2.html > links-test2.txtC.3 AnalysisTo see pro�ling information gathered, along with some additional annotations, youcan run:ia32binopt_analyse -f /usr/local/bin/links.instrumentedA disassembly of the code divided into basic blocks and annotated with additionalinformation is displayed. For every block, control �ow data and counter value aredisplayed.C.4 OptimizationWe may now proceed to optimization. We copy the example con�guration �leia32binopt.conf to the directory with the instrumented �le and we run:ia32bopt_optimize /usr/local/bin/links.instrumentedThe optimized �le will be placed in /usr/local/bin/links.optimized. To displaysome analysis data for optimization, the --disassemble-both command-line optionmay be provided. It will output similar data as the ia32binopt_analyse program,but additionally a dominator tree103 and results of stack pointer analysis and emptylocations analysis.102. For this to work, /usr/local/bin must be on the path. Otherwise, it must be put in front of thecommand.103. The dominator tree is only displayed, if DEBUG_DOMINATORS is set to 1 in SSAForm.cpp.

Example session 96

96

We then try to run it and measure its performance with the time command:time /usr/local/bin/links.optimized -dump links-test.html >/dev/nullThen, we make some changes to the con�g �le /usr/local/bin/ia32binopt.confused in optimization and run ia32bopt_optimize again. We observe the impact ofthe changes on execution time and possibly repeat adjusting optimization optionsuntil we are satis�ed with the result.The �rst step in tuning the con�guration �le could be enabling or disabling certainplugins altogether and observing the impact on performance. Other common optionsthat heavily in�uence optimization and can be tuned are percentTreshold andenablePartialInlining for the CacheUnaliasPlugin plugin.

97 Appendix C

97

Bibliography[1] Matthew C. Merten. Run-Time Optimization Architecture . Ph.D. thesis, Department ofElectrical and Computer Engineering, University of Illinois, Urbana IL, August 2002.http://www.crhc.uiuc.edu/IMPACT/ftp/report/phd-thesis-matthew-merten.pdf[2] Morph: Late Code Modi�cation.http://www.eecs.harvard.edu/morph/[3] Matthew C. Merten and Michael S. Thiems. An Overview of the IMPACT X86 BinaryReoptimization Framework. IMPACT Technical Report , May 1998.http://www.crhc.uiuc.edu/IMPACT/ftp/report/impact-98-05.binary.pdf[4] M. C. Merten. A Framework for Pro�le-Driven Optimization in the IMPACT BinaryReoptimization System . Master's thesis, 1999.http://citeseer.ist.psu.edu/merten99framework.html[5] B.S. Christopher Neith George. A Framework for Install-Time Optimization of BinaryDynamic-Link Libraries . Master's thesis, University of Illinois at Urbana-Champaign, 1997.http://www.crhc.uiuc.edu/IMPACT/ftp/report/ms-thesis-christopher-george.pdf[6] HeavenTools. PE Explorer: Debug Info Viewer, Relocation Viewer, Strip Tools and TimeD-ateStamp Adjuster.http://www.pe-explorer.com/peexplorer-tour-more-tools.htm[7] M. S. Thiems. Optimization and Executable Regeneration in the Impact Binary Reoptim-ization Framework . Master's thesis, 1998.http://citeseer.ist.psu.edu/thiems98optimization.html[8] Robert S. Cohn, David W. Goodwin, and P. Geo�rey Lowney. Optimizing Alpha Execut-ables on Windows NT with Spike. Digital Technical Journal , 9(4), 1998.http://research.compaq.com/wrl/DECarchives/DTJ/DTJS01/DTJS01HM.HTM[9] Robert S. Cohn, David W. Goodwin, P. Geo�rey Lowney, and Norman Rubin. Spike: AnOptimizer for Alpha/NT Executables. USENIX Windows NT Workshop, August 1997.http://citeseer.ist.psu.edu/lowney97spike.html[10] Raymond J. Hookway and Mark A. Herdeg. Digital FX!32: Combining Emulation andBinary Translation. Digital Technical Journal , Vol. 9(No. 1), January 1997.http://research.compaq.com/wrl/DECarchives/DTJ/DTJP01/DTJP01PF.PDF[11] Anton Cherno�, Mark Herdeg, Ray Hookway, Chris Reeve, Norman Rubin, Tony Tye,S. Bharadwaj Yadavalli, and John Yates. FX!32: A Pro�le-Directed Binary Translator.IEEE Micro, 18(2):55 � 64, March 1998.[12] Anton Cherno� and Ray Hookway. DIGITAL FX!32: Running 32-bit x86 Applicationson Alpha NT. Proceedings of the USENIX Windows NT Workshop, August 1997.http://www.usenix.org/publications/library/proceedings/usenix-nt97/full_papers/chernoff/chernoff.pdf[13] Sheldon Lobo. The Sun Studio Binary Code Optimizer, November 2005.http://developers.sun.com/sunstudio/articles/binopt.html[14] Charm Home Page.http://rogue.colorado.edu/Charm/[15] Pin - A Dynamic Binary Instrumentation Tool.http://rogue.colorado.edu/Pin/[16] Robert Wilson, Robert French, Christopher Wilson, Saman Amarasinghe, JenniferAnderson, Steve Tjiang, Shih Liao, Chau Tseng, Mary Hall, Monica Lam, and John Hen-nessy. SUIF: A Parallelizing and Optimizing Research Compiler. Technical Report: CSL-TR-94-620 , 1994.http://citeseer.ist.psu.edu/context/315105/0

Bibliography 98

98

[17] Etch: Instrumentation and Optimization of WIN32/Intel Executables .http://etch.cs.washington.edu/[18] Valgrind Technical Documentation.http://www.valgrind.org/docs/manual/tech-docs.html[19] Qemu Internals.http://www.qemu.org/qemu-tech.html[20] Code Compaction with aiPop for C16x/ST10, 2006.http://www.absint.com/aipop/slides/[21] IA-32 Intel r Architecture Software Developer's Manual, Volume 1: Basic Architecture,2004.http://www.intel.com/design/pentium4/manuals/index_new.htm[22] IA-32 Intel r Architecture Optimization Reference Manual , 2004.http://www.intel.com/design/pentium4/manuals/index_new.htm[23] AMD Athlon� Processor x86 Code Optimization Guide , February 2002.http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/22007.pdf[24] Jon �Hannibal� Stokes. The Pentium: An Architectural History of the World's MostFamous Desktop Processor, July 2004.http://arstechnica.com/articles/paedia/cpu/pentium-1.ars/1[25] Agner Fog. The microarchitecture of Intel and AMD CPUs , 2006.http://www.agner.org/optimize/[26] Agner Fog. Instruction tables , 2006.http://www.agner.org/optimize/[27] Agner Fog. Optimizing subroutines in assembly language , 2006.http://www.agner.org/optimize/[28] Agner Fog. Optimizing software in C++, 2006.http://www.agner.org/optimize/[29] IA-32 Intel r Architecture Software Developer's Manual, Volume 2A, 2B: Instruction SetReference , 2004.http://www.intel.com/design/pentium4/manuals/index_new.htm[30] Christian Ludlo�. IA-32 architecture, 2006.http://www.sandpile.org/ia32/index.htm[31] Summer 2004 Laboratory Notes, 2004.http://courses.ece.uiuc.edu/ece390/books/labmanual/index.html[32] Eric Rotenberg, Steve Bennett, and Jim Smith. Trace Cache: a Low Latency Approachto High Bandwidth Instruction Fetching. International Symposium on Microarchitecture,1996.http://citeseer.ist.psu.edu/rotenberg96trace.html[33] CPU cache - Wikipedia.http://en.wikipedia.org/wiki/CPU_cache[34] Hans de Vries. Looking at Intel's Prescott die, Part II, April 2003.http://chip-architect.com/news/2003_04_20_Looking_at_Intels_Prescott_part2.html[35] klog <klog@promisc.org>. Backdooring Binary Objects. Phrack Magazine, Volume0xa(Issue 0x38), May 2000.http://www.phrack.org/archives/56/p56-0x09[36] BFD Library manual.http://sourceware.org/binutils/docs-2.17/bfd/index.html

99 Section

99

[37] Gianfranco Bilardi and Keshav Pingali. The Static Single Assignment Form and itsComputation. Cornell University Technical Report , July 1999.http://www.cs.cornell.edu/Info/Projects/Bernoulli/papers/ssa.ps[38] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. KennethZadeck. E�ciently Computing Static Single Assignment Form and the Control Depend-ence Graph. ACM Transactions on Programming Languages and Systems , 13(4):451 � 490,October 1991.http://citeseer.ist.psu.edu/cytron91efficiently.html[39] Stephen Alstrup, Dov Harel, Peter W. Lauridsen, and Mikkel Thorup. Dominators inLinear Time. SIAM Journal on Computing , Volume 28(Issue 6):2117 � 2132, June 1999.http://portal.acm.org/citation.cfm?id=323341[40] Adam L. Buchsbaum, Haim Kaplan, Anne Rogers, and Je�ery R. Westbrook. Linear-Time Pointer-Machine Algorithms for Least Common Ancestors, MST Veri�cation, andDominators. Proceedings of the Thirtieth Annual ACM Symposium on Theory of Com-puting , pages 279 � 288, 1998.http://citeseer.ist.psu.edu/buchsbaum98lineartime.html[41] Dov Harel. A linear time algorithm for �nding dominators in �owgraphs and related prob-lems. Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing ,pages 185 � 194, May 1985.[42] Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy. A Simple, Fast DominanceAlgorithm. Software Practice and Experience, 2001.[43] Loukas Georgiadis, Robert E. Tarjan, and Renato F. Werneck. Finding Dominators inPractice. Journal of Graph Algorithms and Applications , 10(1):69�94, 2006.http://www.emis.de/journals/JGAA/accepted/2006/GeorgiadisTarjanWerneck2006.10.1.pdf[44] G. Ramalingam. On Loops, Dominators, and Dominance Frontiers. ACM SIGPLANNotices , 35(5):233 � 241, May 2000.[45] David Eppstein. ICS 161: Design and Analysis of Algorithms.http://www.ics.uci.edu/~eppstein/161/960220.html[46] Fudan University, Shanghai. Design and Analysis of Algorithms , 2005.http://www.cs.ust.hk/~rudolf/Courses/Alg_ug_06w/Resources/Script/index.html[47] Stephen Alstrup, Inge Li Goertz, Theis Rauhe, Mikkel Thorup, and Uri Zwick. Union-Find with Constant Time Deletions. Lecture notes in computer science , 2005. ISSN 0302-9743.http://www.springerlink.com/index/9J758DETC9F3X66J.pdf[48] R. Cohn and P. G. Lowney. Hot Cold Optimization of Large Windows/NT Applications.MICRO29 , pages 80 � 89, December 1996.[49] Xianglong Huang, Brian T Lewis, and Kathryn S McKinley. Dynamic code manage-ment: improving whole program code locality in managed runtimes. Proceedings of the 2ndinternational conference on Virtual execution environments , pages 133 � 143, 2006. ISSN1-59593-332-6.http://www.cs.utexas.edu/users/xlhuang/dcm.pdf[50] Cli� Young, David S. Johnson, Michael D. Smith, and David R. Karger. Near-optimalintraprocedural branch alignment. Proceedings of the ACM SIGPLAN 1997 Conference onProgramming language design and implementation, pages 183 � 193, 1997. ISSN 0362-1340.http://theory.lcs.mit.edu/~karger/Papers/pldi96-final.ps.gz[51] Karl Pettis and Robert C. Hansen. Pro�le guided code positioning. Proceedings of theACM SIGPLAN 1990 Conference on Programming language design and implementation,pages 16 � 27, 1990. ISSN 0362-1340.http://www.cs.rice.edu/~keith/512/Lectures/12PettisHansen.pdf

Bibliography 100

100

[52] Intel r Processor Identi�cation and the CPUID Instruction, June 2001.http://developer.intel.com/design/xeon/applnots/241618.htm[53] Red-black tree - Wikipedia.http://en.wikipedia.org/wiki/Red-black_tree[54] Daniel Dominic Sleator and Robert Endre Tarjan. Self-Adjusting Binary Search Trees.Journal of the ACM , 32(3):652 � 686, 1985. ISSN 0004-5411.http://www.cs.princeton.edu/courses/archive/fall05/cos528/handouts/splay.pdf
101 Section

101

IndexAAATreeSet class 88address aliasing 56address generation interlock 20address-generation unit (AGU) 29agree predictor 19aiPop 11arithmetic-logic unit (ALU) . 23, 25, 27, 29Array class 88ArrayUtils class 88AthlonBTB plugin 4, 59, 90AVLSpanTreeMap class 82, 88AVLTreeMap class 88BBase Relocation Table 7basic block 2, 3, 49, 76BasicBlock class 48, 52, 76BasicBlockInfo class 83, 84BasicBlockManager class 77, 83BasicBlockSet class 84BasicBlockWI class 85BBCounter class 82BBCounterInfo class 82BD library 48BFD library 38, 44, 79, 87, 89Bitmap class 88branch selector 27branch target bu�er (BTB) . 18, 24, 27, 90BranchAlign plugin 4, 58, 90Ccache bank con�ict 27cache con�ict 2CacheUnalias plugin 4, 56, 89Charm 9CISC 15code cache (see instruction cache)code layout 9CodeTracker class 77, 80, 81cold code 4, 8Con�gFileParser class 88content tracking 77, 80, 81ContentTraces class 81control-�ow graph (CFG) 53, 84ControlFlowGraph class 78, 84ConversionHelper class 45, 47, 80, 81CounterMap class 82

Ddata cache 22, 27, 30DataBu�er class 78, 88dead code 9DeadCodeRemove plugin 60debug information 38dependency chain 16, 29, 30, 30, 34dietlibc library 44, 52DList class 88dominance frontier 55dominator 54dominator tree 55DoubleList class 88DoubleListVarSize class 88DWARF format 6, 41, 48, 87dynamically linked libraries 38EElf32_utils class 49, 87EndianUtils class 88Etch . 10EvalLinkSet class 88execution port 23, 27execution unit 16, 23Ffalse dependency 21, 22, 23, 27, 29FileUtils class 88Flags class 88Function class 53, 77FunctionInline plugin 60FX!32 . 8Gglobal branch history 19, 24global o�set table 41Graph class 88HHashMap class 88HashMemberQueue class 88HashMemberStack class 88HashSet class 88Heap class 88history pattern table 19, 24, 27hot code 4, 8, 56HotColdSeparate plugin 4, 59, 90hot-spot 2, 31, 56

Index 102

102

IIFETCH block 20immediate dominator 55, 84immediate post-dominator 55, 84IMPACT 7InsnCode class 75instruction cache . 1, 4, 8, 22, 27, 28, 31, 56Instruction class 74InstructionInfo class 74, 75InstructionInstanceWI class . . . 53, 54, 85InstructionType class 75intermediate code 1, 5Invariant class 86InvariantsInfo class 86IOBu�er class 88JJust-In-Time compiler 1, 3, 5, 11Llatency 14, 16limited inlining 9live variable 4LocationsInfo class 86loop bu�er 24loop counter 19, 24Mmacro-op 15, 27, 28macro-op fusion 26, 26, 37microoperation 15, 23, 27Morph 10NNOP instruction 33, 46, 58, 75, 90NumericUtils class 88OObjectFile_utils class 87Operand class 74OptimizeContext class 56, 83OptimizeFramework class . . 53, 56, 83, 84OptimizePlugin class 56, 87OptimizePluginRegistry class 56, 87optimizer plugin 4, 6, 56out-of-order execution 16, 20Ppartial �ags stall 22, 34, 37partial memory stall 22, 34partial register stall 22, 34performance counters 67Pin . 11post-dominator 54

PrintBu�er class 88procedure linkage table 41ProcessorInfo class 85pro�ling counter 49, 52, 81, 82pro�ling data 3, 49, 82program header table 39, 49program section 38ProgramCode class 77, 79ProgramConvertor class 47, 79ProgramSection class . 46, 46, 48, 58, 76, 77QQemu 11Queue class 88RRBTreeMap class 88RBTreeSet class 88read/modify instruction . . . 15, 21, 24, 31read/modify instructions 29read/modify/write instruction 15, 21read/modify/write instructions 29register alias table (RAT) 15, 21register renaming 16relocatable object �les 38relocation 38, 43Relocation class 46, 47, 52RelocationInfo class 47, 80reorder bu�er (ROB) 16, 24, 26, 29reservation station (RS) 16return address stack 19, 20, 28RISC 15Ssaturating counter 18, 20section header table 39, 49SectionBlockManager class 81SectionConvertor class 79, 80SectionDataBu�er class 78SegmentSettings class 74SimpleFlags class 88SimpleMap class 88SimpleObjectFile class 81SimpleObjectSection class 81SimpleObjectSet class 88SimpleSet class 88SimpleSingleList class 88SimpleSList class 88SingleGraph class 88SingleList class 88SList class 88SpanSet class 88

103 Section

103

speculative execution 16Spike . 8SplayTreeMap class 88SSA form 4, 54, 66SSAForm class 54, 85Stack class 88stack engine 25String class 88StringIntMap class 88Sun Binary Optimizer 9symbol 38SymbolInfo class 47SystemInfo class 85Tthroughput 14, 16

trace cache 22, 31trampoline 4, 47, 80, 92two-level branch predictor 18, 24, 27Uuop . 15uop fusion 24, 25, 37VValgrind 10VariableID class 87Vector class 88virtual memory address (VMA) 77virtual method table (VMT) 68VMA translation 48, 80VMABitmap class 88VMAFlags class 88VMATranslator class 82

Index 104

104

