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je aktuálńı mı́ru zapojenosti odkazovaných objekt̊u a jej́ı vývoj v pr̊uběhu textu.
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Introduction

Motivation

Discourse can be viewed as a sequence of sentences referring to a set of real-world

objects. By modeling the dynamic appearance of these references throughout

the text, one can acquire a new knowledge about the structure of the text, the

importance of these objects in relation to the text, or even the nature of the

text. This knowledge can be subsequently used for further investigation in the

field of discourse analysis (e.g. for comparison of the discourse dynamics between

two different languages), as well as enhancing the efficiency of an NLP applica-

tion working with the whole bodies of texts (text segmentation, topic modeling,

document clustering, information retrieval).

Goals and Contents

There are two main goals of this work. The first one is to investigate more deeply

the notion of salience as it is defined by Hajičová et al. (2006). This includes

reproducing the experiment described there on a larger amount of data (using

the recently available Prague Dependency Treebank 3.0), generating the results in

a human-examinable form, and analyzing them especially from the quantitative

point of view.

The second goal is to examine the salience and its usefulness as an additional

feature for an NLP application. Firstly, the possibility of an automatic estima-

tion and its success rate needs to be explored, to state whether the salience value

can be made available in such application. Secondly, an exemplar NLP applica-

tion can be chosen and examined using the salience feature. Since the type of

information the salience brings is closely associated with the topic or theme of a

document, an attempt to visualize a thematic document clustering will be made.

Content Overview

The chapters in this thesis are ordered roughly from the theory to experiments

and results, to provide first the context necessary for understanding the practical

parts. In Chapter 1, the reader is introduced to the research context of our topic,

being acknowledged with the related works in the fields we reach into. References
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to the historical research for the salience notion are presented together with works

concerning its main building blocks, coreference and topic-focus articulation.

Chapter 2 presents a necessary overview of both the linguistic theories behind

this work and the algorithmic foundations of the machine learning methods used

in the following chapters. Although this overview is not intended to be exhaustive

and too detailed, it should provide the reader with the knowledge needed to

understand this work and the presented results, along with directions to further

reading if he is be more interested in any of the subjects.

Data and tools used during the experiments and other parts of the work are

enlisted and described in Chapter 3, each with a brief information of how and

when they contributed.

Perhaps the main part of this work is described in Chapter 4, where the results

of the automatic salience analysis on the larger amount of data are presented, both

quantified and visualized. These results are preceded by more general statistics of

the data in question, providing the necessary context for a better interpretation.

In Chapter 5, series of experiments were conducted for exploring the possi-

bility of predicting the salience degrees automatically, using a statistic defined

in the previous chapter. Decision trees and random forest models are used in

this experiments, using various features extracted from surface, morphological

and syntactic layer of annotation. Aside from the evaluation results itself, the

machine learning models are used also for a further understanding of the features’

influence on the salience expression form.

Chapter 6 describes two experiments performed to assess the possible con-

tribution of salience information as a feature to a machine learning application.

Both present an attempt for a simple document clustering based on the impor-

tance of words – comparing the difference of influence of a simple word-count

statistic and a salience-based feature used for calculating this importance.

Contents of the enclosed CD-ROM are described in the Appendix, along with

a brief information of each piece of the data and directions on how to approach

them. Both the scripts and the results contained on the CD-ROM are an integral

part of this thesis and represents an important amount of work done within its

scope.
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1. Related Work

1.1 Discourse Dynamics and Sentence Structure

Several approaches to the analysis of a discourse dynamics with respect to a sen-

tence structure can be found among the linguistic theories. Mainly, they attempt

to capture the impact of sentence-level expressions on the flow of discourse and

its topics. Most of these theories are based on distinguishing two main semantic

types of information in the sentence: given vs. new (although their terminology

varies, often without significant differences in the definitions).

Hajičová (2013) mentions an interesting approach to relating the sentence

structure with a dynamicity of the discourse structure, given by Prince (1981); a

three-level hierarchy of givenness of an information (contrasting the given-new)

between speaker and hearer is presented there. Each level refers to a different

understanding of givenness in the works of previous researchers:

1. givenness as a predictability/recoverability, as defined by Kuno (1972) and

Halliday (1967) (althour their definitions slightly differ),

2. givenness in the sense of saliency, relating to the assumption of the hearer’s

consciousness, referring to Chafe (1976),

3. givenness in the relation to a state of a “shared knowledge” according to

Haviland and Clark (1974), focusing on what the hearer “already knows

and accepts to be true” vs. what the hearer “does not yet know”.

Prince then continues with defining a more fine-grained familiarity scale on dis-

course entities, working also with the hearer’s ability to infer or link the newly

mentioned entities. Another “givenness hierarchy” is presented by Gundel et al.

(1993) focusing on success of nominal expression referents.

Another well-known approach of modeling discourse dynamics in terms of

sentence structure is the centering theory introduced by Joshi and Weinstein

(1981) and further refined by Grosz et al. (1995), based on the local attentional

states of speaker and hearer. It operates with a forward and backward looking

centers of sentences and defines four types of sentence transitions by the relations

of their centers. One of the characteristic features of this theory is ranking of the

centers according to a language-specific parametrization.

An entity-grid model is presented by Barzilay and Lapata (2008), where each

entity appearing in a text (based on a coreference relations) is assigned a column
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in a grid, each sentence corresponds to a row in this grid. The cells are then

filled with syntactic roles of the entities in the corresponding sentence, recording

also the transitions between those sentences. It should be noted that this ap-

proach, among all the mentioned so far, is the most computationally oriented.

Distributional information about the entities are extracted naturally from the

entity-grid as well, forming the parameter of salience as a discourse prominence.

However, our understanding of this notion is slightly different, agreeing with Ha-

jičová (2013) that it should be understood in a more complex way, and that

neither frequency nor the length of the referential chain is a sufficient measure of

salience.

Even more application-oriented approach is presented by Sauper et al. (2010),

building a statistical-based model of content structure for using it in a text anal-

ysis. This model combines hidden Markov models and conditional random fields,

employing the expectation-maximization technique for finding their parameters.

1.2 Salience

Our approach directly follows the notion of salience first mentioned and described

by Hajičová and Vrbová (1982), revisited by Hajičová (2003) and further refined

and tested by Hajičová et al. (2006). This notion relates the dynamicity of

the discourse with the information structure of its individual sentences, working

with activation of the elements of knowledge shared between the speaker and the

hearer.

In contrast to most of the works mentioned above, this approach postulates a

continuous scale of the activation feature. Being defined in this continuous and

relative sense, modeling and visualizing its dynamics comes forward naturally. As

an indirect consequence, the theory itself does not suggest (nor enforce) any names

for the particular salience levels. Although this might be confusing from the

linguistic point of view, it may not necessary be a difficulty for a computational

or machine learning approach.
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2. Theory

The theory of salience will be introduced in Section 2.3, but first, one has to

understand two main resources standing behind this notion: coreference and

topic-focus articulation.

2.1 Coreference

Coreference is a concept describing a relation of two or more expressions in a text

referring to the same real-world object. These expressions are called referents.

The key approach to coreference in this work is that the groups of coreferents

join together to form a coreference chain. When speaking about two neighbouring

members of the coreference chain and their relation, the first one is often called

the antecedent and the second one the anaphor, with respect to the order of

their occurence in the text. These terms describes the most typical form of the

coreference called anaphora, when the first expression is the more specific one and

the second one relates to the first one – when visualizing the coreference relations,

this is often denoted by an arrow directed from the second one to the first one. The

reverse case, called cataphora is also possible; however, the terminology differs

here, the “target” of the relation is usually denoted as cataphor and it is now

preceded by the “source”, which is often called the postcedent.

The distinction between anaphora and cataphora is illustrated by the simple

examples (1) in Czech (constructed based on our language experience). The

English translations are as literal as possible to retain the structure of the original

sentence. The coreference pairs in both cases are highlighted and subscripted.

(1) a. Krabicea byla tak těžká, že jia Petr raději nechal za dveřmi.

(The-boxa was so heavy that it-OBJa Peter-SUBJ rather left behind

the-door.)

b. Ačkoliv hoc nikdo nezval, Martinc se-objevil na každém več́ırku.

(Although himc no-one invited, Martinc showed-up on every party.)

8



2.1.1 Grammatical and Textual Coreference

According to the approach to coreference captured in the Prague dependency

treebanks1 and described e.g. by Kučová and Hajičová (2004) (with its extension

by Nedoluzhko (2011)), we distinguish two types of coreference relations in this

work, grammatical and textual. The grammatical coreference in this approach

is such a kind of coreference in which it is possible to pinpoint the coreferred

expression on the basis of grammatical rules; it may involve a verb of control,

reflexive pronouns, verbal complements, reciprocity and relative pronouns. On

the other hand, the textual coreference is not realised by grammatical means

alone, but also via context. The former type of coreference usually occurs with

both the involved coreferents within one sentence, while the latter often cross the

sentence boundaries.

2.1.2 Bridging Anaphora

The term bridging anaphora, also sometimes denoted as associative anaphora,

is used in this work in correspondence to its annotation in the Prague Depen-

dency Treebank, described in detail by Nedoluzhko (2011). The term describes

an anaphoric relation where the anaphor is not directly coreferential to the an-

tecedent, but an indirect connection is implied. This connection can be identified

by the reader often using a real-world knowledge and a cognitive process, some-

times also based on the context. As it is shown in (2) (taken from Nedoluzhko

(2011)), some knowledge of semantic structures of the mentioned object has to

be employed to recognize the relationship between “classroom” and children.

(2) Učitel vešel do tř́ıdy. Děti (se) okamžitě přestaly bavit.

(Teacher entered (to) the-classroom. Children instantly stopped talking.)

Within the notion of bridging anaphora, more specific subtypes of relations are

distinguished, corresponding to the semantic relation of the two referred objects.

Based on a rigorous research and analysis of the impact of the inter-annotator

agreement, Nedoluzhko (2011) settles for the following six subtypes for the Prague

Dependency Treebank annotation task:

1. part-whole relation (asymmetric, with both possible directions)

– e.g. “room”-“ceiling”, “finger”-“hand”

2. set-subset relation (asymmetric, with both possible directions)

– e.g. “drinks”-“beer”, “drinks”-“soda”

1For details on the Prague Dependency Treebank family, see 3.1
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3. functional relation (asymmetric, with both possible directions)

– e.g. “coach”-“team”, “company”-“director”

4. semantic or pragmatic contrast (symmetric), depends heavily on the context

– e.g. “Last year we went abroad on holiday, but this summer we are

staying at home.”

5. non-coreferential anaphoric relation (symmetric)

– e.g. “Love? What does the word even mean?”

6. other – intended for collecting specific types of relations, possibly detachable

into their own category in the future: family membership, place-inhabitant,

author-piece, possession-owner etc.

Although some of the bridging relations are inherently asymmetric, the mem-

bers of the anaphoric chain are considered to be equivalent. Thus, we can actually

speak of chains, with each member referring to the directly previous one.

A simple example illustrating the coreference and bridging anaphora notions is

given in Figure 2.1.2 It depicts these relations among some words of the following

two sentences (neighboring in the original text):

(3) Olympijský v́ıtěz v desetiboji Robert Změĺık se v minulých dnech nastěhoval

se svou př́ıtelkyńı Andreou Sollárovou do nového bytu na śıdlǐsti

v Praze-Řeṕıch. Źıtra (on) vyraźı do francouzského střediska ve Font Romeu k

závěrečné př́ıpravě na mistrovstv́ı světa ve Stuttgartu.

(The Olympic winner Robert Změĺık with his girlfriend have recently moved to

a new flat in a housing estate in Prague-Řepy. Tomorrow, (he) will depart to

a French resort of Font Romeo to a final training before the World

Championship in Stuttgart.)

The coreference and bridging relations are marked by the colored arrows.

There is a typical case of grammatical coreference (brown arrow) in the first

sentence of the example: the pronoun “svou” (“his”) referring to the subject

NP rooted in the surname Změĺık. In the second sentence, the same entity is

referenced again, this time by the pronoun “he” (zero pronoun in the Czech

original, thus marked technically by #PersPron in this represenation). However,

since this link reaches out to another sentence, it is now identified as a textual

coreference (marked by the navy blue arrow). Finally, there is a part-whole

bridging relation (turquoise arrow) between the resort name “Romeo” and the

2Both the visualization and the actual data are from the Prague Dependency Treebank –
for details see further in Chapter 3
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Figure 2.1: Example of visualized coreference and bridging relations in two neigh-
boring sentences.

word “francouzský” (“French”). This link captures the idea that the resort as

a place is “something French”, i.e. part of a certain bigger complex which we

denote by this adjective. There are two more red arrows, representing a textual

coreference with targets outside the scope of these two sentences.

2.2 Topic-Focus Articulation

Information structure of a sentence is an important aspect of the sentence mean-

ing, especially in the perspective of a discourse analysis. Our understanding of

the sentence information structure is directly based on the Functional Generative

Description framework (FGD), i.e. the approach of the Prague School of Linguis-

tics. An insightful survey of this approach can be found in Hajičová (1993), for

more detailed treatment see e.g. Sgall et al. (1986).

The key notion in this approach is the topic-focus articulation (or TFA), a

partitioning of the sentence into two segments each with different communica-

tional function.3 In the topic part of the sentence, the speaker mentions “what

he is talking about”, while the focus part contains new information about the

topic, i.e. “what he wants to say about it”. The dichotomy links the semantic

structure of a sentence with the structure of discourse in its context, and is usually

found to be also anchored in the syntactic structure of the sentence. As described

by Hajičová (1993): “Natural languages use various surface means to convey this

3This dichotomy is sometimes described also as theme/rheme, topic/comment or presupposi-
tion/focus by more traditional theories and also by similar contemporary approaches. However,
the main distinguishing principles rarely differs.
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distinction: word order plays the main role in inflectional languages, specific mor-

phemes are present in several languages of Eastern Asia, e.g. in Japanese, and

intonation seems to be important everywhere, especially in the analytic languages

of Western Europe; German combines in various respects the properties of the

latter with these of inflectional languages.”

An example sentence in Czech (from Hajičová et al. (2005)) is shown in (4)

to illustrate the topic-focus segmentation.

(4) V noci ze soboty na neděli skončil ve vojenském prostoru Ralsko sjezd major̊u.

(At night from Saturday to Sunday ended in military area Ralsko meeting(Nom.)

of-majors.)

Topic: v noci ze soboty na neděli (at night from Saturday to Sunday)

Focus : skončil ve vojenském prostoru Ralsko sjezd major̊u (ended in mil-

itary area Ralsko meeting(Nom.) of-majors)

As stated by Hajičová et al. (2005) and following the FGD approach, the semantic

basis of the articulation of the sentence in to Topic and Focus is the relation of

contextual boundness: a prototypical declarative sentence asserts that its Focus

holds (or does not hold) about its Topic. Within both Topic and Focus, an

opposition of contextually bound and non-bound nodes is distinguished, which

is understood as a grammatically patterned opposition, rather than in the literal

sense of the term. Within the contextually bound elements of the sentence, a

difference is made between contrastive and non-contrastive bound elements.

Following the theoretical assumptions of FGD, TFA is captured in the tec-

togrammatical annotation of the Prague Dependency Treebank4 by the TFA at-

tribute, which may obtain one of the three values:

• t : a non-contrastive contextually bound node,

• c: a contrastive contextually bound node,

• f : a contextually non-bound node.

Returning to the relation of the two different views, the semantic view rep-

resented by the contextual boundness and non-boundness serves as a basis for

inferring the syntactic, surface-form Topic/Focus dichotomy and possible seg-

mentation of a sentence. In this direction, a heuristic procedure was proposed by

Sgall et al. (1986) to identify the sentence bipartition of Topic/Focus based on

the distinction of contextually bound and non-bound items.

4For details on the treebank, see 3.1
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2.3 Salience

The flow of a discourse can be viewed as a sequence of sentences, each with its

own information structure and most of them referring to some real-world objects.

In different parts of the discourse, some of these objects are referred to more

often than the others and vice versa. The notion of salience suggests that at

every point of the discourse, i.e. in every sentence, each of these objects can be

assigned a certain level of activation, or salience.

One can assume that all the objects referred in a discourse are taken from

some stock of knowledge shared between the speaker and the hearer (or, in case

of a written text, the author and the reader). Then we can regard this set of

objects rather as a stack, bearing the most activated items on the top. When an

object is mentioned in a sentence, it is moved to the top of the stack (or closely

to it, depending on the usage of the referring expression in the sentence). Then,

if not referred in the following sentences, it slowly descends, pushed down by the

objects which are mentioned in these sentences. Given this model, the quantity

of salience of an object determines how high this object is located on the stack.

Assumptions have been made (Hajičová, 2003) that if the salience values of

the referenced objects in a discourse could be determined, one would be able

to induce various characteristics of the discourse. One of them is observing a

segmentation of the discourse according to groups of momentarily salient objects

along with the identification of their topic(s). Another one could be prediction of a

grammatical form of the referring expressions (or, more generally, their strength),

eg. pronominal vs. noun referent. Some of these assumptions will be addressed

and analyzed in this work.

2.3.1 Salience algorithm

A deterministic procedure to determine the salience values of the coreference

chain in the flow of a discourse on a sentence-by-sentence basis was introduced

by Hajičová et al. (2006). Its evaluation was presented on one sample document

only, because not much data with the necessary annotation were conveniently

available at that time. However, the results of the algorithm were also visualized

to provide more human-readable feedback.

Let us recall the salience algorithm, as defined by Hajičová et al. (2006) –

consider the following situation: An object x represented by the referent r has

the salience degree dgnx(r) after the n-th sentence of a document is uttered. Then,

13



the salience value of the object x is defined after its first mentioning by a linear

sentence-by-sentence processing as follows:

After each sentence, the salience degree of the object x is modified:

1. dgnx(r) = −1 if r carries TFA value t or c in the n-th sentence,

2. dgnx(r) = 0 if r carries TFA value f in the n-th sentence,

3. dgnx(r) = dgn−1x (r)−2 if r is not included in the n-th sentence and has been

mentioned in the Focus of the last (not necessary immediately) preceding

sentence ((n− 1)-th through 1st sentence),

4. dgnx(r) = dgn−1x (r)−1 if r is not included in the n-th sentence and has been

mentioned in the Topic of the last (not necessary immediately) preceding

sentence ((n− 1)-th through 1st sentence).

Note that this formulation of the salience algorithm does not define the

salience value of x before it is first mentioned in the document.

The salience algorithm distinguishes between the Topic/Focus dichotomy and

the TFA attribute values (c/t/f), according to the theoretical background sum-

marized in 2.2. However, in the scope of this work, we will make a simplification

at this point and use the term Focus synonymously to the TFA value f and like-

wise Topic synonymously to the TFA values c or t. The reasons are rather of

technical nature; although a heuristic algorithm proposed by Sgall et al. (1986)

has been stated and tested by Hajičová et al. (2005) for “converting” the c/t/f

values to Topic/Focus, its results were not fully deterministical. Furthermore, this

algorithmic procedure could not be reproduced within the scope of this work.

2.4 Decision Trees and Random Forests

2.4.1 Decision Trees

The decision tree classifier is one of widely used machine learning algorithms. The

model of this classifier is a tree graph in which each non-leaf node represents a

decision about one feature and the branches leading from this node correspond to

decisions about the feature values. Finally, the leaf nodes are labeled by the target

feature values. Having this kind of tree, the classification of a new instance is

quite simple – its target class is determined by the leaf node of the path beginning

in the root and following the decisions on the way down according to the features

of this instance.

14



Learning of this kind of tree parametrization is however not so simple, some

questions occur when choosing the attributes which should contribute to the

classification and their order. We will demonstrate it on the basic tree learning

algorithm called ID3 (Quinlan, 1986). This basic algorithm is a greedy search

top-down algorithm, beginning in the root. When building a new node, the

question is: “Which attribute should be tested in this node?”, which could be also

stated as “Which attribute classifies the training examples in the best way?”. This

question is answered by a statistical test, in particular (in the case of ID3 ) by

the property called information gain. This criterion expresses the reduction of

entropy caused by partitioning the examples according to the chosen attribute.

The entropy of set S relative to the c-class classification is defined as follows:

Entropy(S) :=
c∑

i=1

−pi log2 pi (2.1)

where pi is the proportion of S belonging to class i. In general, the entropy

can be seen as some “indefiniteness”, or “vagueness”. Then the definition of the

information gain looks like this:

Gain(S,A) := Entropy(S)−
∑

v∈Values(A)

|Sv|
S

Entropy(Sv) (2.2)

where Sv is the subset of S for which attribute A has value v. During the tree

construction, at each node, this value is computed for each attribute and the

attribute with the highest information gain is chosen for the split. However,

there are also other measures which can be used as a split criteria instead –

for example gain ratio (in principle an adjusted information gain, without the

preference of many-valued attributes).

The above presented ID3 algorithm was later enhanced by Quinlan (1993)

under the name C4.5, namely by allowing also for continuous variables (using a

threshold splitting), handling missing values and the ability of post-pruning the

tree.

Another approach to the decision tree learning was introduced by Breiman

et al. (1984) and is known as CART (Classification And Regression Tree). Com-

ing from a different theoretical background (statistics), the split criterion is stated

as the loss of impurity created by the split. The usual measure of impurity is

Gini impurity, but entropy can used as well.

Another important matter in the tree construction is how to avoid the over-

fitting to the training examples. This is handled by the techniques called pre-

pruning and post-pruning, which are generally methods for regularization of the
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model. The idea of the pre-pruning method is stopping the top-down tree build-

ing before the overfitting becomes imminent. It could be achieved either by prior

setting of the tree depth or by specifying a minimum rate for the splitting crite-

rion – allowing to split only when this threshold can be surpassed. Post-pruning,

on the other hand, works with the constructed tree, it simply cuts off parts of

it. Usually, the tree is converted into set of (conjunctive) rules first, each corre-

sponding to one path from root to a leaf, the post-pruning can then be done also

manually.

2.4.2 Random forests

Random forests are generally a less interpretable, but more efficient extension to

the decision tree principle, based on the idea of ensemble learning. Introduced by

Breiman (2001), it has recently become very popular model due to its robustness

and retaining the expressivity for measuring variable importance. The classifier

combines a given number of decision trees, each trained on a subsample of da-

ta and on a subsample of features, a combination of bootstrap aggregating (or

“bagging”) and similar subsampling of features (sometimes called “feature bag-

ging”). It is shown that with a large number of trees, this approach minimizes

the noise-sensitivity of the model while simultaneously retaining feature-oriented

correlation between the trees, which both contributes to minimize the general-

ization error. When evaluating new data, the individual decisions of these trees

can then be aggregated for regression tasks by averaging their prediction, and for

classification tasks by a simple majority voting. Yet another approach for the

classification tasks is averaging the probabilistic decisions of the individual trees

– this principle is used by the scikit-learn library and employed also in our

experiments.

Another important feature of the random forests for both the model and

problem analysis is the ability to compute importances of the variables used.

This calculation is based on summing the split criterion value at each node where

the given feature is used, weighted by the number of samples split in this node.

These results are averaged over all estimator trees, ensuring robustness of this

approach. Therefore, the resulting value summarizes how often and how well the

given feature contributed to the splitting among all the trees and their nodes.
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3. Data and Tools

3.1 Data Sources

3.1.1 The Prague Dependency Treebank Family

The Prague Dependency Treebank (PDT)1 (Hajič et al., 2006) represents currently

the largest annotated corpus of Czech language. The texts are syntactically

analyzed using the dependency approach with the main role of the verb. The

annotations go from a morphological layer through an intermediate syntactic-

analytical layer to a tectogrammatical layer (the layer of an underlying syntactic

structure). The process of annotation was performed in the same direction, i.e.

from the simplest layer to the most complex. This fact corresponds to the amount

of data annotated on each level – 2 million words have been annotated on the

lowest morphological layer, 1.5 million words on both the morphological and the

syntactic layer, and 0.8 million words on all three layers.

The format of the files containing the annotated data of the PDT family

(since PDT 2.0) is called the Prague Markup Language (PML) and is based on

XML. Each document data consists of four XML files (typically compressed),

one file with the tokenized documents only, each of the rest corresponding to one

layer of the annotation and referencing the layer directly superior. Thus e.g. the

tectogrammatical layer, as the deepest one, does not contain any surface word

forms or purely morphological information itself, but these are accessible through

references.

Since PDT 2.0, several updated versions of the treebank were released, specif-

ically PDT 2.5 (Bejček et al., 2011), Prague Discourse Treebank (PDiT) 1.0

(Poláková et al., 2012) and PDT 3.0 (Bejček et al., 2013), whose data is used in

this work.

3.1.2 PDT 3.0

The Prague Dependency Treebank 3.0 (PDT 3.0)2 is a gradual extension upon the

PDT 2.0. It represents a new manually annotated layer of language description,

above the existing layers of the PDT (morphology, surface syntax and underlying

syntax) and it portrays linguistic phenomena from the perspective of discourse

1http://ufal.mff.cuni.cz/prague-dependency-treebank
2http://ufal.mff.cuni.cz/pdt3.0
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structure and coherence. Also other various types of information were added and

the annotation on all layers was further revised and fixed. However, from the

view of this work, the following newly added types of information are important:

• extended textual coreference;

• bridging anaphora;

• pronominal textual coreference of 1st and 2nd person;

• genres of documents.

All the newly added annotation mentioned above was performed on the tec-

togrammatical trees and technically is a part of the underlying syntax layer

(t-layer) of the PDT.

With its 49,431 manually annotated sentences from Czech newspapers, the

treebank serves as a large-scale resource for linguistic research in the area of

discourse analysis as well as for computational experiments concerning automatic

text analysis, information extraction, text summarization and other branches of

NLP research.

Figure 3.1 (taken from the Prague Discourse Treebank annotation manual)

visualizes the tectogrammatical tree structure of one sentence, along with an ar-

row visualization of the coreference relations. The notation also distinguishes

the grammatical and textual reference and includes a bridging anaphora rela-

tion. Each tectogrammatical node (or simply t-node) has its attributes visualized,

such as its tectogrammatical lemma (“potřebovat” – “to-need”), functor (“ACT”,

“PAT”, “PRED”,...) or a specific sub-type of its reference relation (“SPEC”,

“WHOLE PART”). Also note that there are some t-nodes added without any

counterpart in the surface representation – such as the root node of the sentence.

Another examples would be technical nodes generated e.g. in places of naturally

elided expressions, such as zero pronouns. On the other hand, some surface to-

kens are not represented in the tectogrammatical structure, such as prepositions

or auxiliary verbs, their function in the sentence is captured by attributes of the

existing t-nodes.

The Prague Dependency Treebank 3.0 is the only source of linguistically an-

notated data used for the purposes of this work.
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t-cmpr9413-006-p23s2
root

#PersPron
ACT

zásobování
AIM

Ostravsko
PAT

a
CONJ

Frýdeckomístecko
PAT

firma
ACT

potřebovat enunc
PRED

#PersPron
APP

jatka
PAT

firma

SPEC

Ostravsko

SPEC

sever

WHOLE_PART

SPEC

.

Figure 3.1: Example of coreference annotation for the following sentence: Pro
zásobováńı Ostravska a Frýdeckomı́stecka potřebuje firma svá jatka. (The com-
pany needs its slaughterhouse in order to supply the Ostrava and Frydek-Mistek
regions.) The brown arrow is used for a grammar coreference relation, navy
blue arrows for textual coreference; turquoise arrow for bridging reference (to an
expression in another sentence).
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3.2 Training and Test Datasets

PDT has already prepared 3 groups of datasets according to the data partitioning

typical for the NLP tasks: the training data, the development test data and the

evaluation test data. The training datasets cover approximately 80%, develop-

ment 10% and evaluation 10% of the whole set of data (these proportions hold

for all the three layers of annotation).

In this work, we exploit the prepared partitioning of PDT, but we use only the

training dataset. Furthermore, for preliminary experiments and some of the more

time-consuming tasks, we use only one eighth of the whole training data, the part

denoted train-1 . Throughout this work, we will often refer to this smaller subset

as train-1 , in contrast to the whole training set, denoted as train-all .

For a more detailed quantitative analysis of the datasets from the perspective

of the features investigated in this work, see Section 4.1.1.

3.3 Tools

3.3.1 Tools for PML

For the batch-processed salience analysis, more convenient data browsing and

other manipulation, several tools were used:

• btred3 – Perl-based interface for macro scripting specialized on processing

the PML data. Created as a tool for PDT 2.0 (thus applicable also on

PDT 3.0), and used in this work as a main instrument for manipulating

with the PML data and processing them. The main part of the salience

algorithm is implemented by means of btred.

• Tree Editor TrEd4 – a viewer and editor of the PDT annotation files, part

of the PDT 2.0 distribution. Additional plugins were installed for handling

the extra attributes, e.g. coloring of the coreference chains.

• XSH25 – XML editing shell, used for the extraction of lemmata from the

PDT XML format.

3http://ufal.mff.cuni.cz/~pajas/tred/btred.html
4http://ufal.mff.cuni.cz/~pajas/tred/index.html
5http://xsh.sourceforge.net/
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3.3.2 Classification and Regression Tools

• scikit-learn6 (Pedregosa et al., 2011) – an open source Python library

covering large amount of machine learning tasks and related data process-

ing, data analysis and visualization tools. Used extensively in Chapter 5.

3.3.3 Tools for Clustering

• pygraphviz7 – a Python interface to the Graphviz (Gansner and North,

2000)8 open source graph layout and visualization package. It was used

here for the visualization of document clustering in Chapter 6.

3.3.4 Miscellaneous

• R9 – the R language for statistical computing was used for plotting the

salience graphs.

• Perl10 programming language – used for some simpler text and data ma-

nipulation.

• Python11 programming language – used for various more complicated data

manipulation, as well as plotting some of the bar charts.

• LibreOffice12 Calc – a spreadsheet program used for manipulating and

plotting especially the data of salience leap heights.

• various Unix shell scripts and makefiles – for smaller tasks, especially for

the purposes of batch execution of the repeated ones, some simple scripts

were written for the purposes of this work. These tasks included especially

the output evaluation, but also grid-searching for parameters or format

conversions and adaptations of the data. All these scripts are also present

as a part of this work on the enclosed CD-ROM (see Section 6.3).

6http://scikit-learn.org/
7http://pygraphviz.github.io/
8http://www.graphviz.org/
9http://www.r-project.org/

10http://www.perl.org/
11http://www.python.org/
12http://www.libreoffice.org/
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4. Salience Analysis and

Interpretation

4.1 Sentences, Coreference and TFA Statistics

Before we proceed to analyze the salience models and its behavior, we should

present some statistics about the data and the features which the salience is built

upon. Also, the quantitative characteristics of the documents at hand may be

useful in the later part for a further analysis during the experiments.

4.1.1 General and Sentence Statistics

Table 4.1 presents an overview of general quantitative characteristics for both

training sets used further in the experiments.

train-1 train-all

No. of documents 316 2533

Total no. of sentences 4700 38727

Avg. no. of sentence per doc. 14.9 15.3

Total no. of t-nodes 68626 567258

Avg. no. of t-nodes per sentence 14.6 14.6

Avg. no. of t-nodes per doc. 217.2 223.9

Table 4.1: General statistics of the datasets.

More detailed distribution of the counts of sentences per document is shown

in Figures 4.1 and 4.2. Note that the most typical per-document sentence count

in both cases is 8, which is far below the average value.

4.1.2 Coreference

Perhaps the more important one of the two main pillars which the salience concept

is built upon, is the concept of the coreference relation. To understand the salience

models, we have to explore first the basic characteristics of the coreference chains

themselves in our data.

The counts of grammatical and textual coreference links in train-1 and train-all

are summarized in Table 4.2 and Figure 4.3 along with the counts of bridging

anaphora links. Those are not coreference relations in the strict sense, but since
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Figure 4.1: Distribution of the per-document sentence counts in train-1 dataset.
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Figure 4.2: Distribution of the per-document sentence counts in train-all dataset.
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coreference type train-1 train-all

grammatical 2226 18156

textual 7514 67535

bridging anaphora 1987 23512

Table 4.2: Coreference type link counts
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Figure 4.3: Counts of the coreference link types in train-1 and train-all dataset.

we have experimented with using them as such (see Section 4.1.2), the numbers

are listed there for comparison.

Another important data are the counts of the whole coreference chains, pre-

sented in Table 4.3. These frequencies, especially when related to the number of

documents, might be interesting in some analyses concerning the comparison of

the word counts with the coreference chains in Chapter 6).

train-1 train-all

No. of documents 316 2533

Total no. of coref. chains 4519 39415

Avg. no. of coref. chains per doc. 14.3 15.8

Table 4.3: Counts of the whole coreference chains in the datasets, related to
numbers of documents.

Chain lengths When speaking of the length of a coreference chain, we have

adopted the definition of coreference chain length being the number of corefer-

ence nodes (i.e. co-referring expressions) in the chain. Thus the most frequently

appearing chain has length of 2, meaning two anaphoric expressions referring to
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Nekvasil #PersPron generál Nekvasil náčelník Nekvasil #PersPron#PersPron

generál Jiří Nekvasil,
náčelník generálního štábu ČR

Figure 4.4: Example of a chain of 8 t-nodes co-referring to one real-world entity
(general Jiř́ı Nekvasil, Chief of the General Staff of the Czech army). Thus, the
length of this chain is 8, according to our definition.

the same item (in the PML representation, this is represented by two tectogram-

matical nodes with one coreference relation between them, typically the first one

being the antecedent of the second one). An example of a coreference chain of

length 8 is shown in Figure 4.4. According to our definition, we have acquired the

length-frequency figures presented in Figure 4.5. The distribution is not suprising;

the chain length of 2 coreferents is the most typical case, whereas the frequency

of longer chains drops rapidly. However, although the “tail” of the graph was cut

off for sake of readability, the longest chain encountered in the data was 89 nodes

long (and it was found in a document of 114 sentences). To complete the data,

we will add that the average length of a corefence chain in train-1 is 5.1.

Adding Bridging Anaphora The coreference chains are the main platform

for the salience analysis and modeling of a text. If the salience should be used

to model the dynamics of e.g. some inherent topics of the text, it would be

convenient to have at our disposal the coreference chains “as long as possible”.

In other words, one should make effort to identify as many connecting relations

between associated expressions as possible. In this pursuit, we have experimented

also with using the annotation of bridging anaphora as an additional source of

coreference relations. The experimental approach was quite straightforward; since

the salience algorithm does not distinguish between types of coreference, we can

let it treat the bridging relations the exact same way as the “regular” coreference.

However, when commiting to this step, one has to bear in mind that the

bridging relations does not have so “strict” characteristics, which can, to a cer-

tain degree, also affect the results of the subsequent salience modeling. For in-

stance, if one coreference chain contained more than one set-subset or contrast

bridging relations, there is no guarantee that the referenced item would stay the
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Figure 4.5: Frequency of lengths of coreference chains in train-1 dataset; cut off
at length of 26 nodes.
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Figure 4.6: Frequency of lengths of coreference chains in train-1 dataset – the
impact of adding bridging anaphora.

same throughout such semantic shifts. The measure of this effect can be hardly

anticipated – ideally, one would have to perform two sets of all the planned ex-

periments and maintain two sets of results, comparing them and evaluating the

differences continuously.

Furthermore, when we examine the actual impact on the length of the coref-

erence chains (see Figure 4.6), the influence is obvious, but not as large as we

presumed. Taken into account the above objections, we have finally decided to

abandon this path in the scope of this work and perhaps leave it for a further

investigation.

4.1.3 TFA

The proportion of the TFA markers for the tectogrammatical nodes in train-1

dataset is visualized in Figure 4.7. In accordance to the PML annotation customs,

‘t’ stands for a non-contrastively contextually bound expression (represented by

the node), ‘c’ for a contrastive contextually bound expression and ‘f’ for a con-

textually non-bound expression. Finally, the ‘-’ bar in the chart represents the

amount of nodes not marked with any TFA value.1

1These are mostly technical cases, e.g. root of the tectogrammatical tree or of a paratactic
construction, or a foreign-language expression, which has often a special treatment in the PML
annotation scheme.
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Figure 4.7: Frequency of TFA values in train-1 dataset.

4.2 Salience Graphs and Interpretation

4.2.1 Salience Graphs

Figure 4.8 presents an example of a salience graph for a short document. The

graph was generated from the Czech original of the document, the presented

English translation tries to preserve partially the original sentence structure. In

the chart, each coreference chain is represented by a numbered polyline, the

members of the chain are marked by the corresponding color in the text.

4.2.2 Salience Graph Generation Procedure

One of the main parts of this work was to automatize the procedures needed for

the visualization of the salience for each document. This consists of several steps,

the whole process being summarized in Figure 4.9. Each step is performed by a

procedure in a script file, making also the intermediate results analyzable. Each of

these script files uses a programming or scripting language which seemed the most

appropriate for the task: When working with the PML files, btred is used, Perl

itself is employed for non-PML text manipulations, and R language was chosen

for the graph visualization part. Some parts of the scripts were originally created

during the preparation of Hajičová et al. (2006). However, their ad-hoc nature

made them largely impossible to suit our purposes, thus they were all significantly

rewritten, made more readable, documented, and hopefully reusable.
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Figure 4.8: Example of a short document from PDT along with its salience graph.

(1) Accounter and one million have disappeared

(2) Brno

(3) Since 11th June, when (he) left the work around 3 AM and did not come home,
the police is searching for a 27-year-old Stefan Misik, main accounter of casino
777 on the Svobody square in Brno.

(4) The searched-for man had over million crowns with him and could be a victim of
a violent crime.

(5) Stefan Misik resides in Pradlacka street and has a well-built, 178-cm-high figure,
short brown hair and a pea-sized birthmark on left side of his neck.

(6) During the speech, (he) burrs.

(7) Last time (he) was wearing (on him) a bright shirt, black jeans and brown loafers.

(8) On the neck, (he) was wearing a silver chainlet with a sign of Cancer, in a black
bag had also a new passport and magnetophone tapes.

(9) Witnesses can report to the nearest police office, the 158 (phone) line or the I.
department of Crime Service in Brno, phone 05/4116 2525.

29



Figure 4.9: Flowchart of the data processing from PML corpus data to the salience
graph visualization embedded in an HTML page.
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The first step is to modify the PML files by identifying the nodes of each coref-

erence chain and marking them accordingly – we call this process “coloring the

coreference chains”. This is achieved by applying a simple algorithm of linearly

going through the tectogrammatic tree nodes, inspecting their direct coreference

antecedents and denoting them by the corresponding color number identifier. The

next small step, rather technical, is to order the color identifiers sequentially with

respect to the linear flow of the sentences (this process actually is not necessary

for the functionality, rather a convenience for further inspection).

Computing the salience degree of each coreference chain members is done

in the subsequent step. This is where the salience algorithm is applied to the

colored nodes. In each sentence in the “colored” PML files, salience degree is

computed for each coreference chain which has appeared so far, and extracted

into an external file. This information, serving later as “coordinates” in the final

graph, is then fed into R script described further.

The actual graphical form of the salience graphs is generated by a script in the

R programming language. As its input, it is given a set of files (each corresponding

to one document) with salience “coordinates”: for each occurence of a coreference

chain member, there is a line in the file with its coreference chain identifier,

sentence number and the salience degree of the member’s occurence. From this

coordinates of all points of the salience graph, a graphical file is generated – either

as a bitmap (PNG) or in a vector-based format (SVG or PostScript). The output

is made as readable as possible, providing both colors and numbers for each

coreference chain curve, as well as a slight shifting of the curves to reduce their

overlaps. However, the variability of the salience behavior of the chains, inherent

density of the curves in a large part of the documents and the variability of the

documents’ lengths make it hard to effectively generalize some of the techniques

used for improving the readability and clarity of the graphs.

4.2.3 Vertical Cut

Moving on the “horizontal” axis on the graph, i.e. sentence by sentence, and

observing the current trend of all the chains at once, certain vertical breaks can

be identified in the salience models. These suggest a slight change of topic in the

particular sentence, where several new objects emerge or re-activate and the old

ones fade away. From this point of view, the salience models could be used e.g. for

automatic segmentation of previously unsegmented text by “cutting” the text at

this breaks, perhaps into paragraphs. Furthermore, the objects emerging at the

identified breaks (or later in the beginning segment) can suggest the topic of the
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current segment. The design of an actual algorithm for such automatic process

is not covered by this work, although one should be able to test such algorithm

rather conveniently on the PDT data with the original paragraph segmentation

preserved, thus applicable as the gold standard.

4.2.4 Horizontal Cut and Leap Height

Another approach to the models would be to draw one or more horizontal lines

in the graph to mark a certain level of salience. One can assume that these levels

can express the amount of activation an object must have to be referred to by

certain grammatical means – a weak or zero pronoun is expected to refer to an

object with high activation, whereas less salient objects are re-activated by more

specific expressions, e.g. a definite noun phrase.

To verify these hypotheses, let us introduce a new quantity: salience leap

height, or simply leap height. Each time an object (represented by its coreference

chain, i.e. chain of expressions referring to it) is mentioned in a sentence, the leap

height value indicates the difference of its current salience level and its salience

level in the previous sentence. More rigorously, let the leap height value of an

object x (or, from another point of view, of its coreferents’ chain) in sentence

number n (where x is mentioned) be defined as such:

LeapHeight(x, n) := dgnx − dgn−1x (4.1)

Note that this definition contains not only the “depth” from which the men-

tioned object emerges, but also takes into account the TFA value of the current

referring expression, in the form of its current salience value – being it either 0 or

−1. This reflects the idea of differentiating the referent’s actual sentence function.

This differentiating is proportionally more important with the smaller leap heights

and losing its importance with their higher values, which may not necessarily be

harmful. This property also results in a possibility of leap height having a zero

value, or even a negative value, specifically −1; when the last reference of x was in

the focus (had TFA value f) of the previous sentence and the current reference is

in the topic (has TFA value t or c). This situation is actually quite common in the

discourse; it corresponds to the usual case of a newly emerged object in the (n−1)-

th sentence, which is subsequenly referred to in the n-th sentence, serving there as

a “starting point” (a topic, in the TFA terms). The Example (1) (from PDT 3.0)

illustrates exactly this situation – the entity “Ministerstvo hospodářstv́ı” (“Min-

istry of Economy”) is referenced once in each of two subsequent sentences (by

the same surface form in this case). The first reference is contextually unbound
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(marked by the TFA attribute value f ), thus bearing salience value 0 (indicated

by the subscript number). Subsequently, its occurence in the second sentence is

non-contrastive and contextually bound (TFA value t), gaining salience value −1,

which results in LeapHeight(“Ministerstvo hospodářstv́ı”, 2) = −1− 0 = −1.

(1) 1. Zkušenosti Ministerstva/f/0 hospodářstv́ı ČR z loňského roku ukazuj́ı, že

vzhledem k postupnému zlepšováńı informovanosti podnikatel̊u o programech

podpory se podstatně zvýšil i jejich zájem o źıskáńı finančńıch dotaćı od státu.

2. Výsledkem byl značný převis poptávky nad celkovými možnostmi, tedy

prostředky, které Ministerstvo/t/−1 hospodářstv́ı dávalo k dispozici podnika-

tel̊um prostřednictv́ım Českomoravské záručńı a rozvojové banky.

(1. The experience of Ministry/f/0 of Economy of the Czech Republic from

last year shows that due to a gradual improvement of awareness of businessmen

about support programs, their interest in public financial grants has grown sub-

stantially as well.

2. The result was a considerable excess of demand beyond the capabilities, or

resources, which the Ministry/t/−1 of Economy made available to businessmen

via the Českomoravská Guarantee and Development Bank.)

All the leap-height charts presented in this section has their values normalized to

sum up to 1 within the given feature value (TFA or sempos). The reason is that

in these analyses, we are mostly interested on the distribution within the given

feature value, rather than directly comparing the two absolute values at any fixed

leap height.

Leap Heights and TFA Figure 4.10 shows the frequency of the leap heights

depending on the TFA value of the referring expression. A general rule may be

stated that shorter leaps are typical for mentioning in topic (c/t), while the longer

ones are slightly more common for mentioning in focus (f).

Also note the fact that the leaps to the topic are apparently more frequent

for the odd leap heights, whereas the focus “destination” favors the even leap

heights. This is an inherent property stemming from the inclusion of the TFA in

the definition of the leap height.

Pronominal vs. denominating referents Let us return to the above men-

tioned hypothesis about the grammatical form of referents typical for certain

salience ranges. Thanks to an elaborate system of the tectogrammatical layer
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Figure 4.10: Proportions of leap heights comparing the coreferents’ TFA values;
from train-1 data. (The y-axis units are ratios of leap heights for the given TFA
value normalized to sum up to 1.)

annotation in PDT, we can use the t-node attribute sempos2. The pronominal

expressions are marked with sempos value containing .pron. (e.g. n.pron.indef

standing for “indefinite pronominal semantic noun”), whereas the sempos value

of the denominating expressions contains .denot. (e.g. n.denot means “de-

nominating semantic noun”); the rest being only quantificational expressions and

verbs. With this division, we can visualize the proportions of the leap heights

within each of these sempos categories in Figure 4.11.3

From the chart, it is obvious that there is some disproportion in the behavior

of the pronominal referents in comparison to the denominating ones. The quick

drop of the pronominals’ values beyond the leap height of 1, along with the rather

steady decline of the denominators, seems to confirm the declared hypothesis.

However, the dominance of the −1 value is quite surprising and calls for a deeper

analysis.

The Figure 4.12 thus focuses only on comparing demonstrative and personal

pronouns (sempos values n.pron.def.demon and n.pron.def.pers, respective-

ly), because these two are by far the most frequent types among the pronominal

coreferents. The difference between them is apparent: while the demonstrative

pronouns almost fails to refer beyond the leap height of 1 and serves mostly for

the −1-leap reference, the personal pronouns, although also “specialized” on the

2From the PDT t-layer annotation manual: “The sempos attribute (semantic part of speech)
contains the information regarding the membership of a complex node in a semantic part of
speech.” (Hajič et al., 2006)

3Although the leap height values goes as far as 172, the tail is long and its values neglectable
for our purposes – thus the charts are often cut off at the leap height value of 30.
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Figure 4.11: Proportions of leap heights for the chosen sempos categories; from
train-1 data. (The y-axis units are ratios of leap heights for the given category
normalized to sum to 1.)

low leaps, perform best for the leaps of 1 or 0. From this comparison, it is also ev-

ident that the demonstrative pronouns were almost fully responsible for the high

values of leap height −1 for pronominals in the previous categorial comparison.
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Figure 4.12: Proportions of leap heights for the two chosen pronominal sempos
values; from train-1 data. (The y-axis units are ratios of leap heights for the
given sempos value normalized to sum to 1.)
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5. Learning Salience

5.1 Motivation

One of the goals of this work is to explore possibilities of employing salience as a

feature in a machine learning task. This target usually requires large amount of

data, for which manual annotation may not be available. However, the algorithm-

based approach to compute salience degrees requires features such as coreference

links, whose automatic resolution reliability for Czech data is currently relatively

low (Nedoluzhko et al., 2013). Therefore, we have carried out experiments to find

out whether the salience degrees (in some form) can be machine-learnable based

solely on morphological and syntactic-layer data. Automatic analyses of these

two layers are known to have quite high accuracy on Czech, with morphologi-

cal tagging around 96% (Spoustová, 2008) and best dependency parsers scoring

around 86% (Holan and Žabokrtský, 2006; Koo et al., 2010).1

Furthermore, some parts of these experiments may be beneficial also in the

direction of understanding the notion of salience and forms of its surface expres-

sion. Employing a transparent machine learning model, such as decision tree, we

might be able to read possible direct linkage between surface forms of the coref-

erent (or shape of its context) and its salience development, from the features’

positions in the tree.

5.2 Experiment Settings

5.2.1 Genre Filtering

Our source of annotated data, the Prague Dependency Treebank, comprises of

various (sub)genres of the newspaper articles. Some of them might not be very

reliable in terms of text coherence and discourse flow, thus possibly degrading

results of our data-based machine learning approach. Fortunately, there is a

newly added document-level information about its genre in PDT version 3.0, so

we are able to choose only a supposedly reliable subset of the genres and filter

the documents accordingly, if found necessary. The Table 5.1 shows what genre

subset was chosen for this purposes, along with the document counts of each

genre – which was also one of the determining features for their selection (so

1For up-to-date results of dependency parsing systems for Czech refer to http://ufal.mff.

cuni.cz/czech-parsing.
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that a reasonable amount of data would remain even after the filtering). Another

features indicating the discourse coherence of the genre (such as frequency of

discourse relations) were considered, based on a thorough analysis by Poláková

et al. (2014).

genre document ratio volume ratio used?

news 40% 28% +

sport 11% 10% +

description 8% 12% +

caption 7% 1% −
essay 6% 14% +

collection 5% 4% −
comment 5% 6% +

review 4% 5% +

invitation 3% 2% −
other 3% 2% −
topic interv 2% 5% −
advice 2% 3% −
overview 1% 1% −
survey 1% 1% −
letter 1% 1% −
person interv 1% 3% −
program 1% 1% −
plot 0% 0% −
weather 0% 0% −
metatext 0% 0% −

Table 5.1: Overview of genres with their cardinality, marked by usage in our
genre-based filtering.

5.2.2 Detecting Possible Referents

If we are trying to predict salience of the items referred to in the text without

the coreference links resolved, all we can do is work with any potential referring

expression of an item. Thus first, we have to find a way to estimate whether a

word is likely to be a (co)referring expression. The most straightforward approach

is to base this decision on part-of-speech (POS) of the given word, since this

information is found on the morphological layer and is usually very reliable.

Analysis Table 5.2 shows the relationship between POS of a word and his

membership in a coreference chain (coloring). The table is divided into two
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parts, the left part captures the word counts among documents of all genres, the

right one concerns only the documents after the genre-based filtering described

in Section 5.2.1.

all genres genre-filtered

colored non-colored % colored colored non-colored % colored

noun 9209 15433 37.4% 7136 11319 38.7%

pronoun 2682 1146 70.1% 1880 815 69.8%

unknown 2792 8944 23.8% 1879 6208 23.2%

adjective 683 8801 7.2% 528 6558 7.5%

verb 345 7921 4.2% 250 5801 4.1%

adverb 178 3701 4.6% 120 2785 4.1%

numeral 79 2350 3.3% 48 1594 2.9%

other 319 4046 7.3% 234 2981 7.3%

Table 5.2: Frequency overview of relations between morphological parts-of-speech
and coreference coloring (i.e. chain membership), data from train-1 .

There is, however, one problem when studying these relationships: the coref-

erence chain membership in the data is defined for the t-layer nodes, but these

do not necessarily have an m- or a-layer counterpart. These cases are denoted

as unknown in the table. But most often, they correspond to an added technical

node on the t-layer to fill a valency spot of a governing node – and if they are

involved in a coreference relation, it is usually a short-range grammatical coref-

erence link. We cannot capture these nodes in any way in our approach, but for

these reasons, we do not lose much.

Based on the given analysis, we will consider the first two POS categories,

nouns and pronouns, as the most likely indicators of the coreference membership,

i.e. as the probable identifier of a referring expression.

It should also be noted from the given numbers that the genre-based filtering

did not change these distributions very much. However, we will stay with the

advice from Poláková et al. (2014) to leave out the problematic genres and keep

only the more reliable ones. Therefore, all the following experiments (if not stated

otherwise) uses the genre-based filter for the data.

5.2.3 Leap Height

Salience development is a characteristic of the whole coreference chain (or, more

precisely, its referent). However, while not able to resolve the coreference links,

we have to work with the individual referring expressions. In this case, salience
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degree at the current word reflects only its TFA value, deeming it to values 0 or

−1 only. To capture also more about the previous salience development, the leap

height2 variable is more suitable. Thus in the experiments, we will predict the

value of leap height instead of the actual salience degree.

Despite this necessary limitation, the predicted value can be still useful in a

further application, such as text segmentation (see also Section 4.2.3). In such

application, the most important information in this direction would probably be

the number of referring expressions in the current sentence and particularly the

“strength” of their reference, in the same sense which is stated by the leap height

value.

There is one more restriction related to the leap height target value. It is not

defined for the first member of each coreference chain and there is no straight-

forward or clear way of determining a default value for such cases. Probably the

best way to solve this problem will be to train the models without these first

members (they comprise ca. one third of the data, this ratio holds roughly also

after the filtering phases described further) and, if these models prove successful

enough, use them to predict this value for the left-out nodes. The outcome of

such method would be also interesting from the view of the salience concept it-

self, as this default value is expected to reflect an implicit position of the referred

object in the stock of shared knowledge at the moment of its first reference.

Logarithms and bins Leap height is a discrete feature taking integer values

from −1 to potentially 2n, where n is number of sentences in a document. Howev-

er, in the context of its relationship to the salience degrees, a similar assumption

can be made such that the higher the values are, the smaller is the distinction be-

tween them. In other words, the difference between leap heights −1 and 2 is quite

significant, but the difference between 23 and 26 is actually not very important.

From this assumption we can induce two different approaches to transforming

the leap height value as a target feature. The first one is to compute a logarithm

of the leap height value and apply a regression approach to the problem. The

second one would be a classification approach which conveniently puts various

leap height values in a specified number of bins (but again of logarithmic size)

and takes each bin as one class of the target feature. Both of these approaches

were tested in our experiments, with their results presented along each other.

2For its definition and introduction, see Section 4.2.4.
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5.3 Machine Learning Model

5.3.1 Features

For the task of predicting the leap height value, values of the following set of

features were collected from the data:

Surface layer features

• position of the sentence within document – from its beginning

• position of the sentence within document – from its end

• position of the word within sentence – from its beginning

• position of the word within sentence – from its end

When computing the position of the word within sentence, only non-punctuation

tokens were considered as words.

Morphological layer features

• word-distance3 from the nearest preceding noun/pronoun

• word-distance to the nearest following noun/pronoun

• POS+subPOS tag of the one before preceding word

• POS+subPOS tag of the preceding word

• POS+subPOS tag of the current word

• POS+subPOS tag of the following word

• POS+subPOS tag of the one after following word

Analytical layer features

• analytic functor

• analytic functor of the parent node

• analytic functor of the first child node (if present)

• POS+subPOS tag of the parent node

• POS+subPOS tag of the first child node (if present)

• relative position of the word to the predicate4

All the features presented so far are commonly used in various machine learn-

ing tasks to describe the close context of the word or its position within sentence

or document. However, we need also some means to try to locate the possible

3This and all the following word-distances may span several sentences. Also, similarly to
thw word-position features, only non-punctuation tokens were considered as words.

4Word distance on the surface layer; negative value means that the predicate is on the right
of the current word and vice versa.
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coreference antecedent, as this information is crucial to the salience development

and thus consequently to the leap height value. This is a field of coreference reso-

lution (CR), where we can exploit some previous research and gather inspiration.

Our set of features specialized on coreference were inspired particularly by some

ideas from Novák and Žabokrtský (2011) and Soon et al. (2001).

CR-like features

• word-distance from the last word with the same lemma

• sentence-distance from the last word with the same lemma

• word-distance from the last pronoun with number and gender agreement

• sentence-distance from the last pronoun with number and gender agreement

• word-distance from the last noun with number and gender agreement

• sentence-distance from the last noun with number and gender agreement

Feature extraction All the features for the machine learning task were ex-

tracted from the PDT data. For the extraction, a btred script was used, going

through each coreference-colored tree node on the t-layer of the data and trying

to find the corresponding m/a-layer node. If there was any and if its POS value

corresponded to a noun or pronoun, the rest of its feature values were gathered

and this node was added as one data instance. Thus, each data instance corre-

sponds to one noun or pronoun m/a-layer node, whose corresponding t-layer node

is coreference-colored. Furthermore, the first node of each coreference chain was

filtered out, because the value of leap height value is not defined for such nodes

(as described before).

Binarizing categorical features For technical reasons, categorical features

(such as morphological POS or analytic functors) are converted each into a set of

binary features encoding its value. For this task, the usual one-of-K or one-hot

encoding principle is applied, where a vector of N new binary features is created

for N most frequent values of the given original feature, assigned 1 where the

instance has this particular value, otherwise 0. Therefore, for each given categor-

ical feature, there is always at most one 1 among this vector of new features, the

rest are zeros. An additional position is added to this vector indicating that the

original value is other than one of the N listed.

Final feature and instance count After this preprocessing step, 104 features

+ one target variable are available for training a model. From the datasets
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train-1 and train-all , 5024 and 46955 instances, respectively, are available after

the filtering described before.

Target value transformation The leap height as the target value was trans-

formed in several different ways (according to the ideas in Paragraph 5.2.3), plus

the original value was also used in one particular set of experiments. For the

classification task, three binning schemes were used:

• none (keeping the original leap height value),

• dividing into 7 bins: [(−1), (0), (1), (2), (3, 4), (5− 10), (> 10)],

• dividing into 3 bins: [(−1, 0, 1), (2, 3, 4), (> 4)].

The choice of these arbitrary schemes was determined by two main reasons: First-

ly, to reflect the “logarithmic” nature of the leap height value (or its relative

importance), and secondly, to keep the frequency distribution among the bins

relatively similar. For the regression task, apart from the analogous none, natu-

ral logarithm was used – however, the leap height value had to be pre-adjusted

by adding 2 to ensure the logarithm to be defined even for the −1 and zero leap

height value.

5.3.2 Decision Trees and Random Forests

For the task of machine learning and prediction of the leap height value, two

ML methods were chosen: decision trees and random forests.5 The reason for

this choice was mainly the well-known interpretable nature of these model types.

Especially decision trees are often used as a white-box model, their structure

being analyzed after fitting. On the other hand, the random forests can be also

relatively efficient predictors, with their accuracy comparable to other methods

in many classification tasks. And at the same time, they can offer estimates of

relative feature importance, which is an important property also exploited in this

work.

5.3.3 Performance measures

Each experiment—combination of the original dataset (train-1 or train-all), tar-

get value transformation and type of model—was evaluated by the process of 5-

fold cross-validation on the whole dataset. The average of all 5 scores is presented

5For the theoretical background of these methods, see Section 2.4.
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along with a ± value indicating the confidence interval boundaries (assuming the

error follows the normal distribution).

Classification The main metric used for all the classification tasks was accu-

racy, i.e. ratio of correct predictions among the testing dataset.

Classification baseline Baseline computation for the classification task was

done using the usual way of assigning every instance the target value which was

the most frequent among the training examples.

Regression For the regression tasks, two evaluation metrics are presented. The

first one is perhaps the most commonly used Root-Mean-Square Error (RMSE,

also known as root-mean-square deviation), whose values are however dependent

on the units of the actual regression task. If ŷ is a vector of n predicted values,

and y is the vector of the true values, then the RMSE of the predictor is computed

as follows:

RMSE :=

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (5.1)

It should also be noted that for since the RMSE metric is actually an error

metric, the lower results are better.

The second regression metric one is the coefficient of determination (R2),

which summarizes the explanatory power of the model more generally; its values

are independent on the actual task evaluated. If ȳ denotes the mean of true values

ȳ = 1
n

∑
y, then R2 value is computed using fraction of sum of square of residuals

(regression error, SSerror) and total sum of squares of true values (SStotal):

R2 := 1− SSerror

SStotal

= 1−
∑n

i=1 (ŷi − yi)
2∑n

i=1 (yi − ȳ)2
(5.2)

From this definition it follows that the higher the R2 measure is, the better is the

result, with the maximum of 1 (in the case when ŷ = y, i.e. the predicted values

are equal to the real ones).

Regression baseline Analogously to the classification task, the baseline for re-

gression was set by predicting always the mean value computed from the training

instances. From the definition of such regressor, it follows that since ŷi = ȳ, then

SSerror = SStotal and thus the R2 value will be zero for this baseline regressor.
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5.4 Results and Discussion

5.4.1 Decision Tree Classification

Classification results of the decision tree models are listed in Tables 5.3 and 5.4,

divided according to the dataset used (train-1 and train-all). Two key parame-

ters of the model were determined by a grid-search based on their cross-validation

results. Of two possibilities of the splitting criterion, Gini impurity and informa-

tion gain, the former was consistently better in all experiment settings and thus

used in every case. However, the second parameter, maximum depth of the tree,

was adjusted for each setting – and is noted in the last column of the tables.

binning baseline cross-validation max depth

none 0.333 0.449± 0.036 5

(−1), (0), (1), (2), (3, 4), (5–10), (>10) 0.333 0.509± 0.041 6

(−1, 0, 1), (2, 3, 4), (>4) 0.693 0.792± 0.049 5

Table 5.3: Results of decision tree classifier on train-1 .

binning baseline cross-validation max depth

none 0.315 0.465± 0.011 8

(−1), (0), (1), (2), (3, 4), (5–10), (>10) 0.315 0.535± 0.020 8

(−1, 0, 1), (2, 3, 4), (>4) 0.657 0.783± 0.014 6

Table 5.4: Results of decision tree classifier on train-all .

5.4.2 Random Forest Classification

Tables 5.5 and 5.6 show the results of the random forest models on the same

classification tasks. The grid-search for the two key parameters was performed

similarly to the decision tree classification, obtaining the analogous results for

the splitting criterion – Gini impurity was chosen once again in preference to the

information gain.

binning baseline cross-validation max depth

none 0.333 0.456± 0.032 10

(−1), (0), (1), (2), (3, 4), (5–10), (>10) 0.333 0.510± 0.036 14

(−1, 0, 1), (2, 3, 4), (>4) 0.693 0.776± 0.027 14

Table 5.5: Results of random forest classifier on train-1 .
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binning baseline cross-validation max depth

none 0.315 0.456± 0.014 18

(−1), (0), (1), (2), (3, 4), (5–10), (>10) 0.315 0.537± 0.018 16

(−1, 0, 1), (2, 3, 4), (>4) 0.657 0.784± 0.018 18

Table 5.6: Results of random forest classifier on train-all .

5.4.3 Decision Tree Regression

The results of the regression experiments with the decision trees are captured

in Tables 5.7 and 5.8. As for the parameters: since the only splitting criterion

available is mean squared error, the only free parameter was the maximum depth

– its value corresponding to the best result is listed in the last column again.

transformation
baseline
RMSE

cross-validation
RMSE

baseline
R2

cross-validation
R2

max
depth

none 8.12 6.323± 3.80 0 0.1578± 0.264 3

ln(y + 2) 0.8338 0.6016± 0.080 0 0.4657± 0.054 5

Table 5.7: Results of decision tree regressor on train-1 .

transformation
baseline
RMSE

cross-validation
RMSE

baseline
R2

cross-validation
R2

max
depth

none 8.85 7.165± 0.43 0 0.3382± 0.105 5

ln(y + 2) 0.87 0.5949± 0.008 0 0.5275± 0.024 7

Table 5.8: Results of decision tree regressor on train-all .

5.4.4 Tree and Forest Analysis

An example of a decision tree model trained for classification can be seen on

the Figure 5.1. For the sake of clarity, this tree has only depth of 3, although

in our experiments all our classifier models are deeper. However, the top of

our classifiers actually could look very similar, due to the nature of the tree

construction algorithm. From our picture, we can see for example that if the

given instance is not a noun (i.e. value 0 of feature m tagPOSThis=NN) and the

nearest preceding noun or pronoun is further than 1 word, then it has quite high

probability of being classified to the leap height value of 0. And if the instance

is a possessive reflexive pronoun (m tagPOSThis=P8), then this classification will

be almost certain (with a very low probability of an error).
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m_tagposThis=NN <= 0.5
gini = 0.810492597316

samples = 5024

a_distanceFromLastNP <= 1.5
gini = 0.547858090055

samples = 1293

m_sameLemmaSentDist <= 1.5
gini = 0.848829854341

samples = 3731

m_tagposThis=P8 <= 0.5
gini = 0.42728994944

samples = 489

m_tagposThis=PP <= 0.5
gini = 0.5095820648

samples = 804

gini = 0.5228
samples = 345

value = [  97.  217.   16.    6.    2.    2.    0.    0.    1.    1.    0.    0.
    0.    0.    0.    0.    0.    0.    0.    1.    0.    0.    0.    0.
    1.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.
    0.    1.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.
    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.

    0.    0.    0.    0.    0.    0.]

gini = 0.0676
samples = 144

value = [   2.  139.    3.    0.    0.    0.    0.    0.    0.    0.    0.    0.
    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.
    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.
    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.
    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.

    0.    0.    0.    0.    0.    0.]

gini = 0.4407
samples = 674

value = [ 460.  206.    4.    1.    1.    0.    0.    0.    0.    0.    1.    0.
    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.
    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.
    1.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.
    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.

    0.    0.    0.    0.    0.    0.]

gini = 0.5548
samples = 130

value = [ 23.  83.   9.   2.   1.   3.   2.   0.   0.   0.   0.   0.   0.   0.   1.
   0.   0.   0.   1.   0.   0.   1.   0.   1.   0.   0.   0.   0.   0.   0.
   1.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   1.   0.   0.
   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   1.

   0.   0.   0.   0.   0.   0.]

m_sameLemmaWordDist <= 0.5
gini = 0.727199668464

samples = 1782

m_sameLemmaSentDist <= 2.5
gini = 0.885213793183

samples = 1949

gini = 0.8234
samples = 853

value = [ 145.  243.  193.   89.   36.   34.   16.   13.    6.    7.    6.    6.
    6.    6.    5.    4.    6.    3.    2.    1.    2.    3.    1.    1.
    1.    2.    1.    0.    1.    1.    1.    1.    0.    2.    0.    1.
    0.    1.    0.    0.    0.    1.    0.    0.    0.    0.    0.    1.
    0.    1.    0.    1.    1.    1.    0.    0.    0.    0.    0.    0.

    0.    0.    0.    1.    0.    0.]

gini = 0.5805
samples = 929

value = [ 240.  542.  102.   11.   10.    6.    2.    2.    5.    0.    0.    1.
    2.    0.    1.    0.    3.    0.    0.    0.    0.    0.    0.    0.
    0.    0.    0.    0.    1.    0.    0.    0.    0.    0.    0.    0.
    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.
    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.

    0.    0.    0.    0.    0.    1.]

gini = 0.6751
samples = 671

value = [  26.  104.  312.  193.    9.    8.    4.    0.    2.    3.    2.    0.
    3.    1.    0.    0.    0.    0.    1.    0.    0.    0.    1.    1.
    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    1.
    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.
    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.

    0.    0.    0.    0.    0.    0.]

gini = 0.9267
samples = 1278

value = [  50.  140.  126.  138.  165.  121.   79.   71.   52.   49.   29.   29.
   15.   26.   19.   21.   17.   14.   12.    9.    3.   10.   10.    2.

    3.    6.    1.    3.    1.    5.    2.    3.    1.    6.    2.    1.
    2.    3.    1.    2.    3.    1.    0.    1.    2.    1.    1.    3.
    1.    0.    1.    0.    3.    0.    2.    2.    2.    1.    1.    0.

    1.    1.    1.    0.    1.    0.]

Figure 5.1: Decision tree trained on train-1 with maximum depth set to 3. Satis-
fying the condition in a node means going to its upper child. The “value” array in
the leaf nodes (on the right) denotes the “buckets” with numbers of training in-
stances with the given target value falling to this leaf. The “buckets” correspond
to ordered values of the leap height, i.e. [−1, 0, 1, 2, 3, ...].
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5.4.5 Discussion

The results presented above show that to a certain level of success, the leap

height variable is learnable from the given features. The results are all well above

their respective baselines, and with the exception of the regression task without

the logarithmic transformation, this improvement is significant. However, the

absolute success rates are not very high, making the predictions not very reliable.

The target value transformations introduced here improve the results in each

case quite as anticipated, although while losing some amount of expressivity and

usability of the predictions.

Variable importance The importance scores of the first 10 features (variables)

are listed in Table 5.9, based on one of the trained random forest models. The

higher the score, the more important is the variable. The values serve only for

relative comparison of the features since their absolute values are dependent on

the training set.

rank variable importance

1 sentence dist. to last same lemma 0.112

2 word dist. to last same lemma 0.077

3 POS+subPOS tag denotes (any) noun 0.063

4 sentence-position from start of document 0.060

5 word dist. to last agreeing noun 0.051

6 word-position from start of sentence 0.048

7 rel. position to predicate 0.044

8 word-position to end of sentence 0.042

9 sentence-position to end of document 0.042

10 sentence dist. to last agreeing noun 0.033

Table 5.9: Variable importance based on the random forest model trained on
train-all with the 7-bin binning scheme.

We can see from the comparison that the two dominant decisive features for

the leap height classification are the “CR-like” features expressing distance to

the last word with the same lemma (complemented by the other two concerning

the last agreeing noun, located lower in the table). This seems meaningful as the

distance of the coreference antecedent, if recognized properly, is the main source

of information for the salience notion, and consequently also for the salience

leap height. This direction might be perhaps supported in a future research by

adding some more features of this orientation, exploiting more the mechanisms

of coreference resolvers (mentioned in Section 5.3.1).
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Another predictor which seems relatively strong is the distinction between

nouns and pronouns in the surface expression. This agrees with the hypothesis

formulated in Section 4.2.3 that the surface expression form is influenced by the

previous salience degree. The importance of this feature confirms this claim

somehow from the inverse point of view.

Among the features ranked quite high there is also the word position within

the sentence (being it the distance from its beginning or to its end, or the position

relative to the sentence predicate). This is likely to be attributed to the TFA

influence on leap height from its definition, combined with the fact that TFA is

tied closely with the word order.

Perhaps an improvement in the results could be achieved by adding more

features focusing also on the potential antecedent (hopefully detected by the

“CR-like” features), such as the last-same-lemma word. For example trying to

use its position in a sentence to approximate its TFA value.

Yet another interesting approach could be to run an automatic coreference

resolver on the data and use its results as a foundation for other features (with a

certain level of reliability). This would somehow separate the coreference infor-

mation from the rest of the features, whereas our approach tries to model them

altogether.

Regression with ordinal classes Our case of predicting an integer-valued

target feature can be seen as a task somewhere between classification and regres-

sion – and as such, none of these “pure” methods is actually ideal. This type

of problem is sometimes called ordinal logistic regression or prediction of ordinal

classes and is addressed in the context of decision trees for example by Kramer

et al. (2001). Their approach suggest slight modifications to the regression tree

model to reflect that we are not working with a proper real-valued target, it could

be characterized as “clever rounding” at the right time. Unfortunately, the de-

sired modification of the model would be rather complicated in the environment

used in our experiments, but any further attempt for improvement is encouraged

to examine also this possibility.

Conclusion The main goal of these experiments was to examine the possibility

of whether the salience leap height variable can be predicted reliably enough to

be used as a feature in further machine learning tasks. The results unfortunately

does not confirm this hope directly, the accuracy of the models trained here is

not clearly persuasive from this point of view. However, it can be stated that the
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results are good enough for the leap height to be used as a side feature or as one

of a larger set of features to help improving a further machine learning model.

Furthermore, we believe that these experiments do not exhaust the potential

of the machine learnability of the leap height (or salience) value, and perhaps

some other methods could bring a significant improvement in such results. While

the decision tree(-based) models are invaluable for the analysis, in some tasks

they lack the ability to capture dependencies among some groups of features; a

problem that another type of model might address more successfully.
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6. Document Clustering

Experiments

In this chapter, a visual comparison of the document relations was created be-

tween the document information contrasting simple word counts against aver-

age salience of coreference chains. The aim of this series of experiments is to

form an idea of how the salience information could contribute to the information

about document relations. We explore the possibility of whether incorporating

the salience data alters the relations between documents, possibly revealing some

connections or partitioning not visible when working with their vocabulary only.

This visualization is based on representing the document collection as a graph

– with documents as the graph nodes and a pairwise document overlap defining

the graph edges. The contrastive comparison was then made by changing the

definition of how the overlap is computed. For these experiments, the train-1

dataset was used, containing a total of 316 documents, 289 of which contains at

least one coreference chain. Since the core of the experiments are the pairwise

relations between documents, there is no urgent need for a larger dataset, thus

this one was chosen to speed up the experiment processing.

6.1 Phase One: List Cutting

The generic idea of this experiment was for each document to list some of its

characteristic items in the order of their supposed importance, cut this list off at

some point, and then look for matching items in the other documents’ lists.

6.1.1 Sorting the Nouns by Counts

One of the most straightforward and yet most frequently used features of extract-

ing key words from a document is the word count. Usually it is complemented

by a filter of stop-words, but in our case, when we have information about the

word types at our disposal, the simplest way is to work with nouns only.

Document noun-overlap In this sense, the document overlap based on the

noun-counts is constructed in the following way:

For each document:
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1. extract all the distinct nouns (their lemmata) along with their counts,

2. sort the nouns according to their counts,

3. cut the list at 10% of its length, so that the most frequent nouns remain.

Then, the noun-overlap of two documents is defined as the number of nouns which

are present in both lists, i.e. the size of their intersection.

6.1.2 Sorting the Chains by Average Salience

Average salience, adjusted When looking for an optimal measure for order-

ing the whole coreference chains in terms of a coarse informative representative-

ness, the average salience is a natural choice. However, to avoid favoring chains

which first occur lately in the document, the simple average must be adjusted

to better reflect their inactivity before their first occurence. According to the

idea that the items represented by these chains are present in the stock of shared

knowledge (but not mentioned yet), their initial course is simulated similarly as

if they had been mentioned in the topic of the first sentence. Thus, until their

first mention, they undergo a descent by 1 from the value of −1. The general

formula for computing the average salience of chain referring to an object x in a

given document is then as follows:

AvgSal(x) : =
1

N

(
m−1∑
i=1

(−i) +
N∑

i=m

dgix

)

=
1

N

(
−(m− 1)m

2
+

N∑
i=m

dgix

) (6.1)

where m is index of the sentence with the first mention of x and N is the total

number of sentences in the document.

Document chain-overlap Having defined the average salience, the document

overlap based on that measure can be constructed analogously:

For each document:

1. for each coreference chain, extract the list of nouns from the chain along

with the average salience of the whole chain,

2. sort the chains according to their average salience,

3. cut the list at 10% of its length, so that the most salient chains remain.
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The overlap of two chains is defined as the number of members which are present

in both two chains, i.e. the size of their intersection. Then, the chain-overlap of

two documents is defined as the sum of overlaps of each chain pair from these

documents.

6.1.3 Clustering Visualization

A collection of documents can be viewed as a graph where each node represents

one document. Two documents have a common edge iff there is a (non-zero)

overlap between them, and the weight of this edge equals the size of this overlap.

Then, with the help of a commonly used graph visualizing tool (in our case,

pygraphviz, see Section 3.3.4), the two graphs resulting from the definitions

above were drawn for a visual evaluation.1 The resulting graph visualization of

the noun-based overlaps and salience-based overlaps can be seen on Figures 6.1

and 6.2, respectively.

Only the nodes with at least one edge are included in the graph, i.e. docu-

ments without an overlap with any other are left out. Furthermore, edges with

noun-overlap value of only 1 are omitted from the noun-overlap graph for better

clarity. These edges do not significantly influence the graph structure and the

visualization would be hardly readable with them.

The sizes of the graph nodes represent relative sizes of the corresponding doc-

uments. Also the thickness of the edges reflects the relative size of the document

overlap, although these differences are not very large; the chain-overlap values

varies from 1 (most common) to 4, for the noun-overlap from 1 to 8 (visible eges

only 2 to 8).

6.1.4 Discussion on the Clustering

As we can see, the first graph has no clear smaller clusters, although proximity

between some of the documents hints about some share of their vocabulary (with

higher word-counts). However, the documents do not form any visually distin-

guishable groups. Whereas in the second picture, signs of several small clusters

can be perceived, suggesting possible topic relations within some document sub-

sets.

Another interesting thing to note is the “real” number of nodes and edges.

Although the two graphs have a comparable number of nodes (178 and 127,

1The graphviz layout program used was NEATO with model subset, for more details refer to
North (2004).
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Figure 6.1: Noun-based document overlap with the list-cutting approach.
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Figure 6.2: Salience-based document overlap with the list-cutting approach.
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respectively) and edges (275 and 443, respectively) shown in the pictures, this

follows from the omission of the one-noun-overlap edges from the first picture. If

these edges were present, the number of the noun-graph edges would rise to 3768

and number of nodes to 275 (because some nodes would have obtained their first

overlap, thus entering the picture). The smaller amount of chain-overlaps in the

second graph is a direct consequence of the narrower vocabulary when focusing

on the coreference members only.

In fact, if the omitted edges in the noun-overlap graph (Figure 6.1) were

present, a slight “clustering” would actually emerge. There would be one large

group of roughly half of the documents connected together because of sharing a

very common noun: “rok” (“year”). Also a similar, but smaller group would be

formed around the word “Praha” (“Prague” – the capital of the Czech Republic).

But both these words are really common and can be expected in the documents

regardless of their topic, especially when working with journalist texts.

Let us look closer at what chains are shared within the cluster in the upper

section of the chain-overlap graph (Figure 6.2), where five or ten documents

seem to have a closer connection among them. Their shared word is “strana”

(“(political) party”), nothing much else. Similar small clusters can be found

elsewhere in the picture around words like “svaz” (“(labor) union”), “společnost”

(“company”) or “autor” (“author”). These groupings are somehow promising to

reflect at least general contents of the documents, but almost all the involved

connections are supported by a single-chain overlap only, which does not seem

very robust.

The two presented pictures and their analysis revealed that the chain salience

can be beneficial to retrieve some more information about document relations (in

the sense of their similar topics) than simple word counts. However, limitations

of this approach are that it relies on a very narrow data evidence and delivers

topics which are too general or vague. The main problem with this list-cutting

method is reducing the vocabulary or chain base before computing the pairwise

document overlaps, thus resulting in their smaller number. A better approach

would be to keep the base for the overlaps as wide as possible, but engage the

word counts and salience values in a way that will support the potential “keyness”

of the words rather gradually. An attempt for such method is presented in the

following section.
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6.2 Phase Two: Weighing the Overlaps

We address the deficiencies of the previous approach by retaining the whole list

of extracted nouns or chains, but using the word-counts or average salience for

weighing the overlaps instead. Thus, the definition of the two types of overlaps

will be as follows:

Noun-based weighted overlap of two documents D1, D2 is a sum of word-

counts (c1 and c2, respectively to each document) of each noun w present in both

documents:

NWOverlap(D1, D2) :=
∑

w∈D1∩D2

c1(w)c2(w) (6.2)

Salience-based weighted overlap of two documents D1, D2 as list of coref-

erence chains x is a sum of chain overlaps (according to the definition from the

previous approach – see 6.1.2) each multiplied by a weight based on their average

salience value:

ChWOverlap(D1, D2) :=
∑

x1∈D1,
x2∈D2

|x1 ∩ x2|weight(x1)weight(x2) (6.3)

where

weight(x) := − 1

AvgSal(x)
(6.4)

.

Note that each definition of the overlap results in rather different magnitude

of the weights. While the multiplication of the word-counts can yield numbers in

orders from units to tens or hundreds, the results from the chain overlap weighing

will vary between 0.001 and 0.8. This is not a problem, as only their relative sizes

are crucial for the visualization.

6.2.1 Clustering Visualization

The visualization procedure is very similar to the previous phase (see Section 6.1.3),

except for the fact that more edges are omitted in both pictures. Since the aim of

this experiment was to keep the base for document overlaps as wide as possible,

the resulting number of edges grew greatly in both cases and it would render

the pictures unreadable to include all of them. Therefore, an arbitrary weight

threshold was set in each case in order to keep the graph readable, resulting in
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Figure 6.3: Noun-based document overlap with the overlap-weighing approach.

the number of displayed nodes being between 100 and 200. Other rules for the

visualization are kept the same way as in the previous experiment.

The resulting pictures are shown in Figures 6.3 and 6.4.

6.2.2 Discussion on the Clustering

The first thing to notice when looking at the pictures is again a quite different

density of the two graphs. Indeed, with a comparable number of nodes (124 and

163, respectively), the number of edges differs more significantly; 453 v. 271 (in

terms of average degree of the graph nodes, this is ca. 7.3 v. 3.3). The reason

is basically the same as in the previous approach, it is the narrower vocabulary

when focusing on the coreference members only.

As for cluster groupings in the pictures, the situation has changed a little,

but no evident improvement is visible. No clear clusters can be seen in the

first picture, although the large group in the middle seems to have something in

common. More thorough examination reveals that there is again quite a small set

of nouns involved strongly in the overlaps. In this case, it is especially the word

“d́ıtě” (“child”) or again “rok” (“year”). (The latter is also responsible for the

long “beams” from one of the nodes slightly on the left. This effect is caused by

its multiple, but relatively weak bindings with documents which would have no

other sufficient overlap with anything else.) While some of the other words seem
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Figure 6.4: Salience-based document overlap with the overlap-weighing approach.

to point better to a possible common topic (such as combination of “d́ıtě”–“child”

and “výchova”–“upbringing”), these bindings are still too confusing to establish

a certain topic group within our set of documents.

In the second picture, some smaller clusters are again somehow recognizable,

but perhaps not as clearly as in the previous approach. The denser group in

the left upper part is formed mainly again around the repeating word “rok”

(“year”), whereas the small group in the middle right is brought together by the

word “strana” (“(political) party”). When enquiring deeper, few other nodes are

tied by a promising set of words “banka”, “smlouva”, “úrok” (“bank”, “contract”,

“interest”), unfortunately this node group is quite small and hardly recognizable

from the visualization (it is located in the lower left part of the picture).

Whereas the weighing approach seemed to bring some little improvement to

the word-count overlap sensitivity, the problems of the chain-overlap detected

in the previous approach were not quite solved. Some of the observations show

somehow promising relations, but the salience information does not seem to be

fully exploited by these methods. Furthermore, the visualization of the structures

were not really enhanced by this change of approach.
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6.3 Conclusion and Outlook

The goal of this experiment was to get a basic idea of how the salience informa-

tion could alter the results of a computational analysis of a document collection.

Having no “correct” results of real proximity or topic relationships between docu-

ments, any numeric evaluation would be hard to accomplish. Therefore, a simple

graph visualization in an attempt for a visual clustering was performed in the

frame of two experiments and evaluated by a manual examination of its outcome.

Each of these experiments compared a visualization based on information from

word-counts of documents (serving as a rough “baseline”) with a salience-based

visualization. The two experiments differed in the way of using the information in

the data processing before feeding into graph; the first one was based on filtering,

the second one on weighing.

The presented results suggest that the salience information might be beneficial

in examining the properties of document relations, in comparison to a simple

word-count statistic. However, this benefit did not prove in our experiments to

be very strong, at least not enough to reveal some conclusive thematic partitioning

of the document collection.

For similar experiments in a future research, it will perhaps be helpful to find

a better distinction between simply common words and words which are actually

useful for identifying the topic of a document. A vast inspiration can be found in

the popular field of information retrieval, e.g. engaging concepts like (TF/)IDF

(term frequency/inverse document frequency) in some way during the weighing

phase (or even for the filtering approach).

Our experiment also presented only one way of visualizing the possible rela-

tions based on some kind of distance between graph nodes. This way was chosen

primarily by its accessibility, relative flexibility and speed. Although perhaps

visually appealing, this approach has inherent limitations, especially when trying

to display in two-dimensional space something which does not have an explicit lo-

cation. Other types of visualization techniques might prove better for this task –

for example hierarchical clustering (based on mutual distance of nodes) displayed

by a dendrogram.2

It should also be noted that from a practical point of view, comparing salience

with the word-count information as a “baseline” is not quite a fair challenge.

Bearing in mind that the salience data inherently contains far more information,

a better option for comparison perhaps would be defining the document dis-

2A small experiment in this area has already been conducted by the time of finishing this
thesis, but was not eventually included due to a need for additional tuning and verifications.
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tance exploiting coreference chains (only). This would ensure that the benefits

of salience would be proper, above anything we could have in our hands so far.3

3Some data for this comparison have already been prepared, but in this context of not so
persuasive comparison even with the word counts, we eventually decided not to include them
in the thesis.
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Conclusion

We have presented a reproduction and a data-oriented analysis of the salience

algorithm formulated earlier, along with visualizing its results in a larger scale and

confirming some of the hypotheses behind the salience notion. This was achieved

using the data of the Prague Dependency Treebank 3.0, especially its annotation

of the coreference relations and the topic-focus articulation. A brief experiment

with the bridging anaphora annotation data was conducted in an attempt for

broadening the coverage of the salience models, but deeper investigation in this

field remains to further research.

The visualization procedure suggested earlier was made more robust and au-

tomatized to allow larger amount of documents to be processed. Also it was

extended with procedures which makes the results human-accessible even in this

scale.

Another key points of this work were attempts to interpret the output of

the salience procedure, the salience graphs. A notion of salience leaps and their

height was introduced and used to confirm the hypothesis about the importance

of salience in the decisions about the morpho-syntactic form of the referent.

The salience leap height value was then used for exploring the possibility of

predicting the salience degrees automatically. Decision trees and random forests

models were used in these experiments, using various features extracted from sur-

face, morphological and syntactic layer of annotation and adding some features

inspired by the mechanisms of coreference resolution. The direct evaluation re-

sults of these experiments were quite positive, but the accuracy of the approach

used was assessed to be probably not reliable enough for a further usage of the

target value as a main feature in a subsequent model, perhaps feasible as one of

complementary ones. Nevertheless, also other valuable information was acquired

from the model analysis, such as structure and importance of the variables for

the decisions. Further possibilities for an improvement in this task were proposed

in the conclusion of this analysis.

Finally, two experiments in the area of document visualization were performed

to estimate a possible contribution of the salience information in a field of docu-

ment processing. By displaying a document collection in a graph representation

with a contrasting definition of node distances, these experiments compared the

salience-based information with a simple word-count statistics. The evaluation

was based solely on the visual comparison with a hope for the salience data to

unveil a previously invisible structure among the documents. Although no defini-
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tive clusters were perceived, the salience-based visualization seemed to perform

a little more promising than its counterpart.

Our hope is that this work may stimulate a future research in this promising

area as there are plenty of door opening in this field. The last chapter hopefully

might serve as a first small step of the salience data into the machine learning

territory, the analysis and discussion revealing some of its further possibilities.
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Appendix – CD-ROM Contents

• data folder – Contains sample data from the PDT 3.0 corpus (pdt sample).
All the files with the .t.gz extension in this folder are in the PML format
and ready to be used by the btred scripts (however, some of the btred

scripts will modify them, so make sure the data files have a write permission
and you have a backup of them before running those scripts). For viewing
the data files, use the TrEd viewer/editor (with the ‘bridging’ and ‘pdt30’
extensions installed), available at http://ufal.mff.cuni.cz/tred/.
The subfolder salience-sample-svg contains a sample result of the salience
procedures, an HTML complex readily browsable from index.html.

• scripts folder – All the non-trivial script files used in this work; btred,
Perl, Python, R files, bash scripts. Most of them require to be run on a
Linux machine, btred scripts require the btred application to be installed.
The scripts-readme.txt file provides the overview of the script files along
with a brief information about their functionality and usage.

• vacl-dipl thesis.pdf file – This work in pdf format.

• readme.txt file – General information about contents of the CD-ROM.
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