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Abstract 

Environmental pollution and its effect on the living organisms has attracted lots of attention 

recently. There is a growing body of evidence that we are exposed to environmental pollutants 

at low concentrations in everyday life. The cells and organisms have tools to identify, neutralize 

and excrete the majority of the toxic compounds. The most dangerous are those that can escape 

this process or act at low trace concentrations. Endocrine disruptors (EDs) belong to the latter 

group. 

Endocrine disruptors can be of natural and anthropogenic origin. EDs target corresponding 

hormonal receptors and can act at low concentrations. A wide family of nuclear receptors 

recognize steroid hormones. The majority of EDs can pass through the cytoplasmic membrane, 

use the hydrophobic nature of the receptor-ligand binding, trigger hormone response and 

change the expression of the sensitive genes. By interfering with estrogen and androgen 

signaling, EDs can have effect on the whole organism, but the reproductive system is 

influenced most. In the present work, our aim was to develop the methods for ED detection 

and monitoring, analyze the estrogenic potency of EDs, and evaluate the effects of natural 

estrogens and EDs on male reproductive functions, including sperm and testicular physiology 

and endocrine functions. 

First, we prepared a panel of monoclonal antibodies recognizing environmental pollutants and 

natural estrogens. This allowed fast and reproducible detection of various EDs in 

environmental water samples. In part of our work we focused on preparation of monoclonal 

antibodies that recognize surface proteins of the sperm cells interacting with egg envelopes. 

This allowed us to study in detail the effect of EDs on sperm capacitation and hyperactivation. 

Second, we determined the estrogenicity of environmental pollutants in vitro and studied the 

effect of these endocrine disruptors on male fertility and expression of testicular genes during 

spermatogenesis in a mouse model in vivo. We showed that the studied compounds induce 

changes in testicular gene expression patterns and have a negative effect on the male 

reproductive system. Our results provide the molecular basis for the underlying mechanisms 

of EDs action on male reproductive functions during the most susceptible periods of prenatal 

and pubertal development. 

The submitted work has helped us to understand the impact of environmental pollutants on the 

male reproductive system and sperm maturation.  
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Souhrn 

Znečištění životního prostředí a jeho negativní vliv na živé organismy představuje jeden z 

největších problémů současné lidské společnosti. Populace je den co den vystavována nízkým 

koncentracím environmentálních polutantů s potvrzeným či předpokládaným negativním 

efektem na lidské zdraví. Buňky a organismy si v průběhu evoluce osvojily různé způsoby 

detekce, neutralizace a exkrece většiny toxických látek vyskytujících se v prostředí. Největší 

riziko tak představují ty látky, které dokáží detoxikačním systémům organismu uniknout nebo 

působí i ve velmi nízkých koncentracích. Endokrinní disruptory (EDs) pak často představují 

právě takový typ látek. 

Endokrinní disruptory mohou být přírodního či antropogenního původu, a mohou v nízkých 

koncentracích ovlivňovat odpovídající hormonálních receptory. Nejčastějším mechanismem 

jejich účinku je pak vazba na přirozené hormonální receptory. Jaderné steroidní receptory díky 

své evoluci, rozmanitosti a specifickým afinitním vlastnostem představují častý cíl 

endokrinních disruptorů, které jsou díky svým chemickým vlastnostem schopné projít přes 

buněčné membrány. Takovými endokrinními disruptory jsou například ty, které interferují s 

estrogenní a androgenní hormonální regulací. Po vazbě na příslušné receptory jsou tak tyto 

látky schopné negativně ovlivňovat všechny orgánové systémy ovlivňované příslušnými 

hormony, v tomto případě tedy především systém reprodukční. 

Naším cílem v předkládané práci tedy bylo vyvinout metody detekci a monitorování 

přítomnosti a hladiny vybraných endokrinních disruptorů v organismu a v prostředí, analyzovat 

míru estrogenního účinku vybraných látek a posoudit jejich vliv na samčí reprodukční systém 

zahrnující funkce spermií, testikulární tkáně a hormonální regulace. 

Naším prvním významným výsledkem bylo vytvoření panelu monoklonálních protilátek 

schopných detekovat látky znečišťující životní prostředí. Pro tento panel byly vybrány 

hybridomové linie s nejvyšší produkcí specifických protilátek s minimální zkříženou 

reaktivitou k jednotlivým látkám. Tento panel tak umožňuje rychlou a spolehlivou detekci 

endokrinních disruptorů ve vzorcích kontaminované vody. V rámci naší práce jsme se take 

zaměřili na přípravu monoklonálních protilátek, které rozpoznávají povrchové proteiny spermií 

a reagují s povrchovými proteiny vajíčka. Tento přístup nám umožnil podrobně studovat vliv 

EDs na kapacitaci a hyperaktivaci spermií. 

Druhým významným výsledkem bylo zhodnocení estrogenní aktivity vybraných endokrinních 

disruptorů in vitro a také zhodnocení jejich vlivu na samčí reprodukční orgány a expresi 

vybraných genů hrajících roli v procesu spermatogeneze in vivo na myším modelu. Zde jsme 

pozorovali signifikantní změny v expresi jednotlivých genů a negativní vliv na některé samčí 

reprodukční parametry. Naše výsledky poskytují molekulární základ pro pochopení základních 

mechanismů působení EDs na samčí reprodukční funkce během citlivého  období prenatálního 

a pubertálního vývoje. 

Předložená práce přispěla k pochopení vlivu environmentálních polutantů na samčí 

reprodukční systém a maturaci spermií. 
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1. Introduction 

 

1.1. Environmental pollutants 

 

Environmental pollution and its effect on the living organisms makes headlines of the 

newspapers and TV to cover an ecological disaster of a bigger scale that happens from time to 

time and cannot be foreseen. However, the fact is that we are exposed to environmental 

pollutants at low concentrations in everyday life. A few popular books increased the awareness 

of general public that certain chemicals in the environment can exert profound adverse effects 

on wildlife and human health (Carson, 1962; Colborn, 1996; Krimsky, 2000). The cells and 

organism have tools to identify, neutralize and excrete the majority of the toxic compounds and 

the most dangerous are those that can escape this process or act at concentrations which are not 

able to activate detoxification mechanisms. Endocrine disruptors (EDs) often belong to this 

group. 

Endocrine disruptors can be of natural or anthropogenic origin and have become a great 

concern recently. The United States Environmental Protection Agency (EPA) estimates that 

87,000 chemicals might act as potential EDs, including pesticide chemicals, some commercial 

chemicals, cosmetic ingredients, food additives, nutritional supplements, mixtures, and 

environmental contaminants (Vogel, 2005). EDs target corresponding hormonal receptors and 

can act at low concentrations. One ED can change the basic hormonal regulation and by that 

trigger the chain of complex signaling processes, resulting in homeostasis shift. A wide family 

of nuclear receptors recognize steroid hormones. The majority of EDs use this “bug” - the 

hydrophobic nature of the receptor-ligand binding, can pass through the cytoplasmic 

membrane, bind to the receptors directly, trigger the hormonal response and change the 

expression of the sensitive genes. That explains why estrogen and androgen receptors are 

generally the main targets of EDs. By interfering with estrogen and androgen signaling, EDs 

can have effect on the whole organism, but the reproductive system is influenced most. 

Environmental pollutants act not solely by direct mimicking of the natural hormones, but can 

also interfere with the pathways of hormone production, elimination and storage, as well as 

change the activity of specific enzymes or ion transport events in certain cases.  
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Adverse effect of EDs may also be transmitted to the next generations. The exact mechanisms 

of the transgenerational effect of EDs and the molecular mechanisms of heritability of the 

adverse changes to further generations are not clear yet. Recent findings suggest the role of 

epigenetic modifications of histones, DNA and miRNA in the transfer of hormonal system 

deregulation by EDs to the next generations.  

In the next part of the thesis, I will summarize the recent information about the environmental 

pollutants that we included in our studies based on their widespread presence in the 

environmental samples, including brominated flame retardants hexabromocyclododecane and 

tetrabromobisphenol A, mycotoxin zearalenone and tetracycline antibiotics. 

 

1.1.1. Brominated flame retardants 
 

Fire safety regulations demand adding flame retardants to the consumer products to meet strict 

flammability standards. Three main classes of chemical flame retardants consist of: 

halogenated hydrocarbons, organophosphorus compounds and inorganic products based on 

metallic hydroxides. Brominated flame retardants (BFRs) Tetrabromobisphenol A (TBBPA) 

and Hexabromocyclododecane (HBCD) belong to the class of halogenated hydrocarbons and 

are efficient in inhibition of combustive reaction in plastics and textile. With a wide use of 

plastic materials, there are growing concerns about the expansion of BFRs in the environment, 

their resistance and biodegradation. Due to bromide substituents, some BFRs are considered to 

be toxic, persistent and bio-accumulative in the environment (Birnbaum and Staskal, 2004). 

BFRs have been detected in indoor and outdoor air and dust samples (Abdallah et al., 2008), 

in water, sediments, and in sewage sludge (de Wit, 2002). BFRs can be measured in plants and 

wildlife throughout the food chain, in human tissues, blood serum, and in breast milk of the 

exposed occupational populations and in general population (Jenssen et al., 2007; Lignell et 

al., 2009). Brominated flame retardants may possess endocrine disrupting activity and thus 

represent a threat to the environment and human health, including infertility problems. 
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1.1.1.1. TBBPA  

 

Tetrabromobisphenol A (TBBPA, Fig. 1) is 

the main flame retardant used in printed 

circuit boards and laminates (BSEF, 2012). 

The human population is exposed to TBBPA 

daily as it is used in consumer electronics as 

well as office and communication 

equipment. TBBPA is used both as additive 

and reactive BFR and is added to the plastic 

polymers at relatively high concentrations 5 

to 10 %. 

The toxicity of TBBPA has been extensively studied on national and international scale due to 

its high production volumes and potential presence in the environment (Lai et al., 2015). At 

present, the EU Risk Assessment program identified no risk to the environment and human 

health when TBBPA is used in reactive applications in printed circuit boards (ECB, 2008; 

EFSA, 2011b). The major highly reproducible effect of TBBPA was reduction of serum levels 

of thyroxine (T4), a form of thyroid hormone. The antagonistic effect of TBBPA on thyroid 

hormone signaling can be explained by its high-affinity binding to transthyretin (Meerts et al., 

2000; Hamers et al., 2006). In this way, TBBPA can compete with T4 for binding to the 

transport protein and decrease its concentration in the serum. 

It is still unclear whether TBBPA has any estrogenic effect. In vitro studies evaluating the direct 

interaction of TBBPA and estrogen receptor (ER) in E-screen assay, a yeast recombinant model 

or mammalian cells expressing ER, found that TBBPA either did not bound ER, acted as a 

weak ER agonist (Olsen et al., 2003; Nakagawa et al., 2007; Lee et al., 2012), or even as an 

antagonist (Kitamura et al., 2005). In a recent study, Gosavi et al. proposed a possible 

mimicking of estrogen action by TBBPA in a crystallographic study and proposed a possible 

mode of TBBPA-protein interaction (Gosavi et al., 2013). Additionally, with the direct relation 

concentrations was capable to induce apoptosis of TM4 Sertoli cells by modulation of Ca2+ 

transport proteins and thus disrupt Ca2+ homeostasis (Ogunbayo et al., 2008). In a reproductive 

toxicology study, Tada et al. (Tada et al., 2006) did not observe any changes in measured 

Figure 1. Chemical structure of 

Tetrabromobisphenol A 
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reproductive parameters after TBBPA exposure at concentrations 0.01, 0.1 and 1 % in the 

period from gestation day 0 and postnatally until day 27. 

Still, as TBBPA is produced at high volumes topping 200,000 tons/year (BSEF, 2012) and is 

found mainly in products of daily indoor use, further studies of the long-term exposure to 

TBBPA are needed 

 

1.1.1.2. HBCD 

 

Hexabromocyclododecane (HBCD, Fig 2), on the other hand, is produced at lower 

concentrations and products containing HBCD are used mainly outdoor. HBCD is added to the 

insulation foam boards which are widely used in the construction sector at concentrations 0.5- 

3 % by weight (BSEF, 2012). HBCD is used only as additive BFR and is not covalently bound 

to the plastic polymers, and thus can more freely leak from products or waste into the 

environment. This BFR was included in the first tier of studied substances for the risk 

assessment in the REACH program and considered as “Persistent, Bioaccumulative and Toxic” 

chemical with several specific risks to the environment. 

HBCD is a mixture of three stereoisomers α-, β- and γ-HBCD with -form being the most 

persistent in the environmental and food samples (Covaci et al., 2006). The two roots of HBCD 

contamination are air dust and food; air dust exposure seems to be the main contaminant 

(Roosens et al., 2009). HBCD was detected in air samples even in Arctic region (de Wit et al., 

2010), air dust from indoor and cars at concentrations 1–19 g/g with highest contamination 

Figure 2. Structure of the three major HBCDD stereoisomers; α-HBCDD, β-HBCDD and γ-

HBCDD 
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in the car microenvironment (Abdallah et al., 2008). The median HBCD concentration in the 

soil was found to be 0.18 ng/g of dry weight. Detectable levels of HBCD were found in eggs 

(Covaci et al., 2009; Rawn et al., 2011), fish (van Leeuwen and de Boer, 2008), milk and other 

food products (Ortiz et al., 2011; Tornkvist et al., 2011). The adipose tissue levels of HBCD in 

the Czech Republic was at the range of 0.5–7 ng/g of fat and comparable with the other 

European countries (Pulkrabova et al., 2009). 

There was a significant decrease of the testicular weight in male rats exposed to the highest 

tested concentration of HBCD 100 mg/kg b.w. per day without any further histological 

abnormalities in the tissue (van der Ven et al., 2009). In another study, male and females rats 

were continuously exposed to HBCD at different concentrations for two generations (Ema et 

al., 2008). No reproductive endpoint parameters were changed in male rats after HBCD 

exposure, except for epididymal sperm counts in the first generation at concentration 150 g/kg 

b.w. per day. 

To sum up, HBCD is classified to be persistent and bio-accumulative, and further research is 

needed to evaluate the effect of this BFR on the environment and human health and 

reproduction in particular. 

 

1.1.2. Zearalenone 
 

Mycotoxin zearalenone (ZEA, Fig. 3) is 

one of the natural compounds and food 

contaminants with estrogenic activity, 

despite its nonsteroidal structure. It is 

produced by different fungi of the 

Fusarium genus, one of the main grain 

molds. Humans are exposed to ZEA 

mainly via oral root with contaminated 

food and daily exposures vary at 5–100 ng/kg of b.w. per day (EFSA, 2011a). In addition, it 

was shown recently that ZEA was present in aquatic environment in agricultural regions in 

seasonal peaks, suggesting its spreading with rain water from the fields (Waskiewicz et al., 

2012). ZEA is rapidly absorbed and excreted from the organism. ZEA that remains in the body 

Figure 3. Chemical structure of zearalenone 
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is targeted to the estrogen-sensitive tissues such as uterus, interstitial cells of the testes and 

ovarian follicles (Kuiper-Goodman et al., 1987).  

Contrary to the previously discussed compounds, ZEA shows a clear estrogenic activity. It can 

compete with E2 for estrogen receptor binding with binding efficiency 100 to 1000 times lower 

than natural estrogen and has similar affinity for both forms ERs (Kuiper et al., 1998). ZEA 

can directly activate transcription from ERE-containing promoters and is, therefore, a potent 

disruptor of natural estrogen signaling, leading to serious complications in some species, 

especially pigs (Chang et al., 1979).  

Previous results suggest effects of ZEA on sperm motility in boars (Young and King, 1986). 

Complex studies of the ZEA effect on reproductive parameters were performed on adult albino 

rats (Ruzsas et al., 1979). Gestational and/or neonatal ZEA administration leads to permanent 

changes in reproductive organs, disruption of vaginal cycles and disturbed fertility in the 

offspring.  

In an in vitro study on mouse Leydig cells, Yang et al. found that ZEA exposure interferes with 

testosterone production by inhibition of steroidogenic enzymes 3-hydroxysteroid 

dehydrogenase/isomerase (3-HSD-1), cytochrome P450 side chain cleavage enzyme 

(P450scc) and steroidogenic acute regulatory protein (StAR) (Yang et al., 2007a). In another 

study from the same laboratory, authors described adverse effects of ZEA on the reproductive 

system of adult male mice in vivo (Yang et al., 2007b). Male mice were exposed to 

intraperitoneal injection of ZEA or α-zearalon at 0, 25, 50, and 75 mg/kg b.w. daily for 7 days, 

and then mated with sexually mature untreated female mice. The authors showed that in males 

treated with ZEA, there was a significant decrease in amount of live spermatozoa and increase 

in number of abnormal spermatozoa. There was a significantly lower pregnancy rate when 

females were mated with ZEA- or α-zearalon-exposed males. Male mice exposed to ZEA also 

displayed significant reductions in b.w. and relative epididymis weights. In addition to its 

estrogenic effect, ZEA seems to interfere with cell signaling and induce germ cell death (Kim 

et al., 2003; Yuan et al., 2010). Obviously, ZEA displays a lower estrogenic effect than natural 

E2 or even stronger synthetic estrogen diethylstilbestrol (DES), but still its effect is strong 

enough to interfere with spermatogenesis by changing basic reproductive endpoints (Filipiak 

et al., 2009).  
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1.1.3. Tetracyclines 
 

Unlike zearalenone, tetracycline 

(TET, Fig. 4) is produced at high 

quantities intentionally. At present, 

antibiotics as a wide group of 

pharmaceutically active chemicals 

are used not only for acute disease 

treatment, but also for prevention of 

disease, enhancement of growth 

and feed efficiency (Sarmah et al., 

2006). Broad-spectrum antibiotics from the tetracycline family bind to 30S ribosomal RNA, 

preventing the access of tRNA and resulting in inhibition of the synthesis of bacterial proteins 

(Chopra and Roberts, 2001). Tetracycline is still used in human medicine, but it is produced at 

high concentration due to its usage in dairy production and for disease prevention. The global 

use of tetracyclines led to the development of antibiotic-resistant bacteria. Additionally, 

tetracycline is now detected in environmental samples and can affect non-target organisms. 

The concentration of TET decreases in effluents from wastewater treatment plants 10 times, 

but is still detectable at relatively high concentrations 3.6 g/L (Karthikeyan and Meyer, 2006). 

TET can now be detected in various aquatic environments at concentrations 0.1 g/L (Kolpin 

et al., 2002), but in close proximity to swine farms its concentrations in surface and ground 

water are tenfold higher (Campagnolo et al., 2002). 

Tetracycline is well known to reversibly inhibit sperm motility, and therefore it is not advised 

to undergo assisted reproduction techniques (ART) at least two months after TET treatment. 

However, there are only few studies on the TET effect on male fertility and reproductive 

parameters. Kim et al. observed reproductive impairments in model organism Daphnia magna 

after exposure to TET for four consecutive generations (Kim et al., 2012). 

In male rats, there was a decrease in testicular and epididymal weight, sperm counts, and 

increase in oxidative stress immediately after tetracycline exposure (Farombi et al., 2008). 

With increased concentrations of tetracycline in water and food (Kemper, 2008), this chemical 

may also contribute to the decrease of male fertility in mammalian populations. 

 

Figure 4. Chemical structure of tetracycline 
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1.2. Hormonal regulation of male reproductive system 
 

The fundamental role of the endocrine system is to maintain homeostasis of the living 

organism. This is achieved by a dynamic, refined and coordinated response of tissues and the 

whole organism to internal or external signals and is mediated by endocrine, neural and 

immune systems. As the reproductive system in mammals starts to develop at early embryo 

development and is activated later in puberty, the complex endocrine regulation of this 

important function is needed. Moreover, sexual reproduction led to the establishment of sex-

specific steroid hormones that differently regulate the development of female and male 

reproductive organs, as well as general morphology, physiology and metabolism. The 

reproductive system is regulated by hypothalamic-pituitary-gonadal axis (HPG, Fig. 5). This 

Figure 5. The hypothalamic-pituitary-gonadal axis in men. Abbreviations: DHT, 

dihydrotestosterone; FSH, follicle-stimulating hormone; GnRH, gonadotropin-releasing 

hormone; LH, luteinizing hormone (Roth et al., 2008) 



[15] 
 

results in precise timing, regulation and modulation of the gonadal sex hormone production. In 

mammalian males, HPG axis consists of GnRH neurons in hypothalamus, gonadotropes in the 

anterior pituitary, and somatic Sertoli and Leydig cells in the testis. Pulsatile secretion of GnRH 

from the hypothalamic neurons induces production and secretion of FSH and LH that, in turn, 

regulate Sertoli and Leydig cell functioning (Terasawa, 1998). In addition, there is a negative 

feedback loop in which Inhibin B produced by Sertoli cells down-regulates secretion of FSH, 

and testosterone produced by Leydig cells  inhibits LH production (Crowley et al., 1991). The 

paracrine regulatory system in the testis is established between neighboring Sertoli and Leydig 

cells, when testosterone from Leydig cells regulates Sertoli cell function and spermatogenesis, 

and, vice versa, Sertoli cells regulate Leydig cell responsiveness to LH stimulation (Sharpe, 

2003). 

All this complex regulatory network is established at the fetal and early postnatal development. 

Importantly, the sensitivity and responsiveness of the hypothalamus and pituitary regulation is 

set up and fine-tuned during this period (Dohler, 1991). Therefore, interference of external 

hormonal noise would disrupt the correct brain response to sex hormones later in life (Dohler, 

1991). 

The importance of hormones in sex differentiation has been well described (Wilson et al., 

1980). Before sex differentiation the mammalian embryo has the potential to develop male or 

female reproductive system. The absence of androgen signal will lead to the development of 

female phenotype, and gonadal production of testosterone will result in the development of 

generally male phenotype. This is the most vulnerable period of embryo development, when 

EDs can irreversibly affect the reproductive system and the whole body development. 

The general view is that natural estrogens regulate the development and function of the female 

genital tract, gamete development and maturation, while testosterone is responsible for the 

male reproductive system development and spermatogenesis. Nevertheless, the serum level of 

17β-estradiol (E2) in rat males and men is in the range 20–40 pg/ml (Brewster et al., 1997; 

Nagata et al., 2001) indicating E2 participation in normal functioning of male reproductive 

organs (Akingbemi, 2005; Hewitt et al., 2005). Studies on the aromatase (Robertson et al., 

1999) or ER knock-out mice suggest that estrogen action is required for fertility in male mice 

and that the mutation of ER leads to reduced mating frequency, low sperm numbers, and 

defective sperm function (Eddy et al., 1996). 
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Classical estrogen receptors, ER and ER belong to the nuclear receptor superfamily, a group 

of ligand-dependent transcription factors that regulate the expression of estrogen-sensitive 

genes. Aromatase and both estrogen receptors were localized in somatic and germ cells in fetal 

and adult testicular samples (Saunders et al., 1998; van Pelt et al., 1999; Taylor and Al-Azzawi, 

2000). The role of estrogens in spermatogenesis and male reproductive system development 

was indirectly confirmed by adverse effects in the offspring of mothers treated with strong 

synthetic estrogen diethylstilbestrol (Gill et al., 1976). However, the exact mechanism of E2 

action in males is still elusive and under investigation. 

The TFF1 gene was found as one of the first directly induced by ER upon estrogen signaling 

(Masiakowski et al., 1982). It is expressed in epithelial mucosa as a small secreted protein with 

unknown function (Collier et al., 1995). Despite the advances in determining the many 

estrogen-sensitive up- and down-regulated genes, even potential new ERE (Kwon et al., 2007), 

TFF1 is still used as a robust reporter gene to verify the estrogenicity of the studied compounds 

(Balleine and Clarke, 1999). 

 

1.3. Transgenerational effect of EDs 
 

During risk assessment of specific environmental pollutants on human health, several factors 

are taken into account. EDs exposure in adulthood is generally compensated by regulation and 

excretion mechanisms and usually does not result in a significant effect. On the other hand, 

while the exposure occurs chronically or during most sensitive windows of reproductive and 

endocrine system development and establishment, permanent changes can occur to the exposed 

individual and its progeny. 

The exact mechanisms of transgenerational inheritance of the changes caused by environmental 

factors to the subsequent generations are still poorly understood. The majority of environmental 

pollutants are not teratogenic and cannot produce DNA mutations. The study designs prevent 

the effect of social inheritance in acquired adverse changes, and therefore, environmentally 

induced changes might be transferred to next generations, evidently, by epigenetic 

mechanisms. 

In mice, male germ cells generally undergo two distinct active DNA demethylation and imprint 

erasure processes facilitated by the TET protein family: before the  first cell division (Gu et al., 
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2011) and while migrating to the germinal ridge (Hackett et al., 2013). The majority of histones 

in sperm cells are replaced with protamines (Oliva, 2006), erasing histone modification marks, 

and the trace amounts of miRNA in sperm cells (Gu et al., 2011) can hardly pass environmental 

information to further generations. Interestingly, unlike in mouse, zebrafish early embryos 

inherit the sperm methylome, while the oocyte methylation pattern is gradually erased (Jiang 

et al., 2013).  

A recent study in an elegant way described one case of inheritance of the aversion to 

acetophenone that was associated with negative experience paternally for two generations by 

epigenetic mechanisms by heritable hypomethylation of two CpGs in an odorant receptor, 

Olfr151 (Dias and Ressler, 2014). A number of studies proposed a paternal effect of diet 

composition and combination of diet and ED bisphenol A on the offspring gene expression 

changes and metabolic disease (Fullston et al., 2012; Ding et al., 2014; Carone et al., 2015). 

Another study showed that vinclozolin exposure can lead to deregulation of miRNAs in 

primordial germ cells in two subsequent generations (Brieno-Enriquez et al., 2015).  

Previously, it was shown that exposure to the same anti-androgenic ED vinclozolin during the 

sensitive period of embryonic gonad development also affects the DNA-methylation pattern 

up to four generations (Anway et al., 2005; Guerrero-Bosagna et al., 2010). 

All these findings suggest that while the majority of epigenetic marks and changes acquired 

during the lifetime are erased by different pathways in the course of embryo and germ cell 

development, the new organism does not inherit absolute tabula rasa or pure genetic 

information, as some marks of the environmental signals, probably induced by life-threatening 

or chronic exposures, can pass to the next generations with epigenetic marks. Michael Skinner 

even proposed a unified theory of evolution, where a Neo-Lamarckian concept can facilitate 

neo-Darwinian evolution (Skinner, 2015).  One of the novel factors to be considered in this 

theory states: “Environmental exposures at critical developmental windows promote the 

epigenetic transgenerational inheritance of germline (e.g., sperm) epimutations that alter 

phenotypic variation” (Skinner, 2015). 
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2. Aim of the work 

 

In the present work, our aim was to develop methods for EDs monitoring, to analyze the 

estrogenic potency of EDs, and to evaluate the effects of natural estrogens and EDs on male 

reproductive functions, including sperm and testicular physiology and endocrine functions. 

The selection of specific compounds was based on their widespread concentration in the 

environment and the potency to affect male reproduction at a low concentration. All chemicals, 

with the exception of tetracycline, interfere with hormonal regulation and belong to the wide 

group of endocrine disruptors: bisphenol A, tetrabromobisphenol A, hexabromocyclododecane 

and zearalenone. 

To achieve the main goal of the studies we focused on the following topics: 

 Preparation of monoclonal antibodies against estrogens and estrogenic compounds E1, 

E2, E3, EE2, BPA, TBBPA, HBCD, ZEA and tetracycline; 

 Assessment of the estrogenic potency of selected EDs and its comparison with natural 

estrogens in vitro; 

 Effect of TBBPA, ZEA and tetracycline on the mammalian male fertility and 

transgenerational inheritance of the adverse effects; 

 Preparation and characterization of monoclonal antibodies recognizing sperm proteins 

involved in gamete recognition and interaction that will serve as a new tool for 

determining the effect of EDs on the sperm quality and functioning. 

  



[19] 
 

3. Methods 

 

In this section I will describe methods that were used in the first section of the results and have 

not been published in manuscripts. Other methods employed in the course of the present work 

can be found in proper sections of the published articles, where they are described in detail. 

 

3.1. Mouse immunization 

 

Adjuvants were used to boost the immune response in a general way and increase the response 

to the immunizing antigen. Freund’s adjuvant was commonly used as the adjuvant, complete 

in initial immunization and incomplete in following immunizations. The first immunization 

was performed with 50–200 μg of antigen, the second and third immunization in intervals of 

7–10 days and half amount of antigen. During the first two weeks after initial immunization, 

predominantly antibodies of IgM class could be detected in the serum of the mouse. Three to 

four immunizations were performed subcutaneously (s.c.) and the final booster immunization 

was intra-peritoneal (i.p.) 3–4 days before fusion. To investigate whether the immunization 

elicited the immune response or not, the mouse serum was tested for the presence of antibodies 

of the desired specificity. Blood was collected from the tail vein about 8 days after the third 

immunization. The blood was allowed to coagulate for one hour at RT or overnight at 4°C. The 

blood samples were centrifuged at 1000 rpm for 5 minutes in a bench centrifuge at 4°C. The 

clear phase, serum, was used to measure the antibody titer. Serum from a non-immunized 

animal was used as a negative control. 

 

3.2. Cell fusion 

 

General cell fusion is based on the original fusion protocol (Kohler and Milstein, 1975) with 

small modifications (Gefter et al., 1977). Briefly, Sp2/0 mouse myeloma cells should be in a 

growth phase and passaged the day prior to the fusion procedure. Usually, one to two 50 ml 

flasks are sufficient for the fusion. Thawed or freshly isolated spleen cells from the immunized 

animal and Sp2/0 cells were washed in RPMI medium and mixed in a proportion 5:1 to 2:1, 
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and in the absolute numbers 5 x 106 to 4 x 107 cells were used per fusion. Mixed cells were 

centrifuged at low speed 700 rpm in a tabletop centrifuge to form a loose pellet. The following 

steps were the most critical for successful fusion. The medium was aspirated as much as 

possible and the pellet was resuspended gently in the remaining RPMI. Next, 1 ml of warm 

37°C 50 % Polyethylene glycol (PEG, m. wt. 1550) was added by slow dropping in the tube 

wells and gently swirling the tube in 37°C water bath. The cells were centrifuged at 1200 rpm 

for 3 min and the PEG supernatant was discarded. Eight to 10 ml of warm 37°C RPMI without 

serum was added  over a period of 2 to 3 minutes, again gently swirling the tube to prevent 

disturbing the cell pellet. The medium was added as gentle drops followed by centrifugation at 

1000 rpm for 5 minutes. After removing the medium, clumps of stuck-together cells could be 

seen at this point, indicating good fusion. Cells were resuspended in fresh RPMI medium at a 

concentration of 106 cells/ml and were allowed to recover for 2 hours in a CO2 incubator. 

Finally, feeder cells (macrophages from the mouse peritoneum at 106 cells/ml) and 2x 

concentrated selection medium with HAT was added and the fused cells were plated into 96-

well plates at final concentration 0.5 x 106 cells/ml or 105 cells/ well. Fresh medium was added 

every 3–4 days and the wells with growing hybridomas were tested against the antigen by an 

ELISA assay or another screening method. Positive hybridomas were expanded into 24-well 

plates and subcloned at least two times to ensure production of monoclonal antibodies. 

 

3.3. Cloning of the hybridoma cells 

 

Positive hybrids were cloned two-three times by limiting dilution. Briefly, a selected positive 

hybrid (50 ml of 1 x 104 cells/ml) hybrids were diluted to final concentration of 1 cell/well. 

Cells received fresh RPMI media with 10% BSA on days 3 and 6 and were monitored for 

antibody production on days 8–10 with ELISA and immunofluorescence or Western blotting. 
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4. Results and Discussion 

 

4.1. Monoclonal antibodies recognizing natural estrogens 

and environmental pollutants 

 

During the first three years of my PhD studies I concentrated on preparation of monoclonal 

antibodies that can specifically and with high affinity recognize chemicals that are present in 

the environment at relatively high concentrations, are persistent and can negatively affect the 

exposed living organisms, including humans. 

This part of work was performed in collaboration with the VIDIA spol. s r. o. company that 

prepared chemically bound conjugates for immunization and screening and performed the final 

screening and analysis of selected hybridomas (Table 1). As the majority of environmental 

pollutants are present at nanomolar concentrations and interfere with the endocrine system and 

hormonal signaling, we decided to also prepare antibodies against natural estrogens. Estradiol, 

estrone, estriol and ethinylestradiol (part of the hormonal contraception pills) were conjugated 

with carrier protein KLH to be able to induce immune response and the constructs were used 

for mouse immunization. Other chemicals such as brominated flame retardants HBCD and 

TBBPA, component of plastics bisphenol A and antibiotic tetracycline were also conjugated 

with the carrier protein and used for immune response stimulation. Only about 1–3 % of 

hybridomas produced antibodies specific to the corresponding compound. Generated 

antibodies were further analyzed with direct, indirect and sandwich ELISA for specificity and 

cross-reactivity. The prepared antibodies were used for the detection and monitoring of ED 

compounds in water samples. 

. 
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Table 1. The list of hybridoma cell lines producing antibodies against specified environmental 

pollutants 

 

 

  Antibody  Clone Antigen 

Anti-estradiol 2H11F11 E2 

Anti-estradiol 4E8F8 E2 

Anti-estrone 3G1C3 E1 

Anti-estriol 5F3A7 E3 

Anti-estriol 5F3C4 E3 

Anti-estriol 5F3D2 E3 

Anti-ethinylestradiol 2D9E12 EE2 

Anti-ethinylestradiol 3F10-10 EE2 

Anti-tetracycline 3F9E10A4 TET 

Anti-tetracycline 3F9E10D2 TET 

Anti-bisphenol A 4F10 BPA 

Anti-bisphenol A 2B8 BPA 

Anti-hexabromocyclododecane 3E6 HBCD 

Anti-tetrabromobisphenol A 5E3A9 TBBPA 

Anti-tetrabromobisphenol A 5E3D9 TBBPA 

Anti-tetrabromobisphenol A 5E3F11 TBBPA 
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4.2. Assessing the estrogenic potency of brominated flame 

retardants 

 

Dorosh A, Děd L, Elzeinová F, Pěknicová J. Assessing oestrogenic effects of brominated 

flame retardants hexabromocyclododecane and tetrabromobisphenol A on MCF-7 cells. 

Folia Biol (Praha). 2011; 57(1):35-9 

Tetrabromobisphenol A is produced at the highest volumes and is the main flame retardant 

used in printed circuit boards and laminates (www.bsef.com). The human population is highly 

exposed to TBBPA as it is used in consumer electronics as well as office and communication 

equipment. TBBPA is used as additive and reactive BFR and is added to the plastic polymers 

at relatively high concentrations. The EU Risk Assessment program identified no risk to the 

environment when TBBPA is used in reactive applications in printed circuit boards. 

Hexabromocyclododecane is mainly contained in insulation foam boards, which are widely 

used in the construction sector (www.bsef.com). 

The aim of this work was to evaluate the estrogenic effects of TBBPA and HBCD in vitro on 

MCF-7 cells in comparison to natural estrogens. We used the proliferation test (E-screen assay) 

in MCF-7 breast cancer cells and qPCR analysis of TFF1 gene expression to analyze the 

estrogenicity of the studied compounds. We found that HBCD, but not TBBPA, increased cell 

proliferation in MCF-7 cells and up-regulated TFF1 gene expression in a concentration-

dependent manner. Anti-estrogen ICI 182,780 reversed the upregulation of the TFF1 gene by 

HBCD. We have shown that HBCD displays estrogen-like effects on MCF-7 cells. TBBPA, 

on the other hand, had no estrogenic effect mediated by the estrogen receptor α in the present 

model. Nevertheless, it was shown previously that TBBPA or its metabolites can have an 

adverse effect at the whole organism level, disrupting physiological signaling of thyroid 

hormones.  

http://www.bsef.com/
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4.3. Effect of environmental pollutants on male 

reproduction in mammals 

 

Zatecka E, Ded L, Elzeinova F, Kubatova A, Dorosh A, Margaryan H, Dostalova P, 

Peknicova J. Effect of tetrabrombisphenol A on induction of apoptosis in the testes and 

changes in expression of selected testicular genes in CD1 mice. Reprod Toxicol. 2013 Jan; 

35:32-9 

Elzeinová F, Pěknicová J, Děd L, Kubátová A, Margaryan H, Dorosh A, Makovický  P, 

Rajmon R. Adverse effect of tetracycline and doxycycline on testicular tissue  and sperm 

parameters in CD1 outbred mice. Exp Toxicol Pathol. 2013 Sep; 65(6):911-7 

Zatecka E, Ded L, Elzeinova F, Kubatova A, Dorosh A, Margaryan H, Dostalova P, 

Korenkova V, Hoskova K, Peknicova J. Effect of zearalenone on reproductive 

parameters and expression of selected testicular genes in mice. Reprod Toxicol. 2014 Jun; 

45:20-30 

 

In the next series of experiments, we evaluated the effect of environmental pollutants on the 

reproductive parameters of the exposed animals. For an in vivo set of studies we selected the 

substances with high level of worldwide production. Of brominated flame retardants, TBBPA 

is produced annually at the scale of 200,000 metric tons. The tetracycline group of antibiotics 

is widely used in veterinary medicine and dairy production as a disease prevention medicine 

(Sarmah et al., 2006). Zearalenone, on the other hand, is a common contaminating mycotoxin 

that can be found in cereal crops and has proved estrogenic activity (EFSA, 2011a). 

We analyzed the effect of BFR tetrabromobisphenol A on the male reproduction in 

a multigenerational study. Experimental and control animals of F1 generation were bred in 

various conditions to enable evaluation of the possible trans-generational effect. Surprisingly, 

sperm quality and reproductive endpoints were not affected by TBBPA. However, further 

analysis revealed that the exposed animals had thinner seminiferous epithelium, increased 

numbers of apoptotic somatic and germ cells in the testes, and decreased amount of epididymal 

sperm cells. An increased incidence of apoptosis in the testes and changes in the morphometric 

characteristics of seminiferous tubules were observed in the treated group. In addition, changes 
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in the expression pattern of selected genes encoding proteins that play an important role during 

spermatogenesis were observed.  

The study of the antibiotics tetracycline family was designed to evaluate their effect during 

very sensitive pubertal period, when the antibiotics are still used in human medicine for acne 

treatment. Our results suggest that in addition to the well-known immediate effect of 

tetracycline on the reproductive system of mammals and sperm motility, some deleterious 

effects can last long after the antibiotic exposure. Sperm quality analysis, histological 

examination and TUNEL analysis showed that spermatogenesis in mice is not fully restored 

even in adulthood after antibiotic exposure during puberty. 

Next, zearalenone, especially at the lower, environmentally relevant concentration of 25 ng/kg 

b.w. per day, negatively influenced the sperm parameters and induced changes in testicular 

gene expression in exposed CD1 male mice. There was a decrease in sperm concentration (by 

40 %) and sperm quality and increase of apoptotic spermatozoa in experimental animals. Based 

on our gene expression data, we can assume that the decrease in sperm concentration has its 

origin at the level of spermatogonia and the meiotic phase of spermatogenesis. 
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4.4. Expression of spermatogenic genes in testicular 

biopsies from azoospermic patients 

 

Dorosh A, Tepla O, Zatecka E, Ded L, Koci K, Peknicova J. Expression analysis  of 

MND1/GAJ, SPATA22, GAPDHS and ACR genes in testicular biopsies from non-

obstructive azoospermia (NOA) patients. Reprod Biol Endocrinol. 2013 May 15; 11:42 

Our first intention was to look at the expression of the TFF1 gene, a reporter gene of estrogen 

action, in the testicular samples of patients undergoing treatment in the assisted reproduction 

laboratory to determine possible contribution of EDs to fertility problems. Unfortunately, 

preliminary results were not confirmed and there was no expression of TFF1 in testicular tissue. 

Therefore, we used the available specimens from testicular biopsies of men with non-

obstructive azoospermia who underwent TESE to investigate the expression of 

spermatogenesis-related genes MND1, SPATA22, GAPDHS and ACR. Non-obstructive 

azoospermia is a type of azoospermia that is caused by testicular disorders of various origins 

leading to the disruption of spermatogenesis at some stage and characterized by the absence of 

sperm cells in the ejaculate opposite to obstructive azoospermia, when sperm cells are produced 

normally and the absence of sperm in the ejaculate is associated with developmental disorders, 

sometimes associated with cystic fibrosis and as a result of a vasectomy. 

Testicular biopsy specimens were subdivided into three groups according to histological 

classification of the obstructive azoospermia state: hypospermatogenesis (HS); maturation 

arrest (MA); and Sertoli cell-only syndrome (SCO). Analysis of the expression of 

spermatogenic genes in human testes with abnormal spermatogenesis showed different 

expression patterns in patients from different groups. The fertilization rate for the studied set 

of patients was 66 % and the pregnancy rate 29 %. In the HS group, the fertilization rate was 

72 % and pregnancy rate 32 %, while in the MA group fertilization and pregnancy rates were 

54 % and 26 %, respectively. Fertilization rates in relation to the studied genes were uniformly 

around 70; the pregnancy rates for ACR and GAPDHS genes were surprisingly low at 6 % and 

8 %, respectively.  

Our results suggest that expression analysis of genes involved in spermatogenesis can be a fast 

additional test for determination of the spermatogenesis progress in testicular samples. 
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4.5. Preparation of monoclonal antibodies against sperm 

proteins involved in sperm maturation and gamete 

interaction 

 

Margaryan H*, Dorosh A*, Capkova J, Manaskova-Postlerova P; Philimonenko A, 

Hozak P, Peknicova J. Characterization and possible function of glyceraldehyde-3-

phosphate dehydrogenase-spermatogenic protein GAPDHS in mammalian sperm. 

Reprod Biol Endocrinol. 2015 Mar 8; 13:15 

* These authors contributed equally to the publication 

Zigo M, Dorosh A, Pohlová A, Jonáková V, Šulc M, Maňásková-Postlerová P. Panel of 

monoclonal antibodies to sperm surface proteins as a tool for monitoring localization and 

identification of sperm-zona pellucida receptors. Cell Tissue Res. 2015 Mar; 359(3):895-

908 

In this section we concentrated on the preparation and characterization of antibodies involved 

in the sperm-zona pellucida binding and its regulation.  

In the first study, we initially characterized the sperm protein recognized by monoclonal 

antibody Hs-8 that was prepared by immunization of BALB/c mice with human ejaculated 

sperms. Previously, Hs-8 antibody was successfully used to determine the quality of sperm 

cells and their ability to mature and fertilize the eggs (Peknicova et al., 2002; Tepla et al., 

2006). In the immunofluorescence test, Hs-8 antibody recognized the protein localized in the 

acrosomal part of the sperm head and in the principal piece of the sperm flagellum in the 

human, boar and mouse spermatozoa. Hs-8 labelled the 45 kDa protein in the extract of human 

sperm, and with sequence analysis it was identified as GAPDHS, one of the ten enzymes of the 

glycolytic pathway, which are highly conserved and present in nearly all living organisms. In 

male germ cells undergoing spermatogenesis, at least some somatic glycolytic enzymes are 

replaced with sperm-specific isoforms. The first enzyme of the second glycolytic phase, 

glyceraldehyde 3-phosphate dehydrogenase-spermatogenic (GAPDHS), is encoded by a 

different gene than somatic GAPDH and was shown to be essential for energy production and 

sperm motility. Inhibition of the GAPDHS enzyme with chlorinated compound -

chlorohydrine had been a promising alternative for hormonal contraception long before somatic 

and testicular isoforms were identified, but severe side effects found during clinical trials halted 
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the research in this direction (Mohri et al., 1975). We hypothesized that GAPDHS, like its 

somatic counterpart, might be involved in other cellular processes in addition to glycolysis. To 

confirm that, functional analysis of GAPDHS found in the sperm acrosome was performed 

using the boar sperm-zona pellucida binding assay. We tested the effect of both Hs-8 and 

commercial anti-GAPDHS antibodies on the sperm-zona pellucida binding; anti-P4 (anti-

progesterone antibody) and ACR.2 (anti-acrosin antibody) were used as negative and positive 

controls, respectively. There was a four- to five-fold decrease in the number of bound sperm 

cells to the oocyte when ACR.2, Hs-8, or anti-GAPDHS antibodies were present in the 

incubation medium. Anti-P4 antibody had no effect on the sperm-oocyte binding. The outcome 

of the in vitro sperm-oocyte binding assay suggests involvement of the GAPDHS protein in 

the secondary sperm-zona pellucida binding. 

To sum up, GAPDHS is, in the first place, a sperm-specific glycolytic enzyme involved in 

energy production during spermatogenesis and sperm motility. In addition, it seems to exert an 

additional function in the sperm head as well. We confirmed GAPDHS localization in the 

apical part of the sperm head in addition to the principal piece of the flagellum. In an indirect 

binding assay, we showed that anti-GAPDHS antibodies interfere with the secondary sperm-

oocyte binding 

In second study, we characterized the candidate proteins that are involved in the sperm-zona 

pellucida binding in a boar model. First, we raised a panel of monoclonal antibodies against 

the purified protein pool from the apical part of the boar capacitated sperm surface. Three 

proteins with molecular masses that were shown to interact with ZP glycoproteins in 

a Far Western Blot were determined by MALDI analysis. The first protein recognized by 4C7 

antibody was identified to be an acrosin precursor (45 kDa); the 5C5 antibody recognized 

RAB-2A (24 and 27 kDa), and the 1H9 antibody recognized the P47 protein. Proacrosin 

participates in secondary sperm-zona pellucida binding and is known to be present in the 

acrosomal matrix and inner acrosome membrane, and only recently was shown to be present 

on the surface of ejaculated and capacitated sperm cells (Kongmanas et al., 2014). P47 protein 

belongs to the lactadherin protein family and participates in the primary sperm-zona pellucida 

binding (Ensslin et al., 1998). RAB-2A, the member of a subgroup of the Ras superfamily 

proteins, was demonstrated on the sperm surface for the first time and its role in the sperm-

zona pellucida is not known. Previously, it was shown that Rab-2A participates in acrosome 

biogenesis and growth during spermatogenesis (Mountjoy et al., 2008). 
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Antibodies recognizing sperm proteins involved in the gamete interaction will be useful tools 

in the future studies on the effect of EDs on the sperm maturation, capacitation process and 

sperm-oocyte crosstalk.  
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5. Conclusion 

 

In the present work we used a complex approach to study the effect of environmental pollutants 

on the male reproductive system. First, a panel of monoclonal antibodies recognizing EDs was 

generated as a tool to monitor their concentration in the environment with reasonable sensitivity 

and no cross-reaction.  

In an in vitro study, we showed that brominated flame retardant HBCD, but not TBBPA, 

displayed an estrogenic effect on the MCF-7 cell model using both proliferation assay and 

reporter gene TFF1 that contains ERE in its promoter and is highly sensitive to the estrogen 

signal. 

In a series of reproductive toxicology studies, we investigated the adverse effects of 

environmental pollutants TBBPA, ZEA, doxycycline and TET on male reproductive 

parameters. In addition to basic reproductive endpoints, changes in gene expression and protein 

distribution on sperm cells were analyzed. 

We studied the expression of genes involved in different stages of spermatogenesis in testicular 

samples from patients undergoing treatment in the assisted reproduction laboratory. This could 

help identify the level of spermatogenesis in testicular tissues. However, additional analysis is 

needed to investigate whether infertility problems were associated with the exposure to 

environmental factors or are of genetic origin. 

As estrogen signaling participates in sperm maturation and capacitation, we generated 

monoclonal antibodies against sperm surface proteins as necessary tools to study the effect of 

EDs not only on male reproductive organs and germ cell development, but also on sperm 

capacitation and gamete interaction. 

To sum up, the findings presented in this PhD thesis bring important information to the growing 

body of evidence that environmental pollutants can influence mammalian organisms and 

especially their reproductive parameters via different mechanisms. 
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