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List of Notations

N natural numbers

R real numbers

C complex numbers

‖·‖V norm (p-norm, quasinorm) on the vector space V

BV the set {x ∈ V : ‖x‖V < 1}
B(x, ε) the set {y ∈ V : ‖x− y‖V < ε}
L(X, Y ) The set of all linear continuous mappings from X to Y
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Introduction

Entropy numbers are closely associated with the metric entropy which was in-
troduced by Kolmogorov in the 1930s. In this work we focus on estimates of
entropy numbers of natural identity between finite-dimensional sequence spaces,
which was given by Schütt [1984]. The upper estimate was proved by Edmunds
and Triebel [1996], while the lower estimate was completed by Kühn [2001]. We
summarize these estimates and present detailed proof.

The work is divided into 3 chapters. In the first chapter we give definitions of
lnp -spaces and entropy numbers, and elementary properties of entropy numbers of
linear operators in general. We also compute volume of the unit ball in lnp (R) and
prove its estimate, which is essential for estimating entropy numbers. Our aim in
the second chapter is to prove Theorem 2.1, which estimates entropy numbers of
identities between real finite-dimensional sequence spaces ek(id : lnp → lnq ). The
first section of this chapter deals with upper estimate with p ≤ q. We present
detailed proofs. The second section deals with lower estimate with p ≤ q, and the
last section presents estimate for p ≥ q. In the third chapter we prove that similar
estimates for entropy numbers of identities between complex finite-dimensional
sequence spaces.
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1. Definitions and elementary
properties

This chapter introduces us to the concept of entropy numbers.

1.1 Vector spaces

To define entropy number of an operator we need some kind of ”norm structure ”
on its domain and range. We will be mostly concerned with the sequence spaces lnp .
We are familiar with normed spaces, unfortunately, lnp is not necessarily normed
vector space. Precisely, for p ≥ 1 is lnp normed vector space, and for 0 < p < 1 is
it only p-normed vector space. Therefore we start with definition of p-norm.

Definition 1. Let V be a vector space over R (or C). The function ‖·‖V : V → R
is called p-norm if it satisfies following conditions:

For all v, u ∈ V and a ∈ R (or C),

1. ‖v‖V = 0 iff v is the zero vector,

2. ‖a · v‖V = |a| · ‖v‖V ,

3. ‖u + v‖pV ≤ ‖u‖
p
V + ‖v‖pV (triangle inequality).

If instead of 3, it holds

‖u + v‖V ≤ K(‖u‖V + ‖v‖V ),

for some fixed K > 1, then ‖·‖V is called quasinorm.
Vector space V equipped with p-norm (quasinorm) is called p-normed vector

space (quasinormed vector space).
Complete p-normed (quasinormed) vector space is called p-Banach (quasi-

Banach) space.

In following definition we define sequence spaces lnp , which are essential for
our work.

Definition 2. Let (V, ‖·‖V ) be a normed vector space. Let n ∈ N and p ∈ (0,∞].
We define lpn(V ) := (V n, ‖·‖lnp (V )) where V n is cartesian product of vector spaces,
equipped with norm (p-norm) ‖·‖lnp (V ) defined for all (v1, . . . , vn) ∈ V n as follows:

‖(v1, . . . , vn)‖lnp (V ) =
( n∑

i=1

‖vi‖pV
) 1

p
, if p <∞ (1.1)

‖(v1, . . . , vn)‖lnp (V ) = max
i=1...n

‖vi‖V if p =∞ (1.2)

If 1 ≤ p ≤ ∞, then lnp (V ) is normed vector space with norm ‖·‖lnp (V ).
If 0 < p < 1, then lnp (V ) is p-normed vector space with p-norm ‖·‖lnp (V ), satisfying
triangle inequality for p-norms

‖v + u‖plnp (V ) ≤ ‖v‖
p
lnp (V ) + ‖u‖plnp (V ), (1.3)

for all u, v elements of lnp (V ).
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Remark. Note that if V is complete then also lnp (V ) is complete.

Remark. Hölder’s inequality gives us that for p ≤ q it holds

‖·‖lnq (V ) ≤ ‖·‖lnp (V ) ≤ n
1
p
− 1

q ‖·‖lnq (V ). (1.4)

Remark. If there is no chance of misunderstanding we will write ‖·‖p instead of
‖·‖lnp (V ).

Example. Let 0 < p <∞ and let n be a natural number. By lnp (R) we denote the
vector space Rn with standard operations + and ·, equipped with norm (p-norm)
defined as follows:

For all x = (x1, . . . , xn) ∈ Rn it holds

‖x‖lnp (R) = (
n∑

i=1

|xi|p)
1
p .

Example. Let 0 < p <∞ and let n be a natural number. By lnp (C) we denote the
vector space Cn with standard operations + and ·, equipped with norm (p-norm)
defined as follows:

For all x = (x1, . . . , xn) ∈ Cn it holds

‖x‖lnp (C) = (
n∑

i=1

|xi|p)
1
p .

Example. Let 0 < p <∞ and let n be a natural number. By lnp (l22(R)) we denote
the vector space (R2)n = R2n with standard operations + and ·, equipped with
norm (p-norm) defined as follows:

For all x = (x1, . . . , x2n) ∈ R2n it holds

‖x‖lnp (l22(R) = (
n∑

i=1

(
√
|x2i−1|2 + |x2i|2)p)

1
p .

1.2 Entropy numbers

Definition 3. Let X,Y be Banach spaces, p-Banach spaces or quasi-Banach
spaces. Let T ∈ L(X, Y ). We define the sequence (en(T ))∞n=1 of entropy numbers
as follows

en(T ) = inf{ε > 0 : ∃y1, . . . , y2n−1 ∈ Y : T (BX) ⊂
2n−1⋃
i=1

(yi + εBY )} (1.5)

Remark. It is not necessary for T to be a continous linear operator. The concept
of entropy numbers works also for any mapping between two Banach spaces,
p-Banach spaces or quasi-Banach spaces.

The following theorem gives us few elementary properties entropy numbers.
It can be found in [Vyb́ıral, Thm.8] and partially in [Edmunds and Triebel, 1996,
Lemma 1.].
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Theorem 1.1. Let X,Y,Z be Banach or p-Banach spaces. Let S,T ∈ L(X, Y )
and R ∈ L(Y, Z). Then it holds:

1. ‖T‖ ≥ e1(T ) ≥ e2(T ) ≥ · · · ≥ 0 (monotocity of entropy numbers);

2. en(T )→ 0 iff T is compact;

3. If Y is a Banach space, then e1(T ) = ‖T‖;

4. For every m1,m2 ∈ N it holds em1+m2−1(R ◦ T ) ≤ em1(R)em2(T );

5. If Y is a p-Banach space, then for all m1,m2 ∈ N holds epm1+m2−1(S +T ) ≤
epm1

(S) + epm2
(T ).

Proof. 1. First inequality follows from the definition of the operator norm
‖T‖ = sup{‖T (x)‖ : x ∈ BX}. Therefore T (BX) ⊂ B(0, ‖T‖). The in-
equality ei(T ) ≥ ei+1(T ) is obvious from the definition of entropy numbers.

2. The sequence en(T ) is bounded, monotonic, and nonnegative therefore it
has a limit limn→∞ en(T ) ≥ 0. Let us suppose that T is compact. Then for
all ε > 0 there exist a natural number nε, and y1, . . . , y2nε−1 ∈ Y , such that

T (BX) ⊂
2nε−1⋃
i=1

B(yi, ε).

That implies enε(T ) ≤ ε. Since the limit of en(T ) is nonnegative we obtain
en(T )→ 0.

Now we suppose en(T ) → 0. Let M be an infinite subset of T (BX). We
will prove that M has a limit point in T (BX). First we put M0 = M . Let
us suppose that we have an infinite set Mk ⊂ T (BX). We define Mk+1 and
zk+1 as follows.

Because en(T ) → 0, we observe that for every k ∈ N there exists nk ∈ N
and yk1 , . . . , y

k
2nk−1 ∈ Y such that

T (BX) ⊂
2nk−1⋃
i=1

B
(
yki ,

1

4k

)
.

Hence T (BX) ⊂
⋃2nk−1

i=1 B(yki ,
1
2k

). We know that Mk ⊂ T (BX) is infinite

and we have only finitely many balls covering T (BX) , so there exists ykj
such that B(ykj ,

1
2k

) ∩Mk is infinite. Now we choose arbitrary zk ∈Mk and
define Mk+1 := B(ykj ,

1
2k

) ∩Mk\zk. Using this induction we gain a Cauchy
sequence {zn}∞n=1. Y is Banach (p-Banach) space therefore this sequence
has a limit z which is also a limit point of M . At last z lies within T (BX)
because this set is closed.

3. Let us suppose e1(T ) < ‖T‖. Then there exist y ∈ Y and 0 < ε < ‖T‖,
such that T (BX) ⊂ B(y, ε), and x ∈ BX such that ‖T (x)‖ > ε. Naturaly
−x ∈ BX and ‖T (−x)‖ > ε. Hence

‖T (x)− T (−x)‖ = ‖T (x) + T (x)‖ > 2ε.
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Using the triangle inequality for the norm of a Banach space we have

‖T (x)− y‖+ ‖y − T (−x)‖ > 2ε.

Therefore ‖T (x) − y‖ > ε or ‖T (−x) − y‖ > ε. This is contradiction with
T (BX) ⊂ B(y, ε) and therefore e1(T ) ≥ ‖T‖. From 1, we have e1(T ) ≤ ‖T‖,
so finally we have e1(T ) = ‖T‖.

4. Let ε1 > em1(R), ε2 > em2(T ). Then from (1.5) there exist y1, . . . , y2m2−1 ∈
Y and z1, . . . , z2m1−1 ∈ Z such that

T (BX) ⊂
2m2−1⋃
i=1

(yi + ε2BY ) and R(BY ) ⊂
2m1−1⋃
j=1

(zj + ε1BZ).

Hence from linearity of R we gain

R(T (BX)) ⊂ R(
2m2−1⋃
i=1

(yi + ε2BY )) =
2m2−1⋃
i=1

(R(yi) + ε2R(BY ))

and

R ◦ T (BX) ⊂
2m2−1⋃
i=1

(R(yi) + ε2

2m1−1⋃
j=1

(zj + ε1BZ))

=
2m2−1⋃
i=1

2m1−1⋃
j=1

((R(yi) + ε2zj) + ε1ε2BZ).

We have found 2m1+m2−2 balls with radius ε1ε2 that cover (R ◦ T )(BX).
Therefore from (1.5) it holds em1+m2−1(R ◦ T ) ≤ ε1ε2. We have chosen
ε1 > em1(R) and ε2 > em2(T ) arbitrarily, therefore it also holds
em1+m2−1(R ◦ T ) ≤ em1(R)em2(T ).

5. Let ε1 > em1 , ε2 > em2 . Then from (1.5) there exist y1, . . . , y2m2−1 ∈ Y and
c1, . . . , c2m1−1 ∈ Y such that

S(BX) ⊂
2m1−1⋃
i=1

(yi + ε1BY ) and T (BX) ⊂
2m2−1⋃
j=1

(cj + ε2BY ).

If x ∈ BX then there exist i ∈ 1, . . . , 2m1−1 and j ∈ 1, . . . , 2m2−1 such that
‖S(x)− yi‖pY < εp1 and ‖T (x)− cj‖pY < εp2.
Hence ‖S(x) + T (x)− (yi + cj)‖pY < εp1 + εp2 and

(S + T )(BX) ⊂
2m1−1⋃
i=1

2m2−1⋃
j=1

(yi + cj + (εp1 + εp2)
1
pBY ).

We have found 2m1+m2−2 balls with radius (εp1 + εp2)
1
p that cover

(S + T )(BX). Therefore from (1.5) we gain epm1+m2−1(S + T ) ≤ εp1 + εp2.
We chose ε1 > em1(R) and ε2 > em2(S) arbitrarily, therefore it also holds
epm1+m2−1(S + T ) ≤ epm−1(S) + epm2

(T )

Remark. Note that to prove (4) we needed for R and T to be additive and ho-
mogenous only for real nonnegative scalars. This fact allows us to prove
Theorem 3.2, in the third chapter.
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1.3 Volume of the unit ball in lnp (R)

In this section we will compute and estimate volume of the unit ball in lnp (R),
which will be widely used in the second chapter. The computation was given in
[Pisier, 1989, 1.17], we also present the proof of the estimate mentioned in [Pisier,
1989, 1.18].

Lemma 1.2. Let p ∈ (0,∞) and n ∈ N. Denote lnp = lnp (R). Let t > 0. Then

vol
(
t ·Blnp

)
= tn vol(Blnp ). (1.6)

Proof. Denote x = (x1, x2, . . . , xn). Then

vol
(
t ·Blnp

)
= vol{x ∈ Rn : ‖x‖p < t}

=

∫
{x∈Rn:‖x‖p<t}

dx1 . . . dxn

=

∫
{x∈Rn:‖x

t
‖p<1}

dx1 . . . dxn.

We will use transformation of coordinates from (x1, x2, . . . , xn) to (y1, y2, . . . , yn)
such that for i = 1, . . . , n it holds xi = yit. Then

vol
(
t ·Blnp

)
=

∫
{y∈Rn:‖y‖p<1}

|J|dy1 . . . dyn,

where |J| is Jacobian determinant. Let i, j ∈ {1, . . . , n}. Then ∂xi

∂yi
= t and if

i 6= j then ∂xi

∂yj
= 0. Therefore

vol
(
t ·Blnp

)
=

∫
{y∈Rn:‖y‖p<1}

tndy1 . . . dyn

= tn
∫
{y∈Rn:‖y‖p<1}

dy1 . . . dyn

= tn vol(Blnp ).

Remark. The (1.6) holds also for p =∞.

Before we proceed to the computation, we recall the definition of the Gamma
function.

Definition 4. Let y be a complex number with positive real part. We define
gamma function as follows:

Γ(y) =

∫ ∞
0

ty−1exp(−t)dt

Remark. We will often use that for all a > 0, it holds

aΓ(a) = Γ(a + 1), (1.7)

which can be easily proved with integration by parts.
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Theorem 1.3. (by Pisier [1989]) Let 0 < p <∞ and let n be a natural number.
Then it holds

vol(Blnp ) =
(2Γ(1 + 1

p
))n

Γ(1 + n
p
)

. (1.8)

Proof. Denote

I =

∫
Rn

exp(−‖x‖pp)dx

From Fubini’s theorem we gain

I =

(∫
R

exp(−|t|p)dt
)n

=

(
2

∫ ∞
0

exp(−|t|p)dt
)n

. (1.9)

Using∫ ∞
‖x‖p

d

dt
(− exp(−tp))dt = lim

t→∞

(
− exp(−tp)

)
− lim

t→‖x‖p

(
− exp(−tp)

)
= exp(−‖x‖pp),

we can express

I =

∫
Rn

∫ ∞
‖x‖p

d

dt
(− exp(−tp))dtdx =

∫
Rn

∫ ∞
‖x‖p

ptp−1 exp(−tp)dtdx

We use Fubini’s theorem once again and obtain

I =

∫
{(x,t);x∈Rnt>‖x‖p}

ptp−1 exp(−tp)dtdx

=

∫ ∞
0

ptp−1 exp(−tp)
∫
{x∈Rn;‖x‖p<t}

1dxdt

=

∫ ∞
0

ptp−1 exp(−tp)tn vol(Blnp )dt

= vol(Blnp )

∫ ∞
0

ptp+n−1 exp(−tp)dt,

where we used also Lemma 1.2. Together with (1.9), we gain

vol(Blnp ) =
(2
∫∞

0
exp(−tp)dt)n∫∞

0
ptp+n−1 exp(−tp)dt

(1.10)

Now we proceed to the gamma function. Substituting z for tp we gain t = z
1
p

and dt = 1
p
z

1−p
p dz, therefore∫ ∞

0

exp(−tp)dt =

∫ ∞
0

1

p
z

1−p
p exp(−z)dz =

1

p
Γ

(
1

p

)
= Γ

(
1 +

1

p

)
,

where in the last equation we used (1.7). On the other hand, with same substi-
tution z for tp, we obtain∫ ∞

0

ptp+n−1 exp(−tp)dt =

∫ ∞
0

1

p
z

1−p
p pz

p+n−1
p exp(−z)

=

∫ ∞
0

z
n
p exp(−z)

= Γ

(
1 +

n

p

)
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Combining these conclusions with (1.10) we gain

vol(Blnp ) =
(2Γ(1 + 1

p
))n

Γ(1 + n
p
)

.

Using this result, we prove the estimate of the volume of the unit ball, which
is essential for many proofs in the second chapter.

Theorem 1.4. Let p > 0, then there exist positive constants c and C (depending
only on p) such that for all x ∈ [1,∞) it holds

cx
1
p ≤

(
Γ

(
1 +

x

p

)) 1
x

≤ Cx
1
p .

Proof. Denote m = minx∈[1,1+p]
(Γ(1+x

p
))

1
x

x
1
p

. We define c = min{( 1
ep

)
1
p ,m}. Since

Γ(a) is positive for all a > 0, it holds m > 0 and c > 0. It is obvious that

cx
1
p ≤

(
Γ

(
1 +

x

p

)) 1
x

(1.11)

holds for all x ∈ [1, 1 + p]. Now we will prove that if (1.11) holds for x = y then

it holds also for x = y + p. Let us suppose that cy
1
p ≤ (Γ(1 + y

p
))

1
y . We have

c ≤
(

1

ep

) 1
p

and cpp ≤ 1

e
.

For all positive z it holds 1
e
≤ ( z

z+1
)z, hence

cpp ≤
(

y

y + p

) y
p

and cy+pp(y + p)
y
p ≤ cyy

y
p .

Our assumption gives us

cyy
y
p ≤ Γ

(
1 +

y

p

)
, and therefore cy+pp(y + p)

y
p ≤ Γ

(
1 +

y

p

)
.

Hence

cy+p(y + p)
y+p
p ≤ y + p

p
Γ

(
1 +

y

p

)
.

Using (1.7), we obtain

c(y+p)(y + p)
y+p
p ≤ Γ

(
1 +

y + p

p

)
hence c(y + p)

1
p ≤

(
Γ

(
1 +

y + p

p

)) 1
y+p

.

We know that (1.11) holds for all x ∈ [1, 1 + p] and we proved that if it holds for
x = y then it holds also for x = y + p. Therefore it holds for all x ∈ [1,∞).

We will deal with second inequality in a similar way.

Let us denote M = maxx∈[1,1+p]
(Γ(1+x

p
))

1
x

x
1
p

We define C = max{(1
p
)
1
p ,M}. Since
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Γ is continous on (0,∞), it is bounded on [1, 1 + 1
p
] and therefore M < ∞ and

C <∞. It is obvious that (
Γ

(
1 +

x

p

)) 1
x

≤ Cx
1
p (1.12)

holds for all x ∈ [1, 1 +p]. Now we prove that (1.12) holds for x = y then it holds

also for x = y + p. Let us suppose that (Γ(1 + y
p
))

1
y ≤ Cy

1
p . We have(

1

p

) 1
p

≤ C and therefore 1 ≤ pCp.

We know that for all positive y, p it holds y
y+p
≤ 1 and also ( y

y+p
)
y
p ≤ 1. Hence(

y

y + p

) y
p

≤ pCp and therefore Cyy
y
p ≤ pCy+p(y + p)

y
p .

Our assumption gives us

Γ

(
1 +

y

p

)
≤ Cyy

y
p therefore Γ

(
1 +

y

p

)
≤ pCy+p(y + p)

y
p .

Hence
y + p

p
Γ

(
1 +

y

p

)
≤ Cy+p(y + p)

y+p
p .

We use (1.7), and obtain

Γ

(
1 +

y + p

p

)
≤ Cy+p(y + p)

y+p
p hence

(
Γ

(
1 +

y + p

p

)) 1
y+p

≤ C(y + p)
1
p .

Now we know that (1.12) holds for all x ∈ [1, 1 + p] and if it holds for x = y then
it holds also for x = y + p. Therefore it holds for all x ∈ [1,∞).

Theorem 1.5. Let 0 < p ≤ ∞. Then there exists positive constants c1, c2 (de-
pending only on p) such that for all n ∈ N it holds

c1n
−1
p ≤ (vol(Blnp ))

1
n ≤ c2n

−1
p . (1.13)

Proof. Let 0 < p < ∞. From Theorem 1.4, we gain positive constants c, C such
that for all n ∈ N it holds

cn
1
p ≤ (Γ(1 +

n

p
))

1
n ≤ Cn

1
p .

The Theorem 1.3 gives us

vol(Blnp ) =
(2Γ(1 + 1

p
))n

Γ(1 + n
p
)

.

Therefore

2Γ(1 +
1

p
)C−1n−1/p ≤ vol(Blnp )

1
n ≤ 2Γ(1 +

1

p
)c−1n−1/p.

That completes the proof for 0 < p <∞.
If p =∞ then volBlnp = 2n and (1.13) obviuosly holds.
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2. Entropy numbers of
id : lnp (R)→ lnq (R)

This chapter focuses on the estimate of entropy numbers of natural identity be-
tween lnp (R) and lnq (R). Every vector space used in this chapter will be lnp (R) for
some 0 < p ≤ ∞ and n a natural number. To deal with triangle inequalities of
norms and p-norms together, we define p̂ = min{p, 1}. The triangle inequality
for both 0 < p ≤ 1 and 1 ≤ p can be rewritten as

‖u + v‖p̂p ≤ ‖u‖p̂p + ‖v‖p̂p. (2.1)

The main result is following theorem.

Theorem 2.1. (by Schütt [1984]) Let 0 < p ≤ ∞, 0 < q ≤ ∞ and let n be a
natural number. If 0 < p ≤ q ≤ ∞ then for all k ∈ N it holds

ek(id : lnp (R)→ lnq (R)) ∼


1 if 1 ≤ k ≤ log2 n,(
k−1 log2(nk−1 + 1)

) 1
p
− 1

q if log2 n ≤ k ≤ n,

2
−(k−1)

n n
1
q
− 1

p if n ≤ k,

(2.2)

and if 0 < q ≤ p ≤ ∞ then for all k ∈ N it holds

ek(id : lnp (R)→ lnq (R)) ∼ 2
−(k−1)

n n
1
q
− 1

p . (2.3)

If we have q =∞ (perhaps even p =∞) we define 1
q

= 0 (or 1
p

= 0).

The equivalence ∼ from the previous theorem is defined as follows.
Let x(n, k), y(n, k) : N2 → R, then

x ∼ y iff c · y(n, k) ≤ x(n, k) ≤ C · y(n, k),

where c, C are positive constants idependent of n and k. For example

ek(id : lnp (R)→ lnq (R)) ∼ 2
−(k−1)

n n
1
q
− 1

p if and only if

c · 2
−(k−1)

n n
1
q
− 1

p ≤ ek(id : lnp (R)→ lnq (R)) ≤ C · 2
−(k−1)

n n
1
q
− 1

p

for some positive constants c, C independent of n and k, but possibly depending
on p and q.

2.1 Upper estimate with p ≤ q

The upper estimate with p ≤ q was proved by [Edmunds and Triebel, 1996,
chap.3, 3.2.2 Proposition]. We divided the proof of this proposition into Theorems
2.2, 2.4 and 2.5.

Theorem 2.2. Let 0 < p ≤ q ≤ ∞ and let n be a natural number. Then for each
natural number k it holds

ek(id : lnp (R)→ lnq (R) ≤ 1.

12



Proof. As 0 < p ≤ q ≤ ∞, BX ⊂ BY and therefore ek(id : lnp (R)→ lnq (R) ≤ 1 for
every k ∈ N.

Lemma 2.3. Let 0 < p ≤ ∞ and 0 < q ≤ ∞ and let n be a natural number. We
put X = lnp (R) and Y = lnq (R). Let T ∈ L(X, Y ) and let r > 0. By N we denote
the maximal number such that there exist y1, . . . , yN ∈ T (BX) with ‖yi− yj‖q > r
for every i 6= j. Then it holds

N
(
r · 2

−1
q̂

)n
volBY ≤ vol(T (BX) + r · 2

−1
q̂ BY ).

Let k be a natural number such that 2k−1 ≥ N . Then ek(T ) ≤ r.

Proof. Let N and y1 . . . yN ∈ T (BX) from the statement of the lemma. Let
i, j ∈ {1, . . . , N} such that i 6= j and let z ∈ Y . From (2.1) we have

rq̂ < ‖yi − yj‖q̂q ≤ ‖yi − z‖q̂q + ‖z − yj‖q̂q.

Hence ‖yi − z‖q > r2
−1
q̂ or ‖yj − z‖q > r2

−1
q̂ , and therefore(

yi + r · 2
−1
q̂ BY

)
∩
(
yj + r · 2

−1
q̂ BY

)
= ∅.

And because for all i = 1, . . . , N it holds
(
yi +r ·2

−1
q̂ BY

)
⊂
(
T (BX)+r ·2−

1
q̂BY

)
,

we immediatly gain the inequality in lemma.
Now let k be a natural number such that 2k−1 ≥ N and let ε > r. Because N

is the largest number with mentioned property, for every z ∈ T (BX) there exist
i ∈ {1, . . . , N} such that ‖yi− z‖q ≤ r < ε. Hence ek(T ) ≤ ε. We see that for all
ε > r it holds ek(T ) ≤ ε, and therefore ek(T ) ≤ r.

Theorem 2.4. Let 0 < p ≤ q ≤ ∞ and let n be a natural number. We denote
X = lnp (R) and Y = lnq (R). For each k ∈ N we denote ek(idp,q) = ek(id : X → Y )
Then there exist positive constant c̃ ≥ 1 depending only on p and q, such that for
each natural number k̃ ≥ c̃n it holds

ek̃(idp,q) ≤ C · 2
−(k−1)

n n
1
q
− 1

p ,

with C a positive constant depending only on p and q.

Proof. Let k ≥ n be a natural number. We define r = 2
−(k−1)

n n
1
q
− 1

p . Let us
consider y1, . . . , yN from Lemma 2.3. Using the same lemma we gain

N
(
r · 2

−1
q̂
)n

volBY ≤ vol(BX + r · 2
−1
q̂ BY ) (2.4)

Let v ∈ BX + r · 2
−1
q̂ BY . Then there exist v1 ∈ BX and v2 ∈ r · 2

−1
q̂ BY such that

v = v1 + v2. From (1.4) we know that ‖v2‖p ≤ n
1
p
− 1

q ‖v2‖q,
hence v2 ∈ 2

−(k−1)
n
− 1

q̂BX ⊂ BX . Triangle inequality (2.1) gives us

‖v‖p̂p ≤ ‖v1‖p̂p + ‖v2‖p̂p ≤ 1 + 1.

Hence ‖v‖p ≤ 2
1
p̂ and v ∈ 2

1
p̂BX . Together with (2.4) we have

N
(
r · 2

−1
q̂
)n

volBY ≤ 2
n
p̂ volBX hence N

1
n ≤ 2

1
p̂

+ 1
q̂ r−1

(volBX

volBY

) 1
n
.

13



From Theorem 1.5 we have (volBX

volBY

) 1
n ≤ c · n

1
q
− 1

p ,

where c is a positive constant depending only on p and q. Therefore we gain

N
1
n ≤ c · 2

1
p̂

+ 1
q̂ 2

k−1
n ≤ 2c′2

k−1
n = 2

k−1+c′n
n , (2.5)

where c′ is a positive constant depending only on p and q such that 2c′ ≥ c · 2
2
p̂ .

Finaly we define c̃ = c′ + 1. Let k̃ ≥ c̃n, and k be the largest natural number

such that k̃ ≥ k+c′n. Note that k ≥ n. From (2.5) we have N
1
n ≤ 2

k+c′n−1
n ≤ 2k̃−1,

hence from Lemma 2.3, we gain that

ek̃(idp,q) ≤ r = 2
−(k−1)

n n
1
q
− 1

p

= 2
−(k̃−1)

n 2c′2
k̃−k−c′n

n n
1
q
− 1

p

≤ 2c′2
1
n 2
−(k̃−1)

n n
1
q
− 1

p .

Therefore

ek̃(idp,q) ≤ C · 2
−(k̃−1)

n n
1
q
− 1

p ,

where C is a positive constant depending only on p, q.

Theorem 2.5. Let 0 < p <∞ and let n be a natural number. For each k ∈ N we
denote ek(idp,∞) = ek(id : lnp (R)→ ln∞(R)). Let c̃ be the positive constant defined
in Theorem 2.4.

Then there exist positive constants c8 > 1 and c10 depending only on p such
that for every 1 ≤ k ≤ c̃c8n it holds

ek(idp,∞) ≤ c10

(
k−1 log2(nk−1 + 1)

) 1
p
. (2.6)

Proof. Let 1 ≤ k ≤ c̃n. We put c1 >
(
c̃−1 log2(1 + c̃−1)

)−1
p

and

t = c1

(
k−1 log2(nk−1 + 1)

) 1
p
. (2.7)

This choice gives us

t > n−
1
p , and k ≥ c̃t−p. (2.8)

If t ≥ 1 then we from Theorem 2.2 immediatly gain (2.6). Now we will assume
that t < 1. We denote by nt, the largest natural number such that there exist
x ∈ Blnp (R) with nt coordinates in absolute value greater than t. Because t < 1 we
note that nt ≥ 1 and

ntt
p < 1. (2.9)

From (2.8) we have nt < n. Because nt is the largest natural number with the
mentioned property, and nt ≥ 1, it holds

tp − 1 ≤ nt < t−p.

14



Since t < 1, we gain that t−p > 1. If t−p ≥ 2 then it follows 1
2
t−p ≤ nt. If

1 < t−p < 2 then nt = 1 > 1
2
t−p. Both cases gives us

1

2
t−p ≤ nt < t−p. (2.10)

We define
e

(t)
k = ek(id : lnt

p (R)→ lnt
∞(R)).

According to (2.8) and (2.9) holds k ≥ c̃t−p ≥ c̃nt. Hence, from Theorem 2.4 we
gain

e
(t)
k ≤ C · 2

−(k−1)
nt n

−1
p

t < c3n
−1
p

t , (2.11)

where c3 is a positive constant depending only on p. From (2.10) we have 1
2
t−p ≤

nt which gives us c4t ≥ c3n
−1
p

t , where c4 > 1 and depens only on p. Hence from
(1.5) we know that there exis x1, . . . , x2k−1 ∈ ln∞ such that

Bl
nt
p (R) ⊂

2k−1⋃
i=1

(xi + c4tBl
nt∞ (R)) (2.12)

For every i ∈ {1, . . . , 2k−1} and xi defined in (2.12) we denote xi = (x1
i , . . . x

nt
i ).

Now we prove that there exist 2k−1
(
n
nt

)
balls in ln∞(R) with radius c4t covering

Blnp (R). We define zi,j for all i ∈ {1, . . . , 2k−1} and j ∈ {1, . . . ,
(
n
nt

)
}, which will be

centres of those balls, as follows.
Since,there is

(
n
nt

)
ways of choosing nt coordinates out of n, every j represent

one of the possible choices of nt coordinates. The values of zi,j on these nt

coordinates are x1
i , . . . , x

nt
i , and the rest of coordinates are zeros.

Let y ∈ Blnp (R). From definition of nt, we gain that y has at most nt coordinates

in in absolute value greater than t. We find j ∈ {1, . . . ,
(
n
nt

)
} representing the

same choice of nt coordinates. We know that |0− t| = t < c4t,and therefore from
(2.12) we gain that there is i ∈ {1, . . . , 2k−1} such that ‖zi,j − y‖∞ < c4t

Hence there exist 2k−1
(
n
nt

)
balls in ln∞(R) with radius c4t covering Blnp (R).

Now we will prove that there exist a positive constant c8 such that

2k−1

(
n

nt

)
≤ 2c8k−1.

We recall the well known inequality

m! ≥
(m
e

)m
,

for every m ∈ N . This inequality gives us

log2(nt!) ≥ nt log2 nt − 2nt.

We have

log2

(
n

nt

)
≤ nt log2 n− log2(nt!)

≤ nt log2 n− nt log2 nt + 2nt = nt log2

(4n

nt

)
≤ 4nt log2

( n

nt

+ 1
)
.
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Using (2.10) we gain n
nt
≤ 2ntp and therefore

log2

(
n

nt

)
≤ 8nt log2(ntp + 1).

Hence

2k−1

(
n

nt

)
≤ 2k−1+8nt log2(ntp+1).

Finally from (2.10) we have

2k−1

(
n

nt

)
≤ 2k+c5t−p log2(ntp+1)−1 (2.13)

By defintion of t we have

ntp = c1nk
−1 log2(nk−1 + 1) ≤ c1n

2k−2.

Hence
log2(ntp + 1) ≤ log2(c1n

2k−2 + 1) ≤ c6 log2(nk−1 + 1),

and from (2.13) we gain

2k−1

(
n

nt

)
≤ 2k+c7t−p log2(nk−1+1)−1 (2.14)

where c7 is a positive constant depending only on p. From (2.7) we have

t−p = c−p1 k(log2(nk−1 + 1))−1.

This combined with (2.14) gives us

2k−1

(
n

nt

)
≤ 2k+c7c

−p
1 k(log−1

2 (nk−1+1))−1 log2(nk−1+1)−1 = 2k(1+c7c
−p
1 )−1.

By c8 we denote the smallest natural number greater than 1 + c7c
−p
1 . Hence there

exist 2c8k−1 balls with radius c4t covernig BX , with c4 and c8 depending only on
p, with c8 ≥ 1. Therefore from (2.7) we have

ec8k(idp,∞) ≤ c1c4

(
k−1 log2(nk−1 + 1)

) 1
p

≤ c1c4

(
k−1c−1

8 c8 log2(nk−1c−1
8 c8 + 1)

) 1
p

≤ c1c4

(
k−1c−1

8 c2
8 log2(nk−1c−1

8 + 1)
) 1

p

≤ c1c4c
2
p

8

(
k−1c−1

8 log2(nk−1c−1
8 + 1)

) 1
p .

Hence
ek(idp,∞) ≤ c9

(
k−1 log2(nk−1 + 1)

) 1
p (2.15)

for all 1 ≤ k ≤ c̃n, such that k = c8k
′ for some k′ ∈ {1, . . . , n}. The constants c8

and c9 are positive and depend only on p.
We will prove that (2.15) holds for all 1 ≤ k ≤ c̃n. If 1 ≤ k ≤ c8 then (2.15)

follows from Theorem 2.2 and

c−1
8 log2(c−1

8 + 1) ≤ k−1 log2(nk−1 + 1).
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Now let c8 ≤ k ≤ c̃n. By k1 we define the largest natural number less or equal
to k, such that k1 = c8k

′ for some k′ ∈ {1, . . . , n}. From monotonicity of entropy
numbers and (2.15) we gain

ek(idp,∞) ≤ ek1(idp,∞) ≤ c9

(
k−1

1 log2(nk−1
1 + 1)

) 1
p

≤ c9

(
2c8(k1 + c8)−1 log2(n2c8(k1 + c8)−1 + 1)

) 1
p

≤ c9

(
2c2

8(k1 + c8)−1 log2(n(k1 + c8)−1 + 1)
) 1

p

≤ c9(2c8)
2
p
(
(k1 + c8)−1 log2(n(k1 + c8)−1 + 1)

) 1
p ,

where we used that for all k1 ≥ 1 and c8 ≥ 1 it holds 2c8k1 ≥ k1 + c8. Finally,
because the function f(x) = x−1 log2(nx−1 + 1) is decreasing on [1,∞), and
k ≤ k1 + c8 we obtain

ek(idp,∞) ≤ c′9
(
k−1 log2(nk−1 + 1)

) 1
p , (2.16)

where c′9 is positive and depens only on p.

Following lemma is a special case of [Edmunds and Triebel, 1996, Theorem
1.3.2(i)].

Lemma 2.6. Let 0 < p ≤ q < ∞ and let n be a natural number. We define
X = lnp (R), Y = lnq (R) and Z = ln∞(R). Let k1, k2 be natural numbers. Then

ek1+k2−1(id : X → Y ) ≤ 2
1
p̂ e

p
q

k1
(id : X → X)e

1− p
q

k2
(id : X → Z).

Proof. Let 0 < p ≤ q < ∞ and let n be a natural number. We define X = lnp ,
Y = lnq and Z = ln∞. Since for all x ≥ 0 it holds xq = xpxq−p, we have that for all
x = (x1, . . . , xn) ∈ Rn it holds

n∑
i=1

|xi|q ≤ max
i=1,...,n

|xi|q−p
n∑

i=1

|xi|p.

Hence for all x ∈ Rn holds

‖x‖q ≤ ‖x‖
p
q
p · ‖x‖

1− p
q

∞ . (2.17)

Let k1 and k2 be natural numbers. Let ε > 0. We put e1,k1 = ek1(id : X → X) and
e2,k2 = ek2(id : X → Z). Then there exist x1, . . . , x2k1−1 ∈ X and z1, . . . , z2k2−1 ∈
Z such that

BX ⊂
2k1−1⋃
i=1

(xi + (1 + ε)ek1BX) and BX ⊂
2k2−1⋃
i=1

(zi + (1 + ε)e2,k2BZ). (2.18)

For all j = 1, . . . , 2k1−1 we put

Aj = BX ∩ (xj + (1 + ε)ek1BX). (2.19)

We prove that each of Aj can be covered with 2k2−1 balls in Z

with radius (1 + ε)ek22
1
p̂ and which centres are in Aj.
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Let j ∈ {1, . . . , 2k1−1}. Since Aj ⊂ BX , we gain from (2.18) that

Aj ⊂
2k2−1⋃
i=1

(zi + (1 + ε)ek2BZ). (2.20)

For every i = 1, . . . , 2k2−1 we define zi,j ∈ Aj as follows.
If Aj ∩ (zi + (1 + ε)ek2BZ) = ∅ then let zi,j be an arbitrary point in Aj. If
Aj ∩ (zi + (1 + ε)ek2BZ) 6= ∅, we put zi,j ∈ Aj ∩ (zi + (1 + ε)ek2BZ).

Let us suppose that zi,j ∈ Aj∩(zi+(1+ε)ek2BZ), and let z ∈ (zi+(1+ε)ek2BZ).
Then from triangle inequality (2.1) we have

‖z − zi,j‖∞ ≤ ‖z − zi‖∞ + ‖zi − zi,j‖∞ ≤ 2(1 + ε).

Hence
(zi + (1 + ε)e2,k2BZ) ⊂ zi,j + 2(1 + ε)BZ .

Using this, and (2.18) we obtain that for all j = 1, . . . , 2k1−1 holds

Aj ⊂
2k2−1⋃
i=1

(zi,j + 2(1 + ε)e2,k22BZ).

Finally this, with (2.18) and (2.19) shows us that for every a ∈ BX there exist
zi,j such that

‖a− zi,j‖∞ ≤ 2(1 + ε)e2,k2 .

From (2.1) we have

‖a− zi,j‖p̂p ≤ ‖a− xj‖p̂p + ‖zi,j − xj‖p̂p ≤ 2(1 + ε)p̂ep̂1,k1 .

Hence

‖a− zi,j‖∞ ≤ 2
1
p̂ (1 + ε)e2,k2 and ‖a− zi,j‖p ≤ 2

1
p̂ (1 + ε)e1,k1 (2.21)

and from (2.17) we have

‖a− zi,j‖q ≤ 2
1
p̂ (1 + ε)e

p
q

1,k1
e

1− p
q

2,k2
.

Hence

ek1+k2−1(id : X → Y ) ≤ 2
1
p̂ (1 + ε)e

p
q

1,k1
e

1− p
q

2,k2
.

Passing to the infimum over ε > 0 completes the proof.

Theorem 2.7. (by Edmunds and Triebel [1996]) Let 0 < p ≤ q ≤ ∞ and let n
be a natural number. For each k natural number, let us denote
ek = ek(id : lnp (R)→ lnq (R)). Then

ek ≤ c ·


1 if 1 ≤ k ≤ log2 n(
k−1 log2(nk−1 + 1)

) 1
p
− 1

q if log2 n ≤ k ≤ n

2
−(k−1)

n n
1
q
− 1

p if n ≤ k,

(2.22)

where c is a positive constant depending only on p and q.
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Proof. Let 0 < p ≤ q ≤ ∞. The first case follows immediatly from Theorem 2.2.
If q = ∞ then from Theorem 2.5 we gain the second inequality, provided

k > c8, where c8 is positive constant depending only on p. If q < ∞ then from
Lemma 2.6, where we put k1 = 1 and k2 = k we have

ek ≤ 2
1
p̂ e

p
q

1 (id : lnp (R)→ lnp (R))e
1− p

q

k (id : lnp (R)→ ln∞(R)).

From Theorem 2.2 and Theorem 2.5 we gain

ek ≤ c ·
(
k−1 log2(nk−1 + 1)

) 1
p
− 1

q , (2.23)

where c is a positive constant depending only on p and q, and with k ≥ c8.
Now let k ≤ c8. Then for all n ∈ N holds(

k−1 log2(nk−1 + 1)
) 1

p
− 1

q ≥
(
c−1

8 log2(c−1
8 + 1)

) 1
p
− 1

q = c11.

As we can see, c11 is positive and depens only on p and q. Therefore from
Theorem 2.2 we have

ek ≤ c11 · c−1
11 .

Hence
ek ≤ c−1

11

(
k−1 log2(nk−1 + 1)

) 1
p
− 1

q .

This together with (2.23) completes the proof of the second inequality. We also
note that the second inequality holds also with log2 n ≤ k ≤ c̃c8n and that c8 ≥ 1.

As for the third inequality, firstly we put n ≤ k ≤ c̃n. Then

2
−k
n n

1
q
− 1

p ≥
(
2c(k−1 log2(nk−1 + 1)

) 1
p
− 1

q

We have already proved, that

ek ≤ c ·
(
k−1 log2(nk−1 + 1)

) 1
p
− 1

q .

Hence there is a positive constant c12 such that

ek ≤ c12 · 2
−k
n n

1
q
− 1

p ,

which is the third inequality provided n ≤ k ≤ c̃n.
And finally Theorem 2.4 proves the third inequality provided k ≥ c̃n.

2.2 Lower estimate with p ≤ q

The proof of the lower estimate for 1 ≤ k ≤ log2 n and k ≥ n is straightforward
and was shown by [Triebel, 1997, Theorem 7.3]. We divided it into Theorems 2.8
and 2.10. The lower estimate for log ≤ k ≤ n is more difficult to prove and it
was shown by Kühn [2001].

Theorem 2.8. Let 0 < p ≤ q ≤ ∞ and let n be a natural number. Then for each
natural number k ≤ log2 n holds

ek(id : lnp (R)→ lnq (R)) ≥ c,

where c is a positive constant depending only on p and q.
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Proof. Let k be a natural number such that k ≤ log2 n. For all
ε > ek(id : lnp (R)→ lnq (R)), there exist y1, . . . , y2k−1 ∈ Y such that

BX ⊂
2k−1⋃
i=1

(yi + εBY ). (2.24)

Let us recall, that we denote by e1, . . . , en the canonical vectors in Rn. As their
number n is by our assumption larger than the number of balls on the right-hand
side of (2.24), we may find i, j ∈ {1, . . . , n} with i 6= j and m ∈ {1, . . . , 2k−1}
such that both 1

2
· ei, 1

2
· ej ∈ ym + εBY . From (2.1) we obtain∥∥∥1

2
ei −

1

2
ej

∥∥∥q̂
q
≤
∥∥∥1

2
ei − ym

∥∥∥q̂
q

+
∥∥∥ym − 1

2
ej

∥∥∥q̂
q
≤ 2εq̂,

We have ∥∥∥1

2
ei −

1

2
ej

∥∥∥
q

= (2−q + 2−q)
1
q = 2

1
q
−1,

hence
2

1
q
− 1

q̂
−1 ≤ ε.

As this holds for every ε > ek(id : lnp (R) → lnq (R)), the same inequality is true
also for ek(id : lnp (R)→ lnq (R)) and we finish the proof.

The idea of the following lemma is pretty simple. If some set is a subset of
some union of sets then the volume of the first set has to be less or equal to the
sum of volumes of the sets from that union.

Lemma 2.9. Let T ∈ L(X, Y ) and k be a natural number. We denote n dimen-
sion of Y . Then it holds

ek(T ) ≥ 2
−k+1

n

(
volT (BX)

volBY

) 1
n

.

Proof. Let ε > ek(T ). Then there exist y1, . . . , y2k−1 ∈ Y such that

T (BX) ⊂
2k−1⋃
i=1

(yi + εBY ).

Therefore
2k−1 vol εBY ≥ volT (BX).

That gives us

2k−1εn volBY ≥ volT (BX) and ε ≥ 2
−k+1

n

(
volT (BX)

volBY

) 1
n

And with passing to the infimum with ε, we gain desired inequality.
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Theorem 2.10. Let 0 < p ≤ ∞ and 0 < q ≤ ∞ and let n be a natural number.
We put X = lnp (R) and Y = lnq (R).
For each k ∈ N we denote ek = ek(id : X → Y ). Then

ek ≥ c · 2
−k
n n

1
q
− 1

p ,

where c is a positive constant depending only on p, q.

Proof. From Lemma 2.9 we have

ek ≥ 2
−k+1

n

(volBX

volBY

) 1
n
.

From Theorem 1.5 we know, that there exist positive constants cp, cq depending
only on p and q respectively, such that

vol(BX)
1
n ≥ cpn

1
p and vol(BY )

1
n ≤ cqn

1
q .

Therefore
ek ≥ cpc

−1
q · 2

−k+1
n n

1
q
− 1

p = c · 2
−k+1

n n
1
q
− 1

p .

Theorem 2.11. (by Kühn [2001]) Let 0 < p ≤ q ≤ ∞ and let n be a natural
number. For each k ∈ N we denote ek = ek(id : lnp → lnq ).

If log2 n ≤ k ≤ n, then

ek ≥ c · (k−1 log2(nk−1 + 1))
1
p
− 1

q , (2.25)

where c is a positive constant depending only on p and q.

Proof. Let 0 < p ≤ q ≤ ∞ and let n be a natural number. Firstly we prove that
(2.25) holds for any natural number k such that log2 n ≤ k ≤ c1n

2
, where c1 < 1

is a positive constant depending only on p and q. As there is no natural number
between log2 n and c1n

4
, if n ≤ 3, we can suppose that 4 ≤ n. For all m ∈ N such

that m ≤ n
4
, we put

Sm =
{
x = (x1, . . . , xn) ∈ {−1, 0, 1}n :

n∑
i=1

|xi| = 2m
}
, (2.26)

and note that Sm has cardinality

|Sm| =
(

n

2m

)
· 22m. (2.27)

For all x, y ∈ Rn we define Hamming distance as follows

h(x, y) = |{i : xi 6= yi}|.

Let x ∈ Sm. We put

Hm(x) = {y ∈ S : h(x, y) ≤ m}.
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As for the cardinality of Hm(x), there is
(
n
m

)
ways to choose m coordinates where

x and y may differ, and 3 possible values for each of that coordinates for y. Hence

|Hm(x)| ≤
(
n

m

)
· 3m. (2.28)

We put am =
(

n
2m

)
·
(
n
m

)−1
. Let A be any subset of S with cardinality at most

am. Then it holds

|{y ∈ Sm : ∃x ∈ A with h(x, y) ≤ m}| ≤
∑
x∈A

|Hm(x)| ≤ |A| ·
(
n

m

)
· 3m < |Sm|,

where we used (2.28) in the second inequality and (2.27) in the third. Therefore,
for any A ⊂ Sm with |A| ≤ am there is x ∈ Sm such that for any y ∈ A holds
h(x, y) > m. Hence we can inductively find Am ⊂ Sm with cardinality greater
than am, such that for all distinct x, y ∈ A is h(x, y) > m.

From definition of h(x, y), and Am ⊂ Sm, we see that for all x, y ∈ Am such
that x 6= y is

‖x− y‖q =
( n∑

i=1

|xi − yi|q
) 1

q
> m

1
q . (2.29)

We put

Bm = {b : b = (3m)−
1
p · x for some x ∈ Am},

and note |Bm| = |Am| > am. Since Am ⊂ Sm, for all b ∈ Bm we have

‖b‖p =
(
2m · (3m)−1

) 1
p < 1,

hence B ⊂ Blnp (R). We can also see that for all distinct b1, b2 ∈ B holds

‖b1 − b2‖q > (3m)−
1
pm

1
q .

Hence, there exist a positive constat c′ depending only on p and q such that for
all k ≤ log2 am it holds

ek ≥ c′m
1
q
− 1

p , (2.30)

which can be proved similarly as lemma 2.3.
We have

am =

(
n

2m

)
·
(
n

m

)−1

=
m!(n−m)!

(2m)!(n− 2m)!
=

m∏
i=1

n− 2m + i

m + i
,

and we know that function f(x) = n−2m+x
m+x

is decreasing in interval (0,∞). There-
fore (n−m

2m

)m
≤ a ≤

(n− 2m

m

)m
.

That implies

c1m log2

n

m
≤ log2 a ≤ m log2

n

m
, (2.31)

where c1 is a positive constant less than 1 and independent of n and m.
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Now let k ∈ N, such that c1 ·m log2

(
n
m

)
≤ k ≤ c1n

2
, for some m ∈ {1, . . . , n

4
}.

We will prove that then it holds

m−1 ≥ c2 ·
log2(n

k
+ 1)

k
, (2.32)

where c2 is positive and depens only on p and q. The function f(x) = x log2
n
x

is
strictly increasing on [1, n

4
] and maps this interval onto [log2 n,

n
2
]. Therefore it

has on [1, n
4
] inverse function, which is also increasing. We can easily verify that

if x ∈ [1, n
4
] then

x ≤ f(x)

log2( n
f(x)

)
(2.33)

We use (2.33) and that f(x) is increasing on [1, n
4
], and gain

m−1 ≥
log2( n

c−1
1 k

)

c−1
1 k

. (2.34)

Since k ≤ c1n
2

we have n
c−1
1 k
≥ 2 therefore

2 log2

( n

c−1
1 k

)
≥ log2

( n

c−1
1 k

+ 1
)
. (2.35)

We have also
(c−1

1 + 1) log2

( n

c−1
1 k

+ 1
)
≥ log2(

n

k
+ 1). (2.36)

Combinig (2.35) and (2.36) with (2.34), we gain desired (2.32).
Finally, let k be a natural number such that log2 n ≤ k ≤ c1n

2
. If there exist

natural number m ≤ n
4

such that

c1m log2

( n

m

)
≤ k ≤ log2 am,

then (2.25) follows from (2.30) and (2.32). If there is no such m, then we find

the largest natural number m such that c1m log2

(
n
m

)
< k.

We have c1 log2(n
1
) ≤ log2 n and c1

n
4

log2( n
n
4

) = c1n
2

. Therefore we note that

1 ≤ m ≤ n
4
− 1, and because m is the largest number with mentioned property

we gain

c1m log2

( n

m

)
< k ≤ c1(m + 1) log2

( n

m + 1

)
. (2.37)

From (2.32) we gain

2m ≤ 2 · k

log2(n
k
) + 1

and because m ≥ 1

m + 1 ≤ 2 · k

log2(n
k
) + 1

. (2.38)

Since k ≤ c1(m + 1) log2

(
n

m+1

)
≤ log2 am+1, we obtain from (2.30) that it holds

ek ≥ 2c′(m + 1)
1
q
− 1

p
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Combining this with (2.38) gives us that (2.25) holds for any log2 n ≤ k ≤ c1n
2

. To
prove (2.25) for c1n

2
≤ k ≤ n we use Theorem 2.10 and monotonicity of entropy

numbers.

Finally, Theorems 2.8, 2.10 and 2.11 give us the following Theorem.

Theorem 2.12. (by Schütt [1984]) Let 0 < p ≤ q ≤ ∞ and let n be a natural
number. For each k natural number, let us denote ek = ek(id : lnp (R) → lnq (R)).
Then

ek ≥ c ·


1 if 1 ≤ k ≤ log2 n(
k−1 log2(nk−1 + 1)

) 1
p
− 1

q if log2 n ≤ k ≤ n

2
−(k−1)

n n
1
q
− 1

p if n ≤ k,

(2.39)

where c is a positive constant depending only on p and q.

2.3 Estimate with p ≥ q

The estimate with p ≥ q easily follows from Theorem 2.10 and Theorem 1.1(4).

Theorem 2.13. Let 0 < q ≤ p ≤ ∞, and let n be a natural number. Then for
all k ∈ N holds

c · 2
−(k−1)

n n
1
q
− 1

p ≤ ek(id : lnp (R)→ lnq (R)) ≤ C · 2
−(k−1)

n n
1
q
− 1

p , (2.40)

where c and C are positive constants depending only on p and q.

Proof. The lower estimate follows directly from Theorem 2.10.
To prove the upper estimate, we use Theorem 1.1(4),

with R = id : lnp (R) → lnp (R), T = id : lnp (R) → lnq (R) and m1 = k and m2 = 1.
This choice gives us

ek(id : lnp (R)→ lnq (R)) ≤ ek(id : lnp (R)→ lnp (R)) · e1(id : lnp (R)→ lnq (R)). (2.41)

Since q ≤ p, from (1.4) and Theorem 1.1(1) we gain

e1(id : lnp (R)→ lnp (R)) ≤ n
1
q
− 1

p . (2.42)

To estimate ek(id : lnp (R)→ lnp (R)) we use Theorem 2.7, where we put p = q. We
obtain that if k ≤ n then

ek(id : lnp (R)→ lnp (R)) ≤ c1,

and since k ≤ n we have

ek(id : lnp (R)→ lnp (R)) ≤ c2 · 2
−(k−1)

n ,

where c2 is positive and independent of n and k. On the other hand, if k ≥ n,
Theorem 2.7 gives us

ek(id : lnp (R)→ lnp (R)) ≤ C · 2
−(k−1)

n .

Combining these conclusions with (2.41) and (2.42), we gain that there exist a
positive constant C depending only on p and q such that for all k ∈ N it holds

ek(id : lnp (R)→ lnq (R)) ≤ C · 2
−(k−1)

n n
1
q
− 1

p .
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3. Entropy numbers of
id : lnp (C)→ lnq (C)

In the previous chapter we have presented several estimates for entropy numbers
of id : lnp (R) → lnq (R). We will show that similar estimates hold also for entropy
numbers of id : lnp (C)→ lnq (C), which is formulated in Theorem 3.5. This relation
between real and complex case was remarked by [Kühn, 2001, Remark 1.]. We
present proof.

Lemma 3.1. Let p ∈ (0,∞] and n ∈ N. We define mapping
Inp : lnp (C)→ lnp (l22(R)) for all (z1, . . . , zn) ∈ Cn as follows

Inp (z1, . . . , zn) = (Re z1, Im z1, . . . ,Re zn, Im zn).

Then Inp is bijection and ‖(z1, . . . , zn)‖lnp (C) =‖Inp (z1, . . . , zn)‖lnp (l22(R)).

Proof.

‖(z1, . . . , zn)‖lnp (C) = (
n∑

i=1

|zi|p)
1
p

= (
n∑

i=1

((Re zi)
2 + (Im zi)

2)
1
2 )

1
p

=‖Inp (z1, . . . , zn)‖lnp (l22(R)).

Theorem 3.2. Let p, q ∈ (0,∞] and n ∈ N. Denote id1 = id : lnp (C) → lnq (C)
and id2 = id : lnp (l22(R))→ lnq (l22(R)) Then for all k positive integers it holds

ek(id1) = ek(id2).

Proof. Using mappings Inp and Inq defined in the previous lemma, we have

id1 = (Inq )−1 ◦ id2 ◦ Inp .

From Theorem 1.1 we gain

ek(id1) = ek+1−1((Inq )−1 ◦ id2 ◦ Inp )

≤ e1((Inq )−1)ek(id2 ◦ Inp )

≤ e1((Inq )−1)ek(id2)e1(Inp ).

We know that both Inp and (Inq )−1 are isometric, therefore e1((Inq )−1) = 1 = e1(Inp ).
Hence ek(id1) ≤ ek(id2). On the other hand, we have

id2 = Inq ◦ id1 ◦ (Inp )−1,

and we can similarly prove that ek(id2) ≤ ek(id1).
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Theorem 3.3. Let 0 < p ≤ ∞, and let n be a natural number. Then there exist
positive constants c1 and c2 depending only on p, such that for all
x = (x1, . . . , x2n) ∈ R2n it holds

c1 · ‖x‖l2np (R) ≤ ‖x‖lnp (l22(R)) ≤ c2 · ‖x‖l2np (R). (3.1)

Proof. Let 0 ≤ a and 0 ≤ b. Then from the inequality between the arithmetic
and geometric mean we gain

2−1(a + b) ≤
√
a2 + b2 ≤ a + b. (3.2)

Let 0 < p. We have

2p · (ap + bp) ≥ 2p ·max{ap, bp} = max{(2a)p, (2b)p} ≥ (a + b)p.

Together with (3.2) it follows that(√
a2 + b2

)p ≤ 2 · 2p · (ap + bp). (3.3)

On the other hand, we see, that

2−p · 2−1 · (ap + bp) ≤ 2−p ·max{ap, bp} ≤ 2−p(a + b)p.

Together with (3.2) it follows that

2−1−p(ap + bp) ≤
(√

a2 + b2
)p
. (3.4)

Using (3.3) and (3.4) we obtain, that for all x = (x1, . . . , x2n) ∈ R2n

and k = 1, . . . , n it holds

2−1−p(|x2k−1|p + |x2k|p) ≤
(√
|x2k−1|2 + |x2k|2

)p
≤ 2 · 2p(|x2k−1|p + |x2k|p).

Hence

2−1−p
n∑

k=1

|x2k−1|p + |x2k|p ≤
n∑

k=1

(√
|x2k−1|2 + |x2k|2

)p
≤ 21+p

n∑
k=1

|x2k−1|p + |x2k|p.

(3.5)
Finally, the definition of ‖·‖lnp (l22(R)) and ‖·‖l2np (R) implies that

2
−1−p

p ‖·‖l2np (R) ≤ ‖·‖lnp (l22(R)) ≤ 2
1+p
p ‖·‖l2np (R).

Theorem 3.4. Let 0 < p ≤ ∞, 0 < q ≤ ∞ and n be a natural number. Then
there exist positive constants c and C depending only on p and q such that for all
k ∈ N holds

c·ek(id : l2np (R)→ l2nq (R)) ≤ ek(id : lnp (C)→ lnq (C)) ≤ C ·ek(id : l2np (R)→ l2nq (R)).
(3.6)
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Proof. According Theorem 3.2

ek(id : lnp (C)→ lnq (C)) = ek(id : lnp (l22(R))→ lnq (l22(R))). (3.7)

For all 0 < r ≤ ∞, we denote Xr = l2nr (R) and Yr = lnr (l22(R)). Then it holds

id : (Yp → Yq) = (id : Yp → Xp) ◦ (id : Xp → Xq) ◦ (id : Xq → Yq)

Let k be a natural number. We use Theorem 1.1(4) with R = id : Yp → Xp,
T = (id : Xp → Xq) ◦ (id : Xq → Yq) and m1 = 1, m2 = k, and then we use it
once again with R = id : Xp → Xq, T = id : Xq → Yq and m1 = k, m2 = 1.
Alltogether we gain

ek(id : Yp → Yq) ≤ e1(id : Yp → Xp) · ek(id : Xp → Xq) · e1(id : Xq → Yq) (3.8)

Now we combine Theorem 1.1(1) with Theorem 3.3 and obtain that

e1(id : Yp → Xp) ≤ c−1
1 and e1(id : Xq → Yq) ≤ c2,

where c1 and c2 are positive and depend only on p and q respectively. Combining
this conclusions with (3.8) and (3.7) we gain

ek(id : lnp (C)→ lnq (C)) ≤ c−1
1 c2ek(id : l2np (R)→ l2nq (R)).

The second inequality can be proved similarly.

And the corollary of the Theorem 3.4 is following theorem.

Theorem 3.5. Let 0, p ≤ ∞, 0 < q ≤ ∞ and let n be a natural number. If
0 < p ≤ q ≤ ∞ then for all k ∈ N it holds

ek(id : lnp (C)→ lnq (C)) ∼


1 if 1 ≤ k ≤ log2 2n,(
k−1 log2(2nk−1 + 1)

) 1
p
− 1

q if log2 2n ≤ k ≤ 2n,

2
−(k−1)

2n (2n)
1
q
− 1

p if 2n ≤ k,

(3.9)
and if 0 < q ≤ p ≤ ∞ then for all k ∈ N it holds

ek(id : lnp (C)→ lnq (C)) ∼ 2
−(k−1)

2n (2n)
1
q
− 1

p . (3.10)

If we have q =∞ (perhaps even p =∞) we define 1
q

= 0 (or 1
p

= 0).

The equivalence ∼ from the previous Theorem is defined as follows.
Let x(n, k), y(n, k) : N2 → R, then

x ∼ y iff c · y(n, k) ≤ x(n, k) ≤ C · y(n, k),

where c, C are positive constants idependent of n and k. For example

ek(id : lnp (R)→ lnq (R)) ∼ 2
−(k−1)

2n (2n)
1
q
− 1

p if and only if

c · 2
−(k−1)

2n (2n)
1
q
− 1

p ≤ ek(id : lnp (R)→ lnq (R)) ≤ C · 2
−(k−1)

2n (2n)
1
q
− 1

p

for some positive constants c, C independent of n and k, but possibly depending
on p and q.
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Conclusion

The aim of this study was to introduce the concept of entropy numbers of an
operator and show detailed proof of the estimates of the entropy numbers of
natural identity between finite-dimensional sequence spaces.

In the first chapter we defined entropy numbers and lp spaces. We also com-
puted and estimated volume of the unit ball in lnp . In the second chapter we
summarized and proved the estimates of entropy numbers of natural identity be-
tween lnp (R) and lnq (R). The main idea in the proofs was using the estimates of
volumes of the unit balls as well as combinatorial aspects. The third chapter
extends the estimates from the second chapter to the complex sequence spaces.

The relation between entropy numbers and eigenvalues of compact operators
could be subject to further study.
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