
BACHELOR THESIS

Jaroslav Jindrák

The Dungeon Throne: A 3D Dungeon
Management Game

Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: Mgr. Pavel Ježek, Ph.D.

Study program: Computer Science

Study branch: Programming and Software
Systems

Prague 2016

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University in Prague has the right to conclude a license agreement on
the use of this work as a school work pursuant to Section 60 subsection 1 of the
Copyright Act.

In date signature of the author

i

Title: The Dungeon Throne: A 3D Dungeon Management Game

Author: Jaroslav Jindrák

Department: Department of Distributed and Dependable Systems

Supervisor: Mgr. Pavel Ježek, Ph.D., Department of Distributed and Dependable
Systems

Abstract: Dungeon Keeper is an iconic and genre-defining game that places the
player in the role of a dungeon master that has to protect their dungeon against
groups of heroic enemies that try to steal the treasures located in the dungeon.
However, it does not provide any tools that would allow user created modifications
and thus the replayability of the game might not reach its full potential.

In this thesis, we examine the dungeon management genre and the aspects of
game modifiability and use the knowledge gained from this examination to design
a spiritual successor to Dungeon Keeper that offers tools that allow its players to
create and distribute modifications that can be applied to the game.

We then investigate different tools and approaches that can be used for game
development and use those we find to be suitable to implement our game. The
game we created is true to the play style of the original Dungeon Keeper and
provides an API that can be used in the Lua programming language to create
modifications of the game’s elements.

Keywords: dungeon management game, Lua scripting, Ogre, CEGUI

ii

I would like to thank my supervisor, Pavel Ježek, for his patience and advice that
he has provided to me. Without his guidance this thesis would hardly reach the
level of quality I believe it to have.

I would also like to thank my parents, who supported me throughout my
work on this thesis and without whom I would never be able to dedicate the time
needed to finnish this project.

iii

Contents

1 Introduction 3
1.1 Dungeon Managment Genre . 3
1.2 Modifiability in Games . 5

1.2.1 Mod examples . 7
1.3 Competitiveness of the game . 11
1.4 Thesis Goals . 12

2 Problem Analysis 13
2.1 Modding Tools . 13

2.1.1 Conclusion . 16
2.2 Programming Language . 16

2.2.1 Native Language: C++ . 17
2.2.2 Managed Languages: Java and C# 17

2.3 Scripting Language . 18
2.3.1 Lua . 18
2.3.2 Python . 19
2.3.3 AngelScript . 19
2.3.4 Conclusion . 19

2.4 Entity Representation . 20
2.4.1 Inheritance . 20
2.4.2 Entity Component System 23
2.4.3 Conclusion . 24

2.5 Libraries . 24
2.5.1 3D Rendering . 24
2.5.2 Graphical User Interface 26

2.6 Pathfinding . 27
2.7 Levels and serialization . 28

2.7.1 Binary . 28
2.7.2 XML . 28
2.7.3 Lua . 28
2.7.4 Conclusion . 29

3 Developer’s Documentation 30
3.1 Game . 31
3.2 Components . 32
3.3 Systems . 33

3.3.1 EntitySystem . 33
3.3.2 CombatSystem . 34
3.3.3 EventSystem . 35
3.3.4 TaskSystem . 36
3.3.5 GridSystem . 36
3.3.6 WaveSystem . 37
3.3.7 Miscellaneous Systems . 37

3.4 lpp::Script . 38
3.5 LuaInterface . 38

1

3.6 Helpers . 39
3.7 SpellCaster . 39
3.8 Pathfinding . 40
3.9 Player . 40
3.10 Serialization . 41
3.11 Tools . 41
3.12 GUI . 43

4 Scripter’s Documentation 45
4.1 Initialization . 45
4.2 Entities . 46

4.2.1 Blueprints . 47
4.3 Enemy waves . 50
4.4 Research . 52
4.5 Spells . 52

5 User’s Documentation 56
5.1 Installation and startup . 56
5.2 Main menu . 57
5.3 User interface . 57
5.4 Goal of the game . 59
5.5 Research . 59
5.6 Spell casting . 60

5.6.1 Spells . 61
5.7 Buildings . 63
5.8 Options menu . 64

Conclusion and future work 66

Bibliography 69

Attachments 72

2

1. Introduction

Until the release of Dungeon Keeper1 most well known fantasy video games have
allowed the player to play as various heroic characters, raiding dungeons filled
with evil forces in order to acquire treasures and fame. In Dungeon Keeper,
however, we join the opposite faction and try to defend our own dungeon (along
with all the treasures hidden in it) from endless hordes of heroes trying to pillage
our domain. Although we can still play the original Dungeon Keeper today, we
cannot change its data or game mechanics in any easy way so this thesis aims
to recreate and modify the original game and extend it to have an easy to use
programming interface that will allow such modifications.

1.1 Dungeon Managment Genre

Dungeon Keeper was the first game released in the dungeon management (DM)
genre and since our game is going to be based on Dungeon Keeper, we should
design it with the elements of its genre in mind. Since the definition of this genre
has to our knowledge never been formally documented by the creators of Dungeon
Keeper, we are going to create a list of basic elements of the genre based on the
gameplay of the original game.

In Dungeon Keeper, the player’s main goal is to build and protect his own
base, called the dungeon. They do so by commanding their underlings – often
called minions – whom they can command to mine gold, which is a resource they
use in order to build new rooms and cast spells (in the game’s sequel2, mana was
added into the game as a secondary resource used for spell casting), which could
be researched as the game progressed. They would then use creatures spawned
in their buildings as well as their own magic powers to fight intruders in order
to protect their dungeon. From this brief gameplay summary, we can create list
of the most basic design elements, which can be found in dungeon management
games:

(E1) Resource management

(E2) Dungeon building

(E3) Minion commanding

(E4) Combat

(E5) Player participation in combat

(E6) Research

Now that we have created a list of the genre’s basic design elements, let us
have a look at how they were implemented in games from the Dungeon Keeper
series.

1Bullfrog Productions, 1997
2Dungeon Keeper 2, Bullfrog Productions, 1999

3

Resource management

In the original Dungeon Keeper, the player used gold as their primary resource.
They would have it mined by their minions and use it to build new rooms and
cast spells. While having a single resource for everything may bring simplicity to
the game, it also means that once the player runs out of gold, they will not be
able to directly participate in combat due to their inability to cast spells. It is
for this reason that we are going to use the resource model of Dungeon Keeper 2
and have a separate resource – mana – that will be used to cast spells.

Dungeon building

The term dungeon building in Dungeon Keeper refers to tearing down walls in
order to create new rooms which the player’s minions then claim and the player
can place new buildings in. These buildings can then act as gold storage, spawn
new creatures or be used as traps that negatively affect attacking enemies. Since
this is a central theme in Dungeon Keeper (and dungeon management games in
general), we should try to implement our building model to resemble this one.

Minion commanding

The term minion commanding stands for giving your minion tasks such as to
move somewhere, attack an enemy or tear down a wall. In Dungeon Keeper,
most of these commands were implemented as spells – although mining was done
by simply selecting blocks, which could unfortunately cause minions to destroy
walls the player accidentally selected. To provide a unified interface to minion
tasks and to avoid the accidental block destruction, all commands the player can
give should be in our game implemented as spells.

Combat

In Dungeon Keeper, the player’s dungeon is under frequent attacks by enemy
heroes. These enemies attack the dungeon in groups with a delay between each
two attacks, in a similar way to tower defense games (e.g. Orcs must die! [1] and
Dungeon Defenders [2]), where they are often referred to as waves. Each wave of
enemies can consist of different types of heroes and the delay between waves can
differ, too. Since the players of the original Dungeon Keeper are already familiar
with this wave system and it may also satisfy the players of tower defense games,
we will be implementing it in our game.

Player participation in combat

During the fights with enemy heroes, the player in Dungeon Keeper can cast vari-
ous spells to affect the outcome of the battle. These spells can have various forms
from spawning creatures, damaging enemies and healing minions to destroying
walls and throwing meteors. If we want to create a similar spell system, we need
to support these different types of spells, e.g. targeted spells that affect a single
entity, positional spells that can summon a creature or global spells, that simply
have an effect on the game once they are cast.

4

Research

In the original Dungeon Keeper, researching new spells and buildings was done
through a special type of room, called the library, which can be seen in Figure 1.1.
There, various minions could study and achieve new advancements for the player
after a certain amount of research points – which was different for different spells
and buildings – was gathered. But this design decision brought a negative element
into the game, because once the library was destroyed by the heroes, the player
was unable to perform additional research and could not even use the ability to
cast some spells. This is why we are going to use a different approach, called
the research tree (or sometimes the technology tree), first used in the turn-based
strategy game called Sid Meyer’s Civilization3, as pointed out by Tuur Ghys in his
article about technology trees [3]. This approach separates the research from the
events happening in the game and allows the player to research new advancements
for a resource (e.g. gold), with each new technology, building, creature or spell
being able to have prerequisites.

Figure 1.1: Warlocks researching in the library.
Source: http://dungeonkeeper.wikia.com

1.2 Modifiability in Games

One of our basic goals is for our game to be modifiable, which means to provide
tools – often called modding tools – to our players that will allow them to create
modifications – often called mods – that other players can install and which can
change or add elements to the game.

This can increase the replay value of the game as after finishing it, more
missions, characters, game mechanics, abilities, items or even game modes can
be easily downloaded and installed from internet. Since we want our game to
be modifiable as much as possible, an important topic we need to decide on is
which parts of the game we will allow the players to modify. An example of an

3Developed by MPS Labs, 1991

5

http://vignette2.wikia.nocookie.net/dungeonkeeper/images/9/98/Library.jpg/revision/latest?cb=20120808211437

easily modifiable game is Minecraft [4], a 3D sandbox game in which the player
has to survive in a procedurally generated world. Let us now examine the basic
concepts of the game before we investigate concrete examples of mods and how
they changed the game in the following sub chapters. As a reference, a screenshot
of Minecraft can be seen in Figure 1.2.

Figure 1.2: Screenshot of Minecraft.
Source: http://www.neoseeker.com

In the screenshot we can see a player standing in the game’s world, equipped
with an iron sword that can be used for self-defense when the player is attacked
by enemies or to kill animals in order to acquire food required to restore one’s
health, standing next to a hill and a couple of trees. Everything in the game
is made of blocks, which are items that can be placed in the world and – with
some exceptions4 – destroyed so that the player can place them in their inventory.
They can either be used for building or they can be interactive, which the player
can right click on to trigger their functionality – e.g. show a special window or
change their state. An example of an interactive block is the chest block, which
provides additional item storage when the player interacts with it.

In the bottom part of the screen we can see the hotbar, which the player can
use to store commonly used items like tools – e.g. a pickaxe, which is used to
mine blocks, or an axe, which is used to cut down trees and allows the player to
harvest wood – and blocks, which can be used for building or crafting.

Crafting is an important part of Minecraft. It allows the player to create tools
and complex blocks by combining one or more crafting ingredients – e.g. wood,
stone, iron or food. The crafting system in the game is based on different crafting
recipes, which restrict what items and in what composition on the game’s crafting
window – either a two by two window in the player’s inventory screen or three by
three window shown when the player uses a special interactive block called the
crafting bench.

4E.g. the bedrock block, which covers the bottom layer of the world and prevents the player
from falling outside of the world’s boundaries

6

http://i.neoseeker.com/p/Games/PC/Simulation/City/minecraft_image_zx2AU2n6bZho0lz.jpg

Figure 1.3: An example of a crafting recipe in Minecraft, the player can create a
stone pickaxe by combining two wooden sticks with three stone blocks.
Source: http://thecoolestminecrafters.weebly.com

Figure 1.3 shows an example of such crafting recipe, specifically the pickaxe
crafting recipe. The existence of this recipe in the crafting system means that if
a player interacts with the crafting bench and places two wooden sticks and three
stone blocks – although different resources like iron or gold bars can be used for a
different type of pickaxe – in the layout shown in the picture, the crafting bench
will produce a stone pickaxe in exchange for the resources.

1.2.1 Mod examples

There are thousands of different minecraft mods – for example, the mod repos-
itory at Curse.com [5] contains over 4 thousand mods and the one at Planet-
Minecraft.com [6] contains even over 7 thousand different mods. To find the
right moddable features of our game, we will now look at some examples of these
mods and see how they change Minecraft.

Industrial Craft 2

The first example is called Industrial Craft 2 [7]. This mod adds new blocks and
tools as well as a new game mechanic – the concept of electricity – to the game.
The items added by the mod range from simple ones like new types of armor or
new tools to complex blocks like various electricity generators and automatized
machines.

An example of such machine is the electric furnace. In the game without mods,
the player gets iron and other metals in the form of a raw ore when they mine
a block containing the metal. To use the metal in a crafting recipe, the players
needs to smelt the ore into a bar using the furnace, which can be powered by
wood or coal. The electric furnace uses electricity for power and can be powered
by an electricity generator – e.g. a solar panel – which removes the necessity to
repeatedly place wood or coal in the machine.

7

http://thecoolestminecrafters.weebly.com/uploads/2/6/3/1/26317386/912472788.png

Electrical furnace
Battery blocks

Fibre cables

Solar panels

Figure 1.4: A simple setup powering multiple machines including an electrical
furnace using solar panels.
Source: http://www.planetminecraft.com

In Figure 1.4, we can see a simple setup in which a couple of solar panels are
connected to an electric furnace and other machines via glass fiber cables. We
can also see another interactive block added by the mod – the battery block. The
battery block stores electricity up to a certain capacity and continues powering
the machines even when its electricity input stops, which in the case of solar
panels can happen during the night.

Using these machines, the game can be changed from its rather primitive set-
ting – in which the player mines resources with simple tools and builds simple
houses – to a modern setting with automated mining and resource processing ma-
chines. If we want to allow the players of our game to create similar modifications,
they should be able to change existing and create new buildings – our equivalent
of Minecraft’s blocks – which includes changing their appearance, the way they
function – e.g. what type of minions they spawn – and how they interact with
enemies.

Computer Craft

Another mod, called ComputerCraft [8], added fully functional computers into
the game. These computers can be used to create password protected doors,
write programs and games in the Lua programming language [9] or even connect
to internet services such as IRC5 or telnet6.

5Internet Relay Chat, an open communication protocol.
6A client-server protocol, that allows bidirectional text-oriented communication through a

terminal.

8

http://static.planetminecraft.com/files/resource_media/screenshot/1246/javaw-2012-11-12-20-51-09-46_4122139.jpg

Figure 1.5: A computer in Minecraft playing the ASCII version of the movie Star
Wars: A New Hope.
Source: http://www.minecraft-modding.de

An example of such computer in minecraft can be seen in Figure 1.5. There,
a player has connected a computer to a screen and used the computer to connect
to a server via telnet. The server then sent back messages that, when displayed
sequentially, played the first Star Wars movie.

Figure 1.6: A turtle equipped with a diamond sword about to attack a pig.
Source: http://www.computercraft.info

This mod also added robots into the game. These robots – called turtles,
inspired by the Logo programming language – could be programmed using Lua
scripts to automate various tasks. The task a turtle fulfills is determined by the
tools it is equipped it. If, for example, the player gives it a pickaxe, the turtle will
then be able to mine blocks and being equipped with an axe will allow it to chop
down trees. In Figure 1.6, we can see another type of a turtle, this time equipped
with a sword. The mod provides the player with an API in which they can write
instructions for the turtle. If, for example, these instructions were in this case
’walk three times forward and attack’ – written in Lua – the turtle would walk
forward and killed the pig standing in front of it.

We have already decided to allow our players to modify the buildings in our
game, based on the machines in Industrial Craft 2. From Computer Craft, we
are going to take the concept of minion and enemy modification. This means
that the players of our game should be able to change the attributes of both

9

http://minecraft-modding.de/wp-content/uploads/2015/06/ComputerCraft2.png
http://computercraft.info/wp-content/uploads/2012/07/piggy.png

minions and entities in the game, including attributes such as health and damage,
abilities, spells and most importantly, their overall behavior (i.e. their artificial
intelligence).

Team Fortress 2 Map

Aside from adding items and creatures, entire new games can be created within
a modifiable game. One of the interactive blocks in Minecraft is the command
block, which can execute commands in the game’s developer console – e.g. tele-
port the player to a certain position or give him items – when the player right
clicks it.

One of the players of the game, called Seth Bling, used this block to create a
map which alters the way the game is played [10]. For example, even though the
unmodded game has no concept of character classes, he used the command block
to equip the player that clicked on it with a special set of tools and weapons, using
the command to add items. Multiple of these blocks – each with a different set of
items – allowed him to emulate classes in the game. Then, using the same block
with different setting, he created control points which the players could stand on
to capture them. Using these control points he was then able to alter the game’s
winning condition, which was originally to kill a specific enemy, to a requirement
team of players having all control points in the world under their control. Once all
control blocks were controlled by the same team, another command – requesting
the game’s end – would be executed.

The result of these modifications was the change of Minecraft to look and
play like another game, called Team Fortress 2 [11]. Team Fortress 2 is a 3D
first person shooter, in which two player teams fight against each other in various
game modes, e.g. the aforementioned point control. Each player in the game can
choose from a wide selection of character classes, each with its own attributes
and weapons.

Unlike Industrial Craft 2 and Computer Craft, which only added new items
and non-player characters into the game, this map mainly altered two aspects of
the game. Firstly, it changed the way the player plays the game by limiting them
to a specific number of different classes they can play, bringing diversity to the
game’s online play. Secondly, it changed the way the game ends, i.e. under what
condition the player wins or loses.

From this map, we are going to take the ability to modify these exact two
aspects. While the change of the game’s end condition can be done similarly
to the way it was done in this game – i.e. executing a custom command to
win or lose the game, the change of the play style can not be done by item
restriction because in our game the player has no items. The way that, in our
game, the player interacts with the world is through their spells – which include
entity commanding. This means that alongside building, minion, enemy and
end condition modification, our players should be able to change their spells and
create new ones. These changes should be able to affect the gameplay, so they
should range from simple damage and range modification to complete changes of
the effects these spells have on the world.

One important note is that this change of gameplay was not done by creating
a mod but was created as a map for the game, which the players could download
from internet and then simply load in the game without any installation. This

10

way of distribution of changes to the game, alongside modding, creates another
way for the players of a game to create and share modifications of the game. Since
we want our game to be modifiable, we should implement a way for our players
to create similarly game changing maps in our game, i.e. we should store our
levels in a format that will allow later modifications, including actual changes to
the game’s elements.

Conclusion

In conclusion, we can see that the ability to modify a game can help said game to
grow even when its development has stopped or is focused in different areas (e.g.
security, stability). Since we want to give this ability to the players of our game,
our modding tools should allow them to change some of its data, including but
not limited to:

• Minions and enemies – e.g. changing attributes such as health and damage,
displayed models, behavior and spells they cast.

• Buildings – e.g. changing their size, models, types of creatures that they
spawn and, in the case of traps, their interaction with enemies.

• Spells – fully changing the effect of a spell, e.g. from simple damage dealing
to spawning a meteor shower.

• Goals of the game – changing requirements for winning the game or the
reasons for a loss.

Besides changing data of entities – e.g. creatures, buildings or spells – the
players should also be able to create new types of these entities.

The game on its own, like Minecraft, should also be fully featured, offering
enough of these entities on its own so the players do not need mods to actually play
the game. Additionally, since our game, like Dungeon Keeper, will have scripted
waves of enemies attacking the player’s dungeon, the also should allow our players
to alter the wave composition – that is, which types of enemies compose the
different groups attacking the player’s dungeon – and delays between the waves.
Last, but not least, we must not forget that players do not necessarily have to
be (and often are not) programmers, so our game should provide an easy way to
install these modifications.

1.3 Competitiveness of the game

We have now investigated the main design elements of Dungeon Keeper and how
we are going to implement them in our game. The last thing we have to realize is
that since we are trying to satisfy the players of the original game, the resulting
product of our work should be a full game and not just a prototype. This means
that the game should offer full singleplayer experience, with relatively intelligent
enemies and the ability to not only win the game, but to also lose. Also, for the
game to be competetive with other titles, it should be performant, achieving at
least the minimum acceptable framerate, defined as 25-30 frames per second by
Shiratuddin, Kitchens and Fletcher [12], on both new and older hardware.

11

1.4 Thesis Goals

The main goal of this thesis is to design and implement a modifiable 3D dungeon
management game using the design elements (E1) – (E6).

In addition to the main goal, the game should complete the following list of
goals:

(G1) The game has to be a full competetive product, not a prototype.

(G1.1) It has to be performant, achieving high framerate even on low end
computers.

(G1.2) It has to offer full single player experience, including enemies with
scripted behavior and a chance to both win and lose.

(G1.3) It has to contain a variety of entities, spells and buildings even without
mods.

(G2) The game has to be highly modifiable, providing an easy to use modding
interface for players.

(G2.1) The mod creators must be able to create new entities (including their
behavior), spells and buildings and to change characteristics of already
predefined entities, spells and buildings including, but not limited to
health, damage, model, behavior and abilities of an entity, effect of a
spell and which kind of minion does a building spawn.

(G2.2) They must also be able to alter the game progression by defining ene-
mies that spawn and delays between them.

(G2.3) The game should also support the creation of custom levels.

(G3) The mods for the game have to be easily installable even by players without
any programming knowledge.

12

2. Problem Analysis

In the introduction section of this thesis, we defined a list of design elements
(E1) – (E6) that we are going to implement in our game. We have also presented
the notion of modifiability and examined some of the numerous Minecraft mods
to see which parts of a game can be modified. In this section, we are going
to look at the different tools, libraries and engine design possibilities that could
potentially be used to implement our game.

2.1 Modding Tools

To satisfy our goals (G2) and (G3), which require us to provide modding tools
to our players that will allow them to create easily installable mods, we now need
to decide the form of these tools. They should allow the mod creators to create
and modify entities to the extent required by our goal (G2.1) and to alter the
game progression as required by our goal (G2.2). Additionally, to satisfy our
goal (G3), the resulting mods should be easily installable.

Editor

A game editor is a tool that is commonly used to modify a game. It can be
either an external application or it can be a part of the game. In most cases it’s
used to edit maps or scenarios for the game. But since the maps in our game
are created by the player – by destroying walls and creating buildings – we are
more interested in a different aspect of editors and that is changing entities in
the game.

Figure 2.1: Besides map editing, some editors – like the Starcraft editor in this
figure – can be used to edit entities.
Source: http://www.darvo.org

13

http://www.darvo.org/images/Tutorials%20Starcraft%202/Adding%20Units%20to%20a%20Building%20part%201.jpg

In Figure 2.1 we can see an example of such editor. It allows its user to select
an entity and change its attributes, such as health, placing cost, type, model
and the user can even select which predefined abilities and behavior the entity
uses. An editor could easily be used to define the composition of enemy waves
and the delays between waves, satisfying our goal (G2.2) and would allow easy
mod installation – as required by our goal (G3) – by producing files that can be
placed in the game’s directory.

While this approach could be easily implemented using configuration files for
entities, our goal (G2.1) requires the ability to alter the behavior of entities
which includes creating entirely new behavior and thus only selecting predefined
AI won’t suffice. To achieve this, we could require our users to write the behavior
using a scripting language, which wouldn’t be much different from the option
that will be examined after this one. Alternatively, we could create a graphical
tool that would allow the user construct the behavior out of blocks representing
decisions and actions which would then be translated to source code – again,
requiring a scripting language interfaced to the engine. An example of such
graphical tool is the blueprint system used by Unreal Engine [13].

Figure 2.2: A simple blueprint checks if a person passes a test.
Source: http://www.unrealengine.com

In Figure 2.2 we can see an example blueprint created in Unreal Engine,
it comprises interconnected blocks that represent conditions, loops, actions and
other constructs that can be found in a typical programming language. The user
uses these blocks to create programs in a more user friendly manner. Unreal
Engine then uses these blueprints to generate C++ code that is then used in the
game.

API

Another option is to create an interface in which functionality of the engine is
bound to functions that can be called from a scripting language embedded within
the engine. This would allow our players to write scripts that can be loaded at
the start of our game or during its runtime and can change anything provided by
the interface.

An example of such API can be found in the game Starbound [14], which
allows its players to create modifications by using its Lua API to write scripts. An
example of a simple Starbound script, which defines a new object in the game that
spawns a chicken when the player interacts with it, can be seen in Listing 1. Here,
the mod creator defined two functions called init and onInteraction. These two

14

http://docs.unrealengine.com/latest/images/Engine/Blueprints/UserGuide/Macros/score_comparison_example_macro.jpg

functions are defined by the game and are called by it – init is called when the
object is placed into the world and onInteraction is called whenever the player
interacts with the object. The game also provides each mod with several tables 1

that help the mod to interact with the game world – in this case the mod uses the
object table, which represents each instance of the spawner object, and world,
which represents the game world and is shared between all objects.

function init()

object.setInteractive(true)
end

function onInteraction()

world.spawnMonster("chicken",

{0, 0}, {level = 10})

end

Listing 1: A simple script that represents an interactive monster spawner. When
the player interacts with this object it spawns a level 10 chicken at the absolute
coordinates (0, 0).

The example above shows us a common interface used for mod making. The
game provides a set of functions and data and the mod implements functions
required by the protocol used for communication between the game and the mod.
These functions are then called by the game when an event – which the called
function is assigned to – occurs. Since our goals require our modding tools to be
easy to use, we think that if we decide to create a modding API, it should use a
similar approach, seeing as it might be familiar to mod creators because games
like Starbound, Cities: Skylines [16], Factorio [17] and others use this approach.

A modding API allows us to provide a large amount of our engine’s function-
ality and data wrapped in an easy to use interface, which can lead to the ability
to easily modify it and thus satisfying our goal (G2.1). This interface can also
contain functions that handle the game’s wave system and allows the mod cre-
ators to modify wave composition and delays between waves, which would satisfy
our goal (G2.2). To satisfy the last of the three goals, (G3), we can design the
scripting system of our game in a way that only requires the players to place a
downloaded script in a directory and register the script in a config file.

Besides making the game modifiable, this approach can avoid long recompi-
lation times because parts of the game that are not performance critical can be
written in an embedded interpreted language. This can lead to faster develop-
ment [18], since recompilation is needed only after engine modification. This also
allows fast testing and prototyping of new features and mods without the need
to restart the game as many of these interpreted languages can execute pieces
of code passed to them as strings.. Additionally, using an interpreted language
would make the mod creation process easier for non-programmers [19] as they
often have an easier to understand syntax.

1A table is the only data structure in Lua, it is a key value associative array that can be
used to represent ordinary arrays, sets, queues and other data structures. [15]

15

2.1.1 Conclusion

While an editor would open our modding tools to a broader community than
an API would, the implementation of a graphical programming language similar
to the blueprint system in Unreal Engine, which would be needed to satisfy our
goal (G2.1) that requires the ability to define new behavior, would be a much
larger task than to implement an interface for an already existing programming
language. For this reason, we decided to choose the second option – creating an
interface to an embedded language – as the modding tool we are going to provide
to our players.

2.2 Programming Language

The first tool we need to decide on is the programming language we are going to
write our game in. This choice affects multiple aspects of the final game. These
aspects can include, but are not limited to:

• Performance: Interpreted languages tend to be slower than compiled lan-
guages, but this does not to be always true due to the existence of Just-In-
Time – often abbreviated as JIT – compilers, which can provide compilation
to machine language at program start and runtime optimizations to increase
the performance.

• Speed of development: Lower level languages often require the implemen-
tation of tools that are provided by the standard libraries of higher level
languages.

• Modifiability: Some programming languages – e.g. interpreted ones – pro-
vide means to alter the source code at runtime, while other require recom-
pilation or the use of an embedded language.

The programming language that will be used to create our game needs to
have one or more libraries that will allow us to create 3D graphics and be fast
enough to offer at least the minimum acceptable framerate while rendering game
objects to the screen, updating the state of the game and processing user input.
It should also allow our players to modify the game even if they only have the
distributed version of the game – meaning it should be able to load code it was
not originally compiled with.

Since mod development requires testing of the mod’s functionality in the game,
it would be beneficial if the game allowed our mod creators to change the game’s
mechanics and data at runtime so that they do not need to restart the game
to see what effect does a change in their mod have on the game. This means
that the ability to execute a piece of code input as a string or load source files
during runtime is a feature our programming language should provide. Lastly,
the language should allow us to create a modding API that can be provided to
our users as discussed in the previous section.

Aside from these important characteristics, the language should also be easy
to use by those of our players that decide to modify the game.

16

2.2.1 Native Language: C++

C++ , the first language we are going to look at and also the language we ended
up choosing, was for a long time the industry standard when it comes to video
games. One of the main reasons for this was that it is – unlike some of its rivals,
e.g. Java – a language that is native, i.e. compiles directly into machine code of
a specific processor, which generally results into faster executed code.

This benefit of the language, while still present, got weakened by the rise of
JIT compilers. Java can now make use of just-in-time compilation and C# was
even originally released with a JIT compiler. This means that both of these lan-
guages can compile their intermediate language the first time it’s executed. Since
by the time this compilation takes place the compiler knows what operating
system, architecture and hardware specification it compiles for it can provide op-
timization that a C++ compiler cannot perform, achieving comparable execution
speeds. Additionally, both language have seen an increase of game development
related middleware, released commercially successful games written in them and
addition of new interesting features that make them to see more viable in the
eyes of game developers.

Even though the performance gap between these languages got reduced, the
era of C++ being one of the most used programming languages in game develop-
ment has resulted into an abundance of game programming related materials like
libraries, tutorials and books.

One of our main requirements for a programming language is the ability to
load code it was not originally compiled with. C++ allows this with the use of
dynamically loaded libraries, but this approach is not easy to use by our mod cre-
ators as they would be required to directly interface their mods with the C++ code
of the game’s engine. An alternative to this approach is to use more user friendly
language embedded into C++ – e.g. Lua – and handle the interface between
C++ and this language ourselves. This option also allows the execution of a code
input to the game at runtime, which satisfies another of our requirements.

The reason we decided to choose C++ as the language our game is going to be
written in is mainly a combination of the abundance of various game development
related resources aimed at C++ – be it books, tutorials or even answered questions
that can be found on internet – and the author’s knowledge of the language.

2.2.2 Managed Languages: Java and C#

Managed languages, unlike native ones such as C++ , are compiled to an interme-
diate language which can then either be interpreted by a virtual machine or JIT
compiled into machine code of the target architecture. The use of a JIT compiler
allows execution speeds that are comparable to those of C++ .

Where they beat C++ is in their approachability, as they abstract memory
management and other lower level aspects of programming from the programmer.
As such, use of these languages would lead to an easier mod making process for
our players, but as we have already settled in the previous section, that can be
done in C++ using an embedded language with easier to understand syntax and
semantics.

Both of the managed languages that were taken into consideration – Java and
C# – provide an easy way to execute code input at runtime using either the Java

17

Compiler API [20] or the Roslyn sompiler service [21] available in C#. Alongside
this feature both languages offer the ability to embedd another language through
the use of libraries such as LuaJ [22] or NLua [23].

The difference of these two languages lies in their environment. The Java
Virtual Machine – often abbreviated as JVM – provides the ability to compile
the code once and then run the resulting executable file anywhere, which can
be beneficial for an ordinary desktop application. When it comes to games, this
advantage loses part of its strength due to the fact that the majority of the players
use a Windows operating system – as can be seen in the Steam hardware and
software survey [24]. According to the survey, over 95% of the players that use
the Steam platform play their video games on a Windows system – ranging from
Windows XP to Windows 10. In this case, the use of a virtual machine – be it
JVM or .NET’s Common Language Runtime – brings little to no advantage over
a native language such as C++ in terms of portability. On the other hand, Java
gains a disadvantage compared to C# as it requires the player to have the JVM
installed, which is not installed on any of these operating systems by default. This
means that our game would require the installation of a third party software –
though the JVM can be bundled with the distributed game, it would still ask our
players to install updates. The necessity of having the .NET platform installed
is not a problem as it is developed by Microsoft, which is also the developer of
the Windows operating systems, and as such can be installed through Windows
and automatically kept up to date by the Windows Update service.

Because of this problem, the Java programming language was not chosen for
the implementation of our game. C#, on the other hand, is an easier to use
language than C++ and offers the ability to be modded in itself. Being able to
have our game to be modded in C# would be beneficial seeing as the Unity3D
game engine [25] uses it for scripting and thus many game developers and modders
are already capable of using it. Considering these characteristics of the language,
we find it to be equal – if not superior – to C++ in terms of game development
capability. The reason for not choosing C# as the language to write our game in
was the fact that the author has more experience with C++ .

2.3 Scripting Language

Now that we have chosen C++ as the programming language we are going to
implement the engine of our game with, we need to choose which language we are
provide our modding interface in. Such a language should be easily embeddable
within C++ , easy to use and well known in the modding community so that
people with modding experience can easily create mods for our game.

2.3.1 Lua

Lua is a programming language that was designed to be embedded into other
languages like C or C++ and as such provides a simple to use API written in
ANSI C allowing easy function binding and data sharing between C/C++ and Lua.
These characteristics, along with others such as small memory footprint, easy to
understand syntax and high configurability using provided meta mechanisms,
caused Lua to become the most favorite language used for game scripting [26].

18

Due to the high amount of games using Lua for scripting – e.g. the Wikipedia
category called ”Lua scripted video games” contains 157 entries [27] – there is
already a large amount of mod creators that know how to use the language to
create mods for games and as such the use of Lua in our game would make our
modding tools more familiar to players that already have experience in modding.

2.3.2 Python

While Python is similar to Lua with its easy to understand syntax, its ability
to be embedded to C++ is a bit worse in comparison. The various C++ /Python
interfaces are mostly designed to allow the extension of Python using C++ and as
such require more work to embedd Python in C++ – e.g. unlike Lua, which uses a
special stack to communicate with C++ , the CPython API [28] requires manual
reference decrementing and incrementing for heap allocated Python objects used
in C++ .

Where Python generally beats Lua is the abundance of libraries it has avail-
able, ranging from scientific libraries to image manipulation libraries. But since
our scripting language will be mainly be used as an interface to the functionality
of our engine, these libraries offer little to no advantage over Lua’s minimalistic
standard library.

The main downside of using Python as our scripting language is in the fact
that Lua is used more often as a scripting language in games – the Wikipedia
category called ”Python scripted video games” contains 17 entries [29], which is
much lower than Lua’s 157 entries. This means that the modding community
will probably not be used to writing mods in Python as much as they are in
Lua. Additionally, Python uses the notion of syntactically significant whitespace
– meaning that it uses whitespace to denote code blocks – which might be a bit
confusing to a non-programmer that would want to mod our game.

2.3.3 AngelScript

AngelScript [30], similarly to Lua, is a programming language designed to be
embedded into other languages for scripting. The main advantage it has over
Lua is that it is even easier to embedd within C++ because of its C++ -like design,
requiring only a simple registration of C++ functions in order to be able to call
them.

This advantage is also the main downside of the language, as its C++ -like
syntax is not as easy to understand as Lua’s. This means that while AngelScript
would be easier to embedd into the engine, the modding API wouldn’t be as
beginner friendly as if it were interfaced to Lua. Additionally, there is a smaller
amount of games that use AngelScript for scripting– according to the official
website [31], only 35 games use AngelScript for scripting. While this amount
may be higher than the amount of games using Python for scripting, it is much
lower than the amount of games that use Lua.

2.3.4 Conclusion

In terms of familiarity of the scripting language, Lua beats both of its competitors
as it has been used for far more games and thus might be more known by the

19

modding community. Additionally, the significant whitespace of Python and the
C++ -like syntax of AngelScript make us believe that Lua’s syntax is the most
beginner friendly and as such easier to understand by those of our players that
are not programmers. Lastly, we find both Lua and AngelScript to be more easily
embeddable into C++ when compared to Python.

Because of these reasons, we decided to choose Lua as our scripting language
as it seems to be better than its competitors at most of our requirements.

2.4 Entity Representation

In this section, we are going to investigate different approaches for entity repre-
sentation in our engine, that is, how is each entity – i.e. anything that is part of
the game world, such as a minion, a wall, a trigger, a task or an event – will be
structurally represented in our engine. This includes the entity’s data, logic and
relationships between different entities.

Because of our goals (G2.1), which requires modifiability of entities, and
(G1.1), which requires our game to be performant, our requirements for the
entity representation are:

• Extensibility: It should allow easy addition of new entity types so that
mods can define new entities for their mods. It should, if possible, also
allow this extensibility at runtime, which would provide means for easy
runtime testing and prototyping.

• Modifiability: It should allow easy modification of predefined entity types
so that mods can change entities that are already present in the unmodded
game.

• Ease of Lua binding: It should be easily representable in Lua scripts.

• Performance: Since the entity updating will, along with rendering, take
the majority of execution time, the representation should allow fast entity
updates.

2.4.1 Inheritance

In inheritance based entity representation, an entity is a class. Characteristics of
an entity are then implemented by inheriting from other classes and implementing
interfaces. Since C++ does not allow the programmer to alter the inheritance hi-
erarchy of the game without recompilation without the use of dynamically loaded
libraries – which would require our modders to use C++ as this cannot be done
through Lua – the modifiability of such entity is limited.

While such entity can be interfaced to Lua, Lua does not provide the object
oriented paradigm by default and requires its implementation through the use of
meta mechanisms provided by the language. This means that even though the
entities could be accessed from Lua, the modding API would have to be more
complex – as simple function binding would not suffice – and would require the
understanding of object oriented programming from our modders.

20

However, in game development we often want to access a single attribute of
many entities. An example of a process that does this is pathfinding. Pathfinding
algorithms are generally represented as a shortest path search in a pathfinding
graph, which consists of graph nodes that are connected by edges. Since the
original Dungeon Keeper has its pathfinding graph in the form of a grid, let us
assume that each grid node has the same amount of neighbors.

In Figure 2.3, we can see an example of a grid node representation in mem-
ory. This node contains a list of its neighbors, which is used for pathfinding, its
position, which is used for the actual movement of entities that are on a path,
graphics data, which can be used for debugging visualisation of the pathfinding
process, and a name, which can also be used during debugging and also logging.

Grid Node

Neighbors Position Graphics Name

Figure 2.3: Memory representation of a grid node.

During the execution of the pathfinding algorithm, grid nodes get stored in
cache for fast repeated access. The processor cache has a concept of spatial
locality, which means that when it loads data from memory it loads a whole block
of memory as spatially close data are very likely to be accessed, too. However, a
pathfinding algorithm only requires the list of neighbours of a node. Figure 2.4
shows a possible cache state with four different grid nodes loaded. As we can see,
quite a lot of unneeded data was loaded to the cache due to spatial locality which
can cause quite frequent cache misses because of the limited size of the cache.

Grid Node #1 Neighbors Position Graphics Name

Grid Node #2 Neighbors Position Graphics Name

Grid Node #3 Neighbors Position Graphics Name

Grid Node #4 Neighbors Position Graphics Name

Cache

Legend:

Data

Data Used data

Unused data

Figure 2.4: Example of a possible cache state during a pathfinding algorithm if
we have data grouped by entity in memory.

21

If, on the other hand, we would have data grouped in memory by their purpose
as opposed to having them grouped by entities, the spatial locality of cache could
be used to prefetch data that will likely be used during the pathfinding algorithm.
In Figure 2.5, we can see the state of the cache at the same point of the algorithm,
but with data being grouped by their purpose in memory – instead of having the
different nodes with their data next to each other, we have all neighbor lists next
to each other and similarly for all other data that belong to grid nodes.

With this data grouping, any data loaded to cache during the algorithm is
very likely to be relevant to future computation and as such might lead to fewer
cache misses.

Neighbors #1 Neighbors #2 Neighbors #3 Neighbors #4

Free Free Free Free

Free Free Free Free

Free Free Free Free

Cache

Legend:

Free

Data Used data

Free space

Figure 2.5: Example of a possible cache state during a pathfinding algorithm if
we have data grouped by their purpose in memory.

While it would be possible to incorporate such data grouping to this entity
representation – and it can lead to even 35% increase in performance in some
cases [32] – the inheritance based entity representation suffers one additional per-
formance hit in the fact that, in C++ , the use of a virtual function is slower than
the use of a non-virtual one by about 25% [33] and offers smaller opportunities
for inlining.

Because of this, we think that if we were to use the spatial locality of cache,
it might be better to use a representation that takes it into account by itself.

22

2.4.2 Entity Component System

Entity Component System2 [34] [35] [36] – often abbreviated as ECS – is a struc-
tural design pattern that endulges the composition over inheritance principle. It
comprises three main elements: Entity, Component and System.

• Entity is an identifier of anything that is present in the game world. It can
be as simple as a numeric identifier or a more complex object, such as a
component container.

• Component is a piece of logically related data, it generally represents a
single characteristic of an entity, such as its health, position, collision box,
movement or behavior.

• System updates a single component or a set of components of all entities
that have these components.

entity = {

health_component = {

health = 50,

max = 100,

regen = 2

}

}

health_system = {

components = { entity.health_component },

function update()

for comp in components do
if comp.health < comp.max then

regenerate(comp)

end
end

end,

function regenerate(comp)

regenerated = comp.health + comp.regen

comp.health = min(comp.max, regenerated)

end
}

Listing 2: A simple health system that regenerates the health of every entity that
has a health component.

In Listing 2, we can see an example of a system that – on a set period – regen-
erates the health of all entities that have a health component. The health system

2Sometimes also referred to as Component Entity System.

23

iterates over all health components, which contains all data related to health and
regeneration. Updating the game state in ECS is then done by updating all
systems.

This representation satisfies all of our four requirements. Since entities are
nothing but a set of components, we can specify which types of components con-
stitute an entity in a simple script and we can even create completely new types
of entities during runtime by creating a new identifier and assigning components
to it.

Similarly, we can add new components and remove existing components of an
entity, which allows modification of already existing entities. As an example, we
can add a movement component to a stationary entity to make it able to move.
This, like the definition of new entities, can be easily done at runtime.

In both of these cases – modifying an existing or creating a new entity – ECS
provides more flexibility than the inheritance based approach, because C++ does
not allow us to change the inheritance hierarchy without recompiling the engine,
while ECS allows any possible combination of components.

If we use numeric identifiers to represent an entity, we can easily interface our
entities to Lua as all C++ functions called from Lua can take the identifier as their
argument and then find necessary components in the component database. This
approach would avoid the necessity to implement object representation in Lua –
which does not support object oriented programming by default.

An interesting characteristic of the ECS is its satisfiability of our last goal –
performance. To store our components, we often use some kind of a key value
associative container, where the key is the entity identifier and the value is the
component. If our entity is not a numeric identifier, but a component container,
it then contains pointers or references to the components stored in this central
container. Since logically related data – components of the same type – are
located next to each other in memory, we can then use spatial locality of cache
to avoid some of the possible cache misses when we operate on components of
a specific type, because the blocks of memory loaded to cache are less likely to
contain data that are irrelevant to the current computation.

2.4.3 Conclusion

The ECS representation, unlike the inheritance based one, satisfies all of our
requirements. It also offers greater modifiability and allows easy entity interfacing
to Lua scripts and because of these traits was chosen for our engine.

2.5 Libraries

In this section, we are going to examine different libraries that can be used in our
game to help us with its development.

2.5.1 3D Rendering

Since, according to our main goal, we are going to create a 3D game, the first
library we need to choose is a 3D rendering library. Our game will, similarly
to the original Dungeon Keeper, only have a relatively small amount of visible

24

entities in the game world: minions, enemies, spells, buildings and walls. Because
of this, we will settle with a relatively small functionality of the library. It will
have to be able to load models created in a graphical editor so that our players
can easily create new models and load them in their mods of our entities, render
them to the game window and move them in the game world. In particular, the
library should be compatible with models created in Blender [37], which is fairly
popular, has a lot of documentation and is free, which means there will not be
an additional cost of purchasing a graphics editor license to create models for our
game.

Additionally, since our design element (E4) is the combat between our minions
and enemies, support for animation3 would be beneficial so that the combat is
visible. Another of our design elements, (E5), is the participation of the player
in combat by the use of spells. This feature will require the ability to transform
rendered objects to create spell effects such as explosions.

Another important aspect of a library is the ease of its use. Because of this,
our chosen library should provide an easy to use interface, have complete and
clear documentation and a large enough community.

Lastly, the library should be compatible with our ECS entity representation
because the model of an entity is part of its data and as such will need to be part
of one – or some – of its components.

Low level API: OpenGL and DirectX

Lower level API provides direct access to the graphics hardware, common exam-
ples are OpenGL and DirectX. These interfaces, while extremely flexible, do not
support models created in an external application and thus fail to satisfy one of
our goals. Additionally, if we decided to use one of these interfaces, we would
need to implement a lot of functionality – such as scene representation – that
is already provided to us by a higher level library and thus would prolong the
development time of our game. For these reasons, we would like to find a library
that provides these features.

Higher level API: Ogre3D and Irrlicht

Another option is a higher level API, which is often a wrapper around a lower
level API such as OpenGL and DirectX. The benefit of this option is that a higher
level API often provides a large amount of already implemented functionality and
data structures which a lower level API does not. For this decision, we retain all
of our requirements for the choice of our rendering library and add an additional
one – the higher level API should be able to wrap aroung both OpenGL and
DirectX. The reason for this is that a common problem a user encounters when
using a 3D application is related to drivers. Allowing the user to switch the
underlying API used in case of program crashes might solve these problems [38].

We took two libraries into consideration – Ogre3D [39] and Irrlicht [40]. These
were selected because they both have been previously used to create commercially
successful games – Torchlight [41] and Octodad [42]: Deadliest Catch, respec-
tively. Both of the considered libraries satisfy all of our requirements as they

3Even though animation was planned for the game, it was not implemented because of time
constraints.

25

both support models created in an external application and their manipulation
at runtime, provide complete and clear API documentations, both have large
communities, wrap around both OpenGL and DirectX and provide an object
representing a loaded model which can be integrated into a component in our
ECS entity representation and can be easily interfaced to Lua. One difference
between Ogre3D and Irrlicht is that an application that uses Ogre3D provides its
user with a configuration window on startup, where the user can choose – along
with other graphics options – which underlying API they would like to use. If we
use Irrlicht, we would need to implement this configuration window ourselves.

Another difference between these two libraries is in the way they are integrated
into our application. If we choose Irrlicht, we would need to create the game’s
main loop and call Irrlicht to draw our models. If, on the other hand, we use
Ogre3D, the main loop is handled by Ogre3D and we only provide callbacks
that update the game and handle events. While this difference might not seem
significant, we think that the event handling done through different callbacks
makes it easier to implement input handling and results into easier to read source
code, since we do not need to check the type of an event and instead provide
different handlers for different events – e.g. a key press, key release, mouse
movement or mouse click.

These, albeit small, two differences were the reasons for choosing Ogre3D,
since we think that these two libraries are equal on a technical level and the use
of both would reach similar results.

2.5.2 Graphical User Interface

Now that we have chosen our 3D rendering library, we need to choose a library
that provides tools to create a Graphical User Interface – often abbreviated as
GUI. The main requirement for the library is its compatibility with Ogre3D as
they will both need to render to the same window. Since this library will be used
to create the interface our players will use to control the game, it has to offer
widgets that will allow for control of all our design elements including, but not
limited to:

• Button – needed for spell and building choosing and research.

• Label – needed to display current amounts of the game’s resources.

• Frame – needed as a background for other widgets.

Aside of these three, the library should also contain widgets that would allow
us to create in game console – that is an edit box, text box and a scroll bar – which
would be beneficial for testing and prototyping. Lastly, to allow modifications of
our GUI, an external GUI editor that can be used to create configuration files
representing the GUI of our game would be beneficial.

Ogre Overlay

Overlays are a feature of the Ogre3D library which allows us to render 2D and 3D
elements on top of the normal scene. It can be used to create windows, buttons,
labels and other widgets but does not provide already prebuilt widgets. This

26

would mean that we would need to implement all the widgets we need along with
a system that handles the interaction between the user and our GUI.

While this option does not require any additional library to be used in our
project, the development cost would be too high when compared to a GUI library
that already provides these widgets as well as means for input handling. Because
of this and the lack of an external GUI editor, we decided to use a dedicated GUI
library in our game.

CEGUI

CEGUI [43] is a GUI library that was originally a part of the Ogre3D library and
as such is fully compatible with it. The library provides a wide array of different
widgets, including all of the one we require and many more.

To create our GUI schemas, we can use the Unified Editor for CEGUI [44],
which generates XML files that contain information about our scheme such as the
position, size or text of our widgets. Our mod creators can modify these XML
files to modify our GUI.

Because CEGUI satisfies all of our goals and because it was previously bun-
dled with Ogre3D – meaning there are tutorials, documentation and community
discussions related to the integration of these two libraries – we decided to choose
CEGUI as the GUI library for our game.

2.6 Pathfinding

An important aspect of most games is the ability of entities to find the way to their
target inside the game world. This is done through a process called pathfinding.
From a programming point of view, pathfinding is a process of finding – often
the cheapest – path inside a pathfinding graph. Since our game, similarly to the
original Dungeon Keeper, is tile based – meaning that the game world is divided
into a set of adjacent square tiles, each representing a node in the pathfinding
graph – our pathfinding graph will have the form of a grid. Nodes in this grid will
be connected by edges to all of their neighbours. Nodes can be in the corner, on
the side or inside the pathfinding graph and have three, five or eight neighbours,
respectively.

We now need to decide which algorithm we are going to use for pathfinding.
Since diagonal edges between nodes are visually longer than non-diagonal ones,
the algorithm needs to work on a pathfinding graph with weighted edges. Ad-
ditionally, pathfinding will be performed quite often and as such our algorithm
must try to avoid searching the entire pathfinding graph to find a suitable path.

The algorithms we took into account are the Dijkstra’s algorithm, the breadth-
first search and depth-first search algorithms – often abbreviated as BFS and
DFS, respectively – and the A* algorithm. Out of these options, we decided to
choose the A* algorithm as it works on weighted graph and uses a heuristic to
avoid unnecessary searching. The BFS and DFS algorithms failed to satisfy our
requirement that the algorithm should work on weighted graph and the Dijkstra’s
algorithm, while working on weighted graphs, does not use a heuristic to avoid
examining some of the nodes and tends to run slower than A*.

27

2.7 Levels and serialization

To satisfy our goal (G2.3), our game has to provide the ability to create custom
levels that can be distributed by players and then loaded by other players. Unlike
the original Dungeon Keeper, which had a predefined set of levels, our game uses
randomly generated levels. The primary reason why we chose this change is that
we believe that randomly generated levels can extend the replayability of our
game – since the amount of different levels is not limited to a small set. The
secondary reason is the nature of our game – the player is the one that shapes
the world by building their dungeon.

The impact of this decision is that we do not need to store our levels as
they get created whenever the player starts a new game. Because of this choice,
we are going to satisfy our goal (G2.3) through the means of serialization. By
serialization, we mean saving of the game’s current state to a persistent file on
the hard disk which can later be loaded back into the game and the player can
continue from the serialized point.

This way, if a player wants to create a custom map, they can generate a
new level, modify it, serialize it and distribute the created file to other players
that can easily load it. Since we want to allow our users to create custom levels
similar to the Team Fortress 2 map created in Minecraft that was presented in
the introduction of this thesis, our only requirements – besides saving the game’s
state – is the ability easily edit these serialized files and through these edits change
the state and mechanics of the game.

2.7.1 Binary

During a binary serialization, the game state – in our case the components of
entities and some additional information – gets serialized as a sequence of bytes
into a binary file. While this option results in generally smaller save files than a
text serialization, it prohibits modification of the game’s mechanics. Additionally,
even though this format allows our players to modify the serialized game state,
these modifications would require an application that would parse the save file,
allow the user to change the data and then serialize the data again.

2.7.2 XML

Another considered option, the Extensible Markup Language – often abbreviated
as XML – would allow us to serialize the state of our game to a human read-
able yet easily parseable format. This would allow our players to easily change
characteristics of the serialized entities – e.g. their health, position or types of
components – and even to add new entities or delete existing entities from the
game state.

However, similarly to the binary format, XML files cannot contain custom
code that would alter the mechanics of our game.

2.7.3 Lua

The last considered option is serialization into Lua scripts, which means that our
game generates a sequence of calls to our Lua API that transforms an empty level

28

to the serialized one and stores these calls into a source file that is then executed
by Lua when the player wants to load the level.

This option allows our players to use the entire modding API inside these save
files, which means that entire mods can be distributed in the form of a serialized
game state which would satisfy our goal (G3). Additionally, this feature is very
easy to implement because of our entity representation. The game’s state com-
prises the states of individual entities along with some additional information –
e.g. state of the wave system, research and resources. This means that we only
need to implement serialization of the different components in the game along
with the aforementioned additional information using the Lua API. Deserializa-
tion does not need to be explicitly implemented as it constists of deleting the
current game’s state – if any – and executing a Lua script that represents the
desired game state.

This option has one major downside when compared to the other considered
options – the size of the scripts. With a very large world, the serialized state of
the game becomes too big and can cause long loading times and thus limits the
size of the game world. However, we do not consider this limitation too bad as
we found smaller levels sufficient for general play.

2.7.4 Conclusion

While the first two options – binary and XML serialization – would allow us
to serialize bigger worlds than we can with Lua scripts, the ability to edit both
characteristics of the serialized entities and the mechanics of the game that Lua
serialization provides us is, we think, worth the bigger size of the saved file when
a large level gets serialized. Because of this, we decided to choose Lua script
generation as our serialization system.

29

3. Developer’s Documentation

In this chapter, we will examine the structure of our game and the implementation
of its various modules. The source code of the game is a part of Attachment A
and can be compiled using Visual Studio 2015 Community. In Figure 3.1, we can
see the main modules of the engine of our game and their relationships.

.lua

Lua

LuaInterface lpp::Script

Systems

EntitySystem

Ogre3D

OIS Game
GUI

CEGUI

Legend:

ModuleA

B
Group of
modules

C D

Module C
 uses
module D

Figure 3.1: Core of the game’s engine.

The central part of our engine is the Game class, which performs initialization
of all modules, game updates and handles events passed to it by two of our
libraries – Ogre3D, which is used for graphics, and OIS1, which is used for text
input. These two libraries are directly used by the engine, but the remaining two
– CEGUI and Lua – use special interface modules that wrap and use their API.

The GUI module, which acts as an interface for CEGUI, comprises the GUI

class and various different classes that represent different windows that are part
of our user interface.

Lua uses different classes for the different directions of communication. When
the engine accesses Lua, it uses the lpp::Script class, which acts as a wrapper
facade over the Lua C API. When, on the other hand, Lua accesses parts of the
engine it uses the LuaInterface class, which binds functions of the engine that
are written in C++ to Lua, creating our modding API.

The update logic of the game is performed by systems that each contain an
update function which performs their part of the update of the game. Most of the

1Bundled with Ogre3D.

30

systems have only the purpose of updating the game, but EntitySystem also acts
as a component manager and provides components to the rest of the systems.

In the following sections we will examine these main modules of the engine as
well as various other modules, which mostly serve as tools to the main modules.
The implementation of all of the classes presented in the following sections can
be found as a part of the Attachment A in the directory src. In this directory,
we can find core source files of the engine as well as subdirectories systems, which
contains all of the game’s systems, helpers, which contains auxiliary functions
that can be used to manipulate components, tools, which contains classes that
are used by the engine for tasks related to some of the games mechanics such as
pathfinding, entity placement and serialization, and gui, which contains classes
that represent the user interface of our game.

In addition to the information that is contained within this chapter, we can use
the documentation generated from the comments that are inside the source code
and located in the directory engine-doxy, which is a part of the Attachment B.

3.1 Game

The Game class is the central part of our engine. In its constructor, every module
of the engine – that needs initialization – is initialized. This class also serves as
the main connection between the Ogre3D and OIS libraries and our engine.It does
so by inheriting four listener classes from these libraries – Ogre::FrameListener,
Ogre::WindowEventListener, OIS::KeyListener and OIS::MouseListener.

Communication between the game and these two libraries is done, besides
using their API, by overriding virtual functions of these classes which act as
event handlers. We can see these functions in Listing 3. While names of most
of these functions are self-explanatory – and their documentation can be found
in the Ogre3D and OIS documentations – we will examine the functionality of
frameRenderingQueued in a bit more depth.

// Ogre3D

bool frameRenderingQueued(const Ogre::FrameEvent&);

void windowResized(Ogre::RenderWindow*);

void windowClosed(Ogre::RenderWindow*)

// OIS

bool keyPressed(const OIS::KeyEvent&);

bool keyReleased(const OIS::KeyEvent&);

bool mouseMoved(const OIS::MouseEvent&);

bool mousePressed(const OIS::MouseEvent&,

OIS::MouseButtonID);

bool mouseReleased(const OIS::MouseEvent&,

OIS::MouseButtonID);

Listing 3: Virtual functions overriden in the Game class.

Ogre::FrameListener provides three virtual functions – frameStarted, which
is called when a frame is about to begin rendering, frameEnded, which is called

31

when a frame has just been rendered, and frameRenderingQueued, which gets
called when all rendering commands have been issued and are queued for the
GPU to process. In our Game class, we override only this last function – although
others can be overriden for different actions as well – because while the GPU
processes the current frame, the CPU can be used for different tasks – such as
our update loop. This means that any changes that happen inside this function
will be rendered on the next frame, but in our game this delay is not noticeable
as the player does not directly control any one entity. We use this function to
perform the main functionality of our game – performing game update by calling
the update functions of all systems that are in the game.

Besides handling input and window events, this class contains several auxiliary
functions related to initialization, level creation and state changing. To see more
information about these functions, refer to their documenting comments in the
header file Game.hpp or in the generated documentation.

3.2 Components

Component is a data aggregate that describes a specific characteristic of an
entity that contains the component. These components can describe various
different characteristics. Components like HealthComponent, ManaComponent or
GraphicsComponent describe an attribute or a set of attributes of an entity. On
the other hand, components like AIComponent or EventHandlerComponent describe
the behavior of an entity. Even the presence of a component can express a char-
acteristic – e.g. MineComponent does not contain any data, but if an entity has this
component, it can be mined. In our engine, these components are represented
as simple structures with a name in the form of <Characteristic>Component and
defined in the header file Components.hpp.

In Listing 4, we can see an example of a component – the MovementCom-
ponent, which describes the speed of an entity. Every component has a static
integer field representing its type, which is used for communication between Lua
and C++ because Lua does not understand the notion of templates, which we use
for the different functions that manipulate with components, and as such it needs
to specify what kind of component should be used when it calls a C++ function.

struct MovementComponent

{

static constexpr int type = 4;

MovementComponent(tdt::real speed = 0.f)

: speed_modifier{speed}, original_speed{speed}

{ /* DUMMY BODY */ }

tdt::real speed_modifier;

tdt::real original_speed;

}

Listing 4: Simplified representation of the MovementComponent structure.

32

There is only one other requirement for components, which is that they always
need to have a parameterless constructor 2. This is required because we often
create components by calling a C++ function in Lua and then set its fields, which
would be impossible without a constructor that doesn’t need any parameters.
Also note that because of this approach, any strings passed to any parameterized
constructor are considered to be passed from Lua and as such are moved because
the originals are supposed to be destroyed by Lua once the creation is complete.

Besides the two requirements, components can contain any data required by
the entity characteristic they describe. In the examle, the MovementComponent
contains two fields of type tdt::real3 – speed modifier, which indicates the speed
of an entity, and original speed, which is used to restore the speed of an entity
that has been affected by a slowing effect. Note that, to conform our ECS repre-
sentation, components should not contain functions and any logic should be done
through systems.

3.3 Systems

A system is a class that performs a part of the games update. The game provides
a common abstract parent class System, which is used for easy iteration over all
systems during the update of the game. In general, a system should operate over
one or more types of components, but the creation of systems that do not use
components is also possible.

The update function of every system is called once per frame, but the indi-
vidual systems often have inner time periods between updates.

3.3.1 EntitySystem

EntitySystem is the main system as, besides performing part of the game’s up-
date, it acts as a component database. This means that it stores all component
containers, which are represented as std::map<entity id, component>. Besides
storing the components, it also provides a set of function templates used for
component manipulation.

Some of these function templates can be seen in Listing 5. They can be used
to test if an entity has a component, to retrieve a component that belongs to
an entity, add a new component – using the parameterless constructor – to an
entity and remove a component from an entity, respectively. In addition to these
templates, each of them has a secondary non-templated version which takes an
integer as a second parameter, which corresponds to the type of the component
– these functions are then used from Lua. To prevent code repetition, these
functions use an array of pointers to the templated versions in which the pointer
at any given index points to the instances of these templated functions that have
their type field equal to the index number.

In addition to these public templates, one more important private template
is defined in EntitySystem – load component. This function template accepts the

2A constructor that has default values for all its parameters will suffice.
3One of two numeric types used in the engine that is defined in the file Typedefs.hpp, the

other being tdt::uint.

33

template<typename COMP>

bool has_component(tdt::uint id);

template<typename COMP>

COMP* get_component(tdt::uint id);

template<typename COMP>

void add_component(tdt::uint id);

template<typename COMP>

void delete_component(tdt::uint id);

Listing 5: Examples of the templates using for component manipulation.

identifier of an entity along with a name of a Lua table, which it will then use to
load a component with fields specified by the provided table.

Besides component storage and manipulation, this class also serves as a sys-
tem. During its update, it deletes all components and entities that were scheduled
for deletion by the function delete component. The reason for this delayed delete
is that if we deleted components from their containers immediately in the delete
call, we might invalidate iterators as the call may very well happen during an
iteration over a component container.

3.3.2 CombatSystem

The CombatSystem class performs the update of basic combat between entities –
that is, melee 4 and ranged combat excluding spells. During its update, it checks
the ability to attack of all entities that currently have an active combat target.
This includes checking if the target is in sight and in range. If an entity can
attack, the system either performs applies its damage to its target if the attack is
of the melee type or creates a new projectile if the attack is of type ranged. After
updating the combat state of all entities that are currently fighting, the system
updates the movement of all projectiles.

This system also performs a special kind of pathfinding which is used to find
a path for an entity that is trying to escape from an attacker. This pathfinding,
unlike the general pathfinding that finds a path to the target, uses a queue and is
performed once per frame. The reason for this is that this pathfinding does not
need to be performed immediately, while the general pathfinding is often used to
check for the existence of a path and as such needs to be finnished right after its
start so that the return value can be used.

In addition to performing part of the game’s update, CombatSystem provides
two important types of functions – querying for closest entity that satisfies a
condition, applying an effect to all entities in range that satisfy a condition.

4By melee we refer to close range combat as is common in many games.

34

Conditions and entity querying

Conditions are functors – that is, structures that overload the function call
operator – which are used to test if an entity satisfies a certain requirement.
CombatSystem provides a function template that can be used to find the closest
entity that satisfies a condition.

template<typename CONT, typename COND>

tdt::uint get_closest_entity(tdt::uint, COND&, bool);

Listing 6: Signature of the entity query function template.

In Listing 6, we can see the signature of this function template. Its template
parameters are CONT, which specifies the type of component container the func-
tion will be querying over, and COND, which specifies the condition functor. The
function takes the identifier of the entity that performs the query, instance of the
condition functor and a boolean value determining if the target has to be in sight
and returns the identifier of the closest entity that satisfies the condition.

Effects and their application

In addition to entity querying, CombatSystem provides a function template that
allows us to apply an effect to all entities that satisfy a condition and are withing
range. An effect, similarly to a condition, is a functor which is used to affect the
entity it is used on.

template<typename CONT, typename COND, typename EFFECT>

void apply_effect_to_entities_in_range(tdt::uint, COND&,

EFFECT&, tdt::real);

Listing 7: Signature of the effect applying function template.

The signature of this function template can be seen in Listing 7. Its template
parameters are the same as the ones used in entity querying with the addition of
the parameter EFFECT, which specifies the effect functor. The function takes the
identifier of the entity that applies the effect, the condition the targets need to
satisfy, the effect that will be applied to the targets and the maximal range the
targets can be from the applying entity.

3.3.3 EventSystem

EventSystem manages event handling as part of the game update. To do this,
it uses two different components – EventComponent, which represents an event,
and EventHandlerComponent, which represents the ability of an entity to handle
events.

During its update, this system iterates over all events in the game and, if they
are active – finds a suitable entity that will handle the event. Events can be of
two types, either targeted or area events. An event is targeted if it has a valid
entity identifier in its handler field, otherwise it is an area event.

35

To request an entity to handle an event, the system checks if the entity can
handle it by testing the event type in the entity’s possible events bitset field.
Every EventHandlerComponent has a string field handler, which specifies which
Lua table contains the event handling function called handle event. The system
then calls this event handling function and passes the identifier of the handling
entity and the identifier of the event to it, which causes the entity to handle the
event.

To handle a targeted event, the system simply finds the event’s handler entity
and requests event handling, but to handle an area event, the system has to
iterate over different event handlers that are within radius of the event, which is
specified in the EventComponent’s field radius and increases on every update call
until the event is destroyed. The system requests all of the suitable entities to
handle the event until any one entity returns true, in which case it destroys the
EventComponent of the event. The reason for destroying the component and not
the entity that represents the event is that an entity that causes the event often
gains the component so that the lifetime of the event is bound to the entity – e.g.
a falling meteor can have an EventComponent of type METEOR FALLING and when
the meteor hits the ground, both the meteor and the event get destroyed since
they are one entity.

3.3.4 TaskSystem

Similarly to how EventSystem manages event handling, TaskSystem manages task
handling. It does so by iterating over all entities that have TaskHandlerComponent

and calling the handle task Lua function that is located in the Lua table which
is specified in the component’s field blueprint. This Lua table also contains
a function called task complete, which is used to check if the current task an
entity that is iterated over has been completed, in which case the system requests
handling of the next task in the component’s task queue.

Additionally, an entity that is handling a task can enter a busy state by
returning true from its task handling function. While an entity is marked as
busy, no other task handling nor any AI updates will be performed until its
current task is completed.

3.3.5 GridSystem

GridSystem manages nodes in the pathfinding graph and structures that are
placed on them. During its update, it examines all nodes that were either
freed, which means that a structure on them has been destroyed, or unfreed,
which means that a building was placed on them. The system uses lists of freed
and unfreed nodes to correct paths that were blocked by a strucute placed on a
node that was part of the path. Additionally, it manages all entities that have
AlignComponent, which is used to change the models of walls depending on their
neighbours.

Grid

Grid is an auxiliary singleton class that provides an interface for grid node manip-
ulation and monitoring, which acts as a wrapper around a set of entity identifiers

36

that belong to the different nodes in the pathfinding graph. Its main use are
the lists of freed and unfreed nodes that are used by GridSystem. In addition to
these lists, Grid provides functions for graph creation, placement of an entity on
a random node and distribution of multiple entities on adjacent nodes – which
can be used to spawn a group of entities next to each other.

3.3.6 WaveSystem

WaveSystem manages the progression of enemy waves that attack the player’s
dungeon. During its update, it tracks time passed since the last enemy wave and
starts the next wave if needed. The system can be in three different states:

• ACTIVE state, during which an enemy wave attacks the player’s dungeon
and the system spawns enemies on spawning nodes that were selected dur-
ing level generation. After the player’s minions destroy all enemies in the
current wave, the system transitions into the WAITING state.

• WAITING state, during which the system simply tracks a timer until the next
wave and changes back to the ACTIVE state once the timer runs out.

• INACTIVE state, during which the system is idle. This state is entered once
the system depletes all waves or is paused.

To monitor the current state of the wave when the system is in the ACTIVE

state, every spawned entity increments the entity counter and the system adds
DestructorComponent to it which specifies which function should be called when
the entity dies. This function then decrements the entity counter. When the
counter reaches zero and all entities have been spawned, the wave ends and the
system transitions to either WAITING or INACTIVE state.

A specific sequence of waves is defined by a Lua table. The name of the current
wave Lua table is stored in the variable private wave table . This table contains
functions that prepare the wave sequence and start and end the individual waves.
This table, along with a tutorial on how to create a new wave sequence can be
found in Chapter 4.

3.3.7 Miscellaneous Systems

Now that we have examined the bigger systems that are included in the game,
we will briefly explain the update logic of the remaining systems, which generally
perform simple tasks.

• AISystem iterates over all entities that have a AIComponent and calls the Lua
functions that update their behavior if they are not currently performing a
task.

• GraphicsSystem was designed to manage all manual graphics. Explosions
are the only manual graphics that are currently in the game so the system
updates the dimensions of all entities that have a ExplosionComponent and
destroys them once they reach their limits.

37

• HealthSystem removes all entities that are marked as not alive and period-
ically regenerates their health.

• InputSystem handles the input from the player and uses it to control all
entities that have a InputComponent.

• ManaSpellSystem regenerates mana of entities that have a ManaComponent

and manages the spell casting of all entities that have a SpellComponent.

• MovementSystem manages the movement of all entities that have
a MovementComponent and are currently on a path. Note that this excludes
homing projectiles, which are updated by the CombatSystem.

• ProductionSystem manages the production of entities by buildings. It tracks
time periods between spawns and the spawn limit of a building and when
the time comes and the spawn limit is not depleted, the system spawns a
new entity either on the building if its just a tile on the ground or around
the building if its solid and cannot be stood on.

• TimeSystem manages the different timers in the game, including, but not
limited to the timers of OnHitComponent, LimitedLifeSpanComponent and
TriggerComponent. Additionally, it manages a special kind of events that
are represented by a TimeComponent. These components can start or end
events represented by a EventComponent or call Lua functions.

• TriggerSystem manages entities that have a TriggerComponent such as traps
or portals. It checks all entities in range to see if they can trigger the entity
with the TriggerComponent and if they can, calls the trigger function.

3.4 lpp::Script

The Script singleton class in the namespace lpp is a wrapper facade around the
Lua C API which provides an easy to use interface for communication between
C++ and Lua. It provides functions that allow us, for example, to execute Lua
code passed as a string, register C++ functions to Lua, retrieve values from Lua
and call Lua functions from C++ . In addition to this wrapper, the lpp names-
pace contains the Exception class. Besides the conventional what function, which
returns a string describing the nature of the exception, this class also has the
lua what function, which returns the text of the Lua error that occurred.

3.5 LuaInterface

LuaInterface is a static class that contains functions that are part of our modding
API and is used for simple initialization of the API. The reason for it being static
is that Lua does not understand the notion of a function bound to an instance of
a class and as such can bind only static functions.

During the initialization of our API, arrays of pairs of function names and
function pointers are registered in Lua. Each of these arrays is then represented
as a Lua table which contains the registered functions. To register a function

38

pointer, it is required by Lua to have the signature of int (*name)(lua State*).
Because of this, LuaInterface contains static functions with this signature that
act as wrappers around the actually called functions.

Listing 8 contains an example of such wrapper. In this wrapper, we first
need to retrieve the actual parameters for our functions. These parameters are
located on the Lua stack – i.e. in reversed order – and we can use one of our
five macros for easy parameter retrieval defined in the LuaInterface source file.
In this example, we use GET UINT and GET REAL, each of which takes a pointer to
the Lua state and an offset from the top of the stack. Once we retrieve these
parameters, we can call the wrapped function and push its result back onto the
stack. Note that Lua supports multiple results from a function call and thus we
can push multiple values onto the stack. The amount of returned results is then
returned from the wrapper.

int lua_wrapper_of_F(lua_State* L)

{

tdt::uint param2 = GET_UINT(L, -1);

tdt::real param1 = GET_REAL(L, -2);

int result = F(param1, param2);

lua_pushinteger(L, result);

return 1;

}

Listing 8: An example of our modding API function implementation in C++ .

3.6 Helpers

Helpers are auxiliary functions that are used for component manipulation that are
placed within a namespace related to a specific component – e.g. the HealthHelper
namespace contains functions that manipulate HealthComponent. These functions
are mainly in the form of a setter, which changes a field of the component after
checking the validity of the new value, or getter, which returns the value of a field
of the component or a default value if the component does not exist. But the
body of these functions is not restricted and they can perform any operation.

The main purpose of these functions is keep the LuaInterface class small,
but can be used freely in C++ as well if we need for example parameter checking,
default values or transaction logging. However, these functions generally retrieve
the component from its container and as such sequential calls to different helper
functions of a single component will be slower than a direct manipulation of the
component.

3.7 SpellCaster

SpellCaster manages player spell casting. Player spells in our game can be of
four different types – TARGETED, which affect a single selected target, POSITIONAL,

39

which affect a specific area the player clicks at, GLOBAL, which have a global effect
on the game, and PLACING, which place a new entity into the game.

The spell casting process has two phases. Firstly, it selects the spell type and
spell Lua table name and calls an initializating function that is contained within
the spell table. Secondly, it calls the casting function and passes parameters to
it based on the spell type when the player clicks on the screen to cast the spell.

This process is strongly connected to Lua, the SpellCaster class only manages
spell changing and the two described phases, but the effects of the spells are fully
defined in Lua. In Section 4.5, we will examine the spell table and go over the
spell creation process.

3.8 Pathfinding

In Section 2.6, we decided to use the A* algorithm for pathfinding in our game.
While A* is the implemented algorithm, the game contains a templated pathfind-
ing system using functors for algorithms, heuristics and path types. This allows
us to easily change the characteristics of our pathfinding process.

The pathfind function calls the algorithm functor, which has a static function
get path that returns the found path. After obtaining the path, pathfind resolves
blocks that are placed on the path by requesting the entity that performs the
pathfinding to destroy them before continuing on its path. The algorithm functor
is templated as well and its template parameter is what we call a path type.

Path type is a functor that has a static function return path, which is called
the first time a path is found and then whenever an augmenting edge is found
on the path. If the return path returns true, the path gets returned, and if it
returns false. Examples of such path types are the three path types that are
implemented in the game – BEST PATH, which forces the algorithm to search the
entire pathfinding graph, FIRST PATH, which terminates the algorithm the first
time a path is found, and RANDOM PATH, which acts as a compromise between the
two aforementioned path types.

Lastly, both the pathfind function and the algorithm’s return path function
take a heuristic as a parameter. The heuristic, unlike algorithm and path type, is
not static as it in some cases requires to have a state – for example, the heuristic
used for running away from an enemy needs to know the identifier of the enemy.
The heuristic has a function get cost, which returns the approximate cost of
travel between two nodes in the pathfinding graph.

3.9 Player

Player is a singleton class primarily used for resource monitoring – it stores
information about the amount of all the player’s resources such as gold, mana,
spawned entities and others. Additionally, it contains information about the
starting state of the game, such as initial spells and unlocked research. This is
mainly used when we create a new game or when we load a previously saved
game.

40

3.10 Serialization

The GameSerializer class is used to save the state of the game and to load
previously saved states. It does so by creating Lua scripts that use our API to
change an empty level to the serialized one. For every entity, it iterates over all
of its components and outputs a sequence of API calls that add the component
to the entity and restore the values of its fields. For this, the class has an array of
pointers to functions that serialize the different components indexed by the types
of the components.

In addition to the component serialization, it also saves resources that are
contained in the Player class, creates an empty level, recreates the pathfinding
graph, saves unlocked spells and buildings and the overall progress of the player’s
research.

To load a saved state of the game, it simply destroys all the entities in the
game and resets the Player class to its initial state. It then executes the serialized
script to restore the state of the game.

3.11 Tools

In this section, we will examine some of the smaller tools that are used within
the engine of our game.

Camera

The Camera class acts as a wrapper around the main Ogre::Camera instance. Its
main purpose is to allow us control the camera in multiple ways – using both
keyboard and mouse – and it also allows us to change between the basic mode, in
which the camera has a fixed orientation, and the free mode, in which the player
can move and rotate the camera freely in the game world.

EntityPlacer

EntityPlacer is used to place entities in the game world. To place an entity, we
first need to call the function set current entity table, which will change the
entity that is currently being placed and show its model at the position of the
mouse cursor. While an entity is being placed, the game will call the function
update position which will move the temporary model to the specified position,
which is used to make the temporary model to follow the mouse cursor. Once
the player clicks on a spot in the game world, the game calls the function place,
which will spawn a new instance of the entity that was placed at the current
position of the placer.

LevelGenerator

Level generators, found in the namespace level generators are used to popu-
late an empty game world with starting structures such as buildings, walls and
gold blocks. During the initialization of our game, the Game class creates an
instance of the generator that is defined – using either typedef or using – as
DEFAULT LEVEL GENERATOR in this namespace.

41

This forces the constructor of any level generator to take a reference to the
EntitySystem class and a tdt::uint because the instantiation of the level genera-
tor is done generically with these two parameters. The reference to EntitySystem

is used for the creation of walls, blocks and others and the unsigned integer de-
notes the amount of iterations of the generation – if the level generator is iterative,
otherwise this parameter may be ignored.

Any level generator has to also have a function with the signature void

generate(tdt::uint, tdt::uint, WaveSystem&). This function will then gen-
erate a level with dimensions equal to the passed integers and sets the spawn
points for the passed wave system.

RayCaster

The Ogre3D library provides only a basic bounding box ray casting, but our walls
do not have to fill their entire bounding box because of alignment. For this, we
used external code from the official Ogre3D website [45] in our RayCaster class
because of the author’s limited knowledge of graphics programming. This class
is used to check if two entities can see each other by creating a ray between two
points in the game world which, unlike standard Ogre3D ray casting, takes only
actual models into account. The class uses this ray to determine if there is a block
between the two entities and if so, assumes they cannot see each other because
of this block.

Figure 3.2: An example situation where bounding box ray casting would not
suffice.

In Figure 3.2, we can see a situation where two ogres stand in front of each
other and next to a diagonal wall. Because our game world is made of tiles, the

42

walls have the form of a cube and the diagonal wall is simulated using alignment,
during which the wall changes its model. However, even if the model is not a
cube, the bounding box still is and because of this if we use Ogre3D ray casting
to determine if the two ogres can see each other, the result will be false. But
since our RayCaster ray casts to the polygon level, its use would yield true as the
result.

SelectionBox

SelectionBox is a class used for entity selection using either the plane bounded
volume query or ray casting provided by Ogre3D. Whenever a player clicks on
anything in the game world – besides parts of the GUI – the Game class starts
selection by setting the initial point of the selecting square. Any mouse movement
then sets the end point of the square so that the player has a visual feedback on
his selection. Once the player releases his mouse button, the query is executed
on the created selection square to select all entities that are located within it.

This class provides two modes of selection – single selection and multi selec-
tion. The type used is determined by the size of the selection square, so if the
square is too small, a ray cast will be used instead of a volume query.

3.12 GUI

Our GUI module serves as a set of wrapper classes around CEGUI windows.
The GUI singleton class is used for initialization and shared control of all other
windows – e.g. to recursively toggle visibility of the windows. This class also
contains instances of most5 of the other windows. Each of these windows inherits
from GUIWindow, which provides common interface for visibility and initializaion.

The game’s GUI contains the following windows:

• Console – accepts Lua commands as its input and executes these commands
in the Lua virtual machine.

• EntityCreator – a window that allows the user to spawn entities by choosing
them from the list of all available entities, mainly used for testing.

• EntityTracker – display characteristics of the currently selected entity, e.g.
its health or mana.

• ResearchWindow – button based interface for research, the player can click
on a research node if they have enough resources to unlock it.

• BuilderWindow – provides the player with a selection of building they can
build.

• SpellCastingWindow – provides the player with a selection of spells they can
cast.

• GameLog – shows game messages, e.g. error messages when the player does
not have enough resources to build a building.

5It does not contain some testing windows, such as EntityCreator.

43

• MessageToPlayerWindow – a simple multi-purpose window with a message
and buttons.

• OptionsWindow – allows the player to change the game’s resolution, toggle
fullscreen mode and change key bindings.

• TopBar – a small bar at the top of the screen that shows the player’s current
resources.

44

4. Scripter’s Documentation

While we cannot change parts of the engine without recompilation of its source
code, we can provide implementation of various parts of the game through scripts
written in the Lua programming language1. These scripts are mainly used during
initialization and for the definition of entities, enemy waves, research nodes and
spells. In this section we will examine how to write these parts of the game.

A reference documentation for our Lua API can be found in the lua-api

directory which is a part of the Attachment B and all of the game’s scripts can
be found in the src/scripts directory which is a part of the Attachment A.

4.1 Initialization

When the game starts, it executes two script files – config.lua and init.lua.
The config.lua contains a Lua table2 config with values used by the engine
such as time periods and multipliers, blocks that are used by the default level
generator and a list of directories that contain scripts that are to be loaded when
the game starts. The purpose of each value is documented within this script file.

The file init.lua is used mainly to load other script files and user created
mods. Additionally, it loads the values stored in the configuration file to the
engine. We can also use this file for any auxiliary commands we would like to be
executed at the start of the game – e.g. for testing purposes.

If we want to modify our game we have two options. Our first option is to edit
the already implemented Lua scripts that are located in the scripts directory.
This also includes creating new files and adding their names to the list of scripts
that are to be loaded, which can be found in the file scripts/core.lua. Our
second option is to create a new scripting module, which is done by creating
a new directory in the game’s root directory3 and adding this directory to our
configuration script. This new directory has to contain a script called core.lua,
which will be executed by the game at startup. Note that scripting modules are
executed precisely in the order in which they are listed in the configuration script.

In Listing 9, we can see an example of a small core.lua script located in
the directory some-mod in the game’s root directory. It loads two additional
scripts using the function game.load, which takes the path to a scripts file which
is relative to the game’s root directory. Additionally, it redefines the function
game.init level, which is called whenever the game creates a new empty level
but before level generation starts. The important part of this function is its
return value – if it is not true, the level generation will not happen. We can use
this to write our own level generator in Lua, which we would call from inside
this function and then we would prevent the level generator written in C++ by
returning false.

1To learn about the language, we recommend the Programming in Lua book [15].
2A table is the only data structure in Lua, it is an associative array of dynamic size that

can be indexed by any value except for nil, which represents no value.
3The directory where the game’s executable file is located.

45

-- Scripts that will be loaded.

local scripts = {"script-1.lua", "script-2.lua"}

-- Path to this module from game root directory.

local path = "some-mod/"

-- Load the scripts, .. is used for string

-- concatenation.

for idx, script in ipairs(scripts) do
game.load(path .. script)

end

-- Redefine the level init function.

game.init_level = function(width, height)

game.print("A new level of some mod created!")

game.print("Dimensions: " .. width .. ", " .. height)

return true
end

-- We can execute any Lua code.

game.print("Some mod loaded!")

Listing 9: An example core.lua script.

Scripts loaded in a core.lua script can execute any valid sequence of Lua
commands and calls to our modding API, but they are mainly used for the defi-
nition of new entities, enemy waves, research nodes and spells, which we will now
examine.

4.2 Entities

To create a new entity, we need to create a Lua table that defines its components.
In Listing 10 we can see an example of a simple ogre entity. Each entity definition
needs to contain a table called components, which is a list of all component types
this entity has and is used by the game whenever it creates a new instance of
this entity. For easier listing of components, the file scripts/enum.lua – which
is loaded by default by the scripts/core.lua scripts – contains an enum table
called component which contains variables representing the type identifiers of each
component.

Once we list all of the components our new entity has, we need to define all
of its components that require us to. In the file components.txt, which is a part
of the Attachment B, we can find which components need to be defines in the
entity definition table and what fields do these component tables need to have.
Note that the order in which we define component does not matter.

For this particular example entity, we first define the PhysicsComponent, which
represents the physical presence of an entity inside of the game world. It has a
single field called solid, which should be true for buildings that cannot be walked

46

through and false for any other entity. Then we define the HealthComponent,
which represents the health of an entity and its ability to be damaged and killed.
It has three fields that need to be set – max hp, which determines the maximum
amount of health the entity can have, regen which determines how much health
should the entity gain on each regeneration period of the health system, and
defense, which determines the amount of damage that should be subtracted from
incoming damage.

Once we define all of the components of our entity, we can register her in the
list of all defined entities using the function game.entity.register.

-- Table defining the ogre entity.

ogre = {

-- List of components the ogre entity has.

components = {

game.enum.component.physics,

game.enum.component.health

},

-- Definition of the physics component.

PhysicsComponent = {

solid = false
},

-- Definition of the health component.

HealthComponent = {

max_hp = 1000,

regen = 10,

defense = 50

}

}

game.entity.register("ogre")

Listing 10: Definition of a simple entity.

4.2.1 Blueprints

Components can also define the behavior of an entity. To implement this, the
game contains the concept of blueprints. Blueprint is a table that contains func-
tions that describe the behavior of an entity of a specific type. Which blueprint
is used is defined for each component individually, this allows us to combine the
behavior of different entity types into a new one without the need to create new
blueprints.

In Listing 11 we can see an implementation of an example healer entity. This
entity has three components that describe its behavior. SpellComponent describes
the ability to cast spells and contains fields blueprint, which determines which
blueprint is used for spell casting, and cooldown, which determines the mini-

47

mal time between two consecutive spell casts. AIComponent describes the over-
all behavior the entity performs on every periodic AI update and contains the
field blueprint, which determines which blueprint is used for these AI updates.
OnHitComponent describes how the entity reacts when it gets attacked by an en-
emy and contains fields blueprint, which determines which blueprint is used to
find the reaction to enemy attacks, and cooldown, which determines the minimal
time between two consecutive reactions – this can be used to prevent overflow of
the game’s log if the entity just notifies the player of the enemy attack.

cowardly_healer = {

components = {

game.enum.component.spell,

game.enum.component.ai,

game.enum.component.on_hit

},

SpellComponent = {

blueprint = "healer_blueprint",

cooldown = 25.0

},

AIComponent = {

blueprint = "healer_blueprint"

},

OnHitComponent = {

blueprint = "coward_blueprint",

cooldown = 1.0

}

}

game.entity.register("cowardly_healer")

Listing 11: An example of component definitions that use blueprints.

The entity behaves in the same way as a healer does when it casts a spell
or has its AI updated, so these two components use the healer blueprint, the
implementation of which can be seen in Listing 12. This blueprint contains the
implementation of function used by all of the components our cowardly healer

has, but the on hit function is not used in this case because a regular healer
entity heals itself and continues its normal behavior when it is attacked while
this entity is too cowardly to continue and simply runs away.

48

-- Functions describing the behavior of a healer.

healer_blueprint = {

-- Associated with the spell component.

cast = function(id)
-- Heal all friends of entity <id> that are nearby.

end,

-- Associated with the ai component.

update = function(id)
-- If possible, heal friends. Otherwise, attack enemies.

end,

-- Associated with the on hit component.

on_hit = function(id, enemy)

-- Heal self.

end
}

Listing 12: Implementation of the healer blueprint.

Because of this, our cowardly healer uses the coward blueprint, the imple-
mentation of which can be seen in Listing 13, for its OnHitComponent. The on hit

function of this blueprint then simply forces our cowardly healer to run away
from its attacker whenever it gets attacked.

Since the individual functions may differ in both name and parameters for
the different components that use blueprints, this information is included in the
component description in the file components.txt, which is a part of the Attach-
ment B.

Note that the implementation of these behavior blueprints is not required.
However, because of the way the game operates to support blueprints, every of
these behavioral function needs to be contained within a Lua table whose name
is set in the component’s blueprint name and has to have the signature that is
required when it is a part of a blueprint.

-- Functions describing the behavior of a coward.

coward_blueprint = {

-- Associated with the on hit component.

on_hit = function(id, enemy)

-- Run away from entity <enemy>.

end
}

Listing 13: Implementation of the coward blueprint.

49

4.3 Enemy waves

The wave table is a Lua table that defines the composition of enemy waves and
delays between them. Each wave table contains the init function, which is called
whenever a level that uses the table is created. Additionally, it contains a pair of
functions wstart X and wend X for each of its waves, where X starts at 0 and gets
incremented for each wave.

An example of the init function of a wave table can be seen in Listing 14. In
it, the wave table resets the wave composition that was set during any previous
wave sequence by calling the function game.wave.clear entity blueprints 4. It
then sets the number of waves with game.wave.set wave count, resets the current
wave number with game.wave.set curr wave number and changes the time before
the first wave starts with game.wave.set countdown.

wave = {

-- Initializes this wave table.

init = function()
game.wave.clear_entity_blueprints()

game.wave.set_wave_count(2)

game.wave.set_curr_wave_number(0)

game.wave.set_countdown(300)

end
}

Listing 14: An example of the intialization function in a wave table.

In Listing 15, we can see an implementation of the starting and ending function
of a first wave within a wave table. When the first wave starts, the function
wstart 0 is called. The starting functions generally define the composition of the
wave that is starting using the function game.wave.set entity total, which tells
the wave system how many entities comprise this wave so that it knows when to
end the wave, and the function game.wave.add entity blueprint, which creates
a new member of the wave.

The entities that are part of the wave spawn on specific nodes that were
set during level generation. If there are more entities in a wave than there are
spawning nodes, the wave system only spawns enough entities to cover these
nodes at a time. Before it spawns another group of entities, it waits a specific
time period, which can be set using game.wave.set spawn cooldown.

Once all entities that belong to the first wave are killed, the wend 0 function is
called, which generally only changes the time before the next wave. If this time
is not changed, the previously set value is used.

4In this case, the term blueprint does not refer to the blueprints we have discussed in the
previous section, but to an entire entity definition.

50

wave = {

-- Called when the first wave starts.

wstart_0 = function()
game.wave.set_entity_total(2)

game.wave.add_entity_blueprint("ogre")

game.wave.add_entity_blueprint("coward_healer")

game.wave.set_spawn_cooldown(10.0)

end,

-- Called when the first wave ends.

wend_0 = function()
game.wave.set_countdown(180)

end
}

Listing 15: An example of the first wave definition in a wave table.

Following waves are defined similarly, but note that if we do not call the func-
tion game.wave.clear entity blueprints between waves, the entity blueprints of
the previous wave are not deleted and will also be included in the next wave.
This can be used to create growing groups with each wave without the need to
re-add the entities.

wave = {

-- Called when the second wave starts.

wstart_1 = function()
game.wave.set_entity_total(4)

game.wave.add_entity_blueprint("ogre")

game.wave.add_entity_blueprint("coward_healer")

game.wave.set_spawn_cooldown(10.0)

end,

-- Called when the second wave ends.

wend_1 = function()
game.print("All enemies defeated!")

game.print("Now here's even more enemies!")

game.wave.turn_endless_mode_on()

end
}

Listing 16: An example of the second wave definition in a wave table.

In Listing 16 we can se the definition of the second and, in this case, the last
wave defined within a wave table. Its wend function does not call the blueprint
resetting function so the total number of entities is set to four, because the two
entities from the previous wave also spawn in this wave. If we want the wave
sequence to repeat its last indefinitely wave once all waves are finished, we can
use the function game.wave.turn endless mode on in the last wend function.

51

4.4 Research

The research nodes in the game are organized to a grid of six rows and seven
columns. The game controls these nodes by passing the number of the row
and of the column the node is located in into three functions. The first of these
functions, game.gui.research.get name is called once at the start of the game and
returns the name of the node located at the position passed as its parameters. The
second function, game.gui.research.get price, returns the price of the unlock of
the research node and the third of these functions, game.gui.research.unlock is
called when the player buys the research node and performs the unlock of the
node’s benefit to the player.

The unlocking function does not impose any limitations on the characteristic
of the node. It can unlock new spell, new minion, new building or perform a one
time action that gives the player a bonus of sorts. An example of the research
implementation can be found in the file scripts/research.lua, but the game
does not have any requirements on the implementation besides the functionality
of these three functions.

Note that the game.gui.research table, which should contain these functions,
is already predefined by the game and as such we should not overwrite it when
we write our research node.

4.5 Spells

Similarly to the definition of a research node, spells are defined by a table that con-
tains three functions and is itself contained within the table game.spell.spells.
Note that, unlike the research table, this table is not created by the engine but is
created in the script scripts/spells.lua. This means, that if we create a mod-
ification of the game, we can simply add new spell definitions to this predefined
table, but if we create our own replacement of the scripts/spells.lua, we need
to create this table ourselves.

When the player selects a spell, the engine calls the function init, located in
the spell table. This function should change the player into casting state, often
done by setting the type of the currently cast spell. When the player casts a spell
that has been previously initialized, the engine calls the two remaining function
that are in the spell table.

Firstly, it calls pay mana, which is supposed to subtract the mana cost from
the player and to return true if the player can cast the spell. If this function
returns false, the spell casting is interrupted and the player is notified that he
has insufficient mana.

Secondly, the engine calls the function cast if the spell casting was not in-
terrupted during the call to pay mana. This function performs the actual spell
cast. When we create a new spell, we can allow the player to use it by calling the
function game.spell.register spell, which accepts the name of the spell table –
without the game.spell.spells prefix – as its parameter, either directly inside a
script file or inside a research node. Note that, unlike the previous two functions
which have no parameters, this function has different parameters for different
spell types.

52

Targeted spells

In Listing 17, we can see an example of one of these spell types – a targeted
spell. This type of spell affects a single currently selected entity. In its init

function, it changes the type of the current spell to targeted using the function
game.spell.set type. The targeted type, along with other spell types, is a vari-
able stored in the table called game.enum.spell type. These enum tables are used
in a similar way to C++ enums that are defined in the source file Enums.hpp – the
fields of these tables hold integer values that correspond with the C++ values.

The pay mana function subtracts mana from the player using the function
game.player.sub mana. This API function returns true if the player has enough
mana and false otherwise so the returned value can be returned from pay mana

as well. Because the implementation of this function is almost always the same,
we will not list it in any of the other spell examples, but it is always required
regardless of spell type.

The cast function of a targeted spells accept the identifier of the selected entity
as its parameter. In this case, it teleports the target to a random unobstructed
place in the game world and then uses the function game.spell.stop casting.
This causes the spell to be interrupted once it has be cast once, if we want to
allow consecutive casts of the same spell, we can simply avoid using this API
function and let the player to decide when to stop casting.

-- Teleports the target to a random location.

game.spell.spells.random_teleport = {

-- Initialization, sets the spell type.

init = function()
game.spell.set_type(game.enum.spell_type.targeted)

end,

-- Subtracts mana from the player and returns true

-- if the player had enough, returns false otherwise.

pay_mana = function()
return game.player.sub_mana(50)

end,

-- Applies the effect of the spell to the targeted

-- entity, which has identifier <target>.

cast = function(target)
game.grid.place_at_random_free_node(target)

game.spell.stop_casting()

end
}

Listing 17: An example of a targeted spell.

Positional spells

In Listing 18, we can see an example of a positional spell. This type of spells has
an effect at a specific point in the game world. The cast function accepts two

53

dimensional coordinates as its parameters, which specify this point with no regard
to height. It uses the game.command.reposition function, which commands the
minion that is closest to the specified position to move to the position, and then
interrupts the cast to avoid the accidental repositioning of multiple minions.

This type of spells can be used for commands similar to this one, to spawn
groups of entities or a single entity. However, since the init function only sets
the type of the spell and nothing else, the player would not see the single entity
that is supposed to be spawned following the mouse cursor as is common in many
games. For this, the spell type presented in the following section is more suitable.

Note that since the spell cannot be seen during cast and is activated when the
player clicks somewhere within the game world, it’s advised to interrupt casting
inside the cast function to avoid accidental repeated casts.

-- Orders the minion that is closest to the area of

-- the spell cast to move to that area.

game.spell.spells.order_repositioning = {

-- Initialization, sets the spell type.

init = function()
game.spell.set_type(game.enum.spell_type.positional)

end,

-- Applies the effect of the spell, accepts

-- two dimensional coordinates in the game world

-- which denote the place where the player cast

-- the spell.

cast = function(x, y)

game.command.reposition(x, y)

game.command.stop_casting()

end
}

Listing 18: An example of a positional spell.

Placing spells

In Listing 19, we can see an example of a placing spell. This type of spells is
used when we want the spell to place a new entity into the game world. In the
init function, we – besides setting the spell type – invoke the entity placer by
using game.entity.place which accepts the name of an entity defining table as
its argument and creates a model of the entity that follows the mouse cursor.
From this point onward, the placement is performed by the engine and the cast

function is only called after the entity has been placed and is provided with the
identifier of the placed entity as its argument so it can manipulate with it.

In this case, we spawn our coward healer entity and lower its health. Note
that since we did not call game.spell.stop casting, the placement process will
continue until canceled or the player runs out of mana, but unlike positional
spells, placing spells provide visual hint of the ongoing cast – the model of the
entity that follows the mouse cursor.

54

game.spell.spells.spawn_damaged_coward_healer = {

-- Initialization, sets the spell type.

init = function()
game.spell.set_type(game.enum.spell_type.placing)

game.entity.place("coward_healer")

end,

-- Does NOT apply the effect of the spell,

-- that has been done by the engine.

-- This function only manipulates the placed

-- entity.

cast = function(id)
game.health.sub(id, 100)

end
}

Listing 19: An example of a placing spell.

Global spells

The last type of spells that we can define are global spells, the example of which
can be seen in Listing 20. These spells serve as Lua functions that are exe-
cuted when the player casts them. This particular spell increases the amount of
gold that the player has whenever it is cast using the game.player.add gold API
function.

These spells are cast on every release of the left mouse button, so the player
may accidentally cast these spells multiple times because they offer no visual hint
of the ongoing cast. Because of this, using game.spell.stop casting to interrupt
the casting process in the cast function is advised.

game.spell.spells.cheat = {

-- Initialization, sets the spell type.

init = function()
game.spell.set_type(game.enum.spell_type.global)

end,

-- Applies the effect of the spell.

cast = function()
game.player.add_gold(10000)

game.spell.stop_casting()

end,
}

Listing 20: An example of a global spell.

55

5. User’s Documentation

This section presents our game to the player and explains its installation, startup
and controls. The playable version of our game can be found on the attached
DVD as Attachment C.

5.1 Installation and startup

The game requires Windows 7 or a newer Windows operating system to run.
Additionally, it requires a graphics card that is compatible with either OpenGL 3
or Direct3D 9.

To install the game, we should first move the directory that contains the
game’s executable file anywhere on our hard disk. Although this is an optional
step, it allows our game to create new files which allows us to use the save feature
of the game. Next, we need to install the Visual C++ Redistributable, which
can be done by executing the file deps/vc redist.x86.exe, which is a part of the
Attachment A.

Once the redistributable is installed, we can start the game by executing
the file tdt.exe. If this is the first startup, we will see a window that allows
us to configure our graphics options, which can be seen in Figure 5.1. In this
window, we need to choose either the OpenGL or Direct3D from a drop-down
list labeled Rendering Subsystem. Once we choose our rendering subsystem, we
will be offered with various graphical settings we can change in the bottom list
labeled Rendering System Options. We will now also be able to start the game
by clicking on the OK button.

Figure 5.1: Initial graphics setting window that is shown on the first start of the
game.

56

Next time we start the game, this window will not appear and the game will
use the settings we chose the first time. If we want to change these settings, we
can force this window to appear on the next start of the game by deleting the file
ogre.conf.

5.2 Main menu

Figure 5.2: Initial menu that we can see when we start the game.

When the game starts, we will be greeted by the game’s main menu, which can
be seen in Figure 5.2. In this menu, we can create a new game by clicking on
the button NEW GAME, which shows a window that will prompt us for level
dimensions. Here, we can either input any pair of numbers in the given range, or
choose one of the buttons with predefined dimensions.

If we already have a previously saved game, we can click the button LOAD
GAME, which will show a window all saved games that are located in the saves

directory. Aside from starting a level – be it a new one or a loaded one – we can
view the options menu by clicking on the button labeled OPTIONS or close the
game with the QUIT button.

5.3 User interface

When we get into the game, we have a similar view to the one shown in Figure 5.3.
At the top of the screen, we can see the top bar, which displays our current
resources – our gold, our current and maximum mana with mana regeneration
in parentheses, current number of minions we control and the total number of
minions we have, which includes minions that died and are respawning. Next to
these resources, we can also see the current system time.

Below the top bar, we can see the game world. The game world consists of
blocks, which represent walls and buildings, our minions and attacking enemies.
In the image we can see a starting area of a newly generated world, which includes

57

a free area in the middle where the player’s dungeon throne – which represents
the life of the player – is placed along with some other starting building. We
can select any entity by either clicking on it with our left mouse button or by
pressing the mouse button and dragging the mouse which allows us to select
multiple entities.

At the bottom of the screen, we can see three large windows. The one of the
left is the tool bar. This window can contain three different tool bars that can
be switched between by clicking on one of the buttons located in the top row of
the tool bar. The menu shown by default is used to save and load the game and
to show the options, main menu and research window. If we click on the SPELL
button the tool bar changes to the spell bar, which can be used to cast spells, and
if we click on the BUILD button the tool bar changes to the building bar, which
can be used to place new buildings. The last button on the top row, MENU,
returns us to the initial menu bar.

Next to the tool bar is the game log, which shows messages from the game
and from the player’s minions. These messages can for example include warnings
about an attack or notifications about insufficient resources.

The rightmost of these three windows is the entity viewer, which shows in-
formation about the currently selected single entity – note that it will not show
anything when we select multiple entities. This information includes data such as
the health, mana, level and name of the selected entity. Besides the information
shown, the entity viewer contains two buttons. The left button can be used to
convert gold to experience, which can be used to quickly level the entity up, and
the right button can be used to sacrifice our entity in return for a part of its cost.

Above the entity viewer window, we can see a small countdown bar, which
tells us the time before the next wave of enemies will attack our dungeon.

Figure 5.3: The game screen.

58

5.4 Goal of the game

In our game, the main goal of the player is to protect their dungeon – specifically
the dungeon throne – from waves of enemy attackers 1. If the dungeon throne is
destroyed, the player loses. If, on the other hand, the throne survives all of the
enemy waves, the player wins.

To protect the dungeon throne, the player can place buildings in exchange
for gold gathered by miners and cast spells that can damage or slow the enemies
in exchange for mana, which automatically regenerates. When a new level is
created, the player starts with a small area that contains the dungeon throne, a
mine that spawns a miner and a gold vault that the miner uses for gold storage.
Additionally, one side of a map will contain enemy spawners, which will spawn
enemies in intervals defined by the game’s wave system.

Some of the buildings can spawn minions that will defend the dungeon from
enemies and will revive these minions when and if they are killed. To unlock these
and other buildings, as well as new spells, the player can use the research window
that is accessible from the menu tool bar to exchange gold for new research
unlocks that can provide buildings, spells or one time bonuses to the player.

Once all enemy waves are beaten, the player will be presented with the option
to play in a sandbox mode, which allows them to continue building their dungeon
without any further enemy waves, or in an endless mode, which will repeat the
last enemy wave indefinitely.

5.5 Research

Research is the tool we can use to unlock new buildings, spells and bonuses. The
research window, which can be seen in Figure 5.4, contains six rows that have
seven tiers of unlock nodes each. To unlock a node, one can click on the research
button that represents it and, if they have enough gold, the unlock takes effect.

There are three types of unlocks in the game – one time bonuses, building
unlocks and spell unlocks. To avoid redundancy, we will list one time bonuses
with their effects here and the rest of the unlocks – that is, buildings and spells
– will be described in the following chapters.

• KILL ALL ENEMIES – kills all enemy entities in the world.

• INCREASE PROD. – increases the production limit of all friendly buildings
by one.

• DOUBLE PROD. – doubles the production limit of all friendly buildings
by one.

• LEVEL UP – increases the level of all friendly entities.

• UBER THRONE – heals the dungeon throne and increases its health and
defense.

• INSTANT PROD. – causes all buildings to spawn minions without waiting.

1Note that this applies to the game itself, mods are free to change the winning or losing
conditions.

59

The research nodes have unified unlock cost per tier. The cost is 200, 400,
600, 800, 1000, 1500 and 2000 gold for tiers 1, 2, 3, 4, 5, 6 and 7 respectively.
When a research node is unlocked, its name gets prefixed with a plus symbol and
the next research node in the row is revealed.

Figure 5.4: Research window which contains nodes that can be unlocked.

5.6 Spell casting

Spells are the means for the player to directly affect the battles between their
minions and attacking enemies. Most spells are unlocked through the research
window2, in which a research node SPELL NAME unlocks spell spell name.

We can cast spells through the spell tool bar window, which can be shown by
clicking on the SPELL button that is located in the top row of buttons in the
tool bar window. We can see a picture of the spell tool bar in Figure 5.5. From
top to bottom, it contains a row of buttons that can be used to switch to other
tool bars, a row of four buttons that represent different spells and two buttons
on the bottom row that are used to switch between spells.

Figure 5.5: Window that allows the player to cast spells.

We can think of the spell tool bar as of a conveyor belt which contains our
spells in the order we have unlocked them. The <<< button moves the belt to

2Those that are not are available to the player from the start of the game.

60

the left by one spell and the >>> button moves it to the right by one spell.
Once we locate the spell we would like to cast, we can either click on it with
the left mouse button or press the key assigned to it – these four spell buttons
correspond to key binding actions SPELL/BUILD 1-4 from left to right. Once
we select a spell for casting, a label reading ACTIVE will appear under the name
of the currently cast spell as can be seen below spawn imp in the figure above.
This is because some of the spells that are in the game do not have any visual
effects that would indicate the casting process.

5.6.1 Spells

There are four different type of spells that differ in the way they are cast. In the
following sections we will examine each of these spell types and list all of their
members. In the spell lists, we can see the name of the spell followed by its mana
cost in parentheses and its description.

Targeted spells

To cast a targeted spell, we first need to select an entity that will serve as the
target for the spell’s effect, which we can do by left clicking on the entity in the
game world. Once we have a target, we can cast the spell which will immediately
apply its effect to the selected target. Targeted spells are:

• attack (0) – commands the closest combat minion with the smallest amount
of assigned tasks to attack the selected entity.3

• heal (10) – heals a single currently selected friendly entity to full health.

• slow (20) – halves the speed of the enemy target for five seconds.

• lightning (20) – strikes the enemy target with a bolt of lightning.

• freeze (40) – freezes the enemy target in place for five seconds.

• chain lightning (60) – strikes the enemy target with a bolt of lightning that
bounces to nearby enemies.

• teleport (100) – teleports the enemy target to a random place in the game
world.

• destroy block (200) – destroys a neutral mineable target, e.g. a wall.

Global spells

Global spells generally have an instant global effect, though some of them can
function similarly to targeted spells but work with multiple selected entities.
Global spells are:

• mine (0) – commands the closest miner with the smallest amount of assigned
tasks to mine any selected mineable entities.

3This spell is actually global in implementation, but its effect is very similar to that of
targeted spells so it is placed in this list.

61

• return gold (0) – commands all minions that carry gold to return it to the
closes gold vault.

• fall back (0) – commands all minions to return to their spawners.

• meteor shower (200) – spawns five meteors at random places in the game
world that impact the ground and cause an explosion.

• lightning storm (500) – strikes up to thirty enemies with a lightning bolt
that bounces to nearby enemies.

Placing spells

Placing spells are used to place a single entity into the game world. Once we
start casting a placing spell, the placed entity will start to follow the mouse
cursor giving us visual hint of its placement. Placing spells are:

• spawn imp (20) – places an imp that will defend the dungeon from enemies
for two minutes.

• meteor (40) – places a visual marker on the ground that will then be hit
with a meteor which causes an explosion.

• healing wave (30) – places an expanding orb of light that heals all minions
in its area to full health.

• slowing wave (50) – places an expanding orb that halves the speed of all
enemies in its area for five seconds.

• freezing wave (70) – places an expanding orb of ice that freezes all enemies
in its are in place for five seconds.

• portal (200) – places two portals on the ground that allow fast transporta-
tion between them. Note the portal must be placed twice within one spell
cast..

Positional spells

Positional spells are used similarly to placing spells, but lack the visual hint of
an entity following the mouse cursor. Once we select the spell to cast, we can
click in the game world with the left mouse button to apply the effect of the spell.
Positional spells are:

• reposition (0) – commands the closest entity with fewest tasks assigned to
it to move to the selected position.

• spawn imp gang (100) – spawns a gang of four imp gang members and one
imp gang boss that will defend the dungeon for sixty seconds.

• spawn random (100) – spawns a random combat minion that will defend
the dungeon until its death.

62

5.7 Buildings

The building tool bar window, which can be seen in Figure 5.6, functions in the
exactly same way as the spell tool bar does. But buildings, unlike spells, are all
placed in the same way – we simply click on the button representing the building
we want to build or use one of the key bindings for actions SPELL/BUILD 1-4
and a model of the building will start to follow the mouse cursor. Once we
position our mouse cursor on an unobstructed place in the game world we can
press the left mouse button to place the building.

Figure 5.6: Window that allows the player to place buildings.

Most of the buildings can be unlocked through the research window.4 Sim-
ilarly to spells, a research node BUILDING NAME unlocks a building called
building name. The next list contains all of the buildings our players can build,
along with their price in gold noted next to their names in parentheses and their
description.

• wall (300) – can be placed to separate rooms and to protect the dungeon.

• mine (400) – spawns a single ogre miner, which can mine walls and gold
deposits.

• slow trap (400) – halves the speed of enemies that step on it for five seconds
with a cooldown period5 of thirty seconds.

• mana crystal (500) – increases maximum mana and mana regeneration of
the player.

• gold vault (500) – used to store gold.

• light crystal (500) – used as a source of light.

• fortified wall (600) – a strong wall that can be used to protect the dungeon.

4Those that are not are available to the player from the start of the game.
5By cooldown period we refer to the amount of time between two applications of the trap’s

effects.

63

• teleport trap (600) – teleports enemies that step on it to a random spot on
the map with a cooldown period of thirty seconds.

• damage trap (600) – damages enemies that step on it with a cooldown
period of thirty seconds.

• kill trap (600) – kills enemies that step on it with a cooldown period of
thirty seconds.

• freeze trap (800) – freezes enemies that step on it in place for five seconds
with a cooldown period of thirty seconds.

• barracks (1000) – spawns a single ogre warrior, which is a melee combat
minion.

• ice tower (1500) – spawns a single ogre ice mage, which is a ranged combat
minion that can cast freezing waves.

• light mana crystal (1500) – used as a source of light which increases maxi-
mum mana and mana regeneration of the player.

• thunder tower (1750) – spawns a single ogre thunder mage, which is a
ranged combat minion that can cast lightning bolts.

• fire tower (1800) – spawns a single ogre fire mage, which is a ranged combat
minion that can cast meteors.

• church (2000) – spawns a single ogre cleric, which is a range combat minion
that can heal others.

• chaos tower (5000) – spawns a single ogre chaos mage, which is a ranged
combat minion that can cast random spells.

Beside these buildings, there is one additional building that the player cannot
build, but is built by the game whenever a new level is generated – the dungeon
throne.

5.8 Options menu

If we look at the options menu window, which can be accessed from either the
main menu or the ingame menu bar, we will be presented with a few basic options,
which can be seen in Figure 5.7. These options include the ability to change the
resolution and fullscreen status of the game. Both of these options are controlled
by a list with predefined choices which can be clicked on to change the values
that are located below the lists. Once we choose new values for these options, we
can apply them by clicking on the APPLY button.

Below these graphical options, we can see pairs of buttons and labels. Each
of these labels represents an action in the game and its corresponding button
the key that is assigned to action. To change the key binding, we can click on
the button with our left mouse button and then press a new key, which will be
newly bound to the action. Note that this key binding change is only temporary

64

and the key bindings will reset when we restart the game. To save our new key
bindings, we can use the APPLY button, which will ensure that these new key
bindings will persist between games.

The SPELL/BUILD 1-4 actions correspond to the four buttons used to cast
spells and buildings and their effect depends on the currently selected tool bar.
NEXT SPELL/BUILD and PREV SPELL/BUILD move the spell or building
selection to the right and to the left, respectively.

The SPELL TAB, BUILD TAB and MENU TAB actions change the current
tool bar between the spell selection, building selection and mini menu. RESET
CAMERA returns the game’s view back to the center of the map. Lastly, QUICK
SAVE and QUICK LOAD are used for fast and simple saving or loading of the
save file saves/quick save.lua.

Figure 5.7: Options menu which contains basic graphics options and key binding.

Besides these rebindable actions, the game contains three actions that are
used mainly for mod prototyping and testing and cannot be rebound. If we press
the Grave key6 we will bring up the game’s development console, which accepts
Lua code and can interpret this code with the EXECUTE button. If we hold the
Shift key pressed while we click on the Grave key, we bring up the entity creator
window that lets us to place all entities in the game without any cost. Lastly, the
0 key on the numeric pad toggles between fixed camera mode and free camera
mode.

6On standard Brittish, American and Czech keyboards, this key is generally located above
the TAB key and below the ESC key and is used to input a semicolon or a tilde.

65

Conclusion and future work

In conclusion, let us verify that our game conforms all of our goals listed in Sec-
tion 1.4. The main goal of this thesis was to design and implement a 3D dungeon
management game using the design elements (E1) – (E6) that we defined in
Section 1.1:

(E1) Resource management – our game contains two resources that the player
manages. The first of these resources, called gold, must be mined by the
player’s minions and is used to build new buildings and unlock new research
nodes. The second, called mana, regenerates by itself and is used for spell
casting.

(E2) Dungeon building – the players of our game can order their minions to tear
down walls and can place new buildings on unobstructed places in the game
world. The game contains 18 different building with various purposes, such
as minion spawning and defending against enemies.

(E3) Minion commanding – the players of our game can use 4 different spells
to command their minions. These spells are mine, which can be used to
command minions to mine gold, attack, which can be used to command
minions to attack a particular enemy, reposition, which can be used to
command minions to move to a specific area, and return gold, which can be
used to pull gold reserves that our minions currently hold back to the gold
vaults.

(E4) Combat – our game contains a wave system that cause the player’s dun-
geon to be periodically under attack from enemies that wish to destroy
the dungeon throne. The player’s minions defend the dungeon from these
enemies.

(E5) Player participation in combat – the game contains various different combat
spells that the player can use to directly affect the outcome of a battle.

(E6) Research – the game contains a research interface with 42 research nodes
that can be used to unlock new spells and buildings as well as to apply one
time bonuses to the player and their minions.

As we can see in the list above, our game satisfies every of the design elements
and as such we believe that it can be called a dungeon management game.

Besides the main goal, we had several other goals that our game was supposed
to satisfy. The first of these goals, (G1), required us to create a full competetive
product and not just a game prototype. While the graphical fidelity of our game
might get judged as low, we believe that from programming and content points
of view we managed to satisfy this goal as the game features full single player
experience with various minions, spells and buildings and enemies that pose a
challenge for our players and create the possibility of a loss. Additionally, our
goal (G1.1) required our game to be performant and to run above the minimum
acceptable framerate, defined in Section 1.3 as 25-30 frames per second, which
we believe the game has also satisfied, because the framerate we saw during

66

tests on various machines almost never dropped below this minimum acceptable
framerate. The machines used for testing were:

• A desktop computer with Intel Core i7-920 processor and Nvidia Corp
GeForce 210 graphics card.

• A desktop computer with Intel Core i5-3570 processor and AMD Radeon
HD 7770 graphics card.

• A desktop computer with AMD A6-3500 processor and AMD Radeon HD
6530D

• A notebook with Intel Core i7-5500U processor and Intel HD Graphics 5500
graphics card.

• A notebook with AMD Phenom II processor and AMD Radeon HD 6470M
graphics card.

• A notebook with AMD A4-6210 processor and AMD Radeon R3 graphics
card.

Another of our goals, (G2), required us to allow our players to modify our
game. These modifications were supposed to be able to modify and create new
entities and spells, to alter the game’s progression system and to create custom
levels. We believe we satisfied this goals because all of the content in the game –
that is, minions, enemies, building, spells, enemy waves and others – are imple-
mented using the game’s own modding tools and as such our players possess the
same ability to modify the game that we do. Additionally, because of the format
chosen for level serialization our players can create custom levels that can not
only modify the data of the game, but also its mechanics.

The last of our goals, (G3), required us to provide our players with means to
create easily installable mods. Our game allows both the creation of mods that
are loaded by the game on its startup that only require the player to add them
to the game’s configurational scripts and the creation of mods that are a part
of a custom level, which only require placement within the saves directory and
loading of the custom level. Because of this, we believe that we also this last goal.

To summarize, we believe that we satisfied all of the goals that we have set
for ourselves in Section 1.4.

Future work

While we believe our game to be feature complete, we think that there is a room
for improvement of the game. Following list contains – in no particular order –
our ideas for possible future extensions of the game.

• An editor that can be used to create modifications for our game as men-
tioned in Section 2.1. The main reason for not creating such editor for our
game was that it would require the implementation of a graphical scripting
language that would allow our players to define new behavior and abilities
of the different entities in the game.

67

• Icons for spells and buildings, which would help easier orientation in the
spell casting and building tool bars. In the current state of the game, these
are represented as text and as such might not be as intuitive to use as they
could be if they had graphical icons that would indicate their purpose or
effect.

• Tooltips for spells, buildings and research nodes with descriptions and re-
source costs. These would further simplify the user experience of our game
and are not present in the game because of their lack in the graphical skin
used by our GUI. We believe that either implementing them into the graph-
ical skin or creating a new skin that supports button tooltips would help
our players to play game in a more intuitive manner.

• Better models, materials and textures for entities. The game contains only
very simple colored models or models that are distributed with Ogre3D. The
addition of better graphics would, in our opinion, increase the pleasantness
of the game to the human eye.

• Animations. These were originally planned to be implemented in the game
but were not implemented because of time constraints and a lack of ani-
mated models. Similarly to the previous point, we believe that this feature
would increase the competitiveness of our game on the video game market.

• Special component that would be able to represent components defined
in Lua. This feature would further increase the modifiability of the game.
Additionally, the option to implement new systems that correspond to these
components in Lua would be also beneficial.

• A tutorial that would guide new player through the controls and mechanics
of the game. This could, for example, be implemented as a special wave ta-
ble that would use the starting and ending functions of its waves to address
the player.

In addition to these possible extensions, we believe that further expansion of
the modding API would help greatly to increase the modifiability of our game as
the current modding API – while fairly large – was designed mainly to suit the
needs of the game and as such may limit mods that would try to radically diverge
from the play style of the game.

68

Bibliography

[1] Orcs must die! http://en.omd.gameforge.com/. [Online; accessed 2016-05-
15].

[2] Dungeon Defenders. https://dungeondefenders.com/1/. [Online; accessed
2016-05-15].

[3] Tuur Ghys. Technology Trees: Freedom and Determinism in Historical Strat-
egy Games. http://gamestudies.org/1201/articles/tuur ghys. [Online; ac-
cessed 2016-05-17].

[4] Minecraft. http://www.minecraft.net. [Online; accessed 2016-04-23].

[5] Curse Minecraft Mod Repository. http://mods.curse.com/mc-mods/

minecraft. [Online; accessed 2016-06-14].

[6] PlanetMinecraft Minecraft Mod Repository. http://www.planetminecraft.

com/resources/mods. [Online; accessed 2016-06-14].

[7] Industrial Craft 2. http://www.industrial-craft.net/. [Online; accessed
2016-05-17].

[8] ComputerCraft. http://www.computercraft.info. [Online; accessed 2016-
05-17].

[9] Lua. http://www.lua.org. [Online; accessed 2016-05-09].

[10] PCGamer. Future of Minecraft. http://www.pcgamer.com/

the-future-of-minecraft/, 2012. [Online; accessed 2016-04-23].

[11] Team Fortress 2. http://www.teamfortress.com. [Online; accessed 2016-04-
23].

[12] M. F. Shiratuddin, K. Kitchens, and D. Fletcher. Virtual Architecture: Mod-
eling and Creation of Real-Time 3D Interactive Worlds. Lulu Press, 2008.

[13] UnrealEngine 4. https://www.unrealengine.com. [Online; accessed 2016-06-
28].

[14] Starbound. http://www.playstarbound.com. [Online; accessed 2016-05-09].

[15] Roberto Ierusalimschy. Programming In Lua. 3rd edition. Lua.org, 2013.

[16] Cities: Skylines. http://www.citiesskylines.com/. [Online; accessed 2016-
07-09].

[17] Factorio. http://www.factorio.com/. [Online; accessed 2016-07-09].

[18] J. Gregory. Game Engine Architecture. 1st Edition. A K Peters/CRC Press,
Boca Raton, FL, 2009.

69

http://en.omd.gameforge.com/
https://dungeondefenders.com/1/
http://gamestudies.org/1201/articles/tuur_ghys
http://www.minecraft.net
http://mods.curse.com/mc-mods/minecraft
http://mods.curse.com/mc-mods/minecraft
http://www.planetminecraft.com/resources/mods
http://www.planetminecraft.com/resources/mods
http://www.industrial-craft.net/
http://www.computercraft.info
http://www.lua.org
http://www.pcgamer.com/the-future-of-minecraft/
http://www.pcgamer.com/the-future-of-minecraft/
http://www.teamfortress.com
https://www.unrealengine.com
http://www.playstarbound.com
http://www.citiesskylines.com/
http://www.factorio.com/

[19] Garage Games. Why Use Scripting, Torque Engine documentation.
http://docs.garagegames.com/tgea/official/content/documentation/

Scripting%20Reference/Introduction/Why%20Use%20Scripting.html. [On-
line; accessed 2016-05-10].

[20] Java Compiler API Documentation. http://docs.oracle.com/javase/8/

docs/api/javax/tools/JavaCompiler.html. [Online; accessed 2016-06-28].

[21] Roslyn Repository. https://github.com/dotnet/roslyn. [Online; accessed
2016-06-28].

[22] LuaJ Java Library. http://www.luaj.org/luaj.html. [Online; accessed 2016-
06-28].

[23] Nlua .Net Library. http://nlua.org/. [Online; accessed 2016-06-28].

[24] Steam Hardware And Software Survey. http://store.steampowered.com/

hwsurvey?platform=combined. [Online; accessed 2016-06-27].

[25] Unity3D Game Engine. https://unity3d.com/. [Online; accessed 2016-06-
28].

[26] Mark DeLoura. The Engine Survey. http://www.satori.org/2009/03/

the-engine-survey-general-results/. [Online; accessed 2016-07-02].

[27] Wikipedia Category: Lua scripted video games. https://en.wikipedia.org/
wiki/Category%3aLua-scripted video games. [Online; accessed 2016-07-03].

[28] CPython C API. https://docs.python.org/2/c-api. [Online; accessed 2016-
07-03].

[29] Wikipedia Category: Python scripted video games. https://en.wikipedia.

org/wiki/Category:Python-scripted video games. [Online; accessed 2016-
07-03].

[30] AngelScript. http://www.angelcode.com/angelscript/. [Online; accessed
2016-07-03].

[31] Games scripted in AngelScript. http://www.angelcode.com/angelscript/

users.html. [Online; accessed 2016-07-03].

[32] Albrecth, Tony. Pitfalls of Object Oriented Programming. http:

//harmful.cat-v.org/software/OO programming/ pdf/Pitfalls of Object

Oriented Programming GCAP 09.pdf. [Online; accessed 2016-07-17].

[33] Bjarne Stroustrup. The C++ Programming Language. 4th edition. Addison-
Wesley, 2013.

[34] Entity Component System on Wikipedia. https://en.wikipedia.org/wiki/

Entity component system. [Online; accessed 2016-07-09].

[35] Scott Bilas. A Data Drive Game Object System. http://scottbilas.com/

files/2002/gdc san jose/game objects slides.pdf. [Online; accessed 2016-
07-04].

70

http://docs.garagegames.com/tgea/official/content/documentation/Scripting%20Reference/Introduction/Why%20Use%20Scripting.html
http://docs.garagegames.com/tgea/official/content/documentation/Scripting%20Reference/Introduction/Why%20Use%20Scripting.html
http://docs.oracle.com/javase/8/docs/api/javax/tools/JavaCompiler.html
http://docs.oracle.com/javase/8/docs/api/javax/tools/JavaCompiler.html
https://github.com/dotnet/roslyn
http://www.luaj.org/luaj.html
http://nlua.org/
http://store.steampowered.com/hwsurvey?platform=combined
http://store.steampowered.com/hwsurvey?platform=combined
https://unity3d.com/
http://www.satori.org/2009/03/the-engine-survey-general-results/
http://www.satori.org/2009/03/the-engine-survey-general-results/
https://en.wikipedia.org/wiki/Category%3aLua-scripted_video_games
https://en.wikipedia.org/wiki/Category%3aLua-scripted_video_games
https://docs.python.org/2/c-api
https://en.wikipedia.org/wiki/Category:Python-scripted_video_games
https://en.wikipedia.org/wiki/Category:Python-scripted_video_games
http://www.angelcode.com/angelscript/
http://www.angelcode.com/angelscript/users.html
http://www.angelcode.com/angelscript/users.html
http://harmful.cat-v.org/software/OO_programming/_pdf/Pitfalls_of_Object_Oriented_Programming_GCAP_09.pdf
http://harmful.cat-v.org/software/OO_programming/_pdf/Pitfalls_of_Object_Oriented_Programming_GCAP_09.pdf
http://harmful.cat-v.org/software/OO_programming/_pdf/Pitfalls_of_Object_Oriented_Programming_GCAP_09.pdf
https://en.wikipedia.org/wiki/Entity_component_system
https://en.wikipedia.org/wiki/Entity_component_system
http://scottbilas.com/files/2002/gdc_san_jose/game_objects_slides.pdf
http://scottbilas.com/files/2002/gdc_san_jose/game_objects_slides.pdf

[36] Entity Component System on Gamedev.net. http://www.

gamedev.net/page/resources/ /technical/game-programming/

understanding-component-entity-systems-r3013. [Online; accessed
2016-07-09].

[37] Blender. https://www.blender.org/. [Online; accessed 2016-07-05].

[38] Irrlicht features. http://irrlicht.sourceforge.net/?page id=45#drivers.
[Online; accessed 2016-07-05].

[39] Ogre3D library. http://www.ogre3d.org/. [Online; accessed 2016-07-05].

[40] Irrlicht library. http://irrlicht.sourceforge.net/. [Online; accessed 2016-
07-05].

[41] Torchlight. http://www.torchlightgame.com/. [Online; accessed 2016-07-09].

[42] Octodad: Deadliest Catch. http://octodadgame.com/octodad/

dadliest-catch/. [Online; accessed 2016-07-09].

[43] CEGUI library. http://cegui.org.uk/. [Online; accessed 2016-07-05].

[44] CEED: Unified Editor for CEGUI. https://martin.preisler.me/2012/09/

unified-editor-for-cegui/. [Online; accessed 2016-07-05].

[45] Ogre3D: Raycasting to the polygon level. http://www.ogre3d.org/tikiwiki/
Raycasting+to+the+polygon+level. [Online; accessed 2016-07-14].

[46] Doxygen. http://www.stack.nl/∼dimitri/doxygen/. [Online; accessed 2016-
07-27].

71

http://www.gamedev.net/page/resources/_/technical/game-programming/understanding-component-entity-systems-r3013
http://www.gamedev.net/page/resources/_/technical/game-programming/understanding-component-entity-systems-r3013
http://www.gamedev.net/page/resources/_/technical/game-programming/understanding-component-entity-systems-r3013
https://www.blender.org/
http://irrlicht.sourceforge.net/?page_id=45#drivers
http://www.ogre3d.org/
http://irrlicht.sourceforge.net/
http://www.torchlightgame.com/
http://octodadgame.com/octodad/dadliest-catch/
http://octodadgame.com/octodad/dadliest-catch/
http://cegui.org.uk/
https://martin.preisler.me/2012/09/unified-editor-for-cegui/
https://martin.preisler.me/2012/09/unified-editor-for-cegui/
http://www.ogre3d.org/tikiwiki/Raycasting+to+the+polygon+level
http://www.ogre3d.org/tikiwiki/Raycasting+to+the+polygon+level
http://www.stack.nl/~dimitri/doxygen/

Attachments

Attachments, which can be found on the attached DVD contain:

A. Implementation of the game, which we can find in directory tdt-project

and which contains source code, project files, compiled libraries and re-
sources the game uses. It contains the following files and directories:

• Directory bin in which the Visual Studio solution generates the output
of the compilation.

• Directory deps, which contains the Visual C++ Redistributable that
is needed by the game.

• Directory lib, which contains .dll and .lib files of Ogre3D, CEGUI
and Lua as well as their header files. These libraries were compiled
from the official source code and were included because there are no
official precompiled packages of these libraries for Visual Studio 2015.

• Directory res, which contains the directory ogre-configs – the con-
tents of which need to be placed in the same directory as the game’s
executable file – and the directory resources, which needs to be placed
in the same directory as the game’s executable file.

• Directory src, which contains the source code of our game.

• Visual Studio 2015 solution files, namely tdt-project.sln which repre-
sents the solution, tdt-project.vcxproj which represents the project
and tdt-project.vcxproj.filters which represents the source code
hierarchy in the project.

B. Documentation of the game and of the modding API, which we can find in
directory docs. It contains the following files and directories:

• File components.txt, which contains a list of all components and in-
formation on how to include these in a table that defines an entity.

• Directory lua-api, which contains files that represent different modules
of the Lua API.

• Directory engine-doxy, which contains HTML and PDF documenta-
tion of the C++ engine generated by Doxygen [46].

C. Compiled version of the game, which we can find in directory tdt-game.
It contains the game’s executable file called tdt.exe and all files the game
needs in order to run – resources, configurational files, scripts and libraries.

D. Electronic version of this thesis.

72

	Introduction
	Dungeon Managment Genre
	Modifiability in Games
	Mod examples

	Competitiveness of the game
	Thesis Goals

	Problem Analysis
	Modding Tools
	Conclusion

	Programming Language
	Native Language: C[4]++
	Managed Languages: Java and C#

	Scripting Language
	Lua
	Python
	AngelScript
	Conclusion

	Entity Representation
	Inheritance
	Entity Component System
	Conclusion

	Libraries
	3D Rendering
	Graphical User Interface

	Pathfinding
	Levels and serialization
	Binary
	XML
	Lua
	Conclusion

	Developer's Documentation
	Game
	Components
	Systems
	EntitySystem
	CombatSystem
	EventSystem
	TaskSystem
	GridSystem
	WaveSystem
	Miscellaneous Systems

	lpp::Script
	LuaInterface
	Helpers
	SpellCaster
	Pathfinding
	Player
	Serialization
	Tools
	GUI

	Scripter's Documentation
	Initialization
	Entities
	Blueprints

	Enemy waves
	Research
	Spells

	User's Documentation
	Installation and startup
	Main menu
	User interface
	Goal of the game
	Research
	Spell casting
	Spells

	Buildings
	Options menu

	Conclusion and future work
	Bibliography
	Attachments

