Dr.-Ing. Bjorn Dobel
Minchner StralRe 42
01187 Dresden

Univerzita Karlova v Praze

Dekanat Matematicko-Fyzikalni Fakulty
Studijni oddeleni - Doktorske Studium
Praha 2, Nove Mesto

Ke Karlovu 3

PSC 121 16

Dresden, August 11 2015

To whom it may concern,

| have read and hereby review the Doctoral Thesis submitted by Mgr. Martin Décky titled
JApplication of Software Components in Operating System Design.” In this thesis, Mr.
Décky presents the design of the HelenOS microkernel-based operating system. The
thesis focuses especially on designing an operating system based on component-based
software engineering principles and on development processes to support the
collaborative development of a dynamic general-purpose operating system.

This focus on the development and design process can be considered a novel contribution
of Mr Décky's work that augments other operating system designs, which in contrast to
this work traditionally concentrate on implementation aspects (performance, security,
reliability). It is this why | consider this work a suitable demonstration of the author's ability
for scientific work and a summary of a huge effort in terms of operating systems
engineering (even if this effort is not only the author's). | therefore recommend that the
committee accepts this doctoral thesis.

In the remainder of this review | am first going to shortly summarize my main takeaways
from this work before | thereafter outline points of criticism that should be addressed in the
defense or in future work.

Contributions

The thesis is motivated with the need for an operating system to be used in research and
education at the authors' university. Special focus is put on making the operating system
reliable, that is avoid instabilities in the system right from the start. A second goal is making
the system practically useful, that is supporting a wide range of functionality while being
able to reach this goal given the resource constraints the team faces. These two goals
motivate a focus on development methodology instead of implementation detail.

The initial motivation is followed by Chapter 5 discussing related work, especially how
other operating systems influenced HelenOS' development. This part of the thesis covers
all relevant existing systems and explains how these works differ from what HelenOS
provides. The author then discusses component-based software engineering and comes

up with a set of nine design principles for an operating system in line with the thesis' goals.

The design principles are then applied in a rather short discussion of HelenOS' kernel
features (Chapter 6) and a rather lengthy look into the development process (Chapter 7).
In parts, this discussion of the development process reads a bit too philosophical for my
taste as it lacks technical detail. On the other hand this is with no doubt a reasonable
approach because of the chosen focus on the development process and the fact that
people are a major contributing factor to any software.

The thesis becomes more technical in Chapter 8, when Mr. Décky describes the various
approaches HelenOS takes to ensure that as few bugs as possible end up in code. He
discusses different approaches of verifying correctness (formal verification, model
checking, regression/unit testing, static analysis) and how existing tools are leveraged to
make HelenOS more reliable. Instead of building everything from scratch (a common
problem in research), the system is built by “standing on the shoulders of giants” here,
which makes this chapter a commendable contribution to reliable system design.

Major criticism: Lack of performance evaluation

While the thesis' focus lies in development methodology, the end product is a computer
operating system and the thesis claims that HelenOS reaches the given design goals.
While this is acceptable from a qualitative point of view, the thesis completely lacks a
traditional evaluation of quantitative properties. It is a fundamental principle of operating
systems design to evaluate the results of one's work using standard benchmark programs
and compare those results to other systems. This thesis contains none of this at all. Even if
a system does not provide standard interfaces, we must have some way of understanding
performance in order to assess whether HelenOS is actually useful.

Let me give three examples:

1. When discussing HelenOS design principles and kernel features, Mr. Décky argues
that traditional microkernel systems strictly avoid implementing any complex data
structures or algorithms within the kernel and require those to be moved to user-
level components. He argues that HelenOS forgoes this strictness and uses
complex features, such as concurrent hash tables to improve kernel resource
management.

Unfortunately, this argument is made purely from a philosophical standpoint. The
argument would have been much more convincing if it was backed with some kind
of benchmark that shows the improvements such complex algorithms provide.
Reading the presentation in the thesis and putting myself into the “advocatus
diaboli” role and putting a lot of irony into the following statement, | would condense
the statement into “In order to properly motivate the complex validation steps
discussed in this thesis, we first had to put some non-toy algorithms into the kernel,
because otherwise we wouldn't have needed this validation at all”

2. Moving away from pure performance evaluation, the thesis also does a poor job in
quantitatively analyzing the system's reliability. Mr. Décky duly notes that each of
the validation activities incorporated into HelenOS build process was able to
pinpoint bugs that might have otherwise gone unnoticed. Unfortunately, this usually
only mentions a number of change sets to the HelenOS system, but does not give
details on the number of bugs found in the system and how these numbers relate
to other operating systems.

| admit that such an evaluation is much harder to do than running a plain
benchmark or given a number of found bugs. However, this analysis would help
strengthen the argument for using as many analysis/testing tools as possible.

3. As | already mentioned, | liked the way using external tools for improving reliability
throughout the build process was presented in Chapter 8. However, using those
tools comes at a price in terms of development effort (someone has to add the
respective annotations etc. to code), compile time (how long do those tools run?),
and perhaps runtime performance. The thesis unfortunately does not quantify these
costs in order to relate them to other approaches.

All in all, my main criticism of the presented thesis is the lack of hard numbers in order to
understand the tradeoffs HelenOS' authors chose. The thesis would have much benefited
from a less philosophical evaluation that allows statements such as “We did A and this cost
us X% in development effort and Y% in performance, but in turn we were able to increase
reliability / practicality of the system by Z%."

Moderate criticism: Partial lack of technical detail

Coming from an operating systems background, large parts of the thesis were too
philosophical from my perspective and | seriously missed discussion of technical detail.
Again, let me give two examples:

1. Chapter 6 gives a very brief (4 page) tour of HelenOS' kernel features, while
Chapter 7 spends 12 pages discussing HelenOS' development process.. Being an
operating systems person | would have enjoyed the ratio to be the other way round,
but | accept that Mr. Décky chose to put his focus on development methodology
instead.

2. Section 8.3.3.1 spends less than half a page on describing a byte-code
interpretation mechanism that allows the kernel to execute user-provided device
driver code in kernel mode. While the idea of downloading user code into the kernel
is not new (exokernels had that back in the 1990s), the idea of protecting the kernel
from this unsafe code by using a byte code interpreter sounds pretty novel and in
the position of the author | would have put much more focus on this topic (the
thesis provides few detail on the implementation and does not even start to discuss
cost vs. benefit).

Minor criticism: Lack of citations

Scientific style demands using citations to allow the reader to get pointers to other work
that is discussed in the context of a scientific publication. While Mr. Décky in general
adheres to common standards, | would have preferred a much higher rate and amount of
citations. Especially, when talking about related work from the operating systems area, Mr.
Décky names lots of projects (Plan9', Mach?, Genode®, Barrelfish®, Nova®) without giving

1 Link to http://plan9.bell-labs.com/plan9/ would have been nice.

2 Richard Rashid, Daniel Julin, Douglas Orr, Richard Sanzi, Robert Baron, Alessandro Forin, David Golub,
Michael Jones. Mach: A System Software kernel, COMPCON 1989

3 Norman Feske, Christian Helmuth: Design of the Bastei OS Architecture, TU Dresden 2006

4 Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca Isaacs, Simon Peter,
Timothy Roscoe, Adrian Schiipbach, and Akhilesh Singhania. The Multikernel: A new OS architecture
for scalable multicore systems

5 U. Steinberg, B. Kauer NOVA: A Microhypervisor-Based Secure Virtualization Architecture, EuroSys
2010

any pointers to their sources, be it scientific publications or rather web pages. The same
applies to sections where criticism of microkernels is countered but no reference to any
such criticism® is provided.

Cﬁ@f%

Signed: Bjorn Débel, Dresden, August 11 2015

8 Such as Steven Hand, Andrew Warfield, Keir Fraser, Evangelos Kotsovinos, Dan Magenheimer: Are
Virtual Machine Monitors Microkernels Done Right? HotOS 2005

