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Introduction

Claims reserving and claims process estimation present classical problems
in general insurance. Several models have been developed in order to determine
the claims reserves based on the historical observations of claims payments data.
The primary goal of those models is to set an adequate reserve to cover losses that
have been incurred but not yet reported and developed. The extensive overview
of classical and commonly used methods can be found in monographs of Eng-
land and Verrall (2002) and Wütrich and Merz (2008). Most of the methods
introduced herein deal with claims reserving problem of a single line of business.

In practice, portfolio of almost every major insurance company consists of mul-
tiple lines of business. It is natural to assume, that the lines of business are some-
how related to each other. In order to set the value of reserves for overall portfolio,
it is necessary to capture, understand and properly express this relationship. The
dependence structure might appear on several levels, among the losses as they
develop in time within one accident year or on the other hand, within one devel-
opment year among losses in different accident years. Some authors also consider
the dependence with respect to the calendar years. The question of how to cope
with dependent lines of business, to which an insurance company has to face, is
surely of utmost importance.

In the presented thesis, the copula approach is exhibited in order to associate
the claims form several run-off triangles. Thus the appearance of dependence
structure among the cells of run-off triangles is supposed. Copulae provide a
useful tool to construct models which go beyond the classical ones in terms of de-
pendence structure. The focus lies on copula regression model which is based
on combination of generalized linear models used to determine the distribution
of margins and subsequently association of margins using copula.

The outline of the thesis is as follows. In the first chapter, the basic theory
of copulae is introduced. The definition of the copula, basic properties as well
as the most important results concerning copulae are described. We introduce
examples of elliptical and Archimedean families of copulae which are later used
to model the dependence structure of chosen lines of business

The claims reserving notation is summarized in Chapter 2. The two reserving
methods are stated as well: the chain-ladder method, which can be considered as
industry’s benchmark; and generalized linear models in terms of claims reserving.

The focus of the third chapter lies on the construction of copula regression
model. The modelling of margins using GLM approach is described and then set
into copula framework. Special attention is paid to the estimation of the copula
regression model as well as well as to the later review of suitability of the model
via goodness-of-fit test.

Finally, the fourth chapter is dedicated to the application of copula regression
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model on the real data. The R software is used to model fitting and subsequently
expressing the value of reserves of overall considered portfolio. The results of re-
serving process are presented and compared from statistical and numerical point
of view.

4



Chapter 1

The theory of copulae

Copulae present very useful tool to construct models which go beyond the
classical ones in terms of dependence structure. They provide the understanding
of dependence at more detailed level. The notion copula is quite recent in statis-
tic, although several results concerning copulae go back to the development of the
theory of probabilistic metric spaces. Below, we follow the monograph of Nelsen
(2006) and the publication of McNeil et al. (2005) which describes copulae in con-
cept of risk management.

1.1 Definitions and basic properties

In this section we will deal with the notion of n-dimensional real function
H and its certain properties which lead to definition of the copula. We will
first briefly describe the notation we will use. Through this thesis we denote
R the extended real line given by [−∞,∞] . For a function H, we denote by
DomH and RanH the domain, respectively the range of the function H. When
dealing with copulae, it is very common to refer to function f as increasing
(rather than non-decreasing) whenever x ≤ y implies that f(x) ≤ f(y). We
will stay consistent with this notation. Finally, we define the generalized inverse
of a function f as f−1(y) = inf {x ∈ R | f(x) ≥ y} for all y ∈ Ranf , using the
convention inf ∅ =∞.

Consider n-dimensional real function H. Let the domain of H be given
by the cartesian product of sets S1, . . . , Sn where each set Sk has a smallest
element ak. The function H is said to be grounded if H(t) = 0 for all t
in DomH where tk = ak for at least one k. If Sk is non-empty for all k and has a
greatest element bk, then margins of H can be defined. The one-dimensional
margins (called just margins) of H are the functions Hk defined on the set
Sk as Hk(x) = H(b1, . . . , bk−1, x, bk+1, . . . , bn) for all x ∈ Sk. Similarly, higher-
dimensional margins are defined.

Definition 1. An n-dimensional distribution function is a function H with do-
main Rn

such that H is grounded, n-increasing and H(∞, . . . ,∞) = 1.

Lemma 1. Let H be grounded n-increasing function with domain S1 × · · · × Sn,
where S1, . . . , Sn are non-empty subsets of R. Then H is increasing in each
argument, i.e., if (t1, . . . , tk−1, x, tk+1, . . . , tn) and (t1, . . . , tk−1, y, tk+1, . . . , tn) are
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in DomH and x ≤ y, then

H(t1, . . . , tk−1, x, tk+1, . . . , tn) ≤ H(t1, . . . , tk−1, y, tk+1, . . . , tn).

In addition, if H has margins, then for points x = (x1, . . . , xn) and y = (y1, . . . , yn)
in DomH

|H(x)−H(y)| ≤
n∑
k=1

|Hk(xk)−Hk(yk)|.

Proof. For the proof, see Schweizer and Sklar (1983).

k

As the consequence of the Lemma 1, it follows that the margins of n-dimensio-
nal distribution function are distribution functions. In the following text, we will
denote the margins of H as F1, . . . , Fn.

Now we settled all the definitions and properties needed to introduce the
notion of copula.

Definition 2. A n-dimensional copula is a mapping C : [0, 1]n → [0, 1] with the
following properties:

1. C (u1, . . . , un) is increasing in each component ui ∈ [0, 1] , i ∈ {1, . . . , n} ;

2. C (1, . . . , 1, ui, 1, . . . , 1) = ui for all ui ∈ [0, 1] and i ∈ {1, . . . , n} ;

3. for all (a1, . . . , an) and (b1, . . . , bn) ∈ [0, 1]n where ai ≤ bi, it holds

2∑
i1=1

· · ·
2∑

in=1

(−1)i1+···+in C (u1i1 , . . . , unin) ≥ 0,

where uj1 = aj and uj2 = bj for all j in {1, . . . , n} .

Hence a copula C is a distribution function on [0, 1]n with uniformly dis-
tributed margins on [0, 1]. The following theorem is a direct consequence of the
Lemma 1.

Theorem 2. Let C be an n-copula. Then for every u and v in [0, 1]n

|C(v)− C(u)| ≤
n∑
k=1

|vk − uk|.

Thus C is uniformly continuous on [0, 1]n.

The important property of copulae is introduced by so-called Fréchet-Hoeffding
bounds inequality.

Theorem 3. Let C be an n-copula, then for every u in [0, 1]n

W n(u) ≤ C(u) ≤Mn(u),

where Mn and W n are functions on [0, 1]n defined as follows

Mn(u) = min (u1, . . . , un) ,

W n(u) = max (u1 + · · ·+ un − n+ 1, 0) .
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The function Mn is an n-copula for each n ≥ 2, while W n is not a copula
for any n > 2. We refer to Mn as the Fréchet-Hoeffding upper bound and W n

as the Fréchet-Hoeffding lower bound. The third important copula is so-called
product copula Πn defined on [0, 1]n as Πn(u) = u1 · · ·un. We will further explore
the importance of copulae Mn,W 2,Πn in the Section 1.4.

1.2 Sklar’s theorem

We introduced the definition of a copula in the previous section. From this
definition it follows that a copula C is a distribution function on [0, 1]n with
uniformly distributed margins. Sklar’s Theorem, one of the most important re-
sult in the theory of copulae, enlightens the position of copulae in the relation-
ship between multivariate distribution functions and their univariate margins and
represents the theoretical base of many applications. This theorem, as well as
the word copula in a statistical and mathematical sense, was firstly introduced
in Sklar (1959).

Theorem 4. Let H be an n-dimensional distribution function with margins F1, . . . ,
Fn. Then there exists an n-copula C such that for all x in Rn

,

H (x1, . . . , xn) = C (F1(x1), . . . , Fn(xn)) . (1.1)

If F1, . . . , Fn are continuous, then C is unique; otherwise C is uniquely determined
on RanF1 × · · · × RanFn. Conversely, if C is an n-copula and F1, . . . , Fn are
univariate distribution functions, then the function H defined in (1.1) is an n-
dimensional distribution functions with margins F1, . . . , Fn.

Proof. The proof of the theorem for the bivariate copula can be seen in Nelsen
(2006). The complete proof is stated in Schweizer and Sklar (1983). The impor-
tant part of the proof is to show so-called extension lemma, which demonstrates
that every n-subcopula (see Nelsen (2006), Definition 2.10.5.) can be extended
to an n-copula. For this proof, see Sklar (1996).

k

Corollary. Let H be an n-dimensional distribution function with continuous mar-
gins F1, . . . , Fn and copula C satisfying (1.1). Then for any u ∈ [0, 1]n

C (u1, . . . , un) = H
(
F−1

1 (u1), . . . , F−1
n (un)

)
. (1.2)

1.3 Copulae and random variables

In this section we will deal with copulae in the relationship with random
variables. The results concerning dependency structure of random variables will
be presented in terms of the theory of copulae.

Definition 3. If the random vector X = (X1, . . . , Xn)T has joint distribution
function H with continuous marginal distribution functions F1, . . . , Fn, then the
copula of H (or X) is the distribution function C of (F1(X1), . . . , Fn(Xn)) .
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The copula C of a random vector X with continuous margins is uniquely
determined as it is stated in the Theorem 4. The standard representation of the
distribution function of a random vector is then

H (x1, . . . , xn) = P {X1 ≤ x1, . . . , Xn ≤ xn} = C (F1(x1), . . . , Fn(xn)) .

One of the most useful properties of copulae is that copulae of random vectors
are invariant in terms of strictly increasing transformations of random vectors.
When considering strictly monotonous transformations, copulae are even invari-
ant or change in a certain way depending on the monotony.

Theorem 5. Let (X1, . . . , Xn)T be a random vector with continuous margins and
copula C. If T1, . . . , Tn are strictly increasing function on RanX1, . . . ,RanXn,
then (T1(X1), . . . , Tn(Xn))T has also copula C.

Proof. For the proof, see McNeil et al. (2005).

k

As it follows from the Definition 2, copula C presents a distribution func-
tion on [0, 1]n with uniformly distributed margins on [0, 1]. Moreover, there are
several situations, such as random variate generation from copula or estimation
of parameters, in which the copula density comes into focus. If it holds that

C (u1, . . . , un) =

∫ u1

0

· · ·
∫ un

0

∂n

∂s1 . . . ∂sn
C (s1, . . . , sn) ds1 . . . dsn,

then C is said to be absolutely continuous and C admits a density c (u1, . . . , un) =
∂n

∂u1...∂un
C (u1, . . . , un) .

1.4 Dependence structure

In probability and statistics, dependence structure belongs to one of the most
studied aspects and properties of random variables. Copulae represent very pow-
erful tool which allows us to isolate in a certain sense the dependence relations
among the components of a random vector. In this section we will explore how
can copulae be used in order to study, express and measure dependence. For the
detailed overview of indices of dependence, we refer to Schweizer and Wolff (1981),
Wolff (1980) and Lancaster (1982).

First we will develop the meaning of Fréchet-Hoeffding bounds Mn and W n

and product copula Πn in terms of dependence structure of random variables.
Since W n is copula only for n = 2, in this case we will deal only with dependence
relationship between two random variables.

Definition 4. The random variables X1, . . . , Xn with copula C are said to be
comonotonic if C is Fréchet-Hoeffding upper bound, i.e. C = Mn.
The pair of random variables X1 and X2 with copula C is countermonotonic
if they have as copula the Fréchet-Hoeffding lower bound, i.e. C = W 2.

The properties of comonotonicity and countermonotonicity express perfect
dependence among random variables as it will be shown in following proposition.
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Proposition 6. Random variables X1, . . . , Xn are comonotonic if and only if

(X1, . . . , Xn)
d
= (T1(Z), . . . , Tn(Z))

for some random variable Z and increasing functions T1, . . . , Tn.
Random variables X1 and X2 are countermonotonic if and only if

(X1, X2)
d
= (T1(Z), T2(Z))

for some random variable Z with T1 increasing and T2 decreasing, or vice versa.

Proof. For the proof, see McNeil et al. (2005).

k

Corollary. Let X1, . . . , Xn be random variables with continuous distribution func-
tions. They are comonotonic if and only if for every pair (i, j) we have Xj =
Tji(Xi) almost surely for some increasing transformation Tji.

Proof. For the proof, see McNeil et al. (2005).

k

Random variables X1, . . . , Xn with distribution functions F1, . . . , Fn are inde-
pendent if and only if their joint distribution function H satisfies H (x1, . . . , xn) =

F1(x1) · · ·Fn(xn) for all x1, . . . , xn ∈ R2
. Hence the following result is direct con-

sequence of Theorem 4.

Theorem 7. Let (X1, . . . , Xn)T be a vector of continuous random variables with
copula C, then X1, . . . , Xn are independent if and only if C = Πn.

With respect to the previous theorem, Πn is called an independent copula.
Moreover, based on the relationships between dependence structure of random
variables and their copulae expressed in Definition 4, Mn is referred to as a copula
of comonotonicity and W 2 is called a copula of countermonotonicity.

1.4.1 Kendall’s tau and Spearman’s rho

Kendall’s tau and Spearman’s rho are very important measures of dependence
between two random variables, which present an alternative to the to the linear
correlation in cases when linear correlation can lead to inappropriate results since
it is not a copula-based measure of dependence.

Before stating the definition of Kendall’s tau and Spearman’s rho, it is impor-
tant to introduce the notion of concordance. Let (X, Y )T be random vector of con-
tinuous random variables and let (x, y)T and (x̃, ỹ)T be two observations of this
vector. Then we say that (x, y)T and (x̃, ỹ)T are concordant if (x− y) (x̃− ỹ) > 0;
and discordant if (x− y) (x̃− ỹ) < 0.

Theorem 8. Let (X, Y )T and (X̃, Ỹ )T be independent vectors of continuous ran-

dom variables with joint distribution functions H and H̃, with margins F of X and
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X̃ and G of Y and Ỹ . Further, let C and C̃ be copulae of (X, Y )T and (X̃, Ỹ )T , re-

spectively, i.e. H(x, y) = C(F (x), G(y)) and H̃(x, y) = C̃(F (x), G(y)). Let Q de-
note the difference between probability of concordance and discordance of H(x, y) =
C(F (x), G(y)), i.e.

Q = P
{(
X − X̃

)(
Y − Ỹ

)
> 0
}
− P

{(
X − X̃

)(
Y − Ỹ

)
< 0
}
.

Then, it holds

Q = Q
(
C, C̃

)
= 4

∫∫
[0,1]2

C̃ (u, v) dC (u, v)− 1.

Proof. For the proof, see Nelsen (2006).

k

Definition 5. Let (X, Y )T and (X̃, Ỹ )T be independent and identically distributed
random vectors with joint distribution functions H. Then the Kendall’s tau,
denoted as τ (τX,Y respectively), is defined as the probability of concordance minus
the probability of discordance:

τ = τX,Y = P
{(
X − X̃

)(
Y − Ỹ

)
> 0
}
− P

{(
X − X̃

)(
Y − Ỹ

)
< 0
}
.

Following result is direct consequence of Definition 5 and Theorem 8.

Theorem 9. Kendall’s tau of continuous random variables X and Y with copula
C is given by

τX,Y = τC = Q(C,C) = 4

∫∫
[0,1]2

C (u, v) dC (u, v)− 1.

Another important measure of dependence among random variables based
on concordance is Spearman’s rho.

Definition 6. Let (X1, Y1)T , (X2, Y2)T and (X3, Y3)T be independent and iden-
tically distributed random vectors with joint distribution functions H. Then the
Spearman’s rho, denoted as ρX,Y , is defined as follows:

ρX,Y = 3 (P [(X1 −X2)(Y1 − Y3) > 0]− P [(X1 −X2)(Y1 − Y3) < 0]) .

Theorem 10. Spearman’s rho of continuous random variables X and Y with
copula C is given by

ρX,Y = ρC =3Q(C,Π)

=12

∫∫
[0,1]2

uvdC(u, v)− 3

=12

∫∫
[0,1]2

C(u, v)duv − 3.

(1.3)

Proof. The formula (1.3) follows from Theorem (8). For the detailed proof, see
Nelsen (2006).

k
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1.4.2 Tail dependence

Tail dependence is a concept that describes the limiting proportion that the
value of one random variable exceeds a certain threshold conditioned that the
other random variable has already exceeded given threshold. As it will be shown
in this section, tail dependence is a copula property, which means that tail depen-
dence of random variables X and Y is invariant under strictly increasing trans-
formations X and Y . Other results and properties related to tail dependence are
listed in Juri and Wütrich (2003) and Joe et al. (2010).

Definition 7. Let X and Y be continuous random variables with distribution
functions F and G. The upper tail dependence parameter λU is defined as follows:

λU = limt→1− P
[
Y > G−1(t) | X > F−1(t)

]
,

if the limit exists. Similarly, the lower tail dependence parameter λL is the limit
(if it exists)

λL = limt→0+ P
[
Y ≤ G−1(t) | X ≤ F−1(t)

]
.

If λU = 0 (λL = 0) , we say that random variables X and Y are asymptotically
independent in upper (lower) tail.

The representation of tail dependence parameters stated in the following the-
orem demonstrates the copula property of this measure.

Theorem 11. Let X and Y be continuous random variables, whose copula is C,
with distribution functions F and G and let λU and λL be the parameters of tail
dependence given in Definition 7. If the limits λU and λL exist, then

λU = 2− limt→1−
1− C(t, t)

1− t

and

λL = limt→0+
C(t, t)

t
.

Proof. For the proof, see Nelsen (2006).

k

Further it can be shown that the parameter of upper tail dependence can be
expressed as a limit

λU = limt→0+
Ĉ(t, t)

t
,

where Ĉ denotes the survival copula of (X1, . . . , Xn)T , i.e.

H(x1, . . . , xn) = P {X1 > x1, . . . , Xn > xn} = Ĉ
(
F 1(x1), . . . , F n(xn)

)
.

Note that the copula C and survival copula Ĉ of random vectorX are equalled
for each X that is radially symmetric. Random vector X is radially symmetric

about a if X−a d
= a−X. Hence for the copula C of radially symmetric random

vector it holds that λU = λL.
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1.5 Copula faimilies

Copulae can be divided into several classes based on their common charac-
teristics and properties. The most widely-known copula families are probably
elliptical and Archimedean copulae. In the following section, we deal with these
two classes, their definitions and basic properties are introduced.

1.5.1 Elliptical copulae

Elliptical copulae present the group of copulae of elliptical distributions. The
class of elliptical distributions consists of wide range of multivariate distributions
which share some important properties with multivariate normal distribution. We
will limit only on the basic definition in order to define and work with elliptical
class of copulae. For further details on elliptical distributions, see Cambanis et al.
(1981).

Definition 8. The n-dimensional random vector X is said to have an elliptical
distribution with parameters µ,Σ and φ, if for some µ ∈ Rn and some n × n
non-negative definite matrix Σ, the characteristic function ϕX−µ (t) of X −µ is
a function of the quadratic form tTΣt, i.e. ϕX−µ (t) = φ

(
tTΣt

)
. We write that

X ∼ En (µ,Σ, φ) .

The function φ from the Definition 8 is referred to as a characteristic generator.
When φ(u) = exp(−u/2), En (µ,Σ, φ) is the multivariate normal distribution
Nn (µ,Σ) ; and for n = 1 the class of elliptical distributions correspond to the
class of one-dimensional symmetric distributions.

Gaussian copula

One of the most important representative of the elliptical class of copulae
is Gaussian copula. The Gaussian copula is a copula of the n-variate normal
distribution with linear correlation matrix R with the following form:

CGa
R (u) = Φn

R

(
Φ−1(u1), . . . ,Φ−1(un)

)
,

where Φ−1 denotes the inverse of the univariate standard normal distribution and
Φn
R stands for the joint distribution function of the n-variate standard normal

distribution with linear correlation matrix R. From the properties of multivariate
normal distribution, the bivariate Gaussian copula can be expressed as follows:

CGa
R (u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π(1− ρ2)1/2
exp

{
−s

2 − 2ρst+ t2

2(1− ρ2)

}
dsdt,

where ρ is the coefficient of linear correlation of the corresponding normal distri-
butions.

The copula of comonotonicity and the independent copula are special cases
of Gaussian copula. If the matrix of linear correlations R = In×n, then it can
be shown that CGa

R = Πn. In the case that R = Jn×n, we get CGa
R = Mn. Note

that In×n and Jn×n are matrices of dimension n× n, where In×n has ones on its
diagonal and Jn×n denotes the matrix whose each element is equalled to one.

12



One of the properties of random vectors with elliptical distribution is radial
symmetry, thus the Gaussian copula equals to its corresponding survival copula.
Due to this equality, the parameters of lower and upper tail dependence of random
variables X and Y with bivariate Gaussian copula are equalled as well. As it is
shown in McNeil et al. (2005), this parameter has zero value, hence the Gaussian
copula is asymptotically independent in both tails.

1.5.2 Archimedean copulae

In this section we discuss an important class of copulae called Archimedean
copulae. They have several advantages which make them very useful in prac-
tice. We have seen that elliptical copulae are restricted to have radial symmetry.
In case of Archimedean family, the copulae are not necessarily radially symmet-
ric, so they allow to better approximate asymmetry in dependence structure.
Unlike the elliptical copulae many of these copulae have closed form expressions.
In general, Archimedean copulae allow for a big variety of different dependence
structures. For further results concerning Archimedean copulae, we refer to Bal-
lerini (1994) and Müller and Scarsini (2005).

Let Φ denote the set of functions ϕ : [0, 1, ] → [0,∞] which are continuous,
strictly decreasing, convex such that ϕ(0) = ∞ and ϕ(1) = 0. Each ϕ ∈ Φ has
an inverse ϕ−1 : [0,∞]→ [0, 1, ] with the same properties, except ϕ−1(0) = 1 and
ϕ−1(∞) = 0. Each member of Φ generates a copula C given by

C(u, v) = ϕ−1 (ϕ(u) + ϕ(v)) . (1.4)

Copulae of the above form are called Archimedean copulae and the function ϕ is
referred to as a generator of C.

Note that, in the definition of Φ, it is not necessary for ϕ(0) to be infinite
in order to generate a copula. When ϕ(0) is finite, the Archimedean copula is
given by

C(u, v) = ϕ[−1] (ϕ(u) + ϕ(v)) ,

where ϕ[−1] denotes so-called pseudo-inverse function given by

ϕ[−1] (t) =

{
ϕ−1(t), 0 ≤ t ≤ ϕ(0),

0, ϕ(0) ≤ t ≤ ∞.

If ϕ(0) = ∞, the generator function ϕ is said to be strict and the associated
Archimedean copula is called a strict copula.

One of the useful properties of Archimedean copulae is that Kendall’s tau
of random variables X and Y with an Archimedean copula C generated by func-
tion ϕ is given by

τC = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt. (1.5)

Further we will discuss the three members of Archimedean family, namely
Gumbel, Clayton and Frank copula.
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Gumbel copula

The generator function of Gumbel copula is given by

ϕ(t) = (−ln t)θ , θ ≥ 1.

Then from (1.4) we get

Cθ (u, v) = exp
{
−
[
(−ln u)θ + (−ln v)θ

]1/θ}
.

Furthermore, it holds that Cθ = Π2 for θ = 1; and limθ→∞Cθ = M2, hence
the independent copula and the copula of comonotonicity are the special cases
of Gumbel copula.

Using the relationship (1.5) it can be shown that the Kendall’s tau of this
copula is 1 − 1/θ. In the case of Gumbel copula, the marginal distributions are
asymptotically independent in lower tail, i.e. λL = 0, but have upper tail depen-
dence expressed by λU = 2− 21/θ.

Clayton copula

In the contrary with the Gumbel copula, Clayton copula is specific in captur-
ing the dependence of the random variables on lower tails. The Clayton copula
is defined as follows

Cθ (u, v) = max
([
u−θ + v−θ − 1

]−1/θ
, 0
)
,

where the corresponded generator function is ϕ(t) =
(
t−θ − 1

)
/θ for the param-

eter θ ∈ [−1,∞) \ {0} . For θ > 0 the copulae are strict and the expression
simplifies to

Cθ (u, v) =
[
u−θ + v−θ − 1

]−1/θ
. (1.6)

It the literature, the Clayton copula is commonly defined by (1.6) because
several limit and other properties are derived from this expression. Similarly as
for Gumbel copula, the independent copula and the copula of comonotonicity are
the special cases of Clayton copula, in addition the copula of countermonotonicity
belongs also to Clayton family. The associated equalities are as follows: C−1 =
W 2, limθ→∞Cθ = M2 and limθ→0Cθ = Π2.

Kendall’s tau of Clayton copula is θ/(θ + 2). The parameter of upper tail
dependence is equalled to zero, so the random variables are asymptotically in-
dependent in upper tail. Contrariwise, the parameter of lower tail dependence
is

λL =

{
2−1/θ, θ > 0,

0, θ ≤ 0.

Frank copula

The Frank copulae are strict Archimedean copulae given by

Cθ (u, v) = −1

θ
ln

(
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

)
,
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with the generator function in the following form

ϕ(t) = −ln
e−θt − 1

e−θ − 1
, θ ∈ R \ {0} .

The special limit cases of Frank copulae are given as follows: limθ→−∞Cθ =
W 2, limθ→∞Cθ = M2 and limθ→0Cθ = Π2. Furthermore, members of Frank family
are the only Archimedean copulae which satisfy the equation for radial symmetry.

The Frank copula has neither lower nor upper tail dependence, i.e. λL =
λU = 0. Thus it is suitable for modelling the data characterized by weak tail
dependence.
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Chapter 2

Reserving theory

Claims reserving is one of the most important and crucial issues in insurance.
In this thesis we deal with reserving for the group of products called non-life
insurance (in UK known as General Insurance and in USA refereed to as Property
and Casualty Insurance). The non-life insurance is a general title of all types
of insurance products not covered by life insurance. As it is stated in Wütrich
and Merz (2008) the non-life insurance considers the following lines of business:
motor/car insurance, property insurance, liability insurance, accident insurance,
health insurance, marine insurance and other insurance. Each of these lines
of business can be further divided into several subclasses.

Insurance industry distinguishes between two main claim groups. The first
one, known as RBNS (Reported but not settled), refers to the claims that have
occurred and have been already reported to the insurer. The other group, IBNR
(Incurred but not reported), is formed by the group of claims events that have
occurred but have not been reported yet. Both reserves include an estimation
of the costs incurred during the settlement of claims. In the case of IBNR reserve,
the insurer knows neither the number of claims events that have occurred, nor the
severity of each claim, hence, statistical methods based on historical development
of claims need to be applied to estimate the amount of money to be paid for IBNR
claims. The quality of this estimate depends on the chosen reserving method and
its overall complexity.

In this chapter we will briefly introduce reserving procedure and mainly we
will impose the notation used in order to describe specific reserving methods with
copulae.

2.1 Claims reserving notation

In this section, we introduce classical notation used within the mathematical
framework for claims reserving. To model a portfolio of insurance policies by
incremental payments for claims, we consider a family of random variables {Xi,j}
for i ∈ {0, . . . , I} and j ∈ {0, . . . , J} . The random variable Xi,j is interpreted as
claim amounts of accident year i which is settled with a delay of j years, thus
in development year j. The last year of occurrence of claim event is I and the
maximal value of development years is denoted by J. We assume that the obser-
vations of Xi,j are available for all i + j ≤ I and that for i + j > I the claim
amounts Xi,j are not observable. Typically, outstanding loss liabilities are pre-
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Accident Development year
year 0 1 . . . . . . . . . J − 1 J

0 X0,0 X0,1 . . . . . . . . . X0,J−1 X0,J

1 X1,0 X1,1 . . . . . . . . . X1,J−1 X1,J
...

...
... Observations of r.v. Xi,j

...
...

(i+ j ≤ I)
...

...
...

...
...

...
...

...
...

I − 1 XI−1,0 XI−1,1

I XI,0

Table 2.1: Run-off triangle for incremental claim amounts Xi,j.

sented in so-called run-off triangles (see Table 2.1) through which the separation
of insurance claims in two time axes can be captured. When dealing with run-
off triangles of multiple lines of business, it is usual to work with standardized
data which are expressed by the ratio Xi,j/ωi, where ωi represents the exposure
variable of the particular line of business in the ith accident year measuring the
volume of the business. The exposure variable can be the number of policies, the
number of open claims or the earned premium.

The other approach to model a portfolio is by using cumulative payments given
by Yi,j =

∑j
k=0Xi,k. We interpret Yi,j as the claim amounts up to development

year j with accident year i. Hence, Yi,j is a random variable whose observations
are available if i+j ≤ I. The cumulative claim amounts can be represented by the
(cumulative) run-off triangle as well.

The main goal is to predict the ultimate claim amounts Yi,J and subsequently
the outstanding claim reserve for accident year i given by

Ri = Yi,J − Yi,I−i =
J∑

k=I−i+1

Xi,k

for all i = 1, . . . , I. Moreover, usually it is important to estimate the whole
distribution of the reserves in order to derive other distributional quantities.

For the purposes of this thesis, we will further suppose that the last year
of occurrence of claim event I and the maximum development years observed J
are equalled ( i.e. I = J) and that Xi,j = 0 for all j > J. This assumption means
that all claims will be closed in J years.

2.2 Basic claims reserving methods and reserv-

ing process overview

In this section we will briefly introduce two methods of claims reserving: the
chain-ladder method which is often understood as straightforward algorithmic
method working mainly with cumulative data; and the generalized linear model
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(GLM) approach to model the incremental claims. Since the large number of vari-
ous methods has been invented, we refer to Wütrich and Merz (2008) and England
and Verrall (2002) for the complex overview of the claims reserving methods.

2.2.1 Chain-ladder method

The chain-ladder (CL) method is probably one of the most popular claims
reserving method. This method provides a computational algorithm to set claims
reserves and is widely used in practice due to its simplicity. However, the lack
of underlying stochastic model on which the algorithm can be based results into
uncertainty of such prediction, since it cannot be determined. Later, several
appropriate stochastic models that justify the CL method were derived.

The distribution-free CL method, developed and described in Mack (1993),
operates with cumulative data and derives so-called development factors (also
known as link ratios, CL factors or age-to-age factors). It is based on the following
assumptions:

� Cumulative claims Yi,j are independent random variables for different acci-
dent years i.

� There exist development factors f0, . . . , fJ−1 > 0 such that we have

E [Yi,j | Yi,0, . . . , Yi,j−1] = E [Yi,j | Yi,j−1] = fj−1Yi,j−1

for all 0 ≤ i ≤ I and 1 ≤ j ≤ J .

Under the model assumptions it can be shown (for the proof, see Wütrich and
Merz (2008)) that the following holds for conditionally expected claims:

E [Yi,J | DI ] = E [Yi,J | Yi,I−i] = Yi,I−ifI−i · · · fJ−1, (2.1)

whereDI = {Yi,j; i+ j ≤ I, 0 ≤ j ≤ J} stands for the set of observations available
at time I.

The relationship stated by (2.1) provides an algorithm to estimate the ultimate
claim Yi,J based on the observations DI . If the development factors fj are known,
then the outstanding claims reserve is given by

E [Yi,J | DI ]− Yi,I−i = Yi,I−i (fI−i · · · fJ−1 − 1) . (2.2)

In practice, the development factors are often unknown, hence they need to be
estimated. The estimation of fj for all j ∈ {0, . . . , J − 1} is expressed as follows:

f̂j =

∑I−j−1
i=0 Yi,j+1∑I−j−1
i=0 Yi,j

. (2.3)

Allying the formulas (2.1) and (2.3), the CL estimate of the ultimate claim
Yi,J is then given by (note that we assume I = J)

Ŷi,J
CL

= Ê [Yi,J | DI ] = Yi,I−if̂I−i · · · f̂I−1,

hence the estimate of claims reserve for the accident year i is

R̂i

CL
= Ê [Yi,J | DI ]− Yi,I−i = Yi,I−i

(
f̂I−i · · · f̂I−1 − 1

)
.
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Under the assumption of CL method, several useful properties of derived

estimates can be shown. One of the most important results is that Ŷi,J
CL

is

unbiased estimator for E [Yi,J | DI ] and in addition Ŷi,J
CL

is (unconditionally)
unbiased estimate of E [Yi,J ] . Other properties of estimates derived using CL
method along with their proves are stated in Wütrich and Merz (2008).

2.2.2 Generalized linear models

Generalized linear models (GLM) present the class of statistical models that
is a natural generalization of classical linear models. When comparing GLM ap-
proach to linear models, one of the advantages consists in possibility of using
other distributions of response variable than the normal. The response variable
is permitted to have a distribution belonging to the exponential family of distri-
butions.

A distribution is said to be of the exponential type, if its density function can
be expressed as

f (y, θ, φ) = exp

{
yθ − b(θ)
a(φ)

}
+ κ(y, φ),

where a, b and κ are real-valued functions, the parameter θ is called a canonical
parameter and φ > 0 is referred to as a dispersion parameter. The function
b is assumed to be twice-differentiable and plays an important role in GLM,
because it describes the relationship between the mean and the variance of given
distribution.

Many of the widely-used distributions, such as normal, gamma, but also dis-
tributions of discrete random variables as Poisson or binomial, are members of ex-
ponential family. The specific forms of functions a, b and κ and other properties
of several distributions are listed in Olsson (2002).

With this parametrization, it can be shown that the mean and the variance
of the random variable Y with distribution from the exponential family are in the
following form:

E (Y ) = µ = b′ (θ) (2.4)

and
var (Y ) = b′′ (θ) a(φ).

The expression b′′ (θ) is called a variance function. Since the dpendence on the
canonical parameter implies through (2.4) the dependence on the mean µ, the
variance function is typically expressed as a function of µ and denoted by V (µ) .

GLM approach operates with the response variable (also called as dependent
variable) Y , of which we have a vector of observations

y = (y1, . . . , yn)T .

The other way, in which GLM present a generalization of classical linear models,
is that instead of modelling the mean of the response variable E (Y ) = µ =
(µ1, . . . , µn)T directly as a function of so-called linear predictor Xβ, the function
g (µ) of µ is modelled. Hence, the model becomes

g (µ) = η = Xβ,
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where X is a known matrix of dimension n × p referred to as a design matrix,
β is a p-dimensional vector of parameters to be estimated and g is called a link
function. The link function must be monotone and differentiable. The choice
of the appropriate link function depends on the modelled data. Some of commonly
used link functions, such as logit link, probit link or complementary log-log link,
are stated in Olsson (2002). The important class of link functions, presented
in McCullagh and Nelder (1989), are functions which transform the mean to a
canonical parameter, i.e. g (µ) = θ. These functions are referred to as canonical
links.

Once the appropriate distribution belonging to exponential family and link
function are specified, the parameters of the model can be estimated. In GLM
theory, the estimation is often provided via maximum likelihood. The unknown
parameters are represented by the vector β, which is in fact the function of θ.
Thus, the log likelihood function is differentiated with respect to the elements
of β and subsequently is set to equal to zero. This procedure leads to the system
of likelihood equations which is often solved using numerical methods, for example
using Newton-Raphson algorithm.

When the maximum likelihood estimators of the model are obtained, the fit
of the model to data can be explored. There are several method of assessing the
fit of the model. One of these methods is based on comparison of nested models
using deviance. An alternative to the deviance is comparing models through
Pearson χ2 statistic or using the Akaike’s information criterion which penalized
the likelihood functions in order to get simpler model. For further details on the
goodness-of-fit tests, see Olsson (2002).

The suitability of the chosen model can be also explored by analysing of resid-
uals. Various types of residuals considered within the GLM concept are listed
in McCullagh and Nelder (1989). For the purposes of this thesis, we will mention
only one example and that are so-called Pearson residuals defined as

r
(P )
i =

yi − µ̂i√
V (µ̂i)

,

for i = 1, . . . , n, where µ̂i is estimate of the mean µi.
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Chapter 3

Claims reserving with copulae

In the Chapter 2, we described two methods used to determine claims reserves.
In these methods, we assume that the observed data comes from a single line
of business. In practice, almost every major insurance company has typically
several lines of business in its portfolio. It is natural to suppose, that these lines
of business are related to each other in some way, from which the problem of so-
called additivity arises. Hence, there is a question whether an insurance company
should consider the claims reserve from the sum of the lines of business or should
it take into account the sum of claims reserves, each determined from a single
line of business.

As we mentioned, there is an extensive actuarial literature dealing with claims
reserving methods for the single line of business (run-off triangle respectively).
In this chapter, we will deal with capturing the dependence structure among sev-
eral lines of business using copula approach and we describe how this dependence
structure is treated in order to set the claims reserves.

3.1 Modelling of claim amounts

The approach we will describe operates with incremental data introduced
in the Chapter 2. We will assume that a portfolio of insurance company consists
of N lines of business and for each line of business incremental payments forming
associated run-off triangles are available. Under this assumptions we will denote
the incremental payments by X

(n)
i,j , i ∈ {0, . . . I} and j ∈ {0, . . . J} , where n

indicates payments related to nth portfolio (run-off triangle), n ∈ {1, . . . N} .
Recall we suppose that I = J and that all claims will be closed in J years.
For the purposes of this model, it is more convenient to work with standardized
data. Thus, we assume that X

(n)
i,j are standardized incremental payments and

we can write X
(n)
i,j = X̃

(n)
i,j /ω

(n)
i , where X̃

(n)
i,j are original observed incremental

payments and ω
(n)
i denotes the exposure variable for ith accident year and nth

line of business. With this notation, the claims reserves for accident year i at time
I are given by

N∑
n=1

J∑
k=I−i+1

X
(n)
i,k ω

(n)
i =

N∑
n=1

J∑
k=I−i+1

X̃
(n)
i,k ,

for all i = 1, . . . , I.
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Our intention is to estimate the ultimate claim amounts and in the same time
capture the dependencies among the N run-off triangles. We will assume the
balanced model in terms of number of lines of business, which means that each
portfolio is of the same size (I = J has the same value for each n) and there are
not missing values in run-off triangles.

The sample sizes of run-off triangles are typically small. Due to this fact,
the model is limited on considering only parametric distributional families. We
assume that X

(n)
i,j comes from a parametric distribution F

(n)
i,j :

F
(n)
i,j = P

{
X

(n)
i,j ≤ x

(n)
i,j

}
= F (n)

(
η

(n)
i,j ;γ(n)

)
, n = 1, . . . , N, (3.1)

where the vector γ(n) of additional parameters represents the scale and shape
of the distribution. The location is expressed by the term η

(n)
i,j which is supposed

to capture the systematic component of the distribution.
A regression model will be used in order to model the systematic compo-

nent. Hence the systematic component is a linear function of explanatory vari-
ables (covariates) denoted by β(n). We will assume two types of independent
explanatory variables, namely accident year and development period. Suppose
that α

(n)
i , i ∈ {0, . . . , I} and τ

(n)
j , j ∈ {0, . . . , J} represent the accident year

effect and development lag effect respectively. With this notation, the systematic
component for the nth run-off triangle can be written as:

η
(n)
i,j = ζ(n) + α

(n)
i + τ

(n)
j , n ∈ {1, . . . , N} ,

where ζ(n) is intercept and constraints α
(n)
0 = τ

(n)
0 = 0 are used for estimation

of parameters. Therefore, β(n) =
(
ζ(n), α

(n)
1 , . . . , α

(n)
I , τ

(n)
1 , . . . , τ

(n)
J

)T
.

For better illustration of the modelling of systematic component, we will de-
scribe approach which is typically used in context of claims reserving. This ap-
proach is used in Shi and Frees (2011) and adopted also by Abdallah et al. (2015),
which both deal with using of couplae in estimating the ultimate claims. In these
articles, authors assume gamma distribution for the incremental claims for one
of the analysed line of business.

Gamma model

Assume that standardized incremental claims of nth line of business are in-
dependent and follow gamma distribution with shape parameter κ(n) and scale

(location) parameter θ
(n)
i,j , denoted X

(n)
i,j ∼ Gamma

(
κ(n), θ

(n)
i,j

)
. Then, from the

properties of gamma distribution, we have

E
(
X

(n)
i,j

)
= µ

(n)
i,j = κ(n)θ

(n)
i,j .

In the case of gamma distribution, one could apply the canonical inverse link
g (µ) = η = µ−1, so we can write

η
(n)
i,j = ζ(n) + α

(n)
i + τ

(n)
j =

(
µ

(n)
i,j

)−1

=
(
κ(n)θ

(n)
i,j

)−1

.

The unknown parameters to be estimated are ζ(n), α
(n)
i , τ

(n)
j and the disper-

sion parameter φ(n) from the expression of gamma distribution in the associated
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form of exponential family distribution. Hence in the case of gamma model, the
vector of additional parameters γ(n) is one-dimensional with the only element
φ(n). For the shape parameter of gamma distribution, it holds that κ(n) = 1/φ(n).
Finally, the scale parameter is calculated using estimates of other parameters and
the relationship among them. The estimated reserve in accident year i for nth
line of business based on GLM model is

∑J
k=I x̂

(n)
i,k ω

(n)
i , where x̂

(n)
i,k is the projected

standardized incremental payment. For the gamma distribution we have

x̂
(n)
i,k =

(
η̂

(n)
i,k

)−1

=
(
ζ̂(n) + α̂

(n)
i + τ̂

(n)
k

)−1

.

Other possibility when dealing with gamma model is to use log-link function
g (µ) = η = log µ. According to Wütrich and Merz (2008), logarithmic link is a
natural choice for the claims reserving purposes. Then

η
(n)
i,j = ζ(n) + α

(n)
i + τ

(n)
j = log

(
µ

(n)
i,j

)
= log

(
κ(n)θ

(n)
i,j

)
;

and for projected standardized incremental claims we have

x̂
(n)
i,k = exp

(
η̂

(n)
i,k

)
= exp

(
ζ̂(n) + α̂

(n)
i + τ̂

(n)
k

)
.

For logarithmic link function, the mean of standardized incremental claims has
the multiplicative structure, which is the function of accident year effect and
development lag effect.

Another distribution which is typically used to model claims payments in non-
life insurance is normal distribution.

Normal model

The model assumes there exist parameters µ
(n)
i,j and

(
σ(n)

)2
such that the

standardized incremental claims X
(n)
i,j are independent normally distributed with

X
(n)
i,j ∼ N

(
µ

(n)
i,j ,
(
σ(n)

)2
)
.

Let further assume the identity link g (µ) = η = µ within the GLM approach, so
we can write

E
(
X

(n)
i,j

)
= µ

(n)
i,j = η

(n)
i,j = ζ(n) + α

(n)
i + τ

(n)
j .

It can be seen that the normal model with identity link, which is canonical link
function for normal distribution, is a classical linear model with normally dis-
tributed error terms.

In the concept of the normal model, one could apply logarithmic link function
as defined below:

η
(n)
i,j = ζ(n) + α

(n)
i + τ

(n)
j = log

(
µ

(n)
i,j

)
.

Then for the mean we have

µ
(n)
i,j = exp

{
η

(n)
i,j

}
= exp

{
ζ(n) + α

(n)
i + τ

(n)
j

}
.
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With this parametrization, the mean of incremental claims has a multiplicative
structure, that is the product of the accident year effect and development year
effect. For both link functions, the unknown parameters to be estimated are
ζ(n), α

(n)
i , τ

(n)
j and σ(n) whose second power equals to the dispersion parameter

φ(n). The estimated reserve in accident year i for nth line of business derived using
GLM model is

∑J
k=I x̂

(n)
i,k ω

(n)
i , where x̂

(n)
i,k is the projected standardized incremental

payment. For the normal distribution we have

x̂
(n)
i,k =

{
ζ̂(n) + α̂

(n)
i + τ̂

(n)
k , for identity link function,

exp
{
ζ̂(n) + α̂

(n)
i + τ̂

(n)
k

}
, for log-link function.

3.2 Copula regression

In this section, we will describe the approach which relaxes two common
assumptions used when dealing with multiple lines of business: the limitation
of dependence structure to the concept of linear structure; and the assumption
of common probability distribution for all run-off triangles. Our focus is on using
copulae to analyse more general concept of dependence and that is association.
In addition, combining copula approach with multivariate regression enables to
consider different distribution for individual lines of business.

Following the Theorem 4, the joint distribution function of standardized incre-

mental claims
(
X

(1)
i,j , . . . , X

(N)
i,j

)
can be represented by a unique copula function

Fi,j

(
x

(1)
i,j , . . . , x

(N)
i,j

)
= P

{
X

(1)
i,j ≤ x

(1)
i,j , . . . , X

(N)
i,j ≤ x

(N)
i,j

}
= C

(
F

(1)
i,j

(
x

(1)
i,j

)
, . . . , F

(N)
i,j

(
x

(N)
i,j

)
;θ
)
,

(3.2)

where the form of F
(1)
i,j , . . . , F

(N)
i,j can be expressed by (3.1) and C (•;θ) is the

copula with the parameter vector θ ∈ Θ; Θ is an open subset of Rp for some
integer p ≥ 1. In this specification, parameter θ captures the association relation-
ship among the lines of business. Definitions and some properties of non-linear
measures of association, such as Spearman’s rho, Kendall’s tau and parameters
of tail dependence, are stated in the Section 1.4.

The specification of the model includes the choice of particular copula func-
tion as well as the distribution functions of incremental payments for each run-
off triangle. Once a particular model is selected, one needs to estimate its pa-
rameters. In the model of copula regression in the form (3.2), the unknown

parameters of the model to be estimated are given by the vectors η
(n)
i,j ,γ

(n)

for each run-off triangle n ∈ {1, . . . , N} and by the vector θ related to cop-
ula function. We will denote the vector of unknown parameter by φ, where

φ =
(
β(1), . . . ,β(N),γ(1), . . . ,γ(N),θ

)T
. As the model is limited to parametric

distributions and parametric copulae, the estimation of parameters is provided
via maximum likelihood method.

In general, the maximum likelihood method selects the set of values of model
parameters that maximizes the likelihood function, respectively the log-likelihood
function. The likelihood function is given by the joint density of random variables
X

(1)
i,j , . . . , X

(N)
i,j . Hence, to use the maximum likelihood method, one first specifies
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the joint density function for all observations. The joint distribution function
of standardized incremental payments is given by copula in (3.2). Rewriting
this expression for the case of absolutely continuous copula C, the joint density
function of X

(1)
i,j , . . . , X

(N)
i,j is given by

fi,j

(
x

(1)
i,j , . . . , x

(N)
i,j

)
= c

(
F

(1)
i,j

(
x

(1)
i,j

)
, . . . , F

(N)
i,j

(
x

(N)
i,j

)
;θ
) N∏
n=1

f
(n)
i,j .

In the formulation above, f
(n)
i,j denotes the density of marginal distribution F

(n)
i,j ,

that is f
(n)
i,j = f (n)

(
x

(n)
i,j ; η

(n)
i,j ;γ(n)

)
for n = 1, . . . , N.

Once the joint density function is specified, the likelihood and log-likelihood
functions can be defined for given realizations x

(1)
i,j , . . . , x

(N)
i,j of a random sample

X
(1)
i,j , . . . , X

(N)
i,j for (i, j) ∈ {(i, j) : i+ j ≤ I}:

L
(
φ, x

(n)
i,j

)
=

I∏
i=0

I−i∏
j=0

c
(
F

(1)
i,j

(
x

(1)
i,j

)
, . . . , F

(N)
i,j

(
x

(N)
i,j

)
;θ
) N∏
n=1

f
(n)
i,j ;

and

`
(
φ, x

(n)
i,j

)
=

I∑
i=0

I−i∑
j=0

log c
(
F

(1)
i,j

(
x

(1)
i,j

)
, . . . , F

(N)
i,j

(
x

(N)
i,j

)
;θ
)

+
I∑
i=0

I−i∑
j=0

N∑
n=1

log f
(n)
i,j .

(3.3)

The maximum likelihood estimator φ̂ can be found by solving the optimization
problem

φ̂ = argsup
φ

`
(
φ, x

(n)
i,j

)
.

The number of the parameters to be estimated depends on the number of anal-
ysed lines of business N, the length of observed accident period I and further
on the number of parameters p that specify the chosen copula. The final dimen-
sion of vector φ results into 2N(I + 1) + p. As the dimension 2N(I + 1) + p gets
large, the number of parameters increases, and the optimization problem becomes
harder and more complex. One issue arises from the optimization task itself and
is caused by the form of the log-likelihood function which is supposed to be opti-
mized. There is a question whether it is possible to compute the optimal solution
which presents the global maximum of the log-likelihood function. Another limi-
tation of this estimation consists of the potential computational difficulty due to
relatively large number of parameters. This problem may get significant when
methods such as bootstrap or Monte Carlo experiment are needed. We will refer
the afore-described estimation as joint model.

Due to this limitations, an alternative approach, that is computationally
more convenient, has been developed. This approach, known as inference func-
tions for margins (IFM), consists of two steps. Firstly, the IFM method esti-
mates the parameters of the margins under the assumption 3.1. The estimates
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φ̂IFM =
(
β̂(1), . . . , β̂(N), γ̂(1), . . . , γ̂(N)

)T
are obtained by maximizing the follow-

ing function:

`
(
φIFM , x

(n)
i,j

)
=

I∑
i=0

I−i∑
j=0

N∑
n=1

log f
(n)
i,j .

Therefore

φ̂IFM = argmax
φIFM

I∑
i=0

I−i∑
j=0

N∑
n=1

log f
(n)
i,j .

In the second step, the estimate φ̂IFM is plugged into the expression of the
distribution function of incremental claims 3.1 and we get

F̃
(n)
i,j = F (n)

(
η̂

(n)
i,j ; γ̂(n)

)
, n = 1, . . . , N,

Subsequently, these values are used to estimate the parameter of copula θ. The
partial (pseudo) log-likelihood function is given by

`
(
θ, x

(n)
i,j

)
=

I∑
i=0

I−i∑
j=0

log c
(
F̃

(1)
i,j

(
x

(1)
i,j

)
, . . . , F̃

(N)
i,j

(
x

(N)
i,j

)
;θ
)
.

The above function is then maximized over the set Θ and the copula parameter
is obtained as

θ̂ = argmax
θ

I∑
i=0

I−i∑
j=0

log c
(
F̃

(1)
i,j

(
x

(1)
i,j

)
, . . . , F̃

(N)
i,j

(
x

(N)
i,j

)
;θ
)
.

It can be shown that under certain assumptions the maximum likelihood es-
timator θ̂ is consistent and asymptotically normal. These properties and also
the correctness of this approach were shown by Chen and Fan (2006). Further
details about the maximum likelihood method in the copula concept can be found
in Hofert et al. (2012). In this article, the derivation of closed form expressions
for the multivariate density function of a few Archimedean copulae, notably the
Gumbel, the Clayton and the Frank copula, are listed.

3.3 Goodness-of-fit tests for copulae

There are several families of copulae which can be used to model the data.
The most common examples of copulae are introduced in the Section 1.5. So,
there is a natural question, which of the considered copulae fits the data in the
most appropriate way.

The described copula regression model considers only parametric distributions
of margins and parametric families of copulae. Formally we can write the follow-
ing: the copula C capturing the association relationship between N lines of busi-
ness is assumed to belong to a class of parametric copulae C0 = {Cθ : θ ∈ Θ} ;
and further the distribution of margins F (n) comes from a parametric families

F (n) =
{
F (n)

(
η

(n)
i,j ;γ(n)

)
: η

(n)
i,j (resp. β(n)) ∈ Υ(n),γ(n) ∈ Γ(n)

}
. Hence the pa-

rameters of the model are estimated under the assumptions:
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1. H ′0 : F (1) ∈ F (1), . . . , F (N) ∈ F (N) in the first step;

2. H0 : C ∈ C0 in the second step.

To review the suitability of the chosen model, the joint null hypothesis H0 ∩H ′0
corresponding to a full parametric model is tested. In addition, one needs to
distinguish between the joint and the IFM model.

3.3.1 Joint model

Since only one likelihood respectively log-likelihood function is maximized
within the joint model, one of the approaches to review the fit of this model
is likelihood-based measure represented by the concept of Akaike’s information
criterion. The Akaike’s information criterion (AIC) is defined as follows:

AIC = −2`+ 2k,

where k = 2N(I + 1) + p denotes the number of parameters of the model and

` = `
(
φ̂, x

(n)
i,j

)
is the maximal value of log-likelihood function for given observa-

tions. One computes the values of AIC for each candidate model and in the end
the model with the lowest value of AIC should be chosen. The Akaike’s infor-
mation criterion is justified as a penalization for complexity and tends to chose
simpler models. The penalization concept is not considered in the introduced
case of copula regression, as the form of the model is set.

The AIC is widely used in practice due to computational simplicity. Fur-
ther details on information criteria used to explore the suitability of candidate
models are listed in Grønneberg and Hjort (2011). In this publication, the spe-
cific goodness-of-fit measure for copulae is introduced under the name the Copula
information criterion.

3.3.2 IFM model

As it was introduced afore, the IFM model consists of two steps. In each
of these steps, the log-likelihood function is maximized in order to obtain the
estimates of the parameters of marginal distribution in the first step and using
these estimates obtain the copula parameter in the second step. AIC is a measure
based on the value of log-likelihood function, hence it is possible to express it
in each individual step too. The problem is that in this case, information criteria
allow to assess the suitability only of the partial task under the assumptions H0

or H ′0 and they do not provide the overall regard on the model with assumptions
H0 ∩H ′0. When testing the joint hypothesis H0 ∩H ′0, the marginal distributions
are considered as nuisance parameters.

Recently, many procedures have been developed for goodness-of-fit testing
for copula-based models. They can be divided into several groups upon their
properties and demands allowing their implementation. One of these groups is
known as so-called blanket tests whose application requires no strategic choice
of additional parameters, weight function, etc. The critical review of blanket
tests and possible extensions of these procedures are introduced in Genest et al.
(2009). The authors assess the level and the power of blanket tests using large
Monte Carlo experiment.
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Genest et al. (2009) describe in total seven different values which is possible to
use to test the goodness-of-fit of copula regression model. For the purposes of the
thesis and empirical analysis on real data, we will describe three of them, namely
statistics stated by Sn, S

(B)
n and S

(C)
n . In the notations Sn, S

(B)
n and S

(C)
n , the

value n stands for the number of independent observations available for individual
random variable. In the copula regression model, we assume that the claims are
observable for the pairs (i, j) for which i+ j ≤ I. Hence we have at our disposal
(I+1)(I+2)

2
observations for every line of business (we recall that i ∈ {0, . . . , I}

and j ∈ {0, . . . , J}). To avoid the misleading discrepancies when mentioning the
number of observation and individual business lines, we will denote the number of
observations of one lines of business by m, i.e. m = (I+1)(I+2)

2
, and the statistics

will be denoted by Sm, S
(B)
m and S

(C)
m .

Before defining afore-mentioned statistics, it is necessary to introduce next
vectors and notation:

� Xi,j =
(
X

(1)
i,j , X

(2)
i,j , . . . , X

(N)
i,j

)
for all pairs (i, j) : i+ j ≤ I;

� for n ∈ {1, . . . , N} , R(n)
i,j is the rank of the X

(n)
i,j among the claims of n-th

line of business (I+1)(I+2)
2

variables X
(n)
0,0 , . . . , X

(n)
i,j , . . . , X

(n)
I,J−I ;

� Ui,j =
(
U

(1)
i,j , U

(2)
i,j , . . . , U

(N)
i,j

)
for (i, j) : i+j ≤ I where U

(n)
i,j =

R
(n)
i,j

(I+1)(I+2)
2

+ 1
.

The vectors Ui,j are considered as pseudo-observations and are interpreted as a
sample from the underlying copula C. When providing the goodness-of-fit test
based on these pseudo-information, one should take into account that they are
not mutually independent and that their components are approximately uniform
on the interval (0, 1) . The blanket tests are based on ranks, since the ranks present
the transformations with respect to which the considered statistics are invariant.

Using the pseudo-informations, the associated empirical distribution Cm (u)
is derived as

Cm (u) =
1

m

I∑
i=0

I−i∑
j=0

I
(
U

(1)
i,j ≤ u1, . . . , U

(N)
i,j ≤ uN

)
, u = (u1, . . . , uN) ∈ [0, 1]N .

Cm present the natural way how to test the hypothesis H0 : C ∈ C0. This test is
based on the distance between Cm and the estimation Cθm of the true underlying
copula C under H0. The parameter θm is assumed to be an estimate of θ based
on the pseudo-observations. The goodness-of-fit test is based on the following
measure:

Cm =
√
m (Cm − Cθm) .

Genest et al. (2009) state the rank-based version of the Crameér-von Mises statis-
tic derived from the Cm as follows

Sm =

∫
[0,1]N

Cm (u)2 dCm (u) .

The hypothesis H0 is rejected for the big values of Sm. It is possible to derive
approximate p-values from the limiting distribution of the statistic Sm which
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depends on the asymptotic properties of Cm. In addition, it was shown that tests
based on Sm are consistent meaning that if C /∈ C0, then as m → ∞ the H0 is
rejected with probability 1.

S
(B)
m and S

(C)
m represent two new procedures proposed by Genest et al. (2009).

They are both based on Rosenblatt’s transform, the probability integral trans-
formation. In contrary to the rank-based transformation, it provides the de-
composition into elements that are mutually independent and uniformly dis-
tributed on the unit interval. Rosenblatt’s probability integral transform of a
copula C is the mapping R : (0, 1)N → (0, 1)N that assigns to every vector
u = (u1, . . . , uN) ∈ (0, 1)N , the vector R (u) = (e1, . . . , eN) where e1 = u1 and
for each n ∈ {2, . . . , N}

en =
∂n−1C (u1, . . . , un, 1, . . . , 1)

∂u1 · · · ∂un−1

/
∂n−1C (u1, . . . , un−1, 1, . . . , 1)

∂u1 · · · ∂un−1

The most important property used for the purposes of goodness-of-fit testing
of copulae is that under H0 it is possible to interpret the Rosenblatt’s trans-
formations of pseudo-observations, Ei,j = Rθm (Ui,j) for (i, j) : i + j ≤ I, as
a sample from independent copula ΠN . This consequence is essential for deriv-
ing the tests based on statistics S

(B)
m and S

(C)
m . First we will denote by Dm the

empirical distribution function of transformed pseudo-observations Ei,j:

Dm (u) =
1

m

I∑
i=0

I−i∑
j=0

I (Ei,j ≤ u) , u ∈ [0, 1]N .

Hence, under the hypothesis H0, the distance between Dm and ΠN is supposed
to be “small”. S

(B)
m and S

(C)
m can be again seen as the version of Crameér-von

Mises statistic and are defined below:

S(C)
m = m

∫
[0,1]N

(
Dm (u)− ΠN (u)

)2
dDm (u) ;

and

S(B)
m = m

∫
[0,1]N

(
Dm (u)− ΠN (u)

)2
du.

It is not clear which of the afore-introduced test is the most convenient. The
goodness-of-fit tests based on these statistics depend on many other factors, which
are not necessarily known before testing. Genest et al. (2009) suggest following
preference ranking:

S(B)
m � Sm � S(C)

m .

All results presented in this publication are deducted from the comparative power
study of the blanket tests based on the large Monte Carlo procedure. The ap-
proximate distribution of the tests statistics under H0 is derived via bootstrap
method. The overall recommendation of this study yields that Sm and S

(B)
m pro-

vide the best results when assessing the fit of chosen copula model.
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Chapter 4

Empirical analysis of the real
data

In the previous chapters, the claims reserving method within a copula frame-
work is introduced and its theoretical background is described. Hereafter, the
copula regression model is applied to the claims triangles of a property-casualty
insurer from USA. The empirical analysis is divided into two parts. First, it is
important to find the appropriate GLM model for the margins. Subsequently,
this model will be used to fit the copula and capture the association relationship
between the analysed lines of business.

The computational part of the empirical analysis is performed in the environ-
ment of the R software for statistical calculations and graphics.

4.1 Datasets

The claims triangle data were published in the practical study of Meyers and
Shi (2011) and come from the Analysis of Losses and Loss Expenses of NAIC
(National Association of Insurance Commissioners, an organization of insurance
regulators) database. The data were published in order to allow to provide claims
reserving studies. The database includes both incurred and paid losses of major
personal and commercial lines of business for property-casualty insurers.

The copula regression model is used in order to explore the mutual behaviour
of several lines of business. In this analysis, the portfolio consisting of two lines
of business will be considered, namely personal auto and commercial auto. The
data describes ten years (from 1988 to 1997) of observed paid losses with ten
development periods, hence according to the afore-introduce notation I = J = 9.
Table 4.1 and Table 4.2 display the run-off triangles of incremental paid losses
for personal and commercial auto, respectively. The earned premium and obser-
vations from the lower triangles are also given.

We observe, that according to the earned premium the portfolio is not equally
distributed between the lines of business. In the beginning of the observed period,
the personal auto line had the bigger portion (62 %) of the entire portfolio. How-
ever, after ten years, the portion of commercial auto line increased and yielded
into 54 % of total portfolio, which makes the 46% share for personal auto. Hence
the volume of the personal auto line decreased approximately by 26 %. Natu-
rally, the total incremental claims amounts depends on the volume of the business,
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Accident Earned Development year j
year i Premium 0 1 2 3 4 5 6 7 8 9

0 51 228 15 318 12 422 7 671 4 793 2 148 1 338 491 60 123 31
1 52 526 15 031 15 101 7 814 4 425 1 504 643 220 351 5 52
2 55 816 16 994 14 620 7 985 5 344 1 399 1 311 213 219 12 144
3 61 549 17 717 16 050 8 974 4 140 2 236 1 302 222 146 155 38
4 64 970 17 842 13 275 8 319 5 435 1 939 611 788 515 91 318
5 66 559 20 266 17 200 8 255 4 920 1 603 997 553 299 375 3
6 67 046 18 778 14 438 8 814 5 665 1 557 750 544 253 88 3
7 64 535 19 900 16 542 7 143 5 592 2 875 1 098 270 68 161 10
8 66 791 20 395 15 402 8 019 3 871 2 781 617 513 156 2 158
9 69 057 20 622 15 844 8 123 5 950 2 321 1 026 724 186 252 32

Table 4.1: Development triangle of incremental claims and earned premium for
personal auto in USD.

Accident Earned Development year j
year i Premium 0 1 2 3 4 5 6 7 8 9

0 30 939 4 381 5 121 5 653 3 737 2 053 405 371 213 25 1
1 36 910 5 456 4 431 3 451 4 167 2 657 797 878 22 35 69
2 43 540 7 083 8 128 5 880 6 597 1 037 669 147 39 15 110
3 48 693 9 800 7 807 5 792 6 519 2 213 1 352 203 1 016 47 15
4 54 988 8 793 10 395 7 550 4 834 2 646 952 984 47 55 30
5 59 222 9 586 8 711 7 701 5 637 2 125 1 025 868 126 58 15
6 65 567 11 618 10 675 11 242 5 717 3 362 1 771 258 128 470 308
7 70 125 12 402 15 511 11 226 5 918 2 593 2 624 231 49 33 0
8 76 223 15 095 12 715 7 711 8 545 4 242 1 753 1 276 567 112 1 879
9 80 374 16 361 12 184 12 395 9 509 3 763 2 510 936 76 149 23

Table 4.2: Development triangle of incremental claims and earned premium for
commercial auto in USD.

which is in this case measured by earned premium. Therefore, we normalize the
payments dividing the amounts by this exposure variable of the corresponding
accident. Further analysis will be provided on the standardized data. The nor-
malization will be taken into account when expressing the estimated value of the
reserves.

The graphical illustrations of standardized data are presented on the Figure
4.1. The plot captures the development pattern of the claims, where each line
corresponds to single accident year. In both cases, it can be seen decreasing
trend which signifies that all claims will be closed within ten development years
as assumed. When comparing the patterns, we see higher volatility during first
development years for commercial auto. The figure also shows that the relative
volume of claims amounts is lower in case of commercial auto line.

Since the data provides the observations of claims also for accident years i and
development lags j for which i+j > I, it is possible to express the real outstanding
losses. We performed this calculation for each accident year separately and then
get the total claims reserve, see Table 4.3. In this table, the values of claims
reserves obtained by chain-ladder method are stated as well. Despite the fact, that
chain-ladder method is distribution-free and does not require other inputs except
the observations of upper triangle, it provides relatively similar results as real
observed reserves. The CL estimates are higher by 3 % and 11 % in comparison
with observed values for personal auto line and commercial auto respectively.
These results can be considered as benchmark for assessing the reasonableness of
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Figure 4.1: Development of standardized incremental claims amounts

Accident
1 2 3 4 5 6 7 8 9 Total

year i

Observed claims resrves

Personal auto 52 156 339 1 712 2 227 3 195 10 074 16 117 34 458 68 330
Commercial auto 69 125 1 078 1 116 2 092 6 297 11 448 26 085 41 545 89 855
Overall portfolio 121 281 1 417 2 828 4 319 9 492 21 522 42 202 76 003 158 185

Chain-ladder claims resrves

Personal auto 32 103 342 614 1 881 3 707 9 153 18 280 36 462 70 571
Commercial auto 1 42 174 719 1 746 5 378 15 760 27 509 48 450 99 779
Overall portfolio 32 144 516 1 333 3 627 9 085 24 913 45 788 84 912 170 350

Table 4.3: Observed and chain-ladder values of claims reserves in USD

copula regression model. Moreover, the overall reserve of the portfolio is given
by simple addition of individual reserves of lines of business which assumes no
dependence structure. It can be seen that the overall reserve estimated by chain-
ladder method is approximately higher by 10 % in comparison with observed
reserve.

4.2 Marginal distributions fitting

Since the parametric copula fitting requires the specification of the marginal
distributions, the preliminary analysis is needed. Our goal is to find the suitable
GLM model which will be used in copula regression fitting. First, the initial
analysis of the marginal distribution will be provided and subsequently the cho-
sen distribution is plugged into the GLM model with different link functions.
In both cases two possibilities are considered: normal and gamma distribution;
and identity and logarithmic link function within GLM framework. The exactly
same approach will be used in case of both analysed lines of business, so we will
describe in detail the distribution and GLM fitting only for personal auto. All
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the graphics for commercial auto line can be found in Appendix A.

4.2.1 Distribution fitting

In this part of fitting process, we consider two parametric distributions, namely
gamma and normal distribution. The parameters of this distributions are obtain
via maximum likelihood method. Subsequently the formal statistic tests are
provided. The appropriate distribution is tested using Kolmogorov-Smirnov test
which compares empirical distribution function of a random sample with the given
reference probability distribution. The results of the test are reported in Table
4.4. The test was performed with significance level α = 5%. Hence the p-values
in the table suggest that the normal distribution provide more suitable fit for
both personal and commercial auto line.

Personal auto Commercial auto
Gamma distribution ≈ 0 ≈ 0
Normal distribution 0.106 0.189

Table 4.4: p-values of Kolmogorov-Smirnov test

The other process to asses the suitable distribution is through the graphi-
cal comparison of empirical and theoretical measures. The Figure 4.2 illustrates
qq-plots of gamma and normal distribution for personal auto line. In addition,
so-called pp-plot, which compares the theoretical probabilities from given dis-
tribution with the series 1/(m+ 1), 2/(m+ 1), . . . ,m/(m+ 1), where m is the number

of observations, m = (I+1)(I+2)
2

= 55. In according to the displayed graphs, there
is a place for potential improvement of the tails fitting. The provided analysis is
restricted on gamma and normal distribution, which are not generally considered
to capture well the heavier tail of the random sample. The typical representatives
of heavy-tailed distributions are Pareto or log-normal distributions.

Based on the performed analysis, the normal distribution is considered to
provide more appropriate fit for both personal and commercial auto lines.

4.2.2 GLM fitting

Once the distribution of standardized incremental claims belonging to expo-
nential family is specified, the GLM model can be fitted. For each line of business,
two GLM models are considered, the first one using the identity link function and
the other one applying the logarithmic link function for normally distributed re-
sponse variable.

The choosing of more appropriate link function is gained by the residual anal-
ysis of both performed models. In order to explore the properties of the Pearson
residuals (further just residuals), the following plots are constructed:

� residuals vs. fitted values : this graphical illustration allows to observe how
the residuals are located around the zero line to review their empirical mean
and volatility;

� observed vs. fitted values : through this plot it can be seen how close are
the fitted values to the observed ones;
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Figure 4.2: Empirical vs. theoretical measures (personal auto)

� histograms of residuals : histogram assess the approximate probability dis-
tribution of residuals, which are expected to be asymptotically normal;

� scatter plot of residuals and residuals lagged in time by one period : the
scatter plot shows the possible autocorrelation among the residuals. If the
residuals seem to be autocorrelated, there is a concern, that some depen-
dence relationship might not be captured by the model.

All of afore-listed plots for personal auto line are reported in Figure 4.3, Figure
4.4, Figure 4.5 and Figure 4.6.

The first three plots exhibit quite similar features for both identity and log-
arithmic link function. The residuals seem to be uniformly spread through the
range of fitted values with a few outlier values and are symmetrically located
around the zero line. From the Figure 4.4 it can be seen that the fitted values are
very closed to the observations. This “close” distance can be formally measured
by mean squared error (MSE) which is given as arithmetic mean of the squared
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distance between fitted and observed values. The MSE is approximately 0.00012
and 0.00010 for identity and logarithmic link function respectively.
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Figure 4.3: Pearson residuals of the fitted models (personal auto)
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Figure 4.4: Observed vs. fitted values of the fitted models (personal auto)

In according to the histograms, the residuals of both models seem to be ap-
proximately normal. The formal statistical test can be performed using Shapiro-
Wilk test for normality. The corresponding p-values fro identity and log link are
0.185 and 0.063 respectively, which suggest that the residuals admits the normal
distribution.

The Figure 4.6 shows slightly higher rate of linear correlation among the
residuals for logarithmic link function.

Considering all relevant graphs and measures, the final GLM model is specified
by the normal distribution of response variables and identity link function in case
of both lines of business.
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Figure 4.6: Autocorrelation of the Pearson residuals (personal auto)

4.3 Copula regression

In this part we focus on modelling of the association relationship between lines
of business. The copula regression model will be fitted as described in Chapter 3.
First the initial preliminary analysis of dependence structure is performed.

The scatter plot of standardized incremental claims is stated in Figure 4.7.
The plot indicates quite strong positive relationship between personal and com-
mercial auto line. The corresponding estimate of linear correlation reaches the
value 0.880. Though, the observed dependence structure seems to be non-linear.
Hence, the copula approach might be reasonable to model this association rela-
tionship.

To model the single lines of business, the normal model with identity link
function is applied. By expressing the residuals of these models, the data poured
off the effects of accident year and development lag are obtained. The Figure 4.8
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Figure 4.7: Standardized incremental claims of personal and commercial auto
lines

displays the scatter plot of the residuals. The interesting result can be observed:
the estimated correlation coefficient is -0.194, which signifies the negative rela-
tionship between residuals of lines of business.

4.3.1 IFM model fitting

The first copula model that is applied is two-steps method of inference function
of margins. In fact, the first step of this method is already performed, since the
single GLM model has been already fitted when exploring the appropriate link
function. The estimates of the parameters of normal model with identity link
for personal and commercial auto are stated in Table 4.5 (the abbreviation AY
stands for accident year and DL denotes the development lag).

Once the GLM model is estimated, the copula can be fitted. The GLM model
allows to express the corresponding form of normal distribution of standardized
incremental claims. The mean is given by the estimates of the parameters and the
variance is in the case of normal model equalled to the dispersion parameter of the
GLM model. Hence the distribution function of marginals is exactly specified and
its values in observed standardized incremental claims can be expressed. This
way, the sets of observations which are expected to be uniformly distributed on
unit interval are obtained. Using these derived sets of observations, the copula is
fitted. The fitting procedure can be summarized as follows:

� the estimates of means µ̂
(n)
i,j and of dispersion parameter φ̂(n) are obtained

by fitting the GLM model;
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Figure 4.8: Residuals of GLM models for personal and commercial auto lines

� for the normal model, it holds that
(
σ(n)

)2
= φ(n), i.e. the estimate of the

variance is given by
(
σ̂(n)

)2
= φ̂(n);

� the estimated distribution function F̃
(n)
i,j of X

(n)
i,j is N

(
µ̂

(n)
i,j ,
(
σ̂(n)

)2
)

;

� the set of uniformly distributed observations u
(n)
i,j is obtained by expressing

the value of F̃
(n)
i,j in the observed standardized incremental claims;

� the parameter θ of the copula C can be estimated via maximum likelihood

function by maximizing the corresponding density function c
(
u

(1)
i,j , . . . , u

(N)
i,j

)
over the set Θ.

After constructing the observations u
(n)
i,j , the copula function is fitted. In the

performed analysis, the following copulae will be considered: Gaussian, Clayton,
Gumbel and Frank copula. Results of the fitting process are summarized in the
Table 4.6. The table reports the estimated parameter of the copula and the
associated measures as the Spearman’s rho, Kendall’s tau and coefficients of tail
dependence. As it can be seen, the results for Gumbel copula are missed. This is
caused by the fitting algorithm inside R, which did not converge and hence did
not provide any estimate. However, the divergence of the algorithm can be also
considered as a kind of result as it suggests that Gumbel copula is not able to
appropriately capture the dependence of analysed data.

Once, the copulae are fitted, there is the question which of them express the
dependence structure of the lines of business in the most suitable way. To review
this ability, the goodness-of-fit tests for copulae are performed. The blanket
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Estimates
Personal auto Commercial auto

Intercept 0.303 0.170
AY1 -0.001 -0.013
AY2 0.000 -0.003
AY3 -0.005 0.000
AY4 -0.021 -0.007
AY5 -0.009 -0.017
AY6 -0.020 0.000
AY7 -0.009 0.025
AY8 -0.011 0.013
AY9 -0.004 0.034
DL1 -0.048 -0.001
DL2 -0.160 -0.027
DL3 -0.212 -0.051
DL4 -0.266 -0.115
DL5 -0.279 -0.146
DL6 -0.296 -0.155
DL7 -0.299 -0.162
DL8 -0.301 -0.163
DL9 -0.302 -0.170

Table 4.5: Estimated parameters of normal model

θ ρC τC λL λU
Gaussian -0.335 -0.332 -0.218 0 0
Clayton -0.274 -0.234 -0.159 0 0
Frank -1.447 -0.235 -0.157 0 0

Table 4.6: Estimated parameters of fitted copulae

tests described in Chapter 3 are exhibited and the associated p-values are shown
in the Table 4.7. We observe, that on the significance level α = 5%, according to
the stated p-values the Gaussian copula does not provide the suitable fit. Both,
Clayton and Frank copula seem to be appropriate upon the test based on statistic
Sm. In addition, the Frank copula might be suitable choice also in consonance
with tests based on Rosenblatt’s transformation S

(B)
m and S

(C)
m . In line with the

preference ranking of Genest et al. (2009), the decision will be based on the test

statistic S
(B)
m which suggests the Frank copula as the most appropriate fit of the

analysed data.

Sm S
(B)
m S

(C)
m

Gaussian 0.003 0.025 0.020
Clayton 0.059 0.027 0.029
Frank 0.065 0.306 0.239

Table 4.7: p-values of selected blanket tests

The final copula regression model fitted by two-step IFM approach is given by
Frank copula with marginals characterized by normal GLM model with identity
link. After the model is specified and parameters are estimated, the future out-
standing claims reserves can be predicted. One of the advantage of parametric
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model is that it is able to predict the reserves by simulating. The predictive distri-
bution of the reserves can be constructed and will be used to derive the final value
of the reserves. Beside that, the total distributional specification of the reserves
allows to provide other distributional quantities. The prediction of reserves using
the copula regression IFM model is exhibited according to the following proce-
dure:

� the realizations
(
u

(1)
i,j , . . . , u

(N)
i,j

)
are generated from the estimated Frank

copula for the accident years i and development lags j for which i+ j > I;

� the standardized incremental claims x
(n)
i,j are simulated as the value of in-

verse function of F̃
(n)
i,j given by parameters estimated by GLM model;

� the unpaid losses for accident year i ∈ {1, . . . , I} are obtained by

N∑
n=1

J∑
k=I−i+1

x
(n)
i,k ω

(n)
i ;

� the total reserve of the overall portfolio is

I∑
i=1

N∑
n=1

J∑
k=I−i+1

x
(n)
i,k ω

(n)
i .

These steps are repeated B times, hence we get B simulations of the reserve value
either for every accident year i separately or aggregated for all i ∈ {1, . . . , I}.
Based on these simulation, the empirical distribution function can be determined.
Then the final value of reserves is given as mean of this distribution. For the
purposes of our analysis, we set B = 10000.

Following the afore-described procedure, the estimated reserve for overall port-
folio is 187 186 USD. The detailed results for separate lines of business and ac-
cident years i are shown in Table 4.8. We observe that there are negative values
of claims for some accident years. This can occur as a consequence of the normal
distribution we consider as the normal distribution does not ensure non-negative
values of reserves. In practice, the negative values of incremental claims can occur
when there are some returns of already paid claims because of some later findings
in claims settlements or lawsuits.

4.3.2 Joint model fitting

In this section, we will describe the fitting procedure of the joint model which
estimates the parameters of GLM models and of copula jointly in one step. There
is no package and pre-defined function in R dealing with this problem. Thus it
was needed to construct the log-likelihood function given by 3.3. The formulation
of this function is stated in Appendix B. Then this function is optimize using the
same optimization method as classical maximum likelihood estimation procedure
designed in R. As the initial values for parameters, the estimations from IFM
model are used.

It is notable, that in general this optimizing task might not converge and
reach the results. In our case, with the claims data of two lines of business, the
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Accident year i Personal auto Commercial auto Total
1 -16 -475 -491
2 80 69 149
3 -587 698 110
4 -4 472 202 -4 269
5 -475 -1 895 -2 369
6 -3 148 6 973 3 825
7 6 837 28 424 35 261
8 14 829 36 142 50 971
9 36 284 67 716 104 000

Total 49 332 137 854 187 186

Table 4.8: Reserving results obtained by IFM model (in USD)

calculation is not so crucial as the sample size is quite low. There are situations,
where more lines of business or generally more margins are considered with high
sample size. In those instances, it might happen that the optimizing assignment
becomes really challenging and it can be hard or even unreal to obtain results.

Beside the optimizing task itself, there is also problem of computational diffi-
culty and efficiency. When considering the bootstrap method or simulating within
this approach, the calculation can yield into undesirable duration and the overall
model becomes inefficient from the practical point of view.

As it is mentioned, due to our quite low sample size, the optimizing task
converged and reached the results in finite number of iterations. The estimates
of the parameters are summarized in the Table 4.9. The values maximized log-
likelihood and AIC are stated as well.

In the case of joint model, the selection of the most suitable model is simply
based on the AIC. As it is seen in the table, the lowest value of AIC belongs to
the Clayton copula. Thus the Clayton copula regression model is chosen as the
most suitable.

After the specification and estimation of the model, the values of incremental
claims, based on which reserves are calculated, are predicted. The estimation
of the reserves is exhibited by the same procedure as in the case of IFM model.
The Table 4.10 displays the reserving results for separate accident years and
lines of business. The total reserve of the portfolio consisting of personal and
commercial auto lines is 189 549 USD. Again, we observe the negative values
for some accident years. The comparison of the models will be described in the
following section.
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Table 4.9: Estimated parameters of fitted joint models
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Accident year i Personal auto Commercial auto Total
1 69 -426 -357
2 23 55 78
3 -77 1 034 958
4 -3 654 701 -2 952
5 470 -1 510 -1 039
6 -3 067 6 901 3 833
7 6 622 27 573 34 194
8 13 705 34 813 48 518
9 37 601 68 715 106 316

Total 51 692 137 857 189 549

Table 4.10: Reserving results obtained by joint model (in USD)

4.3.3 Comparison of the models

We have already introduced and fitted the copula regression model for both
approaches, the IFM and joint model. Hereafter, the results of these methods
along with the observed values and chain-ladder estimation will be summarized
and compared. All obtained result are displayed in Table 4.11. When comparing
the results of copula regression models with observed reserves, we observe that
the reserves of IFM model are higher by 18 % and in the case of joint model,
they are greater by 20 %. The chain-ladder method can be viewed as industry’s
benchmark as it is one of the most commonly used methods in practice. The IFM
model and joint model provides the results that are 10 % and 11 % respectively
higher than results exhibited by chain-ladder method.

Accident Observed Chain-ladder model
year i Personal auto Commercial auto Total Personal auto Commercial auto Total

1 52 69 121 32 1 32
2 156 125 281 103 42 144
3 339 1 078 1 417 342 174 516
4 1 712 1 116 2 828 614 719 1 333
5 2 227 2 092 4 319 1 881 1 746 3 627
6 3 195 6 297 9 492 3 707 5 378 9 085
7 10 074 11 448 21 522 9 153 15 760 24 913
8 16 117 26 085 42 202 18 280 27 509 45 788
9 34 458 41 545 76 003 36 462 48 450 84 912

Total 68 330 89 855 158 185 70 571 99 779 170 350

Accident IFM model Joint model
year i Personal auto Commercial auto Total Personal auto Commercial auto Total

1 -16 -475 -491 69 -426 -357
2 80 69 149 23 55 78
3 -587 698 110 -77 1 034 958
4 -4 472 202 -4 269 -3 654 701 -2 952
5 -475 -1 895 -2 369 470 -1 510 -1 039
6 -3 148 6 973 3 825 -3 067 6 901 3 833
7 6 837 28 424 35 261 6 622 27 573 34 194
8 14 829 36 142 50 971 13 705 34 813 48 518
9 36 284 67 716 104 000 37 601 68 715 106 316

Total 49 332 137 854 187 186 51 692 137 857 189 549

Table 4.11: Reserving results (in USD)

Hereafter, we focus on copula regression approaches. These two approaches
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can be compared upon two aspects: from the statistical and numerical point
of view. In the terms of statistic measures, this comparison is based on mean
squared error (MSE).

MSE measures the average of the squared differences of the “errors”. We fitted
the models using the observations for which i+j ≤ I, this set of observations forms
so-called in-sample data. On the contrary data satisfying i + j > I are denoted
as out-of-sample data. In this case, we will use MSE to assess the reasonableness
of the model by measuring the difference between out-of-sample observations and
the predictions given by the model estimated by using in-sample data. Thus MSE
is given by

MSE =
1

l

I∑
i=1

J∑
k=I−i+1

(
x

(n)
i,j − x̂

(n)
i,j

)2

,

where l is the number of considered observations, in our case l = (I+1)(I+1)
2

−(I+1),

and x̂
(n)
i,j denotes the predicted values of standardized incremental claims.

The results of MSE for both lines of business and both approaches are shown
in Table 4.12. As it can be seen, from the point of view based on MSE measure,
IFM as well as joint model provide comparable results.

Personal auto Commercial auto
IFM model 0.00261 0.02080
Joint model 0.00250 0.02048

Table 4.12: Mean squarred errors

As it was already mentioned, there is a concern that joint model might be
challenging in terms of the optimizing the joint log-likelihood function. To assess
this aspect, the duration of estimation and prediction of the models was measured
and reached the results summarized in the Table 4.13. We observe that the joint
model is time demanding in both calculations.

We recall that the joint model is fitted using only 110 observations and two
lines of business. In situations which necessitate to model more than two mar-
gins with relatively higher sample sizes, the calculations can become really time-
consuming and inefficient.

Estimation Prediction
IFM model 0.03 8.64
Joint model 6.44 24.49

Table 4.13: Duration od selected calculations (in seconds)
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Conclusion

The primary goal of the presented thesis was the study of different approaches
to model the dependence among loss triangles using multivariate copulae. If losses
of different lines of business are somehow related, this relationship needs to be
reflected by aggregate reserves. To describe the dependence structure of multiple
lines of business, the copula approach was proposed.

Our intention was to describe the model that is able to reflect the dependence
structure of lines of business into a reserve of overall portfolio. The common
practice when determining the value of aggregate reserve is the assumption of in-
dependent lines of business and then the simple addition of individual reserves.
However, with the implementation of new regulatory standards, it is very impor-
tant to understand the reserves as a whole, not just by lines of business. Hence
the parametric approach of copula regression model was theoretically described
and subsequently practically implemented in order to estimate the overall reserve
of portfolio consisting of two lines of business.

Both variations of copula regression, the joint and IFM model, have been
applied on real claims data. At first, the estimation of the considered models
were obtained and using goodness-of-fit test, the most appropriate IFM and joint
model was chosen. In the case of IFM model, the Frank copula seemed to be
the most suitable while the Clayton copula provided the best fit for the joint
model. Both approaches provided comparable results in terms of the final value
of the reserves and MSE measure. When dealing with computational efficiency,
the joint model seemed to be quite time demanding, especially the prediction
of outstanding claims reserves.

The described copula regression model has both strengths and limitations.
The copula model allows to consider different parametric regression for different
lines of business, although the analysis of chosen losses of US insurer suggested
normal regression for both lines of business. In addition, beside the point estimate
of reserves, the parametric approach enables to construct also prediction errors
and prediction distribution. Moreover, a strength of the parametric approach
is that it has been widely used for small data sets which are typical in claims
reserving framework.

The limitation of the model is the fact that we focus only on two representa-
tives of the exponential family in the implementation of GLM. It would be inter-
esting to explore whether the incremental payments might not support another
distribution, possibly the distribution with heavier tails. The set of analysed cop-
ulae could be also extended. As it was mentioned, the dependence structure may
appear on many levels, hence the model allowing the dependence relation among
all the observations belonging to the same calendar year could be considered.

One possible improvement is described by Abdallah et al. (2015), which pro-
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posed the use of new models based on hierarchial Archimedean copulae providing
more flexibility and more intuitive interpretation of dependence relationship. An-
other method describes Regis (2011) which combines a Bayesian approach for the
estimation of marginal distribution of single line of business and a Bayesian cop-
ula procedure for the estimation of aggregate reserves. It would be interesting to
examine both these proposals, investigate the change in claims predictions and
compare the obtained results.
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Appendix A

Commercial auto

A.1 Distribution fitting
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Figure A.1: Empirical vs. theoretical measures (commercial auto)
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A.2 GLM fitting
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Figure A.2: Pearson residuals of the fitted models (commercial auto)
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Figure A.3: Observed vs. fitted values of the fitted models (commercial auto)
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Figure A.4: Histograms of the Pearson residuals (commercial auto)
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Figure A.5: Autocorrelation of the Pearson residuals (commercial auto)

MSE p-value of Shapiro-Wilk test
Identity link 0.00030 0.170

Logarithmic link 0.00026 0.338

Table A.1: Selected measures for commercial auto line
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Appendix B

Source code

### Log-likelihood for margins

loglikMarginal_norm <- function(beta,disp,yyy,Xmat) {

#### yyy is the response, Xmat is the model matrix

xmat <- as.matrix(Xmat)

xmat <- cbind(rep(1, NROW(xmat)),xmat)

mu = xmat%*%beta

std= sqrt(disp)

llk <- sum(dnorm(yyy, mean=mu, sd=std ,log=TRUE))

u <- pnorm(yyy,mean=mu, sd=std)

u<-ifelse (u > 0.999999999999999, 0.999999999999999, u)

Results <- list(llk, u)

return(Results)

}

### The value of log-likelihood

loglikMarginal <- function(beta,disp,yyy,Xmat) {

llk <- loglikMarginal_norm(beta,disp,yyy,Xmat)[[1]]

return(llk)

}

### Log-likelihood for joint model

loglikCopula <-function(theta, y1, Xmat1, y2, Xmat2, copula) {

copulaparam = theta[1]

beta1 = theta[2:(NCOL(Xmat1)+2)]

beta2 = theta[(NCOL(Xmat1)+3):NROW(theta)]

temp1 <- loglikMarginal_norm(beta1,disp=sigma,yyy=y1,Xmat=Xmat1)

temp2 <- loglikMarginal_norm(beta2,disp=sigma,yyy=y2,Xmat=Xmat2)
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uu = cbind(temp1[[2]],temp2[[2]])

personal_loglik = temp1[[1]]

com_loglik = temp2[[1]]

copula@parameters <- copulaparam

Loglik <- personal_loglik + com_loglik + sum(log(dCopula(uu,copula)))

return(-Loglik)

}
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