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exprese patř́ı do stejného typu.
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Introduction

The discovery of the structure of the deoxyribonucleic acid (DNA) molecule by Watson

and Crick (1953) raised the understanding of the molecular mechanisms of genetics to a

new level. A wide range of research areas, from medicine to agriculture, received great

benefits from it. And the recent new advances of high-throughput microarray tech-

nologies changed research in molecular biology in many aspects. The new technologies

became a promising field for many research areas, in particular, for those connected with

human health.

By the extent of availability data of the gene expressions measurements, data of whole-

genome sequence for many mammal species, and especially for humans, the field of

biology has become data-driven than ever before. In this meaning, biological and phar-

maceutical researchers have been facing a new challenge in the analysis of the new wealth

of data. If a biology expert can manage to analyze the results of a small-scale experi-

ment, while the analysis of the results of a large-scale experiment, such as a microarray

experiment, requires some other tools and specific skills beyond the biologist’s expertise.

Basically, this is a starting point from which a collaboration of a biologist and experts

from other research areas, in particular from statistics, begins.

One important aspect in genomics is the understanding of the transcriptome, the sum-

mation of all RNA transcripts within a given cell. Since the genome of a given organism

is a catalog of encoded molecular information, then how that information would be used

is of more importance. An individual gene within a genome can be expressed via tran-

scription at different rates, which depending on the stimuli of the cellular system can be

up-regulated or down-regulated. Now, capability of quantifying gene expression levels

and comparing the abundance of a particular mRNA transcripts make it possible to

examine the genome functionality in its entirety.

Quantification of the gene expressions is one of the growing processes in the study

of genomics, which starting from low-throughput methods of measurements, such as

quantitative northern, southern blots, western blot (or sometimes called immunoblot),

Polymerase Chain Reaction (PCR) at the beginning, has grown to the high-throughput

methods, such as serial analysis of gene expression (SAGE) and array based approaches,

in the present days. The study of the microarray experiment itself is one of the research

areas of great interest. Since the publication by Schena (Schena, 1995) interest in this

area has been growing at a higher rate. For example, in a study designed by Golub et al.

(1999), patients with leukemia were classified into two known subgroups by using just

1



Introduction 2

gene expressions. Sørlie et al. (2001) identified five patterns of the gene expression levels

in breast cancer and identified them as corresponding to different types of diseases with

different prognosis. Zembutsu et al. (2002) predicted the response to anti-cancer drugs

in terms of efficiency and toxicity. Petty et al. (2006) discovered highly differentially

expressed genes among cancer patients who responded to the chemotherapy treatment

and those who did not. Along with the manifold increase in the quantity, and at the same

time the quality of the measurements of the gene expression levels, there is an increasing

need to study these measurements, which are followed by the statistical analysis.

The problem under study

There are many aspects in the statistical analysis of the microarray data that represent

a great interest. One of the interesting problems, arising in the analysis of the microar-

ray gene expressions is the choice of a model, the most suitable representation of the

integrated behavior of gene expression levels. Discussions on the choice of the model

of normal distribution, in other words, verification of the normality assumption of the

gene expressions, has been discussed since the microarray technology was initiated and

has been a big concern for many authors. Some authors proposed to use normality of

the gene expression data (Stamey et al., 2001; Grant et al., 2002; Giles and Kipling,

2003; Guan and Zhao, 2005; Hardin and Wilson, 2009), while some others (Marko and

Weil, 2012; Piras and Selvarajoo, 2015) provided more evidence against normality of

the gene expressions rather than in favor. Thus, verifying normality assumption of the

gene expression measurements is one of the most discussed issues in the literature. A

detailed discussion of the research state on this issue, in connection with the question of

the marginal normality of the logarithmic expressions, will be given in Chapter 1.

As for verifying the normality assumption, we propose some approaches for testing the

normality of the gene expression data. Taking its origin from the problem of the large

number of small samples, where each sample has its own parameters, so called nuisance

parameters, our approach is based on the reconstruction of the type of distributions.

The measurements of the gene expression levels, produced by microarray technology,

are aggregated expression signals and may not adequately reflect the events occurring

within individual cells at the molecular level Chu et al. (2003). Therefore, even at

the stage of designing a microarray experiment and measuring the expression levels,

there are issues, such as the presence of the technical noise in the aggregate signals

(Klebanov and Yakovlev, 2008; Hu et al., 2009), which should be taken into account,

while proceeding with the analysis of the resulting measurements. Hence, there are a

number of difficulties with the analysis of the measurements produced by microarray

experiment. When proceeding with the statistical analysis of the measured levels of the

gene expressions in general, and normality test in particular, we are faced with two main

difficulties. The first one is the dependence between gene expressions and the existence

of the diverse correlation structures between gene expressions Klebanov and Yakovlev

(2007). The second difficulty is the small number of observations.
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Because of these two difficulties we designed our study in the way that one can utilize

the fact of having a large number of genes. Since gene expression data are highly

correlated, therefore, we apply certain verified methods which make use of this fact.

Introduced a structure, yielding near-independent random variables, subsequently called

δ-sequences by Klebanov and Yakovlev (Klebanov and Yakovlev, 2007) is one of the most

convenient techniques to deal with the dependence of the gene expression levels. One of

the implications of δ-sequences, simply consists of transforming strongly dependent data

into weakly dependent, or almost independent data. Hence, instead of testing normality

of the original data, we test normality of the δ-sequences and apply the principle of

the large number of small samples. A detailed discussion on this issue is represented in

Chapters 1 and 4.

Structure of the work

This thesis consists of an introduction, four chapters and a conclusion.

Chapter 1 formulates the problem under study. In view of the importance of the methods

of obtaining the gene expression data, this chapter presents some basics of the microarray

technology in combination with the required background in molecular biology. The

purpose of this is to show that the measured gene expressions data, due to the complexity

of the microarray experiment, might contain certain “white noises”, which interfere

with the actual expression levels. A brief overview of some microarray techniques, the

principle of microarray experiment, image processing and data acquisition are given.

With a review of the related literature on normality issue, the problem of inter-gene

dependence and the idea of using many genes are explained.

In Chapter 2 we discuss, mainly, the problem of the reconstruction of the type of dis-

tributions. In this chapter the problems of the large number of small samples and

reconstruction of the type of distributions (additive, multiplicative and complete types)

by the distribution of the maximal invariant statistics are explained. The problem of

the characterization of the distribution is discussed. Several characterization theorems

for the general case and two characterization theorems of the normal distribution are

given. The last two characterization theorems were proven by Zinger (1956) and Sakata

(1977a,b). These theorems provide a basis for replacing normality test with the spherical

uniformity test. This chapter concludes by showing that characterization of the normal

density given by Sakata does not hold for k = 2.

Chapter 3 deals with the test of spherical uniformity. The bases for the spherical uni-

formity test in Chapter 3 are characterization theorems from the previous chapter. For

testing spherical uniformity in Chapter 3 we use statistics, developed by Bakshaev A.

(Bakshaev, 2008, 2010). Since these types of statistics are based on N-distances, nec-

essary information about N-distances is given. A testing procedure for the spherical

uniformity test and its modification are described. Corresponding results of these tests

are presented.
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Chapter 4 represents the main part of our work. Results obtained in this chapter are new.

In this chapter two characterization theorems are proven. The first theorem characterizes

the normal distribution and the second is a characterization for the complete type of

distribution. The first theorem can be considered as a specific case of the second one.

Although there are results similar to these characterization theorems, these two theorems

represent new results. These theorems are proven based on the analytic properties of the

characteristic functions. These characterization theorems are, to some extent, similar to

those in Chapter 2. Based on these theorems and by using Kolmogorov’s test statistic,

normality of the gene expressions is tested. By using two-sample Kolmogorov-Smirnov’s

test statistic, the relation of the two samples to the same type of distribution is tested.

The results of the tests are presented at the end of the chapter.

With a brief overview of our study, Chapter 5 concludes the thesis.



Chapter 1

Formulation of the problem

1.1 Introduction

Before proceeding with a statistical analysis of any type of data, it is desirable to give

some information on how these data are derived and what actual meaning they have.

In this meaning statistical analysis in general, and normality test of the gene expression

data in particular, deal with the same type of data, namely, with the measurements

of the gene expression levels. The term of the gene expression data is referred to as

the measured abundances of mRNA in a subset or in the complete set of genes in the

genome of an organism. In other words, a gene, which is basically a protein coding, is

considered to be expressed in a cell (or group of cells) when its transcribed messenger

RNA (mRNA) is detected.

At the present day, there exist a wide range of different techniques to determine and

to quantify the expression levels of genes, with substantial statistical components. The

large-scale measurement of the gene expression levels is undergoing rapid development,

which also has its statistical issues. In general, issues related to measuring the gene

expressions or proteins are too broad, and this thesis has no intention to discuss these

issues at length, rather to mention basic principles of quantifying RNA by extraction

from a cell or tissue.

As was mentioned previously, in this thesis we study the validity of the assumption

of whether the data of gene expression levels follow the normal law. With a brief

introductory note on normality assumption of the gene expression data, this chapter

formulates the problem under study. Due to the importance of the data acquisition

methods for the analysis of the gene expressions, in this chapter we give a preview of

some approaches, with focus on quantifying mRNA. Some basics of molecular biology

with focus of microarray technology will be presented. Data sets that we dispose for the

purposes of verifying normality assumption consist of a rather small number of slides

(some tenth), each containing a large number (few thousands) of gene expressions. The

structure of these data will be discussed later, in a relevant section.

5
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1.2 Does the logarithm of the gene expressions follow the

normal law?

A question of whether the gene expression levels or their logarithms follows the normal

law came under discussion after the microarray technology was initiated and it turned

out to be a big concern among many authors. As noted by Chen, Klebanov, Yakovlev

(Chen et al., 2007), “The validity of the assumption on normality of gene expression

measurements in microarray data has been a serious concern since the inception of this

technology”.

This question was a subject of investigation for many authors. In particular, a number

of authors (Stamey et al., 2001; Grant et al., 2002; Giles and Kipling, 2003; Guan

and Zhao, 2005; Lee et al., 2005b) studied this issue, giving preference to the use of

nonparametric methods in microarray data analysis. Some other authors (Troyanskaya

et al., 2002; Klebanov et al., 2006a; Lee et al., 2005a) also indicated certain advantages

of nonparametric methods in such applications.

One of the first, if not the first, systematic studies, designed to test normality of the

expression signals produced by all the genes in a microarray was undertaken by Giles

and Kipling (Giles and Kipling, 2003). To verify normality assumption, the authors

applied the Shapiro-Wilks test for normality to the expression levels of 12545 probe

sets, produced by 59 human Affymetrix U95A GeneChips. The source of this data

set is tissue from the human pancreas. The corresponding CEL files are accessible via

Affymetrix website. According to the authors, for this data set the normality assumption

is met and by that, the authors support the application of the parametric statistical tests

which are based on the normality assumption of the gene expressions.

The study conducted by Chen, Klebanov and Yakovlev (Chen et al., 2007) shows that in

order to verify the normality assumption, one has to have a larger data set, where both

biological variability and technological noise are present. In order to systematically test

for log-normality of the expression levels for all genes, they applied such test statistics

as Kolmogorov, Cram’er von Mises, and Pearson χ2 to a larger set of high-density

oligonucleotide microarray data. For the non-normalized data, they did not reject the

normality assumption of log-intensities. However, the global log-normality hypothesis

was rejected for the data, normalized by the quantile normalization procedure. The

results they obtained are consistent with the hypothesis that non-normalized expression

levels of different genes are approximately log-normally distributed. From this it follows

that the quantile normalization interferes not only with the technological noise but the

true biological signal as well, and may radically change the marginal distributions of

log-intensities.

By using 59 technical replicate in Affymetrix spike-in data set, Hardin and Wilson

(Hardin and Wilson, 2009) investigated the assumption of normality of the oligonu-

cleotide expression values. They concluded that transformed microarray data are not

well-approximated by the normal distribution for any of the standard methods of cal-

culating expression values. Taking into account the nature of microarray technologies,
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they presumed that this conclusion will be valid for other kinds of microarrays and they

suggested that further study would be required to confirm the assumption of normality

as it was already concluded in Chen et al. (2007).

To verify the validity of the normality assumption, Marko and Weil (Marko and Weil,

2012) designed a study based on cancer genomes. By using a variety of parametric

and nonparametric methods, they concluded that cancer gene expression data are not

normally distributed and they exhibit complex, heavy-tailed distributions, characterized

by statistically-significant skewness and kurtosis.

To investigate transcriptome-wide variability of a single cells to different sizes of cell pop-

ulations, Piras and Selvarajoo (Piras and Selvarajoo, 2015) examined RNA-Seq datasets

of 6 mammalian cell types. They showed that for each cell type, increasing the number

of cells reduces the variation in transcriptome-wide expressions and noise values and

concluded that only the highly expressed portion of the genes in a single cells have

Gaussian distribution.

As it follows from the above-mentioned studies, there is not a unique or predominant

point of view regarding normality or non-normality of the gene expressions. Therefore,

this question is still of great interest. In our study of verifying normality assumption

of the gene expression data, we use an approach different from all that were mentioned

above, based mainly on the characterization properties of the normal distribution. We

carry out normality test by using two slightly different methods. In one of the methods,

we replace the test of normality with the test of uniformity; instead of the normality

test we conduct a test for the spherical uniformity. In the other method we just conduct

a simple one-dimensional normality test of the gene expression data.

Because of the higher dimensions of the gene expression data, one may expect discussions

on multivariate normality. But we emphasize that this thesis deals with one-dimensional

normality test only.

1.3 A general overview of the logarithm of the gene ex-

pression data

This section gives a brief overview of the basic concepts involved in a microarray ex-

periment and explains how gene expression levels are measured. Some computational

methods that can be used to derive meaningful results from microarray experiments

are described and some general information on logarithm of the gene expression data is

given. For this purpose, the required biological background is presented; a definition of

some biological entities is given and an explanation of the flow of genetic information

within a biological system, which indicates the pathway of the gene expressions, is briefly

described.
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1.3.1 Biological background

To explain the microarray technology, a few biological terminologies from Alberts et al.

(2015) are given below. The related sources for such biological background, necessary

for an explanation of the gene expressions, are many, for example, Lodish et al. (2007);

Bolsover et al. (2011).

• Deoxyribonucleic acid (DNA) is a molecule that consists of a long chain of

nucleotides which in turn are composed of a nucleobase, the sugar deoxyribose and

a phosphate. The nucleobases can be cytosine (C), thymine (T), adenine (A) and

guanine(G). C and T are called pyrimidines and A and G are purines. DNA has

a double-strand form, where each nucleotide binds its complementary nucleotide

according to the pairing rule: A binds with T and G binds with C and vice versa.

Discovered by Watson and Crick (1953), the DNA molecule has a well-known

double-helix structure. The complete genetic information of an organism is stored

in the nucleus of every cell in the form of double-stranded DNA that is curled up

to build the chromosomes. DNA can be viewed as a long string from the letters A,

C, G, T, denoting the four nucleobases. DNA and its building blocks are shown

in Figure 1.1, which is taken from Alberts et al. (2015).

• Ribonucleic acid (RNA) is similar to DNA, but it has a single-stranded form

and instead of ribose it contains sugar. Aside from this, in RNA the nucleobase

thymine (T) is replaced by uracil (U). Depending on the functions, there are

different types of RNA in the cell. A RNA which transports genetic information

within the cell is called messenger RNA (mRNA).

• Gene is a segment of DNA that is transcribed as a single unit and carries heredi-

tary information of a discrete hereditary characteristic. It usually corresponds to

a single protein (or set of related proteins) or to a single RNA (or set of closely

related RNAs).

• Proteins is the major macromolecular of the cell, its constituent, a linear polymer

of amino acids linked together by peptide bonds in a specific sequence. Proteins

have complex and versatile three-dimensional structure and performs many func-

tions. It can be a constituent elements of the cell, enzymes or signaling molecules.

Proteins can interact with other proteins and RNA’s or DNA’s. They make up

more than half of the dry weight of the cell.

• DNA polymerases are enzymes that synthesize DNA (create DNA molecules) by

joining nucleotides together. These enzymes are essential to DNA replication and

usually work in pairs to create two identical DNA strands from a single original

DNA molecule. During this process, DNA polymerase uses the existing DNA

strands to create two new strands that match the existing ones. Every time a cell

divides, DNA polymerase is required to help duplicate the cell’s DNA, so that a

copy of the original DNA molecule can be passed to each of the daughter cells. In

this way, genetic information is transmitted to the next generation.
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• RNA polymerases are called the enzymes that perform transcription. Like the

DNA polymerase that catalyzes DNA replication, RNA polymerases catalyze the

formation of the phosphodiester bonds that link the nucleotides together to form a

linear chain. The RNA polymerase moves stepwise along the DNA, unwinding the

DNA helix just ahead of the active site for polymerization to expose a new region

of an template strand for complementary base-pairing. In this way, the growing

RNA chain is extended by one nucleotide at a time in one direction.

• Complementary DNA (cDNA) is double-stranded DNA, synthesized from an

mRNA template in a reaction catalyzed by the enzyme reverse transcriptase, an

enzyme that catalyzes the formation of RNA from a DNA template during tran-

scription, called RNA polymer. cDNA is often used to clone eukaryotic genes in

prokaryotes. cDNA is usually used to express a certain protein in a cell that does

not normally express such a protein. This process is referred to as heterologous

expression. The expression of such a protein will be done by transferring the cDNA

that codes for that protein to the recipient cell. cDNA can also be produced by

retroviruses. Once the cDNA is created from such viruses, it is integrated into the

genome of the host, where it goes on to create a provirus. When a protein is being

synthesized, a gene’s DNA is transcribed into an mRNA, which is then translated

into a protein.

• Translation (RNA translation) is the process by which the sequence of nu-

cleotides in an mRNA molecule directs the incorporation of amino-acids into pro-

tein. This process occurs on a ribosome.

• Transcription (DNA transcription) is the process of copying of one strand of

DNA into a complementary RNA sequence by the enzyme RNA polymerase.

• The cell (from Latin cella, meaning “small room”) is the basic structural, func-

tional, and the minimal self-reproducing unit of all known living organisms. It

consists of a self-replicating collection of catalysts. Reproduction of the cell (mito-

sis) is the transmission of genetic information to progeny cells. Every cell stores its

genetic information in the same chemical form—as double-stranded DNA. The cell

replicates its information by separating the paired DNA strands and using each as

a template for polymerization to make a new DNA strand with a complementary

sequence of nucleotides. A cell is separated from its environment by the plasma

membrane. The membrane is the communication channel for a cell, it contains

proteins that take up metabolites from the extracellular space or releases into that

space. Cells can react to changes in their environment. Inside of the membrane

the cell contains various organelles that serve different purposes. In principle, each

cell consists of the same components. All cellular functions are governed by the

information encoded in the genome, which is located in the nucleus of the cell.

In order to serve special purposes, cells differentiate irreversibly. Due to gene

expression modification, differentiation dramatically changes a cell’s size, shape,

metabolic activity, and responsiveness to signals. Cellular differentiation almost

never involves a change in the DNA sequence itself (with a few exceptions). It
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involves switching off genes which are not needed in a particular tissue. Thus,

despite having the same genome, cells in different tissues may have very different

physical characteristics (Moore, 1972). In fact, cells differ in morphology (shape

and appearance), metabolism (the complex of physical and chemical processes),

gene expression and protein production. In terms of cellular regulation and dy-

namics, two cell types from one individual of the species can be as different as two

unrelated bacteria.

Figure 1.1: DNA and its building blocks. (A) DNA is made from simple sub-
units, called nucleotides, each consisting of a sugar-phosphate molecule with a nitrogen
containing side group, or base, attached to it. The bases are of four types (adenine,
guanine, cytosinecytosine, and thyminethymine), corresponding to four distinct nu-
cleotides, labeled A, G, C, and T. (B) A single strand of DNA consists of nucleotides
joined together by sugarphosphate linkages. Note that the individual sugar-phosphate
units are asymmetric, giving the backbone of the strand a definite directionality, or po-
larity. This directionality guides the molecular processes by which the information in
DNA is interpreted and copied in cells: the information is always “read” in a consistent
order, just as written English text is read from left to right. (C) Through templated
polymerization, the sequence of nucleotides in an existing DNA strand controls the se-
quence in which nucleotides are joined together in a new DNA strand; T in one strand
pairs with A in the other, and G in one strand with C in the other. The new strand
has a nucleotide sequence complementary to that of the old strand, and a backbone
with opposite directionality: corresponding to the GTAA... of the original strand, it
has ...TTAC. (D) A normal DNA molecule consists of two such complementary strands.
The nucleotides within each strand are linked by strong (covalent) chemical bonds; the
complementary nucleotides on opposite strands are held together more weakly, by hy-
drogen bonds. (E) The two strands twist around each other to form a double helix—a
robust structure that can accommodate any sequence of nucleotides without altering

its basic structure. This picture taken from Alberts et al. (2015)

.

According to the central principle of molecular biology (so called, the central dogma of

molecular biology) DNA is transcribed into RNA which is, in turn, translated to produce

proteins. DNA replication plays the central role in cell division.
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The first step in producing protein is transcription of DNA by RNA polymerases, the

enzymes that perform transcription. Then the resulted mRNA is translated into a chain

amino-acids at the ribosomes, a cellular structure that is formed by ribosomal RNA

and proteins. Translation takes place according to the genetic code, which is universal

across all species and assigns each triplet of nucleotides one amino-acid. On a molecular

level, the genetic code is realized with tRNA’s, molecules of RNA that can recognize

nucleotide triplets and bring the corresponding amino-acid to the ribosome, where it is

attached to the growing protein chain.

Three well-known disciplines: genomics, transcriptomics and proteomics are related to

the three central stages of molecular biology processes. Genomics is concerned with

the structure, functions, evolution, and mapping of genomes, that is, with DNA; tran-

scriptomics deals with the complete set of RNA transcripts that are produced by the

genome, that is, mRNA; and finally, proteomics is connected with the structure, static

description and dynamic behavior, and the analysis of the proteins occurring in living

organisms Graves and Haystead (2002).

Proteins are the most active component in most cellular processes. Therefore, cellular

processes are all about how proteins work and regulate. Translation of mRNA to pro-

tein is a very complicated process. If the relations were one-to-one, studying proteomics

would be much easier. In that case, assuming that there is no regulation of protein

degradation, the number of mRNA molecules of a particular gene would indicate the

exact number of proteins after translation. But, unfortunately, there are some regula-

tion mechanisms of the proteins concentration and their activities before and after the

transcription. So, the combined consideration of all three -omics will result in a better

understanding of cellular processes, regulation and functions.

1.3.2 Microarray Technology

Microarray technology allows one to study key biological questions on the genomic scale.

It provides a systematic design for studying gene expressions, interpretation of the pro-

tein expression, discovery of molecular interactions, cellular functions and genetic studies

as a whole. One of the most important applications of microarrays is transcriptional

studies, measuring the entire repertoire of transcripts in a cell or in the whole organism,

which provides a great deal of information on interactions between the DNA and the

cellular phenotype. As noticed by Istepanian (Istepanian, 2003), to study the transcrip-

tome comprising multiple transcripts expressed simultaneously in a cell or tissue, for

example, about 300,000 RNA molecules in a human cell, is a challenge. In this meaning,

microarrays are an extraordinary tool for the systematic analysis. Microarrays play an

important role in the quantification of proteins expressions as well. In addition, mi-

croarrays are used in clinical studies, exploring the novelty of the technology in modern

medical sciences. For example, microarrays were used successfully in cardiology to detect

driver genes (Li et al., 2012).

A typical microarray can be defined as a small glass slide with a lot of spots or elements,

where biochemical reactions take place. The microarray unfolds qualitative information
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on expression of gene or protein in a specific experiment. The word microarray comes

from mikro (small) and arayer (arranged). A microarray has a rectangular shape and

measures a few cm long; it is typically ordered, microscopic, planar and specifically

coated with a suitable substrate (Schena, 2002)

Among others, there are two main technologies for manufacturing microarrays: spot-

ted arrays and oligonucleotide arrays. Spotted arrays are produced by robotic spotting

or by an inkjet printer and are referred to as cDNA microarrays or sometimes DNA

microarrays. Oligonucleotide arrays are produced by one of the following approaches:

photolithographic (Affymetrix array), inkjet technology (Agilent), electrochemical syn-

thesis (CombiMatrix), solid state (NimbleGen), and silica beads in microwells (Illumina

arrays; Illumina BeadArrays) (Smith et al., 2010; Arteaga-Salas et al., 2008; Draghici,

2012).

Microarrays, primeraly, were used to study the cellular processes by taking a snapshot

of gene expressions. Microarrays discovery provided a common ground for collabora-

tions among professionals in diverse disciplines such as biology, chemistry, toxicology,

environmental studies, ecology, medical sciences, statistics, and computer science.

The common practice for using microarrays is to detect the presence of labeled nucleic

acids in a hybridized with a probe nucleic acid biological sample, which is placed on

the microarray surface. The detection of probes is promoted via bound labels that emit

detectable by a laser scanner fluorescence (Schena, 2003). After image acquisition the

analysis and interpretation of data follow, which provide a high-throughout analysis at

the genomic scale. To produce large scale gene expression, the labeled nucleic acids

are produced by reverse transcription expressed in a biological sample of mRNA. The

biological sample might be from cells, tissues, or organisms under control or normal, and

under treatment conditions (Hegde et al., 2000).

The labeling step depends on the experiment and the type of microarray technology to

be used. In case of Affymetrix platform, a biotin-labeled complementary RNA target

is constructed for hybridizing into the GeneChip. A common practice is the use of

fluorescent labeling with two dyes Cy3 and Cy5 (detectable by green and red lasers).

In a typical experiment, two samples are hybridized to the arrays, each labeled with

one dye, which allows the measurement of both fluorophores representing the nucleic

acids expressed (or present) in each of two samples. This methodology allows the mea-

surement of expression levels of many thousands of genes simultaneously. There exist

many sources for the detailed description of the process of measuring gene expressions,

microarray technologies, and microarray experiments, for example, Parmigiani et al.

(2006); Amaratunga et al. (2014).

Below is a brief description of some of the microarrays techniques in molecular biology

that conventionally have been used.

• Southern blotting (named after its discoverer Edwin Southern) is a procedure

for identifying specific sequences of DNA in which fragments separated on a gel
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electrophoresis (which involves an electrical field) are transferred directly to a sec-

ond medium on which assay by hybridization may be carried out. It comprises the

electrophoresis of DNA molecules to generate smaller fragments. The fragments

of a DNA which are separated electrophoretically are transferred and immobilized

onto a solid support, usually a nylon or nitrocellulose membrane. In order to detect

the presence of a particular DNA sequence on the membrane, a small fragment of

DNA or an oligonucleotide corresponding to the target gene sequence is labeled

with radioactive or non-radioactive fluorescent molecules. Subsequent to the hy-

bridization of labeled probe with the membrane containing the immobilized DNA

fragments, the detection of the bound fragments is carried out. This method al-

lows one to identify the presence of a specific DNA molecule, which can be isolated

and cloned for further analysis. However, the main limitation for the sequence de-

tection using the Southern blot assay is that one can only use a single target gene

at a time, although several samples are electrophoresed and immobilized on the

solid support (Ali, 2014).

• Northern blot is commonly used to study transcriptional regulation of the gene

expression by detecting specific RNA target molecules, corresponding to specific

genes. The RNA is isolated from the cells, tissues, or organisms and is elec-

trophoresed and transferred to a solid support, similar to DNA transfer in the

Southern blotting procedure. The electrophoresis allows the separation of RNA

molecules by size and they are detected by a hybridized labeled probe. The com-

plementary target sequence is identified by detecting the bound labeled probe.

Northern blotting is also limited to the detection of one gene at a time. However,

multiple samples can be hybridized at the same time, and hence there is a possi-

bility for the examination of cellular processes. Using northern blot allows one to

routinely analyze regulation of gene expression during differentiation , morphogen-

esis, embryogenesis and development. Such analysis of gene expression regulation

is possible in the cells under control, abnormal, or diseased conditions using the

Northern blot procedure.

• Western blot or immunoblot detects specific proteins in a sample derived from

cells, tissues, or organisms. The transfer of the protein samples is carried out sim-

ilar to Southern and Northern blots. Electrophoresis of the protein sample sepa-

rates the native proteins on an acrylamide gel. Based on the structure, weight, and

charge of the native proteins which are present in the sample, the proteins may

be electrophoresed using two or three-dimensional separation techniques. Then

proteins are transferred to a membrane. Following the fixation of proteins on the

solid support, the presence of specific polypeptide molecules is detected using spe-

cific antibodies, which are themselves detected using secondary antibodies labeled

with fluorescent molecules. Due to the availability of numerous antibodies (mon-

oclonal or polyclonal antibodies), detection of the expression of specific protein

molecules in a given control or experimental sample becomes feasible. Limitation

of the Western blot is the same as Southern and Northern blots: it allows a single

type of protein to be detected in one experiment (Rueda, 2014).
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• Polymerase chain reaction (PCR) is a cost-effective and time-saving tech-

nology, which gained popularity over Southern and Northern blots. It amplifies

even a single copy of the molecule of a target nucleic acid in a biological sample.

PCR is based on the exploitation of the ability of DNA polymerase to synthesize a

new strand of DNA complementary to the offered template strand. Because DNA

polymerase can add a nucleotide only onto a pre-existing three-prime-phosphate

group, it needs a primer to add the first nucleotide. This requirement makes it

possible to depict a specific template sequence region that should be amplified. At

the end of the PCR reaction, the specific sequence will be accumulated in billions

of copies (Rueda and Ali, 2014)

To separate the strands from each other, at the beginning of the reaction a high

temperature is applied to the original double-stranded DNA molecule. The most

commonly used DNA polymerase is Taq DNA polymerase (an enzyme isolated

from Thermis aquaticus bacteria), whereas Pfu DNA polymerase (from Pyrococcus

furiosus) is used widely because of its higher fidelity in copying DNA. Despite some

differences, these two enzymes have two capabilities suitable for PCR: 1) they can

generate new strands of DNA using a DNA template and primers, and 2) they are

heat resistant. The polymerase begins synthesizing new DNA from the end of the

primer.

Reverse Transcription PCR (RT-PCR) is a PCR preceded by the conver-

sion of the sample RNA into cDNA with an enzyme. PCR and RT-PCR have

the same limitations. The PCR reaction starts to generate copies of the target

sequence exponentially. Only during the exponential phase of the PCR reaction

it becomes possible to extrapolate back to determine the starting quantity of the

target sequence, contained in the sample. Because of the inhibitors of the poly-

merase reaction, which are found in the sample, the chemical reagent limitation,

accumulation of pyrophosphate molecules, and self-annealing of the accumulating

product, the PCR reaction eventually ceases to amplify target sequence at an ex-

ponential rate and a ”plateau effect” occurs, making the end point quantification

of PCR products unreliable. This is the attribute of PCR that makes Real-Time

Quantitative RT-PCR so necessary.

• Real-Time Quantitative Reverse Transcription (qRT-PCR) is a major

development of PCR technology. It enables the reliable detection and measurement

of products generated during each cycle of PCR process. This technique became

possible after the introduction of an oligonucleotide probe which was designed to

hybridize within the target sequence. The split of the probe during PCR because

of the five-prime-phosphate group (5’) nuclease activity of Taq polymerase can be

used to detect amplification of the target-specific product. A technique to monitor

degradation of the probe is the implementation of double-stranded DNA-binding

dyes. Probe labeling with fluorescent dyes is used as well.

One of the earliest methods introduced for qRT-PCR monitoring was TaqMan

assay (named after Taq DNA polymerase). This method has been widely used for

the quantification of mRNAs and for detecting its variation. The method exploits

the five-prime-phosphate group (5’) endonuclease activity of TaqDNA polymerase
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to split an oligonucleotide probe during PCR, thereby generating a detectable

signal. The probes are fluorescently labeled at their five-prime-phosphate group

(5’) end and are non-extendable at their three-prime-phosphate group (3’) end

by chemical modification. Specificity is conferred at three levels: via two PCR

primers and the probe. Real Time Quantitative RT-PCR is used for the relative

and absolute quantification of gene expressions and validation of DNA microarray

results.

All above-mentioned microarray techniques are the low-throughout methods. What

unites them is that all of them are based on hybridization (Speed, 2004). High-throughout

methods are Serial Analysis of Gene Expression (SAGE) and array based approaches.

SAGE is a method for the comprehensive analysis of gene expression patterns and it

not based on hybridization. Besides, one of the advantages of SAGE is that it is not

necessary to know the sequences of the mRNA transcripts in advance. There are three

main principles in SAGE:

1. A short sequence tag (10-14bp) contains sufficient information to uniquely identify

an mRNA transcript, provided that that the tag is obtained from a unique position

within each transcript.

2. Sequence tags can be linked together to form long serial molecules that can be

cloned and sequenced.

3. Quantification of the number of times a particular tag is observed provides the

expression level of the corresponding transcript.

A typical SAGE experiment involves two sources of mRNA. For each source a set (li-

brary) of tags would be derived using the SAGE protocol. In these two libraries there

might be many distinct tags observed, and for each unique tag, the frequency of the

tag appearances in each library could be calculated. The data for this comparative

experiment are then two lists of counts, one for each unique tag observed.

Array based approaches are principal part of the high-throughput methods for quanti-

fying gene expression. There are three basic microarray technologies: nylon membrane

arrays, spotted arrays, and high-density oligonucleotide arrays.

Nylon membrane Filters is the oldest array technology, but still is widely used around

the world. A typical filter microarray has 5000 complementary DNA (cDNA) clones 600-

2400 bases in length, spotted in a grid on the membrane. Radio-labeled target cDNA

derived from the mRNA of interest is hybridized to the array, and the filter is then

exposed to X-ray film and the film imaged. The digital image is the raw data from the

experiment. Traditional high-density filter-based microarray is the oligonucleotide filter

array, which can have 50,000 spots (Meier-Ewert et al., 1998).

Spotted cDNA Microarrays was introduced by Schena (Schena, 1995). It is a typical

spotted array, which consists of 40,000 cDNA probes with the length of 600-2400 bp

placed in a regular pattern on a glass microscope slide.
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High-density oligonucleotide arrays is quite different technology that can place up

to 500,000 short oligonucleotide probe pairs on a small glass chip, with 11-20 of them

representing part or all of a single gene (Lockhart et al., 2000; Fodor et al., 1991).

Each probe pair consists of a perfect match (PM) probe, and a mismatch (MM) probe.

MM is the same as PP aside from a difference in a single nucleotide change in the

middle (13th) position. A tagged target cRNA sample hybridizes with the complemen-

tary oligonucleotides on the chip, and detection is via laser excitation followed by the

collection of fluorescence emission as with spotted arrays.

The end product of the experimental stage is an image of the microarray, where each spot

that corresponds to a gene, has an associated fluorescence value representing the relative

expression level of that gene. The main starting point in microarray data analysis is to

process this image, which involves several steps (Babu, 2004a).

1. Spot identification and distinguishing them from spurious signals. Scanned mi-

croarray is followed by hybridization and usually a TIFF image file is generated.

Once image generation is completed, the image is analysed to identify spots. To

make spot identification straightforward, in microarray images the spots are ar-

ranged in an orderly manner into sub-arrays. To identify regions corresponding to

spots, image processing requires layout specification of each sub-array.

2. Determination of the spot area and the local region to estimate background hy-

bridization. After identifying corresponding regions to sub-arrays, an area within

the sub-array is selected in order to get a measure of the spot signal and back-

ground intensity is estimated. There are two methods to define the spot signal:

using a fixed size area, centered on the centre of the spot mass, which is com-

putationally less expensive but with some disadvantages; precise definition of the

boundary for a spot that includes only pixels within the boundary, which gives a

better estimation of the spot but is time-consuming and computationally expen-

sive.

3. Summary statistics and assigning spot intensity after correction for background

intensity. Once the spot and background areas are defined, a variety of summary

statistics for each spot (red and green) are reported. Each pixel is taken into

account and summary statistics (mean, median, total) for the intensity in all the

pixels of the defined area for both the spot and background are reported. Some

approaches use the spot median value, subtracted from the background median

value as the metric to represent spot intensity. The advantage of this approach is

its relative insensitivity to a few pixels with anomalous fluorescent values and its

disadvantage is its sensitivity to misidentification of spot and background areas.

Another approach uses total intensity values, which has an advantage of being

insensitive to misidentifcation of spots but has a disadvantage of being inclined to

be skewed by a few pixels with extreme intensity values.

One of the important considerations in image processing is the choice of the number

of pixels to be included for measurement in the spot image (Babu, 2004b). For many
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scanners, the default pixel size is 10µm. This means that an average spot of diameter

of 200 µm will have approximately 314 pixels. However, for a smaller spot diameter, it

is better to use a smaller pixel size to ensure enough pixels are sampled. Most scanners

now allow much smaller pixel sizes but the size of the image file increases.

1.3.2.1 Logarithmic transformation

Often the data of spot intensity is initially transformed for analysis by a logarithmic

transformation, X → log(X) (Colantuoni et al., 2003). It is preferable to work with

log-intensities rather than absolute intensities for a number of reasons: the variation

of log-intensities tends to be less dependent on the magnitude of the values, taking

logarithm reduces the skewness of highly skewed distributions, and improves variance

estimation. Furthermore, log-intensities elevates visual inspection of the data. Often

the raw data is heavily clumped together at low intensities followed by a very long tail,

the details of such configurations are impossible to discern. Log transformation spreads

out the data more evenly, making it easier to examine visually. Often logarithms of

base 2 are used. Other simple power transformations (of the form X → Xb for some

b > 0) have been found to be useful for certain datasets. For example, Amaratunga and

Cabrera (2001b,a) use a square root transformation: X →
√
X, (Tusher et al., 2001)

uses a cube root transformation: X → X1/3. But the log transformation is the most

widely used.

Thus, through multiple-stage procedures of experiment, image acquisition, a few inter-

mediate steps for normalization, background correction, etc., and finally the log trans-

formation, we obtain a matrix of the log- intensities of the gene expression levels of the

form

X =


X11 X12 · · · X1n

X21 X22 · · · X2n

· · · · · · · · ·
Xm1 Xm2 · · · Xmn

 ,
where element Xij denotes the j-th expression level of the i-th gene.

1.4 Dependence between gene expressions

One of the issues that should be addressed in the analysis of the gene expression data is

the dependence structure of the gene expressions. A comprehensive study of the diverse

dependence structures of the gene expressions was designed by Klebanov and Yakovlev

(2007). By analyzing various data sets, they observed that the average of the correlation

coefficients, calculated over all gene pairs, varies from 0.84 to 0.97.

A type of the correlation structure of the microarray data that they studied can be

considered as a long-ranged property of the correlations, meaning that a particular gene
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may have very high correlation coefficients with a vast majority of other genes. In a

typical example by a particular gene IPF1 in PCMIT that encodes a transcription factor

involved in regulation of transcription and morphogenesis, they showed that the mean

value of the correlation coefficient is 0.78, while the corresponding standard deviation

is equal to 0.16. Such long-range strong correlations prevail in a huge proportion of

randomly selected genes. They state that to make the analysis of correlations tractable,

it is important to identify patterns of stable correlation and patterns that are either

universal or specific to the phenotype under study.

In another paper by Klebanov, Jordan and Yakovlev Klebanov et al. (2006b), a special

type of stochastic dependence between expression levels in pairs of genes is described.

A modulation-like unidirectional dependence between expression signals was studied

in three large sets of microarray data on childhood leukemia. Later on, this type of

dependence was confirmed by a similar analysis of some other data sets. This type

of dependence in (Klebanov et al., 2006b) is termed as the type A dependence. A

distinctive feature of this type of dependence is that the expression of a “gene-modulator”

is stochastically proportional to that of a “gene-driver”. A formal definition of type A

dependence can be described as follows. Let gx and gy be two given pair of genes, and

let random variables X and Y represent their respective expression levels. A pair of

genes (gx, gy) is said to be type A, if X and Y satisfy the condition

Y = XZ, (1.1)

where Z is a positive random variable, stochastically independent of X. In this case,

gx is called a driver and gy a modulator. Introducing this terminology is reasoned by

non-symmetrical roles of gxand gy in a type A pair. If (1.1) is true, the random variables

Y and 1/Z are no longer independent; this is precisely what makes the type A stochastic

dependence so special. All other stochastic dependencies in gene pairs are classified as

type B dependence. Log-transforming of the expression (1.1) gives

y = x+ z, (1.2)

where x = logX, y = log Y and z = logZ. A necessary condition for the type A

dependence is

V ar(x) = Cov(x, y). (1.3)

This is a sufficient condition under joint normality of (x, y). Since V ar(x) < V ar(y) in

each type A pair genes, then from (1.2) it follows that the type A dependence induces

an ordering of the random variables x and y in terms of their variances.

The presence of a multiplicative technical noise is the main concern in the studies of the

correlation structure of microarray data that can induce spurious correlations.

Another interesting phenomenon has been discovered by Klebanov, Jordan and Yakovlev

(Klebanov et al., 2006b) in triples of the gene expressions. The between-gene correla-

tions are overwhelmingly positive. An essential part of strong positive correlations is

contributed by type A dependence in numerous gene pairs. If we consider a triple of
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genes formed by two type A pairs, we observe that the vector of expressions with ar-

ranged variances in increasing order is of the form (x, x + z1, x + z1 + z2), where z1 is

independent of x and z2 is independent of x + z1. Therefore, it follows the following

relationship

Cov(x, z2) = −Cov(z1, z2). (1.4)

This shows that the covariance between the increments z1 and z2 is expected to be

negative whenever Cov(x, z2) > 0. How frequently the latter condition is met can be

assessed only with real data.

In many studies of microarray data, authors use some independence assumptions across

genes. Such assumptions can result in convenient mathematical forms, simplify the ques-

tion under the study, for example, estimating the proportion of equivalently expressed

genes (Benjamini and Hochberg, 1995; Storey, 2002; Nettleton et al., 2006). However, as

mentioned above, there exist strong correlations between gene expression. This is from

one side. From another side, genes are related to each other intricately through regula-

tory networks (Altman and Raychaudhuri, 2001; Wyrick and Young, 2003), resulting in

correlations between measured expressions.

1.5 The idea of using many genes

In the previous section, the issue of dependence between gene expressions, the existence

of diverse correlations structures in the gene expression data was explained. Another

issue that adds more burden while analyzing gene expression data is the number of

observations. Samples of the gene expression data are usually small, ranging from 5

to 20, only in some cases around 100. Since the number of genes themselves is large

enough, we can hope to take advantage of it.

Before discussing the sample size, we continue with the issue of dependence of the gene

expressions. If there was not dependence between gene expressions, then dealing with

them would be easier and the analysis of the mciroarray data as a whole could probably

be conducted in a more simplified form. For example, knowing that the k-th gene does

not depend on any other gene or there is not any type of correlations between the k-

th and all other measured expression levels, we could consider n observations for the

k-th gene as a one-dimensional sample of size n. But as demonstrated above, strong

correlation has been evidenced by many research papers. Thus, by now the question

should not be about dependence but rather how to deal with inter-gene dependence.

We refer again to the paper by Klebanov and Yakovlev (2007), where they introduced

“a structure yielding near-independent random variables”. The idea of this structure

consists of pooling gene expression levels (or associated test statistics) across genes in

such way that it will result in better procedures in the analysis of the gene expressions.

Originally, this idea was developed in Qiu et al. (2005) and Klebanov and Yakovlev

(2006) for selecting differentially expressed genes and the purpose was in some way to

compensate the small sample size due to a large number of genes. The authors of these
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papers relied on the fact that the number of genes m is very large, so that the effective

sample size can be increased and the asymptotics in the sample size n can be replaced

by the asymptotics in the number of genes m. If gene expression data or some statistics

derived from them were independent, then this idea would work well even with small

samples. But as stated in Klebanov and Yakovlev (2007), the actual correlation structure

of the gene expressions stands in the way of pooling across genes.

If genes are ordered by increasing variances (each gene is assigned a number from i = 1

through i = m, where i = 1 corresponds to a gene with the minimal variance, while

i = m corresponds to a gene with the maximal variance), then the pairwise correlations

in such ordered sequences are very high. For example, for the genes with even numbers

in all estimated pairwise correlation coefficients between their expression levels, strong

positive correlations will prevail. The mean value of these correlation coefficients is 0.942

with the corresponding standard deviation being equal to 0.036.

The situation changes radically if one constructs the sequence of increments δi = x2i −
x2i−1 between log-expression levels of the 2i-th and the (2i − 1)-th gene (i = 1, . . . ,m)

in the above-defined ordering of genes. This specific sequence δi, henceforth termed the

δ-sequence, generates near-independent random variables.

In our work we use the δ-sequence. As in the paper by Klebanov and Yakovlev (2007),

we first arrange gene expressions by increasing variance and then take the differences of

the two neighborhood genes. Due to weak dependence, δ-sequences are considered as

independent random variables. Then, for the data of each separate gene expression, we

will have a (one-dimensional) sample of the same size as that of the original data set of

the gene expression levels. But due to pairing, the number of samples (genes) will be

[m/2], where m is the number of the expressed genes, [a] denotes the integer part of a.

Histograms of correlation coefficients of the gene expressions and corresponding δ-sequences

are shown in Figure 1.2. The Figure 1.2 compares the sample of correlation coefficients

between log-expression levels with those observed in pairs of the δ sequences. While in

the former case the histogram of correlation coefficients is shifted to the right (Figure

1.2a), it becomes symmetric around zero with the increments, δ sequences (Figure 1.2b).

Similar properties of the δ-sequences versus gene log-expressions have been confirmed

for both data sets HYPERDIP and TELL.

1.5.0.2 Human genome

Since this thesis deals with data of gene expressions obtained from human tissues (pa-

tients with leukemia), we will give a short overview of the human genome.

Eukaryote is an organism composed of one or more cells that have a distinct nucleus. It

is a member of one of the three main divisions of the living world, the other two being

bacteria and archaea (Alberts et al., 2015). The human organism, like many other beings

such as animals, plants, etc., belongs to eukaryotes, whose cells contain a nucleus and

other organelles enclosed within membranes. Most eukaryotic organisms have billions of
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Figure 1.2: Histogram of correlation coefficients formed by all pairs of 1000 ran-
domly chosen gene expressions from HYPERDIP data set; (a) is the histogram of the
correlation coefficients, calculated for all pairs of 2500 gene log-expressions; (b) is the
histogram of the corresponding δsequences. The mean value of the correlation coeffi-
cients for the log-expression is 0.929766 and for δ sequences this number is equals to
0.00116495. The corresponding minimal values for log expressions and δ-sequences are
0.182785 and -0.92003, respectively. Similar picture we observe for the TELL data set.

individual cells. Almost all of these cells contain the entire genome for that organism.

This genome carries complete hereditary information in the form of DNA.

The human genome consists of 23 pairs of chromosomes. Each chromosome is made

up of chains of DNA. In humans, there are about 27,000 genes. Some statistics of the

human genome are shown in Table 1.1 Alberts et al. (2015).

1.5.0.3 Data used in the thesis

In this thesis, two data sets of the gene expressions, called HYPERDIP and TEL data

sets for childhood leukemia are used. These data sets are accessible via the website

of St.Jude Chilren’s research hospital, http://www.stjude.org. These data sets were

processed by Affymetrix microarrays; both consist of expression levels of 7084 genes and

neither of them is normalized. HYPERDIP data set has 88 and TEL data 79 observations

(slides). Detailed information on processing can be found in supplementary materials of

Yeoh et al. (2002).
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Table 1.1: Some statistics of the human genome

Human Genome Statistics

DNA length 3.2× 109 nucleotide pairs a

Number of genes coding for proteins Approximately 21,000
Largest gene coding for protein 2.4× 106 nucleotide pairs
Mean size for protein-coding genes 27,000 nucleotide pairs
Smallest number of exons per gene 1
Largest number of exons per gene 178
Mean number of exons per gene 10.4
Largest exon size 17,106 nucleotide pairs
Mean exon size 145 nucleotide pairs
Number of noncoding RNA genes Approximately 9000 b

The number of pseudogenesc More than 20,000
Percentage of DNA sequence in exons
(protein-coding sequences) 1.5 %
Percentage of DNA in other highly
conserved sequencesd 3.5 %
Percentage of DNA in
high-copy-number repetitive elements Approximately 50 %

aThe sequence of 2.85 billion nucleotides is known precisely (error rate of only
about 1 in 100,000 nucleotides). The remaining DNA primarily consists of short se-
quences that are tandemly repeated many times over, with repeated numbers differing
from one individual to the next. These highly repetitive blocks are hard to sequence
accurately.

bThis number is only a very rough estimate.
cA pseudogene is a DNA sequence closely resembling that of a functional gene, but

containing numerous mutations that prevent its proper expression or function. Most
pseudogenes arise from duplication of a functional gene, followed by the accumulation
of damaging mutations in one copy.

dThese conserved functional regions include DNA encoding 5’ and 3’ UTRs (un-
translated regions of mRNA), DNA specifying structural and functional RNAs, and
DNA with conserved protein-binding sites.
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Reconstruction type of

distributions

2.1 Introduction

Having taken its origin from the problem of the large number of small samples with nui-

sance parameters, this chapter deals with the problem of reconstruction of the original (or

parent) distribution by the distribution of its maximal invariant statistic. The materials

for this chapter are based on results obtained by Linnik (1956), Zinger (1956), Kovalenko

(1958), Prokhorov (1965), Zinger and Linnik (1964), Zinger and Kagan (1976), Kagan

and Zinger (1977), Kakosyan et al. (1984).

2.2 Reconstruction the type of distributions

Fairly often in statistical practice, it becomes necessary to test a hypothesis concerning

whether or not a distribution belongs to a given family of distributions, by a number

of small samples. When testing this hypothesis, the parameters of the distribution,

in general, may change from sample to sample and therefore, for testing this type of

hypothesis one has to use statistics whose distributions, in a certain sense, eliminate

these parameters.

Thus, there arises an analytical problem of reconstruction of the original distribution

by the distribution of some statistic. In statistical literature there exists a considerable

number of papers and monographs devoted to the study of this problem. Among others,

one can mention Kagan et al. (1973), Galambos and Kotz (1978), Kakosyan et al. (1984),

in which enough detailed information and references are given. By using the concept of

intensively monotone operators in Kakosyan et al. (1984) a wide range of characterization

theorems are given, in particular, for the normal distribution.

23
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In general, the problem of reconstruction of the type of distribution can be formulated

as follows. Let x
(j)
1 , . . . , x

(j)
nj , j = 1, . . . ,m be m samples of sizes nj . The question is

how to verify that all samples belong to same type of distribution.

For the case when x
(j)
i , i = 1, . . . , nj , j = 1, . . . ,m belong to the normal distribution

with the mean aj and the variance σ2j , the values of aj and σ2j are considered as the

nuisance parameters. To eliminate them one considers the studentized differences

y
(j)
i =

x
(j)
i − x̄(j)

Sj
, S2

j =

nj∑
i=1

(x
(j)
i − x̄

(j))2, (2.1)

which under the null hypothesis that all samples belong to the normal type, are dis-

tributed uniformly on the unique sphere. A detailed study of the problem with nuisance

parameters is given in Linnik (1968).

The procedure of eliminating the nuisance parameters by applying the studentized dif-

ferences is referred to as the problem of large number of small samples. We begin with

the reconstruction of the additive type of distributions (see Kovalenko (1958); Prokhorov

(1965); Kagan et al. (1973)).

2.2.1 Reconstruction of the additive type

Definition 2.1. We say that a distribution belongs to the additive type if its density

is given by

p(x, θ) = p(x− θ), (2.2)

where θ ∈ R1 is a translation parameter.

Let X1, . . . , Xn be a sample from a distribution given by (2.2). Put

X̄ =
1

n

n∑
i=1

Xi

and consider a random vector

Y = (X1 − X̄, . . . , Xn−1 − X̄). (2.3)

Evidently, the distribution of the random vector Y does not depend on θ, that is, the

statistic Y eliminates it. A natural question which arises in this case is: to which extent

does the distribution of the statistic Y determine the distribution of the original sample?

Under some additional assumptions, by the distribution of the statistic Y one can deter-

mine the distribution of the original sample within a translation parameter (Kovalenko,

1958). More precisely, for n ≥ 3 distribution of Y determines the distribution of X1, or

in other words, the characteristic function

ϕ(t) =

∫ ∞
−∞

eitxp(x)dx
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up to a factor eiγt in the case when ϕ(t) 6= 0.

A counter-example was given, which shows that if ϕ(t) has zeros, then the reconstruc-

tion of the additive type is impossible. A more general result on reconstruction of the

complete type of distribution was obtained by Prokhorov Yu.V. It was proven that for

n ≥ 6, under some assumptions, the distribution of X may be reconstructed from the

distribution of Y up to location and scale parameters (Prokhorov, 1965).

In principle, as the statistics Y one can take any single-valued invertible function, for

example, n− 1- dimensional vector

Y′ = (X1 − X̄, . . . , Xn − X̄),

which is the maximal invariant statistic.

Statistic Y given by (2.3) eliminates the translation parameter, that is, the distribu-

tion of the random vector Y determines the additive type. Hence, to verify that two

distributions with densities p(x) and q(x) differ only by a translation parameter, one

can verify the coincidences of distributions of the statistics Y, induced by p(x) and q(x)

under some conditions. But, statistic Y is a vector of dimension n − 1 and verifying

coincidence of multivariate distributions is not an easy task. Therefore, it is desirable to

pass from statistic Y to some one-dimensional statistic, more preferably to some linear

one, since Y is a linear statistic.

2.2.2 Reconstruction of the multiplicative type

Definition 2.2. We say a distribution belongs to scale type if its density is given by

p(x, θ) =
1

θ
p
(x
θ

)
, (2.4)

where θ > 0.

This type can simply be reduced to the additive type by taking logarithm of the random

variables and changing parameters, where θ̃ = log θ will play the role of the translation

parameter in the additive type.

If X1, . . . , Xn is a sample of size n from a distribution function, defined by (2.4), then

distribution of the two-dimensional random variables

Yi = (log |X1| , signXi)

belongs to the additive type with the density

q(y, θ̃) = q(y1 − θ̃, y2),

where θ̃ = log θ.
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2.2.3 Reconstruction of the complete type

Definition 2.3. We say a distribution belongs to complete type if its density is given

by

p(x, θ) =
1

σ
p

(
x− a
σ

)
, (2.5)

where θ = (a, σ), a ∈ R1 and σ > 0.

For this type the maximal invariant statistic Y is a (n− 2)-dimensional vector

Y = (y1, . . . , yn),

where

yk =
xk − x̄
s

, s2 =
n∑
k=1

(xk − x̄)2, s > 0.

It is clear that
∑n

k=1 yk = 0 and
∑n

k=1 y
2
k = 1, that is, (y1, . . . , yn) belongs to n − 2-

dimensional sphere.

For n ≥ 6 Zinger and Kagan (1976), under less restrictive assumptions than in Prokhorov

(1965), gave sufficient conditions for reconstructing the complete type by the distribution

of the maximal invariant statistic.

2.3 Characterization of the normal density

In this section we give some characterization theorems of the normal density which will

be used in subsequent chapters.

2.3.1 Characterization theorem by A. A. Zinger

Let x1, x2, . . . , xn be independent and identical distributed (i.i.d) random variables. Con-

sider statistics

z1 =
x1 − x̄
S

, z2 =
x2 − x̄
S

, . . . , zn =
xn − x̄
S

, (2.6)

where

nx̄ = x1 + x2 + . . .+ xn, S2 =

n∑
i=1

(xi − x̄)2.

Then the random vector Z = (z1, z2, . . . , zn) is distributed on n− 2-dimensional sphere

Φn−2 =

(
z1 + z2 + . . .+ zn = 0

z21 + z22 + . . .+ z2n = 1

)
.

Clearly, the distribution of random variables x1, x2, . . . , xn defines the distribution of the

random vector Z. Moreover, if random variables x1, x2, . . . , xn have normal distribution,
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then the random vector Z is distributed uniformly on the sphere Φn−2. The inverse

problem was solved by Zinger A. A. for n ≥ 6.

The inverse problem, in general case, was set by A. N. Kolmogorov. Zinger solved it for

the case of normal density. Namely, the following theorem was proved by him.

Theorem 2.3.1 (Zinger (1956)). If the random vector Z has a uniform distribution on

the sphere Φn−2 and n ≥ 6, then random variables x1, x2, . . . , xn have normal distribu-

tion.

Formally, Zinger’s theorem may be obtained from Prokhorov’s theorem, but it was

obtained 3 years before, and by another method.

The characterization theorem by Zinger was significantly strengthened by (Zinger and

Linnik, 1964). It was shown that for the characterization of the normal density, unifor-

mity of the distribution of the statistics z1, . . . , zn on the entire sphere Φn−2 was not

necessary; it is sufficient if the density is the same for a finite set of points on the sphere.

Precisely, the following theorem was proved.

Theorem 2.3.2. Let X1, . . . , Xn be a sample from a one-dimensional distribution with

a continuous density f(x). If on the sphere Φn−2 could be found at least one triplet of

points y,y′,y′′ of the form

y = (y1, y2, y3, y4, y5, y6, y7, . . . , yn),

y′ = (y1, y2, y3, y1, y2, y3, y7, . . . , yn),

y′′ = (y4, y5, y6, y4, y5, y6, y7, . . . , yn)

such that

y1 + y2 + y3 = y4 + y5 + y6,

y21 + y22 + y23 = y24 + y25 + y26,

but

(y1, y2, y3) 6= (y4, y5, y6),

for which the density of the vector (y1, . . . , yn) on the sphere Φn−2 is the same, then the

distribution of the original sample is normal.

2.3.2 Characterization theorem by T. Sakata

Let (Xi1, Xi2, . . . , Xi2k), i = 1, . . . , n be a sequence of samples with size 2k, being inde-

pendently drawn from a population Πi with a continuous density function

1

σi
p

(
x− µi
σi

)
,

where p(.) is a symmetric density and −∞ < µi < +∞, σi > 0, (i = 1, . . . , n).
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Sakata studied the problem of reconstructing the common density p(.) where the un-

known parameters (µi, σi) may change from one population to another, and the sample

size, 2k, is so small that the estimate of the unknown parameters are not available with

enough accuracy. Therefore, he proposes a series of transformations to eliminate the

unknown parameters (µi, σi), which could be expressed as follows

Zj =
|Yj |√∑k
j=1 Y

2
j

, (2.7)

where Yj = X2j−1 −X2j , j = 1, . . . , k.

Theorem 2.3.3 (Sakata (1977b)). Let statistics Zj , j = 1, . . . , k are defined by (2.7).

1. If h(Z) is the density function of the statistic Z = (Z1, Z2, . . . , Zk), which takes

value on the set

Sk−1+ =


k∑
j=1

Z2
j = 1, Zj ≥ 0, j = 1, . . . , k

 ,

then

h(Z) = c

∫ ∞
0

sk/2−1f(
√
sZ1) . . . f(

√
sZk)ds, (2.8)

where f(.) is a convolution of p(.) and c is a constant.

2. If p(.) is the standard normal density, then the random variable Z = (Z1, Z2, . . . , Zk)

is uniformly distributed on Sk−1+ .

3. If the density of p(.) has a differentiable bounded convolution and for k ≥ 3 statistic

Z = (Z1, Z2, . . . , Zk) is uniformly distributed on Sk−1+ , then p(.) is the density of

standard normal distribution.

From (2.7) by using spherical coordinates

Y1 = ρ cosϕ1

Y2 = ρ sinϕ1 cosϕ2

Y3 = ρ sinϕ1 sinϕ2 cosϕ3

· · · · · · · · · · · ·
Yk−1 = ρ sinϕ1 · · · sinϕk−2 cosϕk−1
Yk = ρ sinϕ1 · · · sinϕk−2 sinϕk−1,

where

ρ ≥ 0, 0 ≤ ϕj ≤ π, j = 1, . . . , k − 2, 0 ≤ ϕk−1 ≤ 2π,

we obtain

ρZj = Yj , j = 1, . . . , k. (2.9)
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2.3.2.1 Case k = 2

Following a counter-example by Laha R. (Laha, 1958), where the quotient of two non-

normal random variables follows Cauchy distribution, one can show that the result

obtained by Sakata for k = 2 does not hold.

Let k = 2 and f(y1)f(y2) be the joint density of 2-dimensional random vector (Y1, Y2).

Then change to spherical coordinates gives

f(y1)f(y2)dy1dy2 = f(ρ cosϕ1)f(ρ sinϕ1)ρdρdϕ1

and the joint density of random variables Z1, Z2 would be∫ ∞
0

f(ρ cosϕ1)f(ρ sinϕ1)ρdρ.

Let ∫ ∞
0

f(ρ cosϕ1)f(ρ sinϕ1)ρdρ = c, (2.10)

where c is some constant.

Now the question is: does the function f(.) represent the density of the normal distri-

bution? Substitution r = ρ cosϕ1 in equation (2.10) gives∫ ∞
0

f(r)f(r tanϕ1)rdr = c cos2 ϕ1, (2.11)

or ∫ ∞
0

f(r)f(tr)rdr =
c

1 + t2
, (2.12)

where t = tanϕ1. Multiply both sides of (2.12) by ts and integrate with respect to t on

the interval (0,∞): ∫ ∞
0

∫ ∞
0

f(r)f(tr)rdrtsdt =

∫ ∞
0

c

1 + t2
tsdt. (2.13)

The inner integral ∫ ∞
0

f(tr)tsdt =
1

rs+1

∫ ∞
0

f(y)ysdy.

Then ∫ ∞
0

f(r)
1

rs
dr

∫ ∞
0

f(y)ysdy =

∫ ∞
0

c

1 + t2
tsdt. (2.14)

Expression

ϕ(s) =

∫ ∞
0

f(y)ysdy (2.15)

is the Mellin transform of the function f(x). Then

ϕ(−s)ϕ(s) = h(s), (2.16)
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where

h(s) = c

∫ ∞
0

ts

1 + t2
dt.

But ∫ ∞
0

xs

1 + x2
dx =

1

2
sec

πs

2
.

For the normal density

ϕ(s) = c2
s−1
2 Γ

(
1− s

2

)
and we will have

Γ

(
1 + s

2

)
Γ

(
1− s

2

)
=

(
Γ

(
1

2

))2 1

cos sπ2

Thus, for the density f(x), which is an even function we have

ϕ(s) =

∫ ∞
0

f(y)ysdy

and the equation

ϕ(s)ϕ(−s) = c
1

cos πs2
.

From the identity

Γ (1− z) Γ (z) =
π

sinπz

by changing variables as z = (1− s)/2 we obtain

Γ

(
1 + s

2

)
Γ

(
1− s

2

)
=

π

sin π(1−s)
2

.

If we denote ϕ(−s) = ψ(1−s2 ) and ϕ(s) = ψ(1+s2 ), we have

ψ

(
1− s

2

)
ψ

(
1 + s

2

)
=

c

cos πs2

and finally

g(1− z)g(z) =
π

sinπz
,

where z = (1−s)/2. But it is not necessary (Laha, 1958) for g(z) to be Gamma function.

From

cosx =

∞∏
n=1

(
1− x2

π2(n− 1/2)2

)
we get

cos
πs

2
=
∞∏
n=1

(
1− s2

(2n− 1)2

)
and

1

cos πs2
=

∞∏
n=1

1

1− s2

(2n−1)2
.
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and by different “regrouping” we get

ϕ(s)ϕ(−s) =

∞∏
n=1

1

1− s2

(2n−1)2
ϕ2(0),

keeping ϕ(s) as a Mellin transform.

Thus, one can make the following statement.

Theorem 2.3.4. For the case k = 2 the result obtained by Sakata is not true, that is,

there are non-normal random variables for which Z is uniformly distributed over the

sphere Φ1
+.

2.3.2.2 Case k = 3

In this case the characterization obtained by Sakata holds, and it allows one to test the

normality of the gene expression data. Of course, in view of this characterization, it is

enough to test the uniformity of the distribution of the vector Z on Φ2
+. To do this, we

use statistics, generated by N-distances, which will be discussed in the next chapter.



Chapter 3

Test of spherical uniformity

3.1 Introduction

Characterization theorems from chapter 2 allow one to replace normality test of the

original sample with the test of uniformity on the sphere of the transformed sample.

The transformed sample is just a measurable function of the observed random variables

or some statistic, and hence the uniformity test on the sphere could be explained in

terms of the distributions of such statistics.

Our approach for testing uniformity on the sphere is mainly based on the characterization

theorems. The test statistic that we use in this chapter is called N-distance statistic

for uniformity test on the hypersphere (Bakshaev, 2010) and is based on N-distances

(Zinger et al., 1989).

3.2 Statistics for uniformity test on the sphere

Since our approach is based on statistics derived from N-distances, we will give a few

necessary definitions and statements on N-distances from Klebanov (2005). We will use

the same notations as in Klebanov (2005).

3.2.1 N-distances

Let X be a non-empty set and L : X2 → C, where C is the complex plane.

Definition 3.2.1 (Negative definite kernel). We shall say that L is a negative definite

kernel if for any n ∈ N, arbitrary points x1, . . . , xn ∈ X and any complex numbers

c1, · · · , cn under the condition
∑n

j=1 cj = 0 the following inequality holds:

n∑
j=1

n∑
j=1

L(xi, xj) ≤ 0. (3.1)

32
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Definition 3.2.2 (Strictly negative definite kernel). We shall say that negative definite

kernel L is strictly negative definite if the equality in (3.1) is true for c1 = . . . = cn = 0

only.

Definition 3.2.3 (Strongly negative definite kernel). Let Q be a measure on (X,M)

and h be an integrable with respect to Q function such that∫
X
h(x)dQ(x) = 0.

We shall say that L is strongly negative definite kernel if it is negative definite and the

equality ∫
X

∫
X
L(x, y)h(x)h(y)dQ(x)dQ(y) = 0

implies that h(x) = 0 Q-almost everywhere for any measure Q.

For the case X = Rd as examples of strongly negative definite kernels one can mention

L(x, y) = ‖x− y‖α , 0 < α < 2,

L(x, y) =
‖x− y‖

1 + ‖x− y‖
,

L(x, y) = log(1 + ‖x− y‖2),

where ‖·‖ is the usual euclidean norm.

Let (X,M) be a measurable space and B be the set of all probability measures on it.

Suppose that L is a real continuous function and denote by BL the set of all probability

measures µ for which ∫
X

∫
X
L(x, y)dµ(x)dµ(y) < +∞.

Denote

N (µ, ν) = 2

∫
X

∫
X
L(x, y)dµ(x)dν(y)−

−
∫
X

∫
X
L(x, y)dµ(x)dµ(y)−

∫
X

∫
X
L(x, y)dν(x)dν(y),

where µ, ν ∈ BL.

Theorem 3.2.1. (Klebanov, 2005) Let L be a real continuous function on X2 under the

condition

L(x, y) = L(y, x), x, y ∈ X. (3.2)

Then the inequality

N (µ, ν) ≥ 0 (3.3)

holds for all µ, ν ∈ BL if and only if L is negative definite kernel. Inequality (3.3) holds

with equality in the case µ = ν only, if and only if L is strongly negative definite kernel.
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Theorem 3.2.2. (Klebanov, 2005) Let L be a real continuous function on X2 satisfying

L(x, y) = L(y, x), L(x, x) = 0, for all x, y ∈ X. (3.4)

Then

N = N 1/2(µ, ν)

is a distance on BL.

3.2.2 Statistics based on N-distances

Let X1, . . . , Xn be observations of the random variable X, where Xi ∈ Rd and ‖Xi‖ = 1,

i = 1, . . . , n. Suppose we test the hypothesis H0 that X has a uniform distribution on

the sphere Φd−1. Then for the kernel

L(x, y) = ‖x− y‖α , 0 < α < 2,

and d = 3 the statistic based on N-distance has a form

Tn = (2R)α
2n

α+ 2
− 1

n

n∑
i,j=1

‖Xi −Xj‖α , (3.5)

where R is radius of the sphere (Bakshaev, 2008).

The asymptotic distribution of Tn is defined as

3

4
Tn →

∞∑
k=1

a2kχ
2
2k+1, (3.6)

where χ2
2k+1 are independent chi-square random variables with 2k+1 degrees of freedom

and

a2k =
1

2

∫ π

0
(1− 3

2
sin

x

2
) sinxPk(cosx)dx, (3.7)

Pk(x) are Legendre polynomials.

Note that for d = 2 statistics of the type (3.5) and their asymptotic distributions similar

to (3.6) are also derived by Bakshaev (Bakshaev, 2008). But due to characterization

theorems which require a minimal sample size of 3, they cannot be used for the purposes

of testing spherical uniformity and hence normality. This is from one side. From the

other side, in principle, one can consider the uniformity test on the hypersphere of any

dimension greater than 3. But statistics of the form (3.5) are not available for d > 3.

Therefore, for spherical testing the best available option would be d = 3. For the case

d = 1, related results were published by Shokirov (Shokirov, 2007).

Results of the spherical uniformity test, which are related to this chapter were published

in Shokirov (2013a). Some other results which are applicable to gene expression data

are published in Shokirov (2012, 2013b). They are not included in this thesis.
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3.3 Application of the N-distance based test to gene ex-

pression data

3.3.1 Calculating statistic Tn and its p values

For testing uniformity on the sphere we use the kernel

L = ‖x− y‖ .

Then for d = 3 and R = 1 from (3.5) by using Sakata’s transformations (2.7) we obtain

Tn = n− 3

2n

n−1∑
i=1

n∑
j=i+1

‖Ai −Aj‖, (3.8)

where

Ai =

 z3i−2√
z23i−2 + z23i−1 + z23i

,
z3i−1√

z23i−2 + z23i−1 + z23i

,
z3i√

z23i−2 + z23i−1 + z23i


denotes the i-th raw of the matrix A = (aij), and

aij =
z3(i−1)+j√

z23i−2 + z23i−1 + z23i

, i = 1, . . . , n, j = 1, 2, 3.

Since

‖Ai −Aj‖2 =

 z3i−2√
z23i−2 + z23i−1 + z23i

− z3j−2√
z23j−2 + z23j−1 + z23j

2

+

+

 z3i−1√
z23i−2 + z23i−1 + z23i

− z3j−1√
z23j−2 + z23j + z23j

2

+

+

 z3i√
z23i−2 + z23i−1 + z23i

− z3j√
z23j−2 + z23j−1 + z23j

2

=

= 2

1− z3i−2z3j−2 + z3i−1z3j−1 + z3iz3j√
z23i−2 + z23i−1 + z23i

√
z23j−2 + z23j−1 + z23j

 =

= 2 [1− (ai1aj1 + ai2aj2 + ai3aj3)] ,

then the statistic Tn could expressed in the form

Tn = n− 3√
2n

n−1∑
i=1

n∑
j=i+1

√
1− (ai1aj1 + ai2aj2 + ai3aj3). (3.9)
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Calculating Tn by (3.9) is more efficient than by (3.8). Therefore, when testing unifor-

mity we take advantage of it in calculations.

To calculate p-values of Tn, first by equation (3.7) we obtain a series of coefficients

a2k, k = 1, . . .. Since in (3.6) χ2
2k+1 are independent chi-square random variables with

the characteristic function

f(t) = (1− 2it)−
2k+1

2 ,

then for some finite n and every a2k, k = 1, 2, . . . , n from (3.6) we obtain

fn(t) =
n∏
k=1

(1− 2ia2kt)
− 2k+1

2 .

Then distribution of Tn would be

FT (x) =
1

2π

∫ ∞
−∞

fn(t)
e−itx

it
dt.

From this equation for large values of Tn we obtain p-values as

p = 1− FT (x) = P {Tn > x} . (3.10)

3.3.2 Uniformity test of the gene expression data on the sphere

Let m be the number of the gene expression levels and n the sample size for each

gene expression. Then the matrix X = (Xij), i = 1, . . . , n, j = 1, . . . ,m denotes n

observations of m gene expression levels; element Xij denotes the i-th observed level of

the j-th gene. We proceed with the spherical uniformity test in the following way:

• Order columns of the matrix X by increasing variance;

• From matrix X construct matrix Y = (Yij), i = 1, . . . , n, j = 1, . . . , k, k = [m/2],

where Yij = Xi2j −Xi,2j−1 (δ-sequences);

• Construct matrix Z, where Zij = Y2i−1j − Y2i,j , i = 1, . . . , s, s = n/2, j = 1, . . . , k

(symmetrization). If n is an odd number then skip the last observation;

• Construct matrix Ul×k with dimensions l × k, where l = 3[s/3] in the following

way. Here and afterward, unless otherwise specified, [a] denotes the integer part

of the number a.

– For i = 1, . . . , s, take the i-th column of the matrix Z and split its elements

by groups of three elements;

– Normalize each group of three elements (Sakata’s transformations);

– Merge all groups of three elements and save it as the i-th row of the matrix

U;

• Merge all columns of the matrix U to obtain a sample of size l × k;
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• Split obtained in the previous step sample of the size l × k by groups of three

elements;

• Calculate T statistics as in (3.9) and its p-values according to (3.10) to verify

uniformity on sphere Φ2
+.

3.3.2.1 Results by testing uniformity on the sphere

Table 3.1: Results of spherical uniformity test

Size of random sample p-value of the T statistic

100 0.565657
200 0.358586
300 0.526936
400 0.850168
500 0.250842
1000 0.181818
2000 0.111111
5000 0.076835
10000 0.011121

As seen from the Table 3.1, p-values calculated by the random samples of the sizes less

than 5000 are relatively high. Therefore, we cannot reject uniformity of the transformed,

hence the normality of the original data. The more we increase the size of the randomly

chosen sample, the smaller p-values we obtain. For samples of size greater than 10000

p-values are very small (close to zero). This means that for samples of sizes greater than

10000 we reject the normality. In any case, we cannot make a definite statement regard-

ing rejection or acceptance of the hypothesis that gene expression data are normally

distributed.

3.3.3 Modifications of the uniformity test on the sphere

If random variables X and Y follow normal distribution with mean µ and the variance

σ2, then the difference X − Y has normal distribution with zero mean and the variance

2σ2. Due to this fact we can, to some extent, modify the above-mentioned testing

procedure for spherical uniformity.

When testing the uniformity of the gene expression data on the sphere we proceed with

the assumption that the original data are from normal distribution, without specifying

parameters, and due to transformations by Sakata they should follow standard normal

distribution. As we mentioned above, we do not test normality of the gene expression

data themselves but the differences of their two neighborhood expression levels, that is,

the δ-sequences, calculated after ordering gene expressions by increasing variance. Here

also we deal with δ-sequences.

Thus, if Xij , the i-th observed level of the j-th gene (i = 1, . . . , n, j = 1, . . . ,m), is an

observation that follows the normal law with the mean µ and the variance σ2, then the
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δ-sequences Yij = X2ij − X2i−1,j , i = 1, . . . , s, (s = [n/2]), j = 1, . . . ,m should follow

normal with zero mean and the variance 2σ2. A non-standard normal distribution

(including one with zero mean) could be transformed into standard normal. Therefore,

we proceed with the test of normality (or the same uniformity test on the sphere)

by transformation of the original gene expression data into assumed standard normal.

Below, we give an algorithm for this type of testing.

3.3.3.1 Algorithm 1

Here and below we consider each column of the matrix X as a vector (of dimension 88).

1. Order columns of the matrix X by increasing variance;

2. Take 2k vectors (corresponding to 2k columns of the matrixX) Xj = {X1j , . . . Xnj},
j = 1, . . . , 2k, where 1 ≤ k ≤ 3542 = [m/2] and n = 88.

3. Construct k vectors Y j = {Y1j , . . . , Ynj}, where Yij = Xi,2j−Xi,2j−1, i = 1, . . . , n,

j = 1, . . . , k;

4. Construct k vectors Zj = {Z1j , . . . , Zsj}, where Zij = Y2i,j − Y2i−1,j , i = 1, . . . , s,

s = [n/2], j = 1, . . . , k;

5. Estimate the covariance matrix

Σ =


Sz1z1 Sz1z2 . . . Sz1zs
Sz2z1 Sz2z2 . . . Sy2zs
. . . . . . . . . . . .

Szsz1 Szsz2 . . . Szszs

 ,

where Szizj = Szjzi and

Szizj =
1

s− 1

s∑
i=1

(Zi − 1

s

s∑
i=1

Zi

)Zj − 1

s

s∑
j=1

Zj

 .
6. Take the l-th coordinate of vectors Zj , j = 1, . . . , k, construct k-dimensional vec-

tors {Zl1, . . . , Zlk} for all l = 1, . . . , s and transform them into k-dimensional

vectors {Ul1, . . . , Ulk}, l = 1, . . . , s by

{Ul1, . . . , Ulk} = Σ−1/2 {Zl1, . . . , Zlk} , l = 1, . . . , s.

7. From the first, second, etc. k-th coordinates of the vectors {Ul1, . . . , Ulk}, l =

1, . . . , s construct s-dimensional vectors U j = {U1j , . . . , Usj}, j = 1, . . . , k.

8. Merging vectors U1, . . . ,Uk obtain vector V = {V1, . . . , Vsk} of dimension s × k,

where Vj = U1j , Vk+j = U2j , V2s+j = U3j , . . . , V(s−1)k+j = Usj for j = 1, . . . , k.
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9. Split vector V by groups of three elements, normalize them: divide each group by

its norm and obtain the matrix A = (aij)M×3, where

aij =
V3(i−1)+j√

(V3i−2)
2 + (V3i−1)

2 + (V3i)
2
, i = 1, . . . ,M = [sk/3], j = 1, 2, 3.

10. Calculate T statistics by (3.9) and its p-values according to (3.10) to verify uni-

formity on sphere Φ2
+ and normality of the original data.

The results of the test by this Algorithm are shown in the Table 3.2.

3.3.3.2 Results of uniformity test by Algorithm 1

Table 3.2: The results of uniformity test by Algorithm 1

Sample size (k) p-value of the T -statistic

102 (7) 0.498316
205 (14) 0.525253
308 (21) 0.469697
498 (34) 0.621212
601 (41) 0.052187
997 (68) 0.005051

2009 (137) 0.001818
5001 (231) 0.000168

As seen from Table 3.2, p-values obtained by Algorithm 1 have some similarities and

some dissimilarities with those in the previous testing procedure: they are relatively

large for small samples and smaller for larger samples. But in contrast to previous

testing procedure we do not observe a decreasing pattern of p-values for samples of

small sizes. Even so they are smaller and smaller as the sample size increases. So as

in the case of the previous testing procedure, we cannot reject uniformity transformed

data on the sphere for smaller samples and hence the normality of the original data. For

large samples we reject uniformity on the sphere, hence the normality of the δ-sequences

of the gene expression data.

Remark 3.3.1. 1. This testing procedure allows one to conduct a uniformity test for

any 2k (randomly) chosen number of gene expressions from k = 1 to k = 3542;

k = 1 corresponds to 2 columns of the matrix X (or 2 gene expressions and k =

3542 corresponds to complete number of genes expressions, 7084.

2. If we randomly choose 2k-vectors (k = 1, 2, . . . , 3542), then we have samples of

sizes 14, 29, 44, . . . , 51949 of the transformed spherical data. Due to taking integer

parts of the numbers of columns and rows of the matrix X, these numbers do not

exactly match the corresponding sample sizes in the previous testing procedure.
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3.3.3.3 Observations on the the sphere

Figure 3.1 shows a visualization of observations on the three-dimensional sphere. Each

observation is a vector of unit length.
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(a) Sample size 2000
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Figure 3.1: This is a visualization of a subset of the transformed observations on
the unit sphere. Each observation is a three-dimensional vector u = (x, y, z), which
corresponds to a point on the sphere. These observations are obtained by Sakata trans-
formations from HYPERDIP data-set according to the testing procedure for normality
test. 3.1 (a) consists of 2000 three-dimensional observations and 3.1(b) of 1000 such

observations.



Chapter 4

One-dimensional test and the

distribution of its statistic

4.1 Introduction

Following the principle of the reconstruction for the complete type of distributions by

the studentized differences, in this chapter we prove a characterization theorem for the

normal distribution. Based on that, we use Kolmogorov’s statistic to test the normality

of the gene expression data.

We extend the characterization theorem of the normal distribution for the reconstruction

of the complete type of distributions by the distribution of a nonlinear statistic. Based

on this theorem, we test whether the two samples of the gene expression data belong

to the same type of distributions. For this purpose, we apply Kolmogorov-Smirnov’s

two-sample test statistic.

4.2 The U test

Let X1, . . . , Xn be a sample of size n ≥ 9. Construct the following linear forms:

L = X1 −
1

2
X2 −

1

2
X3, (4.1)

L0 = X4 −
1

2
X5 −

1

2
X6, (4.2)

L1 = X7 −
1

2
X8 −

1

2
X9. (4.3)

41
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It is clear that if the random variables X1, . . . , Xn have normal distribution with the

mean µ and variance σ2, then the linear forms L, L0 and L1 will have normal distribution

with zero mean and the variance 3
2σ

2.

Consider the statistic

U =
L√
|L0L1|

. (4.4)

The distribution of the statistic U is expressed in terms of the Meijer G-function, which

will be defined below.

4.2.1 The Meijer G-function

The G-function was introduced by C. S. Meijer (Meijer, 1936) as a very general function

intended to include most of the known special functions as particular cases. The first

definition was given by using a series (see also Meijer (1940, 1941a,b). Today’s definition,

which is more general, is represented via a line (curve or contour) integral in the complex

plane, introduced in its full generality by Arthur Erdélyi in 1953 (Bateman and Erdélyi,

1953). This or definition of the Meijer G-function can be found in many sources, for

example, Mathai and Saxena (1973); Prudnikov et al. (1990); Gradshteyn and Ryzhik

(2000, 2007).

According to Erdélyi the Meijer G-function is defined as

Gm,np,q

(
z

∣∣∣∣∣ ab
)

= Gm,np,q

(
z

∣∣∣∣∣ a1, . . . , apb1, . . . , bq

)
=

=
1

2πi

∫
γ

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=m+1 Γ(aj − s)
∏p
j=n+1 Γ(1− bj + s)

zsds

(4.5)

where the empty product is interpreted as 1, 0 ≤ m ≤ q, 0 ≤ n ≤ p, m,n, p and q are

integer numbers, and the parameters are such that no pole of any Γ(bj − s), j = 1, . . .m

coincides with any pole of any Γ(1 − ak + s), k = 1, . . . , n; this assumption could be

written as ak − bj 6= 1, 2, 3, . . . for k = 1, 2, . . . , n and j = 1, 2, . . . ,m, and

Γ(t) =

∫ ∞
0

zt−1e−zdz

is the Euler’s Gamma function.

Three types of integration paths γ in the right member of (4.5) can be exhibited:

1. The path γ runs from−i∞ to +i∞ such that all poles of the functions Γ(bj−s), j =

1, 2, . . . ,m, lie to the right, and all poles of the functions Γ(1 − ak + s), k =

1, 2, . . . , n lie to the left of the path γ. In this case the conditions under which the

integral on the right side of equation (4.5) converges are of the form

p+ q < 2(m+ n), |arg(z)| < (m+ n− 1

2
p− 1

2
q)π.
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2. The path γ is a loop, beginning and ending at +∞ that encircles the poles of the

functions Γ(bj − s) (for j = 1, 2, . . . ,m) once in the negative direction. All the

poles of the functions Γ(1−ak+s) (for k = 1, 2, . . . , n) must stay outside the loop.

Then, under which the integral on the right side of equation (4.5) converges are:

q ≥ 1 and either p < q or p = q and |z| < 1.

3. The path γ is a loop, beginning and ending at −∞, that encircles the poles of the

functions Γ(1 − ak + s) for k = 1, 2, . . . , n) once in the positive direction. All the

poles of the functions Γ(bj − s) for j = 1, 2, . . . ,m must remain outside the loop.

The conditions under which the integral (4.5) converges are

p ≥ 1 either p > q or p = q and |z| > 1.

It is assumed that the values of the parameters and the variable z are such that at

least one of these three definitions makes sense. In cases where more than one of the

definitions make sense, they lead to the same result.

The function Gm,np,q

(
z

∣∣∣∣∣ ab
)

is analytic with respect to z; it is symmetric with re-

spect to the parameters a1, . . . , an and also with respect to an+1, . . . , ap, b1, . . . , bm and

bm+1, . . . , bp.

One of the properties of the G-function that we use later is the following: The G-

function with p > q can be transformed into the G-function with p < q by means of the

relationships:

Gm,np,q

(
z−1

∣∣∣∣∣ a1, . . . , apb1, . . . , bq

)
= Gm,np,q

(
z

∣∣∣∣∣ 1− a1, . . . , 1− ap
1− b1, . . . , 1− bq

)
(4.6)

4.2.2 A characterization theorem of the normal distribution

By taking logarithm of both sides of the equation (4.4) we obtain

Ly = Y1 −
1

2
Y2 −

1

2
Y3, (4.7)

where Ly = ln |U |, Y1 = ln |L|, Y2 = ln |L0| and Y3 = ln |L1|. Ly is a linear form,

similar to L and its distribution determines the distribution of Y1 to within a location

parameter if it has an analytic ch.f. on some stripe around real axis. We show that it

also determines the distribution of X1 to within a scale parameter.

To prove the characterization of the normal density, we need the following statement.

Lemma 4.2.1. Characteristic functions of the random variables Y1, Y2 and Y3 are an-

alytic functions of the real variable t.
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Proof. Since Y1, Y2 and Y3 are identically distributed, it is enough to show that ch. f.

of the random variable Y1 is an analytic function. Let us denote by fY1(t) the ch. f. of

the r. v. Y1. Then

fY1(t) = E
[
eitY1

]
= E

[
eit ln |L|

]
=

= E

[
|L|it

]
=

∫ ∞
−∞
|x|itϕL(x)dx,

where

ϕL(x) =
1

σ
√

3π
e−

x2

3σ2

is the density function of the r. v. L.

Since ϕL(x) is an even function, then

fY1(t) = 2

∫ ∞
0

xitϕL(x)dx =
2

σ
√

3π

∫ ∞
0

xite−
x2

3σ2 dx. (4.8)

It is well-known (see, for example, Gradshteyn and Ryzhik (2007, 1130-1132)) that for

s ∈ C such that <(s) > 0 the following holds∫ ∞
0

xs−1e−x
2
dx =

1

2
Γ
(s

2

)
. (4.9)

Equation (4.9) is the Mellin transform of the function e−x
2
, the normal density, where

Γ (s) =

∫ ∞
0

xs−1e−xdx

denotes the Euler’s Gamma function.

By using equation (4.9) from (4.8) we obtain

fY1(t) =
(σ
√

3)it√
π

Γ

(
1 + it

2

)
. (4.10)

Since fY1(t) is expressed in terms of gamma-function and gamma-function is meromor-

phic, hence fY1(t) is an analytic function of t in some strip around real axis.

Theorem 4.2.1 (A characterization theorem of the normal density). Let X1, . . . , Xn

(n ≥ 9) be a sample from a population with the normal density with mean µ and the

variance σ2. Consider the linear forms

L = X1 −
1

2
X2 −

1

2
X3 (4.11)

and

Ly = Y1 −
1

2
Y2 −

1

2
Y3, (4.12)

where Ly = ln |U |, Y1 = ln |L|, Y2 = ln |L0| and Y3 = ln |L1|. Then the distribution of

the linear forms L and Ly determine the normal distribution to within a location and a

scale parameter, respectively.
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Proof. We first show that the distribution of the linear form L determines the distribu-

tion of X1 to within a location parameter. This means that if

L̃ = X̃1 −
1

2
X̃2 −

1

2
X̃3,

where X̃1, X̃2, X̃3 are independent and identically distributed random variables, is an-

other linear form which is identically distributed with the linear form L, then its dis-

tribution differs from the distribution of L to within a location parameter. Since L is

distributed normally, then L̃ should have a normal distribution as well. Hence, as it fol-

lows from Cramer’s theorem (Cramér, 1936), random variables X̃1, X̃2, X̃3 have normal

distribution too. Let random variables X̃1, X̃2 and X̃3 have normal distribution with

the mean µ̃ and variance σ̃2. Then the linear form L̃ has the normal distribution with

zero mean and the variance 3σ̃2/2.

If we denote by fL(t) and f
L̃

(t) the characteristic functions of the linear forms L and L̃,

respectively, then

fL(t) = f(t)f2
(
− t

2

)
= exp

(
−3σ2

4
t2
)

and

f
L̃

(t) = f̃(t)f̃2
(
− t

2

)
= exp

(
−3σ̃2

4
t2
)
,

where f(t) and f̃(t) are characteristic functions of the random variables X1 and X̃1,

respectively. Since both linear forms have normal distribution with zero mean, then

from the last two equations it follows that σ = σ̃.

Now we show that distribution of the linear form Ly determines distribution of the r. v.

X1 to within a scale parameter. As before, let

Lz = Z1 −
1

2
Z2 −

1

2
Z3, (4.13)

where Z1, Z2 and Z3 are independent and identically distributed random variables, be

another linear form, identically distributed with the linear form Ly. Since distributions

of the linear forms Ly and Lz are different from normal distribution, we cannot apply

Cramer’s theorem as we did in the case with the linear form L.

Let f(t) be a ch. f. of the r. v. Y1 and g(t) be a ch. f. of the r. v. Z1. Then the ch. f.

of the linear forms Ly and Lz are

fLy(t) = f(t)f2(−t/2)

and

fLz(t) = g(t)g2(−t/2),

respectively, and the condition of identically distributed linear forms Ly and Lz is

f(t)f2(−t/2) = g(t)g2(−t/2). (4.14)
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Characteristic function fLy(t) is a real analytic function and, from Raikov’s theorem

on analytic characteristic functions (see, for example, Ramachandran (1967); Lukacs

(1970); Linnik and Ostrovskii (1977)), it follows that its components, f(t) and f(−t/2),

are analytic functions as well. From equation (4.14) it follows that the ch. f. g(t) should

have the same strip of analyticity as f(t). Since f(t) is a ch.f., then f(0) = 1. From this

follows that f(t) 6= 0 for |t| < δ for some δ > 0. Then we can consider log f(t) for |t| < δ.

Since log f(t) is a multivalued function, we consider the branch where f(t) is different

from zero. The same can be said about the ch.f. g(t), that is, g(t) 6= 0 for |t| < ρ for

some ρ > 0 and we consider that branch of log g(t) where g(t) 6= 0.

Then from equation (4.14) we have

ϕ(t) + 2ϕ(−t/2) = ψ(t) + 2ψ(−t/2), ϕ(0) = ψ(0) = 0. (4.15)

where ϕ(t) = log f(t) and ψ(t) = log g(t), for |t| < min {δ, ρ}.

Since characteristic functions f(t) and g(t) are expressed in terms of gamma-function and

gamma-function is a meromorphic function, then f(t) and g(t) are analytic functions,

and as it follows from Lemma 4.2.1 they have finite derivatives of all orders at the point

t = 0. By taking derivatives of the k-th (k = 1, 2, . . .) order from both sides of the

equation (4.15) at t = 0, we have(
1 + 2(−1)k

1

2k

)
ϕ(k)(0) =

(
1 + 2(−1)k

1

2k

)
ψ(k)(0). (4.16)

From (4.16) it follows that for {t : |t| < min {δ, ρ}} and k = 1 ϕ′(0) and ψ′(0) can be

any numbers but for k > 1

ϕ(k)(0) = ψ(k)(0).

In particular, k = 2 we have

ϕ′′(0) = ψ′′(0), |t| < min {δ, ρ} . (4.17)

Form equation (4.17) it follows that

ψ(t) = bt+ ϕ(t)

for some constant b and

g(t) = ebtf(t) (4.18)

for real t.

For the characteristic functions f(t) and g(t) we have |f(t)| ≤ 1 and |g(t)| ≤ 1. Since

g(−t) = g(t)

and

f(−t) = f(t),
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then from the equation (4.18) it follows that b = iθ, where θ ∈ R1 and i is the imaginary

unit. So we have

g(t) = eiθtf(t). (4.19)

Equation (4.19) shows that the d.f. of the r.v. Y1 differs from the d.f. of the r.v. Z1

only to within a location parameter and the logarithm shows that it differs from the

distribution of the r v. X1 only to within a scale parameter.

Theorem 4.2.2. Let X1, . . . , Xn, n ≥ 9 be a sample from normal distribution with the

mean µ and the variance σ2 and let r. v. U be defined as in (4.4). Then U has the d. f.

FU (x) =
1

2
+

1

23/2π4x2
G5, 4

5, 5

(
4

x4

∣∣∣∣∣ −1
4 ,−

1
4 ,

1
4 ,

1
4 ,

1
2

−1
2 ,−

1
4 , 0, 0,

1
4

)
(4.20)

and the characteristic function

ϕU (t) =
t2

16π7/2
G6,2

2,6

(
t4

64

∣∣∣∣∣ −1
4 ,

1
4

−1
2 , −

1
4 , 0, 0, 0, 1

4

)
, (4.21)

where

Gm,np,q

(
x

∣∣∣∣∣ ab
)

= Gm,np,q

(
x

∣∣∣∣∣ a1, . . . , apb1, . . . , bq

)

is the Meijer G-function.

Proof. As before, let f(t) be a ch. f. of the r. v. Y1. Then the ch. f. fLy(t) of the linear

form Ly is

fLy(t) = f(t)f2(−t/2).

As it was shown in the proof of Lemma 4.2.1, the characteristic function of the random

variables Y1 is

f(t) =

(√
3σ
)it

√
π

Γ

(
1 + it

2

)
. (4.22)

Then

fLy(t) =
1

π3/2
Γ

(
1 + it

2

)[
Γ

(
2− it

4

)]2
(4.23)

is the ch.f. of the liner form Ly.

By the inverse Fourier transform from (4.23) we obtain the density function of Ly:

ϕLy(x) =
1

2π

1

π3/2

∫ ∞
−∞

e−itxΓ

(
1 + it

2

)[
Γ

(
2− it

4

)]2
dt. (4.24)
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By change of variable s = it we have

ϕLy(x) =
1

2πi

1

π3/2

∫ i∞

−i∞
e−sxΓ

(
1 + s

2

)[
Γ

(
2− s

4

)]2
ds. (4.25)

Since Ly = ln |U |, then the density of the r. v. U would be

ϕU (x) =
1

2πi

1

π3/2

∫ i∞

−i∞
x−(s+1)Γ

(
1 + s

2

)[
Γ

(
2− s

4

)]2
ds, (4.26)

or by replacing s+ 1 to s,

ϕU (x) =
1

2πi

1

π3/2

∫ i∞

−i∞
x−sΓ

(s
2

)[
Γ

(
3− s

4

)]2
ds, (4.27)

which represents the inverse Mellin transform of the moment generating function of the

r. v. Ly. By the change of variable from s to 4s in (4.27) and using the property of the

gamma-function,

Γ(nx) = (2π)
1−n
2 nnx−

1
2

n−1∏
k=0

Γ

(
x+

k

n

)
,

after some manipulations, we obtain

ϕU (x) =
1

2πi

2

π3/2

∫ i∞

−i∞

(
4

x4

)−s
Γ (s) Γ

(
s+

1

2

)[
Γ

(
3

4
− s
)]2

ds. (4.28)

Equation (4.28) represents the density function of the r.v. U and it is the Mellin trans-

form, which could be represented as the Meijer G-function. From this equation by

calculating E
[
eitU

]
and using the property (4.6) of the G function, after some more

calculations, we obtain equation (4.21). By integrating equation (4.28) from −∞ to x

with respect to x and again using (4.6), we obtain (4.20).

Remark 4.2.1. In practice, the explicit representation of the d.f. of the statistic U is not

as important as the reconstruction of the distribution of the original sample X1, . . . , Xn

by the distribution of the statistic U . When it comes to testing normality, instead of

using the theoretical distribution of U one can use its empirical counterpart, constructed

by a uniformly generated random sample, the size of which is comparable to the sample

of the real data under the test.

4.2.2.1 Graphs of the distribution, probability density and the characteris-

tic functions of the statistic U

Distribution, density and the characteristic functions of the random variable (statistic)

U are visualized in Figures 4.1 and 4.2. Probability density and the characteristic

functions are shown in comparison with the density and the characteristic functions of

the standard normal distribution. As shown in Figure 4.2, density and characteristic

functions of the random variable U are similar to the density and characteristic functions

of the standard normal distribution.
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Figure 4.1: Distribution function and the characteristic function of the random vari-
able (statistic) U . 4.1a is the cumulative distribution function of the random variable
(statistic) U . 4.1b is the characteristics function of the random variable (statistic) U .
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Figure 4.2: Probability density and the characteristic function of the statistic U in
comparison with those of the standard normal distribution. Figure 4.2a shows the prob-
ability density functions of the random variable (statistic) U (blue line) and the standard
normal distribution (green line). Figure 4.2b shows the characteristic functions of the
random variable (statistic) U (blue line) and the standard normal distribution (green

line).

4.2.3 A characterization theorem of the complete type

Theorem 4.2.1 can be extended for the reconstruction of the complete type. As seen, the

proof of Theorem 4.2.1 makes use of the analytic property of the characteristic function

of normal distribution. In general, a distribution of the complete type, which is different

from normal, may not have an analytic ch.f. Therefore, for the reconstruction of the

complete type, assumption of having an analytic ch.f. is essential. Under validity of this

assumption, the whole complete type can be reconstructed.

Let X1, . . . , Xn be a sample of size n, n ≥ 9. Construct the following linear forms:

Lx = X1 −
1

2
X2 −

1

2
X3,

Lx0 = X4 −
1

2
X5 −

1

2
X6,
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Lx1 = X7 −
1

2
X8 −

1

2
X9.

Consider the statistic

U =
Lx√
|Lx0Lx1|

. (4.29)

The following statement holds.

Theorem 4.2.3. Let X1, . . . , Xn, (n ≥ 9) be a sample from a distribution function

F (x, θ), θ = (µ, σ), where µ ∈ R and σ > 0 are location and scale parameters, respec-

tively. Consider the linear forms

Lx = X1 −
1

2
X2 −

1

2
X3 (4.30)

and

Lu = U1 −
1

2
U2 −

1

2
U3, (4.31)

where Lu = ln |U |, U1 = ln |Lx|, U2 = ln |Lx0|, U3 = ln |Lx1| and Lx, Lx0 and Lx1
are defined above. Assume that the random variables X1 and U1 have characteristic

functions, analytic in some strip around the real axis. Then distribution of the linear

forms Lx and Lu determine the distribution of F (x) to within a location and scale

parameters, respectively. In other words, if X̃1, . . . , X̃n, (n ≥ 9) is a sample from a

distribution G(x) and the linear form

L̃x = X̃1 −
1

2
X̃2 −

1

2
X̃3 (4.32)

is identically distributed with the linear form Lx and

L̃u = Ũ1 −
1

2
Ũ2 −

1

2
Ũ3, (4.33)

is another linear form, identically distributed with Lu then

F (x, θ) = G

(
x− µ
σ

)
.

Proof. Proof follows from theorem 4.2.1.

From the Theorem 4.2.3 it follows that if X1, . . . , Xn and Y1, . . . , Ym are two samples of

sizes n and m (m,n > 9) then by the distribution of the linear forms

Lu = U1 −
1

2
U2 −

1

2
U3, (4.34)

and

Lv = V1 −
1

2
V2 −

1

2
V3, (4.35)

where

Lu = ln |U |, U1 = ln |Lx|, U2 = ln |Lx0|, U3 = ln |Lx1|
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and

LV = ln |V |, V1 = ln |Ly|, V2 = ln |Ly0|, V3 = ln |Ly1|,

one can reconstruct their distributions. Hence by using Kolmogorov-Smirnov’s statistic

we can test if both of samples are from the same distribution or belong to the same type.

Since Kolmogorov-Smirnov’s test statistic makes use of the empirical d.f.’s, there is no

need for the explicit representation of distribution of the statistic LU and LV .

4.3 Application of the Kolmogorov and Kolmogorov - Smirnov’s

statistics to the gene expression data

In this section we describe the procedure of the normality test of the gene expression

data and test of whether two samples of the gene expressions belong to the same type.

To test normality we use Kolmogorov’s statistics, defined as

D = sup
x
|Fn(x)− F (x)| , (4.36)

where Fn(x) is the empirical distribution function. Since Kolmogorov’s statistic is a

distribution free statistic, then instead of (4.36) we can use the statistic

D = sup
x
|Un(x)− U(x)| , (4.37)

where U(x) denotes the uniform distribution function and Un(x) is the empirical distri-

bution function of the uniform sample U1, . . . , Un with Ui = F (Xi), i = 1, . . . , n.

To test whether two samples of the gene expressions data belong to the same type, we

use Kolmogorov-Smirnov’s two- sample test, defined as

Dm,n = sup
x
|Fm(x)−Gn(x)| ,

where Fm(x) and Gn(x) are empirical distribution functions, constructed by the corre-

sponding samples.

4.3.0.1 The procedure of normality test

Let m be the number of the gene expression levels and n sample size for each gene

expression. Then the matrixX = (Xij), i = 1, . . . , n, j = 1, . . . , n denotes n observations

of m gene expression levels; element Xij denotes the i-th observed level of the j-th gene;

rows of the matrix X correspond to observations and columns to the genes.

The procedure for the normality test is as follows:
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1. From matrix X construct a matrix Y = (Yij), i = 1, . . . , n, j = 1, . . . , k, k =

[m/2], where Yij = Xi2j −Xi,2j−1 (δ-sequences);

2. For j = 1, . . . , k, take the j-th column of the matrix Y and separate it by groups

of 9 elements (and again inside by (3) groups of 3 elements); the number of groups

with 9 elements would be l = [n/9].

3. Compute linear forms L, L0, L1 as in equations (4.1) and (4.3) and “observation”

(statistic) U as in the equations (4.4) and obtain a matrix of observations Z =

(Zij), i = 1, . . . , l, j = 1, . . . , k;

4. Merge all columns of Z and obtain a sample of size kl.

5. From the sample Z randomly choose a sample of size s, s = 10, 20, 100, 1000, . . . , kl

and apply the d. f. of U to obtain a uniform random sample.

6. Test uniformity (normality) of the obtained random sample from the previous step

by using Kolmogorov’s statistics.

4.3.1 Results of the normality test

We used the above testing procedure to test normality of the gene expressions in the data

set HYPERDIP, consisting of 88 observations of 7084 gene expression levels. By ran-

domly chosen samples, we calculated Kolomogorov’s statistic and its p-values. Repeating

this for each sample size 102 times, we took the average of the value of Kolmogorov’s

statistic and its corresponding p-values. Obtained results (mean values of the value of

Kolmogorov’s statistic and its corresponding p-values) are shown below in Table 4.1.

Table 4.1: Results of normality test

Size of random sample
Kolmogorov’s statistic

Mean value Mean p-value

100 0.0971641 0.2829700
200 0.0723744 0.2340880
300 0.0677369 0.1217220
400 0.0598150 0.1097140
500 0.0616188 0.0430078
1000 0.0594583 0.0026269
2000 0.0537717 0.0000180
5000 0.0571029 1.4× 10−14

10000 0.0577657 0.000000

Table 4.1 shows that the average of the p-values, calculated by random samples of sizes

less than 1000 are relatively high. Therefore, we do not have enough evidence to reject

normality, for example at the significant level 0.001. For the samples of larger sizes

it seems to be less likely for the data to follow the normal distribution. Therefore we

cannot make a strong statement whether the gene expression levels in the HYPERDIP

data set follow normal distribution or not.
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4.3.1.1 Testing procedure of whether the two samples belong to the same

type

For this test, we basically repeat the procedure of the normality test twice, once with

each sample or data set. Let matrix X = (Xij), i = 1, . . . ,m, j = 1, . . . , p and matrix

Y = (Yij), i = 1, . . . , n, j = 1, . . . , q, where m and n denote the samples sizes (number

of rows of the matrices X and Y), p and q be the number of gene expressions. Since we

have the same number of genes in both data sets, we assume that p = q.

Testing procedure is conducted as follows:

1. For the matrix X repeat steps of the normality testing procedure from step 1 to

5. As the result of obtain a (one-dimensional) sample U of size M .

2. For the matrix Y repeat steps of the normality testing procedure from step 1 to 5

and obtain the sample V of size N (numbers M and N can be calculated precisely

through m, n and p)

3. From the samples U and V randomly choose a sample of size s, s = 10, 20,

100, 1000, . . . ,M(N) and construct corresponding empirical distributions.

4. Calculate p-value of Kolmogorov-Smirnov’s statistic and decide whether or not to

reject the hypothesis that the two samples U and V are from the same type of

distributions.

4.3.2 Test results of whether the two samples belong to the same type

We tested whether or not the two data-sets of gene expressions belong to the same type

by the above-mentioned procedure. As the matrix X is taken the HYPERDIP data

set that consists of 88 observations and as the matrix Y is taken TEL data set that

consists of 79 observations. In both data sets each observation has the same dimensions

of 7084. As before, by randomly chosen samples, according to the above-mentioned

testing procedure, we calculated Kolmogorov-Smirnov’s statistic and its corresponding

p-values. We repeated this procedure many times, and calculated the mean value of

Kolmogorov-Smirnov’s statistic and the mean of its p-values. Corresponding results are

shown below in Table 4.2.

As Table 4.2 shows, for samples of sizes up to 500 the the average of p-value of Kolmogorov-

Smirnov’s statistic is relatively large, so we cannot reject the hypothesis that data of the

gene expression levels in the data sets HYPERDIP and TEL belong to the same type of

distributions (for example, at the significant level 0.001). But for the samples of larger

sizes (greater then 500) we reject the hypothesis. If we calculate Kolmogorov-Smirnov’s

statistic for the complete samples U and V, then we obtain a p value very close to zero.

Since, for the small samples, we cannot reject the hypothesis of belonging to the same

type and for the larger samples we can, just as we did for the normality test, we cannot

make a strong statement as to whether these two data sets belong to the same type of
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Table 4.2: The test results of whether the two samples belong to the same type

Size of random sample
Kolmogorov-Smirnov’s statistic
Mean value Mean p-value

100 0.1000 0.702057
200 0.0700 0.712339
300 0.1133 0.042339
400 0.1075 0.019656
500 0.1100 0.004716
1000 0.0890 0.000726
2000 0.0715 0.000073
5000 0.0740 2.6× 10−9

distribution or not. We can say that there are genes in these data sets which have distri-

butions of the same type (larger p-values for small samples), but for a general statement

we do not have enough evidence. This situation can be explained, in particular, by the

fact that these two data sets may not contain data of all (expressed) genes.
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There were many efforts in statistical literature to verify the validity of the assumption

on normality of the gene expression data, some evidencing this assumption, while some

others not. This persuades us one to further investigate this question.

Statistical analysis of the available data can be performed in different ways. In particular,

testing whether this data set follows some probability law, for example the normal

distribution. When testing normality, one can just apply some statistics, for example,

Shapiro-Wilks test of (non) normality and make a conclusion on hypothesis under the

test. This can be considered as one of the approaches. But before proceeding with any

test some knowledge on the structure and nature of the data should be clarified.

In the case of gene expression data, which was considered in this thesis, before discussing

the normality test, we first gave a general overview of how these data are derived. Start-

ing with microarray experiment, we concluded with the explanation of the correlation

structure of the gene expressions and highlighted some viewpoints on utilizing the de-

pendence between gene expressions.

As shown, one of the main issues is the dependence between gene expressions data, com-

plicated correlations of the pair-wise gene structure. Another issue is the small number

of observations. If there exist certain ways to benefit from the dependence of the gene

expressions, there is no way to increase the number of observations. By using some

technique that reduces the dependence, we were able to take advantage of the small

sample sizes. Once we consider the expressed level of all genes as independent multidi-

mensional observations, then independence allows one to consider each gene separately.

Then, pooling all genes together yields a very large one-dimensional sample of the gene

expressions. Namely, this was the main principle of transforming gene expression data

into δ-sequences.

Mainly this work was devoted to studying normality of the gene expressions data. In

comparison with the traditional testing procedures, we applied a different approach.

For testing normality, we proceeded from the idea of reconstructing the type of distri-

butions. After giving the main results on the reconstruction of the type of distributions,

considering normal distribution as a complete type with location and scale parameters,

we transformed normality test to the spherical uniformity test.

Spherical uniformity, and hence the normality test of the gene expression data, was

conducted by the statistics based on N-distances.

55
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In this thesis we proved a new result on reconstruction of the complete type of distri-

butions. In particular, a theorem for the characterization of the normal density was

given.

The task of verifying normality of the gene expressions was conducted by applying the

existing results of reconstruction, uniformity test and the characterization theorems for

the complete type of distributions, in particular for the normal density.

The results of the uniformity and normality tests, represented in Chapters 3 and 4,

in some cases give evidence on normality of the gene expression and some other cases

against it. As seen from the results of the normality test, there are more evidences

against normality than there are in favor of normality. As previously explained, to test

normality we basically transformed the whole gene expression data into one huge sample.

Then, we randomly chose samples of different sizes. For samples of relatively small sizes

we could not reject normality but when we increased the sample size, the result was that

we obtained very small p-values, so there were enough evidences for larger samples to

reject the hypothesis of normality, which was against our expectations, since by the law

of large numbers one can expect convergence to the normal distribution.

When analyzing the results of the normality test (Table 4.1) and the test of whether

the two samples belong to the same type (Table 4.2), we observe the following situation.

With the test of normality we cannot reject normality for sample size less or equal to

400. We reject the hypothesis of normality of the gene expressions data for the samples

of sizes less than or equal to 500 at the significant level 0.05 or for the samples of sizes

greater than or equal to 1000 at the significant level 0.001. But with the test of whether

the two samples belong to the same type we reject the hypothesis of whether the two data

sets follow the same type of distributions, at the significant level 0.05 for the samples of

sizes less than or equal to 300 already. This situation can be explained by the influence

of the subset of modified genes or variations of the genes in both data sets. In both data

sets the majority of the gene expressions may follow the normal distribution but because

of the biological changes due to the illness, the subset of the modified genes in the first

data set does not coincide with those in the second one. This causes a larger difference

between the distributions of the gene expression levels in the two data sets, hence leads

to the rejection of the hypothesis of whether the two samples belong to the same type for

the samples of relatively small sizes than those in the normality test. Based on this, we

propose biological explanation of the observed fact. The gene expressions corresponding

to the illness have non-normal distribution, while the others are normally distributed.

As for the statistical verification of the normality assumption of the gene expression

data, we cannot reject the hypothesis on normality assumption for a large (but not too

large) number of observations. So we cannot make a firm definitive statement either in

favor or against this assumption. Therefore, the question posed at the beginning of this

thesis remains open: the assumption whether or not the gene expressions are distributed

according to the Normal Distribution needs more exploration.

Theoretical results obtained in this thesis can be applied to other multidimensional

observations too, for example, the data of the Taiwanese–American Occultation Survey
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System (TAOS) (Meinshausen and Rice, 2006). Besides being applicable to practical

problems, these results are of theoretical interest, too.
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