FACULTY OF MATHEMATICS AND PHYSICS Charles University

BACHELOR THESIS

Marta Kossaczká

Entropy numbers

Department of Mathematical Analysis

Study branch: General mathematics

I declare that I carried out this bachelor thesis independently, and only with the cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act No. $121 / 2000$ Sb., the Copyright Act, as amended, in particular the fact that the Charles University has the right to conclude a license agreement on the use of this work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In \qquad date \qquad signature of the author

Title: Entropy numbers
Author: Marta Kossaczká
Department: Department of Mathematical Analysis
Supervisor: Mgr. Jan Vybíral, Ph.D., Department of Mathematical Analysis
Abstract: In this work we study entropy numbers of linear operators. We focus on entropy numbers of identities between real finite-dimensional sequence spaces and present detailed proofs of their estimates. Then we describe relation between entropy numbers of identities between real spaces and between complex spaces, which allows us to establish similar estimates for complex spaces.

Keywords: Entropy numbers, compact operators, functional analysis

I would like to thank my supervisor Mgr. Jan Vybíral, Ph.D. for helpful consultations and inspiring advice. I would also like to thank my family for their patience and support.

Contents

List of Notations 2
Introduction 3
1 Definitions and elementary properties 4
1.1 Vector spaces 4
1.2 Entropy numbers 5
1.3 Volume of the unit ball in $l_{p}^{n}(\mathbb{R})$ 8
$2 \quad$ Entropy numbers of $i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{q}^{n}(\mathbb{R})$ 12
2.1 Upper estimate with $p \leq q$] 12
2.2 Lower estimate with $p \leq q$ 19
2.3 Estimate with $p \geq q$ 24
3 Entropy numbers of id $: l_{p}^{n}(\mathbb{C}) \rightarrow l_{q}^{n}(\mathbb{C})$ 25
Conclusion 28
Bibliography 29

List of Notations

\mathbb{N}	natural numbers		
\mathbb{R}	real numbers		
\mathbb{C}	complex numbers		
$\\|\cdot\\|_{V}$	norm $(p$-norm, quasinorm $)$ on the vector space V		
B_{V}	the set $\left\{x \in V:\\|x\\|_{V}<1\right\}$		
$B(x, \varepsilon)$	the set $\left\{y \in V:\\|x-y\\|_{V}<\varepsilon\right\}$		
$\mathcal{L}(X, Y)$	The set of all linear continuous mappings from X to Y		

Introduction

Entropy numbers are closely associated with the metric entropy which was introduced by Kolmogorov in the 1930s. In this work we focus on estimates of entropy numbers of natural identity between finite-dimensional sequence spaces, which was given by Schütt [1984]. The upper estimate was proved by Edmunds and Triebel [1996], while the lower estimate was completed by Kühn |2001]. We summarize these estimates and present detailed proof.

The work is divided into 3 chapters. In the first chapter we give definitions of l_{p}^{n}-spaces and entropy numbers, and elementary properties of entropy numbers of linear operators in general. We also compute volume of the unit ball in $l_{p}^{n}(\mathbb{R})$ and prove its estimate, which is essential for estimating entropy numbers. Our aim in the second chapter is to prove Theorem 2.1, which estimates entropy numbers of identities between real finite-dimensional sequence spaces $e_{k}\left(i d: l_{p}^{n} \rightarrow l_{q}^{n}\right)$. The first section of this chapter deals with upper estimate with $p \leq q$. We present detailed proofs. The second section deals with lower estimate with $p \leq q$, and the last section presents estimate for $p \geq q$. In the third chapter we prove that similar estimates for entropy numbers of identities between complex finite-dimensional sequence spaces.

1. Definitions and elementary properties

This chapter introduces us to the concept of entropy numbers.

1.1 Vector spaces

To define entropy number of an operator we need some kind of "norm structure" on its domain and range. We will be mostly concerned with the sequence spaces l_{p}^{n}. We are familiar with normed spaces, unfortunately, l_{p}^{n} is not necessarily normed vector space. Precisely, for $p \geq 1$ is l_{p}^{n} normed vector space, and for $0<p<1$ is it only p-normed vector space. Therefore we start with definition of p-norm.
Definition 1. Let V be a vector space over \mathbb{R} (or \mathbb{C}). The function $\|\cdot\|_{V}: V \rightarrow \mathbb{R}$ is called p-norm if it satisfies following conditions:

For all $v, u \in V$ and $a \in \mathbb{R}$ (or \mathbb{C}),

1. $\|v\|_{V}=0$ iff v is the zero vector,
2. $\|a \cdot v\|_{V}=|a| \cdot\|v\|_{V}$,
3. $\|u+v\|_{V}^{p} \leq\|u\|_{V}^{p}+\|v\|_{V}^{p}$ (triangle inequality).

If instead of 3, it holds

$$
\|u+v\|_{V} \leq K\left(\|u\|_{V}+\|v\|_{V}\right),
$$

for some fixed $K>1$, then $\|\cdot\|_{V}$ is called quasinorm.
Vector space V equipped with p-norm (quasinorm) is called p-normed vector space (quasinormed vector space).

Complete p-normed (quasinormed) vector space is called p-Banach (quasiBanach) space.

In following definition we define sequence spaces l_{p}^{n}, which are essential for our work.

Definition 2. Let $\left(V,\|\cdot\|_{V}\right)$ be a normed vector space. Let $n \in \mathbb{N}$ and $p \in(0, \infty]$. We define $l_{n}^{p}(V):=\left(V^{n},\|\cdot\|_{l_{p}^{n}(V)}\right)$ where V^{n} is cartesian product of vector spaces, equipped with norm (p-norm) $\|\cdot\|_{l_{p}^{n}(V)}$ defined for all $\left(v_{1}, \ldots, v_{n}\right) \in V^{n}$ as follows:

$$
\begin{array}{r}
\left\|\left(v_{1}, \ldots, v_{n}\right)\right\|_{l_{p}^{n}(V)}=\left(\sum_{i=1}^{n}\left\|v_{i}\right\|_{V}^{p}\right)^{\frac{1}{p}}, \quad \text { if } p<\infty \\
\left\|\left(v_{1}, \ldots, v_{n}\right)\right\|_{l_{p}^{n}(V)}=\max _{i=1 \ldots n}\left\|v_{i}\right\|_{V} \quad \text { if } \quad p=\infty \tag{1.2}
\end{array}
$$

If $1 \leq p \leq \infty$, then $l_{p}^{n}(V)$ is normed vector space with norm $\|\cdot\|_{l_{p}^{n}(V)}$. If $0<p<1$, then $l_{p}^{n}(V)$ is p-normed vector space with p-norm $\|\cdot\|_{l_{p}^{n}(V)}$, satisfying triangle inequality for p-norms

$$
\begin{equation*}
\|v+u\|_{l_{p}^{n}(V)}^{p} \leq\|v\|_{l_{p}^{n}(V)}^{p}+\|u\|_{l_{p}^{n}(V)}^{p}, \tag{1.3}
\end{equation*}
$$

for all u, v elements of $l_{p}^{n}(V)$.

Remark. Note that if V is complete then also $l_{p}^{n}(V)$ is complete.
Remark. Hölder's inequality gives us that for $p \leq q$ it holds

$$
\begin{equation*}
\|\cdot\|_{l_{q}^{n}(V)} \leq\|\cdot\|_{l_{p}^{n}(V)} \leq n^{\frac{1}{p}-\frac{1}{q}}\|\cdot\|_{l_{q}^{n}(V)} . \tag{1.4}
\end{equation*}
$$

Remark. If there is no chance of misunderstanding we will write $\|\cdot\|_{p}$ instead of $\|\cdot\|_{l_{p}^{n}(V)}$.

Example. Let $0<p<\infty$ and let n be a natural number. By $l_{p}^{n}(\mathbb{R})$ we denote the vector space \mathbb{R}^{n} with standard operations + and \cdot, equipped with norm (p-norm) defined as follows:

For all $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ it holds

$$
\|x\|_{l_{p}^{n}(\mathbb{R})}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

Example. Let $0<p<\infty$ and let n be a natural number. By $l_{p}^{n}(\mathbb{C})$ we denote the vector space \mathbb{C}^{n} with standard operations + and \cdot, equipped with norm (p-norm) defined as follows:

For all $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$ it holds

$$
\|x\|_{l_{p}^{n}(\mathbb{C})}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

Example. Let $0<p<\infty$ and let n be a natural number. By $l_{p}^{n}\left(l_{2}^{2}(\mathbb{R})\right)$ we denote the vector space $\left(\mathbb{R}^{2}\right)^{n}=\mathbb{R}^{2 n}$ with standard operations + and \cdot, equipped with norm (p-norm) defined as follows:

For all $x=\left(x_{1}, \ldots, x_{2 n}\right) \in \mathbb{R}^{2 n}$ it holds

$$
\|x\|_{l_{p}^{n}\left(l_{2}^{2}(\mathbb{R})\right.}=\left(\sum_{i=1}^{n}\left(\sqrt{\left|x_{2 i-1}\right|^{2}+\left|x_{2 i}\right|^{2}}\right)^{p}\right)^{\frac{1}{p}} .
$$

1.2 Entropy numbers

Definition 3. Let X, Y be Banach spaces, p-Banach spaces or quasi-Banach spaces. Let $T \in \mathcal{L}(X, Y)$. We define the sequence $\left(e_{n}(T)\right)_{n=1}^{\infty}$ of entropy numbers as follows

$$
\begin{equation*}
e_{n}(T)=\inf \left\{\varepsilon>0: \exists y_{1}, \ldots, y_{2^{n-1}} \in Y: T\left(B_{X}\right) \subset \bigcup_{i=1}^{2^{n-1}}\left(y_{i}+\varepsilon B_{Y}\right)\right\} \tag{1.5}
\end{equation*}
$$

Remark. It is not necessary for T to be a continous linear operator. The concept of entropy numbers works also for any mapping between two Banach spaces, p-Banach spaces or quasi-Banach spaces.

The following theorem gives us few elementary properties entropy numbers. It can be found in Vybíral, Thm.8] and partially in Edmunds and Triebel, 1996, Lemma 1.].

Theorem 1.1. Let X, Y, Z be Banach or p-Banach spaces. Let $S, T \in \mathcal{L}(X, Y)$ and $R \in \mathcal{L}(Y, Z)$. Then it holds:

1. $\|T\| \geq e_{1}(T) \geq e_{2}(T) \geq \cdots \geq 0$ (monotocity of entropy numbers);
2. $e_{n}(T) \rightarrow 0$ iff T is compact;
3. If Y is a Banach space, then $e_{1}(T)=\|T\|$;
4. For every $m_{1}, m_{2} \in \mathbb{N}$ it holds $e_{m_{1}+m_{2}-1}(R \circ T) \leq e_{m_{1}}(R) e_{m_{2}}(T)$;
5. If Y is a p-Banach space, then for all $m_{1}, m_{2} \in \mathbb{N}$ holds $e_{m_{1}+m_{2}-1}^{p}(S+T) \leq$ $e_{m_{1}}^{p}(S)+e_{m_{2}}^{p}(T)$.

Proof. 1. First inequality follows from the definition of the operator norm $\|T\|=\sup \left\{\|T(x)\|: x \in B_{X}\right\}$. Therefore $T\left(B_{X}\right) \subset B(0,\|T\|)$. The inequality $e_{i}(T) \geq e_{i+1}(T)$ is obvious from the definition of entropy numbers.
2. The sequence $e_{n}(T)$ is bounded, monotonic, and nonnegative therefore it has a limit $\lim _{n \rightarrow \infty} e_{n}(T) \geq 0$. Let us suppose that T is compact. Then for all $\varepsilon>0$ there exist a natural number n_{ε}, and $y_{1}, \ldots, y_{2^{n_{\varepsilon}-1}} \in Y$, such that

$$
\overline{T\left(B_{X}\right)} \subset \bigcup_{i=1}^{2^{n_{\varepsilon}-1}} B\left(y_{i}, \varepsilon\right)
$$

That implies $e_{n_{\varepsilon}}(T) \leq \varepsilon$. Since the limit of $e_{n}(T)$ is nonnegative we obtain $e_{n}(T) \rightarrow 0$.
Now we suppose $e_{n}(T) \rightarrow 0$. Let M be an infinite subset of $\overline{T\left(B_{X}\right)}$. We will prove that M has a limit point in $\overline{T\left(B_{X}\right)}$. First we put $M_{0}=M$. Let us suppose that we have an infinite set $M_{k} \subset \overline{T\left(B_{X}\right)}$. We define M_{k+1} and z_{k+1} as follows.

Because $e_{n}(T) \rightarrow 0$, we observe that for every $k \in \mathbb{N}$ there exists $n_{k} \in \mathbb{N}$ and $y_{1}^{k}, \ldots, y_{2^{n}-1}^{k} \in Y$ such that

$$
T\left(B_{X}\right) \subset \bigcup_{i=1}^{2^{n_{k}-1}} B\left(y_{i}^{k}, \frac{1}{4 k}\right)
$$

Hence $\overline{T\left(B_{X}\right)} \subset \bigcup_{i=1}^{2^{n_{k}-1}} B\left(y_{i}^{k}, \frac{1}{2 k}\right)$. We know that $M_{k} \subset \overline{T\left(B_{X}\right)}$ is infinite and we have only finitely many balls covering $\overline{T\left(B_{X}\right)}$, so there exists y_{j}^{k} such that $B\left(y_{j}^{k}, \frac{1}{2 k}\right) \cap M_{k}$ is infinite. Now we choose arbitrary $z_{k} \in M_{k}$ and define $M_{k+1}:=B\left(y_{j}^{k}, \frac{1}{2 k}\right) \cap M_{k} \backslash z_{k}$. Using this induction we gain a Cauchy sequence $\left\{z_{n}\right\}_{n=1}^{\infty}$. Y is Banach (p-Banach) space therefore this sequence has a limit z which is also a limit point of M. At last z lies within $\overline{T\left(B_{X}\right)}$ because this set is closed.
3. Let us suppose $e_{1}(T)<\|T\|$. Then there exist $y \in Y$ and $0<\varepsilon<\|T\|$, such that $T\left(B_{X}\right) \subset B(y, \varepsilon)$, and $x \in B_{X}$ such that $\|T(x)\|>\varepsilon$. Naturaly $-x \in B_{X}$ and $\|T(-x)\|>\varepsilon$. Hence

$$
\|T(x)-T(-x)\|=\|T(x)+T(x)\|>2 \varepsilon
$$

Using the triangle inequality for the norm of a Banach space we have

$$
\|T(x)-y\|+\|y-T(-x)\|>2 \varepsilon
$$

Therefore $\|T(x)-y\|>\varepsilon$ or $\|T(-x)-y\|>\varepsilon$. This is contradiction with $T\left(B_{X}\right) \subset B(y, \varepsilon)$ and therefore $e_{1}(T) \geq\|T\|$. From 1, we have $e_{1}(T) \leq\|T\|$, so finally we have $e_{1}(T)=\|T\|$.
4. Let $\varepsilon_{1}>e_{m_{1}}(R), \varepsilon_{2}>e_{m_{2}}(T)$. Then from (1.5) there exist $y_{1}, \ldots, y_{2^{m_{2}-1}} \in$ Y and $z_{1}, \ldots, z_{2^{m_{1}-1}} \in Z$ such that

$$
T\left(B_{X}\right) \subset \bigcup_{i=1}^{2^{m_{2}-1}}\left(y_{i}+\varepsilon_{2} B_{Y}\right) \quad \text { and } \quad R\left(B_{Y}\right) \subset \bigcup_{j=1}^{2^{m_{1}-1}}\left(z_{j}+\varepsilon_{1} B_{Z}\right) .
$$

Hence from linearity of R we gain

$$
R\left(T\left(B_{X}\right)\right) \subset R\left(\bigcup_{i=1}^{2^{m_{2}-1}}\left(y_{i}+\varepsilon_{2} B_{Y}\right)\right)=\bigcup_{i=1}^{2^{m_{2}-1}}\left(R\left(y_{i}\right)+\varepsilon_{2} R\left(B_{Y}\right)\right)
$$

and

$$
\begin{aligned}
R \circ T\left(B_{X}\right) & \subset \bigcup_{i=1}^{2^{m_{2}-1}}\left(R\left(y_{i}\right)+\varepsilon_{2} \bigcup_{j=1}^{2^{m_{1}-1}}\left(z_{j}+\varepsilon_{1} B_{Z}\right)\right) \\
& =\bigcup_{i=1}^{2^{m_{2}-1}} \bigcup_{j=1}^{2^{m_{1}-1}}\left(\left(R\left(y_{i}\right)+\varepsilon_{2} z_{j}\right)+\varepsilon_{1} \varepsilon_{2} B_{Z}\right) .
\end{aligned}
$$

We have found $2^{m_{1}+m_{2}-2}$ balls with radius $\varepsilon_{1} \varepsilon_{2}$ that cover $(R \circ T)\left(B_{X}\right)$. Therefore from (1.5) it holds $e_{m_{1}+m_{2}-1}(R \circ T) \leq \varepsilon_{1} \varepsilon_{2}$. We have chosen $\varepsilon_{1}>e_{m_{1}}(R)$ and $\varepsilon_{2}>e_{m_{2}}(T)$ arbitrarily, therefore it also holds $e_{m_{1}+m_{2}-1}(R \circ T) \leq e_{m_{1}}(R) e_{m_{2}}(T)$.
5. Let $\varepsilon_{1}>e_{m_{1}}, \varepsilon_{2}>e_{m_{2}}$. Then from (1.5) there exist $y_{1}, \ldots, y_{2^{m_{2}-1}} \in Y$ and $c_{1}, \ldots, c_{2^{m_{1}-1}} \in Y$ such that

$$
S\left(B_{X}\right) \subset \bigcup_{i=1}^{2^{m_{1}-1}}\left(y_{i}+\varepsilon_{1} B_{Y}\right) \quad \text { and } \quad T\left(B_{X}\right) \subset \bigcup_{j=1}^{2^{m_{2}-1}}\left(c_{j}+\varepsilon_{2} B_{Y}\right)
$$

If $x \in B_{X}$ then there exist $i \in 1, \ldots, 2^{m_{1}-1}$ and $j \in 1, \ldots, 2^{m_{2}-1}$ such that $\left\|S(x)-y_{i}\right\|_{Y}^{p}<\varepsilon_{1}^{p}$ and $\left\|T(x)-c_{j}\right\|_{Y}^{p}<\varepsilon_{2}^{p}$.
Hence $\left\|S(x)+T(x)-\left(y_{i}+c_{j}\right)\right\|_{Y}^{p}<\varepsilon_{1}^{p}+\varepsilon_{2}^{p}$ and

$$
(S+T)\left(B_{X}\right) \subset \bigcup_{i=1}^{2^{m_{1}-1}} \bigcup_{j=1}^{2^{m_{2}-1}}\left(y_{i}+c_{j}+\left(\varepsilon_{1}^{p}+\varepsilon_{2}^{p}\right)^{\frac{1}{p}} B_{Y}\right)
$$

We have found $2^{m_{1}+m_{2}-2}$ balls with radius $\left(\varepsilon_{1}^{p}+\varepsilon_{2}^{p}\right)^{\frac{1}{p}}$ that cover $(S+T)\left(B_{X}\right)$. Therefore from (1.5) we gain $e_{m_{1}+m_{2}-1}^{p}(S+T) \leq \varepsilon_{1}^{p}+\varepsilon_{2}^{p}$. We chose $\varepsilon_{1}>e_{m_{1}}(R)$ and $\varepsilon_{2}>e_{m_{2}}(S)$ arbitrarily, therefore it also holds $e_{m_{1}+m_{2}-1}^{p}(S+T) \leq e_{m-1}^{p}(S)+e_{m_{2}}^{p}(T)$

Remark. Note that to prove (4) we needed for R and T to be additive and homogenous only for real nonnegative scalars. This fact allows us to prove Theorem 3.2, in the third chapter.

1.3 Volume of the unit ball in $l_{p}^{n}(\mathbb{R})$

In this section we will compute and estimate volume of the unit ball in $l_{p}^{n}(\mathbb{R})$, which will be widely used in the second chapter. The computation was given in Pisier, 1989, 1.17], we also present the proof of the estimate mentioned in Pisier, 1989, 1.18].

Lemma 1.2. Let $p \in(0, \infty)$ and $n \in \mathbb{N}$. Denote $l_{p}^{n}=l_{p}^{n}(\mathbb{R})$. Let $t>0$. Then

$$
\begin{equation*}
\operatorname{vol}\left(t \cdot B_{l_{p}^{n}}\right)=t^{n} \operatorname{vol}\left(B_{l_{p}^{n}}\right) \tag{1.6}
\end{equation*}
$$

Proof. Denote $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Then

$$
\begin{aligned}
\operatorname{vol}\left(t \cdot B_{l_{p}^{n}}\right) & =\operatorname{vol}\left\{x \in \mathbb{R}^{n}:\|x\|_{p}<t\right\} \\
& =\int_{\left\{x \in \mathbb{R}^{n}:\|x\|_{p}<t\right\}} d x_{1} \ldots d x_{n} \\
& =\int_{\left\{x \in \mathbb{R}^{n}:\left\|\frac{x}{t}\right\|_{p}<1\right\}} d x_{1} \ldots d x_{n} .
\end{aligned}
$$

We will use transformation of coordinates from $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ such that for $i=1, \ldots, n$ it holds $x_{i}=y_{i} t$. Then

$$
\operatorname{vol}\left(t \cdot B_{l_{p}^{n}}\right)=\int_{\left\{y \in \mathbb{R}^{n}:\|y\|_{p}<1\right\}}|\mathbf{J}| d y_{1} \ldots d y_{n}
$$

where $|\mathbf{J}|$ is Jacobian determinant. Let $i, j \in\{1, \ldots, n\}$. Then $\frac{\partial x_{i}}{\partial y_{i}}=t$ and if $i \neq j$ then $\frac{\partial x_{i}}{\partial y_{j}}=0$. Therefore

$$
\begin{aligned}
\operatorname{vol}\left(t \cdot B_{l_{p}^{n}}\right) & =\int_{\left\{y \in \mathbb{R}^{n}:\|y\|_{p}<1\right\}} t^{n} d y_{1} \ldots d y_{n} \\
& =t^{n} \int_{\left\{y \in \mathbb{R}^{n}:\|y\|_{p}<1\right\}} d y_{1} \ldots d y_{n} \\
& =t^{n} \operatorname{vol}\left(B_{l_{p}^{n}}\right) .
\end{aligned}
$$

Remark. The (1.6) holds also for $p=\infty$.
Before we proceed to the computation, we recall the definition of the Gamma function.

Definition 4. Let y be a complex number with positive real part. We define gamma function as follows:

$$
\Gamma(y)=\int_{0}^{\infty} t^{y-1} \exp (-t) d t
$$

Remark. We will often use that for all $a>0$, it holds

$$
\begin{equation*}
a \Gamma(a)=\Gamma(a+1), \tag{1.7}
\end{equation*}
$$

which can be easily proved with integration by parts.

Theorem 1.3. (by Pisier [1989]) Let $0<p<\infty$ and let n be a natural number. Then it holds

$$
\begin{equation*}
\operatorname{vol}\left(B_{l_{p}^{n}}\right)=\frac{\left(2 \Gamma\left(1+\frac{1}{p}\right)\right)^{n}}{\Gamma\left(1+\frac{n}{p}\right)} . \tag{1.8}
\end{equation*}
$$

Proof. Denote

$$
I=\int_{\mathbb{R}^{n}} \exp \left(-\|x\|_{p}^{p}\right) d x
$$

From Fubini's theorem we gain

$$
\begin{equation*}
I=\left(\int_{\mathbb{R}} \exp \left(-|t|^{p}\right) d t\right)^{n}=\left(2 \int_{0}^{\infty} \exp \left(-|t|^{p}\right) d t\right)^{n} . \tag{1.9}
\end{equation*}
$$

Using
$\int_{\|x\|_{p}}^{\infty} \frac{d}{d t}\left(-\exp \left(-t^{p}\right)\right) d t=\lim _{t \rightarrow \infty}\left(-\exp \left(-t^{p}\right)\right)-\lim _{t \rightarrow\|x\|_{p}}\left(-\exp \left(-t^{p}\right)\right)=\exp \left(-\|x\|_{p}^{p}\right)$,
we can express

$$
I=\int_{\mathbb{R}^{n}} \int_{\|x\|_{p}}^{\infty} \frac{d}{d t}\left(-\exp \left(-t^{p}\right)\right) d t d x=\int_{\mathbb{R}^{n}} \int_{\|x\|_{p}}^{\infty} p t^{p-1} \exp \left(-t^{p}\right) d t d x
$$

We use Fubini's theorem once again and obtain

$$
\begin{aligned}
I & =\int_{\left\{(x, t) ; x \in \mathbb{R}^{n} t>\|x\|_{p}\right\}} p t^{p-1} \exp \left(-t^{p}\right) d t d x \\
& =\int_{0}^{\infty} p t^{p-1} \exp \left(-t^{p}\right) \int_{\left\{x \in \mathbb{R}^{n} ;\|x\|_{p}<t\right\}} 1 d x d t \\
& =\int_{0}^{\infty} p t^{p-1} \exp \left(-t^{p}\right) t^{n} \operatorname{vol}\left(B_{l_{p}^{n}}\right) d t \\
& =\operatorname{vol}\left(B_{l_{p}^{n}}\right) \int_{0}^{\infty} p t^{p+n-1} \exp \left(-t^{p}\right) d t,
\end{aligned}
$$

where we used also Lemma 1.2. Together with (1.9), we gain

$$
\begin{equation*}
\operatorname{vol}\left(B_{l_{p}^{n}}\right)=\frac{\left(2 \int_{0}^{\infty} \exp \left(-t^{p}\right) d t\right)^{n}}{\int_{0}^{\infty} p t^{p+n-1} \exp \left(-t^{p}\right) d t} \tag{1.10}
\end{equation*}
$$

Now we proceed to the gamma function. Substituting z for t^{p} we gain $t=z^{\frac{1}{p}}$ and $d t=\frac{1}{p} z^{\frac{1-p}{p}} d z$, therefore

$$
\int_{0}^{\infty} \exp \left(-t^{p}\right) d t=\int_{0}^{\infty} \frac{1}{p} z^{\frac{1-p}{p}} \exp (-z) d z=\frac{1}{p} \Gamma\left(\frac{1}{p}\right)=\Gamma\left(1+\frac{1}{p}\right),
$$

where in the last equation we used (1.7). On the other hand, with same substitution z for t^{p}, we obtain

$$
\begin{aligned}
\int_{0}^{\infty} p t^{p+n-1} \exp \left(-t^{p}\right) d t & =\int_{0}^{\infty} \frac{1}{p} z^{\frac{1-p}{p}} p z^{\frac{p+n-1}{p}} \exp (-z) \\
& =\int_{0}^{\infty} z^{\frac{n}{p}} \exp (-z) \\
& =\Gamma\left(1+\frac{n}{p}\right)
\end{aligned}
$$

Combining these conclusions with 1.10 we gain

$$
\operatorname{vol}\left(B_{l_{p}^{n}}\right)=\frac{\left(2 \Gamma\left(1+\frac{1}{p}\right)\right)^{n}}{\Gamma\left(1+\frac{n}{p}\right)} .
$$

Using this result, we prove the estimate of the volume of the unit ball, which is essential for many proofs in the second chapter.

Theorem 1.4. Let $p>0$, then there exist positive constants c and C (depending only on p) such that for all $x \in[1, \infty)$ it holds

$$
c x^{\frac{1}{p}} \leq\left(\Gamma\left(1+\frac{x}{p}\right)\right)^{\frac{1}{x}} \leq C x^{\frac{1}{p}}
$$

Proof. Denote $m=\min _{x \in[1,1+p]} \frac{\left(\Gamma\left(1+\frac{x}{p}\right)\right)^{\frac{1}{x}}}{x^{\frac{p}{p}}}$. We define $c=\min \left\{\left(\frac{1}{e p}\right)^{\frac{1}{p}}, m\right\}$. Since $\Gamma(a)$ is positive for all $a>0$, it holds $m>0$ and $c>0$. It is obvious that

$$
\begin{equation*}
c x^{\frac{1}{p}} \leq\left(\Gamma\left(1+\frac{x}{p}\right)\right)^{\frac{1}{x}} \tag{1.11}
\end{equation*}
$$

holds for all $x \in[1,1+p]$. Now we will prove that if (1.11) holds for $x=y$ then it holds also for $x=y+p$. Let us suppose that $c y^{\frac{1}{p}} \leq\left(\Gamma\left(1+\frac{y}{p}\right)\right)^{\frac{1}{y}}$. We have

$$
c \leq\left(\frac{1}{e p}\right)^{\frac{1}{p}} \quad \text { and } \quad c^{p} p \leq \frac{1}{e}
$$

For all positive z it holds $\frac{1}{e} \leq\left(\frac{z}{z+1}\right)^{z}$, hence

$$
c^{p} p \leq\left(\frac{y}{y+p}\right)^{\frac{y}{p}} \quad \text { and } \quad c^{y+p} p(y+p)^{\frac{y}{p}} \leq c^{y} y^{\frac{y}{p}} .
$$

Our assumption gives us

$$
c^{y} y^{\frac{y}{p}} \leq \Gamma\left(1+\frac{y}{p}\right), \quad \text { and therefore } \quad c^{y+p} p(y+p)^{\frac{y}{p}} \leq \Gamma\left(1+\frac{y}{p}\right) .
$$

Hence

$$
c^{y+p}(y+p)^{\frac{y+p}{p}} \leq \frac{y+p}{p} \Gamma\left(1+\frac{y}{p}\right) .
$$

Using (1.7), we obtain

$$
c^{(y+p)}(y+p)^{\frac{y+p}{p}} \leq \Gamma\left(1+\frac{y+p}{p}\right) \quad \text { hence } c(y+p)^{\frac{1}{p}} \leq\left(\Gamma\left(1+\frac{y+p}{p}\right)\right)^{\frac{1}{y+p}}
$$

We know that (1.11) holds for all $x \in[1,1+p]$ and we proved that if it holds for $x=y$ then it holds also for $x=y+p$. Therefore it holds for all $x \in[1, \infty)$.

We will deal with second inequality in a similar way.
Let us denote $M=\max _{x \in[1,1+p]} \frac{\left(\Gamma\left(1+\frac{x}{p}\right)\right)^{\frac{1}{x}}}{x^{\frac{1}{p}}}$ We define $C=\max \left\{\left(\frac{1}{p}\right)^{\frac{1}{p}}, M\right\}$. Since
Γ is continous on $(0, \infty)$, it is bounded on $\left[1,1+\frac{1}{p}\right]$ and therefore $M<\infty$ and $C<\infty$. It is obvious that

$$
\begin{equation*}
\left(\Gamma\left(1+\frac{x}{p}\right)\right)^{\frac{1}{x}} \leq C x^{\frac{1}{p}} \tag{1.12}
\end{equation*}
$$

holds for all $x \in[1,1+p]$. Now we prove that (1.12) holds for $x=y$ then it holds also for $x=y+p$. Let us suppose that $\left(\Gamma\left(1+\frac{y}{p}\right)\right)^{\frac{1}{y}} \leq C y^{\frac{1}{p}}$. We have

$$
\left(\frac{1}{p}\right)^{\frac{1}{p}} \leq C \quad \text { and therefore } \quad 1 \leq p C^{p}
$$

We know that for all positive y, p it holds $\frac{y}{y+p} \leq 1$ and also $\left(\frac{y}{y+p}\right)^{\frac{y}{p}} \leq 1$. Hence

$$
\left(\frac{y}{y+p}\right)^{\frac{y}{p}} \leq p C^{p} \quad \text { and therefore } \quad C^{y} y^{\frac{y}{p}} \leq p C^{y+p}(y+p)^{\frac{y}{p}}
$$

Our assumption gives us

$$
\Gamma\left(1+\frac{y}{p}\right) \leq C^{y} y^{\frac{y}{p}} \quad \text { therefore } \quad \Gamma\left(1+\frac{y}{p}\right) \leq p C^{y+p}(y+p)^{\frac{y}{p}}
$$

Hence

$$
\frac{y+p}{p} \Gamma\left(1+\frac{y}{p}\right) \leq C^{y+p}(y+p)^{\frac{y+p}{p}}
$$

We use 1.7), and obtain

$$
\Gamma\left(1+\frac{y+p}{p}\right) \leq C^{y+p}(y+p)^{\frac{y+p}{p}} \quad \text { hence } \quad\left(\Gamma\left(1+\frac{y+p}{p}\right)\right)^{\frac{1}{y+p}} \leq C(y+p)^{\frac{1}{p}}
$$

Now we know that (1.12) holds for all $x \in[1,1+p]$ and if it holds for $x=y$ then it holds also for $x=y+p$. Therefore it holds for all $x \in[1, \infty)$.

Theorem 1.5. Let $0<p \leq \infty$. Then there exists positive constants c_{1}, c_{2} (depending only on p) such that for all $n \in \mathbb{N}$ it holds

$$
\begin{equation*}
c_{1} n^{\frac{-1}{p}} \leq\left(\operatorname{vol}\left(B_{l_{p}^{n}}\right)\right)^{\frac{1}{n}} \leq c_{2} n^{\frac{-1}{p}} . \tag{1.13}
\end{equation*}
$$

Proof. Let $0<p<\infty$. From Theorem 1.4, we gain positive constants c, C such that for all $n \in \mathbb{N}$ it holds

$$
c n^{\frac{1}{p}} \leq\left(\Gamma\left(1+\frac{n}{p}\right)\right)^{\frac{1}{n}} \leq C n^{\frac{1}{p}}
$$

The Theorem 1.3 gives us

$$
\operatorname{vol}\left(B_{l_{p}^{n}}\right)=\frac{\left(2 \Gamma\left(1+\frac{1}{p}\right)\right)^{n}}{\Gamma\left(1+\frac{n}{p}\right)} .
$$

Therefore

$$
2 \Gamma\left(1+\frac{1}{p}\right) C^{-1} n^{-1 / p} \leq \operatorname{vol}\left(B_{l_{p}^{n}}\right)^{\frac{1}{n}} \leq 2 \Gamma\left(1+\frac{1}{p}\right) c^{-1} n^{-1 / p}
$$

That completes the proof for $0<p<\infty$.
If $p=\infty$ then $\operatorname{vol} B_{l_{p}^{n}}=2^{n}$ and (1.13) obviuosly holds.

2. Entropy numbers of
 $i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{q}^{n}(\mathbb{R})$

This chapter focuses on the estimate of entropy numbers of natural identity between $l_{p}^{n}(\mathbb{R})$ and $l_{q}^{n}(\mathbb{R})$. Every vector space used in this chapter will be $l_{p}^{n}(\mathbb{R})$ for some $0<p \leq \infty$ and n a natural number. To deal with triangle inequalities of norms and p-norms together, we define $\hat{p}=\min \{p, 1\}$. The triangle inequality for both $0<p \leq 1$ and $1 \leq p$ can be rewritten as

$$
\begin{equation*}
\|u+v\|_{p}^{\hat{p}} \leq\|u\|_{p}^{\hat{p}}+\|v\|_{p}^{\hat{p}} . \tag{2.1}
\end{equation*}
$$

The main result is following theorem.
Theorem 2.1. (by Schütt (1984]) Let $0<p \leq \infty, 0<q \leq \infty$ and let n be a natural number. If $0<p \leq q \leq \infty$ then for all $k \in \mathbb{N}$ it holds

$$
e_{k}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{q}^{n}(\mathbb{R})\right) \sim \begin{cases}1 & \text { if } 1 \leq k \leq \log _{2} n \tag{2.2}\\ \left(k^{-1} \log _{2}\left(n k^{-1}+1\right)\right)^{\frac{1}{p}-\frac{1}{q}} & \text { if } \log _{2} n \leq k \leq n \\ 2^{\frac{-(k-1)}{n}} n^{\frac{1}{q}-\frac{1}{p}} & \text { if } n \leq k\end{cases}
$$

and if $0<q \leq p \leq \infty$ then for all $k \in \mathbb{N}$ it holds

$$
\begin{equation*}
e_{k}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{q}^{n}(\mathbb{R})\right) \sim 2^{\frac{-(k-1)}{n}} n^{\frac{1}{q}-\frac{1}{p}} . \tag{2.3}
\end{equation*}
$$

If we have $q=\infty$ (perhaps even $p=\infty$) we define $\frac{1}{q}=0$ (or $\frac{1}{p}=0$).
The equivalence \sim from the previous theorem is defined as follows.
Let $x(n, k), y(n, k): \mathbb{N}^{2} \rightarrow \mathbb{R}$, then

$$
x \sim y \quad \text { iff } \quad c \cdot y(n, k) \leq x(n, k) \leq C \cdot y(n, k),
$$

where c, C are positive constants idependent of n and k. For example

$$
\begin{gathered}
e_{k}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{q}^{n}(\mathbb{R})\right) \sim 2^{\frac{-(k-1)}{n}} n^{\frac{1}{q}-\frac{1}{p}} \quad \text { if and only if } \\
c \cdot 2^{\frac{-(k-1)}{n}} n^{\frac{1}{q}-\frac{1}{p}} \leq e_{k}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{q}^{n}(\mathbb{R})\right) \leq C \cdot 2^{\frac{-(k-1)}{n}} n^{\frac{1}{q}-\frac{1}{p}}
\end{gathered}
$$

for some positive constants c, C independent of n and k, but possibly depending on p and q.

2.1 Upper estimate with $p \leq q$

The upper estimate with $p \leq q$ was proved by Edmunds and Triebel, 1996, chap.3, 3.2.2 Proposition]. We divided the proof of this proposition into Theorems 2.2, 2.4 and 2.5.

Theorem 2.2. Let $0<p \leq q \leq \infty$ and let n be a natural number. Then for each natural number k it holds

$$
e_{k}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{q}^{n}(\mathbb{R}) \leq 1\right.
$$

Proof. As $0<p \leq q \leq \infty, B_{X} \subset B_{Y}$ and therefore $e_{k}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{q}^{n}(\mathbb{R}) \leq 1\right.$ for every $k \in \mathbb{N}$.

Lemma 2.3. Let $0<p \leq \infty$ and $0<q \leq \infty$ and let n be a natural number. We put $X=l_{p}^{n}(\mathbb{R})$ and $Y=l_{q}^{n}(\mathbb{R})$. Let $T \in \mathcal{L}(X, Y)$ and let $r>0$. By N we denote the maximal number such that there exist $y_{1}, \ldots, y_{N} \in T\left(B_{X}\right)$ with $\left\|y_{i}-y_{j}\right\|_{q}>r$ for every $i \neq j$. Then it holds

$$
N\left(r \cdot 2^{\frac{-1}{q}}\right)^{n} \operatorname{vol} B_{Y} \leq \operatorname{vol}\left(T\left(B_{X}\right)+r \cdot 2^{\frac{-1}{q}} B_{Y}\right)
$$

Let k be a natural number such that $2^{k-1} \geq N$. Then $e_{k}(T) \leq r$.
Proof. Let N and $y_{1} \ldots y_{N} \in T\left(B_{X}\right)$ from the statement of the lemma. Let $i, j \in\{1, \ldots, N\}$ such that $i \neq j$ and let $z \in Y$. From (2.1) we have

$$
r^{\hat{q}}<\left\|y_{i}-y_{j}\right\|_{q}^{\hat{q}} \leq\left\|y_{i}-z\right\|_{q}^{\hat{q}}+\left\|z-y_{j}\right\|_{q}^{\hat{q}} .
$$

Hence $\left\|y_{i}-z\right\|_{q}>r 2^{\frac{-1}{q}}$ or $\left\|y_{j}-z\right\|_{q}>r 2^{\frac{-1}{\bar{q}}}$, and therefore

$$
\left(y_{i}+r \cdot 2^{\frac{-1}{q}} B_{Y}\right) \cap\left(y_{j}+r \cdot 2^{\frac{-1}{q}} B_{Y}\right)=\emptyset .
$$

And because for all $i=1, \ldots, N$ it holds $\left(y_{i}+r \cdot 2^{\frac{-1}{q}} B_{Y}\right) \subset\left(T\left(B_{X}\right)+r \cdot 2^{-\frac{1}{q}} B_{Y}\right)$, we immediatly gain the inequality in lemma.

Now let k be a natural number such that $2^{k-1} \geq N$ and let $\varepsilon>r$. Because N is the largest number with mentioned property, for every $z \in T\left(B_{X}\right)$ there exist $i \in\{1, \ldots, N\}$ such that $\left\|y_{i}-z\right\|_{q} \leq r<\varepsilon$. Hence $e_{k}(T) \leq \varepsilon$. We see that for all $\varepsilon>r$ it holds $e_{k}(T) \leq \varepsilon$, and therefore $e_{k}(T) \leq r$.

Theorem 2.4. Let $0<p \leq q \leq \infty$ and let n be a natural number. We denote $X=l_{p}^{n}(\mathbb{R})$ and $Y=l_{q}^{n}(\mathbb{R})$. For each $k \in \mathbb{N}$ we denote $e_{k}\left(i d_{p, q}\right)=e_{k}(i d: X \rightarrow Y)$ Then there exist positive constant $\tilde{c} \geq 1$ depending only on p and q, such that for each natural number $\tilde{k} \geq \tilde{c} n$ it holds

$$
e_{\tilde{k}}\left(i d_{p, q}\right) \leq C \cdot 2^{\frac{-(k-1)}{n}} n^{\frac{1}{q}-\frac{1}{p}},
$$

with C a positive constant depending only on p and q.
Proof. Let $k \geq n$ be a natural number. We define $r=2^{\frac{-(k-1)}{n}} n^{\frac{1}{q}-\frac{1}{p}}$. Let us consider y_{1}, \ldots, y_{N} from Lemma 2.3. Using the same lemma we gain

$$
\begin{equation*}
N\left(r \cdot 2^{\frac{-1}{q}}\right)^{n} \operatorname{vol} B_{Y} \leq \operatorname{vol}\left(B_{X}+r \cdot 2^{\frac{-1}{q}} B_{Y}\right) \tag{2.4}
\end{equation*}
$$

Let $v \in B_{X}+r \cdot 2^{\frac{-1}{q}} B_{Y}$. Then there exist $v_{1} \in B_{X}$ and $v_{2} \in r \cdot 2^{\frac{-1}{q}} B_{Y}$ such that $v=v_{1}+v_{2}$. From (1.4) we know that $\left\|v_{2}\right\|_{p} \leq n^{\frac{1}{p}-\frac{1}{q}}\left\|v_{2}\right\|_{q}$, hence $v_{2} \in 2^{\frac{-(k-1)}{n}-\frac{1}{\bar{q}}} B_{X} \subset B_{X}$. Triangle inequality (2.1) gives us

$$
\|v\|_{p}^{\hat{p}} \leq\left\|v_{1}\right\|_{p}^{\hat{p}}+\left\|v_{2}\right\|_{p}^{\hat{p}} \leq 1+1 .
$$

Hence $\|v\|_{p} \leq 2^{\frac{1}{p}}$ and $v \in 2^{\frac{1}{p}} B_{X}$. Together with (2.4) we have

$$
N\left(r \cdot 2^{\frac{-1}{\tilde{q}}}\right)^{n} \operatorname{vol} B_{Y} \leq 2^{\frac{n}{p}} \operatorname{vol} B_{X} \quad \text { hence } \quad N^{\frac{1}{n}} \leq 2^{\frac{1}{\bar{p}}+\frac{1}{\tilde{q}}} r^{-1}\left(\frac{\operatorname{vol} B_{X}}{\operatorname{vol} B_{Y}}\right)^{\frac{1}{n}} .
$$

From Theorem 1.5 we have

$$
\left(\frac{\operatorname{vol} B_{X}}{\operatorname{vol} B_{Y}}\right)^{\frac{1}{n}} \leq c \cdot n^{\frac{1}{q}-\frac{1}{p}}
$$

where c is a positive constant depending only on p and q. Therefore we gain

$$
\begin{equation*}
N^{\frac{1}{n}} \leq c \cdot 2^{\frac{1}{p}+\frac{1}{\bar{q}}} 2^{\frac{k-1}{n}} \leq 2^{c^{\prime}} 2^{\frac{k-1}{n}}=2^{\frac{k-1+c^{\prime} n}{n}}, \tag{2.5}
\end{equation*}
$$

where c^{\prime} is a positive constant depending only on p and q such that $2^{c^{\prime}} \geq c \cdot 2^{\frac{2}{p}}$.
Finaly we define $\tilde{c}=c^{\prime}+1$. Let $\tilde{k} \geq \tilde{c} n$, and k be the largest natural number such that $\tilde{k} \geq k+c^{\prime} n$. Note that $k \geq n$. From (2.5) we have $N^{\frac{1}{n}} \leq 2^{\frac{k+c^{\prime} n-1}{n}} \leq 2^{\tilde{k}-1}$, hence from Lemma 2.3, we gain that

$$
\begin{aligned}
e_{\tilde{k}}\left(i d_{p, q}\right) \leq r & =2^{\frac{-(k-1)}{n}} n^{\frac{1}{q}-\frac{1}{p}} \\
& =2^{\frac{-(\tilde{k}-1)}{n}} 2^{c^{\prime}} 2^{\frac{\tilde{k}-k-c^{\prime} n}{n}} n^{\frac{1}{q}-\frac{1}{p}} \\
& \leq 2^{c^{\prime}} 2^{\frac{1}{n}} 2^{\frac{-(\bar{k}-1)}{n}} n^{\frac{1}{q}-\frac{1}{p}} .
\end{aligned}
$$

Therefore

$$
e_{\tilde{k}}\left(i d_{p, q}\right) \leq C \cdot 2^{\frac{-(\bar{k}-1)}{n}} n^{\frac{1}{q}-\frac{1}{p}},
$$

where C is a positive constant depending only on p, q.

Theorem 2.5. Let $0<p<\infty$ and let n be a natural number. For each $k \in \mathbb{N}$ we denote $e_{k}\left(i d_{p, \infty}\right)=e_{k}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{\infty}^{n}(\mathbb{R})\right)$. Let \tilde{c} be the positive constant defined in Theorem 2.4.

Then there exist positive constants $c_{8}>1$ and c_{10} depending only on p such that for every $1 \leq k \leq \tilde{c} c_{8} n$ it holds

$$
\begin{equation*}
e_{k}\left(i d_{p, \infty}\right) \leq c_{10}\left(k^{-1} \log _{2}\left(n k^{-1}+1\right)\right)^{\frac{1}{p}} \tag{2.6}
\end{equation*}
$$

Proof. Let $1 \leq k \leq \tilde{c} n$. We put $c_{1}>\left(\tilde{c}^{-1} \log _{2}\left(1+\tilde{c}^{-1}\right)\right)^{\frac{-1}{p}}$ and

$$
\begin{equation*}
t=c_{1}\left(k^{-1} \log _{2}\left(n k^{-1}+1\right)\right)^{\frac{1}{p}} \tag{2.7}
\end{equation*}
$$

This choice gives us

$$
\begin{equation*}
t>n^{-\frac{1}{p}}, \quad \text { and } \quad k \geq \tilde{c} t^{-p} \tag{2.8}
\end{equation*}
$$

If $t \geq 1$ then we from Theorem 2.2 immediatly gain (2.6). Now we will assume that $t<1$. We denote by n_{t}, the largest natural number such that there exist $x \in B_{l_{p}^{n}(\mathbb{R})}$ with n_{t} coordinates in absolute value greater than t. Because $t<1$ we note that $n_{t} \geq 1$ and

$$
\begin{equation*}
n_{t} t^{p}<1 . \tag{2.9}
\end{equation*}
$$

From (2.8) we have $n_{t}<n$. Because n_{t} is the largest natural number with the mentioned property, and $n_{t} \geq 1$, it holds

$$
t^{p}-1 \leq n_{t}<t^{-p}
$$

Since $t<1$, we gain that $t^{-p}>1$. If $t^{-p} \geq 2$ then it follows $\frac{1}{2} t^{-p} \leq n_{t}$. If $1<t^{-p}<2$ then $n_{t}=1>\frac{1}{2} t^{-p}$. Both cases gives us

$$
\begin{equation*}
\frac{1}{2} t^{-p} \leq n_{t}<t^{-p} \tag{2.10}
\end{equation*}
$$

We define

$$
e_{k}^{(t)}=e_{k}\left(i d: l_{p}^{n_{t}}(\mathbb{R}) \rightarrow l_{\infty}^{n_{t}}(\mathbb{R})\right)
$$

According to (2.8) and (2.9) holds $k \geq \tilde{c} t^{-p} \geq \tilde{c} n_{t}$. Hence, from Theorem 2.4 we gain

$$
\begin{equation*}
e_{k}^{(t)} \leq C \cdot 2^{\frac{-(k-1)}{n_{t}}} n_{t}^{\frac{-1}{p}}<c_{3} n_{t}^{\frac{-1}{p}}, \tag{2.11}
\end{equation*}
$$

where c_{3} is a positive constant depending only on p. From (2.10) we have $\frac{1}{2} t^{-p} \leq$ n_{t} which gives us $c_{4} t \geq c_{3} n_{t}^{\frac{-1}{p}}$, where $c_{4}>1$ and depens only on p. Hence from (1.5) we know that there exis $x_{1}, \ldots, x_{2^{k-1}} \in l_{\infty}^{n}$ such that

$$
\begin{equation*}
B_{l_{p}^{n_{t}}(\mathbb{R})} \subset \bigcup_{i=1}^{2^{k-1}}\left(x_{i}+c_{4} t B_{l_{\infty}^{n_{t}}(\mathbb{R})}\right) \tag{2.12}
\end{equation*}
$$

For every $i \in\left\{1, \ldots, 2^{k-1}\right\}$ and x_{i} defined in (2.12) we denote $x_{i}=\left(x_{i}^{1}, \ldots x_{i}^{n_{t}}\right)$.
Now we prove that there exist $2^{k-1}\binom{n}{n_{t}}$ balls in $l_{\infty}^{n}(\mathbb{R})$ with radius $c_{4} t$ covering $B_{l_{p}^{n}(\mathbb{R})}$. We define $z_{i, j}$ for all $i \in\left\{1, \ldots, 2^{k-1}\right\}$ and $j \in\left\{1, \ldots,\binom{n}{n_{t}}\right\}$, which will be centres of those balls, as follows.

Since, there is $\binom{n}{n_{t}}$ ways of choosing n_{t} coordinates out of n, every j represent one of the possible choices of n_{t} coordinates. The values of $z_{i, j}$ on these n_{t} coordinates are $x_{i}^{1}, \ldots, x_{i}^{n_{t}}$, and the rest of coordinates are zeros.

Let $y \in B_{l_{p}^{n}(\mathbb{R})}$. From definition of n_{t}, we gain that y has at most n_{t} coordinates in in absolute value greater than t. We find $j \in\left\{1, \ldots,\binom{n}{n_{t}}\right\}$ representing the same choice of n_{t} coordinates. We know that $|0-t|=t<c_{4} t$, and therefore from (2.12) we gain that there is $i \in\left\{1, \ldots, 2^{k-1}\right\}$ such that $\left\|z_{i, j}-y\right\|_{\infty}<c_{4} t$

Hence there exist $2^{k-1}\binom{n}{n_{t}}$ balls in $l_{\infty}^{n}(\mathbb{R})$ with radius $c_{4} t$ covering $B_{l_{p}^{n}(\mathbb{R})}$.
Now we will prove that there exist a positive constant c_{8} such that

$$
2^{k-1}\binom{n}{n_{t}} \leq 2^{c_{8} k-1} .
$$

We recall the well known inequality

$$
m!\geq\left(\frac{m}{e}\right)^{m}
$$

for every $m \in \mathbb{N}$. This inequality gives us

$$
\log _{2}\left(n_{t}!\right) \geq n_{t} \log _{2} n_{t}-2 n_{t}
$$

We have

$$
\begin{aligned}
\log _{2}\binom{n}{n_{t}} & \leq n_{t} \log _{2} n-\log _{2}\left(n_{t}!\right) \\
& \leq n_{t} \log _{2} n-n_{t} \log _{2} n_{t}+2 n_{t}=n_{t} \log _{2}\left(\frac{4 n}{n_{t}}\right) \\
& \leq 4 n_{t} \log _{2}\left(\frac{n}{n_{t}}+1\right)
\end{aligned}
$$

Using (2.10) we gain $\frac{n}{n_{t}} \leq 2 n t^{p}$ and therefore

$$
\log _{2}\binom{n}{n_{t}} \leq 8 n_{t} \log _{2}\left(n t^{p}+1\right)
$$

Hence

$$
2^{k-1}\binom{n}{n_{t}} \leq 2^{k-1+8 n_{t} \log _{2}\left(n t^{p}+1\right)}
$$

Finally from (2.10) we have

$$
\begin{equation*}
2^{k-1}\binom{n}{n_{t}} \leq 2^{k+c_{5} t^{-p} \log _{2}\left(n t^{p}+1\right)-1} \tag{2.13}
\end{equation*}
$$

By defintion of t we have

$$
n t^{p}=c_{1} n k^{-1} \log _{2}\left(n k^{-1}+1\right) \leq c_{1} n^{2} k^{-2} .
$$

Hence

$$
\log _{2}\left(n t^{p}+1\right) \leq \log _{2}\left(c_{1} n^{2} k^{-2}+1\right) \leq c_{6} \log _{2}\left(n k^{-1}+1\right)
$$

and from (2.13) we gain

$$
\begin{equation*}
2^{k-1}\binom{n}{n_{t}} \leq 2^{k+c_{7} t^{-p} \log _{2}\left(n k^{-1}+1\right)-1} \tag{2.14}
\end{equation*}
$$

where c_{7} is a positive constant depending only on p. From (2.7) we have

$$
t^{-p}=c_{1}^{-p} k\left(\log _{2}\left(n k^{-1}+1\right)\right)^{-1} .
$$

This combined with (2.14) gives us

$$
2^{k-1}\binom{n}{n_{t}} \leq 2^{k+c_{7} c_{1}^{-p} k\left(\log _{2}^{-1}\left(n k^{-1}+1\right)\right)^{-1} \log _{2}\left(n k^{-1}+1\right)-1}=2^{k\left(1+c_{7} c_{1}^{-p}\right)-1} .
$$

By c_{8} we denote the smallest natural number greater than $1+c_{7} c_{1}^{-p}$. Hence there exist $2^{c_{8} k-1}$ balls with radius $c_{4} t$ covernig B_{X}, with c_{4} and c_{8} depending only on p, with $c_{8} \geq 1$. Therefore from (2.7) we have

$$
\begin{aligned}
e_{c 8 k}\left(i d_{p, \infty}\right) & \leq c_{1} c_{4}\left(k^{-1} \log _{2}\left(n k^{-1}+1\right)\right)^{\frac{1}{p}} \\
& \leq c_{1} c_{4}\left(k^{-1} c_{8}^{-1} c_{8} \log _{2}\left(n k^{-1} c_{8}^{-1} c_{8}+1\right)\right)^{\frac{1}{p}} \\
& \leq c_{1} c_{4}\left(k^{-1} c_{8}^{-1} c_{8}^{2} \log _{2}\left(n k^{-1} c_{8}^{-1}+1\right)\right)^{\frac{1}{p}} \\
& \leq c_{1} c_{4} c_{8}^{\frac{2}{p}}\left(k^{-1} c_{8}^{-1} \log _{2}\left(n k^{-1} c_{8}^{-1}+1\right)\right)^{\frac{1}{p}} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
e_{k}\left(i d_{p, \infty}\right) \leq c_{9}\left(k^{-1} \log _{2}\left(n k^{-1}+1\right)\right)^{\frac{1}{p}} \tag{2.15}
\end{equation*}
$$

for all $1 \leq k \leq \tilde{c} n$, such that $k=c_{8} k^{\prime}$ for some $k^{\prime} \in\{1, \ldots, n\}$. The constants c_{8} and c_{9} are positive and depend only on p.

We will prove that (2.15) holds for all $1 \leq k \leq \tilde{c} n$. If $1 \leq k \leq c_{8}$ then (2.15) follows from Theorem 2.2 and

$$
c_{8}^{-1} \log _{2}\left(c_{8}^{-1}+1\right) \leq k^{-1} \log _{2}\left(n k^{-1}+1\right) .
$$

Now let $c_{8} \leq k \leq \tilde{c} n$. By k_{1} we define the largest natural number less or equal to k, such that $k_{1}=c_{8} k^{\prime}$ for some $k^{\prime} \in\{1, \ldots, n\}$. From monotonicity of entropy numbers and (2.15) we gain

$$
\begin{aligned}
e_{k}\left(i d_{p, \infty}\right) \leq e_{k_{1}}\left(i d_{p, \infty}\right) & \leq c_{9}\left(k_{1}^{-1} \log _{2}\left(n k_{1}^{-1}+1\right)\right)^{\frac{1}{p}} \\
& \leq c_{9}\left(2 c_{8}\left(k_{1}+c_{8}\right)^{-1} \log _{2}\left(n 2 c_{8}\left(k_{1}+c_{8}\right)^{-1}+1\right)\right)^{\frac{1}{p}} \\
& \leq c_{9}\left(2 c_{8}^{2}\left(k_{1}+c_{8}\right)^{-1} \log _{2}\left(n\left(k_{1}+c_{8}\right)^{-1}+1\right)\right)^{\frac{1}{p}} \\
& \leq c_{9}\left(2 c_{8}\right)^{\frac{2}{p}}\left(\left(k_{1}+c_{8}\right)^{-1} \log _{2}\left(n\left(k_{1}+c_{8}\right)^{-1}+1\right)\right)^{\frac{1}{p}}
\end{aligned}
$$

where we used that for all $k_{1} \geq 1$ and $c_{8} \geq 1$ it holds $2 c_{8} k_{1} \geq k_{1}+c_{8}$. Finally, because the function $f(x)=x^{-1} \log _{2}\left(n x^{-1}+1\right)$ is decreasing on $[1, \infty)$, and $k \leq k_{1}+c_{8}$ we obtain

$$
\begin{equation*}
e_{k}\left(i d_{p, \infty}\right) \leq c_{9}^{\prime}\left(k^{-1} \log _{2}\left(n k^{-1}+1\right)\right)^{\frac{1}{p}}, \tag{2.16}
\end{equation*}
$$

where c_{9}^{\prime} is positive and depens only on p.
Following lemma is a special case of Edmunds and Triebel, 1996, Theorem 1.3.2(i)].

Lemma 2.6. Let $0<p \leq q<\infty$ and let n be a natural number. We define $X=l_{p}^{n}(\mathbb{R}), Y=l_{q}^{n}(\mathbb{R})$ and $Z=l_{\infty}^{n}(\mathbb{R})$. Let k_{1}, k_{2} be natural numbers. Then

$$
e_{k_{1}+k_{2}-1}(i d: X \rightarrow Y) \leq 2^{\frac{1}{\frac{p}{p}}} e_{k_{1}}^{\frac{p}{q}}(i d: X \rightarrow X) e_{k_{2}}^{1-\frac{p}{q}}(i d: X \rightarrow Z)
$$

Proof. Let $0<p \leq q<\infty$ and let n be a natural number. We define $X=l_{p}^{n}$, $Y=l_{q}^{n}$ and $Z=l_{\infty}^{n}$. Since for all $x \geq 0$ it holds $x^{q}=x^{p} x^{q-p}$, we have that for all $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ it holds

$$
\sum_{i=1}^{n}\left|x_{i}\right|^{q} \leq \max _{i=1, \ldots, n}\left|x_{i}\right|^{q-p} \sum_{i=1}^{n}\left|x_{i}\right|^{p}
$$

Hence for all $x \in \mathbb{R}^{n}$ holds

$$
\begin{equation*}
\|x\|_{q} \leq\|x\|_{p}^{\frac{p}{q}} \cdot\|x\|_{\infty}^{1-\frac{p}{q}} . \tag{2.17}
\end{equation*}
$$

Let k_{1} and k_{2} be natural numbers. Let $\varepsilon>0$. We put $e_{1, k_{1}}=e_{k_{1}}(i d: X \rightarrow X)$ and $e_{2, k_{2}}=e_{k_{2}}(i d: X \rightarrow Z)$. Then there exist $x_{1}, \ldots, x_{2^{k_{1}-1}} \in X$ and $z_{1}, \ldots, z_{2^{k_{2}-1}} \in$ Z such that

$$
\begin{equation*}
B_{X} \subset \bigcup_{i=1}^{2^{k_{1}-1}}\left(x_{i}+(1+\varepsilon) e_{k_{1}} B_{X}\right) \quad \text { and } \quad B_{X} \subset \bigcup_{i=1}^{2^{k_{2}-1}}\left(z_{i}+(1+\varepsilon) e_{2, k_{2}} B_{Z}\right) \tag{2.18}
\end{equation*}
$$

For all $j=1, \ldots, 2^{k_{1}-1}$ we put

$$
\begin{equation*}
A_{j}=B_{X} \cap\left(x_{j}+(1+\varepsilon) e_{k_{1}} B_{X}\right) \tag{2.19}
\end{equation*}
$$

We prove that each of A_{j} can be covered with $2^{k_{2}-1}$ balls in Z with radius $(1+\varepsilon) e_{k_{2}} 2^{\frac{1}{p}}$ and which centres are in A_{j}.

Let $j \in\left\{1, \ldots, 2^{k_{1}-1}\right\}$. Since $A_{j} \subset B_{X}$, we gain from (2.18) that

$$
\begin{equation*}
A_{j} \subset \bigcup_{i=1}^{2^{k_{2}-1}}\left(z_{i}+(1+\varepsilon) e_{k_{2}} B_{Z}\right) \tag{2.20}
\end{equation*}
$$

For every $i=1, \ldots, 2^{k_{2}-1}$ we define $z_{i, j} \in A_{j}$ as follows.
If $A_{j} \cap\left(z_{i}+(1+\varepsilon) e_{k_{2}} B_{Z}\right)=\emptyset$ then let $z_{i, j}$ be an arbitrary point in A_{j}. If $A_{j} \cap\left(z_{i}+(1+\varepsilon) e_{k_{2}} B_{Z}\right) \neq \emptyset$, we put $z_{i, j} \in A_{j} \cap\left(z_{i}+(1+\varepsilon) e_{k_{2}} B_{Z}\right)$.

Let us suppose that $z_{i, j} \in A_{j} \cap\left(z_{i}+(1+\varepsilon) e_{k_{2}} B_{Z}\right)$, and let $z \in\left(z_{i}+(1+\varepsilon) e_{k_{2}} B_{Z}\right)$. Then from triangle inequality (2.1) we have

$$
\left\|z-z_{i, j}\right\|_{\infty} \leq\left\|z-z_{i}\right\|_{\infty}+\left\|z_{i}-z_{i, j}\right\|_{\infty} \leq 2(1+\varepsilon) .
$$

Hence

$$
\left(z_{i}+(1+\varepsilon) e_{2, k_{2}} B_{Z}\right) \subset z_{i, j}+2(1+\varepsilon) B_{Z}
$$

Using this, and (2.18) we obtain that for all $j=1, \ldots, 2^{k_{1}-1}$ holds

$$
A_{j} \subset \bigcup_{i=1}^{2^{k_{2}-1}}\left(z_{i, j}+2(1+\varepsilon) e_{2, k_{2}} 2 B_{Z}\right)
$$

Finally this, with 2.18) and 2.19) shows us that for every $a \in B_{X}$ there exist $z_{i, j}$ such that

$$
\left\|a-z_{i, j}\right\|_{\infty} \leq 2(1+\varepsilon) e_{2, k_{2}} .
$$

From (2.1) we have

$$
\left\|a-z_{i, j}\right\|_{p}^{\hat{p}} \leq\left\|a-x_{j}\right\|_{p}^{\hat{p}}+\left\|z_{i, j}-x_{j}\right\|_{p}^{\hat{p}} \leq 2(1+\varepsilon)^{\hat{p}} e_{1, k_{1}}^{\hat{p}} .
$$

Hence

$$
\begin{equation*}
\left\|a-z_{i, j}\right\|_{\infty} \leq 2^{\frac{1}{p}}(1+\varepsilon) e_{2, k_{2}} \quad \text { and } \quad\left\|a-z_{i, j}\right\|_{p} \leq 2^{\frac{1}{p}}(1+\varepsilon) e_{1, k_{1}} \tag{2.21}
\end{equation*}
$$

and from (2.17) we have

$$
\left\|a-z_{i, j}\right\|_{q} \leq 2^{\frac{1}{p}}(1+\varepsilon) e_{1, k_{1}}^{\frac{p}{q}} e_{2, k_{2}}^{1-\frac{p}{q}} .
$$

Hence

$$
e_{k_{1}+k_{2}-1}(i d: X \rightarrow Y) \leq 2^{\frac{1}{p}}(1+\varepsilon) e_{1, k_{1}}^{\frac{p}{q}} e_{2, k_{2}}^{1-\frac{p}{q}} .
$$

Passing to the infimum over $\varepsilon>0$ completes the proof.
Theorem 2.7. (by Edmunds and Triebel [1996]) Let $0<p \leq q \leq \infty$ and let n be a natural number. For each k natural number, let us denote $e_{k}=e_{k}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{q}^{n}(\mathbb{R})\right)$. Then

$$
e_{k} \leq c \cdot \begin{cases}1 & \text { if } 1 \leq k \leq \log _{2} n \tag{2.22}\\ \left(k^{-1} \log _{2}\left(n k^{-1}+1\right)\right)^{\frac{1}{p}-\frac{1}{q}} & \text { if } \log _{2} n \leq k \leq n \\ 2^{\frac{-(k-1)}{n}} n^{\frac{1}{q}-\frac{1}{p}} & \text { if } n \leq k,\end{cases}
$$

where c is a positive constant depending only on p and q.

Proof. Let $0<p \leq q \leq \infty$. The first case follows immediatly from Theorem 2.2,
If $q=\infty$ then from Theorem 2.5 we gain the second inequality, provided $k>c_{8}$, where c_{8} is positive constant depending only on p. If $q<\infty$ then from Lemma 2.6, where we put $k_{1}=1$ and $k_{2}=k$ we have

$$
e_{k} \leq 2^{\frac{1}{p}} e_{1}^{\frac{p}{q}}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{p}^{n}(\mathbb{R})\right) e_{k}^{1-\frac{p}{q}}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{\infty}^{n}(\mathbb{R})\right)
$$

From Theorem 2.2 and Theorem 2.5 we gain

$$
\begin{equation*}
e_{k} \leq c \cdot\left(k^{-1} \log _{2}\left(n k^{-1}+1\right)\right)^{\frac{1}{p}-\frac{1}{q}}, \tag{2.23}
\end{equation*}
$$

where c is a positive constant depending only on p and q, and with $k \geq c_{8}$.
Now let $k \leq c_{8}$. Then for all $n \in \mathbb{N}$ holds

$$
\left(k^{-1} \log _{2}\left(n k^{-1}+1\right)\right)^{\frac{1}{p}-\frac{1}{q}} \geq\left(c_{8}^{-1} \log _{2}\left(c_{8}^{-1}+1\right)\right)^{\frac{1}{p}-\frac{1}{q}}=c_{11} .
$$

As we can see, c_{11} is positive and depens only on p and q. Therefore from Theorem 2.2 we have

$$
e_{k} \leq c_{11} \cdot c_{11}^{-1} .
$$

Hence

$$
e_{k} \leq c_{11}^{-1}\left(k^{-1} \log _{2}\left(n k^{-1}+1\right)\right)^{\frac{1}{p}-\frac{1}{q}} .
$$

This together with (2.23) completes the proof of the second inequality. We also note that the second inequality holds also with $\log _{2} n \leq k \leq \tilde{c} c_{8} n$ and that $c_{8} \geq 1$.

As for the third inequality, firstly we put $n \leq k \leq \tilde{c} n$. Then

$$
2^{2^{-k}} n^{\frac{1}{q}-\frac{1}{p}} \geq\left(2^{c}\left(k^{-1} \log _{2}\left(n k^{-1}+1\right)\right)^{\frac{1}{p}-\frac{1}{q}}\right.
$$

We have already proved, that

$$
e_{k} \leq c \cdot\left(k^{-1} \log _{2}\left(n k^{-1}+1\right)\right)^{\frac{1}{p}-\frac{1}{q}} .
$$

Hence there is a positive constant c_{12} such that

$$
e_{k} \leq c_{12} \cdot 2^{\frac{-k}{n}} n^{\frac{1}{q}-\frac{1}{p}},
$$

which is the third inequality provided $n \leq k \leq \tilde{c} n$.
And finally Theorem 2.4 proves the third inequality provided $k \geq \tilde{c} n$.

2.2 Lower estimate with $p \leq q$

The proof of the lower estimate for $1 \leq k \leq \log _{2} n$ and $k \geq n$ is straightforward and was shown by Triebel, 1997, Theorem 7.3]. We divided it into Theorems 2.8 and 2.10. The lower estimate for $\log \leq k \leq n$ is more difficult to prove and it was shown by Kühn 2001.

Theorem 2.8. Let $0<p \leq q \leq \infty$ and let n be a natural number. Then for each natural number $k \leq \log _{2} n$ holds

$$
e_{k}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{q}^{n}(\mathbb{R})\right) \geq c,
$$

where c is a positive constant depending only on p and q.

Proof. Let k be a natural number such that $k \leq \log _{2} n$. For all $\varepsilon>e_{k}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{q}^{n}(\mathbb{R})\right)$, there exist $y_{1}, \ldots, y_{2^{k-1}} \in Y$ such that

$$
\begin{equation*}
B_{X} \subset \bigcup_{i=1}^{2^{k-1}}\left(y_{i}+\varepsilon B_{Y}\right) \tag{2.24}
\end{equation*}
$$

Let us recall, that we denote by e_{1}, \ldots, e_{n} the canonical vectors in \mathbb{R}^{n}. As their number n is by our assumption larger than the number of balls on the right-hand side of (2.24), we may find $i, j \in\{1, \ldots, n\}$ with $i \neq j$ and $m \in\left\{1, \ldots, 2^{k-1}\right\}$ such that both $\frac{1}{2} \cdot e_{i}, \frac{1}{2} \cdot e_{j} \in y_{m}+\varepsilon B_{Y}$. From (2.1) we obtain

$$
\left\|\frac{1}{2} e_{i}-\frac{1}{2} e_{j}\right\|_{q}^{\hat{q}} \leq\left\|\frac{1}{2} e_{i}-y_{m}\right\|_{q}^{\hat{q}}+\left\|y_{m}-\frac{1}{2} e_{j}\right\|_{q}^{\hat{q}} \leq 2 \varepsilon^{\hat{q}},
$$

We have

$$
\left\|\frac{1}{2} e_{i}-\frac{1}{2} e_{j}\right\|_{q}=\left(2^{-q}+2^{-q}\right)^{\frac{1}{q}}=2^{\frac{1}{q}-1}
$$

hence

$$
2^{\frac{1}{q}-\frac{1}{q}-1} \leq \varepsilon .
$$

As this holds for every $\varepsilon>e_{k}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{q}^{n}(\mathbb{R})\right)$, the same inequality is true also for $e_{k}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{q}^{n}(\mathbb{R})\right)$ and we finish the proof.

The idea of the following lemma is pretty simple. If some set is a subset of some union of sets then the volume of the first set has to be less or equal to the sum of volumes of the sets from that union.

Lemma 2.9. Let $T \in \mathcal{L}(X, Y)$ and k be a natural number. We denote n dimension of Y. Then it holds

$$
e_{k}(T) \geq 2^{\frac{-k+1}{n}}\left(\frac{\operatorname{vol} T\left(B_{X}\right)}{\operatorname{vol} B_{Y}}\right)^{\frac{1}{n}}
$$

Proof. Let $\varepsilon>e_{k}(T)$. Then there exist $y_{1}, \ldots, y_{2^{k-1}} \in Y$ such that

$$
T\left(B_{X}\right) \subset \bigcup_{i=1}^{2^{k-1}}\left(y_{i}+\varepsilon B_{Y}\right)
$$

Therefore

$$
2^{k-1} \operatorname{vol} \varepsilon B_{Y} \geq \operatorname{vol} T\left(B_{X}\right)
$$

That gives us

$$
2^{k-1} \varepsilon^{n} \operatorname{vol} B_{Y} \geq \operatorname{vol} T\left(B_{X}\right) \quad \text { and } \quad \varepsilon \geq 2^{\frac{-k+1}{n}}\left(\frac{\operatorname{vol} T\left(B_{X}\right)}{\operatorname{vol} B_{Y}}\right)^{\frac{1}{n}}
$$

And with passing to the infimum with ε, we gain desired inequality.

Theorem 2.10. Let $0<p \leq \infty$ and $0<q \leq \infty$ and let n be a natural number. We put $X=l_{p}^{n}(\mathbb{R})$ and $Y=l_{q}^{n}(\mathbb{R})$.
For each $k \in \mathbb{N}$ we denote $e_{k}=e_{k}(i d: X \rightarrow Y)$. Then

$$
e_{k} \geq c \cdot 2^{\frac{-k}{n}} n^{\frac{1}{q}-\frac{1}{p}},
$$

where c is a positive constant depending only on p, q.
Proof. From Lemma 2.9 we have

$$
e_{k} \geq 2^{\frac{-k+1}{n}}\left(\frac{\operatorname{vol} B_{X}}{\operatorname{vol} B_{Y}}\right)^{\frac{1}{n}}
$$

From Theorem 1.5 we know, that there exist positive constants c_{p}, c_{q} depending only on p and q respectively, such that

$$
\operatorname{vol}\left(B_{X}\right)^{\frac{1}{n}} \geq c_{p} n^{\frac{1}{p}} \quad \text { and } \quad \operatorname{vol}\left(B_{Y}\right)^{\frac{1}{n}} \leq c_{q} n^{\frac{1}{q}} .
$$

Therefore

$$
e_{k} \geq c_{p} c_{q}^{-1} \cdot 2^{\frac{-k+1}{n}} n^{\frac{1}{q}-\frac{1}{p}}=c \cdot 2^{\frac{-k+1}{n}} n^{\frac{1}{q}-\frac{1}{p}} .
$$

Theorem 2.11. (by Kühn [2001]) Let $0<p \leq q \leq \infty$ and let n be a natural number. For each $k \in \mathbb{N}$ we denote $e_{k}=e_{k}\left(i d: l_{p}^{n} \rightarrow l_{q}^{n}\right)$.

If $\log _{2} n \leq k \leq n$, then

$$
\begin{equation*}
e_{k} \geq c \cdot\left(k^{-1} \log _{2}\left(n k^{-1}+1\right)\right)^{\frac{1}{p}-\frac{1}{q}}, \tag{2.25}
\end{equation*}
$$

where c is a positive constant depending only on p and q.
Proof. Let $0<p \leq q \leq \infty$ and let n be a natural number. Firstly we prove that (2.25) holds for any natural number k such that $\log _{2} n \leq k \leq \frac{c_{1} n}{2}$, where $c_{1}<1$ is a positive constant depending only on p and q. As there is no natural number between $\log _{2} n$ and $\frac{c_{1} n}{4}$, if $n \leq 3$, we can suppose that $4 \leq n$. For all $m \in \mathbb{N}$ such that $m \leq \frac{n}{4}$, we put

$$
\begin{equation*}
S_{m}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in\{-1,0,1\}^{n}: \sum_{i=1}^{n}\left|x_{i}\right|=2 m\right\} \tag{2.26}
\end{equation*}
$$

and note that S_{m} has cardinality

$$
\begin{equation*}
\left|S_{m}\right|=\binom{n}{2 m} \cdot 2^{2 m} \tag{2.27}
\end{equation*}
$$

For all $x, y \in \mathbb{R}^{n}$ we define Hamming distance as follows

$$
h(x, y)=\left|\left\{i: x_{i} \neq y_{i}\right\}\right| .
$$

Let $x \in S_{m}$. We put

$$
H_{m}(x)=\{y \in S: h(x, y) \leq m\} .
$$

As for the cardinality of $H_{m}(x)$, there is $\binom{n}{m}$ ways to choose m coordinates where x and y may differ, and 3 possible values for each of that coordinates for y. Hence

$$
\begin{equation*}
\left|H_{m}(x)\right| \leq\binom{ n}{m} \cdot 3^{m} \tag{2.28}
\end{equation*}
$$

We put $a_{m}=\binom{n}{2 m} \cdot\binom{n}{m}^{-1}$. Let A be any subset of S with cardinality at most a_{m}. Then it holds
$\left\lvert\,\left\{y \in S_{m}: \exists x \in A \quad\right.$ with $\left.\quad h(x, y) \leq m\right\}\left|\leq \sum_{x \in A}\right| H_{m}(x)\left|\leq|A| \cdot\binom{n}{m} \cdot 3^{m}<\left|S_{m}\right|\right.\right.$,
where we used (2.28) in the second inequality and 2.27 in the third. Therefore, for any $A \subset S_{m}$ with $|A| \leq a_{m}$ there is $x \in S_{m}$ such that for any $y \in A$ holds $h(x, y)>m$. Hence we can inductively find $A_{m} \subset S_{m}$ with cardinality greater than a_{m}, such that for all distinct $x, y \in A$ is $h(x, y)>m$.

From definition of $h(x, y)$, and $A_{m} \subset S_{m}$, we see that for all $x, y \in A_{m}$ such that $x \neq y$ is

$$
\begin{equation*}
\|x-y\|_{q}=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{q}\right)^{\frac{1}{q}}>m^{\frac{1}{q}} \tag{2.29}
\end{equation*}
$$

We put

$$
B_{m}=\left\{b: b=(3 m)^{-\frac{1}{p}} \cdot x \quad \text { for some } \quad x \in A_{m}\right\}
$$

and note $\left|B_{m}\right|=\left|A_{m}\right|>a_{m}$. Since $A_{m} \subset S_{m}$, for all $b \in B_{m}$ we have

$$
\|b\|_{p}=\left(2 m \cdot(3 m)^{-1}\right)^{\frac{1}{p}}<1
$$

hence $B \subset B_{l_{p}^{n}(\mathbb{R})}$. We can also see that for all distinct $b_{1}, b_{2} \in B$ holds

$$
\left\|b_{1}-b_{2}\right\|_{q}>(3 m)^{-\frac{1}{p}} m^{\frac{1}{q}}
$$

Hence, there exist a positive constat c^{\prime} depending only on p and q such that for all $k \leq \log _{2} a_{m}$ it holds

$$
\begin{equation*}
e_{k} \geq c^{\prime} m^{\frac{1}{q}-\frac{1}{p}} \tag{2.30}
\end{equation*}
$$

which can be proved similarly as lemma 2.3 .
We have

$$
a_{m}=\binom{n}{2 m} \cdot\binom{n}{m}^{-1}=\frac{m!(n-m)!}{(2 m)!(n-2 m)!}=\prod_{i=1}^{m} \frac{n-2 m+i}{m+i}
$$

and we know that function $f(x)=\frac{n-2 m+x}{m+x}$ is decreasing in interval $(0, \infty)$. Therefore

$$
\left(\frac{n-m}{2 m}\right)^{m} \leq a \leq\left(\frac{n-2 m}{m}\right)^{m}
$$

That implies

$$
\begin{equation*}
c_{1} m \log _{2} \frac{n}{m} \leq \log _{2} a \leq m \log _{2} \frac{n}{m} \tag{2.31}
\end{equation*}
$$

where c_{1} is a positive constant less than 1 and independent of n and m.

Now let $k \in \mathbb{N}$, such that $c_{1} \cdot m \log _{2}\left(\frac{n}{m}\right) \leq k \leq \frac{c_{1} n}{2}$, for some $m \in\left\{1, \ldots, \frac{n}{4}\right\}$. We will prove that then it holds

$$
\begin{equation*}
m^{-1} \geq c_{2} \cdot \frac{\log _{2}\left(\frac{n}{k}+1\right)}{k} \tag{2.32}
\end{equation*}
$$

where c_{2} is positive and depens only on p and q. The function $f(x)=x \log _{2} \frac{n}{x}$ is strictly increasing on $\left[1, \frac{n}{4}\right]$ and maps this interval onto $\left[\log _{2} n, \frac{n}{2}\right]$. Therefore it has on $\left[1, \frac{n}{4}\right]$ inverse function, which is also increasing. We can easily verify that if $x \in\left[1, \frac{n}{4}\right]$ then

$$
\begin{equation*}
x \leq \frac{f(x)}{\log _{2}\left(\frac{n}{f(x)}\right)} \tag{2.33}
\end{equation*}
$$

We use 2.33) and that $f(x)$ is increasing on $\left[1, \frac{n}{4}\right]$, and gain

$$
\begin{equation*}
m^{-1} \geq \frac{\log _{2}\left(\frac{n}{c_{1}^{-1} k}\right)}{c_{1}^{-1} k} . \tag{2.34}
\end{equation*}
$$

Since $k \leq \frac{c_{1} n}{2}$ we have $\frac{n}{c_{1}^{-1} k} \geq 2$ therefore

$$
\begin{equation*}
2 \log _{2}\left(\frac{n}{c_{1}^{-1} k}\right) \geq \log _{2}\left(\frac{n}{c_{1}^{-1} k}+1\right) \tag{2.35}
\end{equation*}
$$

We have also

$$
\begin{equation*}
\left(c_{1}^{-1}+1\right) \log _{2}\left(\frac{n}{c_{1}^{-1} k}+1\right) \geq \log _{2}\left(\frac{n}{k}+1\right) \tag{2.36}
\end{equation*}
$$

Combinig (2.35) and (2.36) with 2.34, we gain desired (2.32).
Finally, let k be a natural number such that $\log _{2} n \leq k \leq \frac{c_{1} n}{2}$. If there exist natural number $m \leq \frac{n}{4}$ such that

$$
c_{1} m \log _{2}\left(\frac{n}{m}\right) \leq k \leq \log _{2} a_{m},
$$

then (2.25) follows from (2.30) and (2.32). If there is no such m, then we find the largest natural number m such that $c_{1} m \log _{2}\left(\frac{n}{m}\right)<k$.
We have $c_{1} \log _{2}\left(\frac{n}{1}\right) \leq \log _{2} n$ and $c_{1} \frac{n}{4} \log _{2}\left(\frac{n}{4}\right)=\frac{c_{1} n}{2}$. Therefore we note that $1 \leq m \leq \frac{n}{4}-1$, and because m is the largest number with mentioned property we gain

$$
\begin{equation*}
c_{1} m \log _{2}\left(\frac{n}{m}\right)<k \leq c_{1}(m+1) \log _{2}\left(\frac{n}{m+1}\right) . \tag{2.37}
\end{equation*}
$$

From (2.32) we gain

$$
2 m \leq 2 \cdot \frac{k}{\log _{2}\left(\frac{n}{k}\right)+1}
$$

and because $m \geq 1$

$$
\begin{equation*}
m+1 \leq 2 \cdot \frac{k}{\log _{2}\left(\frac{n}{k}\right)+1} \tag{2.38}
\end{equation*}
$$

Since $k \leq c_{1}(m+1) \log _{2}\left(\frac{n}{m+1}\right) \leq \log _{2} a_{m+1}$, we obtain from 2.30) that it holds

$$
e_{k} \geq 2 c^{\prime}(m+1)^{\frac{1}{q}-\frac{1}{p}}
$$

Combining this with (2.38) gives us that (2.25) holds for any $\log _{2} n \leq k \leq \frac{c_{1} n}{2}$. To prove 2.25 for $\frac{c_{1} n}{2} \leq k \leq n$ we use Theorem 2.10 and monotonicity of entropy numbers.

Finally, Theorems 2.8, 2.10 and 2.11 give us the following Theorem.
Theorem 2.12. (by Schütt (1984]) Let $0<p \leq q \leq \infty$ and let n be a natural number. For each k natural number, let us denote $e_{k}=e_{k}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{q}^{n}(\mathbb{R})\right)$. Then

$$
e_{k} \geq c \cdot \begin{cases}1 & \text { if } 1 \leq k \leq \log _{2} n \tag{2.39}\\ \left(k^{-1} \log _{2}\left(n k^{-1}+1\right)\right)^{\frac{1}{p}-\frac{1}{q}} & \text { if } \log _{2} n \leq k \leq n \\ 2^{\frac{-(k-1)}{n}} n^{\frac{1}{q}-\frac{1}{p}} & \text { if } n \leq k,\end{cases}
$$

where c is a positive constant depending only on p and q.

2.3 Estimate with $p \geq q$

The estimate with $p \geq q$ easily follows from Theorem 2.10 and Theorem 1.1(4).
Theorem 2.13. Let $0<q \leq p \leq \infty$, and let n be a natural number. Then for all $k \in \mathbb{N}$ holds

$$
\begin{equation*}
c \cdot 2^{\frac{-(k-1)}{n}} n^{\frac{1}{q}-\frac{1}{p}} \leq e_{k}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{q}^{n}(\mathbb{R})\right) \leq C \cdot 2^{\frac{-(k-1)}{n}} n^{\frac{1}{q}-\frac{1}{p}}, \tag{2.40}
\end{equation*}
$$

where c and C are positive constants depending only on p and q.
Proof. The lower estimate follows directly from Theorem 2.10 .
To prove the upper estimate, we use Theorem 1.1(4),
with $R=i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{p}^{n}(\mathbb{R}), T=i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{q}^{n}(\mathbb{R})$ and $m_{1}=k$ and $m_{2}=1$. This choice gives us

$$
\begin{equation*}
e_{k}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{q}^{n}(\mathbb{R})\right) \leq e_{k}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{p}^{n}(\mathbb{R})\right) \cdot e_{1}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{q}^{n}(\mathbb{R})\right) . \tag{2.41}
\end{equation*}
$$

Since $q \leq p$, from (1.4) and Theorem 1.1(1) we gain

$$
\begin{equation*}
e_{1}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{p}^{n}(\mathbb{R})\right) \leq n^{\frac{1}{q}-\frac{1}{p}} \tag{2.42}
\end{equation*}
$$

To estimate $e_{k}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{p}^{n}(\mathbb{R})\right)$ we use Theorem 2.7 , where we put $p=q$. We obtain that if $k \leq n$ then

$$
e_{k}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{p}^{n}(\mathbb{R})\right) \leq c_{1},
$$

and since $k \leq n$ we have

$$
e_{k}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{p}^{n}(\mathbb{R})\right) \leq c_{2} \cdot 2^{\frac{-(k-1)}{n}}
$$

where c_{2} is positive and independent of n and k. On the other hand, if $k \geq n$, Theorem 2.7 gives us

$$
e_{k}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{p}^{n}(\mathbb{R})\right) \leq C \cdot 2^{\frac{-(k-1)}{n}}
$$

Combining these conclusions with (2.41) and 2.42), we gain that there exist a positive constant C depending only on p and q such that for all $k \in \mathbb{N}$ it holds

$$
e_{k}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{q}^{n}(\mathbb{R})\right) \leq C \cdot 2^{\frac{-(k-1)}{n}} n^{\frac{1}{q}-\frac{1}{p}} .
$$

3. Entropy numbers of
 $i d: l_{p}^{n}(\mathbb{C}) \rightarrow l_{q}^{n}(\mathbb{C})$

In the previous chapter we have presented several estimates for entropy numbers of $i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{q}^{n}(\mathbb{R})$. We will show that similar estimates hold also for entropy numbers of $i d: l_{p}^{n}(\mathbb{C}) \rightarrow l_{q}^{n}(\mathbb{C})$, which is formulated in Theorem 3.5. This relation between real and complex case was remarked by Kühn, 2001, Remark 1.]. We present proof.

Lemma 3.1. Let $p \in(0, \infty]$ and $n \in \mathbb{N}$. We define mapping $I_{p}^{n}: l_{p}^{n}(\mathbb{C}) \rightarrow l_{p}^{n}\left(l_{2}^{2}(\mathbb{R})\right)$ for all $\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ as follows

$$
I_{p}^{n}\left(z_{1}, \ldots, z_{n}\right)=\left(\operatorname{Re} z_{1}, \operatorname{Im} z_{1}, \ldots, \operatorname{Re} z_{n}, \operatorname{Im} z_{n}\right)
$$

Then I_{p}^{n} is bijection and $\left\|\left(z_{1}, \ldots, z_{n}\right)\right\|_{l_{p}^{n}(\mathbb{C})}=\left\|I_{p}^{n}\left(z_{1}, \ldots, z_{n}\right)\right\|_{l_{p}^{n}\left(l_{2}^{2}(\mathbb{R})\right)}$.
Proof.

$$
\begin{aligned}
\left\|\left(z_{1}, \ldots, z_{n}\right)\right\|_{l_{p}^{n}(\mathbb{C})} & =\left(\sum_{i=1}^{n}\left|z_{i}\right|^{p}\right)^{\frac{1}{p}} \\
& =\left(\sum_{i=1}^{n}\left(\left(\operatorname{Re} z_{i}\right)^{2}+\left(\operatorname{Im} z_{i}\right)^{2}\right)^{\frac{1}{2}}\right)^{\frac{1}{p}} \\
& =\left\|I_{p}^{n}\left(z_{1}, \ldots, z_{n}\right)\right\|_{l_{p}^{n}\left(l_{2}^{2}(\mathbb{R})\right)}
\end{aligned}
$$

Theorem 3.2. Let $p, q \in(0, \infty]$ and $n \in \mathbb{N}$. Denote $i d_{1}=i d: l_{p}^{n}(\mathbb{C}) \rightarrow l_{q}^{n}(\mathbb{C})$ and $i d_{2}=i d: l_{p}^{n}\left(l_{2}^{2}(\mathbb{R})\right) \rightarrow l_{q}^{n}\left(l_{2}^{2}(\mathbb{R})\right)$ Then for all k positive integers it holds

$$
e_{k}\left(i d_{1}\right)=e_{k}\left(i d_{2}\right)
$$

Proof. Using mappings I_{p}^{n} and I_{q}^{n} defined in the previous lemma, we have

$$
i d_{1}=\left(I_{q}^{n}\right)^{-1} \circ i d_{2} \circ I_{p}^{n}
$$

From Theorem 1.1 we gain

$$
\begin{aligned}
e_{k}\left(i d_{1}\right) & =e_{k+1-1}\left(\left(I_{q}^{n}\right)^{-1} \circ i d_{2} \circ I_{p}^{n}\right) \\
& \leq e_{1}\left(\left(I_{q}^{n}\right)^{-1}\right) e_{k}\left(i d_{2} \circ I_{p}^{n}\right) \\
& \leq e_{1}\left(\left(I_{q}^{n}\right)^{-1}\right) e_{k}\left(i d_{2}\right) e_{1}\left(I_{p}^{n}\right) .
\end{aligned}
$$

We know that both I_{p}^{n} and $\left(I_{q}^{n}\right)^{-1}$ are isometric, therefore $e_{1}\left(\left(I_{q}^{n}\right)^{-1}\right)=1=e_{1}\left(I_{p}^{n}\right)$. Hence $e_{k}\left(i d_{1}\right) \leq e_{k}\left(i d_{2}\right)$. On the other hand, we have

$$
i d_{2}=I_{q}^{n} \circ i d_{1} \circ\left(I_{p}^{n}\right)^{-1},
$$

and we can similarly prove that $e_{k}\left(i d_{2}\right) \leq e_{k}\left(i d_{1}\right)$.

Theorem 3.3. Let $0<p \leq \infty$, and let n be a natural number. Then there exist positive constants c_{1} and c_{2} depending only on p, such that for all $x=\left(x_{1}, \ldots, x_{2 n}\right) \in \mathbb{R}^{2 n}$ it holds

$$
\begin{equation*}
c_{1} \cdot\|x\|_{l_{p}^{2 n}(\mathbb{R})} \leq\|x\|_{l_{p}^{n}\left(l_{2}^{2}(\mathbb{R})\right)} \leq c_{2} \cdot\|x\|_{l_{p}^{2 n}(\mathbb{R})} . \tag{3.1}
\end{equation*}
$$

Proof. Let $0 \leq a$ and $0 \leq b$. Then from the inequality between the arithmetic and geometric mean we gain

$$
\begin{equation*}
2^{-1}(a+b) \leq \sqrt{a^{2}+b^{2}} \leq a+b \tag{3.2}
\end{equation*}
$$

Let $0<p$. We have

$$
2^{p} \cdot\left(a^{p}+b^{p}\right) \geq 2^{p} \cdot \max \left\{a^{p}, b^{p}\right\}=\max \left\{(2 a)^{p},(2 b)^{p}\right\} \geq(a+b)^{p} .
$$

Together with (3.2) it follows that

$$
\begin{equation*}
\left(\sqrt{a^{2}+b^{2}}\right)^{p} \leq 2 \cdot 2^{p} \cdot\left(a^{p}+b^{p}\right) \tag{3.3}
\end{equation*}
$$

On the other hand, we see, that

$$
2^{-p} \cdot 2^{-1} \cdot\left(a^{p}+b^{p}\right) \leq 2^{-p} \cdot \max \left\{a^{p}, b^{p}\right\} \leq 2^{-p}(a+b)^{p} .
$$

Together with (3.2) it follows that

$$
\begin{equation*}
2^{-1-p}\left(a^{p}+b^{p}\right) \leq\left(\sqrt{a^{2}+b^{2}}\right)^{p} . \tag{3.4}
\end{equation*}
$$

Using (3.3) and (3.4) we obtain, that for all $x=\left(x_{1}, \ldots, x_{2 n}\right) \in \mathbb{R}^{2 n}$ and $k=1, \ldots, n$ it holds

$$
2^{-1-p}\left(\left|x_{2 k-1}\right|^{p}+\left|x_{2 k}\right|^{p}\right) \leq\left(\sqrt{\left|x_{2 k-1}\right|^{2}+\left|x_{2 k}\right|^{2}}\right)^{p} \leq 2 \cdot 2^{p}\left(\left|x_{2 k-1}\right|^{p}+\left|x_{2 k}\right|^{p}\right) .
$$

Hence

$$
\begin{equation*}
2^{-1-p} \sum_{k=1}^{n}\left|x_{2 k-1}\right|^{p}+\left|x_{2 k}\right|^{p} \leq \sum_{k=1}^{n}\left(\sqrt{\left|x_{2 k-1}\right|^{2}+\left|x_{2 k}\right|^{2}}\right)^{p} \leq 2^{1+p} \sum_{k=1}^{n}\left|x_{2 k-1}\right|^{p}+\left|x_{2 k}\right|^{p} . \tag{3.5}
\end{equation*}
$$

Finally, the definition of $\|\cdot\|_{l_{p}^{n}\left(l_{2}(\mathbb{R})\right)}$ and $\|\cdot\|_{l_{p}^{2 n}(\mathbb{R})}$ implies that

$$
2^{\frac{-1-p}{p}}\|\cdot\|_{2_{p}^{2 n}(\mathbb{R})} \leq\|\cdot\|_{l_{p}^{n}\left(l_{2}^{2}(\mathbb{R})\right)} \leq 2^{\frac{1+p}{p}}\|\cdot\|_{l_{p}^{2 n}(\mathbb{R})} .
$$

Theorem 3.4. Let $0<p \leq \infty, 0<q \leq \infty$ and n be a natural number. Then there exist positive constants c and C depending only on p and q such that for all $k \in \mathbb{N}$ holds

$$
\begin{equation*}
c \cdot e_{k}\left(i d: l_{p}^{2 n}(\mathbb{R}) \rightarrow l_{q}^{2 n}(\mathbb{R})\right) \leq e_{k}\left(i d: l_{p}^{n}(\mathbb{C}) \rightarrow l_{q}^{n}(\mathbb{C})\right) \leq C \cdot e_{k}\left(i d: l_{p}^{2 n}(\mathbb{R}) \rightarrow l_{q}^{2 n}(\mathbb{R})\right) . \tag{3.6}
\end{equation*}
$$

Proof. According Theorem 3.2

$$
\begin{equation*}
e_{k}\left(i d: l_{p}^{n}(\mathbb{C}) \rightarrow l_{q}^{n}(\mathbb{C})\right)=e_{k}\left(i d: l_{p}^{n}\left(l_{2}^{2}(\mathbb{R})\right) \rightarrow l_{q}^{n}\left(l_{2}^{2}(\mathbb{R})\right)\right) \tag{3.7}
\end{equation*}
$$

For all $0<r \leq \infty$, we denote $X_{r}=l_{r}^{2 n}(\mathbb{R})$ and $Y_{r}=l_{r}^{n}\left(l_{2}^{2}(\mathbb{R})\right)$. Then it holds

$$
i d:\left(Y_{p} \rightarrow Y_{q}\right)=\left(i d: Y_{p} \rightarrow X_{p}\right) \circ\left(i d: X_{p} \rightarrow X_{q}\right) \circ\left(i d: X_{q} \rightarrow Y_{q}\right)
$$

Let k be a natural number. We use Theorem 1.1(4) with $R=i d: Y_{p} \rightarrow X_{p}$, $T=\left(i d: X_{p} \rightarrow X_{q}\right) \circ\left(i d: X_{q} \rightarrow Y_{q}\right)$ and $m_{1}=1, m_{2}=k$, and then we use it once again with $R=i d: X_{p} \rightarrow X_{q}, T=i d: X_{q} \rightarrow Y_{q}$ and $m_{1}=k, m_{2}=1$. Alltogether we gain

$$
\begin{equation*}
e_{k}\left(i d: Y_{p} \rightarrow Y_{q}\right) \leq e_{1}\left(i d: Y_{p} \rightarrow X_{p}\right) \cdot e_{k}\left(i d: X_{p} \rightarrow X_{q}\right) \cdot e_{1}\left(i d: X_{q} \rightarrow Y_{q}\right) \tag{3.8}
\end{equation*}
$$

Now we combine Theorem 1.1(1) with Theorem 3.3 and obtain that

$$
e_{1}\left(i d: Y_{p} \rightarrow X_{p}\right) \leq c_{1}^{-1} \quad \text { and } \quad e_{1}\left(i d: X_{q} \rightarrow Y_{q}\right) \leq c_{2},
$$

where c_{1} and c_{2} are positive and depend only on p and q respectively. Combining this conclusions with (3.8) and (3.7) we gain

$$
e_{k}\left(i d: l_{p}^{n}(\mathbb{C}) \rightarrow l_{q}^{n}(\mathbb{C})\right) \leq c_{1}^{-1} c_{2} e_{k}\left(i d: l_{p}^{2 n}(\mathbb{R}) \rightarrow l_{q}^{2 n}(\mathbb{R})\right)
$$

The second inequality can be proved similarly.
And the corollary of the Theorem 3.4 is following theorem.
Theorem 3.5. Let $0, p \leq \infty, 0<q \leq \infty$ and let n be a natural number. If $0<p \leq q \leq \infty$ then for all $k \in \mathbb{N}$ it holds

$$
e_{k}\left(i d: l_{p}^{n}(\mathbb{C}) \rightarrow l_{q}^{n}(\mathbb{C})\right) \sim \begin{cases}1 & \text { if } 1 \leq k \leq \log _{2} 2 n \tag{3.9}\\ \left(k^{-1} \log _{2}\left(2 n k^{-1}+1\right)\right)^{\frac{1}{p}-\frac{1}{q}} & \text { if } \log _{2} 2 n \leq k \leq 2 n \\ 2^{\frac{-(k-1)}{2 n}}(2 n)^{\frac{1}{q}-\frac{1}{p}} & \text { if } 2 n \leq k\end{cases}
$$

and if $0<q \leq p \leq \infty$ then for all $k \in \mathbb{N}$ it holds

$$
\begin{equation*}
e_{k}\left(i d: l_{p}^{n}(\mathbb{C}) \rightarrow l_{q}^{n}(\mathbb{C})\right) \sim 2^{\frac{-(k-1)}{2 n}}(2 n)^{\frac{1}{q}-\frac{1}{p}} \tag{3.10}
\end{equation*}
$$

If we have $q=\infty$ (perhaps even $p=\infty$) we define $\frac{1}{q}=0$ (or $\frac{1}{p}=0$).
The equivalence \sim from the previous Theorem is defined as follows. Let $x(n, k), y(n, k): \mathbb{N}^{2} \rightarrow \mathbb{R}$, then

$$
x \sim y \quad \text { iff } \quad c \cdot y(n, k) \leq x(n, k) \leq C \cdot y(n, k),
$$

where c, C are positive constants idependent of n and k. For example

$$
\begin{gathered}
e_{k}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{q}^{n}(\mathbb{R})\right) \sim 2^{\frac{-(k-1)}{2 n}}(2 n)^{\frac{1}{q}-\frac{1}{p}} \quad \text { if and only if } \\
c \cdot 2^{\frac{-(k-1)}{2 n}}(2 n)^{\frac{1}{q}-\frac{1}{p}} \leq e_{k}\left(i d: l_{p}^{n}(\mathbb{R}) \rightarrow l_{q}^{n}(\mathbb{R})\right) \leq C \cdot 2^{\frac{-(k-1)}{2 n}}(2 n)^{\frac{1}{q}-\frac{1}{p}}
\end{gathered}
$$

for some positive constants c, C independent of n and k, but possibly depending on p and q.

Conclusion

The aim of this study was to introduce the concept of entropy numbers of an operator and show detailed proof of the estimates of the entropy numbers of natural identity between finite-dimensional sequence spaces.

In the first chapter we defined entropy numbers and l_{p} spaces. We also computed and estimated volume of the unit ball in l_{p}^{n}. In the second chapter we summarized and proved the estimates of entropy numbers of natural identity between $l_{p}^{n}(\mathbb{R})$ and $l_{q}^{n}(\mathbb{R})$. The main idea in the proofs was using the estimates of volumes of the unit balls as well as combinatorial aspects. The third chapter extends the estimates from the second chapter to the complex sequence spaces.

The relation between entropy numbers and eigenvalues of compact operators could be subject to further study.

Bibliography

D.E. Edmunds and H. Triebel. Function Spaces, Entropy Numbers and Differential Operators. Cambridge Tracts in Mathematics (No. 120). Cambridge Univ. Press, Cambridge, UK, 1996.

Thomas Kühn. A Lower Estimate for Entropy Numbers. Journal of Approximation Theory, 5:120-124, 2001. doi: 10.1006/jath.2000.3554. URL http://dx.doi.org/10.1006/jath.2000.3554.
G. Pisier. The Volume of Convex Bodies and Banach spaces. Cambridge Tracts in Mathematics (No. 94). Cambridge Univ. Press, Cambridge, UK, 1989.

Carsten Schütt. Entropy Numbers of Diagonal Operators between Symmetric Banach Spaces. Journal of Approximation Theory, 8:121-128, 1984. doi: 10.1016/ 0021-9045(84)90021-2. URL http://dx.doi.org/10.1016/0021-9045(84) 90021-2.
H. Triebel. Fractals and Spectra. Birkhäuser, Basel, 1997.

Jan Vybíral. Modern Approximation Theory. online. URL http://www.karlin. mff.cuni.cz/~vybiral/Vort/Vort.pdf.

