
Charles University in Prague

Faculty of Mathematics and Physics

DOCTORAL THESIS

Vladimı́ra Sečkárová
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Introduction

It is in the human’s nature to enrich his knowledge by learning from own experi-
ence and experience of others. But how important is the information (opinions,
ideas, suggestions . . .) from others and how should it be incorporated into our
knowledge? These questions form the departure point of this thesis, which intends
to contribute to their mathematical solutions whenever and wherever appropriate.

Decentralized (distributed) decision making

Decision making (DM) is a complex theory consisting of several parts includ-
ing information collecting and processing, construction of the set of appropriate
decisions, etc., all performed to obtain the final decisions optimal in some a priori
determined sense. Handling such complex processes has been approached from
two different viewpoints: we can either consider a centralized DM with center
as the dominating element, or distributed DM (for examples see Fig. 1). Since
“Modern society, with its overwhelming diversity of interests and developments
and its ever growing complexity, can no longer be understood and governed by
the paradigm of centralized decision making” (Schneeweiss, 2003), we focus on
the distributed approach. The recent contributions in distributed DM include,
e.g., multi-agent online learning (Xu et al., 2015), estimation over adaptive net-
works (Tu and Sayed, 2014), estimation in dynamic systems (Carli et al., 2008),
task switching (Wagenpfeil et al., 2009).

DM lets us view each source of information as a decision maker, an individual
with its own past experience and environment, taking actions, focusing on sub-
jective aims, etc. The processes in DM can be done for one decision maker, but
the task becomes more interesting when other interacting sources (data sensors,
experts) are available and taken into account. Based on the level of coopera-
tion among sources several cooperation scenarios can be exploited (Kárný et al.,
2007). In this work we focus on wise selfish source, which follows its aims, but
knows that without respecting others it can reach less than possible cooperative
scenario. For more details on DM with multiple sources see also (Kárný and Guy,
2004).

The issue arising within the considered scenario is that in majority of the
developed approaches the final decisions are constructed to serve the whole group
of decision makers suppressing the sources’ personal aims. While constructing the
final decisions, problems might occur due to limited abilities of sources, e.g., in
the case when some sources can only provide a partial information about the
studied problem. Such sources can then also experience problems with exploiting

7
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(a) Centralized decision making. (b) Distributed decision making.

Fig. 1: Examples of centralized and decentralized (distributed) decision making.
On the left: Centralized decision making. On the right: Distributed decision
making.

the final decision due their limited abilities (they simply need not understand the
combined information). Although the literature in distributed DM is very rich
and new approaches are still being developed, this shortcoming has not received
much attention. The closest work dealing with this problem can be found in
(Kárný et al., 2009). There, the authors suggest that beside the knowledge of the
source also its uncertainty and aims should be treated as random variables (see
the definition of behavior therein). Since these characteristics are likely to change
over time, the authors consider a probability distribution over their values. In
particular, the probability distribution of each source is expressed in probabilistic
form as an ‘ideal’ probability density function (pdf).

To overcome the addressed issue we assume the probabilistic type of informa-
tion, too. But instead of determining the ‘ideal’ pdf we control the acceptance of
the final combination of provided information. This is taken as the final decision
about compromise among sources cooperating in this way. More details are given
in the next paragraphs.

Probabilistic opinion pooling

In this work we assume the existence of a group (set) of sources, providing
their opinions about the underlying (studied) problem to each other. The prob-
lem relates to a hidden (stochastic) phenomenon, that is not directly observable,
but about which an opinion can be formulated. Examples of such phenomena are
anticipated elections results, companies contracts and many others. The assump-
tion on obtaining opinions yields a specific decision making process commonly
known as opinion pooling. Due to the complexity of the space of possible de-
cisions we consider the probability distributions over this set rather than single
values. The final decision (result of pooling) will be then a probability distribu-
tion. Since we also assume the sources provided probability distribution, the final
decision is a combination of probability distributions.

Combining probabilistic information within a group of sources has been of in-
terest for a long time, see, e.g., (von Neumann and Morgenstern, 2007). Different
approaches consider different levels of cooperation among sources and different
exploitations of their proposed combination. One can assume the sources are rep-
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resented as a group of individuals “who must act together as a team and reach
consensus” (DeGroot, 1974). Or, one can consider that sources are “perfectly
coherent, rational as decision makers and cooperate in agreeing to adopt a group
utility function” (West, 1984).

For combining non-probabilistic type of information see, e.g., method based
on coherency (of the combination) defined by the moments (Wisse et al., 2008),
or based on ranks and linearly updated scores (Wu et al., 2009). The addressed
problem outlined above (cooperating selfish sources) is still insufficiently resolved.

Cross-entropy and combining probability distributions

Many probability combining approaches, including the approach proposed in
this thesis, heavily exploit the Kullback-Leibler (KL) divergence (Kullback and
Leibler, 1951) (in the literature the term cross-entropy is also used). Based on the
order of its arguments we arrive at two basic classes - linear pools and log-linear
pools, see, e.g., (Abbas, 2009).

Linear pools consider, e.g., Garcia and Puig (2004), where “expert opinion is
represented as a probability and associated with a confidence level that expresses
the conviction of the corresponding expert on its own judgement”. For linear
pool exploiting entropy instead of cross-entropy and related to this thesis see
(Sečkárová, 2013).

The examples of KL-divergence based log-linear pools include, e.g., reliability
estimation (Dedecius and Sečkárová, 2013a), or determination of weights for prior
distributions pooling (Rufo et al., 2012).

KL-divergence based combination as compromise captu-
ring individual

The result of any pooling can be viewed as a compromise among conside-
red sources, a combination of sources’ opinions, where every included individual
has to sacrifice its own aims in order to satisfy group aims. Notice that in the
above mentioned works for combining probability distributions (with/without
KL-divergence) the source’s personal aims has never been treated. The only
work known to the author dealing with this issue is (Kárný et al., 2009), where
the ‘ideal’ pdf is included in combining, see comments above.

We deal with this shortcoming by introducing the constraints on acceptance
of the desired combination of opinions by individual sources, which still yield a
compromise among the sources. This suggestion together with the KL-divergence
as dissimilarity measure between individuals and desired combination help us
form a (weighted) linear combination of sources probability distributions.

Although the proposed combination is generally built to combine joint proba-
bilities over a common support, it is applicable to combine also partial knowledge
and non-probabilistic type of given information. When partial knowledge is avail-
able (see Fig. 2), i.e., the sources provide conditional and marginal probabilities,
we propose an extension to joint probabilities. If another type of information is
provided, such as a subset of possible outcomes or expected values, we propose a
transformation into probabilities, which can be then extended, if necessary.
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(a) Equal supports. (b) Different supports.

Fig. 2: Distributed decision making: Example of how the supports of sources
(decision makers) can vary. On the left: common support. On the right: Different
supports.

Throughout the thesis we assume we have a finite number of sources. If we
deal with a large group of sources, this can be decomposed into smaller, possibly
overlapping, groups and the proposed combination can be applied.

Thus, the proposed approach, representing a unified way for combining proba-
bilistic and non-probabilistic (even partial) type of information, can be exploited
in a wide range of problems in distributed decision making.

Brief summary of the proposed combining

In the thesis we consider a group of sources acting within a cooperative sce-
nario. They share their information (opinions) to enhance the description/evi-
dence about the current state of stochastic phenomenon. Our suggestion is to
combine provided information so that our general requirement - to serve each
source in the group while representing a compromise among sources - is satisfied.

In order to obtain the optimal combination of available opinions, their rep-
resentation in the form of a probability mass function (pmf) is assumed in this
work. To define the notion of optimality we exploit the theory of Bayesian decision
making (BDM), see (Savage, 1972). BDM searches for a decision rule, a mapping
from the set of observations to the set of actions, minimizing the expected loss
function. In our case, the available information serves as the observations and
the set of possible estimators serves as the set of actions. The searched decision
is then a combination of given pmfs and is constructed as an estimator of an
unknown pmf minimizing the expected loss function (see step 2 of Alg. 1 below).

Similarly to earlier discussed approaches we adopt the KL-divergence as the
loss function (Bernardo, 1979). We show that the optimal estimator is then
itself a conditional expectation with respect to an unspecified probability density
function (pdf). To obtain the corresponding conditional pdf we again exploit the
KL-divergence, namely the minimum cross-entropy principle (Shore and Johnson,
1980), rather than the Bayes rule. Still, both approaches can yield the same result,
as outlined by Campenhout and Cover (1981). Finally, we express the optimality
conditions imposed on the estimator to be a compromise based on the available
pmfs by means of the KL-divergence.

If a source provides conditional pmfs of a subset of considered random vari-
ables given the values of the remaining random variables, we construct its joint
version by exploiting the minimum cross-entropy principle or the maximum en-
tropy principle. This also applies to the case when some source provides a
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marginal pmf of a specific subset of considered random variables (see step 1 of
Alg. 1 below). Then, the extended pmfs can be combined by proposed approach
and sources obtain the appropriate conditional/marginal version of the optimal
combination (see step 3 of Alg. 1).

If a subset of the outcomes of the random vector is available, we perform the
transformation into a pmf by using Kronecker delta.

Layout of the work

The construction, properties and examples of use of the optimal estimator
form the core of the thesis. It consists of seven chapters briefly summarized
below:

• The first chapter contains the definitions of the terms used in the thesis.

• In the second chapter we derive the combination under general setup.

• The third chapter includes the combination when the Dirichlet distribution
is assumed. This form of optimal combination of pmfs will be then used
in the rest of the thesis. This chapter also includes the properties and
illustrative examples of the derived combination.

• The novel contribution of the proposed method lies in handling the sources’
diversity, which allows us to treat cases when sources are unable to pro-
vide joint pmfs or, e.g., to include variables representing sources’ personal
aims. The diversity is in particular expressed by marginal and conditional
probability distributions, subsets of outcomes and expected values of the
underlying random vector. Preparation (extension, transformation) of given
probabilistic and non-probabilistic information for combining is of interest
in the fourth chapter.

• The proposed combination is then applied to real data examples in the fifth
chapter.

• In the sixth chapter a comparison of the proposed approach with a diffu-
sion distributed approach is given. The chapter also includes the detailed
description of the second method introduced by Dedecius and Sečkárová
(2013b) and brief comparison to the proposed combination.

• The conclusion and future work plans are given in the seventh chapter.
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Data: Non-probabilistic and probabilistic information from s sources,
j = 1, . . . , s <∞.

Result: The cross-entropy based combination of pmfs arising from
transformation and extension of information given by sources.

begin
1 Prepare the provided information for combining.
for jth sources (j=1,. . . ,s) do

if non-probabilistic information is given then
transform it into probabilistic form (see Section 4.2)

end
if extension of a probabilistic information (a pmf) is needed then

extend given probabilistic information (see Section 4.1)
end

end

2 Combine the (transformed and/or extended) probabilistic
information (pmfs) p1, . . . , ps from sources by using (3.3), i.e.,

• Set the prior values of the parameters of the Dirichlet distribution in
terms of prior pmfs, e.g., as the arithmetic mean of p1, . . . , ps (see
Section 3.1);
• Numerically solve the optimization problem (3.10) to obtain the
estimates of the parameters of the Dirichlet distribution yielding the
final combination (see Section 3.2.1);
• Alternatively, numerically solve the optimization problem (3.11) to
obtain the coefficients in the final combination (see Section 3.2.2).

For general setup see Chapter 2.
For setup with the Dirichlet distribution see Chapter 3.

3 Project the resulting combination on the support of each
source.

end
Alg. 1: Proposed cross-entropy based combining.



Chapter 1

Preliminaries

1.1 Kullback-Leibler divergence

Definition 1.1. Assume two probability measures P and Q on a measurable space
X, P absolutely continuous with respect to Q. We define the Kullback-Leibler
(KL) divergence as :

KLD(P ||Q) = EP ln
P

Q
=

∫
X

ln
P

Q
dP, P � Q, (1.1)

=∞ otherwise,

where EP denotes the expectation with respect to probability distribution P .

Remark. If there exists a (Lebesgue, counting...) measure µ defined on X for
which the Radon-Nikodym derivatives p = dP

dµ
and q = dQ

dµ
exist (i.e., the pdfs or

pmfs exist), the KL divergence simplifies to

KLD(p||q) =

∫
X

p(x) ln
p(x)

q(x)
µ(dx). (1.2)

KL-divergence is also commonly referred to as cross-entropy. We shall use
both terms as synonyms.

Branches of mathematics exploiting KL-divergence include testing statistical
hypotheses (Basu et al., 2013), optimization (Fischer, 2010), decision making
(Kißlinger and Stummer, 2013), image processing (Villena et al., 2010), statistical
inference for methane emissions (Sabolová et al., 2015), etc.

Properties of KL-divergence

The following is trivial to show:

• KL-divergence is a premetric.

• KLD(P ||Q) ≥ 0 with equality iff P = Q a.e.

• KL-divergence does not satisfy the triangle inequality nor is symmetric.

13
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For more details, see (Kullback, 1997).

Decomposition of KL-divergence

The KL-divergence can be decomposed into:

KLD(P ||Q) = −EP lnQ+ EP lnP = Kerr(P ||Q)− H(P ), (1.3)

where Kerr(.||.) is the Kerridge inaccuracy (Kerridge, 1961) and H(.) is the Shan-
non entropy (Shannon, 1948).

1.2 Maximum entropy and minimum cross-en-

tropy principles

Assume that we have a prior guess p0(x) of the pdf p(x) of X. Assume also
that we obtained a partial information delimiting a set of all adequate pdfs p(x).
Question that arises is how to enrich the prior guess by this piece of information?

Shore and Johnson (1980) axiomatically justified that when certain values or
bounds on the expectations of h(X) are given

S =

{
p :

∫
X

p(x)h(x)dx = d or ≤ d

}
,

where h(.) is a given vector function, minimization of KLD(p||p0) over S is the
adequate way how to choose a single element p from S. Cover and Thomas
(2006) have shown that the outcome minimum cross-entropy often coincides with
conditioning by S.

In the special case of uniform p0, the maximum entropy principle is obtained.
The popularity of this principle is based on the fact that entropy is “a unique,
unambiguous criterion for ‘the amount of uncertainty’ (Shannon, 1948), which
agrees with our intuitive notions that a flat distribution represents more uncer-
tainty than does a sharply peaked one, and satisfies all other conditions, which
make it reasonable”, (Jaynes, 1957).

For further details on axiomatic derivation of both principles see (Shore and
Johnson, 1980).

1.3 Dirichlet distribution

In this section we focus on the basic properties of this continuous multivariate
distribution extensively used in this thesis. For further details see, e.g., (Kotz
et al., 2005).

The support of this distribution is an (n− 1) dimensional probability simplex
Qsim, a set of all n-tuples satisfying

Qsim =

{
(p1, . . . , pn) :

n∑
i=1

pi = 1, 0 ≤ pi ≤ 1, i = 1, . . . , n

}
(1.4)
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An n-dimensional random vector q satisfying the simplex property (q ∈ Qsim) is
distributed according to the Dirichlet distribution with parameters (α1, . . . , αn)
if its pdf has the form:

f(q1, . . . , qn, α1, . . . , αn) =
1

B(α1, . . . , αn)

n∏
i=1

qαi−1i , αi > 0, i = 1, . . . , n,

(1.5)
where B(.) is the multivariate beta function

B(α1, . . . , αn) =

∏n
i=1 Γ(αi)

Γ(
∑n

i=1 αi)
,

Γ(.) is the gamma function (Abramowitz and Stegun, 1964).
The corresponding expected value of qi is

E [qi] =
αi∑n
k=1 αk

, i = 1, . . . , n, (1.6)

and the expected value of ln qi is

E [ln [qi]] = ψ (αi)− ψ

(
n∑
k=1

αk

)
, i = 1, . . . , n, (1.7)

where ψ(.) is the digamma (psi) function (Abramowitz and Stegun, 1964)

ψ(z) =
d(ln Γ(z))

dz
.

In the thesis we exploit only real positive z, for which the digamma function is
well-defined.



Chapter 2

Cross-entropy based optimal
combination

In this chapter we derive the optimal combination of sources’ pmfs under certain
general conditions imposed below. In particular, we express the desired combina-
tion as an unknown pmf and construct its estimator meeting specific constraints
delimiting what the desired combination is. The key contribution lies in the spe-
cification of the constraints so that the optimal combination serves each source as
a reasonable evidence about the hidden phenomenon while being a compromise
among sources. The definition of constraints based on expected dissimilarity from
an unknown combination is given in Section 2.2. Part of this chapter is included
in author’s accepted contribution, see (Sečkárová, 2015).

2.1 The optimal combination as optimal estima-

tor

Let us have a discrete random vector X with n possible outcomes xi, i = 1, . . . , n,
n < ∞, where each outcome xi occurs with an unknown probability qi. Assume
that we obtained s pmfs

pj = (pj1, . . . , pjn), j = 1, . . . , s, s <∞,

where pji is the probability assigned by the jth source to the ith outcome. These pj
are viewed as observations. Also assume that no information about the reliability
of respective sources is available.

The search for the optimal combination of p1, . . . , ps is here interpreted as
the search for the optimal estimator q̂ of unknown desired combination q based
on p1, . . . , ps. To obtain q̂ we exploit the Bayesian decision making (BDM), see
(Savage, 1972). Thus, we search for the optimal estimator q̂ minimizing the con-
ditional expected value of a loss function given observations p1, . . . , ps, where the
expected value is taken over the set of all possible pmfs q (delimited by appro-
priate pdf, derived later).

We will proceed as follows:

16
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1. First, we will specify the loss function operating on the set of all possible
n-dimensional probability vectors – over the (n−1)-dimensional probability
simplex Qsim, see (1.4).

2. Then, we determine the optimal estimator with respect to an unspecified
conditional pdf π(q|p1, . . . , ps). Note that π(q|p1, . . . , ps) is a pdf of the
n-dimensional random vector taking values in Qsim.

2.1.1 Loss function

To follow the BDM methodology the loss function should express “closeness” of
the estimated q and its estimator q̂. To follow our setup we particularly need the
loss function to measure the dissimilarity between pmfs. According to (Bernardo,
1979), we exploit the KL-divergence (1.1) and search for the optimal estimator
q̂, which minimizes the conditional expectation of the KL-divergence.

2.1.2 Optimal estimator

Proposition 2.1. Let q = (q1, . . . , qn) be an n-dimensional random vector taking
values in (n−1)-dimensional probability simplex Qsim. Let pmfs p1, . . . , ps ∈ Qsim

be the observations about q and let Q̃ ⊆ Qsim be a set of all pmfs q̃ satisfying

Eπ(q|p1,...,ps)[KLD(q||q̃)|p1, . . . , ps] <∞, (2.1)

where E[.|.] denotes the conditional expectation with respect to a known conditional
pdf π(q|p1, . . . , ps).

Then, the pmf q̂ minimizing the conditional expectation of the KL-divergence

Eπ(q|p1,...,ps)[KLD(q||q̃)|p1, . . . , ps] (2.2)

over the set Q̃ is
q̂ = Eπ(q|p1,...,ps)[q|p1, . . . , ps]. (2.3)

Proof. The expected loss function has the following form:

Eπ(q|p1,...,ps)[KLD(q||q̃)|p1, . . . , ps] (2.4)

=

∫
Q̃

π(q|p1, . . . , ps)
n∑
i=1

qi ln
qi
q̃i
dq

=

∫
Q̃

π(q|p1, . . . , ps)
n∑
i=1

qi ln qidq −
∫
Q̃

π(q|p1, . . . , ps)
n∑
i=1

qi ln q̃idq

= −Eπ(q|p1,...,ps)[H(q)|p1, . . . , ps]−
n∑
i=1

∫
Q̃

π(q|p1, . . . , ps)qi ln q̃idq (2.5)

= −Eπ(q|p1,...,ps)[H(q)|p1, . . . , ps] + Kerr
(
Eπ(q|p1,...,ps)(q|p1, . . . , ps)||q̃

)
, (2.6)

where Kerr(.||.) is the Kerridge inaccuracy and H(.) is the entropy, c.f. Section
1.1.
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The property (2.1) allows us to use the Fubini theorem and exchange the
summation and the integral in (2.5).

The first term in (2.6) does not depend on q̃, thus the minimization of the
expected loss (2.2) reduces to the minimization of the second term containing
the Kerridge inaccuracy. The Kerridge inaccuracy reaches its minimum when the
arguments are equal a.e., thus the minimizing pmf is

Eπ(q|p1,...,ps)(q|p1, . . . , ps) = q̂.

The estimator q̂ represents our optimal combination of p1, . . . , ps and the
desired decision rule of our BDM task. Commonly, the decision rule assigning
p1, . . . , ps minimizer of the conditional expected value of a specific loss function
is also known as the Bayes decision rule. For the estimation task, it is also called
the Bayesian estimator.

The next step in determination of the optimal combination q̂ is the choice of
the conditional pdf π(q|p1, . . . , ps).

2.2 Minimum cross-entropy based conditional

pdf

In this section we construct the conditional pdf π(q|p1, . . . , ps) required in the
combination q̂ defined by (2.3). Since we are working within the BDM frame-
work, let us assume the prior guess π0(q) about π(q|p1, . . . , ps), acting on (n−1)-
dimensional probability simplex Qsim, is available. When also the likelihood func-
tion is available, we would exploit the Bayes rule to obtain π(q|p1, . . . , ps). Our
considered problem, however, does not provide the likelihood function. Instead
of the Bayes rule, we exploit the minimum cross-entropy principle introduced in
Section 1.2.

According to the minimum cross-entropy principle, we search for the condi-
tional pdf π(q|p1, . . . , ps) minimizing the KL-divergence of π(q|p1, . . . , ps) from
π0(q) with respect to constraints given by the expected values of functions of
q. We, in particular, introduce the constraints on unknown pmf q by the KL-
divergence between observations pj and q. The definition of these constraints,
in which we delimit the set of π-admissible pmfs q attributing to the optimal
estimator q̂, is the key contribution of this section.

Then, we derive the formula of the conditional pdf π(q|p1, . . . , ps) satisfying
these constraints and minimizing the above KL-divergence.

2.2.1 Kullback-Leibler divergence based constraints

The definition of constraints in the minimum cross-entropy principle is the most
important part not only in the search for the conditional pdf π(q|p1, . . . , ps), but
consequently in determination of the optimal combination q̂. To obtain conditio-
nal pdf π(q|p1, . . . , ps), we first relate each provided pmf to desired combination
q.
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Since sources work within cooperative scenario, that is they are willing to
share their pmfs and exploit the optimal combination, every desired combination
q in Qsim can be also viewed as a compromise among sources. To objectify how
well the compromise q performs from jth source point of view, we would like
to measure the dissimilarity between pj and q. Since both are pmfs, we again
exploit the KL-divergence, c.f. (1.1), as an appropriate dissimilarity measure.
To formalize the supported selfishness, we would like to measure how well q
performs as an approximation of pj. Thus, pj enters the KL-divergence as the
first argument and q as the second argument: KLD(pj||q). Since q is unknown,
we focus on the dissimilarity defined by the expected value of the KL-divergence
with respect to π(q|p1, . . . , ps): Eπ(q|p1,...,ps)[KLD(pj||q)|p1, . . . , ps].

To relate the sources and their pmfs p1, . . . , ps we consider a wise selfish co-
operative scenario among sources. In particular, we assume that the jth source
is aware that other sources influence the combination, but selfishly would like its
dissimilarity to be less than or at most equal to the dissimilarities of other sources

Eπ(q|p1,...,ps)[KLD(pj||q)|p1, . . . , ps] ≤ Eπ(q|p1,...,ps)[KLD(pl||q)|p1, . . . , ps],

l, j = 1, . . . , s, l 6= j. A closely related problem has been studied in (Sečkárová,
2013).

The optimal combination q̂, as the estimator of compromise q based on the
conditional pdf π(q|p1, . . . , ps), should serve all sources in the group. Since we
have no prior information about the quality (“reliability”) preferences among
respective sources, we have to impose the equality constraint. These informal
considerations motivate the formal definition of constraints delimiting a subset
Qπ ⊂ Qsim. Pmfs in Qπ are perceived as appropriate pfms non-contradicting in-
formation about desired combination provided by the group of undistinguishable
information sources j = 1, . . . , s.

Definition 2.2. Let the conditional pdf π(q|p1, . . . , ps) satisfy the following con-
straints on the expected value of the KL-divergence:

Eπ(q|p1,...,ps)[KLD(pj||q)|p1, . . . , ps] = Eπ(q|p1,...,ps)[KLD(ps||q)|p1, . . . , ps],
j = 1, . . . , s− 1, (2.7)

where
Eπ(q|p1,...,ps)[KLD(pj||q)|p1, . . . , ps] <∞, j = 1, . . . , s.

Pmfs q, included in the subset Qπ of (n−1)-dimensional probability simplex Qsim

(1.4) satisfying the above constraints, will be called π-admissible pmfs.

Remark. The right-hand side of constraints in (2.7) is defined with respect to
the sth source. Since we assumed the equality among conditional expectations,
any source j = 1, . . . , s− 1 can be used on the right-hand side of (2.7).

Let S denote the set of all conditional pdfs π(q|p1, . . . , ps) satisfying (2.7)
(each having specific support Qπ). We now inspect the cardinality of the set S
in order to recognize whether S is not empty.
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Let us rewrite the equations (2.7) in the Definition 2.2 as follows:

−H(pj) +

∫
Qsim

π(q|p1, . . . , ps)
n∑
i=1

pji ln
1

qi
dq

= −H(ps) +

∫
Qsim

π(q|p1, . . . , ps)
n∑
i=1

psi ln
1

qi
dq,

yielding

−H(pj) +H(ps) =

∫
Qsim

π(q|p1, . . . , ps)
n∑
i=1

(psi − pji) ln
1

qi
dq

=
n∑
i=1

(pji − psi)Eπ(q|p1,...,ps) [ln qi|p1, . . . , ps] ,

where j = 1, . . . , s − 1 and H(.) is the entropy. Thus, the equations in (2.7)
coincide with the following system of linear equations:

−H(pj) +H(ps) =
n∑
i=1

(pji − psi)ai, j = 1, . . . , s− 1, (2.8)

where
ai = Eπ(q|p1,...,ps) [ln qi|p1, . . . , ps] , i = 1, . . . , n. (2.9)

If s− 1 < n, there are infinitely many vectors

a = (a1, . . . , an),

solving the system (2.8), and thus infinitely many conditional pdfs π(q|p1, . . . , ps)
satisfying (2.9).

For n ≤ s−1 the system (2.8) need not to have a solution. If solution of (2.8)
exists, then it can be plugged into (2.9) and yields many pdfs π(q|p1, . . . , ps). If
no solution exists, we require differences of the left- and right-hand side in (2.7)
to be close to zero in an assumed sense, e.g., the least-squares one adopted below.
Thus, we focus on the approximate solution a of the system (2.8) obtained by
method of least squares. Note that we search for approximate solution within
the set of negative n-tuples, since each ai, i = 1, . . . , n, denotes the expected
value of a logarithm of a random variable taking values in [0, 1]. We obtain a
unique vector a and, as before, many conditional pdfs π(q|p1, . . . , ps) can satisfy
(2.9). Thus, the set S• of all pdfs π(q|p1, . . . , ps) satisfying constraints (2.7) in
the least-squares sense, is non-empty. In the following section we discuss which
pdf from S• to choose and derive its formula.

2.2.2 Conditional pdf of π-admissible vectors

In the previous section we introduced the notion of π-admissible pmfs q by means
of the expected KL-divergences between observations pj and unknown desired
combination q. These expectations are taken with respect to the yet unspecified
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conditional pdf π(q|p1, . . . , ps) in a non-empty, typically infinite-dimensional, set
S.

The choice of a single pdf from S, the last step in the search for the conditional
pdf π(q|p1, . . . , ps) describing π-admissible pmfs q, is based on the minimum cross-
entropy principle introduced in Section 1.2. That is, we choose the conditional pdf
π(q|p1, . . . , ps) satisfying (2.7) (at least in the least-squares sense) and minimizing
the KL-divergence of π(q|p1, . . . , ps) from a known prior pdf π0(q).

Since the domain of the prior pdf π0(q) is the (n− 1)-dimensional probability
simplex Qsim, π0(q) can be expressed as a function of p1, . . . , ps. To highlight this
property the prior pdf will be from now on denoted by π0(q|p1, . . . , ps). This pdf
generally does not fulfill the constraints (2.7) with π0(q|p1, . . . , ps) in the role of
π(q|p1, . . . , ps).

First we study the uniqueness of the posterior pdf π(q|p1, . . . , ps) resulting
from the minimum cross-entropy principle.

Proposition 2.3. Let S• denote the set of all conditional pdfs π(q|p1, . . . , ps)
satisfying (2.7) in the least-squares sense and assume

S∗ = S• ∩
{
π(q|p1, . . . , ps) : KLD

(
π(q|p1, . . . , ps)

∣∣∣∣π0(q|p1, . . . , ps)) <∞}
and known prior pdf π0(q|p1, . . . , ps) having its support Qsim. Then, the pdf
π̂(q|p1, . . . , ps), solving the following minimization problem

min
π(q|p1,...,ps)∈S∗

KLD
(
π(q|p1, . . . , ps)

∣∣∣∣π0(q|p1, . . . , ps)) , (2.10)

is unique.

Proof. To show that the minimizer of (2.10) in the set S∗ is unique, we first
inspect the convexity of S∗.

Let (a∗1, . . . , a
∗
n) denote the solution of linear system (2.8) resulting from least-

squares. For pdfs π1, π2 ∈ S• we have

a∗i = Eπ1 [ln qi|p1, . . . , ps] = Eπ2 [ln qi|p1, . . . , ps], i = 1, . . . , n,

where πl = πl(q|p1, . . . , ps), l = 1, 2. For their convex combination π∗ = απ1+βπ2,
where α, β ≥ 0, α + β = 1, the following holds

απ1 + βπ2 ≥ 0,

∫
Qsim

(απ1 + βπ2)dq = α + β = 1

and

Eπ∗ [ln qi|p1, . . . , ps] =

∫
Qsim

(απ1 + βπ2) ln qidq = αa∗i + βa∗i = a∗i ,

i = 1, . . . , n. Thus, π∗ ∈ S• and S• is convex set of pdfs.
Since we have

KLD
(
πl
∣∣∣∣π0(q|p1, . . . , ps)) <∞, l = 1, 2,
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based on strict concavity of the entropy H(.), see (Cover and Thomas, 2006), we
obtain that also

KLD
(
π∗
∣∣∣∣π0(q|p1, . . . , ps)) =

∫
Qsim

(απ1 + βπ2) ln
απ1 + βπ2

π0(q|p1, . . . , ps)
dq

= −H(απ1 + βπ2)−
∫
Qsim

(απ1 + βπ2) lnπ0(q|p1, . . . , ps)dq

< −αH(π1)− βH(π2)

−
∫
Qsim

απ1 lnπ0(q|p1, . . . , ps)dq −
∫
Qsim

βπ2 lnπ0(q|p1, . . . , ps)dq

= KLD
(
π1
∣∣∣∣π0(q|p1, . . . , ps))+KLD

(
π2
∣∣∣∣π0(q|p1, . . . , ps)) <∞.

The set S∗, as an intersection of two convex sets, is also a convex set.
Since the KL-divergence is strictly convex in its first argument and is bounded

below by zero, its unique infimum exists on a non-empty convex set of pdfs.
We first examine whether or not the infimum can be on the boundary of the set

S∗. We focus on pdfs with shrinking support, in particular when pdfs approach
the Dirac delta function. Since every Dirac delta function can be viewed as a
limit of (in this case truncated) normal multivariate distributions NT (µ, σ2) with
appropriate mean and variance σ2 converging to zero we obtain that

lim
σ2→0

KLD
(
NT (µ, σ2)

∣∣∣∣π0(q|p1, . . . , ps)) =∞.

Thus, the infimum can not be reached on the boundary of the set S∗ and
KL-divergence reaches on the set S∗ its minimum π̂. This minimum is unique;
otherwise there would exist another pdf π̂2 minimizing the KLD and satisfying:

ω = KLD(π̂||π0) = KLD(π̂2||π0).

Strict convexity implies for α + β = 1, α, β ≥ 0 that

KLD(απ̂ + βπ̂2||π0) < αKLD(π̂||π0) + βKLD(π̂2||π0) = ω,

which is in contradiction with π̂1, π̂2 being different minimizers.

In the next proposition we finally derive the conditional pdf π(q|p1, . . . , ps).
To obtain the explicit formula we assume that the constraints (2.7) can be met.

Proposition 2.4. Let Qsim be the (n−1)-dimensional simplex and π(q|p1, . . . , ps)
be a known prior pdf acting on Qsim. Let the set of all pdfs satisfying (2.7) be
non-empty. The conditional pdf π̂(q|p1, . . . , ps) minimizing the KL-divergence in
(2.10) under the constraints (2.7) is

π̂(q|p1, . . . , ps) ∝ π0(q|p1, . . . , ps)
n∏
i=1

q
∑s−1
j=1 λj(pji−psi)

i . (2.11)

where λj are the Lagrange multipliers chosen so that (2.7) is met.
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Proof. Minimization of (2.10) with respect to equality constraints in (2.7) forms
the task of constrained non-linear optimization. In order to determine the form
of the conditional pdf π̂(q|p1, . . . , ps) we can exploit Lagrange multipliers.

The Lagrangian of the considered optimization task looks as follows:

KLD
(
π(q|p1, . . . , ps)

∣∣∣∣π0(q|p1, . . . , ps))
+

s−1∑
j=1

λj
(
Eπ(q|p1,...,ps)[KLD(pj||q)|p1, . . . , ps]− Eπ(q|p1,...,ps)[KLD(ps||q)|p1, . . . , ps]

)
=

∫
Qsim

π(q|p1, . . . , ps) ln
π(q|p1, . . . , ps)
π0(q|p1, . . . , ps)

dq

+
s−1∑
j=1

λj

(∫
Qsim

π(q|p1, . . . , ps)
n∑
i=1

(
pji ln

pji
qi
− psi ln

psi
qi

)
dq

)

=

∫
Qsim

π(q|p1, . . . , ps) ln
π(q|p1, . . . , ps)
π0(q|p1, . . . , ps)

dq

+
s−1∑
j=1

λj

(∫
Qsim

π(q|p1, . . . , ps)
n∑
i=1

(pji − psi) ln
1

qi
dq

)

+
s−1∑
j=1

(
−H(pj) +H(ps)

)∫
Qsim

π(q|p1, . . . , ps)dq

=

∫
Qsim

π(q|p1, . . . , ps) ln
π(q|p1, . . . , ps)
π0(q|p1, . . . , ps)

dq

+

∫
Qsim

π(q|p1, . . . , ps)
n∑
i=1

ln
1

q
∑s−1
j=1 λj(pji−psi)

i

dq +
s−1∑
j=1

λj

(
−H(pj) +H(ps)

)
=

∫
Qsim

π(q|p1, . . . , ps) ln
π(q|p1, . . . , ps)

π0(q|p1, . . . , ps)
∏n

i=1 q
∑s−1
j=1 λj(pji−psi)

i

dq (2.12)

+
s−1∑
j=1

λj

(
−H(pj) +H(ps)

)
.

Fubini theorem again allows us to exchange the summation and the integral. The
last term does not depend on the π(q|p1, . . . , ps). The first term is the shifted
KL-divergence and its minimization yields the resulting pdf (2.11).

In the present chapter, we have derived the estimator q̂, equation (2.3), de-
pending on conditional pdf π(q|p1, . . . , ps) (2.11) (and on prior pdf π0(q|p1, . . . , ps)).
To show straightforward use of q̂ for combining provided pmfs, we exploit pdf of
the Dirichlet distribution. This choice is supported by the fact that both pdfs,
π0(q|p1, . . . , ps) and π(q|p1, . . . , ps), are pdfs over the probability simplex and that
(2.11) can be easily applied. The derivation of q̂ in the case that π0(q|p1, . . . , ps)
is the pdf of the Dirichlet distribution and the determination of the Lagrange
multipliers is treated in the next chapter.



Chapter 3

Optimal combination for
Dirichlet prior and its properties

The results in Chapter 2 were derived for arbitrary prior pdf π0(q|p1, . . . , ps).
In this chapter, we derive the conditional pdf π(q|p1, . . . , ps) in (2.11) and the
optimal estimator q̂ of desired combination q in (2.3) for computationally advan-
tageous prior pdf π0(q|p1, . . . , ps) – a pdf of the Dirichlet distribution.

In order to obtain values of q̂ for given pmfs p1, . . . , ps we deal with the con-
strained non-linear minimization task. To solve it, we exploit penalty optimiza-
tion and form an unconstrained version. The behavior of the minimized function
is studied and the relation of the parameters of the Dirichlet distribution to the
proposed estimator q̂ is presented.

Then, we discuss how the proposed estimator q̂ deals with duplicate observa-
tions, with sequentially combined pmfs and with a change of preferences among
sources.

Part of this chapter is included in author’s accepted contribution (Sečkárová,
2015).

3.1 The optimal combination for Dirichlet prior

Proposition 3.1. Let q be a random vector taking values in (n− 1)-dimensional
probability simplex Qsim. Let the prior pdf π0(q|p1, . . . , ps) be the pdf of the Dirich-
let distribution Dir(ν01, . . . , ν0n):

π0(q|p1, . . . , ps) =
1

B(ν01, . . . , ν0n)

n∏
i=1

qν0i−1i , ν0i > 0. (3.1)

Then, the resulting posterior distribution π(q|p1, . . . , ps) minimizing the KL-di-
vergence of π(q|p1, . . . , ps) from π0(q|p1, . . . , ps) with respect to the constraints
(2.7) is the pdf of the Dirichlet distribution with parameters

ν̂i = ν0i +
s−1∑
j=1

λj (pji − psi) , (3.2)

24
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and the estimator q̂ of the unknown q has the form

q̂i = Eπ(q|p1,...,ps)(qi|p1, . . . , ps) =
ν0i∑n
k=1 ν0k

+

∑s−1
j=1 λj (pji − psi)∑n

k=1 ν0k
, (3.3)

where i = 1, . . . , n and λ1, . . . , λs−1 are the Lagrange multipliers determined so
that (s− 1) constraints (2.7) are met.

Proof. This proposition is a special case of Proposition 2.4. By inserting (3.1) into
(2.11) we immediately obtain the pdf of the Dirichlet distribution with parameters
equal to (3.2). The explicit formula of π̂(q|p1, . . . , ps) is

π̂(q|p1, . . . , ps) =
1

B
(
ν01 +

∑s−1
j=1 λj(pj1 − ps1), . . . , ν0n +

∑s−1
j=1 λj(pjn − psn)

)
×

n∏
i=1

q
ν0i+

∑s−1
j=1 λj(pji−psi)−1

i . (3.4)

The estimator q̂, the conditional expectation (2.3) with respect to the derived
conditional pdf, has the form (see Section 1.3)

q̂i = Eπ̂(q|p1,...,ps)(qi|p1, . . . , ps) =
ν̂i∑n
k=1 ν̂k

, i = 1, . . . , n,

where vector (ν̂1, . . . , ν̂n) denotes the parameters of π̂(q|p1, . . . , ps). The following
property

n∑
i=1

ν̂i =
n∑
i=1

(
ν0i +

s−1∑
j=1

λj (pji − psi)

)
=

n∑
i=1

ν0i, (3.5)

then yields the final formula (3.3) for q̂.
According to Proposition 2.3 there exists a unique solution to the considered

minimization within the set of S∗. The positivity of ν̂i, i = 1, . . . , n, follows from
the requirement that π̂(q|p1, . . . , ps) has to be a pdf.

Remark. In this case the pdf π(q|p1, . . . , ps) is absolutely continuous with respect
to π0(q|p1, . . . , ps) as (n − 1)-dimensional simplex Qsim is the support for both
pdfs.

It is somewhat surprising that the equation (3.2) combines simultaneously
both, the parameters of the Dirichlet distribution and pmfs p1, . . . , ps. When
sources provide only pmfs, then these can be viewed as individual guess for
ν1, . . . , νn when

∑n
i=1 νi =

∑n
i=1 ν0i = 1. By plugging it into (3.3) we obtain

q̂i = p0i +
s−1∑
j=1

λjpji +

(
−

s−1∑
j=1

λj

)
psi, (3.6)

where prior pmf (p01, . . . , p0n), generally p0i = ν0i∑n
i=1 ν0i

, coincides with (ν01, . . . , ν0n),

a part of q̂ induced by prior pdf π0(q|p1, . . . , ps).
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Remind, that we focus on combining sources’ (experts’) opinions, where the
prior information about the studied problem may not be available. For the prior
guess on (p01, . . . , p0n) one should then exploit provided pmfs p1, . . . , ps, see be-
ginning of Section 2.2.2. Based on the additive nature of the derived optimal
estimator q̂ and the considered relation between (ν01, . . . , ν0n) and (p01, . . . , p0n)
in (3.6), we focus on the weighted linear combination of p1, . . . , ps

ν0i =
s∑
j=1

w0jpji, (3.7)

with weights w01, . . . , w0s expressing preferences among considered sources. Pre-
ferences can be assigned by delegated person or depend on other available infor-
mation, e.g., sources’ prior information about parameters of the Dirichlet distri-
bution. The constraints (equality of the expected KL-divergences) should then
be modified accordingly.

Throughout the thesis we consider no preferences among sources, unless ex-
plicitly stated. We thus set w0j equal and, following the discussion above, we
obtain the arithmetic mean of p1, . . . , ps as the prior guess on parameters of the
Dirichlet distribution

ν0i =

∑s
j=1 pji

s
i = 1, . . . , n. (3.8)

Based on the choice of prior pdf π0(q|p1, . . . , ps) we were able to determine
that the conditional pdf π̂(q|p1, . . . , ps) is pdf of the Dirichlet distribution with
parameters ν̂1, . . . , ν̂n. In order to fully determine π̂(q|p1, . . . , ps) and the optimal
combination (3.3), it is sufficient to search for ν̂1, . . . , ν̂n meeting (2.7) and mini-
mizing (2.10) instead of searching through the set of all possible conditional pdfs.
This is practically applicable whenever the number n of possible realizations of
discrete random vector X (and thus the number of parameters ν01, . . . , ν0n and
ν̂1, . . . , ν̂n) is smaller or comparable with the number s of information sources.
The technicalities of this search are given in the next section.

3.2 Search for parameters and coefficients yield-

ing proposed combination

In this section we focus on properties of the derived combination in terms of
ν̂1, . . . , ν̂n and λ1, . . . , λs−1 when pmfs p1, . . . , ps are given and

∑n
i=1 ν0i = 1.

3.2.1 Numerical search for parameters of the Dirichlet
distribution

Minimization of the KL-divergence in (2.10), when constraints in (2.7) are met,
forms a task of non-linear optimization with constraints represented by the sys-
tem of (s − 1) equalities with n unknown parameters ν1, . . . , νn. According to
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Proposition 3.1, π(q|p1, . . . , ps) is now pdf of the Dirichlet distribution. The con-
straints

Eπ(q|ν1,...,νn)[KLD(pj||q)|p1, . . . , ps] = Eπ(q|ν1,...,νn)[KLD(ps||q)|p1, . . . , ps],

j = 1, . . . , s − 1, are in the considered case represented by the following system
of equations (see (2.8) and (2.9))

−H(pj)+H(ps) =
n∑
i=1

(pji−psi)

(
ψ(νi)− ψ

(
n∑
i=1

νi

))
︸ ︷︷ ︸

Eπ(q|p1,...,ps)(ln qi)

j = 1, . . . , s−1, (3.9)

where ν1, . . . , νn are unknown parameters of pdf π(q|p1, . . . , ps) and ψ(.) is the
digamma (psi) function, see Section 1.3.

To solve (2.10) with Dir(ν01, . . . , ν0n) as prior pdf π0(q|p1, . . . , ps) under (3.9)
we exploit the penalty function approximation, thoroughly treated, e.g., by (Boyd
and Vandenberghe, 2004). It allows us to reformulate the hardly tractable con-
strained minimization task as a series of easier unconstrained minimization tasks.
Generally, a penalty function, which reaches its minimum when constraints are
met, is multiplied by the penalty parameter b, say,

b = 100, 1000, 10000, 100000, 1000000,

and added to the original minimized function.
We exploit the squared penalty function, which is in harmony with least-

squares handling of potentially inconsistent constraints (3.9). We then deal with
a following unconstrained minimization task for each b:

arg min
ν1,...,νn

KLD
(
π(q|ν1, . . . , νn)

∣∣∣∣π0(q|ν01, . . . , ν0n)
)

+ b×
s−1∑
j=1

[
−H(pj) +H(ps)−

n∑
i=1

(pji − psi)

(
ψ(νi)− ψ

(
n∑
k=1

νk

))]2

w.r.t. νi > 0 i = 1, . . . , n,
n∑
i=1

νi =
n∑
i=1

ν0i = 1, (3.10)

where π(q|p1, . . . , ps) and π0(q|p1, . . . , ps) are pdfs of the Dirichlet distribution
with parameters νi = νi(p1i, . . . , psi) and ν0i = ν0i(p1i, . . . , psi) respectively, and
with (ν01, . . . , ν0n) based on the arithmetic mean of p1, . . . , ps.

We have shown theoretically in Proposition 2.3 that pdf π̂(q|p1, . . . , ps) (in
the present case represented by n-tuple ν̂1, . . . , ν̂n) solving (2.10) and meeting
(2.7) exists and is unique. Since we now rely on numerical approach, in the
following examples we demonstrate the behavior of new minimized function (3.10)
for n ≥ s− 1 and n < s− 1.

In the following examples Matlab software was used to obtain the figures
capturing the behavior of the minimized function. To obtain ν̂1, . . . , ν̂n (and
thus q̂) we exploited the standard Matlab function fmincon (for details see http:

//www.mathworks.com/help/optim/ug/fmincon.html).

http://www.mathworks.com/help/optim/ug/fmincon.html
http://www.mathworks.com/help/optim/ug/fmincon.html
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Remark. When no data and no prior information is available, the maximum en-
tropy principle (being special case of the minimum cross-entropy principle) states
that we should exploit the pmf with the largest entropy - pmf of the uniform dis-
tribution. When data is available, the minimizing pmf (optimal combination)
will shift from the pmf of the uniform distribution towards the data, still having
the largest possible entropy. Since the combination (3.3) is generally not a con-
vex combination, the optimal combination q̂ can lie outside of the range of pmfs
p1, . . . , ps – with higher entropy than any of them.

Example 3.2. This low-dimensional example illustrates how the penalty based
optimization behaves in the simplest case. Let sources provide the following pmfs:

p1 = [0.9, 0.1]

p2 = [0.55, 0.45].

Assume that the prior pmf p0 is (0.725, 0.275), the arithmetic mean of p1 and p2.
Fig. 3.1 shows the behavior of the minimized function (3.10) and logarithm of
these values for different values of penalty parameter b. The example indicates
that the optimized function can be very flat around minimum (Fig. 3.1 on the left)
but minimum is clearly visible on logarithmic version of the optimized function
(Fig. 3.1 on the right). The optimal combination q̂ of p1 and p2 lies within
the range of provided pmfs and is shifted towards the source with higher entropy
(providing p2):

q̂ = (0.602, 0.398).

Let us now have sources with the exact same entropy but opposite opinions

p1 = [0.6, 0.4]

p2 = [0.4, 0.6].

Prior pmf is again their arithmetic mean: p0 = (0.5, 0.5). As one would expect,
their optimal combination lies in the ‘middle’ of their range:

q̂ = (0.5, 0.5).

Example 3.3. This example provides an insight into multivariate cases and
shows behavior of the penalty-based optimization for the lowest possible number
of sources s and higher number of outcomes n. Let sources provide the following
pmfs:

p1 = [0.65, 0.2, 0.15]

p2 = [0.55, 0.15, 0.3].

Consider the prior pmf as the arithmetic mean of p1 and p2: p0 = (0.6, 0.175, 0.225).
The logarithm of minimized function (3.10), for better visibility of the minimiz-
ing element, is given in Fig. 3.2 (top). It is complemented by a zoomed view
on a smaller set of (ν1, ν2, ν3), see Fig. 3.2 (bottom). Note that the constraint∑3

i=1 νi = 1 determines ν3. Value of the optimal combination of p1, p2, p3 lies
within the range of provided pmfs and is shifted towards the source with higher
entropy (providing p2): q̂ = (0.57, 0.16, 0.27).
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Fig. 3.1: On the left: behavior of the minimized function (3.10). On the right:
behavior of the logarithm of the minimized function (3.10). The results corre-
spond with different values of b and n = 2, s = 2. Only dependence on ν1 is
shown, as ν2 = 1− ν1.

Example 3.4. This example provides a non-trivial but still understandable mul-
tivariate case. Let sources provide the following pmfs:

p1 = [0.5, 0.15, 0.35]

p2 = [0.55, 0.25, 0.2]

p3 = [0.6, 0.1, 0.3]

p4 = [0.33, 0.33, 0.33]

Consider the prior pmf p0 = (0.495, 0.2, 0.295) as the arithmetic mean of p1, . . . , p4.
Fig. 3.3 captures the behavior of (3.10) for n = 3, s = 4, where the parameter
ν4 > 0 is determined by the requirement

∑n
i=1 νi = 1. This example indicates the

desirable property: numerical behavior is similar to cases with more freedom. The
minimization led to the optimal combination q̂ = (0.38, 0.29, 0.33).
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Fig. 3.2: Top: Behavior of the logarithm of the minimized function (3.10), where
b = 1000000, n = 3, s = 2 (different angles of view). Bottom: Behavior of the
same function on a smaller set of ν1, ν2 (different angles of view).

3.2.2 Numerical search for coefficients in proposed com-
bination

Commonly the number of sources s is finite while the number of possible outcomes
of X denoted by n can be very large (the case s � n is the generic one). Then,
the optimization over the Lagrange multipliers is the only viable option.

If n � s or if we are interested in coefficients λ1, . . . , λs−1, we can, based on
relation (3.2), minimize function (3.10) with respect to λ1, . . . , λs−1 instead of
ν1, . . . , νn. In this section we focus on several technicalities that occur in such
case.

To obtain λ1, . . . , λs−1 we again exploit squared penalty function. In particu-
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Fig. 3.3: Behavior of the logarithm of the minimized function (3.10), where b =
1000000, n = 3, s = 4 (different angles of view).

lar, we numerically search for λ1, . . . , λs−1 minimizing

KLD
(
π(q|νi(λ1, . . . , λs−1), i = 1, . . . , n)

∣∣∣∣π0(q|p1, . . . , ps))
+ b×

s−1∑
j=1

[
−H(pj) +H(ps)

−
n∑
i=1

(pji − psi)

(
ψ(νi(λ1, . . . , λs−1))− ψ

(
n∑
k=1

(νk(λ1, . . . , λs−1))

))]2
w.r.t. νi(λ1, . . . , λs−1) > 0 i = 1, . . . , n, (3.11)

where π(q|νi(λ1, . . . , λs−1), i = 1, . . . , n) and π0(q|p1, . . . , ps) are pdfs of the Dirich-
let distribution with parameters

νi(λ1, . . . , λs−1) = p0i +
s−1∑
j=1

λjpji +

(
−

s−1∑
j=1

λj

)
psi,

and ν0i = p0i, respectively. The parameters ν01, . . . , ν0n are based on arithmetic
mean of p1, . . . , ps.

Consequence of relation between ν̂1, . . . , ν̂n and λ1, . . . , λs−1

Based on results from Proposition 3.1 we now study how the relation (3.2),
plugged into (3.10) and yielding (3.11), influences the search for λ1, . . . , λs−1. The
uniqueness of ν̂1, . . . , ν̂n, the assumption

∑n
i=1 ν̂i = 1 and relation (3.2) yield two

cases:

1. First, if n > s− 1, the exact solution may not exist. However, we can still
obtain the approximation of the solution by using, e.g., least squares. This
idea supports our choice of the quadratic penalty function in Section 3.2.2.
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2. Second, when n ≤ s−1, we deal with the underdetermined system yielding
infinitely many (s− 1)-tuples λ1, . . . , λs−1 minimizing (3.11).

Thus, if we perform the optimization directly with respect to λ1, . . . , λs−1,
their values might be ambiguous while the value of the optimal combination will
stay unchanged.

The following examples show the behavior of the function (3.11) with respect
to λ1, . . . , λs−1.

Example 3.5. Let sources provide the pmfs given in Example 3.2:

p1 = [0.9, 0.1]

p2 = [0.55, 0.45].

As the examples in Section 3.2.1 suggested, the minimized function (3.11) is flat
on the set of ν1, . . . , νn satisfying

∑n
i=1 νi = 1 and νi > 0, i = 1, . . . , n, see Fig.

3.1 on the left. We obtain the same results when studying the dependency of
this function on coefficient λ1, see Fig. 3.4 on the left. Using logarithm of the
minimized function, the minimum is clearly visible, see Fig. 3.4 on the right. The
obtained optimal combination q̂ = (0.602, 0.398) coincides with result in Example
3.2.

Example 3.6. In this example we demonstrate the above discussed consequence
of relation (3.2) between λ1, . . . , λs−1 and ν1, . . . , νn in multivariate case.

First, let three sources (s = 3) provide the following pmfs (n = 3):

p1 = [0.75, 0.15, 0.1]

p2 = [0.6, 0.25, 0.15]

p3 = [0.1, 0.2, 0.7].

Fig. 3.5 (top) captures the logarithm of the minimized function (3.11) for prior
guess p0 chosen as arithmetic mean of p1, p2 and p3: (0.48, 0.2, 0.32). The unique
minimizer (λ1, λ2) = (−0.29, 0.18), yielding optimal combination of p1, p2, p3:
q̂ = (0.38, 0.22, 0.39), is visible (see discussion for case n > s− 1).

Second, let three sources (s = 3) provide the following pmfs (n = 2):

p1 = [0.85, 0.15]

p2 = [0.7, 0.3]

p3 = [0.4, 0.6]

Fig. 3.5 (bottom) captures the logarithm of the minimized function (3.11) for
prior guess p0 again chosen as the arithmetic mean of p1, p2 and p3: (0.65, 0.35).
We clearly see the ambiguity in pairs (λ1, λ2) (see discussion for case n ≤ s− 1).
However, the optimal combination of p1, p2, p3 is unique: q̂ = (0.55, 0.45).

Remark. The optimal estimator q̂ of the desired combination q proposed in (3.3)
was derived under the assumption that all elements of the prior guess ν01, . . . , ν0n
are positive. We also assumed that all considered sources have the same support
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Fig. 3.4: On the left: Behavior of the minimized function (3.11). On the right:
Behavior of the logarithm of the minimized function (3.11). Different values of b,
n = 2, s = 2.

and thus provided pji are positive too, i = 1, . . . , n, j = 1, . . . , s. Then, the
arithmetic mean of provided pmfs p1, . . . , ps serves as a correct prior guess of
ν01, . . . , ν0n. In the case there is index i such that pji = 0 for all j, we suggest to
set ν0i as a small positive value (e.g., ≤ 10−5).

Remark. Throughout this thesis we assume the dimension n of q = (q1, . . . , qn)
is finite. The extension to countably many elements of q involves the changes in
exploited Dirichlet distribution Dir(ν01, . . . , ν0n). Let us consider the following
reparametrization: dp0i = ν0i, where p0i can be viewed as a prior guess on qi,
i = 1, . . . , n, and d < ∞ as a concentration parameter around p0i:

∑n
i=1 ν0i =

d < ∞. For all choices of this type, limit of the combination (3.3) for n → ∞
exists and provides a continuous extension of the finite case. It corresponds
to the extension when we consider a Dirichlet process (P (A1), . . . , P (Al)) ∼
Dir(dP0(A1), . . . , dP0(Al)), see (Ferguson, 1973). Here, P0 is a probability mea-
sure on the measurable space (Λ, σ(Λ)) and {A1, . . . , Al} are pairwise disjoint
partitions, ∪lk=1Ak = Λ. This will allow to relate the proposed combination (3.3)
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Fig. 3.5: Top: Behavior of the logarithm of the minimized function (3.11) with
respect to λ1 and λ2, b = 10000000, n = 3 and s = 3 (different angles of view).
The minimum is clearly visible. Bottom: Behavior of the logarithm of the mini-
mized function (3.11) with respect to λ1 and λ2, b = 10000000, n = 2 and s = 3
(different angles of view). Many minimizing pairs of λ1 and λ2, yielding a unique
value of the optimal combination of provided pmfs, exist.

and pdfs describing finite-dimensional real space. Such approach makes our me-
thodology widely applicable and is of further interest in future work.
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3.3 Additional properties of proposed combina-

tion

In this section we discuss three interesting features of the derived optimal esti-
mator q̂:

1. Since the formula (3.3) includes differences between p1, . . . , ps−1 and ps we
first inspect how the value of the final combination changes with duplicate
observations (Section 3.7).

2. Second, we focus on the difference between optimal combination obtained
by data processed at once (static case) and processed sequentially (referred
to as the dynamic case).

3. Recall the discussion after Proposition 3.1 regarding the occurrence of pa-
rameters ν01, . . . , ν0n and pmfs p1, . . . , ps in formula (3.3) of the estima-
tor q̂. When no other information about sources is available, we assumed
that

∑n
i=1 ν0i = 1 and the arithmetic mean was chosen as prior guess on

(ν01, . . . , ν0n). We study how the optimal combination q̂ changes when pmfs
p1, . . . , ps also the preferences about sources (allowing

∑n
i=1 ν0i 6= 1) are

given.

3.3.1 Duplicate observations

In this section we study the change in optimal combination (3.3) when duplicate
pmfs occur.

Proposition 3.7. Let λ1, . . . , λs−1, λs be the coefficients in the combination q̂ of
p1, . . . , ps, ps+1. Then, for a fixed prior pmf p0, the combination of p1, . . . , ps, ps+1,
where ps+1,i = pk,i for some k ∈ {1, . . . , s}, i = 1, . . . , n, coincides with q̂ evaluated
with omission of ps+1 and unchanged p0.

Proof. Without loss of generality assume that pmf of (s + 1)st source coincides
with pmf od sth source. The dissimilarity constraints look as follows:

Eπ(q|p1,...,ps,ps+1) [KLD(pj|q)|p1, . . . , ps] = Eπ(q|p1,...,ps,ps+1) [KLD(ps+1|q)|p1, . . . , ps]

j = 1, . . . , s. The optimal combination q̂ based on p1, . . . , ps, ps+1 for
∑n

i=1 ν0i = 1
has the following form:

q̂i = p0i +
s∑
j=1

λj(pji − p(s+1)i)

= p0i +
s−1∑
j=1

λj(pji − psi) + λs(psi − psi).

The right-hand side of the last equation includes only (pji−psi), j = 1, . . . , s− 1,
with coefficients λ1, . . . , λs−1. Thus, for fixed prior pmf p0, the optimization (3.11)
based on s+ 1 pmfs where psi = ps+1,i, i = 1, . . . , n, coincides with optimization
based on s pmfs, i.e., without the repeated pmf.
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Remark. Let us focus on kth source, k 6= s. The additivity property of com-
bination (3.3) implies that if other s1 sources gave the same pmf pk, then the
coefficient of each source equals λk

s1
.

Remark. It may seem strange that repeated sources’ opinion are not taken more
“seriously”, with a higher weight. This is consequence of the fact that individual
sources are not qualified by a weight reflecting their reliability. When such a
weighting will be introduced, the coincidence of opinions can be taken into account
and distinguished from cheating by repetitions of the same opinion.

The current solution without weights is of a conservative type. It qualifies all
repetitions as “cheating” and prevents overweighing of such source.

The choice of p0 as arithmetic mean allows plausible deviation from this con-
servative treatment as it takes into account all, even repetitive, sources.

Example 3.8. To illustrate the effect of duplication let us have 2 sources giving
the following pmfs:

p1 = [0.75, 0.15, 0.1]

p2 = [0.7, 0.1, 0.2].

Prior guess is p0 is the arithmetic mean of p1 and p2,
∑n

i=1 ν0i = 1. The optimal
combination lies within the range of given pmfs - q̂ = (0.71, 0.11, 0.18). Consider
now 3 sources as follows:

p1 = [0.75, 0.15, 0.1]

p2 = [0.75, 0.15, 0.1]

p3 = [0.7, 0.1, 0.2]

Despite the first and the second source provided the same pmf the resulting pmf
is again (0.71, 0.11, 0.18).

3.3.2 Dynamic case

In the previous sections we assumed that the given data were combined in a batch.
In this section we would like to extend the use of the proposed combining to the
case when pmfs are processed sequentially, i.e., at each time instant t = 1, . . . , T ,
T <∞ a set of st new pmfs is available.

According to the combining proposed in Proposition 3.1, we should with ev-
ery new set of data join the old data and new data together, which might be
computationally inefficient. Thus, we suggest to connect it to the value of the
optimal estimator q̂ from the previous time step in the following way:

a) combine pmfs pt,1, . . . , pt,st available at time step t using (3.3) to obtain q̂∗t ,

b) then combine q̂∗t and q̂t−1 from the previous step t− 1 using again (3.3) to
obtain final q̂t.
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The value of the optimal combination when data are processed according to the
proposed idea is (consider T = 2):

At time step t = 1:

q̂1,i =
1

s1

s1∑
j=1

p1,ji︸ ︷︷ ︸
p1,0i

+

s1−1∑
j=1

λ1,j(p1,ji − p1,si). (3.12)

At time step t = 2:

q̂∗2,i =
1

s2

s2∑
j=1

p2,ji +

s2−1∑
j=1

λ∗2,j(p2,ji − p2,si),

q̂2,i =
1

2
(q̂∗2,i + q̂t−1,i)︸ ︷︷ ︸

pt,0i

+λ2,1(q̂
∗
2,i − q̂t−1,i), (3.13)

where q̂1 is the combination of p1, . . . , ps1 based on (3.3) with coefficients λ1,j,
j = 1, . . . , s1 (we assume

∑n
i=1 νt,0i = 1 for all t).

The combination q̂∗2 is based on p1, . . . , ps2 with coefficients λ∗2,j, j = 1, . . . , s2,
s2 = 2. Finally, q̂2,i is the combination of q̂∗2 and q̂1 again based on (3.3) with
coefficient λ2,1 (we combine only two pmfs).

If we process all given data at once, the resulting value of the combination is:

q̂all,i =
1

s

s∑
j=1

pji︸ ︷︷ ︸
p0i

+
s−1∑
j=1

λj(pji − psi)

=
s−1∑
j=1

(
1

s
+ λj

)
pji +

(
1

s
−

s−1∑
j=1

λj

)
psi (3.14)

where s = s1 + . . .+ sT .
By inserting the combination q̂t−1 into q̂t (3.13) we generally obtain different

value of the combination to the value obtained by combining s sources directly
(3.14). The comparison of both ways is given in the following example.

Example 3.9. Let the sources provide the following pmfs:

time step t = 1

p1 = [0.7, 0.3, 0]

p2 = [0.3, 0.1, 0.6]

time step t = 2

p3 = [0.35, 0.55, 0.1]

p4 = [0.4, 0.15, 0.45].

By exploiting the combination (3.3) and ideas in (3.13) and (3.14) we obtained
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the following results at time step t = 2:

arithmetic mean of all pmfs : (0.4375, 0.2750, 0.2875)

combining by proposed idea (3.13) : (0.3796, 0.3231, 0.2974)

combining all pmfs at once (3.14) : (0.3862, 0.3207, 0.2931)

In this simple case, we obtained similar results for both approaches, which is
encouraging for further investigation of proposed dynamic combining (3.13).

The question how well the sequential incorporation of data influences the fi-
nal value of the optimal combination q̂ is of interest for further research. Similar
problem regarding the approximations in the field of recursive Bayesian estima-
tion has been discussed recently, see (Kárný, 2014).

3.3.3 Prior probabilities influenced by preferences

The relation between the parameters ν̂1, . . . , ν̂n and provided pmfs p1, . . . , ps
given in (3.2) motivated the choice

∑n
i=1 ν0i = 1. With no preferences among

sources the arithmetic mean of p1, . . . , ps was chosen to serve as the prior guess
(ν01, . . . , ν0n).

In this section, we assume that sources can be assigned prior coefficients
w0j > 0 reflecting their importance as suggested in (3.7),

ν0i =
s∑
j=1

w0jpji,

and yielding
n∑
i=1

ν0i =
n∑
i=1

s∑
j=1

w0jpji =
s∑
j=1

w0j.

Such coefficients can reflect, e.g., the number of observations on which pj is based.
Besides the prior values ν01, . . . , ν0n, it is also desirable that the constraints

(2.7) will be affected by these weights. In particular, we approach the combination
to more important sources by requiring

wjE [KLD(pj||q)|p1, . . . , ps] = wsE [KLD(ps||q)|p1, . . . , ps] ,

j = 1, . . . , s− 1, yielding the following weighted counterpart of constraints (3.9):

−wjH(pj) + wsH(ps) =
n∑
i=1

(pjiwj − psiws)

[
ψ(νi)− ψ

(
n∑
k=1

νk

)]
.

Then, the optimal estimator q̂ of desired combination q is

q̂i = p0i +
s−1∑
j=1

λj∑s
l=1wl

(wjpji − wspsi), i = 1, . . . , n,
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where

p0i =
ν0i∑n
k=1 ν0k

=
s∑
j=1

wjpji∑s
l=1wl

.

In the presented discussion, we have assumed that the elements of pmf provided
by source j, j = 1, . . . , s, have the same weights wji = const, i = 1, . . . , n.
If needed, also an element-dependent version wji, i = 1, . . . , n, can be simply
exploited similarly to the method developed in (Guiaşu, 1971).

Remark. In this remark we focus on case when we change the sum of weights
while keeping the proportion among weights the same. Consider the following two
sets of weights

s∑
j=1

wj = d and
s∑
j=1

w∗j =
s∑
j=1

kwj = d∗.

The prior guesses on the parameters of the Dirichlet distribution then look as
follows:

for w1, . . . , ws : ν0i =
s∑
j=1

wjpji

for w∗1, . . . , w
∗
s : ν∗0i =

s∑
j=1

w∗jpji

From the formula (3.3) for q̂ derived for weights w∗

q̂i =
s∑
j=1

kwjpji∑s
l=1 kwl

+
s−1∑
j=1

λj∑s
l=1 kwl

(kwjpji − kwspsi),

where k = d∗

d
, it might seem that both optimal estimators, based on w and w∗,

coincide.
Recall the function (3.10):

KLD(π(q|p1, . . . , ps)||π0(q|p1, . . . , ps)) = ln
Γ(
∑n

i=1 νi)

Γ(
∑n

i=1 ν0i)
+

n∑
i=1

ln
Γ(ν0i)

Γ(νi)

+
n∑
i=1

(νi − ν0i)

(
ψ(νi)− ψ

(
n∑
k=1

νk

))

leading to q̂ by minimization with respect to ν1, . . . , νn or by minimization of
(3.11) with respect to λ1, . . . , λs−1. Due to non-linearity of this function in prior
guess ν01, . . . , ν0n we can not expect the combinations based on w1, . . . , ws and
w∗1 = kw1, . . . , w

∗
s = kws to be equal.

The following example demonstrates the change in q̂ with change of d, while
keeping the preference ratio among sources the same.
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Example 3.10. Let us have 2 sources providing pmfs

p1 = [0.7, 0.2, 0.1]

p2 = [0.6, 0.1, 0.3]

having equal weights w1 and w2, respectively. Let d ∈ {0.1, 1, 10}. Then, for the
prior guess

p0 =
w1p1 + w2p2∑2

j=1wj

we obtain the following optimal estimates q̂:

w1 = w2 = 0.05,
2∑
j=1

wj = 0.1 : q̂ = (0.53, 0.19, 0.28)

w1 = w2 = 0.5,
2∑
j=1

wj = 1 : q̂ = (0.64, 0.14, 0.22)

w1 = w2 = 5,
2∑
j=1

wj = 10 : q̂ = (0.65, 0.15, 0.20).

With higher
∑n

i=1wi the optimal combination tends towards the arithmetic mean
of provided pmfs.

When the first source has a higher preference (four times higher than the sec-
ond source: w1 = 4w2), the resulting combination, for different sums of weights,
becomes:

w1 = 0.08, w2 = 0.02,
2∑
j=1

wj = 0.1 : q̂ = (0.57, 0.30, 0.13)

w1 = 0.8, w2 = 0.2,
2∑
j=1

wj = 1 : q̂ = (0.59, 0.30, 0.11)

w1 = 8, w2 = 2,
2∑
j=1

wj = 10 : q̂ = (0.69, 0.25, 0.06).

The resulting combination converges towards the first source as
∑n

i=1wi =
∑n

i=1 ν0i
grows.



Chapter 4

Extension and transformation to
joint pmf

In the previous chapters we assumed that the opinions about the outcomes of a
common discrete random vector X given by sources 1, . . . , s were in the proba-
bilistic form. In particular, we assumed that all sources had the same support
and provided joint pmfs pji = Pj(X = xi) over outcomes {xi}ni=1 of X,

pji ≥ 0,
n∑
i=1

pji = 1, i = 1, . . . , n, j = 1, . . . , s, n, s <∞.

The optimal combination of p1, . . . , ps, derived as optimal estimator q̂ of unknown
desired combination q, was given in Proposition 3.1.

In this chapter we extend the versatility of combining proposed in Chapter 3
by considering new types of provided information: a probabilistic (but not joint)
type and a non-probabilistic type. To show that proposed optimal combination
(3.3) is applicable also to other types than joint pmfs, we define extension and
transformation of provided information. Their definitions form the contribution
of this chapter.

To introduce the notion of probabilistic and non-probabilistic type of infor-
mation, let the modeled random vector X consist of m random variables

X = (X1, . . . , Xk, Xk+1, . . . , Xm), m <∞,

again with a finite number of outcomes xi, i = 1, . . . , n < ∞. Examples of the
non-joint probabilistic data are then

– a conditional probability vector of X1, . . . , Xk given values of Xk+1, . . . , Xm,

– a marginal probability vector of X1, . . . , Xk.

To obtain the optimal combination q̂ we appropriately extend these provided
conditional or marginal pmfs to the joint probability vector of X so that formula
(3.3) can be applied. If the information is in a non-probabilistic form such as

– a subset of the set of possible outcomes of X,

41
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– an expected values of X is available,

we propose a transformation into probabilistic form. We can then extend the
transformed information into the joint probability vector, if needed, and apply
(3.3).

4.1 Probabilistic data – extension

The following section includes the suggestion how to extend given conditional
pmfs to the joint pmfs and an example demonstrating the behavior of the resulting
optimal estimator q̂.

4.1.1 Conditional probability

Assume each source provided the conditional pmf

pj(x1, . . . , xkj |xkj+1, . . . , xm)

= Pj(X1 = x1, . . . , Xkj = xkj |Xkj+1 = xkj+1, . . . , Xm = xm)

where j = 1, . . . , s. The set of indices 1, . . . ,m splits for the jth source on indices
pointing to probabilistically described values uj and values in condition vj, which
allows us to simplify the notation

(x1, . . . , xkj) = uj and (xkj+1, . . . , xm) = vj

and to symbolically describe the set of outcomes {(x1, . . . , xkj+1)} by {uj} and
the set of outcomes {(xkj+1, . . . , xm)} by {vj}.

The combination q̂ requires joint probabilities and thus we want to construct
the extension p∗j of pj.

Definition 4.1. Joint pmf p∗j = p∗j(uj, vj) is called a reasonable extension of con-
ditional pmf pj(uj|vj) provided by jth source if it satisfies two following properties:

a) its conditional version coincides with given pmf:

pj(uj|vj) = p∗j(uj|vj),

b) it is the best approximation of q̂ in terms of KL-divergence

p∗j = arg min KLD(q̂||p•j),

with minimization performed over the set of all joint pmfs p•j satisfying a),

where q̂ is the optimal combination of the processed information sources and uj,
vj denote the splitting of (x1, . . . , xm) for the jth source.

This is in harmony with Bernardo (1979) and similar idea was used by Kárný
et al. (2009).

The exact form of the extension p∗j is given in the next proposition.
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Proposition 4.2. The reasonable extension p∗j(uj, vj) of a given conditional pmf
pj(uj|vj) introduced in Definition 4.1, has the form of chain rule with the un-
available marginal pmf pj(vj) replaced by the corresponding marginal pmf q̂(vj) of
q̂(uj, vj)

p∗j(uj, vj) = pj(uj|vj)q̂(vj), (4.1)

where uj, vj denote the splitting of (x1, . . . , xm) for the jth source.

Proof. The KL-divergence (1.1)

KLD(q̂||p•j) =
∑

{uj},{vj}

q̂(uj, vj) ln
q̂(uj, vj)

p•j(uj, vj)

= −H(q̂)−
∑

{uj},{vj}

q̂(uj, vj) ln p•j(uj, vj)

= −H(q̂)−
∑

{uj},{vj}

q̂(uj, vj) ln pj(uj|vj)−
∑

{uj},{vj}

q̂(uj|vj)q̂(vj) ln p•j(vj)

is minimized by p∗j(vj) = q̂(vj), which yields the extension (4.1).

The reasonable extensions p∗j , j = 1, . . . , s, defining the joint pmfs of X can
be now combined as presented before by (3.3). The only change is that it will
lead to implicit relations for q̂, whose marginal pfms are used in extensions:

p∗j(uj, vj) = pj(uj|vj)× q̂(vj).

Thus, if the jth source provides a conditional probability with respect to the
splitting x = (uj, vj) and the sth source gives conditional pmf with respect to the
splitting x = (ys, zs), the dissimilarity constraint is:

H(p∗j) +
∑

{uj},{vj}

pj(uj|vj)q̂(vj)× Eπ(q|p1,...,ps) ln q(uj, vj)

= H(p∗s) +
∑

{us},{vs}

ps(us|vs)q̂(vs)× Eπ(q|p1,...,ps) ln q(us, vs).

The solution of the resulting implicit relation (recall (3.7))

q̂(uj, vj) =
s∑
j=1

w0jp
∗
j(uj, vj)︸ ︷︷ ︸

p0(uj ,vj)

+
s−1∑
j=1

λj

(
pj(uj|vj)q̂(vj)− ps(us|vs)q̂(vs)

)
(4.2)

is non-trivial due to the dependence on marginal pmfs q̂(vj) and q̂(vs) of q̂(x).
The computation can be approached by successive approximations: by inserting
a guess of q̂ to the right-hand side of equation and obtaining a new guess on
left-hand-side, etc. until reaching a stationary solution. This possibility is not
elaborated here in detail. However, the following example indicates how the vital
initial guess can be obtained in dynamic scenario.
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In the dynamic scenario the solution of the implicit equation q̂t(uj, vj) enters
into the constraints via the marginals q̂t(vj), which are available only at the end
of – inevitably iterative – computation at time instant t. Now, the idea is to
use q̂t−1(vj), obtained from q̂t−1(uj, vj), instead of q̂t(vj). The evaluation starts
at t = 1 with pmf of the uniform distribution as q̂t−1(vj). Then, we apply the
dynamic scenario described in Section 3.3.2.

Note that at each time instant we can compute a conditional version of the
combination q̂t respecting the variables considered by particular source. This
conditional version can be then used by the particular source in the case it is
unable to exploit the joint version. This feature extends the applicability of
combining proposed in the previous chapter.

The following example shows the evolution of the optimal combination q̂t of
the desired combination q in time course.

Example 4.3. Let X = (X1, X2) where X1 and X2 have possible outcomes
{1, 2, 3}, (m = 2). Assume we have s = 3 sources providing conditional pmfs
pj(u|v), for ease of presentation with a common splitting u = x1, v = x2. At time
t = 1, the first source provides the following:

p1(u|v) V = 1 V = 2 V = 3
U = 1 1/4 1/2 1/3
U = 2 3/4 1/2 1/3
U = 1 0 0 1/3

the second source provides:

p2(u|v) V = 1 V = 2 V = 3
U = 1 1/5 1/3 1/4
U = 2 2/5 1/6 1/4
U = 3 2/5 1/2 1/2

and the third source provides:

p3(u|v) V = 1 V = 2 V = 3
U = 1 0 1/8 1/2
U = 2 1/2 5/8 1/4
U = 3 1/2 1/4 1/4

The outcomes x = (u, v) are ordered pairs with the following structure:

• x1 = (1, 1), x2 = (1, 2), x3 = (1, 3)

• x4 = (2, 1), x5 = (2, 2), x6 = (2, 3)

• x7 = (3, 1), x8 = (3, 2), x9 = (3, 3).
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Fig. 4.1: The optimal combination q̂ of conditional pmfs after proposed extension,
b = 10000, s = 3, n = 9, t = 1, . . . , 25.

We consider a dynamic scenario and at each time instant t, t = 1, . . . , 25, we
generate new vector of conditional probabilities for each source by adding and
subtracting a small noise of order less than 10−3 to provided pmfs, while keeping
the properties of conditional pmf satisfied. In order to obtain the joint pmfs we
exploit the extension (4.1) and the idea proposed for the dynamic case by (3.13).
The behavior of the optimal combination q̂ is shown in Fig. 4.1.

After the last step of computation the resulting conditional pmf (projected back
to sources) is:

q̂T (u|v) V = 1 V = 2 V = 3
U = 1 0.2 0.34 0.32
U = 2 0.49 0.3 0.28
U = 3 0.31 0.36 0.4
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4.1.2 Marginal probability

Assume the jth source provides the marginal pmf

pj(x1, . . . , xkj) = Pj(X1 = x1, . . . , Xkj = xkj),

where kj < m. Then, a similar need for extension as in Section 4.1.1 is faced.
Again, denote uj = (x1, . . . , xkj) and vj = (xkj+1, . . . , xm) splitting of x = (uj, vj)
for the jth source. To construct the extension to the joint pmf we exploit the
same idea as in the above section.

Definition 4.4. Joint pmf p∗j = p∗j(uj, vj) is called a reasonable extension of
marginal pmf pj(vj) provided by the jth source if

• a) its marginal version coincides with given marginal pmf: p∗j(vj) = pj(vj),

• b) it minimizes the Kullback-Leibler divergence KLD(q̂|p•j) among all pmfs
p•j satisfying a),

where q̂ is the optimal combination of the processed information sources and uj,
vj stand for the splitting of (x1, . . . , xm) for the jth source.

Similarly to Proposition 4.2 we can obtain the exact form of the extension

p∗j(uj, vj) = q̂(uj|vj)× pj(vj),

where q̂(uj|vj) is derived from q̂(uj, vj) and implicit equation similar to (4.2) is
to be solved.

For approximations and dynamic scenarios, we can exploit a similar idea as
in Section 4.1.1. Thus, at time instant t we use q̂t−1(uj|vj) instead of q̂t(uj|vj).

4.2 Non-probabilistic form – transformation

In this section we discuss the non-probabilistic form of provided information -
when subsets of the set of possible outcomes or requirements on expected value
of X are given.

4.2.1 Subsets of the set of outcomes

Subset of outcomes with specified probabilities

Assume that source provides a subset of possible outcomes together with the
probability of each outcome such that the sum of these probabilities is one. In
this case, we can directly proceed to the combining after extension of given pmf,
if needed.

Subset of outcomes with unspecified probabilities

Let us assume jth source provides the following information: ‘The possible
outcomes of X are xk and xl’ (xk 6= xl, k 6= l). Since the source does not specify
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which outcome is more probable, we assume both can appear with the same pro-
bability. Regarding other outcomes, we assume they are unlikely to appear and
thus the probability of any element in the set {x1, . . . , xn} \ {xk, xl} is zero. The
information given by jth source can be then represented by the following pmf:

pj = (0, . . . , 1/2︸︷︷︸
k

, . . . , 0, 1/2︸︷︷︸
l

, . . . , 0).

This holds for any subset of cardinality n1 ∈ {1, . . . , n}, where n denotes the
number of all possible (different) outcomes of X. Each of the considered outcomes
is then assigned probability 1/n1. Now, we can apply the above introduced
extension or combine pmfs directly.

A single numerical value

Let us assume that we have n possible outcomes of random vector X and n
sources, (s = n). Assume also each source suggests one outcome (a crisp) and,
for simplicity assume that jth source provides xj, j = 1, . . . , s. We exploit the
Kronecker delta,

pj(x) = δx,xj,given = 1 if x = xj,given

= 0 otherwise, (4.3)

to transform the numerical value given by jth source denoted by xj,given into pmf.
That is

pj = (0, . . . , 0, 1︸︷︷︸
xj ,given

, 0, . . . , 0),

with probability one assigned to outcome xj,given, j = 1, . . . , s.

A single numerical value: properties of the optimal combination

In this case, the corresponding entropies H(p1), . . . , H(pn) are equal (zero).
For the dissimilarity constraints in the static case the following holds:

H(pj) +
n∑
i=1

pji

(
ψ(νi)− ψ

(
n∑
k=1

νk

))
= H(ps) +

n∑
i=1

psi

(
ψ(νi)− ψ

(
n∑
k=1

νk

))

pj(xj,given)︸ ︷︷ ︸
1

ψ (νj,given)− nψ

(
n∑
k=1

νk

)
= ps(xs,given)︸ ︷︷ ︸

1

ψ(νs,given)− nψ

(
n∑
k=1

νk

)
.

Thus, we have
ψ(νj,given) = ψ(νs,given), j = 1, . . . , s− 1,

yielding
νk = νl, k, l = 1 . . . , n, (4.4)
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because the digamma function ψ(.) is a continuous increasing function on R+.
The following then holds for parameters (ν̂1, . . . , ν̂n) yielding q̂:

ν̂i = ν0i +
s−1∑
j=1

λj(pji − psi) = ν0i +
s−1∑
j=1

λjδxi,xj,given ,

ν̂n = ν0n +
s−1∑
j=1

λj(pjn − psn) = ν0n −
n−1∑
i=1

s−1∑
j=1

λjδxi,xj,given . (4.5)

According to the relation (4.4) we obtain that

s−1∑
j=1

λjδpji,psi = ν01 +
s−1∑
j=1

λjδpj1,ps1 − ν0i, i = 1, . . . , n− 1. (4.6)

By plugging (4.6) into the equation for νn in (4.5) we obtain

ν01 +
s−1∑
j=1

λjδpj1,ps1 = ν0n −
n−1∑
i=1

(
ν01 +

s−1∑
j=1

λjδpj1,ps1 − ν0i

)
,

and
s−1∑
j=1

λjδpj1,ps1 =

∑n
i=1 ν0i
n

− nν01
n

=
1

n
− ν01. (4.7)

Thus, in any case of prior guesses ν01, . . . , ν0n we are able to compute the exact
values of λ1, . . . , λs−1, while satisfying the equality relation (4.4). We demonstrate
the derived relation together with the case of duplicate pmfs in the following
example.

Example 4.5. Let us have random variable X with three possible outcomes
(n = 3) and sources (s = 3) providing following pmfs:

p1 = [1, 0, 0],

p2 = [0, 1, 0],

p3 = [0, 0, 1].

The prior guess ν01, . . . , ν0n is still considered as the arithmetic mean of available
pmfs

ν0i =
1

3
, i = 1, . . . , n.

According to (4.4) we obtain that

λ1 = λ2 = 0.

The optimal combination of p1, p2 and p3 is a pmf of the uniform distribution
q̂ = (0.33, 0.33, 0.33).

We next show that by adding duplicate pmf to the given set of pmfs the value of
the resulting optimal combination q̂ will not change. Note the difference between
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Proposition 3.7 and the current situation - now the prior guess ν01, . . . , ν0n (the
arithmetic mean of given pmfs) has changed.

If we add p4 = (1, 0, 0), the resulting combination (where the prior pmf p0
is the arithmetic mean of p1, . . . , p4) is again q̂ = (0.33, 0.33, 0.33). This is the
consequence of general relations (4.7) and (4.6) which allow us to compute exact
values of λ1, . . . , λ4 while keeping (4.4) satisfied.

In case of four sources with the above provided pmfs we obtain:

λ1 =
1

3
− 2

4
,

λ2 = λ3 =
2

4
+

(
1

3
− 2

4

)
− 1

4
=

1

3
− 1

4
.

For values ν̂i, related to outcomes xi which were not observed, the following
holds

ν̂i = ν0i. (4.8)

Since we ν01, . . . , ν0n are based on the arithmetic mean of given pmfs p1, . . . , ps,
for computational reasons (ν0i > 0, i = 1, . . . , n) we perturb such ν0i by a small
positive value (≤ 10−5) as noted in Remark 3.2.2. This suggestion is demonstrated
in the following example.

Example 4.6. Assume that after transformation we obtained the following pmfs:

p1 = [0, 0, 1]

p2 = [0, 1, 0]

p3 = [0, 1, 0]

As formula (4.8) suggests, in this case we have ν̂1 = ν01. Since throughout the
thesis we exploit prior pmf p0 as the arithmetic mean of given pmfs, this implies
ν01 = 0 which is in contradiction with constraints in (3.10). To solve this we sug-
gest to assign p01 a small positive value say < 10−5, which ensures the constraints
ν0i > 0, i = 1, . . . , n, are satisfied and minimizes the influence of ν01. The optimal
combination of p1, p2, p3, computed numerically, is q̂ = (0.00, 0.50, 0.50).

In the case that the range of X is not specified, we can focus on the union
of outcomes given by sources. The resulting pmf in the considered illustrative
example would be then q̂ = (0.5, 0.5).

A single numerical value: connection to Bayesian solution

In the next remark we study the connection of current derivations to the Bayes
rule in the situations in which it is applicable.

Remark. Let us consider a random event, which takes values in the set of n
possible values {xi}ni=1. The most general probability distribution covering this
case is the categorical distribution Cat(q1, . . . , qn), where qi = q(xi) = P (X = xi).
Vector q = (q1, . . . , qn) is an unknown parameter satisfying the properties of pmf:
0 ≤ qi ≤ 1,

∑n
i=1 qi = 1. Let us assume we have s independent observations

y1, . . . , ys. In order to obtain the estimator q̂ of q based on y1, . . . , ys we consider
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q as a random vector and exploit the theory of Bayesian estimation, i.e., the
Bayes rule

π(q|y1, . . . , ys) ∝ f(y1, . . . , ys|q)× π0(q)

where π0(q) is the prior pdf, f(y1, . . . , ys|q) is the likelihood and π(q|y1, . . . , ys) is
the posterior pdf. In this case the likelihood is

f(y1, . . . , ys|q) =
s∏
j=1

f(yj|q) =
n∏
i=1

q
∑s
j=1 δxi,yj

i ,

where δx,y denotes the Kronecker delta.
The estimator q̂ is then based on the resulting posterior pdf (is a function of

posterior pdf).
Here, we exploit the Dirichlet distribution, a conjugate prior for the categorical

distribution (Räıffa and Schlaifer, 1961). Thus, for Dir(α01, . . . , α0n) we obtain:

π(q|y1, . . . , ys) ∝
n∏
i=1

q
∑s
j=1 δxi,yj

i

n∏
i=1

qα0i−1
i .

The Bayesian update of parameters of the Dirichlet distribution based on y1, . . . , ys
is thus:

αi = α0i +
s∑
j=1

δxi,yj .

In the case that we know that the estimator q̂ is the conditional expectation with
respect to π(q|y1, . . . , ys) the following holds:

q̂i = Eπ(q|y1,...,ys)(qi|y1, . . . , ys) =
αi∑n
k=1 αk

=
α0i +

∑s
j=1 δxi,yj∑n

k=1 α0k + s
,

where
n∑
k=1

αk =
n∑
k=1

α0k +
s∑
j=1

n∑
k=1

δxk,yj .

The formula above reminds of the optimal combination q̂. In the case that
each source provided a single value from the set of possible values, we can rewrite
the formula (3.3) for prior pdf Dir(ν01, . . . , ν0n) as follows:

q̂i =
ν0i +

∑s−1
j=1 λjδxi,yj −

∑s−1
j=1 λjδxs,yj∑n

k=1 ν0k
. (4.9)

The main difference is in the sum of parameters: for the posterior pdf obtained
by the Bayes rule it is increased by number of sources s (the number of new
observations). In (4.9), the sum does not change, which coincides with the former
explanation that the prior can already be based on obtained data (can be expressed
in terms of new arrived data).
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4.2.2 Specified expected value

In this section we assume that sources’ opinions are represented by moments of
the discrete random vector X. For jth source the notation will be

ej = Epjφ(X), (4.10)

where pj is incompletely specified pmf with elements pji = Pj(X = xi) and φ(.) is
a given function of X (typically polynomial). In order to transform expectation
ej to pmf pj we exploit the maximum entropy principle or, if a guess p0j of pj is
available, the minimum cross-entropy principle (see Section 1.2).

Definition 4.7. Joint pmf pj is a reasonable representation of expected value ej
given by jth source if

• it satisfies relation (4.10);

• it maximizes entropy:
pj = arg maxH(p•j),

where the minimization is performed over the set of pmfs p•j satisfying a).

We choose pj with the largest entropy among all probability vectors satisfying
the relation (4.10) and use it in the optimal combination q̂ defined in (3.3).



Chapter 5

Real data application

In this chapter we apply the proposed combination to three different sets of
real data: data for decision making in a company, galaxy zoo data and data
from European social survey. Each section brings an overview of used data and
obtained results.

5.1 Decision making in contract evaluation

In this example we focus on decision making in a company satisfying the definition
of a small and medium enterprize. We would like to thank Dr. Ing. Pavel Ettler
(COMPUREG Plzeň, s.r.o.) for the data exploited in this section.

The company, owned by 5 partners, focuses on production of industrial devices
and information systems. Each owner possesses the same ownership stake and
thus, each vote is equivalently included in strategic decision making.

Company deals with orders or potential actions of following type:

A Order in the main domain of the company: built know-how can be used,
the assertion of the modification of existing solution is expected, assumed
to be the most profitable.

B Order in a new domain: a significant effort in search for a new solution is
expected, which makes this order less profitable.

C Long-term care about customer’s devices: functioning devices generally in-
fluence profitability of contracts A and B; broken devices lower their prof-
itability.

In this case the basic flat-rates, maximum length of the time period between reported

fault and beginning of the repair have to be defined.

D One-off repair of the device: broken device before repair - non-profitable,
repaired device influences profits of contracts A and B.

The decision, whether to accept or decline the order, is based on several criteria:
suggested price, expenses, employee capacity, required deadline. The data ob-
tained from owners is shown in Table 5.1. To help owners to decide and then to

52
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assign the priority to each contract and order we apply the proposed combination
(3.3).

5.1.1 Ranking without assigned probabilities

Here, we focus on Table 1 in Table 5.1 containing rankings P1, . . . , P5 of indi-
vidual partners for following aspects characterizing the above variants A-D:

• REI - relative expected income (% - mutually relative with the variant A
taken as the base),

• RD - relative demandingness (% - mutually relative with the variant A
taken as the base),

• DP - delivery period (months) of the order,

• Dist - distance (kilometers) to realization place influencing additional (non-
monetary) costs related to the given order,

• P1,. . ., P5 - ranking from five partners for each aspect (values on discrete
scale {1,. . .,10}, 1-least favorable, 10-most favorable),

• OIR1,. . ., OIR5 - overall individual ranking from five partners (a real num-
ber from [1, 10]).

Since the overall individual rankings (OIRs) from partners are available, the
company would like to know the resulting ranking for each contract and order.
Data are given in columns OR1,. . ., OR5 in Table 1 of Table 5.1. Let us consider
random variable X as ranking of a particular contract with possible outcomes x
equal to individual rankings and unknown pmf q(x). In search for the combina-
tion of OIRs we exploit Section 4.2.1. In particular, we interpret the outcomes
in the probabilistic form (pmfs p1, . . . , p5) and combine them using (3.3). Result-
ing optimal combination q̂ of p1, . . . , ps is the pmf of the uniform distribution,
as implied by (4.4). To give back a single ranking for each contract/order we
compute the expected value of OIRs with respect to the obtained pmf q̂. The
result is simply the weighted linear combination of individual rankings for equal
weights (partners votes are equivalent) summing to one, i.e., the arithmetic mean
of rankings. Resulting expected values for each contract are given in the following
table with contract numbers corresponding to numbering in Table 1 of Table 5.1:

No. 1 9.38 No. 2 9.38 No. 3 7.71 No. 4 6.56 No. 5 6.36

We see that contract No. 1 and No. 2 obtained the highest and the same
value of expected OIR, thus they are undistinguishable for us at the moment.
In the following section we study whether this remains true when we focus on
rankings of a particular aspect with assigned probabilities.



CHAPTER 5. REAL DATA APPLICATION 54
T
a
b
le

1
N
o
.

T
y
p
e

R
E
I

P
1

P
2

P
3

P
4

P
5

R
D

P
1

P
2

P
3

P
4

P
5

D
P

P
1

P
2

P
3

P
4

P
5

1
A

1
,0
0

1
0

1
0

9
1
0

1
0

1
,0
0

1
0

1
0

8
1
0

1
0

7
1
0

1
0

1
0

1
0

1
0

2
A

0
,8
5

1
0

9
9

7
1
0

0
,7
0

9
9

7
1
0

1
0

5
1
0

1
0

9
1
0

1
0

3
B

0
,1
5

3
7

8
5

8
0
,6
0

5
1
0

6
9

9
3

7
8

8
5

1
0

4
C

0
,0
5
/
y
ea

r
2

6
7

7
8

0
,1
0

3
7

1
0

1
0

9
0

3
9

5
4

8
5

D
0
,2
0

5
1

7
5

8
0
,2
5

2
8

1
0

9
9

1
4

5
7

6
9

N
o
.

T
y
p
e

D
is
t

P
1

P
2

P
3

P
4

P
5

O
IR

1
O
IR

2
O
IR

3
O
IR

4
O
IR

5
1

A
6
0
0

6
8

9
9

5
9
.5
0

9
.7
5

9
.0
0

8
.7
5

9
.8
8

2
A

1
2
0

8
1
0

1
0

1
0

9
9
.7
5

9
.5
0

8
.7
5

9
.0
0

9
.9
4

3
B

1
0

1
0

1
0

1
0

1
0

1
0

6
.2
5

8
.7
5

8
.0
0

7
.2
5

8
.3
1

4
C

8
0

1
0

9
6

7
7

4
.2
5

7
.0
0

7
.2
5

7
.0
0

7
.3
1

5
D

2
5
0

4
6

9
9

4
4
.2
5

5
.7
5

8
.2
5

6
.0
0

7
.5
6

T
a
b
le

2
N
o
.

T
y
p
e

R
E
I

P
1

P
2

P
3

P
4

P
5

R
D

P
1

P
2

P
3

P
4

P
5

D
P

P
1

P
2

P
3

P
4

P
5

1
A

1
,0
0

1
0
:1
.0

1
0
:1
.0

9
:0
.6

1
0
:1
.0

1
0
:1
.0

1
.0
0

1
0
:1
.0

1
0
:1
.0

8
:1
.0

1
0
:1
.0

1
0
:1
.0

7
1
0
:1
.0

1
0
:1
.0

1
0
:1
.0

1
0
:1
.0

1
0
:1
.0

1
0
:0
.4

2
A

0
,8
5

1
0
:1
.0

9
:1
.0

9
:1
.0

7
:1
.0

1
0
:1
.0

0
.7
0

8
:0
.3

9
:1
.0

7
:1
.0

1
0
:1
.0

1
0
:1
.0

5
1
0
:1
.0

1
0
:1
.0

9
:1
.0

1
0
:1
.0

1
0
:1
.0

9
:0
.6

1
0
:0
.1

3
B

0
,1
5

2
:0
.3

7
:1
.0

8
:1
.0

5
:1
.0

8
:1
.0

0
.6
0

5
:1
.0

1
0
:1
.0

4
:0
.1

9
:1
.0

9
:1
.0

3
7
:1
.0

8
:1
.0

8
:1
.0

5
:1
.0

1
0
:1
.0

3
:0
.4

5
:0
.1

4
:0
.3

6
:0
.6

7
:0
.1

8
:0
.1

4
C

0
,0
5
/
y
ea

r
1
:0
.2

6
:1
.0

6
:0
.2

7
:1
.0

8
:1
.0

0
.1
0

3
:1
.0

7
:1
.0

1
0
:1
.0

1
0
:1
.0

9
:1
.0

-
1
:0
.2

9
:1
.0

5
:1
.0

4
:1
.0

8
:1
.0

2
:0
.5

7
:0
.6

2
:0
.2

3
:0
.3

8
:0
.2

3
:0
.2

4
:0
.2

5
:0
.2

5
D

0
,2
0

4
:0
.2

1
:1
.0

7
:1
.0

5
:1
.0

8
:0
.4

0
.2
5

1
:0
.

8
:1
.0

1
0
:1
.0

9
:1
.0

8
:0
.3

1
4
:1
.0

5
:1
.0

7
:1
.0

6
:1
.0

9
:1
.0

5
:0
.4

9
:0
.5

2
:0
.3
3
3

9
:0
.4

6
:0
.2

1
0
:0
.1

3
:0
.3
3
3

1
0
:0
.3

N
o
.

T
y
p
e

D
is
t

P
1

P
2

P
3

P
4

P
5

1
A

6
0
0

6
:0
.9

8
:1
.0

8
:0
.2

9
:1
.0

2
:0
.1

7
:0
.1

9
:0
.7

3
:0
.1

1
0
:0
.1

4
:0
.2

5
:0
.2

6
:0
.2

7
:0
.1

8
:0
.1

2
A

1
2
0

8
:1
.0

1
0
:1
.0

1
0
:1
.0

1
0
:1
.0

9
:1
.0

3
B

1
0

1
0
:1
.0

1
0
:1
.0

1
0
:1
.0

1
0
:1
.0

1
0
:1
.0

4
C

8
0

1
0
:1
.0

9
:1
.0

6
:1
.0

7
:1
.0

7
:1
.0

5
D

2
5
0

3
:0
.3

6
:1
.0

9
:1
.0

7
:0
.2

4
:1
.0

4
:0
.4

8
:0
.3

5
:0
.3

9
:0
.3

1
0
:0
.2

T
ab

le
5.

1:
D

a
ta

fo
r

d
ec

is
io

n
m

ak
in

g
.

A
b

ov
e:

T
a
b

le
1

in
cl

u
d

es
as

p
ec

t-
d

ep
en

d
en

t
ra

n
k
in

g
s

a
n

d
ov

er
a
ll

ra
n

k
in

gs
fr

om
p

ar
tn

er
s

P
1
,.
..

,P
5

a
n

d
O

IR
1
,.
..

,O
IR

5
re

sp
ec

ti
v
el

y.
B

el
ow

:
T

a
b

le
2

in
cl

u
d

es
as

p
ec

t-
d

ep
en

d
en

t
ra

n
k
in

gs
fr

om
p

a
rt

n
er

s
P

1
,.
..
,P

5
w

it
h

as
si

g
n

ed
p

ro
b

a
b

il
it

ie
s

d
is

p
la

ye
d

a
s
ra
n
ki
n
g:
a
ss
ig
n
ed

p
ro
ba
bi
li
ty

.



CHAPTER 5. REAL DATA APPLICATION 55

5.1.2 Ranking with assigned probabilities

The combining of deterministic opinion brought no added value to standard av-
eraging and did not help in distinguishing contracts No. 1 and No. 2. In this
section, partners were more expressive in specifying their rankings of the contract
aspects and provided several rankings with probabilities for particular aspect of a
particular contract, see Table 2 in Table 5.1. To demonstrate the contributions of
the proposed combination, we focus on aspect ‘Dist’. Here, the random variable
X is again the ranking with possible outcomes {1, . . . , 10}. Since some outcomes
are assigned zero probability from all partners, we exploit Remark 3.2.2 to com-
bine partners’ opinions. Resulting combined pmfs and corresponding expected
rankings for contracts with respect to the aspect ‘Distance’ are given in Table
5.2.

Aspect: Distance
Ranking 1 2 3 4 5 6 7 8 9 10 Exp. rank.

No. 1 0 0.02 0.07 0.19 0.15 0.23 0.07 0.05 0.21 0.02 6.1
No. 2 0 0 0 0 0 0 0 0.33 0.33 0.33 9
No. 3 0 0 0 0 0 0 0 0 0 1 10
No. 4 0 0 0 0 0 0.25 0.25 0 0.25 0.25 8
No. 5 0 0 0.14 0.10 0.06 0.10 0.14 0.32 0.10 0.03 6.53

Table 5.2: Results after combining data for aspect ‘Dist’ given in Table 2 of Table
5.1 by proposed combination. The expected values for rankings are also given.

Unlike in previous case, we can now easily distinguish the contracts. With
respect to aspect ‘Distance’ the highest expected ranking obtained contract No.
3 followed by contract No. 2, which in the previous section obtained the highest
expected OIR.

5.2 Galaxy Zoo data

In this section we focus on classification of galaxies in astrophysics. For a long
time the catalogues including the classifications for available (documented) galax-
ies were produced by individuals or small groups of astronomers. The rise of mo-
dern technologies provides a larger recording of galaxies (e.g., Sloan Digital Sky
Survey - SDSS) and makes the classifying of all elements very time consuming.

To solve this problem public was allowed to participate in classification. In
2007 a web page including pictures of galaxies from SDSS was launched to let
the users from all over the world classify the galaxies (http://zoo1.galaxyzoo.
org/).

In order to be included in online classification it is optional to register, read
a tutorial and pass first (simpler) classification (11 out of 15 galaxies have to be
identified correctly). Classifications of unregistered users are denied. Details can
be found in Lintott et al. (2008). The current version of the project can be found
on http://zoo2.galaxyzoo.org/.

The data release includes several datasets (http://data.galaxyzoo.org/).
We focus on Table 7 which for each galaxy includes the probabilities of belonging

http://zoo1.galaxyzoo.org/
http://zoo1.galaxyzoo.org/
http://zoo2.galaxyzoo.org/
http://data.galaxyzoo.org/
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(a) Elliptical galaxy (b) Star/Don’t know

(c) Spiral (clockwise) galaxy (d) Spiral (anticlockwise) galaxy

(e) Merger (f) Edge on

Fig. 5.1: Six different categories for objects (galaxies) in the pictures available on
Galaxy Zoo.
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(a) Original SDSS image. (b) Image close up.

Fig. 5.2: ‘OBJID’: 587727180064817249

“OBJID”
587727227300741210
587727225153257596
587730774425665700
587730774962536596
587731186203885750

“P EL”
0.4790
0.7350
0.4790
0.8850
0.7120

“P CW”
0.0170
0.0290
0
0.0190
0

“P ACW”
0.1210
0
0
0
0

“P EDGE”
0.3380
0.1470
0.0140
0.0580
0.2200

“P DK”
0.0450
0.0740
0.4790
0.0190
0.0680

“P MG”
0
0.0150
0.0270
0.0190
0

Table 5.3: Sample of online available galaxy zoo data (Table 7 available online).

to a particular category out of 6 considered categories.
The sample from the downloaded data is shown in Table 5.3 with following

abbreviations:

• ObjID: identification number of the galaxy according to SDSS

• P EL - elliptical galaxy

• P CW - spiral (clockwise) galaxy

• P ACW - spiral (anticlockwise) galaxy

• P EDGE - spiral (edge-on) galaxy

• P DK - don’t know

• P MG - merger.

Examples of galaxies are given in Fig. 5.1 (images obtained from SDSS).
We focus on the object with ‘OBJID’ 587727180064817249, see Fig. 5.2. Pmf

available for this object in Table 7 of Galaxy Zoo datasets is:

“OBJID”
587727180064817249

“P EL”
0.045

“P CW”
0.023

“P ACW”
0.881

“P EDGE”
0.04

“P DK”
0.01

“P MG”
0

To connect current setup with terms used in Chapter 3 we consider ‘galaxy cat-
egory’ as the random variable X having six possible outcomes: “P EL”, “P CW”,
“P ACW”, “P EDGE”, “P DK”, “P MG”, n = 6.

The probability vectors given in Table 7 available online (a sample from this
table is given in Table 5.3) reflect the average of the original votes obtained by
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Fig. 5.3: GALAXY data - Resulting combination of simulated pmfs based on
proposed combination ‘prop. c.’ (b = 100000) and arithmetic mean of processed
data ‘ar. mean’ for galaxy with ‘OBJID’ 587727180064817249.

galaxy zoo. However, to study the performance of proposed combination we
assume the above given pmf represents the unknown desired combination q

q = (0.045, 0.023, 0.881, 0.04, 0.01, 0) (5.1)

and simulate a set of pmfs representing votes. Simulated votes will be then
combined by using (3.3) to obtain their combination q̂.

In the thesis we assumed q̂ coincides with ν̂, the vector of parameters of the
Dirichlet distribution (see (3.6) and discussion there). To ensure the resulting
q̂ is comparable with q we simulate pmfs from the Dirichlet distribution with
parameters [ν1, . . . , νn] = [0.045, 0.023, 0.881, 0.04, 0.01, 0].

If the original set of votes were available, such large dataset would be pro-
cessed sequentially. We thus considered several time instants with simulating
and processing 5 new pmfs (s = 5) at each instant. Then, we applied the theory
proposed for dynamic scenarios, see Section 3.3.2.

Note that if the original votes from classifiers were available online, we would
exploit Kronecker delta (4.3) to obtain their combination, see Section 4.2.1, while
for the elements of simulated pmfs the following holds: 0 ≤ pji ≤ 1,

∑n
i=1 pji = 1,

j = 1, . . . , 5, i = 1, . . . , 6.
Values of the proposed combination based on simulated data are shown in

Fig. 5.3 together with arithmetic mean of simulated data for each time step and
the original value of pmf (5.1). We see that the combination assigns higher prob-
ability to categories with low original probability (categories “P EL”, “P CW”,
“P EDGE”, “P DK”). Consequently, category “P ACW” was assigned lower
probability than its original probability. Since the prior guess ν01, . . . , ν0n is based
on arithmetic mean and all elements have to be positive, we exploit Remark 3.2.2
and assign ν06 = 10−5, see values of q̂6 in Fig. 5.3. Let us stress that the ob-
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tained results are illustrative and surely influenced by errors inherent to sequential
treatment and small-sample properties.

5.3 European social survey data

In this section we focus on data available on European social survey (ESS). The
basic information, available on their web page www.europeansocialsurvey.org

and the available documentation, state:

“ESS is an academically-driven multi-country survey, which has been ad-
ministered in over 30 countries. Its three aims are, firstly - to monitor
and interpret changing public attitudes and values within Europe and to
investigate how they interact with Europe’s changing institutions, second-
ly - to advance and consolidate improved methods of cross-national survey
measurement in Europe and beyond, and thirdly - to develop a series of
European social indicators, including attitudinal indicators.”

“36 participating countries altogether have participated in the first six
rounds of the ESS: Albania, Austria, Belgium, Bulgaria, Croatia, Cyprus,
the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece,
Hungary, Iceland, Ireland, Israel, Italy, Kosovo, Latvia, Lithuania, Luxem-
bourg, Netherlands, Norway, Poland, Portugal, Romania, the Russian Fed-
eration, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, Ukraine
and the United Kingdom.”

This project offers data and documentation by year, country and theme with
a wide range of variables: media use and trust, politics, subjective well being,
etc. If only particular variables in particular countries and rounds (years) are
of interest, the cumulative data wizard can be exploited - “the cumulative file
contains data from countries that have been included in the integrated ESS files
in two or more rounds.” Each set of data also includes a documentation, where
the basic information about ESS (introduction, overview, scope and coverage,
sampling, etc.) and chosen variables (values, labels) is given.

Happy vs. social meet

We focus on the data from the last round (number 6 - year 2012) in the Czech
Republic, see ESS (b). In particular we focus on the following variables:

• happy: ‘Taking all things together, how happy would you say you are?’
with values and labels:

– 0 - extremely unhappy,

– . . . ,

– 10 - extremely happy,

– 77 - refusal to answer,

– 88 - do not know.

www.europeansocialsurvey.org
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cntry cname cseqno idno dweight pspwght pweight happy sclmeet
CZ ESS1-6e01 50053 1001 1.146 1.063 0.446 9 6
CZ ESS1-6e01 50054 1002 1.146 1.289 0.446 8 6
CZ ESS1-6e01 50055 1003 1.146 1.289 0.446 9 5
CZ ESS1-6e01 50056 1004 1.778 3.041 0.446 7 4

Table 5.4: Sample of SSE data.

• sclmeet: ‘How often do you meet socially with friends, relatives or work
colleagues?’ with values and labels:

– 1 - never,

– 2 - less than once a month,

– 3 - once a month,

– 4 - several times a month,

– 5 - once a week,

– 6 - several times a week,

– 7 - everyday,

– 77 - refusal to answer,

– 88 - do not know,

– 99 - no answer.

A part of downloaded data is shown in Table 5.4, where

• cseqno: is respondent’s sequence number in cumulative dataset

• idno: respondent’s identification number

• dweight: design weight

• pspwght: post-stratification weight including design weight

• pweight: population size weight.

The details for weights can be found in the documentation provided together with
the downloaded dataset, see ESS (a).

In this case the original data are available (unlike in Section 5.2), thus we can
directly apply the optimal combination proposed in Section 3.1. Here, we focus
on the relation between the rankings in the original data and consider a random
variable X with 4 possible values (n = 4):

• x1 = happy ≥ 5 and sclmeet ≥ 5

• x2 = happy ≥ 5 and sclmeet < 5

• x3 = happy < 5 and sclmeet ≥ 5

• x4 = happy < 5 and sclmeet < 5.
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Fig. 5.4: SSE data - the proposed combination (prop. c.) and the arithmetic
mean (arit. m.), both based on data from cumulative dataset for the Czech
Republic (happy vs. sclmeet).

To apply the proposed combination (3.3) we have to transform data into proba-
bilistic form first, see Section 4.2. Combining all pmfs, expressed as Kronecker
delta (4.3), at once would yield a uniform pmf over observed values as the optimal
combination (see discussion for single numerical value in Section 4.2.1). Thus, we
rather exploit the dynamic scenario and combine each new observation (line) in
the dataset with value of the optimal estimator from the previous time step (see
Section 3.3.2).

We read first 50 relevant lines from the downloaded cumulative dataset and
express them as observations about outcomes x1, . . . , x4 (the observations with
values 77, 88, 99 were excluded). The values of optimal combination q̂, where at
each time step t a new pmf and the optimal combination from the previous step
(t − 1) were combined according to (3.3), are shown in Fig. 5.4 (q̂0 was set as
pmf of the uniform distribution). Value of optimal combination at T = 50 is:

q̂T = (0.24, 0.34, 0.28, 0.14).

We might conclude, that based on answers regarding social meetings and happi-
ness only, people in the Czech Republic in year 2012 were with higher probability
happier when having less social interactions.



Chapter 6

Cross-entropy based combination
in estimation

In this chapter we compare the combining proposed in (3.3) with the approach
introduced in (Dedecius and Sečkárová, 2013b), primarily developed for the dy-
namic distributed estimation (DDE) in exponential family.

Like cross-entropy based combining, this approach also heavily exploits the
KL-divergence. This yields parameter estimator as linear weighted combina-
tion of sources’ observations and, moreover, combination of sources’ estimates.
Since each source can have different beliefs in reliability of remaining sources,
the weights are assumed to be source-dependent (assigned with respect to the
particular source). The following section covers the joint paper (Dedecius and
Sečkárová, 2013b).

Then, we relax the assumption on source-dependent weights and exploit the
proposed combination for combining estimates provided by sources. We discuss
the conditions for both approaches to be comparable.

Part of this discussion is included in author’s accepted contribution, see
(Sečkárová, 2015).

6.1 Dynamic distributed estimation in exponen-

tial family

We address the dynamic distributed estimation of an unknown parameter of in-
terest from noisy measurements by a diffusion network. Each node exchanges
information on observations and estimates with its adjacent neighbors and incor-
porates it locally into its own statistical knowledge. This significantly improves
the statistical properties and robustness of the estimation process under reg-
ular conditions (Cattivelli et al., 2008). Unlike the consensus algorithms and
their variations, e.g., (Olfati-Saber et al., 2007), (Schizas et al., 2008), (Mosquera
et al., 2010) and (Jadbabaie et al., 2012), the diffusion algorithms do not require
multiple intermediate iterations between two subsequent measurements, see, e.g.,
(Cattivelli et al., 2008). Furthermore, (Tu and Sayed, 2012) show that the diffu-
sion strategies can outperform the consensus strategies in dynamic environments.

62
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The diffusion solutions are mostly least-squares (LS) oriented, for instance the
diffusion least mean squares (LMS) (Lopes and Sayed, 2008),(Liu et al., 2012), re-
cursive least squares (RLS) (Cattivelli et al., 2008) or the Kalman filter (Cattivelli
and Sayed, 2010b). Although otherwise sound, they are strongly single-problem
oriented and their reformulation for other tasks, e.g., non-LS oriented, is limited
or even impossible by nature. The goal of this paper is to overcome this shortcom-
ing. By exploiting the consistent theory of the Bayesian inference, we formulate
a new dynamic diffusion estimation method in an abstract way, theoretically in-
dependent of a particular model type. The only assumption is its membership
in the exponential family. Examples are the normal regression models, Poisson
(shot noise) model, Bernoulli, Weibull, Pareto and many other models. We note
that the dynamic estimation of a varying parameter coincides with the (Bayesian)
parameter tracking. Since the proposed distributed estimation method is rooted
in this realm, it is directly possible to use most of the elaborated Bayesian track-
ing methods, for instance forgetting, e.g., (Peterka, 1981), (Dedecius et al., 2012)
and the references therein.

6.1.1 Bayesian estimation in exponential family

Consider discrete-time dynamic modelling of an observed variable yt determined
by an unknown fixed parameter θ and, if exists, a known explanatory variable
(e.g., regressor) xt, where t = 1, 2, . . . are time indices. For the sake of general-
ity, the variables are considered real, possibly multivariate and with compatible
dimensions. From the probabilistic viewpoint, the model can be represented by
a conditional probability density function (pdf) f(yt|xt, θ). Estimation of θ is
based on the knowledge of past data Dt−1 = {yτ , xτ}τ=1,...,t−1 and the prior pdf
π(θ|D0), obtained, e.g., from an expert, based on historical data, or alternatively
being a flat noninformative pdf. The Bayesian approach to estimation recursive-
ly updates the prior pdf by new data {yt, xt} via the Bayes’ rule (Bernardo and
Smith, 2009),

π(θ|Dt) ∝ f(yt|xt, θ)π(θ|Dt−1). (6.1)

Here∝ stands for proportionality, i.e., equality up to a normalizing factor. We call
(6.1) the sequential variant. Equivalently, for time horizon t, the batch estimation
reads

π(θ|Dt) ∝ π(θ|D0)
t∏

τ=1

f(yτ |xτ , θ). (6.2)

Analytical tractability of recursions (6.1)–(6.2) is guaranteed if the model
f(yt|xt, θ) is an exponential family distribution and the prior pdf is conjugate to
it, as defined below (Bernardo and Smith, 2009) (with time indices dropped):

Definition 6.1 (Exponential family of distributions). An exponential family of
distributions of a variable y with a parameter θ and an explanatory variable x is
a family of distributions with pdf of the form

f(y|x, θ) = h(y, x)g(θ) exp [η(θ)T (y, x)] , (6.3)
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where h(y, x) is a known function, g(θ) is a known normalization function, η(θ)
is a natural parameter and T (y, x) is a sufficient statistic.

Definition 6.2 (Conjugate prior pdf). A conjugate prior pdf for a parameter θ
with the hyperparameters ξ of the same dimension as T (y, x) and ν ∈ R+ has the
form

π(θ|ξ, ν) = q(ξ, ν)g(θ)ν exp [η(θ)ξ] , (6.4)

where q(ξ, ν) is a normalization function and g(θ) has the same form as in the
exponential family.

The dimension-preserving sufficient statistic accumulates all statistical knowl-
edge necessary to compute an estimate of θ, regardless of the data sample size. It
has the form T (yt, xt) for the sequential variant (6.1), and T (Dt) =

∑t
τ=1 T (yτ , xτ )

for the product in the batch variant (6.2). The sequential update modifies the
prior hyperparameters as follows:

ξt = ξt−1 + T (yt, xt)

νt = νt−1 + 1, (6.5)

similar rules hold for (6.2). For simplicity, we stick with the sequential variant in
the sequel. The modifications for the batch variant are straightforward.

The point estimate of θ can be obtained from the posterior pdf using standard
formulas. Usually it is the mean value; sometimes the median or the mode
are preferred. The estimation uncertainty is often expressed by the estimator
variance.

6.1.2 Diffusion estimation

The diffusion network is an undirected connected graph of N spatially distributed
nodes (e.g., sensors). Each node i = 1, . . . , N can directly exchange information
with adjacent nodes forming its closed neighborhood Ni of a cardinality ni; also
i ∈ Ni. The exchanged information relates to (i) observations (adapt step) and
(ii) estimates (combine step). Since the information from the nodes j ∈ Ni
may have different credibility from the ith node’s viewpoint, nonnegative relative
weights summing to unity are used to reflect this.

Adapt step

Each network node i = 1, . . . , N employs the same form of an exponential family
model fi(yt|xi,t, θ) as above. Fixing i and t, we may regard fj(yt|xj,t, θ) for j ∈ Ni
as a complete system of hypotheses about a true model at i. From the ith node’s
viewpoint, these are valid with probabilities cij, called weights, summing to unity
due to the completeness. The Kullback-Leibler (KL) divergence (Bernardo and
Smith, 2009) in the role of the loss function then provides the way to approach
the true model by pdf f ∗i as follows:
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Proposition 6.3. Given pdfs fj with weights cij, j ∈ Ni, the best approximating
pdf f ∗i optimal in the KL sense, minimizing the cumulative loss∑

j∈Ni

cij D
(
f ∗i
∣∣∣∣fj)

has the form

f ∗i ∝
∏
j∈Ni

f
cij
j .

Proof. By definition of the KL divergence∑
j∈Ni

cij

∫
yt

f ∗i (yt|·) log
f ∗i (yt|·)
fj(yt|·)

dyt

=

∫
yt

f ∗i (yt|·) log
f ∗i (yt|·)∏

j∈Ni fj(yt|·)
cij

dyt

= D

(
f ∗i

∣∣∣∣∣∣∣∣ ∏
j∈Ni

f
cij
j

)
.

The minimum of the KL divergence is attained when its arguments agree.

The KL-optimal model f ∗i is given by a geometric mean of available hypothet-
ical models. The initial choice of exponential family models yields the appealing
consequence of analytically tractable recursive diffusion update rules similar to
(6.5). The Bayes’ theorem (6.1) with f = f ∗i updates the hyperparameters ac-
cording to the following proposition.

Proposition 6.4 (Adapt-posterior pdf). Given sufficient statistics T (yj,t, xj,t), j ∈
Ni, the adapt step updates the ith node’s hyperparameters ξi,t−1 and νi,t−1 as fol-
lows

ξi,t = ξi,t−1 +
∑
j∈Ni

cijT (yj,t, xj,t)

νi,t = νi,t−1 + 1. (6.6)

The proof is trivial.

Remark. The KL divergence is a well founded measure of pdfs’ dissimilarity
(Bernardo and Smith, 2009). The chosen zero-forcing order of its arguments
brings the salient feature of analytically tractable computations in the exponential
family due to the geometric mean, at the potential cost of variance underestima-
tion. The alternative order (zero-avoiding divergence) would yield the arithmetic
average of pdfs, raising computational issues and potential variance overestima-
tion (Bishop, 2006).

Combine step

The combine step follows the adapt step in order to further improve the statistical
properties of individual estimators. We propose two principally different methods,
one combining whole adapt-posterior pdfs, the other combining only the point
estimates.
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Whole adapt-posterior pdfs The ith node combines the adapt-posterior pdfs
with the hyperparameters (6.6) of nodes j ∈ Ni in the KL-optimal sense pre-
scribed by Proposition 6.3 (with the posterior pdfs πj and weights aij in the
roles of fj and cij). The resulting combine-posterior pdf π∗i has the following
hyperparameters,

ξ∗i,t =
∑
j∈Ni

aijξj,t

ν∗i,t =
∑
j∈Ni

aijνj,t. (6.7)

These hyperparameters completely characterize the distribution of θ. It is usu-
ally very easy to evaluate its moments, quantiles etc. using standard formulas.
Furthermore, the combine-posterior pdf can serve as the prior for the next adapt
step at t+ 1.

Point estimates If the ith node has access only to the point estimates provided
by nodes j ∈ Ni, for instance the means θ̂j,t and optionally the related variances
γj,t, it is possible to directly combine them as follows:

θ̂∗i,t =
∑
j∈Ni

aij θ̂j,t (6.8)

γ∗i,t =
∑
j∈Ni

aij

[
γj,t + (θ̂j,t − θ̂∗i,t)2

]
.

This approach, motivated by the mixture-based estimation (Frühwirth-Schnatter,
2006), is slightly computationally cheaper, because it avoids intermediate combi-
nation of pdfs. The adapt-posterior pdfs remain unmodified and enter t + 1 as
the prior.

Choice of weights

The purpose of weights aij and cij is to express the ith node’s degree of be-
lief in information from the nodes j ∈ Ni. For fixed i, both aij and cij sum
to unity. There exist several (mostly static) methods for their determination,
some of them are given in Table 6.1, see, e.g., (Cattivelli and Sayed, 2010a) and
references therein. An additional feature of the chosen probabilistic framework
is the prospect of theoretically justified information-based methods for dynamic
weights. For instance, it is possible to exploit local modelling and sharing of
the observations/estimators variances at each node or to measure the fit of the
data/estimates using the likelihoods. However, this issue is beyond the main
message of the paper and will be addressed in the future.
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Method Rule
Uniform aij = 1/ni
Laplacian aij = 1/nmax

Maximum degree aij = 1/N
Metropolis aij = 1/max(ni, nj)
Relative degree aij = nj/

(∑
k∈Ni nk

)
Rel. degree-noise variance aij = njσ

2
j/
(∑

k∈Ni nkσ
2
k

)
Fig. 6.1: Weights before normalization. ni = cardinality(Ni). The same weights
can be used for cij.

6.1.3 Examples

Diffusion autoregression

Consider a Kth order autoregressive model

yt = x′tβ =
K∑
k=1

yt−kβk + εt, (yt ∈ R1),

where the explanatory variable xt = [yt−1, . . . , yt−K ]′ ∈ RK is a known column re-
gression vector, εt ∼ N (0, σ2) is additive white noise and β = [β1, . . . , βK ]′ ∈ RK

is a column vector of unknown regression coefficients. Its estimation provides,
among others, the least squares (LS) method via the normal equations; the recur-
sive variant is RLS. The same point estimator follows from the Bayesian modelling
with yt ∼ N (x′tβ, σ

2) and a normal prior distribution for the parameter θ ≡ β;
the associated uncertainty is an inherent part of the solution. We focus on a bit
more complex normal inverse-gamma prior distribution N iG(V, ν), providing an
additional advantage of variance estimation with θ ≡ {β, σ2}. Its hyperparame-
ters standing in the roles of ξ and ν are the extended (symmetric) information
matrix V ∈ R(K+1)×(K+1) and the degrees of freedom ν ∈ R+ (Bernardo and
Smith, 2009).

Let us demonstrate the ease of derivation of the diffusion estimator. The
model pdf in the vector form reads

f(yt|xt, θ) =
σ−1√

2π
exp

{
− 1

2σ2

[
−1
β

]′ [
yt
xt

] [
yt
xt

]′ [−1
β

]}
.

A rearrangement of the terms according to (6.3) reveals the sufficient statistic
connected with time t,

T (yt, xt) =

[
yt
xt

] [
yt
xt

]′
. (6.9)

Hence the update (6.5) of the N iG hyperparameters takes the form

Vt = Vt−1 +

[
yt
xt

] [
yt
xt

]′
and νt = νt−1 + 1.

Recall that the autoregressive recursion begins with t = K + 1, imposing the
initialization with νK = ν0 and VK = V0. For t ≥ K+1, the point estimators of β
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and σ2 are easily reachable after partitioning the matrix V into blocks (Peterka,
1981)

Vt ≡
[
Vyy,t V ′yx,t
Vyx,t Vxx,t

]
, Vyy,t ∈ R1.

Then

β̂t = V −1xx,tVyx,t and σ̂2
t =

Vyy,t − V ′yx,tV −1xx,tVyx,t

νt −K + 2
. (6.10)

The diffusion estimator is as follows: The adapt step prescribed by Proposition
6.4 has the form

Vi,t = Vi,t−1 +
∑
j∈Ni

cij

[
yj,t
xj,t

] [
yj,t
xj,t

]′
νi,t = νi,t−1 + 1. (6.11)

The combine step is a direct application of the prescribed rules, too. The first
case, the whole adapt-posterior pdfs combination using (6.7) and (6.11) reads

V ∗i,t =
∑
j∈Ni

aijVj,t

ν∗i,t =
∑
j∈Ni

aijνj,t.

The point estimates combination puts (6.10) into (6.8).
This diffusion autoregression (with the point estimates combine method) co-

incides with the diffusion RLS proposed by Cattivelli et al. (Cattivelli et al.,
2008). Additionally, it provides the noise variance estimator, which can be po-
tentially useful for dynamic determination of the relative degree-noise variance
weights (Table 6.1). The notable benefit of the proposed Bayesian approach over
the non-Bayesian one lies in the ease and straightforwardness of its application
to a chosen problem while still completely retaining all theoretical consistency.

Homogeneous Poisson process

The homogeneous Poisson process (alias homogeneous shot noise) is a random
process {Mt}t≥0 of the counts Mt ∈ N0, starting with M0 = 0 and with indepen-
dent stationary Poisson distributed increments satisfying

P [Mt+τ −Mt = yt|λ] =
(λτ)yte−λτ

yt!
, τ ∈ N. (6.12)

The rate parameter λ ∈ R+ coincides with the mean and variance of yt. The
process characterizes, e.g., the number of photons or other particles incident on
a detector.

Considering the sequential variant with τ = 1 and rewriting (6.12) to the form
(6.3) reveals the sufficient statistic

T (yt) = yt.
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The conjugate prior for θ ≡ λ is the gamma distribution G(α, β) with shaping
hyperparameters α, β > 0 in the roles of ξ and ν, respectively. Their update (6.5)
has the form (Bernardo and Smith, 2009)

αt = αt−1 + yt

βt = βt−1 + 1. (6.13)

The point estimator of λ is well known to be λ̂t = αt/βt with the variance
γt = αt/β

2
t .

Now we easily derive the diffusion estimator. The adapt step according to
Proposition 6.4 reads

αi,t = αi,t−1 +
∑
j∈Ni

cijyj,t

βi,t = βi,t−1 + 1. (6.14)

The combine step for whole adapt-posterior pdfs (6.7) reads

α∗i,t =
∑
j∈Ni

aijαj,t

β∗i,t =
∑
j∈Ni

aijβj,t. (6.15)

If only the combination of point estimates is required, then (6.8) with the above
given point estimators is used.

Estimation of Bernoulli process proportions

This example studies the Bernoulli process exploited, e.g., in the queuing theory,
reliability analysis and finance. It is a discrete-time stochastic process yielding a
sequence of independent identically distributed binary random variables Yt taking
values 0 or 1 (failure or success). It follows the Bernoulli distribution,

P(Yt = yt|p) = pyt(1− p)1−yt , yt ∈ {0, 1},

where p ∈ [0, 1] is the probability of success (yt = 1). Clearly T (yt) = yt. The
conjugate prior for unknown parameter θ = p is the beta distribution B(α, β−α)
with the hyperparameters α, β > 0 in the roles of ξ and ν, respectively. Their
update (6.5) is

αt = αt−1 + yt

βt = βt−1 + 1. (6.16)

The point estimator is known to be p̂t = αt/βt with the variance γt = αt(βt −
αt)/[β

2
t (βt + 1)].

Note the appealing fact arising from the Bayesian estimation of exponential
family models with conjugate priors: the recursions (6.13) and (6.16) are identical
although the underlying distributions are not. The diffusion estimation adapt and
combine steps would accordingly agree with (6.14) and (6.15) (or the combination
of point estimates (6.8)).
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6.2 Cross-entropy based combination in diffu-

sion estimation

Let us consider the dynamic diffusion estimation (Section 6.1.2) when the underly-
ing probability distribution of yt is categorical with n possible categories. In such
case the parameter θ and provided estimates θ̂j, j = 1, . . . , s, coincide with an n-
dimensional pmf. For their combination we can exploit the results from Chapter
3. There, the unknown probability vector was denoted by q = (q1, . . . , qn) and the
sources’ opinions (estimates) were denoted by pj = (pj1, . . . , pjn), j = 1, . . . , s.

Using this notation the estimate of q̂ of q based on p1, . . . , ps has according to
(6.8) the following form:

q̂∗i =
s∑
j=1

ajpji, i = 1, . . . , n, (6.17)

where the original weights aij were displaced by their source-independent versions.
Examples of weights aij (and also aj) are given in Table 6.1.

We now suggest to exploit the combination (3.3). Since we assumed that prior
pmf p0 is a function of current observations, i.e., their weighted arithmetic mean,
we can rewrite the optimal combination q̂ similarly to (6.17)

q̂i =
s−1∑
j=1

(w0j + λj)pji +

(
w0s −

s−1∑
j=1

λj

)
psi, i = 1, . . . , n. (6.18)

We now compare the optimal combination of pmfs proposed in the thesis and
the combination of point estimates based on (6.7) with uniform weights.

Suppose we have 5 sources/nodes (s = 5) providing 3-dimensional probability
vectors (n = 3). Following the idea in Section 5.2 at each time instant we generate
data from Dirichlet distribution with parameters

(ν1, ν2, ν3) = (0.2, 0.1, 0.7).

To obtain the optimal combination we again exploit the dynamic approach de-
scribed in Section 3.3.2. Resulting combinations of simulated pmfs based on pro-
posed approach (6.18) and DDE (6.17) (with time independent uniform weights:
aj = 1/s, j = 1, . . . , s) are shown in the Fig. 6.2 on the left.

The results in the case when the third source is corrupted and its pmfs are
simulated from Dirichlet distribution with parameters

(ν1, ν2, ν3) = (0.6, 0.2, 0.2),

are shown in the Fig. 6.2 on the right.
We see that in the first case (no corrupted sources), the optimal combination

is from the beginning stabilized and tends to pmf as flat as possible. In case the
third source was corrupted, the resulting combination q̂ in (6.18) and combination
exploiting combine step of DDE given in (6.17) behave similarly.
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Fig. 6.2: Combinations obtained by the proposed combining and by DDE with
uniform weights. On the left: no corrupted sources. On the right: the third
source is corrupted.



Chapter 7

Conclusions and future work

The goal of this work was to derive an approach to combine information in dis-
tributed decision making (DM) within wise selfish cooperative scenario in the
group of sources. We focused on the case when sources provided their opinions
about a stochastic phenomenon. Such situation commonly occurs when sources
can not directly observe the process of interest, such as evaluation of the contracts
for decision making in companies, elections, etc.

Novelty of proposed combining

In majority of developed approaches within the considered area the final decision,
the compromise, is constructed in order to serve the whole group, not reflecting
sources’ personal aims and limited abilities. This motivated us to develop a new
approach for combining sources’ opinions, which can serve involved individuals.

To the author of this thesis the only known treatment of this issue is a pro-
babilistic one introduced by Kárný et al. (2009). We also consider probabilistic
approach; we assume sources provide their opinions about the studied problem
as pmfs. Unlike the modeling adopted in Kárný et al. (2009), leading to the
combination, which does not reduce to the Bayes rule when possible, we suggest
constraints on the acceptance of the desired combination to delimit the set of
possible combinations.

The advantage of working with pmfs lies in the treatment of probabilistic and
non-probabilistic types of information. The proposed method then represents a
unified way how to cover spectrum of sources’ characteristics for easy and time
effective DM. The construction of the compromise (optimal combination) via the
decision making theory with axiomatically justified tools (selected loss, way of
extending information) is far from being standard and represents methodological
contribution of the thesis.

Brief summary of the thesis

In order to obtain the optimal combination of given pmfs, we expressed the
combination as an unknown pmf of a discrete random vector with finite number of
outcomes. We then searched for its optimal estimator by exploiting the Bayesian
decision making, the minimum cross-entropy principle and the Kullback-Leibler
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(KL) divergence (cross-entropy). Under general setup, we obtained the estima-
tor as the conditional expectation with respect to unspecified conditional pdf.
Next, we exploited computationally advantageous case when the conditional pdf
was the pdf of the Dirichlet distribution. This assumption yielded a weighted
linear combination of sources’ pmfs and we studied the properties of this combi-
nation such as influence of the duplicate data, extension to the dynamic case and
influence of sources’ preferences. After the derivation we focused on handling

• partial probabilistic information with non-common supports: conditional
and marginal pmfs describing the discrete random vector,

• non-probabilistic information: subsets of outcomes and/or expected values
of the discrete random vector,

and treated these types of information by the proposed extension and transforma-
tion. This treatment is still non-standard and its elaboration to the level allowing
to solve variety of applied problems is one of the contributions of this thesis. This
was followed by the application to real data for decision making in the company,
galaxy identification and social survey. The last part of this thesis was dedicated
to another combining method in the area of parameter estimation, also based on
the KL-divergence, see Dedecius and Sečkárová (2013b), and its comparison with
the proposed combination.

Future work

A diffusion alternative of proposed combining

Although throughout the thesis we assumed the number of sources is finite, the
proposed combination can be also applied to large sets of sources by decomposing
them into finite (possibly overlapping) groups.

Treatment of implicit equations

In Section 4.1 we suggested extension for obtained conditional/marginal pmfs
based on appropriate versions of the optimal combination q̂ yielding implicit
equations. In the thesis we solved this issue for dynamic scenario by using appro-
priate versions of q̂t−1 instead of q̂t at time instant t (Section 3.3.2). A solution
closely related to the original implicit relation with low computational difficulty
is of interest.

Alternative of proposed combining for continuous case

Since we developed a technique to combine pmfs, we are naturally interested in
its extension to the continuous case, where sources provide pdfs. A wider use is
foreseen, e.g., in mixtures of Kalman filters.

Combination of preferences

The proposed approach in combination with fully probabilistic design (FPD),
see (Kárný et al., 2007) and (Kárný and Kroupa, 2012), allows combination of
decision objectives within a group. A systematic elaboration requires further
research.
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Kárný, M., J. Kraćık, and T. Guy (2007). Cooperative decision making without
facilitator. In B. R. Andrievsky and A. L. Fradkov (Eds.), IFAC Workshop
”Adaptation and Learning in Control and Signal Processing” /9./. IFAC.
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Räıffa, H. and R. Schlaifer (1961). Applied statistical decision theory. Studies
in managerial economics. Division of Research, Graduate School of Business
Adminitration, Harvard University.
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