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1. Preface

The general topic of the thesis are nonstandard models of weak theories of arith-
metic and their links with problems in computational and proof complexity. The
qualification “nonstandard” means that the structure is not isomorphic to the
structure of natural numbers (in a particular language), the so called standard
model. The qualification “weak” means that the induction axiom scheme (or
some related axiom scheme) is restricted to some subclass of bounded formulas.
The links with complexity theory stem form the facts that bounded formulas sat-
isfying various additional particular restrictions define sets in various important
computational complexity classes and that proofs of bounded formulas in weak
theories can be translated into families of efficient propositional proofs. Introduc-
tions in Chapters 2 and 3 offer more specific and detailed overview of the topic
and of the particular issues we tackle.

The thesis is formed by two papers:

• A New Proof of Ajtai’s Completeness Theorem for Nonstandard Finite
Structures, Archive for Mathematical Logic 54(3-4), (2015), pp. 413-424,

• Construction of models of bounded arithmetic by restricted reduced powers,
submitted to Archive for Mathematical Logic,

that are included as Chapters 2 and 3, and by Chapter 4 that is a draft of a
future paper. In the last chapter we add a few concluding remarks on possible
lines for future research. Each chapter has its own bibliography.
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2. A New Proof of Ajtai’s
Completeness Theorem for
Nonstandard Finite Structures

This chapter is formed by paper “A New Proof of Ajtai’s Completeness Theorem
for Nonstandard Finite Structures” published in Archive for Mathematical Logic.
It is identical to the original version except the numbering of definitions and
statements.
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A New Proof of Ajtai’s Completeness Theorem
for Nonstandard Finite Structures

Michal Garĺık ∗

Faculty of Mathematics and Physics

Charles University in Prague

Abstract

Ajtai’s completeness theorem roughly states that a countable structure A coded in a

model of arithmetic can be end-extended and expanded to a model of a given theory

G if and only if a contradiction cannot be derived by a (possibly nonstandard) proof

from G plus the diagram of A, provided that the proof is definable in A and contains

only formulas of a standard length. The existence of such model extensions is closely

related to questions in complexity theory. In this paper we give a new proof of Ajtai’s

theorem using basic techniques of model theory.

2.1 Introduction

It is well known that various statements of complexity theory can be equivalently
expressed in terms of mathematical logic, and model theory in particular. Some
of these model-theoretic statements have a similar form asserting the existence
of certain extensions of first-order structures. Let us mention informally three
specific examples, all discussed already in detail in [3] (we refer the reader there
for details of these equivalences).

Call a structure with a finite signature nonstandard finite if it is coded in a
nonstandard model of true arithmetic and is countably infinite. The statement
that parity is not in AC0 is equivalent to the statement that there are non-
standard finite structures containing a unary predicate whose size is odd in the
original nonstandard model coding the structure but the same structure can be
encoded in another nonstandard model which thinks that the predicate is of even
size. The statement that the pigeonhole principle has no polynomial size proposi-
tional proofs in constant depth Frege systems is equivalent to the statement that
every nonstandard finite structure has an expansion by a function violating the
pigeonhole principle while satisfying induction for all definable sets. Finally, the
statement that the class NP is not closed under complementation is equivalent
to the existence of a non-3-colorable nonstandard finite graph such that any non-
standard finite structure on its vertices expanding the graph can be extended to
a nonstandard finite structure containing a 3-coloring of the graph.

∗Supported by grant GAUK 5732/2012 and in part by grant IAA100190902 of GA AV ČR.
A part of this research has been done while the author was a visiting fellow at the Isaac Newton
Institute in Cambridge (programme Semantics and Syntax) in Spring 2012.
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Note that Ajtai’s original proofs of super-polynomial lower bounds for con-
stant depth circuits for parity (Ajtai [1], independently also Furst, Saxe, Sipser
[6]) and for constant depth Frege proofs of the pigeonhole principle (Ajtai [2])
proceeded by establishing first the equivalent model-theoretic statements. It is
thus of great interest to understand when such extensions can be constructed.
Ajtai [3] and [4] formulated a theorem that can be understood as a completeness
theorem for the existence of similar extensions-expansions (see Section 2.4 for the
statement). Published version is [3], Ajtai has made available to us [4]. The new-
er version adds more details to the original version [3] making some assumptions
used in [3] explicit now; see also our comments on the A-rule after Theorem 2.9.

Even though for proving lower bounds these models are usually built by some
other methods and then only the principle behind the soundness direction of
Ajtai’s theorem is used, it might also prove useful for future constructions to
keep in mind the completeness direction of the theorem, as such constructions do
not seem to be trivial to find. In this paper we give a new (and simpler) proof of
Ajtai’s theorem, which relies on basic techniques of model theory.

2.2 Preliminaries

Definition 2.1. Let L0(exp) denote the first-order language of arithmetic with
symbols ≤,+, ·, 0, 1, 2x, where 2x is a unary function symbol. A bounded quanti-
fier is a quantifier of the form ∃x ≤ t or ∀x ≤ t, where t is an L0(exp)-term that
does not include x. A ∆0(exp)-formula is a formula in the language L0(exp), in
which all quantifiers are bounded. I∆0(exp) will denote the first-order theory
in the language L0(exp) with the following axioms: the axioms of Robinson’s
arithmetic Q, 20 = 1, 2(x+1) = 2x + 2x and induction for all ∆0(exp)-formulas.
We define x ∈ y by the formula

∃u ≤ y ∃w < 2x y = u · 2x+1 + 2x + w.

Let B ⊆M |= I∆0(exp) and b ∈M . We will say that b codes B in M if for each
x ∈M ,

x ∈ B ⇔M |= x ∈ b.

Note that bounded ∆0(exp)-comprehension holds in I∆0(exp), that is, for each
∆0(exp)-formula ϕ(x, z̄), I∆0(exp) proves

∀x∃y < 2x∀u < x(u ∈ y ↔ ϕ(u, z̄)).

Hence a subset of M which is not cofinal in M is ∆0(exp)-definable in M if and
only if it is coded by an element in M . See [7] for details on the theory I∆0(exp).

Definition 2.2. Assume that M is a model of I∆0(exp) and let a ∈ M . Then
〈a,≤〉 will denote the structure which has universe {m ∈ M | M |= m ≤ a} and
whose only relation ≤ is the restriction of the ordering in M to this universe.

Definition 2.3. Assume L is a first-order language containing a constant symbol
a. Let ϕ be an L-formula. Then ϕ≤a is the formula we get by replacing every
occurrence of ∀x,∃x in ϕ, where x is a variable, by ∀x ≤ a,∃x ≤ a, respectively.
If J is a set of formulas, J≤a denotes the set {ϕ≤a | ϕ ∈ J}.
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Definition 2.4. Assume L is a first-order language and A is an L-structure.
L(A) will denote the language we get from L by adding new constant symbols â
for each a ∈ A to L. ThL(A), the theory of A, denotes the set of all L-sentences
true in A. Let AA be the structure we get by expansion of A to L(A) such that
for each a ∈ A the constant symbol â is interpreted as a. The atomic diagram of
A, which will be denoted by diag(A), is the set of all atomic and negated atomic
sentences in the language L(A) that are true in AA.

2.3 Proofs Definable in a Structure

Let H be any logical calculus for predicate logic, e.g. Hilbert-style calculus as
defined in Chapter IV of [9]. Proofs in H can be thought of as finite trees whose
nodes are labelled by formulas. The label of a node and the labels of its immediate
successors form the conclusion and premises of either the rule modus ponens or
the generalization rule. We are going to generalize the notion of an H-proof by
allowing possibly infinite proof trees definable in a structure.

Suppose that L is a first-order language containing a finite number of relation
and function symbols and A is a set, |A| ≥ 2. Let symb(L) denote the set of
symbols of L, that is relation and function symbols, symbols for variables, boolean
operations, the existential and universal quantifiers, left and right parentheses
and comma. We will want to represent the symbols of L(A) by the elements of
a cartesian product Ai where i is a positive integer. So assume that for some
positive integer i, symb(L) forms a subset of Ai r {〈a, a, . . . , a〉 ∈ Ai | a ∈ A}
and each symbol â is identified with the constant i-tuple 〈a, a, . . . , a〉. Of course
if A is finite there are only finitely many variables represented in this way in
Ai. It would be easier to assume that A is infinite but later constructions do
not need to assume that and we want to maintain maximal generality in this
respect. Therefore for every j > i we also consider an extended representation
of the symbols of L(A) that will be denoted by symb(j,A)(L(A)), such that the
symbols of L(A) in Ai are naturally embedded in Aj in the following way. An
element 〈a1, . . . , ai, ai+1, . . . , aj〉 is a non-variable symbol of symb(j,A)(L(A)) iff
〈a1, . . . , ai〉 is the corresponding non-variable symbol in Ai and ai = ai+1 = . . . =
aj. An element 〈a1, . . . , ai, ai+1, . . . , aj〉 is a variable symbol of symb(j,A)(L(A)) iff
〈a1, . . . , ai〉 is a variable symbol in Ai. Thus we have |A|j−i times more variables
in symb(j,A)(L(A)) than in Ai.

Definition 2.5. Let 〈P,≤〉 be a partially ordered set and a, b ∈ P . We say that
b is a successor of a if a < b and there is no element c ∈ P with a < c < b. We
say that b is a predecessor of a if a is a successor of b.

Definition 2.6. Suppose that K,L are first-order languages, each containing a
finite number of relation and function symbols, K ⊆ L, K contains a binary
relation symbol ≤ and a constant symbol a. Assume that A is a K-structure
whose universe is linearly ordered by ≤ and a is the largest element with respect
to ≤. Suppose that G is a theory in L(A). Let q, k, l be positive integers, T ⊆ Aq,
≤T⊆ A2q and Θ ⊆ Aq+kl. We say that P = 〈T,≤T ,Θ〉 is an H(A)-proof from G
with formula length l if the following conditions are satisfied:

(1) The relations T,≤T ,Θ are definable in A.
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(2) 〈T,≤T 〉 is a partially ordered set such that

• there exists an element 0T in T and T |= ∀a 0T ≤T a,

• T |= ∀a, b, c (a ≤T c ∧ b ≤T c→ a ≤T b ∨ b ≤T a).

(3) symb(L(A)) ⊆ Ar for some positive integer r, and r ≤ k.

(4) The relation Θ is a function from T to Akl, i.e. we can write

Θ̄(a1, . . . , aq) = 〈aq+1, . . . , aq+kl〉 iff Θ(a1, . . . , aq, aq+1, . . . , aq+kl).

(5) If 〈a1, a2, . . . aq+kl〉 ∈ Aq+kl and Θ(a1, a2, . . . , aq+kl) then for every integer
i = 0, 1, . . . , l − 1 we have

〈aq+ki+1, aq+ki+2 . . . , aq+ki+k〉 ∈ symb(k,A)(L(A))

and the sequence {〈aq+ki+1, aq+ki+2 . . . , aq+ki+k〉}l−1
i=0 is an L(A)-formula (pad-

ded on the left to length l using the symbol “,” of L to accommodate all
L(A)-formulas of length at most l).

(6) If c̄ ∈ T and the set S of its successors is nonempty then one of the two
following conditions holds:

(i) |S| ≤ 2 and the formulas assigned by the function Θ̄ to c̄ and its
successors are formed according to an inference rule of H, i.e. by
modus ponens or generalization.

(ii) There exist 〈a2, a3, . . . , aq〉 ∈ Aq−1 and an L(A)-formula ϕ(x) with one
free variable such that S = {〈a1, a2, . . . , aq〉 | a1 ∈ A}, for every a1 ∈ A
we have Θ̄(a1, a2, . . . , aq) = ϕ(a1) and Θ̄(c̄) = ∀x ≤ a ϕ(x). In this
case we will say that ∀x ≤ a ϕ(x) was derived from {ϕ(a1) | a1 ∈ A}
by the A-rule.

(7) If c̄ ∈ T is a maximal element with respect to ≤T , then Θ̄(c̄) is an instance
of an axiom scheme of H or a sentence from G.

Remark 2.7. If T is a finite set, then 〈T,≤T 〉 satisfying (2) from the previous
definition is a finite tree. Without further restrictions on 〈T,≤T 〉 considered
in this definition it may happen, for example, that it contains a non-maximal
element without any successors, preventing the proof from being sound. These
problems will be resolved by assuming that the structure A has certain finiteness
properties.

2.4 Ajtai’s Completeness Theorem

Definition 2.8. Assume that K,L are first-order languages, K ⊆ L, K contains
a binary relation symbol ≤ and a constant symbol a. Suppose that A is a K-
structure such that ≤ is a linear order on A and a its largest element with respect
to ≤. We say that an L-structure B is an expanded end-extension of A if it meets
the following four requirements:
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(1) B is linearly ordered by ≤.

(2) The universe of A is a subset of the universe of B and for every b ∈ B,
B |= b ≤ a iff b ∈ A.

(3) For all k < ω, for all b1, . . . , bk ∈ A and for every k-ary relation symbol R
in K we have A |= R(b1, . . . , bk) iff B |= R(b1, . . . , bk).

(4) For all k < ω, for all b0, b1, . . . , bk ∈ A and for every k-ary function symbol
f in K we have A |= f(b1, . . . , bk) = b0 iff B |= f(b1, . . . , bk) = b0.

Assume further that G is a theory in L. We say that G has a model over A
if there exists a model B of G such that B is an expanded end-extension of A.

The following theorem is essentially Ajtai’s theorem from [4] formulated in
our terminology.

Theorem 2.9. (Ajtai [4]). Suppose that

(?) M |= I∆0(exp) and a is a nonstandard element of M such that the set
{b ∈ M | M |= b ≤ a} is countable. Assume that A is an expansion of
〈a,≤〉 to a first-order language K containing a finite number of relation and
function symbols such that every function and relation of A is coded by an
element in M . Also, let a be a constant symbol of K naming the element
a.

Suppose further that L ⊇ K is a first-order language containing a finite number
of relation and function symbols and G is a theory in L such that the following
conditions are satisfied:

(1) G `“≤ is a linear order”,

(2) There is a set Ĝ coded by an element in M such that Ĝ ∩ N is the set of
Gödel numbers of the sentences from G.

(3) G ` ∀ū [∃x ≤ a ϕ(x, ū) → ∃x ≤ a [ϕ(x, ū) ∧ ∀y < x ¬ϕ(y, ū)]] for every
L-formula ϕ(x, ū).

Then the following two statements are equivalent:

(I) There exists a positive integer l and an H(A)-proof of a contradiction from
diag(A) ∪G with formula length l.

(II) G does not have a model over A.

Our setup of the theorem is very close to Ajtai’s but there are some slight,
cosmetic, differences. For example, we have A ordered by the ordering inherited
from M whereas in [4] the ordering is only required to be definable in M , or,
in the definition of “having model over” we have the end-extension requirement
whereas in [4] there is a new unary predicate U in the language L which holds in
the extended model exactly of the elements of A.
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The only substantial difference in our formulation of the statement is the
explicit inclusion of the A-rule. A form of the A-rule appears in Ajtai’s proof in
[4] as well. It is derived there by a repeated use of the cut rule and the assumption
that there is a function which maps an element of the structure to be extended to
its predecessor. But this assumption (on the theory G), or some similar one, is not
made explicit in the statement of the theorem in [4] (and a theory G postulating
the existence of an element in U strictly between some element of the initial
structure and its successor would currently constitute a counterexample to the
completeness direction of the theorem). Since the property that no new elements
are introduced into the initial structure is essential, we included the A-rule.

We note that condition (3) is only needed for the implication (I) ⇒ (II).
This condition is usually required in problems of model construction like those
mentioned in the introduction.

Let us remark that when G contains only sentences with quantifiers bounded
by a one can use the well-known Paris-Wilkie translation of first-order proofs into
propositional proofs (see e.g. [10]) and state condition (I) equivalently as follows:
There is a (possibly nonstandard) proof of a contradiction from the translated
sentences of G such that the proof is in a constant-depth Frege system with the
depth being a standard number and the proof is considered as a k-ary relation
definable in A for some standard number k. Constant-depth Frege systems are
propositional proof systems in which formulas have a bounded alternation of
unbounded fan-in conjunctions and disjunctions. In this way one gets the equiv-
alence statement from the example with the pigeonhole principle mentioned in
the introduction.

2.5 A New Proof of Ajtai’s Completeness The-

orem

Ajtai’s original proof of the implication (II)⇒ (I) involves a lengthy and explicit
construction of a model of G. We simplify this part significantly by utilizing
the ideas behind the proof of the theorem due to Barwise and Schlipf [5], and
(independently) Ressayre [12], that states that countable recursively saturated
structures are resplendent (cf. [8], Theorem 15.7, for a presentation). The proof
of the implication (I) ⇒ (II) is essentially that of Ajtai.

Lemma 2.10. Suppose (?) from Theorem 2.9. Assume that p(x) is a type in the
language K in A over a0, . . . , an−1 ∈ A, n ∈ ω, and suppose that there is d ∈ M
such that

{m ∈M |M |= m ∈ d} ∩ N
= {pϕ(x, x0, . . . , xn−1)q | ϕ(x, a0, . . . , an−1) ∈ p(x)}.

Then p(x) is realized in A.

Proof. There exists a ∆0(exp)-formula Tr(t, u, v, w) such that for any K-formula
ψ(z̄) and any tuple c̄ of elements of A of the same length as z̄ the following holds:

M |= Tr(a, 〈ē〉, pψ(z̄)q, 〈c̄〉) iff A |= ψ(c̄),
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where ē are the elements of M coding the functions and relations of A. Since all
the quantifiers in ψ as well as the values of all the terms in ψ(c̄) can be bounded
by a, Tr can be constructed as a truth definition for bounded formulas with all
quantifiers in it bounded by exponential terms. See e.g. [11] for details of the
truth definition.

Now let θ(s) be the following formula:

∃r ≤ a ∀y ≤ s (y ∈ d→ Tr(a, 〈ē〉, y, 〈r, a0, . . . , an−1〉)) .

It is a ∆0(exp)-formula with parameters a, d, ē, a0, . . . an−1 and since p(x) is a
type, M |= θ(i) for every i ∈ N. Therefore, by overspill, there is a nonstandard
i ∈ M such that M |= θ(i). It follows that there exists an element in A that
satisfies all the formulas from p(x) in A, i.e. p(x) is realized.

Lemma 2.11. Suppose (?) from Theorem 2.9. Suppose further that L ⊇ K is a
first-order language containing a finite number of relation and function symbols
and G is a theory in L such that the following conditions are satisfied:

(1) G `“≤ is a linear order”,

(2) There is a set Ĝ coded by an element in M such that Ĝ ∩ N is the set of
Gödel numbers of the sentences from G.

Then the following two statements are equivalent:

(I) ThK(A)≤a ∪G is consistent,

(II) G has a model over A.

Proof. The implication (II)⇒(I) is obvious; let us prove (I)⇒(II)1. We will con-
struct a complete theory J in the language

L(A,C) = L ∪ {b | b ∈ A} ∪ {ci | i < ω},

where we denote the constant symbol representing an element b by b itself and
where C = {ci | i < ω} are new distinct constant symbols, such that

(i) G ⊆ J ,

(ii) for every K(A)-sentence σ, J ` σ≤a ⇒ A |= σ,

(iii) if ϕ(x) is an L(A,C)-formula with only x free and J ` ∃xϕ(x), then either
J ` ϕ(ci) for some i < ω or J ` ϕ(b) for some b ∈ A,

(iv) for all i < ω, J ` a ≤ ci.

It is clear that the canonical structure for the theory J is the desired model of G
over A.

We will construct theories Ji (i < ω) in the language L(A,C) such that the
following two statements will hold for all j < ω:

1 As pointed out by the referee, if G is recursively axiomatizable, then (I)⇒(II) can be
quickly seen as follows: A is a countable recursively saturated structure (by Lemma 2.10),
hence it is resplendent, and having a countable expanded end-extension to a model of G can be
characterized by a recursive set of axioms in a language with finitely many new symbols.
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(v) If σ is a K(A)-sentence and Jj ` σ≤a, then A |= σ.

(vi) There exists lj < ω such that all the constants from C occurring in the
formulas of Jj are exactly c0, c1, . . . , clj−1.

Since ThK(A)≤a ∪ G is consistent, (v) is true for j = 0 and J0 := G. There are
no constants from C in J0, hence (vi) is true as well, with l0 = 0.

Let {ϕi(x) | i < ω} be an enumeration of all L(A,C)-formulas with only one
free variable x such that every such formula occurs in it infinitely many times.
(Here we use the assumption that A is countable.) Assume that Ji has been
constructed so that (v) and (vi) hold for i. Let k > i be the smallest integer such
that the constants from C occurring in ϕk(x) are among c0, c1, . . . , cli−1. We shall
construct Ji+1 by adding to Ji one of the following formulas

• ∀x¬ϕk(x) ∧ a = cli ,

• ϕk(cli) ∧ a < cli ,

• ϕk(b) for some b ∈ A

so that (v) and (vi) hold for i+ 1.
Before we show that one of these choices can be made, note that if ϕk(x) is

a < x, Ji+1 has to include the new constant cli in its language. As a < x will be
dealt with infinitely many times during the construction of all Jj’s (j < ω), every
constant from C will eventually appear in the language of Jj for some j < ω.
Therefore every L(A,C)-formula will be treated at some step of the construction.
Hence it is clear that once all Jj’s are constructed in the way described above
and satisfy (v) and (vi), the theory J =

⋃
j<ω Jj is complete and has the required

properties (i)-(iv).
It remains to show that Ji+1 can be constructed by adding one of the above

formulas to Ji so that (v) is true for i+ 1. Let a0, . . . , an−1 be the elements of A
occurring in Ji∪{ϕk(x)} and suppose, for a contradiction, that none of the above
choices can be made. Then there are K ∪ {a0, . . . , an−1}-sentences σ, γ, ηr for all
r < n, and for all b ∈ A r {a0, . . . , an−1} there is a K ∪ {a0, . . . , an−1}-formula
ξb(x) such that

Ji + ∀x¬ϕk(x) ∧ a = cli ` σ≤a

Ji + ϕk(cli) ∧ a < cli ` γ≤a

Ji + ϕk(ar) ` η≤ar for all r < n

Ji + ϕk(b) ` ξ≤ab (b) for all b ∈ Ar {a0, . . . , an−1}

but A 6|= σ, A 6|= γ, A 6|= ηr for all r < n, and A 6|= ξb(b) for all elements b in
Ar {a0, . . . , an−1}. Using the fact that cli does not occur in Ji +ϕk(x) it follows
that

Ji + ¬σ≤a ` ∃xϕk(x)

Ji + ¬γ≤a ` ∀x(ϕk(x)→ x ≤ a)

Ji +
∧
r<n

¬η≤ar ` ∀x(ϕk(x)→
∧
r<n

x 6= ar).
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Thus if θ(x) is a K ∪ {a0, . . . , an−1}-formula and

Ji ` ∀x(ϕk(x)→ θ≤a(x))

then

Ji ` ¬σ≤a ∧ ¬γ≤a ∧
∧
r<n

¬η≤ar → (∃x ≤ a)θ≤a(x).

By the induction hypothesis it follows that A |= ∃xθ(x). This consideration
shows that the set p(x) consisting of all K ∪ {a0, . . . , an−1}-formulas of the form
θ(x)∧θ(x)∧ . . .∧θ(x) (s conjunctions) such that there is a proof from Ji of length
s of the sentence

∀x(ϕk(x)→ θ≤a(x))

is a type in A. Moreover, there exists a ∆0(exp)-formula π(y) such that

{m ∈M |M |= π(m)} ∩ N = {pδq | δ ∈ p(x)}.

(Here we use the condition (2).) Hence there is d in M such that

{m ∈M |M |= m ∈ d} ∩ N = {pδq | δ ∈ p(x)},

by ∆0(exp)-comprehension. By Lemma 2.10, p(x) is realized by some element
b ∈ A r {a0, . . . , an−1} (because formulas equivalent to x = ar → η≤ar for r < n
are in p(x)). But for this b we have Ji +ϕk(b) ` ξ≤ab (b). Since b does not occur in
Ji it follows that Ji ` ∀x(ϕk(x)→ ξ≤ab (x)) so we have that ξb(x)∧ξb(x)∧. . .∧ξb(x)
is in p(x) for some suitable number of conjuncts. Thus A |= ξb(b), a contradiction
with our assumption on ξb(x). Thus Ji+1 can be found satisfying (v) for i+1 and
by its construction it obviously satisfies (vi).

Definition 2.12. Suppose that H is a first-order language, B is an H-structure,
k is a positive integer, X ⊆ Bk is a definable set in B and ≤ is a definable linear
order on X. We say that X is quasi-finite in B with respect to ≤ if the following
requirements are met:

(1) X has a smallest and a largest element,

(2) each definable nonempty subset of X has a smallest element,

(3) each element of X, except for the smallest one, has a predecessor.

Lemma 2.13. Assume that H is a first-order language, B is an H-structure, X
is a definable set in B which is quasi-finite in B with respect to a definable linear
order ≤ on X. Suppose that i is a positive integer and 〈P,≤P 〉 is a nonempty
partial order definable in B so that P ⊆ X i. Then P has a minimal element.

Proof. Let Y = X i and ≤Y be the lexicographic order on Y induced by ≤. It
is easily checked that ≤Y is definable in B and that Y is quasi-finite in B with
respect to ≤Y . Next we verify that each definable nonempty subset U of Y has a
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largest element in≤Y . Indeed, it is either the largest element 1Y of Y if 1Y ∈ U , or
it is the predecessor of the least element of the set {x ∈ Y | ¬∃y (y ∈ U∧ x ≤Y y)}.

Consider the set V = {x ∈ P | ∀y ∈ P (y ≤P x → x ≤Y y)}. V is nonempty
because it contains the≤Y -smallest element of P . Let v be the≤Y -largest element
of V . Either v is a minimal element of 〈P,≤P 〉 or the set W = {x ∈ P | x <P v}
is nonempty. We will show that the latter case leads to a contradiction. Consider
the ≤Y -smallest element w of W . Since v ∈ V and w <P v we have v <Y w.
Because of the maximality of v in V we get w 6∈ V and so there must exist u ∈ P
with u ≤P w and u <Y w. By transitivity of ≤P we get u <P v and so u ∈ W in
contradiction to the minimality of w.

Proof of Ajtai’s Completeness Theorem.
First we show the implication (II)⇒(I). If G does not have a model over A,
then by Lemma 2.11 there exists a proof of a contradiction from ThK(A)≤a ∪G.
Since the proof is finite, there exists an H(A)-proof P0 of a contradiction from
ThK(A)≤a ∪G with formula length l for some positive integer l. Thus it remains
to find an H(A)-proof from diag(A) of each of the finitely many sentences of
ThK(A)≤a that occur as axioms in P0 and attach these proofs to P0. It suffices
to show the following claim.

Claim: For every K-formula α(x̄), where x̄ = 〈x1, . . . , xn〉 for some positive
integer n, there exist K(A)-formulas τα(x̄, ū), λα(x̄, v̄), φα(x̄, w̄) (where ū, v̄, w̄
are some tuples of free variables) such that for every ā = 〈a1, . . . , an〉 ∈ An, if
A |= α(ā) then the triple of relations defined in A by formulas τα(ā, ū), λα(ā, v̄),
φα(ā, w̄) is an H(A)-proof of α≤a(ā) from diag(A).

To prove the claim, we may assume that in α negation only occurs in front
of atomic formulas. We proceed by induction on the logical complexity of α.
The claim is obvious if α is an atomic or negated atomic formula. (For example,
suppose that α(x1, x2) is x1 ≤ x2, we have symbols represented in symb(2,A)(L(A))
and b1 6= b2 ∈ A are such that 〈b1, b2〉 represents ≤. Then we choose τα to define
a single element, say a, and for φα(x1, x2, w0, . . . , w6) we can take

x1 ≤ x2 ∧ w0 = a ∧ w1 = w2 = x1 ∧ w3 = b1 ∧ w4 = b2 ∧ w5 = w6 = x2.)

For α of the form α1 ∧ α2 we just join the H(A)-proofs of α≤a1 , α≤a2 and of an
appropriate axiom by applying modus ponens twice. If α is of the form α1 ∨ α2,
the three formulas defining an H(A)-proof of α≤a(ā) have to distinguish two cases
depending on ā and hence have the form of a disjunction: either α1(ā) and the
H(A)-proof of α≤a1 (ā) is joined with that of an instance of disjunction introduction
(left), or ¬α1(ā) ∧ α2(ā) and the H(A)-proof of α≤a2 (ā) is joined with that of an
instance of disjunction introduction (right). If α(x̄) is ∀x0 β(x0, x̄) we use the
induction hypotheses for β to uniformly (in ā’s satisfying A |= α(ā)) define a
family of |A| disjoint H(A)-proofs of β≤a(b, ā) (b ∈ A) and join these proofs by an
application of the A-rule. Finally, let α be of the form ∃x0 β(x0, x̄). From the
assumptions (?) it easily follows that the least number principle for K-formulas
holds in A. So we apply it to the formula β(x0, x̄) with parameters x̄ and use
the induction hypotheses to uniformly (in ā’s satisfying A |= α(ā)) define the
H(A)-proof of β≤a(b, ā) with b the least possible such that A |= β(b, ā). Then we
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join this proof by modus ponens with an instance of ∃-introduction axiom. This
completes the proof of the claim and of the implication (II)⇒(I).

Now we show the implication (I) ⇒ (II). Suppose there exists an H(A)-proof
P of a contradiction from diag(A) ∪ G with formula length l, but contrary to
(II), there exists a model N of G over A. The universe of A is defined in N by
the formula x ≤ a. All the functions and relations of A are definable in N by
restricting the functions and relations of the same name in N to elements ≤ a.
Therefore the components T,≤T ,Θ of P are defined in N as well. It follows from
the way A originated from M |= I∆0(exp) and from the condition (3) of the
theorem that the universe of A is quasi-finite in N with respect to ≤. We know
that T ⊆ Aq for some positive integer q. Therefore Lemma 2.13 implies that
each nonempty subset of T which is definable in N has a maximal and a minimal
element with respect to ≤T .

The lengths of the formulas of the proof P are bounded by l, the symbols of
L(A) used in these formulas are those of symb(k,A)(L(A)) for some positive integer
k and the language L contains only finitely many function and relation symbols.
Therefore there are only finitely many formula shapes of length l and hence there
exists a function Γ : Akl 7→ {0, 1} definable in N that assigns truth value in N to
each L(A) formula {〈ai+1, . . . , ai+k〉}l−1

i=0 ∈ (Ak)l.
Now let F be the set of those elements t of T that satisfy Γ(Θ̄(t)) = 0. For

the root 0T of T we have that Θ̄(0T ) is a contradiction, so F is nonempty. Since
F is a nonempty definable subset of T there exists an element m ∈ F which is
maximal in F with respect to ≤T . If t is a maximal element of 〈T,≤T 〉 then
Θ̄(t) is an instance of an axiom scheme of H or a sentence from diag(A) ∪ G,
so Θ̄(t) holds in N . Therefore m cannot be a maximal element of 〈T,≤T 〉. Let
Q = {t ∈ T | m <T t}. Since Q is a nonempty definable subset of T it has a
minimal element with respect to ≤T . Let S ⊆ Q be the set of minimal elements of
Q with respect to ≤T . It is the set of all ≤T -successors of m and by the definition
of H(A)-proof the formulas assigned by Θ̄ to m and its successors must satisfy
one of the inference rules. The inference rules have the property that for every
element t ∈ T the formula Θ̄(t) is true in N if for every successor t′ of t the
formula Θ̄(t′) is true in N . (The case of the A-rule relies here on the fact that N
is a model over A). This contradicts Γ(Θ(s)) = 1 for all s ∈ S.
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3. Construction of models of
bounded arithmetic by restricted
reduced powers

This chapter is formed by paper “Construction of models of bounded arithmetic
by restricted reduced powers” submitted to Archive for Mathematical Logic. It
is identical to the original version except the numbering of definitions and state-
ments as we refer to some of them in Chapter 4.
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Abstract

We present two constructions of models of bounded arithmetic, both in the form of

a generalization of the ultrapower construction, that yield nonelementary extensions

but do not introduce new lengths. As an application we show, assuming the existence

of a one-way permutation g hard against polynomial-size circuits, that strictR1
2(g) is

weaker than R1
2(g). In particular, if such a permutation can be defined by a term in

the language of R1
2, then strictR1

2 is weaker than R1
2.

3.1 Introduction

It is well known that some problems in complexity theory can be cast as problems
of constructions of expanded extensions of models of bounded arithmetic ([1], [2],
[8],[12], [13]). These models are usually required to satisfy some form of bounded
induction but at the same time not introduce any new lengths of strings. In
[13] Máté encourages the study of possible modifications of known methods of
constructing elementary extensions of models of arithmetic so as to obtain nonele-
mentary partial extensions and mentions the restricted ultrapower construction
of Kochen and Kripke ([11]) as such an example. Restricted ultrapowers in the
context of bounded arithmetic were used in [5]. Modifications of the ultrapower
construction can make it easier to meet the requirement of preserving lengths
of strings, so we concentrate on them in this paper, which consists of two such
constructions. In Section 3.2 we introduce our framework of restricted reduced
powers. In Section 3.3 we illustrate this framework on Buss’s witnessing theo-
rem. Construction A (Theorem 3.1) developed there manages not to introduce
new lengths but does not appear to be easily amenable to other situations. Thus,
in Section 3.4, we present Construction B (Theorem 3.4), which seems to be a
more flexible and promising approach. An example illustrating Construction B
is given in Section 3.5. Its statement (Theorem 3.6) could be easily derived from
the known witnessing theorem for R1

2 except for the part that no new lengths
are added - but our emphasis here is on developing constructions adding no new
lengths. In Section 3.6 we use Construction B together with the assumption of
the existence of a one-way permutation g hard against polynomial-size circuits to

∗Supported by grant GAUK 5732/2012.
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show that strictR1
2(g) is weaker than R1

2(g). In particular, if such a permutation
is definable by a term in the language of R1

2, then strictR1
2 is weaker than R1

2.

3.2 Preliminaries

Let L be a first-order language, Ω a non-empty set and M an L-structure.
For an L-formula ϕ(x1, . . . , xk) and functions f1, . . . , fk from Ω to M denote
[[ϕ(f1, . . . , fk)]] the set of u ∈ Ω such that

M |= ϕ(f1(u), . . . , fk(u)).

Let F be a set of functions from Ω to M and let G be a filter on the powerset of
Ω. We define an equivalence relation ∼ on F by

f ∼ g iff [[f = g]] ∈ G.

We write [f ] for the equivalence class of an element f ∈ F . We define an L-
structure F/G as follows. The universe is the set of equivalence classes [f ] with
f ∈ F . The interpretation of a k-ary relation symbol R and a k-ary function
symbol F of L is given by:

([f1], . . . , [fk]) ∈ RF/G iff [[R(f1, . . . , fk)]] ∈ G,
FF/G([f1], . . . , [fk]) = [f ]

where f(u) = FM(f1(u), . . . , fk(u)) for each u ∈ Ω.

Here we must have some f ′ ∈ F with f ′ ∼ f for this definition to make sense.
Its correctness is then readily verified using that G is a filter. We call such a
structure F/G, where F (MΩ, a restricted reduced power.

We use restricted reduced powers in the following setting: M is a model of
arithmetic, Ω is a definable subset of M , F consists of some functions definable
in M and G is a filter on the M -definable subsets of Ω. We start by picking
a nonstandard number n ∈ M and we want to construct F/G such that it is
another model of arithmetic and such that it has, like M , the interval [0, . . . , n]
as an initial segment. That is, [0, . . . , n] is embedded in F/G onto [[c0], . . . , [cn]],
where cj ∈ F is the constant function with value j.

We present two specific constructions of restricted reduced powers intended
for obtaining models of bounded arithmetic theories Si2 and Ri

2. The language
L2 of these theories has non-logical symbols 0, S,+, ·, x#y, |x|, bx/2c,≤, .−,MSP.
Theories Si2 and Ri

2 share a finite set BASIC of open axioms fixing the basic
properties of this language (see [3] for the axioms; they extend Buss’s BASIC
axioms from [4] by adding axioms for .− (subtraction) and for MSP(x, i) := bx/2ic
(the ith most significant part of x)). Si2 extends BASIC by the axiom scheme
Σb
i−LIND. This scheme consists of formulas of the form

φ(0) ∧ (∀y < |x|)(φ(y)→ φ(S(y)))→ φ(|x|)

where φ(x) is Σb
i and may contain other free variables besides x. Similarly, Ri

2

extends BASIC by the axiom scheme Σb
i−LLIND, which consists of formulas of

the form
φ(0) ∧ (∀y < ||x||)(φ(y)→ φ(S(y)))→ φ(||x||)
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where φ(x) is Σb
i and may contain other free variables besides x. We may also

accept the last induction scheme only for Σb
i formulas in the strict form, i.e.

(∃x1 ≤ t1)(∀x2 ≤ t2) . . . (Qxi ≤ ti)ϕ,

where Q is ∃ if i is odd and ∀ if i is even, t1, . . . , ti are L2-terms and ϕ is sharply
bounded. Then the resulting theory is called strictRi

2.
The following terms, as defined e.g. in [10], will be useful to define pairing

and a simple sequence coding in R1
2:

2|x| := 1#x

2min(x,|y|) := MSP(2|y|, |y| .− x)

LSP(x, i) := x .− 2min(i,|x|) ·MSP(x, i)

βa(w, i) := MSP(LSP(w, Si · |a|), i · |a|)
bd(a, s) := 2(2a#2s).

So LSP(x, i) gives the number consisting of the last i bits of x. If w is the number
whose binary representation consists of 1 followed by binary representations of
numbers b1, . . . , b`, each padded with zeros to be of length |a|, then βa(w, i) = bi.
The term bd(a, s) gives a bound on the code for a sequence of length |s| with each
item bounded by a.

Pairs are coded as 〈x, y〉 := (B + y) · 2B + (B + x) where B = 2|max(x,y)|. To
project out the first and second coordinate from an ordered pair we use terms
〈w〉1 := βb 1

2
|w|c .−1(βb 1

2
|w|c(w, 0), 0) and 〈w〉2 := βb 1

2
|w|c .−1(βb 1

2
|w|c(w, 1), 0).

Let Γ be a class of formulas. Sharply bounded collection scheme (also called
replacement scheme) BBΓ is

(∀x ≤ |s|)(∃y ≤ t)A(x, y)→
(∃w ≤ bd(t, s))(∀x ≤ |s|)βt(w, x) ≤ t ∧ A(x, βt(w, x))

for each A(x, y) ∈ Γ and for all terms s, t, such that A(x, y), s, t may contain
other free variables but t and s do not involve x or y.

Sometimes we will use a different coding of a sequence of numbers by a single
number such that we have a function (w)i (having two inputs unlike βa(w, i)) to
return the ith item of the sequence coded by w and a function lh(w) which gives
the length of the sequence coded by w. We can use the coding described in [3] or
the one in [6]; important is that the functions (w)i and lh(w) are ∆b

1-defined in
R1

2 and R1
2 proves their basic properties, e.g. that each sequence can be extended

by an arbitrary element.
Besides the standard notation Σb

i ,Π
b
i for classes of bounded formulas we shall

use the symbol ∆<t
0 , where t is a term, to denote formulas with all quantifiers

bounded by t, i.e. each of their quantifiers is of the form (∃x < t) or (∀x < t).
If F is a new function symbol then formulas from the relativized classes Σb

i(F )
or Πb

i(F ) are allowed to use the symbol F freely. The relativized theories Si2(F ),
Ri

2(F ) or strictRi
2(F ) have induction axioms for the corresponding relativized

class of formulas.
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3.3 Construction A

The starting structure M of this construction is a model of the theory S1
2 . We

build the set F using deterministic Turing machines inM which run in polynomial
time in M , where the exponents of these polynomials are small nonstandard
numbers. For this recall from [9] a formalization of polynomial-time functions in
S1

2 . There is a ∆b
1 formula ν0(e, x, y, z) such that if we prove the number 2|x|

e

exists, ν0(e, x, y, 2|x|
e
) says that the Turing machine with code e runs on input x

for |x|e steps and outputs y. In order to simplify notation, we write {e}1(x) = y
for ν0(e, x, y, 2|x|

e
). Thus, provided a number b = 2|x|

v
exists in M for some

v ∈M , we can write {e}1(x) = y for e ≤ v either as a Σb
1 formula with parameter

b:
(∃z ≤ b)(z = 2|x|

e ∧ ν0(e, x, y, z))

or equivalently as a Πb
1 formula with parameter b

(∀z ≤ b)(z = 2|x|
e → ν0(e, x, y, z)),

hence it is ∆b
1.

Theorem 3.1. Suppose that M is a countable nonstandard model of S1
2 , n ∈M

is nonstandard, ψ(x, y) is Σb
0 in the language L2 and assume that there is b ∈M

such that

lh(b) = nv (3.1)

(∀i < lh(b)) |(b)i| = n (3.2)

(∀i, j < lh(b)) ((b)i = (b)j → i = j) (3.3)

(∀i < lh(b)) (∀e ≤ r)¬ψ((b)i, {e}1((b)i)), (3.4)

where v, r are some nonstandard numbers such that r ≤ v.
Then there is a filter G on M-definable subsets of

Ω := {w ∈M | (∃i < lh(b)) w = (b)i}

and a set F of functions γ : Ω→M , γ ∈M , such that idΩ ∈ F and F/G satisfies
the following:

F/G |= S1
2 (3.5)

F/G |= (∀y)¬ψ([idΩ], y) (3.6)

F/G |= a ≤ [cn]⇒ F/G |= a = [cj] for some j ∈M, j ≤ n. (3.7)

Proof. We construct the set F with the help of Turing machines Ek, k ∈ N, based
on one that was used by Wilkie in his model-theoretic proof of Buss’s witnessing
theorem (unpublished, see [9] for a presentation). First we describe a machine Ê
which works on input u and uses a tuple of parameters〈

k, (∃y ≤ t(x, z̄))ϕ(x, y, z̄), d̄, d̄′, r̂
〉
,

where k ∈ N, t is a term and ϕ(x, y, z̄) is a Σb
0 formula in the language L2, d̄, d̄′

are sequences of natural numbers, both of the same length as lh(z̄), such that
(d̄)l ≤ k for l = 1, 2, . . . , lh(z̄), and r̂ ∈ M . Roughly speaking, the machine
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uses d̄, d̄′ and input u to compute parameters ā which it assigns to z̄ in (∃y ≤
t(x, z̄))ϕ(x, y, z̄). It also computes the value of a variable h. Then, using machines
with code bounded by r̂ as subroutines, it searches for j < h and y such that
y ≤ t(j, ā) ∧ ϕ(j, y, ā) is true and such that it cannot find a witness for y ≤
t(j+ 1, ā)∧ϕ(j+ 1, y, ā). Later we will define machines Ek by specifying for each
k the remaining parameters from the above tuple. Then we will be able to clarify
our choices of the subroutines to compute ā and h and to explain its operation
in detail. The machine Ê operates as follows:

1. u0 := u;
for i = 1, 2, . . . , k:
u0 := 〈u0〉1 (i.e. project the first coordinate of the pair coded by u0);

2. for l = 1, 2, . . . , lh(z̄):
ul := u;
for i = 1, 2, . . . , k − (d̄)l:
ul := 〈ul〉1;

3. j := 0; g := u; h := |u0|; (ā)l := {(d̄′)l}1(ul) for l = 1, 2, . . . , lh(z̄);

4. find the first e ≤ r̂ such that

{e}1(g) ≤ t(j, ā) ∧ ϕ(j, {e}1(g), ā);

5. if such an e does not exist and j = 0, output 〈u, 〈h+ 1, g〉〉;
6. if such an e does not exist and j > 0, output g;

7. else put g := 〈u, 〈j, {e}1(g)〉〉;
8. if j = h, output g;

9. else put j := j + 1 and go to 4

We shall estimate the code of this Turing machine, ê, considering its parame-
ters as hard-wired in the machine, so ê will depend on them. Recall the running
time of this machine on input u is bounded by |u|ê. The time needed to compute
u0 and u1, . . . , ulh(z̄) is a standard polynomial in |u|. Therefore |t(j, ā)| in step 4
is always bounded by a standard polynomial in |u|, say p(|u|). Hence every time
the machine succeeds to find e which satisfies the condition in step 4, we have
that |{e}1(g)| is bounded by p(|u|). So looking at steps 3 and 7 we see that |g|
is always bounded by some standard polynomial p′(|u|). Thanks to this, we can
estimate the time we need in step 4 to run some {e}1 with e ≤ r̂ on input g: it
is |g|e ≤ |g|r̂ ≤ (p′(|u|))r̂. In step 4 we do this r̂ times. The time needed to check
the condition in step 4 is a standard polynomial in |u|, say p′′(|u|). Finally, the
cycle containing steps 4 - 9 is repeated at most h times. Thus the total running
time is bounded by (

(p′(|u|))r̂ + p′′(|u|)
)
· r̂ · h.

Since h = |u0|, it is bounded by a standard polynomial in |u|. Thus we can bound
the above expression by |u|r̂2

. Since the parameter r̂ is the only element in the
program of the machine which may be nonstandard (otherwise the program is
finite), we can bound its code by

ê ≤ r̂2. (3.8)
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Now we describe the aforementioned machines Ek, k ∈ N. Let〈
(∃y ≤ tk(x, z̄))ϕk(x, y, z̄), d̄′k, d̄k

〉
, k ∈ N (3.9)

be an enumeration of all tuples where tk is a term and ϕk(x, y, z̄) is a Σb
0 formula in

the language L2 such that it is logically valid for x = 0, and d̄′k, d̄k are sequences
of natural numbers, both of the same length as lh(z̄), such that (d̄k)l ≤ k for
l = 1, 2, . . . , lh(z̄). The machine Ek is defined as Ê with the following parameters:
k, the above tuple, and rk plugged for the parameter r̂, where rk is defined
inductively by

r0 := |r|, rk+1 := |rk|.
Let ek be the code of Ek. Put

Ω := {w ∈M | (∃i < lh(b)) w = (b)i}.

Note that by (3.2), Ω ⊆ {0, 1}n in M . We will often write (∃w ∈ Ω)ϕ(w)
for (∃i < lh(b))ϕ((b)i), where ϕ is some formula. Define a set of functions
{αk : Ω→M | k ∈ N} by

α0(w) := w, αk+1(w) := {ek}1(αk(w))

and
F ′ := {γ : Ω→M | (∃e, k ∈ N)(∀w ∈ Ω) γ(w) = {e}1(αk(w))}.

With these definitions at hand, we comment on the operation of the machine Ek.
Observe that due to steps 5 - 8 its output is always of the form 〈u, u′〉 where u
is its input. But from the definition of αk+1 we see that this u is at the same
time the output of Ek−1 (if k > 0). Thus after Ek completes step 1, the value of
the variable u0 is equal to the input of the machine E0, that is, to some w ∈ Ω.
Further, in step 3 we set h := |u0| and we know that all elements of Ω are of length
n. So for every k ∈ N the value of the variable h of Ek during its computation of
αk+1 is n. (The reason why we could not hard-wire n, as we did with the other
parameters, is that n is too big.) In steps 2 and 3 the machine Ek computes
parameters z̄ for the formula ϕk(x, y, z̄): first it extracts the value of α(d̄k)l (with

(d̄k)l ≤ k for l = 1, 2, . . . , lh(z̄)) into the variable ul and then runs {(d̄′k)l}1 on it.
In this way, thanks to our enumeration of parameters (3.9), all tuples of functions
from F ′ will occur as parameters for all the formulas in question. We will write
ηk,l : Ω→M for these parameter functions:

lk := lh(d̄′k) = lh(d̄k)

ηk,l(w) := {(d̄′k)l}1(α(d̄k)l(w)) for l = 1, 2, . . . , lk and k ∈ N. (3.10)

In step 4 of Ek running on input αk(w), the machine searches for a witness of y
in ϕk(j, y, ηk,1(w), . . . , ηk,lk(w)) repeatedly for j = 0, 1, 2, . . . until it cannot find it
or j = n. Since ϕk(0, y, z̄) is logically valid, Ek never stops at step 5. Observing
how its output αk+1(w) is formed, define functions ιk : Ω→ M and σk : Ω→ M
for k ∈ N by

αk+1(w) = 〈αk(w), 〈ιk(w), σk(w)〉〉.
With this notation, we can sum up one of the two Ek’s achievements:

M |= (∀w ∈ Ω)
(
σk(w) ≤ tk(ιk(w), ηk,1(w), . . . , ηk,lk(w))

∧ ϕk(ιk(w), σk(w), ηk,1(w), . . . , ηk,lk(w))
)
.

(3.11)
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The other achievement of Ek, stated in the following claim, explains the choice
of rk in the definition of Ek. First, for all k ∈ N, set

Ψ−1(y, w) := ¬ψ(w, y)
Ψk(y, w) := Ψk−1(y, w)

∧ ¬
[
ιk(w) < n

∧ y ≤ tk(ιk(w) + 1, ηk,1(w), . . . , ηk,lk(w))
∧ ϕk(ιk(w) + 1, y, ηk,1(w), . . . , ηk,lk(w))

]
.

Claim 1. For k = −1, 0, 1, 2, . . .

M |= (∀w ∈ Ω)(∀e ≤ rk) Ψk

(
{e}1(αk+1(w)), w

)
,

where we put r−1 := r.

The claim is established by induction on k. By assumption (3.4) of the theo-
rem, the claim holds for k = −1. Assume it holds for k − 1 and let w′ ∈ Ω and
e′ ≤ rk. The machine Ek ran on αk(w

′) and if ιk(w
′) < n, then before it output

αk+1(w′), it ran in step 4 all e ≤ rk on this αk+1(w′) and verified that none of
them produced a witness for y in

y ≤ tk(ιk(w
′) + 1, ηk,1(w′), . . . , ηk,lk(w

′))

∧ ϕk(ιk(w′) + 1, y, ηk,1(w′), . . . , ηk,lk(w
′)).

It remains to show that {e′}1(αk+1(w′)) satisfies Ψk−1(y, w′). By definition,
αk+1(w′) = {ek}1(αk(w

′)), and (3.8) gives an estimate ek ≤ r2
k. Since we have

e′ ≤ rk = |rk−1|, the machine which runs first ek and then e′ has a code which is
bounded by rk−1. By the induction hypothesis, {e}1(αk(w

′)) satisfies Ψk−1(y, w′)
for all e ≤ rk−1. This completes the proof of the claim.

Next, we arrange (3.7) by constructing a suitable filter on the M -definable
subsets of Ω. This will be the filter G from the statement of the theorem. Take
some enumeration

γk, k ∈ N (3.12)

of F ′. We shall construct elements

b = b0, b1, b2, . . .

of M such that for every k = 1, 2, 3, . . . the following will hold in M :

lh(bk) ≥ lh(bk−1)/(2n) (3.13)

(∀i < lh(bk))(∃i′ < lh(bk−1))(bk)i = (bk−1)i′ (3.14)

(∀i, i′ < lh(bk))((bk)i = (bk)i′ → i = i′) (3.15)

(∀i < lh(bk)) γk−1((bk)i) ≥ n ∨ (∃j < n)(∀i < lh(bk)) γk−1((bk)i) = j. (3.16)

Suppose bk has already been constructed. Working in M , we construct bk+1. First
we find a sequence b′ all of whose elements are distinct and are exactly those
elements (bk)i of bk such that γk((bk)i) ≥ n. This is done using Σb

1−LIND and
relies on the fact that the required properties of b′ are described by ∆b

1 formulas.
If lh(b′) ≥ lh(bk)/2, put bk+1 = b′. If not, we similarly create a sequence b′′ with
lh(b′′) ≥ lh(bk)/2 of those elements of bk on which γk is smaller than n, but this
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time we rearrange them into blocks according to the values of γk: each block will
be determined by two indices, imin ≤ imax, such that γk gives the same value on
the elements (b′′)i with imin ≤ i ≤ imax and γk does not give this value to any of
the elements (b′′)i with i < imin or imax < i. Then we use ∆b

1−LIND to show that
there exists a block for which imax − imin + 1 ≥ lh(bk−1)/(2n). We define bk+1 to
be the sequence consisting of this block. Obviously, bk+1 satisfies (3.13) - (3.16).

For k ∈ N define

Ωk := {w ∈M | (∃i < lh(bk))w = (bk)i}

(so Ω0 = Ω) and let G be the filter generated by the chain Ω0 ⊇ Ω1 ⊇ . . ..
Now we have everything we need to form the restricted reduced power F ′/G,

as defined in Section 3.2. But first we must verify that F ′ is closed under the
functions given by function symbols of L2. Let δ1, . . . , δm ∈ F ′. Recall that
for k′ < k ∈ N, αk′ can be extracted from αk by a standard polynomial-time
algorithm. From this and from the definition of F ′ it follows that for large
enough k ∈ N each of δ1, . . . , δm can be computed by a standard polynomial-
time algorithm from αk. Each function given by a function symbol F of our
language is computable by a standard polynomial-time algorithm. Thus we can
compute F (δ1, . . . , δm) by a standard polynomial-time algorithm from αk, so it is
an element of F ′.

We derive  Loś’s theorem for Σb
0 formulas.

Claim 2. Assume that ϕ(z1, . . . , zm) is a Σb
0 formula in the language L2 and

δ1, . . . , δm ∈ F ′. Then

F ′/G |= ϕ([δ1], . . . , [δm]) if and only if [[ϕ(δ1, . . . , δm)]] ∈ G.

Quickly from the definition of F ′/G follows the claim for the case of ϕ of
the form t(z1, . . . , zm) = z0 (use induction on the complexity of the term t) and
then for the case of ϕ atomic. Then we proceed by induction on the complexity
of ϕ. The induction step for conjunction uses the fact that G is a filter. This
fact also gives the right-to-left implication in the induction step for negation.
For the left-to-right implication assume that F ′/G |= ¬ϕ([δ1], . . . , [δm]) and that
the claim holds for ϕ(z1, . . . , zm). Let k ∈ N be so large that δ1, . . . , δm can be
computed from αk by standard polynomial-time algorithms. Since ϕ is Σb

0, there
exists a standard polynomial-time algorithm which on input αk(w) returns 0 or 1
depending on the truth value of ϕ(δ1(w), . . . , δm(w)) in M for w ∈ Ω. This means
that the function γ : Ω → {0, 1} given by αk composed with this algorithm is
an element of F ′. So it must appear in the enumeration (3.12) as γk′ for some
k′ ∈ N. There we constructed bk′+1 to satisfy (3.13) - (3.16). Thus, what we know
about γ, together with (3.16) and the definition of Ωk′+1, give that either M |=
(∀w ∈ Ωk′+1)ϕ(δ1(w), . . . , δm(w)) or M |= (∀w ∈ Ωk′+1)¬ϕ(δ1(w), . . . , δm(w)).
Since the first case leads by our induction hypothesis to a contradiction, the
proof of the left-to-right implication in the induction step for negation is finished.
It remains to prove the right-to-left implication in the induction step for sharply
bounded existential quantifier (the other half of the equivalence is immediate).
Assume that for some k ∈ N, [[(∃y ≤ |t|)ϕ(y, δ1, . . . , δm)]] ⊇ Ωk. Similarly as
before, there is a standard polynomial-time algorithm which runs on αk′ for a
suitable k′ ∈ N, exhaustively searches for a witness for y in the above formula
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and outputs this witness if it exists. The composition of αk′ with this algorithm
is then a function from F ′, let us denote it δ. We have [[ϕ(δ, δ1, . . . , δm)]] ⊇ Ωk

and we can apply the induction hypothesis. This finishes the proof of the claim.
It follows from the claim that F ′/G is a model of BASIC. The next claim as-

serts that induction holds in F ′/G up to [cn] for strictΣb
1 formulas in the language

L2. Recall that we denoted by cj, j ≤ n, the constant function on Ω with value
j.

Claim 3. Suppose that δ1, . . . , δm ∈ F ′ and let Φ(x) be the L2-formula

(∃y ≤ t(x, [δ1], . . . , [δm]))ϕ(x, y, [δ1], . . . , [δm]),

where ϕ is a Σb
0 formula and t is a term. Then

F ′/G |= ¬Φ([c0]) ∨ (∃x < [cn])
(
(Φ(x) ∧ ¬Φ(S(x))

)
∨ Φ([cn]).

Without loss of generality, we can assume that ϕ(0, y, z̄) is logically valid. Take
k ∈ N such that the k-th tuple of our enumeration (3.9) contains the formula
(∃y ≤ t(x, z̄))ϕ(x, y, z̄) together with tuples of standard numbers d̄′k, d̄k which
tell Ek how to compute δ1, . . . , δm from αk, i.e.

δl = ηk,l for l = 1, 2, . . .m,

where ηk,l is given by (3.10). Since ιk, σk ∈ F ′, we can apply  Loś’s theorem for
Σb

0 formulas (Claim 2) to (3.11) and get

F ′/G |= Φ([ιk]).

Suppose that [ιk] < [cn], for otherwise we are done. Assume for a contradiction
that F ′/G |= Φ(S([ιk])) and let [γ] with γ ∈ F ′ be a witness of the leading
existential quantifier in Φ. There exists some k′ ∈ N, k′ ≥ k, and e′ ∈ N, such
that (∀w ∈ Ω) γ(w) = {e′}1(αk′+1(w)). This follows from the definition of F ′
and from the existence of a standard polynomial-time algorithm that extracts
αk′′ from αk′′+1 for every k′′ ∈ N. Claim 1 implies that

M |= (∀w ∈ Ω)(∀e ≤ rk′)¬
[
ιk(w) < n

∧ {e}1(αk′+1(w)) ≤ t(ιk(w) + 1, δ1(w), . . . , δm(w))

∧ ϕ(ιk(w) + 1, {e}1(αk′+1(w)), δ1(w), . . . , δm(w))
]
.

We have e′ < rk′ , since rk′ is nonstandard. Since F ′/G |= [ιk] < [cn], Claim 2
gives

F ′/G |= ¬
(
[γ] ≤ t(S([ιk]), [δ1], . . . , [δm]) ∧ ϕ(S([ιk]), [γ], [δ1], . . . , [δm])

)
.

This contradicts our choice of [γ] and finishes the proof of the claim.
Note that a consequence of Claim 1 is that for k = −1, 0, 1, 2, . . .

M |= (∀w ∈ Ω)(∀e ≤ rk)¬ψ(α0(w), {e}1(αk+1(w))).

With the help of Claim 2, this gives

F ′/G |= (∀y)¬ψ([idΩ], y). (3.17)
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Now we define a substructure F/G of F ′/G by setting

F := {δ ∈ F ′ | F ′/G |= |[δ]| ≤ [cn]k for some k ∈ N},

i.e., F/G is the restriction of F ′/G to the set of elements with length bounded
by a standard power of [cn]. Bounded formulas are absolute between F/G and
F ′/G. Hence Claim 2 ( Loś’s theorem for Σb

0 formulas), Claim 3 (induction up to
[cn] for strictΣb

1 formulas) and (3.17) remain valid with F ′ replaced by F .
It remains to show that F/G satisfies Σb

1−LIND. Since we have induction for
strictΣb

1 formulas up to [cn], we also have it up to [cn]k for all k ∈ N, i.e., we have

F/G |= strictΣb
1 − LIND.

Now strictΣb
1−LIND is sufficient to prove BBΣb

0, the sharply bounded collection
scheme for Σb

0 formulas. This scheme allows us to prove that every Σb
1 formula is

equivalent to a strictΣb
1 formula. Hence F/G |= S1

2 .

As a corollary we get a weaker version of Buss’s witnessing theorem:

Corollary 3.2. Let ψ(x, y) be Σb
1 in the language L2 and suppose that

S1
2 ` (∀x)(∃y)ψ(x, y).

Then for some q ∈ N and f ∈ �p1,

S1
2 ` (∀x)(∀z)

(
lh(x) > zq ∧ (∀i < lh(x))|(x)i| = z

∧ (∀i, j < lh(x))((x)i = (x)j → i = j)

→ (∃i < lh(x))ψ((x)i, f((x)i))
)
.

Viewed in the standard model N, the conclusion of the theorem says that for
a randomly chosen x of length z the function f witnesses (∃y)ψ(x, y) with the
probability of at least 1 − (zq − 1)21−z. That is, f makes zq − 1 possible errors
on elements of length z.

Proof. We can assume that ψ(x, y) is Σb
0, since it is equivalent in S1

2 with its
strict form and bounded existential quantifiers can be merged with (∃y) using
the pairing function. Assume that the conclusion of the corollary is false. Let T
be the following theory with b, n new constants:

S1
2 + {lh(b) > nk | k ∈ N}

+ (∀i < lh(b))|(b)i| = n

+ (∀i, j < lh(b))((b)i = (b)j → i = j)

+ {(∀i < lh(b))(∀e < k)¬ψ((b)i, {e}1((b)i)) | k ∈ N}.

T is consistent since otherwise in its finite contradictory fragment there would
appear some maximal k and we would combine all the polynomial-time machines
e < k into one that using ψ as an oracle produces a witness for one of the (b)i’s,
contradicting our assumption.

So there exists a countable M |= T . In the case that n = 0 (hence lh(b) =
1 and (b)0 = 0) we have that no standard polynomial-time machine witnesses
ψ(0, y). By Parikh’s theorem applied to our assumption S1

2 ` (∀x)(∃y)ψ(x, y),
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there is a standard y satisfying ψ(0, y) in M . Therefore this y can be trivially
produced by a standard polynomial-time machine, a contradiction. So assume
that n > 0. Then from the first three lines of T it follows that b and n are
nonstandard (in the case n = 1 note that there is only one number whose length
is 1). By overspill, using the first line of T , we have that lh(b) is at least nv for
some nonstandard v ∈M , and we may assume lh(b) = nv with v ≤ n, since such
a shortening of our b still satisfies the axioms of T .

Since nv = lh(b) ≤ |b|, 2n
v

exists in M . The last line of T says that the
following formula holds in M for every standard r:

(∀i < lh(b))(∀e ≤ |v|)
(
e ≤ r → ¬ψ((b)i, {e}1((b)i))

)
.

By overspill, there is a nonstandard r ∈M such that the formula holds in M .
Now the model M satisfies the assumptions of Theorem 3.1, which gives a

model F/G |= S1
2 + (∃x)(∀y)¬ψ(x, y). This contradicts our assumption.

It was noted by L. Ko lodziejczyk that the corollary gives, in fact, a polynomial-
time function which witnesses (∃y)ψ(x, y) without any errors, as is the case in
Buss’s witnessing theorem.

Theorem 3.3. Let ψ(x, y) be Σb
1 in the language L2 and suppose that

S1
2 ` (∀x)(∃y)ψ(x, y).

Then for some f ∈ �p1,

S1
2 ` (∀x)ψ(x, f(x)).

Now the difference between this theorem and Buss’s witnessing theorem for S1
2

is that the witnessing in the latter is provable in the theory PV1. This difference
can be eliminated by checking that relevant arguments in proofs of this section
can be carried out in PV1.

Proof. As before, we can assume that ψ(x, y) is Σb
0. Let ψ′(u, y) be the formula

ψ(MSP(u, ||u||2), y).

Since S1
2 ` (∀u)(∃y)ψ′(u, y), Corollary 3.2 gives q ∈ N and f ′ ∈ �p1 such that

S1
2 ` (∀w)(∀z)

(
lh(w) > zq ∧ (∀i < lh(w))|(w)i| = z

∧ (∀i, j < lh(w))((w)i = (w)j → i = j)

→ (∃i < lh(w))ψ′((w)i, f
′((w)i))

)
.

We describe f ∈ �p1 which uses f ′ as a subroutine and satisfies the conclusion of
the theorem. It works on input x. First it finds z such that z − |z|2 = |x| by a
very simple polynomial-time algorithm (using |x| < z ≤ 2|x| for |x| ≥ 64 ). Then
it produces numbers

x · 2|z|2 , x · 2|z|2 + 1, x · 2|z|2 + 2, . . . , x · 2|z|2 + zq.

This is zq + 1 distinct numbers all of length z and all having as first |x| bits
the binary representation of x, provided that 2|z|

2
> zq. The last inequality is

satisfied for every z ≥ 2q, therefore we will assume that |x| ≥ 2q. Finally, f ′ is
run on each u from these zq + 1 numbers and it is checked whether ψ′(u, f ′(u)) is
true. It has to be true for at least one u by the property of f ′ above, and f ′(u)
for the first such u is the output of f .
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We conclude this section with remarks on the disadvantages of Construction
A. Firstly, the assumptions (3.1) - (3.4) of Theorem 3.1 are very restrictive.
This is connected with the fact that in the proof of the theorem we are using
quite a strong computational model (nonstandard deterministic Turing machines
running in nonstandard polynomial time) in order to ensure induction. So, in
the next construction we will want to work with a weaker computational model
and we will have to find a different way to arrange induction. Secondly, despite
the property (3.7) of the theorem, the construction cannot guarantee that all
elements [cj], M |= j ≤ n, are present in F/G. But this is usually required in the
reformulations of statements of complexity theory mentioned in the introduction.

3.4 Construction B

Assume that

• M is a countable nonstandard model of true arithmetic

• n ∈M \N

• Ω ⊆ {0, 1}n

• L is a first-order language whose non-logical symbols are a binary relation
≤ and a finite set of function symbols FL containing a unary symbol S
and constant symbols 0, ñ. The intended interpretation of each of these
function symbols is some function definable in M , with S interpreted by
the successor function, ñ by n, and 0 and ≤ interpreted as usual.

• ψ(x, y, z1, . . . , zk0) is a ∆<ñ
0 formula in the language L, i.e., each of its

quantifiers is of the form (∃w < ñ) or (∀w < ñ).

• X ∈M is a set containing the following functions from Ω to M : the identity
function idΩ, for each v ≤ n the constant function cv with value v, and some
functions h1(x), . . . , hk0(x) ∈M .

We define a straight-line program (SLP) over FL of size t with input variables
x1, . . . , xk to be a sequence of instructions of the following form: the ith instruc-
tion (i = 1, . . . , t) applies a function from FL to some of the input variables or
previously assigned variables y1, . . . , yi−1 and assigns the outcome of this opera-
tion to yi. Given an assignment of the input variables, the output of the program
is the value of yt. The size of an SLP P will be denoted by size(P ).

We will consider SLPs inside M . Let FL and X be as above and let P ∈ M
be an SLP over FL of size t ∈M with input variables of the form xg, g ∈ X. We
define FctX(P ) to be the set consisting of all functions f : Ω→ M where either
f ∈ X or there is some i = 1, . . . , t such that f(u) is the value at yi computed by
P with the following assignment of the input variables: the value of xg is g(u).

Fix a parameter m ∈M , a nonstandard number with m < n, and a parameter
q, which is a rational number in M and satisfies 0 < q < 1.
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Assume further the following hypothesis:

There is a nonstandard s ∈ M such that for every SLP P ∈ M
of size ms and every f ∈ FctX(P ):

Pr
u∈Ω

[ψ(u, f(u), h1(u), . . . , hk0(u))] < q.
(H)

In M define the master tree to be the tree of SLPs of size ≤ ms. The empty
SLP is the root of the master tree and the partial order of the tree is defined by
“P is an initial part of Q”. For ` ≥ 0 put FCT (`) :=

⋃
P FctX(P ), P ranging

over SLPs from the master tree of size ≤ `. Denote FCT := FCT (ms).

For two sets A,B we abbreviate the quantity card(A∩B)
card(B)

by µ(A/B) and call it
the measure of A with respect to B.

Hence the hypothesis (H) means that

µ([[ψ(idΩ, f, h1, . . . , hk0)]]/Ω) < q

for all f ∈ FCT .
Our construction also requires the following relation between the parameters

n,m and q:

q1/mi <
1

n
for every i ∈ N. (R)

This forces Ω to be large with respect to {0, 1}n.
Having stated the assumptions of the upcoming construction, we summarize

its desired properties in a theorem.

Theorem 3.4. Let M,n,Ω,L, ψ,X be as above. Assume that the parameters
m, q as above satisfy the hypothesis (H) and the relation (R).

Then there is F ⊆ FCT and a filter G on the M-definable subsets of Ω such
that the restricted reduced power F/G enjoys the following properties:

(fg 1) X ⊆ F and F is closed under the functions from FL.

(fg 2) F/G contains no new lengths ≤ n, i.e., if f ∈ F and F/G |= [f ] ≤ [cn],
then there is v ≤ n in M such that F/G |= [f ] = [cv].

(fg 3)  Loś’s theorem holds for ∆<ñ
0 formulas, i.e., for functions f1, . . . , fk ∈ F

and for an L-formula ϕ(x1, . . . , xk) which is ∆<ñ
0 , we have

F/G |= ϕ([f1], . . . , [fk]) iff [[ϕ(f1, . . . , fk)]] ∈ G.

(fg 4) F/G |= (∀y)¬ψ([idΩ], y, [h1], . . . , [hk0 ])

(fg 5) Let ϕ(x) be an L-formula of the form

(∃y1) . . . (∃yk′)α

such that α(x, y1, . . . , yk′ , [g1], . . . , [gk]) is ∆<ñ
0 and has [g1], . . . , [gk] as pa-

rameters, where g1, . . . , gk ∈ F . Then

F/G |= ¬ϕ([c0]) ∨ ϕ([cm]) ∨ (∃x < [cm])
(
ϕ(x) ∧ ¬ϕ(S(x))

)
,

i.e., in F/G induction for ϕ holds up to m.
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Proof. In stages i = 0, 1, 2, . . . we shall construct the following elements of M :

Pi, `i, qi, Ui, Badi,

where

(pu 1) Pi is an SLP from the master tree, P0 is the root and Pi+1 extends Pi.

(pu 2) `i ≥ 0 is a number such that `0 := ms and `0 ≥ `1 ≥ `2 ≥ . . . with
`i − size(Pi) ≥ ms−2i.

(pu 3) qi is a rational number (in M) called the ith badness coefficient. q0 := q

and qi+1 := q
1/(2m)
i . (So 0 < q0 < q1 < . . . < 1).

(pu 4) Ui is a subset of Ω, such that U0 := Ω and U0 ⊇ U1 ⊇ U2 ⊇ . . ..

(pu 5) Badi is a collection of subsets of Ω with

Bad0 := {[[ψ(idΩ, f, h1, . . . , hk0)]] | f ∈ FCT} ∪ {∅}

and Bad0 ⊆ Bad1 ⊆ Bad2 ⊆ . . ., such that for all i ∈ N and V ∈ Badi, we
have µ(V/Ui) < qi. (Note that this holds for i = 0 by (H)).

We shall form the restricted reduced power F/G from F :=
⋃
i∈N FctX(Pi) and

the filter G generated by the chain U0 ⊇ U1 ⊇ . . ..
We now construct Pi, `i, Ui, Badi. Enumerate all tuples of the form

(F, Y, ϕ, g1, . . . , gk),

where F is a symbol from FL, Y is a subset of Ω which is in M , ϕ is an L-formula,
k ∈ N and g1, . . . , gk ∈ FCT , such that every tuple appears infinitely many times
in the enumeration. At each stage i = 0, 1, 2, . . . we apply one of the five steps
below to the bi/5c-th tuple from the enumeration, such that the number of the
applied step, (i) - (v), is congruent to i mod 5. In this way each of these steps
deals with every tuple from the enumeration at infinitely many stages.

(i) For F, g1, . . . , gk in the tuple under consideration, check whether k is the
arity of F and g1, . . . , gk are in FctX(Pi). If so, let t = size(Pi) and extend
Pi by one instruction yt+1 := F (w1, . . . , wk), where wj (j = 1, . . . , k) is a
variable (input or previously assigned) at which gj is computed. Define
Pi+1 to be the resulting SLP. Otherwise, put Pi+1 := Pi. Leave `i, Ui, Badi
unchanged, i.e., set `i+1 := `i, Ui+1 := Ui, Badi+1 := Badi. Obviously, (pu
1) - (pu 5) are satisfied for i+ 1.

(ii) If the set Y from the tuple under consideration is an element of Badi, put
Ui+1 := Ui \ Y . Otherwise, Ui+1 := Ui. Leave Pi, `i, Badi unchanged. To
verify (pu 5) for i+ 1 we use that qi < 1/2 ∀i ∈ N, which is a consequence
of the assupmtion (R), to estimate

qi
1− qi

< 2qi <
1

qi+1

qi < q
2m−1

(2m)i+1 < q
1

(2m)i+1 = qi+1.

So the ratio µ(V/Ui+1) from (pu 5) is less than qi+1 as required.
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(iii) In this step, which is useful for (fg 2) and (fg 3), we make the filter
decide whether a ∆<ñ

0 formula or its negation will hold in F/G. Let the
formula in the considered tuple be a ∆<ñ

0 formula of the form ϕ(x1, . . . , xk).
(Otherwise, leave Pi, `i, Ui, Badi unchanged). Set W := [[ϕ(g1, . . . , gk)]]. If

µ(W/Ui) < 1/2,

put Ui+1 := Ui \ W . Otherwise, Ui+1 := Ui ∩ W . Leave Pi, `i, Badi un-
changed. To check (pu 5) for i+ 1, we need 2qi < qi+1, which was verified
in step (ii).

(iv) This step will help ensure (fg 2) and (fg 3) by witnessing a quantifier
bounded by ñ. Let the formula ϕ in the tuple under consideration be
of the form (∃x < ñ)ϕ′(x, y1, . . . , yk), where ϕ′ is ∆<ñ

0 , and assume that
Ui ⊆ [[ϕ(g1, . . . , gk)]]. From the covering

[[ϕ′(c0, g1, . . . , gk)]], [[ϕ
′(c1, g1, . . . , gk)]], . . . , [[ϕ

′(cn, g1, . . . , gk)]]

of Ui pick a set Z with the largest measure with respect to Ui. Define
Ui+1 := Ui∩Z. Leave Pi, `i, Badi unchanged. Here the new ratio µ(V/Ui+1)
from (pu 5) is at most (n + 1)µ(V/Ui) < (n + 1)qi. Using the assumption
(R) we have

nqi + qi <
qi
qi+1

+ qi = q
2m−1

(2m)i+1 + q
1

(2m)i < 2q
2m−1

(2m)i+1 < q
2m−2

(2m)i+1 < qi+1

so (pu 5) remains valid for i+ 1.

(v) The goal of this step is to arrange (fg 5) by binary search. Let the formula
ϕ from the tuple under consideration be of the form

(∃y1) . . . (∃yk′)α(x, y1, . . . , yk′ , z1, . . . , zk)

where α is ∆<ñ
0 . Moreover, let

[[α(c0, f1, . . . , fk′ , g1, . . . , gk)]] = Ω

and [[α(cm, f1, . . . , fk′ , g1, . . . , gk)]] = ∅

for all f1, . . . , fk′ ∈ FCT .

In steps j = 0, 1, . . . , r := dlogme we shall construct inductively in M
elements

P̃j, ˜̀j, Ũj, B̃adj, uj, vj,
such that

• P̃0 := Pi, P̃j+1 extends P̃j.

• ˜̀0 := `i, ˜̀j ≥ ˜̀j+1 and ˜̀j+1 − size(P̃j+1) ≥ b(˜̀j − size(P̃j))/2c.
• Ũ0 := Ui, Ũj+1 ⊆ Ũj.

• B̃ad0 := Badi, B̃adj+1 ⊇ B̃adj and for all j = 0, 1, . . . , r and all

V ∈ B̃adj we have

µ(V/Ũj) < q
1/2j

i .
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• u0 := 0, v0 := m and vj+1 − uj+1 ≤ d(vj − uj)/2e.

• For each j = 0, 1, . . . , r there are f1, . . . , fk′ ∈ FctX(P̃j) such that

[[α(cuj , f1, . . . , fk′ , g1, . . . , gk)]] ⊇ Ũj.

• For each j = 0, 1, . . . , r and for all g′1, . . . , g
′
k′ ∈ FctX(Q), where Q

extends P̃j and size(Q) = ˜̀
j, we have

[[α(cvj , g
′
1, . . . , g

′
k′ , g1, . . . , gk)]] ∈ B̃adj.

Note that everything is satisfied for j = 0 by (pu 5) and by our assumptions.
Assume that for some j < r these elements have been constructed. Set
` := b(˜̀j + size(P̃j))/2c, w := b(vj + uj)/2c and

V := {[[α(cw, f1, . . . , fk′ , g1, . . . , gk)]] | there is an SLP P such that

f1, . . . , fk′ ∈ FctX(P ), P extends P̃j and size(P ) = `}.

If there is some V ∈ V such that

µ(V / Ũj) ≥ q
1/2j+1

i ,

then put

uj+1 := w, vj+1 := vj, ˜̀j+1 := ˜̀
j, P̃j+1 := P,

Ũj+1 := Ũj ∩ V, B̃adj+1 := B̃adj,

where P is any SLP witnessing that V ∈ V . Otherwise, put

uj+1 := uj, vj+1 := w, ˜̀j+1 := `, P̃j+1 := P̃j,

Ũj+1 := Ũj, B̃adj+1 := B̃adj ∪ V .

It is easy to check that in both cases the newly constructed elements satisfy
all the requirements and that ur + 1 = vr. Define

Pi+1 := P̃r, `i+1 := ˜̀
r, Ui+1 := Ũr, Badi+1 := B̃adr.

and note that (pu 1) - (pu 5) are satisfied. In particular, we can estimate

size(Pi+1)− `i+1 >
size(Pi)− `i

2r
− 1 >

size(Pi)− `i
2m

≥ ms−2i−2

and for any V ∈ Badi+1 we have µ(V/Ui+1) < q
1/2r

i < q
1/(2m)
i = qi+1.

Thus, in this step we have found v := ur ∈ {0, 1, . . . ,m− 1}, such that

[[α(cv, f1, . . . , fk′ , g1, . . . , gk)]] ⊇ Ui+1

for some f1, . . . , fk′ ∈ FctX(Pi+1), and for all g′1, . . . , g
′
k′ ∈ FctX(Q), where

Q extends Pi+1 and size(Q) = `i+1,

[[α(cv+1, g
′
1, . . . , g

′
k′ , g1, . . . , gk)]] ∈ Badi+1.
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Now that Ui and Pi have been defined for all i ∈ N, we can verify (fg 1) -
(fg 5). Recall that we put F :=

⋃
i∈N FctX(Pi) and G is the filter generated by

the chain U0 ⊇ U1 ⊇ . . ..
Step (i) and the definition of F guarantee that F is closed under the functions

from FL and that X ⊆ F , i.e., (fg 1) holds.
To check (fg 2), let f ∈ F and F/G |= [f ] ≤ [cn]. At some stage i ∈ N the

formula
ν(y) := (∃x < ñ)x = y

will be treated by step (iii) together with f , with the result Ui+1 ⊆ [[ν(f)]].
(Otherwise Ui+1 ⊆ [[¬ν(f)]], which implies Ui+1 ⊆ [[¬ f ≤ ñ]], contradicting
F/G |= [f ] ≤ [cn]). By step (iv) (applied to the same formula at some stage
i′ > i) we have Ui′+1 ⊆ [[cv = f ]] for some v ≤ n in M . Thus, F/G |= [cv] = [f ] as
required.

We verify (fg 3),  Loś’s theorem for ∆<ñ
0 formulas, by induction on the com-

plexity of the formula ϕ. By definition, it holds for ϕ atomic. To prove the
inductin step for negation, assume that ϕ is ¬ϕ′(x1, . . . , xk), f1, . . . , fk ∈ F and
that the assertion holds for ϕ′. If [[ϕ(f1, . . . , fk)]] ∈ G, then [[ϕ′(f1, . . . , fk)]] 6∈ G,
so we get F/G |= ϕ([f1], . . . , [fk]) by the induction hypothesis. For the other
direction, suppose that F/G |= ϕ([f1], . . . , [fk]). Then [[ϕ′(f1, . . . , fk)]] 6∈ G by
the induction hypothesis. But ϕ′, f1, . . . , fk were treated by step (iii) at some
stage i, so we must have Ui+1 ⊆ [[¬ϕ′(f1, . . . , fk)]]. Hence [[ϕ(f1, . . . , fk)]] ∈ G as
required. The step for ϕ of the form ϕ′∧ϕ′′ is easy. Let us consider the case when
ϕ is (∃x < ñ)ϕ′(x, x1, . . . , xk), f1, . . . , fk ∈ F and the assertion holds for ϕ′. If
[[ϕ(f1, . . . , fk)]] ∈ G, then there is some i ∈ N with Ui ⊆ [[ϕ(f1, . . . , fk)]], and there
is some i′ > i such that ϕ, f1, . . . , fk were considered by step (iv) at stage i′. Hence
Ui′+1 ⊆ [[ϕ′(cv, f1, . . . , fk)]] for some v ≤ n and we get F/G |= ϕ([f1], . . . , [fk]) by
the induction hypothesis. The other direction follows quickly from the induction
hypothesis. So, we have verified (fg 3).

Let us check (fg 4). By (pu 5) we have [[ψ(idΩ, f, h1, . . . , hk0)]] ∈ Bad0 for
every f ∈ F , and by step (ii) each of these sets was subtracted from Ui at some
stage i ∈ N. Since ψ is ∆<ñ

0 , (fg 3) applies and (fg 4) follows.
Induction (fg 5) is obtained by step (v): Let g1, . . . , gk ∈ F and ϕ be as in

(fg 5). We may assume that

M |= (∀z1, . . . , zk)ϕ(0, z1, . . . , zk) and M |= (∀z1, . . . , zk)¬ϕ(m, z1, . . . , zk).

Step (v) treats ϕ, g1, . . . , gk at some stage i ∈ N with the result

[[α(cv, f1, . . . , fk′ , g1, . . . , gk)]] ⊇ Ui+1

for some f1, . . . , fk′ ∈ F and v ≤ m− 1, and

[[α(cv+1, g
′
1, . . . , g

′
k′ , g1, . . . , gk)]] ∈ Badi+1

for every g′1, . . . , g
′
k′ ∈ F . The first part together with (fg 3) give immediately

F/G |= ϕ([cv], [g1], . . . , [gk]). Since by step (ii) each set in Badi+1 is subtracted
from Ui′ at some stage i′ ∈ N, we obtain F/G |= ¬ϕ([cv+1], [g1], . . . , [gk]) in a
similar way. So, (fg 5) holds.
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3.5 An example

We will show how to use Construction B together with the assumption that one-
way permutations exist to get an interesting model of the theory strictR1

2.

Definition 3.5 (ε-OWP). Let ε : N → [0, 1] be a function. A polynomial-time
function g : {0, 1}∗ → {0, 1}∗ is called an ε-OWP (one-way permutation) if for
every n, g is a permutation of {0, 1}n and for any polynomial p, for all sufficiently
large n and for every boolean circuit C of size at most p(n),

Pr
x∈{0,1}n

[g(C(x)) = x] < ε(n). (3.18)

Let M be a countable nonstandard model of true arithmetic, n ∈M \N and
δ > 0 a (standard) rational number. Assume that an ε-OWP g : M → M exists
with ε(x) := 2−x

δ
. Set

Ω := {0, 1}n, q := 2−n
δ

and m := log n.

Note that the requirement (R) in Theorem 3.4 is satisfied.
Let L be the language containing symbols 0, ñ, S,≤ (as required in Theorem

3.4) together with the remaining symbols of L2, i.e. +, ·, |x|, x#y, bx/2c, .−,MSP,
and also the symbol g̃ for the one-way permutation. Let L be interpreted in M
in the usual way (with g̃ interpreted as g). Then in M , (3.18) holds for every
boolean circuit C of size ≤ ns

′
for some nonstandard s′ ∈M (by overspill).

Let X be the set consisting of the identity function idΩ and the constant
functions cv with value v for each v ≤ n. Let ψ(x, y) be the formula

g̃(y) = x

and put s := |s′|. Now change the interpretation of each symbol from FL (the
set of all function symbols of L) so that they give value 0 on arguments of length
≥ ns (our eventual model will not contain elements of length ≥ ns). Note that if
f ∈ FctX(P ), where P ∈M is an SLP over FL of size ms with input variables xh
for h ∈ X, then f is computable in M by a boolean circuit of size≤ nO(s)·ms < ns

′

(and of depth bounded by d ·ms, where d is a bound on the depth of nO(s) size
circuits computing functions from FL). Hence the hypothesis (H) holds for our
choice of ψ(x, y) and parameters m, s and q. So we can use Theorem 3.4 to get
the model F/G.

Note that since we have +, · in the language, we can strengthen (fg 5) as
follows: In F/G induction holds for (∃y1) . . . (∃yk′)α up to m, where α is an L-
formula with parameters and with quantifiers bounded by ñk for some k ∈ N
(instead of bounded just by ñ). Here ñk means ñ · ñ · . . . · ñ (k-times). This works
because each formula

x < ñk → (∃x0 < ñ) . . . (∃xk−1 < ñ) x = x0 + x1 · ñ+ . . .+ xk−1 · ñk−1

is ∆<ñ
0 , so by  Loś’s theorem (fg 3) it holds in F/G. Hence we can use it to

replace each quantifier bounded by ñk with k quantifiers bounded by ñ and so
we get an equivalent (in F/G) formula with all quantifiers bounded by ñ.

Define a substructure F ′/G of F/G by taking those elements of F/G that are
of length ≤ ñk for some k ∈ N. The fact that bounded formulas are absolute
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between F/G and F ′/G helps with verifying that (fg 1) - (fg 4) also hold with
F replaced by F ′. Since the theory BASIC consists of open formulas, F ′/G is a
model of BASIC thanks to  Loś’s theorem (fg 3). As for induction, compared
to just discussed induction in F/G we have to bound the existential quantifiers
to make sure their witnesses in F/G are also in F ′/G. Hence in F ′/G induction
holds up to m for formulas of the form

(∃y1 ≤ t1) . . . (∃yk′ ≤ tk′)α

where t1, . . . , tk′ are L-terms and α is a sharply bounded formula. Thus we have
proved:

Theorem 3.6. Let δ > 0 be a rational number, ε(x) := 2−x
δ

and assume that an
ε-OWP exists. Let M be a countable nonstandard model of true arithmetic and let
n ∈M be a nonstandard number. Suppose that g̃ is a function symbol interpreted
in M by the ε-OWP. Then there exists N |= strictR1

2(g̃) such that N restricted
to Log(N) coincides with M restricted to {x ∈M | x ≤ nk for some k ∈ N} and
such that in N ,

|g̃(x)| = |x|
g̃(x) = g̃(y)→ x = y

(∃y)(∀x)¬g̃(x) = y.

3.6 Theory strictR1
2 and sharply bounded collec-

tion scheme

We separate theories R1
2(g) and strictR1

2(g) assuming that g is a one-way function
hard against polynomial-size circuits.

We will use Construction B with some slight modifications to its setup. As-
sume that M is a countable nonstandard model of true arithmetic and n ∈M \N.
Let Ω ⊆ {0, 1}n2

be the set of all numbers w such that

(∀u < n)|β2n−1(w, u)| = n.

We can view Ω as the set of all n× n (0, 1)-matrices in M whose rows represent
numbers of length n. Let L be the language containing symbols 0, ñ, S,≤ as in
Theorem 3.4 together with the remaining symbols of L2, i.e. +, ·, |x|, x#y, bx/2c,
.−,MSP, and with a unary function symbol g̃ intended for a one-way permutation.
Let X be the set consisting of the identity function idΩ and the constant functions
cv with value v for each v ≤ n.

There will be one difference in the definition of an SLP over FL of size t with
input variables xh, h ∈ X. Namely, we allow it to use an additional instruction
to invert one row of the matrix assigned to the input variable xidΩ

. Formally, the
additional instruction is of the form

yi := g̃−1(β2n−1(xidΩ
, v)), (3.19)

where i = 1, . . . , t, the symbol g̃−1 denotes the inverse of g̃, and v ≤ n. For an
SLP P the set of functions computed at the variables of P , FctX(P ), is defined
as in Section 3.4.
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Let δ > 0 be a (standard) rational number and denote

q := 2−n
δ

,m := log n.

Let ψ(x, y) be the formula

(∀i < ñ) g̃(βLSP(x,ñ)(y, i)) = βLSP(x,ñ)(x, i).

Here LSP(x, ñ) is just a way to produce a number of length ñ provided x attains
a value from Ω and ñ is interpreted as n. Then ψ(x, y) says that y is the matrix
whose rows are the inverses under g̃ of the rows of x. We need the following
hypothesis:

There exists a function g : M → M which for every l permutes
the numbers of length l and there exists s ∈ M \N such that if
L is interpreted in M in the usual way with g̃ interpreted as g,
except that the functions give value 0 on inputs of length ≥ ns,
then in M ,

Pr
u∈Ω

[ψ(u, f(u))] < q

for all f ∈ FctX(P ) for every SLP P over FL of size ms with
input variables xh, h ∈ X.

(H?)

Theorem 3.7. Let M,n,Ω,L, X, δ, q,m, ψ be as above and assume the hypothesis
(H?). Then there exists a model N of strictR1

2(g̃) such that N restricted to Log(N)
coincides with M restricted to {x ∈ M | x ≤ nk for some k ∈ N} and the
following instance of BBΣb

0(g̃) does not hold in N :

(∀x)
(
(∀i < n)(∃z < 1#LSP(x, n)) g̃(z) = βLSP(x,n)(x, i)

→ (∃y)(∀i < n) g̃(βLSP(x,n)(y, i)) = βLSP(x,n)(x, i)
)
.

Proof. We can repeat the proof of Theorem 3.4 in the current setup (where we
have slightly different SLPs and Ω) with hardly any changes and get a structure
F/G satisfying the conclusion of that theorem, (fg 1) - (fg 5). As in the
previous section, we take the substructure F ′/G of F/G whose universe consists
of all elements of F/G that are of length ≤ ñk for some k ∈ N. It follows that
F ′/G is a model of strictR1

2(g̃) such that

F ′/G |= (∀i < ñ)(∃z < 1#LSP([idΩ], ñ)) g̃(z) = βLSP([idΩ],ñ)([idΩ], i)

but
F ′/G 6|= (∃y)(∀i < ñ) g̃(βLSP([idΩ],ñ)(y, i)) = βLSP([idΩ],ñ)([idΩ], i).

The proof of the following lemma uses an argument similar to that of S. Cook
and N. Thapen [7] described in the footnote on page 7 of [7] and attributed there
to R. Impagliazzo.

Lemma 3.8. Let M,n,Ω,L, X, δ, q,m, ψ be as above and assume that an ε-OWP
exists with ε(x) := 2−x

δ
. Then (H?) is true.
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Proof. Let g : M →M be an ε-OWP. Then in M , (3.18) holds for every boolean
circuit of size ≤ ns

′
for some nonstandard s′ ∈ M such that ms′ < n. For the

sake of a contradiction, assume that (H?) is false. So there is an SLP P of size
ms where s := |s′| such that some f ∈ FctX(P ) inverts all rows of a matrix
from Ω with probability at least 2−n

δ
. P has at most ms instructions of the form

(3.19). These instructions query a fixed set of rows of any matrix from Ω. Assume
without loss that the first row is not queried.

We construct a probabilistic boolean circuit C ′ of size smaller than ns
′

that
satisfies

Pr[g(C ′(x)) = x] ≥ 2−n
δ

, (3.20)

where the probability is taken uniformly over all numbers x of length n and over
the random bits used by C ′.

The input of the circuit is (the binary representation of) a random number
of length n, which we want to find a preimage of. C ′ uses (n − 1)2 random
bits, which represent (n − 1) random numbers of length n. First, C ′ forms an
n × n (0,1)-matrix A whose first row is the input and the remaining rows are
obtained from the (n− 1) random numbers by applying to each of them a circuit
computing g. After that, C ′ simulates the computation of f on A by replacing
the instructions of P with polynomial-size circuits computing the functions of L
and by easily providing correct answers to the queries of the form (3.19). The
first row of the resulting matrix is the output of C ′.

The size of C ′ is at most nO(s) · ms < ns
′
. Since g is a permutation, A is

uniformly distributed on Ω and hence C ′ indeed satisfies (3.20). It follows that
there exists a setting of the (n − 1)2 random bits used by C ′ such that for the
resulting circuit C we have

Pr
x∈{0,1}n

[g(C(x)) = x] ≥ 2−n
δ

,

a contradiction.

The next corollary follows from Theorem 3.7, Lemma 3.8 and the result of B.
Allen [3] that Ri

2 proves BBΣb
i for i ≥ 1.

Corollary 3.9. Let ε(x) := 2−x
δ
. If an ε-OWP exists then strictR1

2(g̃) is weaker
than R1

2(g̃). If an ε-OWP is definable by a term in the language of R1
2, then

strictR1
2 is weaker than R1

2.
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4. Further Results

In this chapter we further develop Construction B from Chapter 3 and use it to
improve upon two results from Chapter 3, allowing a richer langauge of theories
and removing a hypothesis from the separation of relativized theories.

In [4] Cook an Thapen investigated various theories weaker than S1
2 and

showed (sometimes under a computational assumption) that some of these theo-
ries do not prove either BBΣb

1 or BBΣb
0. Theorem 4.1 below can be viewed as an

extension of this type of results to a theory which has more induction than theo-
ries considered there, namely strictΣb

1(PV )− LLIND. This theorem strengthens
Theorem 3.4 by allowing the language of PV .

Theorem 4.2 below improves upon the separation of the relativized theories
in Corollary 3.9. C. Pollett [8] asks whether the theories R1

2 and strictR1
2 are

distinct. We can summarize an answer as follows: They are, assuming a plausible
computational assumption (Corollary 3.9), and the relativized versions of these
theories, R1

2(α) and strictR1
2(α), are distinct (unconditionally) by Theorem 4.2.

This chapter uses the same notation as defined in Preliminaries 3.2 of Chapter
3.

4.1 A separation of two theories in the language

of PV

Assuming the existence of a one-way permutation hard against polynomial-size
circuits we will separate two theories extending the theory PV1. PV1 (defined in
[6], called QPV in [3]) is a first-order variant of the theory PV .

PV is an equational theory defined by Cook [2]. Its language includes a
function symbol for every polynomial time algorithm and these function symbols
are introduced inductively based on Cobham’s characterization of the class of
polynomial time functions as the least class containing several basic functions
and closed under composition and limited recursion on notation. PV contains
defining equations for its function symbols and it uses induction on notation as
a derivation rule.

The theory PV1 can be axiomatized by universal axioms defining the function
symbols of PV and the scheme of induction for open formulas. We would like to
use the symbols of L2 as well, so we need to identify them with some functions of
PV . We will do so by including L2 in the basic language of PV and by including
BASIC in the axioms of PV1.

We will use the fact that PV1 is a universal theory. This is because each open
induction axiom can be rewritten as a universal formula using a function of PV
simulating the binary search (see [5]).

Let Σb
i(PV ) and strictΣb

i(PV ) denote classes of formulas defined like Σb
i and

strictΣb
i , respectively, but in the language of PV .

Recall the definition of an ε-OWP (Definition 3.5).

Theorem 4.1. Let δ > 0 be a rational number, ε(x) := 2−x
δ

and suppose that
an ε-OWP exists. Then PV1 + strictΣb

1(PV ) − LLIND is weaker than PV1 +
Σb

1(PV )− LLIND.
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Proof. We will proceed as in Section 3.6. The setup of the proof is the same
as described by the paragraphs above Theorem 3.7 (including the hypothesis
(H?)) with one exception: the language L will have, in addition to symbols listed
there, finitely many new function symbols. By a theorem of Muchnik [7] the
class of polynomial time functions has a finite basis, i.e., there is a finite set
of functions (called a basis) such that the class of polynomial time functions is
the smallest class of functions containing the functions from the basis and closed
under permutation and renaming of variables and under composition of functions.
The new function symbols added to L are to be interpreted as such a basis.

Then, exactly as we did in the proof of Theorem 3.7, we repeat the proof of
Theorem 3.4 in the current setup and we get F/G satisfying (fg 1) - (fg 5).
We take the substructure F ′/G of F/G whose universe consists of all elements
of length ≤ ñk for some k ∈ N. We expand F ′/G into the language of PV by
interpreting each symbol of PV by an appropriate composition of functions from
the basis. Using  Loś’s theorem (fg 3) and the fact that PV1 is a universal theory
we have F ′/G |= PV1. From (fg 5) we get F ′/G |= strictΣb

1(PV )−LLIND. Since
SLPs are allowed to query a row of a matrix from Ω by the instruction (3.19), it
follows that

F ′/G |= (∀i < ñ)(∃z < 1#LSP([idΩ], ñ)) g̃(z) = βLSP([idΩ],ñ)([idΩ], i).

By (fg 4) and our choice of ψ(x, y) we get

F ′/G 6|= (∃y)(∀i < ñ) g̃(βLSP([idΩ],ñ)(y, i)) = βLSP([idΩ],ñ)([idΩ], i).

Thus BBψ, which is provable in PV1 + Σb
1(PV )−LLIND, does not hold in F ′/G.

The theorem hence follows from Lemma 3.8, which holds for our richer language
L as well (with the same proof).

4.2 A relativized separation

We consider the relativized theories R1
2(α) and strictR1

2(α) for a new unary rela-
tion symbol α. We prove unconditionally that these theories are distinct. Recall
that in Chapter 3 (Corollary 3.9) we proved their separation under the hypothesis
of the existence of a one-way permutation hard against polynomial-size circuits.

Define
Bit(x, i) := MSP(x, i) .− 2 ·MSP(x, i+ 1).

The comprehension axiom for a formula ϕ(x), denoted COMPϕ(a), is the formula

(∃y < 2|a|)(∀x < |a|)(Bit(y, x) = 1↔ ϕ(x)).

We will choose ϕ(x) to be α(x) and we will show that COMPα(a) separates the
theories above.

Theorem 4.2. For a new unary relation symbol α, strictR1
2(α) is weaker than

R1
2(α).

Proof. R1
2(α) ` COMPα(a) is proved by the same recursive doubling trick that

B. Allen [1] used to show that Ri
2 proves BBΣb

i .
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To build a model of strictR1
2(α) where COMPα(a) does not hold we employ

Theorem 3.4 with the simplification that Ω is a singleton, and hence the filter
and all notions used to construct it become trivial.

Assume that M is a countable nonstandard model of true arithmetic, n ∈
M \ N, and Ω := {0}. Let L consist of L2 together with the constant ñ and
the relation symbol α. Let X, the set of inputs for SLPs, be {0, 1, 2, . . . , n}. We
define ψ(y) to be

(∀x < ñ)(Bit(y, x) = 1↔ α(x)).

(We stop using the symbol idΩ occuring in Theorem 3.4 since it is now 0.) Instead
of the probabilistic assumption (H) we now have that there is an interpretation
which is in M of α on the set {0, 1, 2, . . . , n− 1} and there exists a nonstandard
s ∈M such that for every SLP P ∈M of size (log n)s and every e ∈ FctX(P ),

M |= ¬ψ(e).

This is true because in M there are 2n strings of length n, whereas there is a
constant c ∈ N such that there are less than 2c(logn)s+1

possible outputs by SLPs
of size at most (log n)s. Hence we can pick a string v of length n which is not
computed by the SLPs and we interpret α by

α(i)↔ Bit(v, i) = 1.

Now we can allow q = 0 and continue as in the proof of Theorem 3.4. The
only thing that does not become completely trivial is ensuring induction for ∃∆≤n0

formulas up to log n. This is done in step (v) of the proof, which under current
circumstances is reduced to the pruning of the tree of SLPs in search for witnesses
of the unbounded existential quantifiers in a formula for which we want to arrange
induction.

The result is a substructure N of M and we take its substructure N ′ whose
universe consists of all elements of N of length ≤ ñk for some k ∈ N. It is readily
verified that N ′ |= strictR1

2(α), that N ′ contains an element e with |e| = ñ, and
that N ′ |= ¬COMPα(e).
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5. Concluding Remarks

Our results show that it is possible to come up with a new method for constructing
nonstandard models of bounded arithmetic theories and use it to solve problems
open for some time. We think that further development of the method described
as Construction B in Chapter 3 is possible; results reported in Chapter 4 certify
to this. It seems to be crucial to have suitable open problems as aims, to guide
the development of the method. Below we list two which we think are quite
stimulating.

Problem 1. (I∆0 and the weak pigeonhole principle.) Given a nonstandard
model M of true arithmetic and a nonstandard a ∈ M , can we expand M by
adding a relation R on [0, a] such that the resulting structure satisfies induction
on [0, a] for all formulas in the language of arithmetic extended by R and such that
R is an injective map from [0, 2a] to [0, a], i.e. R violates the weak pigeonhole
principle? Or, is it at least true that the weak pigeonhole principle for R is
unprovable in I∆0(R), a theory of arithmetic with induction for bounded formulas
in the language extended by R?

Problem 2. (A lower bound for Fd(⊕).) Does for every d ≥ 3 exist ε > 0 such
that proofs of the tautologies PHPk for k ≥ 1 in Fd(⊕) must have size at least
2k

ε
? Here the pigeonhole principle PHPk is a propositional formulation of the

statement that no map from [k+1] into [k] is injective and Fd(⊕) is a Frege proof
system operating with formulas of depth at most d over the DeMorgan language
(0, 1,¬,∨,∧) with the parity connective ⊕.

In particular, is (∀x)PHP(x,R) unprovable in Q2V
0

1 ? PHP(x,R) is a first-
order formulation of the pigeonhole principle for a binary relation symbol R and
Q2V

0
1 is a bounded arithmetic theory with a parity quantifier.

Problem 1 originated with A. MacIntyre in 1980s. M. Ajtai’s beautiful method
[1] was successful in solving Problem 1 for an injective map R from [0, a] to
[0, a − 1], i.e., for the (usual) pigeonhole principle instead of the weak one. But
neither this method nor its later improvements by Kraj́ıček et al. [3] and Pitassi
et al. [4] were able to solve the above problems. In case of Problem 1, the main
obstacle is that we do not have an analogue of the switching lemma, which is
a combinatorial argument that together with a particular forcing construction
forms the method of Ajtai.

We would like to investigate various model-theoretic constructions to tackle
these problems. The aim is to find a construction so that when some combina-
torial task enters the picture it will be easier to deal with than obstacles like the
switching lemma.

Some recent progress on Problem 2 has been achieved by Buss, Ko lodziejczyk
and Zdanowski [2] by reducing the question to depth d = 3 only.
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