
CHARLES UNIVERSITY IN PRAGUE
FACULTY OF MATHEMATICS AND PHYSICS

ERRATA AND COMMENTS

Martin Děcký

Application of Software Components
in Operating System Design

Department of Distributed and Dependable Systems

Prague 2015

ii

1 1 Errata

1 Errata

Since the submission of the doctoral thesis titledApplication of Software Components in Op-
erating System Design in June 2015, several mistakes have been found in the original text
– either by the reviewers of the thesis (Björn Döbel, Michal Sojka) or by me as the author
of the thesis (Martin Děcký).
The vast majority of the mistakes are simple typos, grammatical errors and stylistic omis-
sions. I do not provide a list of theseminormistakes here, because their corrections do not
change the intended meaning of the text of the thesis. If necessary, a complete list of all
corrections can be always generated from the version control systemwhere the source text
of my doctoral thesis is kept.1

The updated version of the doctoral thesis with corrections and other updates is available
for download at http://d3s.mff.cuni.cz/~decky/phd/thesis_updated.pdf
What follows is a commented list of errata corrections that actually change the intended
meaning of the text of the thesis:

Section 2.2, page 6 A forgotten reference to “[17]” has been added to the paragraph
describing the publication Resource Sharing in Performance Models.

Chapter 4, page 20 A factual historical error has been corrected. The microkernel de-
veloper room has been organized at FOSDEM since 2012, not since 2011.

Section 5.1.6, page 28 A new paragraph has been added that explains why Chapter 5
does not provide traditional citation references to the mentioned operating system
projects. The references are being maintained separately in the form of a dedicated
wiki page http://trac.helenos.org/wiki/ZOOwhich can be easily kept up-to-date.

Section 6.2.1, page 55 The incorrect formulation that the kernel of HelenOS provides
“constant-sized kernel message queues” has been replaced by the formulation that
the kernel of HelenOS provides “bounded kernel message queues”.

Section 8.2.3, page 83 Similarly to theprevious case, the formulationhasbeen changed
from “෽ixed-size kernel dispatch buffers” to “bounded kernel dispatch buffers”.

Entire text The numbers of successfully defended HelenOS-related bachelor and mas-
ter theses have been updated throughout the entire text to re෽lect the state as of Sep-
tember 2015. Also references “[39]” and “[44]” have been added based on the sug-
gestions of the reviewers.

1svn://svn.decky.cz/decky.cz/phd

http://d3s.mff.cuni.cz/~decky/phd/thesis_updated.pdf
http://trac.helenos.org/wiki/ZOO
svn://svn.decky.cz/decky.cz/phd

2 Comments on Reviews 2

2 Comments on Reviews

I would like to express my gratitude to the of෽icial reviewers of my thesis (Björn Döbel and
Michal Sojka) for providing their helpful comments and constructive criticism. The follow-
ing paragraphs contain my concise comments on the criticism and replies to the questions
asked by the reviewers.

2.1 Lack of Performance Evaluation

Björn Döbel writes in his review:

[...] the thesis completely lacks a traditional evaluation of quantitative prop-
erties. It is a fundamental principle of operating systems design to evaluate
the results of one’s work using standard benchmark programs and compare
those results to other systems.

Michal Sojka requests a similar kind of evaluation in his review:

[...] HelenOS uses advanced algorithms and data structures but what is miss-
ing is the evaluation of whether the beneϔits of the their use correspond
to the expectation or at least to the results found in the literature. The ques-
tion is how are these things evaluated and how well is HelenOS doing com-
pared to othermainstream ormicrokernel-based OSes. I would be interested
in things like performance and scalability on real world use-cases.

The thesis deliberately focused on the overall development methodology of HelenOS and
not on individual implementation features of HelenOS and their performance.
That being written, the performance evaluation of several individual implementation fea-
tures of HelenOS has been done and has been published previously, mostly using micro-
benchmarks. For instance, the IPC performance in HelenOS has been evaluated in themas-
ter thesis of Vojtěch Horký [9] and our custom Read-Copy-Update algorithm and the Con-
current Hash Table have been thoroughly evaluated in the master thesis of Adam Hraška
[10].
However, I must acknowledge that while the text of my thesis references these sources, it
might have putmore stress on the fact that the respective referenced theses indeed contain
these performance evaluations.
Finally, the text of my thesis clearly describes where are currently the major performance
bottlenecks ofHelenOS (see the Section 9.3.1.2 and the Section 10.1.2). Inmyopinion, until
these bottlenecks receive proper development attention, running synthetic benchmarks
on HelenOS in order to compare its performance with other operating systems is a waste

3 2 Comments on Reviews

of time. We can predict the results of such comparison and our prediction is currently not
favorable to HelenOS.

Björn Döbel further writes:

[...] Mr. Děcký argues that traditional microkernel systems strictly avoid im-
plementing any complex data structures or algorithms within the kernel and
require those to be moved to user-level components. He argues that HelenOS
forgoes this strictness and uses complex features, such as concurrent hash ta-
bles to improve kernel resource management. Unfortunately, this argument
is made purely from a philosophical standpoint. The argument would have
been much more convincing if it was backed with some kind of benchmark
that shows the improvements such complex algorithms provide.

The argument is not only philosophical, but it is based on the evaluation of concurrent al-
gorithms and data structures done in the past by others, in the context of other operating
systems (for instance [2, 3, 11, 16]). We use these results as reasonable indications that ex-
ploring the potential of such advanced algorithms and data structures might be bene෽icial
also in the context of HelenOS.
Furthermore, the microbenchmarks of our own implementations support our initial ex-
pectations. To quote explicitly from the conclusion of [10]:

CHT [Concurrent Hash Table] successfully replaced the original kernel fu-
tex subsystemdesignwhich resulted in dramatic scalability improvements
and even reduced the subsystem’s singlethreaded base cost. [...] The pre-
sented results demonstrate that the new futex subsystem is linearly scal-
able [...] Last but not least, we determined that RCU [Read-Copy-Update]
allowed us to considerably speed up ෽ibril locking of singlethreaded user
programs.

The raw measurements and original detailed analysis can be found in [10]. Again, I ac-
knowledge that the text of my thesis should have pointed to this work more explicitly and
it should have stressed the performance evaluation done, but at time of writing I unfortu-
nately did not see it in this way.

As the next point of criticism, Björn Döbel writes:

[...] the thesis also does a poor job in quantitatively analyzing the system’s
reliability. Mr. Děcký duly notes that each of the validation activities in-
corporated into HelenOS build process was able to pinpoint bugs that might
have otherwise gone unnoticed. Unfortunately, this usually only mentions
a number of change sets to the HelenOS system, but does not give details
on the number of bugs found in the system and how these numbers relate
to other operating systems.

In hindsight, I must acknowledge that such quantitative evaluation would have been in-
deed interesting, but also quite challenging, because it would probably require some kind
ofmethodology thatwould be able to normalize different types of bugs in very different in-

2 Comments on Reviews 4

stances of operating systems (differing in their size, architecture, number of contributors,
etc.). For the results to be really convincing, some kind of controlled evaluation experiment
would be also necessary.
To provide at least a very limited answer: Since August 2009, the developers of HelenOS
have ෽ixed approximately 300 bugs in the mainline branch of HelenOS. Approximately 15
of these bugswere detected by static analyzers and veri෽iers, which accounts for about 5%
of bugs. However, this classi෽ication is completely missing bugs that were ෽ixed by the de-
velopers in their own working source trees even before any faulty code was committed
(analyzing these bugs would require some kind of data collection that cannot be possibly
done retroactively). For example, some of the bugs might have been detected by the veri-
fying compiler (the code was not even compilable – which is actually the best way of inte-
grating veri෽ication into the development process, as noted in the text of the thesis). Some
of thebugsmighthavebeendetectedby regression tests, alsobeforemerging into themain-
line branch.
However, I see this as a very constructive and inspiring point of criticism and I declare this
an important part of our future work on the veri෽ication of HelenOS.

Finally, Björn Döbel comments:

[...] using those [veri෽ication] tools comes at a price in terms of development
effort (someone has to add the respective annotations etc. to code), com-
pile time (how long do those tools run?), and perhaps runtime performance.
The thesis unfortunately does not quantify these costs in order to relate them
to other approaches.

The reason why the thesis focuses more on qualitative than quantitative evaluation is ex-
plained in the conclusion: “[...] designing and implementing an entire operating system
is not a trivial task and even with the manpower of all the contributors we do not have
the luxury of being able to compare multiple independent and complete implementations
of HelenOS based on different designs.”
The sameobservation unfortunately applies also to any quantitative evaluation of the costs
of our veri෽ication approaches. The costs of amending the source code with veri෽ication
annotations and running the veri෽ication tools were sunken into the costs of the other de-
velopment efforts. They cannot be separated retroactively because we have not collected
the data originally and we do not have a second version of HelenOS implemented with-
out this additional overhead that we might use for comparison.
Similarly to the previous point of criticism, it is possible to provide some rough values re-
lated to the run-time overhead: The overhead of the utilization of verifying compilers is
negligeable in terms of total compilation time. The utilization of static analyzers and veri-
෽iers represents a typical overhead of tens of seconds per each run. Our suite of continuous
integration and regression tests represents a typical overhead of tens of minutes per each
run for our reproducible builds and potentially a couple of hours for all permissible con-
෽igurations.
But again, I understand this point of criticism as very inspiring for our future work. In my
opinion, it calls for a full-෽ledged controlled experiment in which the trade-offs of utilizing
and not utilizing our veri෽ication methods would be rigorously evaluated.

5 2 Comments on Reviews

2.2 Partial Lack of Technical Detail

Björn Döbel writes in his review:

Chapter 6 gives a very brief (4 page) tour of HelenOS’ kernel features, while
Chapter 7 spends 12 pages discussing HelenOS’ development process. Being
an operating systems person I would have enjoyed the ratio to be the other
way round [...]

A similar comment is also expressed by Michal Sojka. I deliberately did not go into many
technical implementation details in the text of the thesis, because the focus of the thesis
was indeed on the overall development methodology and not on individual implementa-
tion features. Whenever the thesis describes some implementation detail, it is intended
as an illustration of the other aspects (design, development process, veri෽ication).
No speci෽ic implementation work has been done solely for the purpose of writing this the-
sis. Every implementation effort ever undertaken was done for the general bene෽its of He-
lenOS. Therefore I believe that the goal of the thesis was rightfully not to replace or du-
plicate the existing technical documentation of HelenOS and previously published theses
that discuss individual implementation aspects in much detail [13].
In other words, the text of the thesis omits some technical details not because I would
want to hide something (after all, the entire source code of HelenOS is public), but to avoid
reiterating something that is already described elsewhere.

Björn Döbel also adds:

Section 8.3.3.1 spends less than half a page on describing a byte-code inter-
pretation mechanism that allows the kernel to execute user-provided device
driver code in kernelmode. [...] the idea of protecting the kernel from this un-
safe code by using a byte code interpreter sounds pretty novel and in the po-
sition of the author I would have put much more focus on this topic [...]

This feature of the HelenOS kernel has been originally implemented by Ondřej Palkovský
in 2005 as a fairly straightforward response to the need to deassert level-triggered inter-
rupts (within the kernel interrupt handler context) caused by devices managed by user
space drivers. The feature has been gradually extended over time to support basic condi-
tional evaluationwhile naturally respecting the requirement that the untrusted user space
device driver cannot be allowed to do any harm in the kernel space via the IRQ byte-code.
The bulk of the byte-code processing is implemented in kernel/generic/src/ipc/irq.c
in the HelenOS source tree. The byte-code is register-based with six GPR-sized registers
(called “scratch memory”). The byte-code instructions are as follows:

CMD_PIO_READ_{8|16|32} Read a value from a ෽ixed physical memory location (memory-
mapped I/O) or I/O address space to a scratch register.

CMD_PIO_WRITE_{8|16|32} Write a constant value to a ෽ixed physical memory location
(memory-mapped I/O) or I/O address space.

2 Comments on Reviews 6

CMD_PIO_WRITE_A_{8|16|32} Write a value fromascratch register to a ෽ixedphysicalmem-
ory location (memory-mapped I/O) or I/O address space.

CMD_LOAD Load a constant to a scratch register.

CMD_AND Compute a bitwise conjunction between a constant and a scratch register value.

CMD_PREDICATE If the value in the given scratch register is zero, skip ahead a constant
number of instructions.

CMD_ACCEPT Accept processing of the interrupt request in user space.

CMD_DECLINE Decline processing of the interrupt request (implicit action).

As can be trivially observed, the byte-code instructions do not operate with computed
addresses (both in case of the I/O addresses and scratch registers), therefore the safety
of these addresses can be statically checked. Furthermore, the execution control ෽low can
change only as a result of the values in scratch registers and only by skipping a few byte-
code instructions. This guarantees that the execution time of the entire byte-code routine
is always bounded.
Despite its simplicity and extremely limited expressive power, our byte-code is suf෽icient
for all device drivers currently implemented in HelenOS for all supported architectures. If
necessary, it could be expanded in the future, while possibly keeping its safety properties
intact.
The reason why a similar technical description is missing from the text of the thesis is that
I have considered our IRQ byte-code interpreter a completely straightforward engineering
solution to the problem at hand.
A much more elaborate implementation of the same ideas has been designed and imple-
mented by Lukáš Lipavský for his master thesis [15] in the context of GNU/Linux (I have
supervised the thesis and I have pointed Lukáš Lipavský to the HelenOS implementation
for inspiration), where a slightly more powerful safe byte-code is compiled from a C-like
source code snippet (instead of being written by hand).

2.3 Lack of Citations

Björn Döbel writes in his review:

Scientiϔic style demands using citations to allow the reader to get point-
ers to other work that is discussed in the context of a scientiϔic publication.
While Mr. Děcký in general adheres to common standards, I would have pre-
ferred a much higher rate and amount of citations. Especially, when talking
about related work from the operating systems area, Mr. Děcký names lots
of projects [...] without giving any pointers to their sources, be it scientiϔic
publications or rather web pages.

The decision to refer to some operating systems and projects just by their names was sim-
ply a pragmatic one. The discussion of the related work talks not only about academic

7 2 Comments on Reviews

projectswhere there is usually one “canonical” publication to point to (although the notion
of a “canonical” publication is somewhat questionable), but it talks also about commercial
and hobby projects. It also includes projects that have been defunct for a long time. Espe-
cially in the latter cases, an URL in a printed text pointing to a source can be soon obso-
lete. And, frankly, I do not know what should be the canonical reference to OS/2, BeOS or
SkyOS.
Björn Döbel suggests, for example, to use the technical report by Feske and Helmuth [6]
as the proper reference to Genode. I must disagree with the factual correctness of such
reference, since theGenode platformhasmoved far beyond the original Bastei architecture
proposal. On the other hand, I believe that the plain names of the discussed operating
systems are unique enough to work as identi෽iers.
However, I acknowledge that providing a more durable and comprehensive list of point-
ers and references might be bene෽icial for any future reader of the text. Therefore I have
created a dedicated page on the HelenOS wiki where pointers and references to other op-
erating systems and projects could be maintained in the long run: http://trac.helenos.
org/wiki/ZOO

Hereby I thank Björn Döbel for suggesting some references of his own. These have been
already included in the wiki page. Also please note that some of the suggested references
have been actually used in the thesis.

Finally, Björn Döbel adds to his previous comment:

The same applies to sectionswhere criticism ofmicrokernels is countered but
no reference to any such criticism is provided.

While I would like to strongly stress that the parts of the thesis that talk about speci෽ic
criticism of microkernels do provide references (speci෽ically [1, 17]), I acknowledge that
providing even more references is indeed possible.
I thank Björn Döbel for providing a reference of his own ([7]) which has been incorpo-
rated into the updated text of the thesis. On the other hand, this particular paper has been
strongly criticized by the microkernel community as inaccurate [8].

2.4 Real-Time

Michal Sojka writes in his review:

It is unfortunate that real-time capabilities were explicitly excluded as being
too speciϔic to a single purpose. It has been shown in 2004 that a general-
purpose OS (Linux) can be made a real-time OS at the same time (thanks
to the preempt-rt patch). Nowadays, there is big industry demand for ver-
iϔied real-time operating systems and HelenOS could be more relevant if it
provides real-time features.

http://trac.helenos.org/wiki/ZOO
http://trac.helenos.org/wiki/ZOO

2 Comments on Reviews 8

I believe that this interpretation (exclusion of real-time capabilities) is a misunderstand-
ing of what I intended to express in the thesis. Let me clarify this explicitly. The general-
purpose design principle of HelenOS states that:

• The design of the operating system should not seek excellence in any particular area
by sacri෽icing generality and reasonable ෽itness for any other purpose.

It is important to understand that this design principle does not rule out the possibility
to target speci෽ic particular areas. It only requires to do so in such a way that would not be
detrimental to the generality of HelenOS. As amatter of fact, real-time features in HelenOS
have been seriously planned by the HelenOS community at least since 2013 [18] and this
has been the primary motivation for my personal participation in other real-time related
projects [5, 14] even long before that.

2.5 Fixed-size Kernel Dispatch Buffers

Michal Sojka asks the following question in his review:

While advanced data structures are used at many places, IPC uses “ϔixed-size
kernel dispatch buffers”. I tried to look up the corresponding code, but I only
found places with memory allocation and linked lists in the IPC path. Could
the author clarify the use of ϔixed-size buffers and what is the initial or opti-
mal size of these buffers?

The formulation in the original text of the thesis was indeed quite inaccurate in thismatter.
The correct explanation is that the kernel IPC dispatch buffers are not of a ෽ixed size, but
their size is bounded by a ෽ixed compile-time constant. The buffers for the asynchronous
messages are still allocated dynamically in order to ensure optimalmemory utilization, but
the upper bound guarantees that no user space component consumes more than a prede-
෽ined amount of kernel memory.
The upper bound is enforced by the check_call_limit() function in kernel/generic/sr-
c/ipc/sysipc.c in the HelenOS source tree. The actual bound is de෽ined by the IPC_MAX_-
ASYNC_CALLS constant declared in abi/include/abi/ipc/ipc.h. The current value of this
constant is 4.

2.6 Dynamic Priorities

Michal Sojka asks the following question in his review:

HelenOS kernel “does not support any kind of static priorities”, but there are
several run queues with different priorities in the scheduler. How are these
priorities used?

9 2 Comments on Reviews

TheHelenOS scheduler (the source code canbe found in theHelenOS source tree in kernel-
/generic/src/proc/scheduler.c) implements a variant of the traditional multilevel feed-
back round-robin preemptive scheduler [4]. This scheduler has a ෽ixed number of FIFO
queues (16 in the case of HelenOS) of schedulable threads. Each queue in this arrange-
ment represents one dynamic priority level.
The scheduler always selects a ready thread from the head of the highest non-empty pri-
ority level. Newly created threads are enqueued in the highest priority level. Threads that
voluntarily relinquish their time quantum are enqueued in the same priority level they
were previously scheduled from. Threads that need to be preempted forcefully at the end
of their scheduling quantum are enqueued in the priority level just below their original
level and blocked threads are enqueued in the priority level just above their original level.
A slightlymoredetaileddescriptionof theHelenOS scheduler implementation canbe found
in the original HelenOS design documentation [12]. Our scheduler design has dynamic
priorities that are assigned by the scheduler according to the dynamic behavior of the cur-
rent workload. However, it lacks static priorities (priority classes, niceness factor, etc.)
that would de෽ine a strict user-con෽igurable ordering of the priorities of the threads. Also
the scheduling time quanta are currently constant and they are not individually con෽ig-
urable for each thread.

10

References

[1] Ballesteros F. J., Fernandez L. L.: The Network Hardware Is the Operating System,
in the Proceedings of the 6th Workshop on Hot Topics in Operating Systems, IEEE,
1997

[2] Bonwick J.: The Slab Allocator: An Object-Caching Kernel Memory Allocator,
in the Proceedings of USENIX Summer 1994 Technical Conference, USENIX Asso-
ciation, 1994

[3] Bonwick J., Adams J.: Magazines and Vmem: Extending the Slab Allocator to Many
CPUs and Arbitrary Resources, in the Proceedings of the General Track, USENIX An-
nual Technical Conference, USENIX Association, 2001

[4] Corbató F. J., Daggett M. M., Daley R. C.: An Experimental Time-Sharing System,
in the Proceedings of the Spring Joint Computer Conference 21, ACM, 1962

[5] Děcký M.: Real-Time Java Assessment Technical Note 1 Appendix – Predictability and
Performance Benchmarking, SciSys UK Ltd., European Space Agency, 2008

[6] FeskeN., HelmuthC.: Design of the Bastei OSArchitecture, Technical Report, TUDres-
den 2006

[7] Hand S., War෽ield A., Fraser K., Kotsovinos E., Magenheimer D.: Are Virtual Machine
Monitors Microkernels Done Right?, in the Proceedings of the 10th USENIX Confer-
ence on Hot Topics in Operating Systems, ACM, 2005

[8] Heiser G., Uhlig V., LeVasseur J.: Are Virtual Machine Monitors Microkernels Done
Right?, in ACM SIGOPS Operating Systems Review, Volume 40, Issue 1, ACM, 2006

[9] Horký V.: Support for NUMA hardware in HelenOS, Master Thesis, Charles University
in Prague, 2011

[10] Hraška A.: Read-Copy-Update for HelenOS, Master Thesis, Charles University
in Prague, 2013

[11] McKenney P. E., Slingwine J. D.: Read-Copy Update: Using Execution History to Solve
Concurrency Problems, in theProceedings of Parallel andDistributedComputing and
Systems, ACTA Press, 1998

[12] The HelenOS Team: HelenOS 0.2.0 Design Documentation (as of September 1st
2015), http://www.helenos.org/doc/design.pdf

[13] HelenOS documentation (as of September 1st 2015), http://www.helenos.org/
documentation

11

http://www.helenos.org/doc/design.pdf
http://www.helenos.org/documentation
http://www.helenos.org/documentation

References 12

[14] Kalibera T., Procházka M., Pizlo F., Děcký M., Vitek J., Zulianello M.: Real-Time Java
in Space: Potential Beneϔits and Open Challenges, in the Proceedings of Data Systems
in Aerospace (DASIA 2009), European Space Agency, 2009

[15] Lipavský L.: Linux kernel userspace modules, Master Thesis, Charles University
in Prague, 2006

[16] Triplett J., McKenney P. E., Walpole J.: Resizable, scalable, concurrent hash tables
via relativistic programming, in the Proceedings of the 2011 USENIX Annual Techni-
cal Conference, ACM, 2011

[17] Microkernelwiki entry at tunes.org (as of May 31st 2015), http://tunes.org/wiki/
microkernel.html

[18] Ticket #541: Hard real-time features (as of September 1st 2015), http://trac.
helenos.org/ticket/541

http://tunes.org/wiki/microkernel.html
http://tunes.org/wiki/microkernel.html
http://trac.helenos.org/ticket/541
http://trac.helenos.org/ticket/541

	Errata
	Comments on Reviews
	References

