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Introduction

Entropy numbers are closely associated with the metric entropy which was in-
troduced by Kolmogorov in the 1930s. In this work we focus on estimates of
entropy numbers of natural identity between finite-dimensional sequence spaces,
which was given by [Schiitt| [1984]. The upper estimate was proved by [Edmunds
and Triebel [1996], while the lower estimate was completed by Kuhn| [2001]. We
summarize these estimates and present detailed proof.

The work is divided into 3 chapters. In the first chapter we give definitions of
[,-spaces and entropy numbers, and elementary properties of entropy numbers of
linear operators in general. We also compute volume of the unit ball in I7}(R) and
prove its estimate, which is essential for estimating entropy numbers. Our aim in
the second chapter is to prove Theorem which estimates entropy numbers of
identities between real finite-dimensional sequence spaces ey (id : [} — I7'). The
first section of this chapter deals with upper estimate with p < q. We present
detailed proofs. The second section deals with lower estimate with p < ¢, and the
last section presents estimate for p > ¢. In the third chapter we prove that similar
estimates for entropy numbers of identities between complex finite-dimensional
sequence spaces.



1. Definitions and elementary
properties

This chapter introduces us to the concept of entropy numbers.

1.1 Vector spaces

To define entropy number of an operator we need some kind of "norm structure ”
on its domain and range. We will be mostly concerned with the sequence spaces ;.
We are familiar with normed spaces, unfortunately, [; is not necessarily normed
vector space. Precisely, for p > 1 is [} normed vector space, and for 0 < p <1 is
it only p-normed vector space. Therefore we start with definition of p-norm.

Definition 1. Let V' be a vector space over R (or C). The function |-y : V — R
1s called p-norm if it satisfies following conditions:
For allv,u € V and a € R (or C),

1. ||v|ly = 0 iff v is the zero vector,
2 la-vlly = lal - [lv]lv,
S Nu~+ vy < |lullf + vl (triangle inequality).
If instead of[3, it holds
[u+vlly < K(l[ullv +[lvllv),

for some fized K > 1, then ||-||v is called quasinorm.

Vector space V' equipped with p-norm (quasinorm) is called p-normed vector
space (quasinormed vector space).

Complete p-normed (quasinormed) vector space is called p-Banach (quasi-
Banach) space.

In following definition we define sequence spaces [, which are essential for
our work.

Definition 2. Let (V) ||-||v) be a normed vector space. Let n € N and p € (0, 00].
We define I5,(V') :== (V", ||-lin(v)) where V™ is cartesian product of vector spaces,
equipped with norm (p-norm) ||-|linv) defined for all (v, ..., v,) € V" as follows:

o, o)l = (Zuvmf’), il p<oo (1.1)

01, vl = s ol if p=oc (12)

If 1 <p < oo, then I (V') is normed vector space with norm ||| v
If0 <p <1, then I;(V) is p-normed vector space with p-norm ||-||ix(v), satisfying
triangle inequality for p-norms

v+ ullin vy < Mollip ) + lullip @y, (1.3)

for all u,v elements of I} (V).



Remark. Note that if V' is complete then also (V) is complete.
Remark. Holder’s inequality gives us that for p < ¢ it holds

1_1
[y < Ny < ne el (1.4)

Remark. 1f there is no chance of misunderstanding we will write ||-||, instead of
Il v

Ezample. Let 0 < p < oo and let n be a natural number. By [7'(R) we denote the
vector space R" with standard operations + and -, equipped with norm (p-norm)
defined as follows:

For all x = (xy,...,2,) € R™ it holds

n

1
Iz llipm = O l=:lP)r.

=1

Ezample. Let 0 < p < oo and let n be a natural number. By [7(C) we denote the
vector space C" with standard operations + and -, equipped with norm (p-norm)
defined as follows:

For all x = (xy,...,x,) € C" it holds

= 1
2]l = O |zl
i=1

Ezample. Let 0 < p < 0o and let n be a natural number. By 1}(I3(R)) we denote
the vector space (R?)" = R?" with standard operations + and -, equipped with
norm (p-norm) defined as follows:

For all z = (z1,...,%9,) € R?" it holds

n

1
Hle;}(lg(R) = (Z(\/|x2171|2 + |20]?)") .

=1

1.2 Entropy numbers

Definition 3. Let X,Y be Banach spaces, p-Banach spaces or quasi-Banach
spaces. Let T € L(X,Y). We define the sequence (e,(T))32, of entropy numbers
as follows

277,71

en(T)=inf{e >0:3y;,..., 901 €Y : T(Bx) C U (y; +eBy)} (1.5)

=1

Remark. Tt is not necessary for T' to be a continous linear operator. The concept
of entropy numbers works also for any mapping between two Banach spaces,
p-Banach spaces or quasi-Banach spaces.

The following theorem gives us few elementary properties entropy numbers.
It can be found in [Vybiral, Thm.8] and partially in [Edmunds and Triebel, 1996,
Lemma 1.].



Theorem 1.1. Let X,Y,Z be Banach or p-Banach spaces. Let S,T € L(X,Y)
and R € L(Y,Z). Then it holds:

1.

|IT|| > e1(T) > ex(T) > --- >0 (monotocity of entropy numbers);
en(T) — 0 iff T is compact;

If Y is a Banach space, then e1(T) = ||T||;

For every my,mo € N it holds €., 1my—1(R0T) < e, (R)em,(T);

If Y is a p-Banach space, then for all my,my € N holds e}, ... (S+T) <
eb (S)+eb (T).

Proof. 1. First inequality follows from the definition of the operator norm

|T|| = sup{||T(x)|| : © € Bx}. Therefore T(Bx) C B(0,|T||). The in-
equality e;(T") > e;41(T") is obvious from the definition of entropy numbers.

. The sequence e,(T") is bounded, monotonic, and nonnegative therefore it

has a limit lim,,_,o, €,(7") > 0. Let us suppose that T is compact. Then for
all € > 0 there exist a natural number n., and y,...,ysm.—1 € Y, such that

2n5—1

T(Bx) C U B(yi,€).

=1

That implies e,_(T") < e. Since the limit of e, (7") is nonnegative we obtain
en(T) = 0.

Now we suppose e,(T") — 0. Let M be an infinite subset of T'(Bx). We
will prove that M has a limit point in T'(By). First we put My = M. Let
us suppose that we have an infinite set My C T(Bx). We define M., and

Zp11 as follows.

Because e,(T') — 0, we observe that for every k& € N there exists ny € N
and yf,... y%, -, €Y such that

an—l

T(Bx) c | B(yf, ﬁ)

i=1

Hence T(Bx) C Uf:];_l B(yF, 5z). We know that M C T(Bx) is infinite
and we have only finitely many balls covering T'(Bx) , so there exists yf
such that B(y;-€ , ﬁ) N M, is infinite. Now we choose arbitrary z, € M and
define My, = B(y;?, ) N My \z,. Using this induction we gain a Cauchy
sequence {z,}°° ;. Y is Banach (p-Banach) space therefore this sequence
has a limit z which is also a limit point of M. At last z lies within T'(Bx)

because this set is closed.

Let us suppose e;1(T) < ||T||. Then there exist y € Y and 0 < & < ||T|,
such that T'(Bx) C B(y,¢), and € Bx such that |T(z)| > . Naturaly
—x € Bx and ||T(—x)|| > . Hence

1T (z) = T(=2)| = |T(x) + T(x)]| > 2.

6



Using the triangle inequality for the norm of a Banach space we have
1T(x) =yl + lly = T(=2)|| > 2.

Therefore | T(x) — y|| > € or ||T'(—z) — y|| > €. This is contradiction with
T(Bx) C B(y,¢) and therefore e; (1) > ||T'||. From 1, we have e, (T') < |||,
so finally we have e, (T') = ||T|.

4. Let €1 > e, (R),€2 > €y (T'). Then from (1.5 there exist yy,. .., ygms—1 €
Y and z,..., 29m-1 € Z such that

2m271 2m171
T(Bx)C |J (i+eBy) and R(By)C | (2 +e1By).
i=1 j=1

Hence from linearity of R we gain

R(T(Bx)) C R( U (y; + e2By)) = U (R(y:) + e2R(By))
and
RoT(Bx) C U (R(y;) + €2 U (2j +e1Bz))

am2—1 gmy—1
= J U (Bw) +222) + c162B2).
=1 j=1
We have found 2™ +™272 balls with radius €19 that cover (R o T')(Bx).
Therefore from it holds e, 1m,—1(RoT) < eg169. We have chosen
€1 > ey, (R) and €2 > e, (T) arbitrarily, therefore it also holds
eml-i-mz—l(R © T) < €my (R)6m2 (T)

5. Let €1 > e,,,62 > €,. Then from ((1.5) there exist yi,...,ysm—1 € Y and
Cl,...,Com—1 €Y such that

2m1—1 2m2—1
S(Bx) C U (yz + 8lBy) and T(BX> C U (Cj -+ EQBy).
i=1 j=1

If x € Bx then there exist i € 1,...,2™ Y and j € 1,...,2™~! such that
15(z) — willy <ef and [|T'(z) — ¢§ < €b.
Hence ||S(z) + T(x) — (yi + ¢;)|[} < el + &} and
2m171 27n271
1
(S+T)(Bx) C U U (yi + ¢; + (€] + €5)7» By).

i=1  j=1

We have found 2™ ™272 balls with radius (] + 6’2’)% that cover

(S +T)(Bx). Therefore from we gain e;, . (S +T) < ] + 5.
We chose €1 > €,,,(R) and &5 > e,,,(S) arbitrarily, therefore it also holds
i ima 1 (S +T) < e, 1(S) + €, (T)

]

Remark. Note that to prove (4) we needed for R and T' to be additive and ho-
mogenous only for real nonnegative scalars. This fact allows us to prove
Theorem [3.2] in the third chapter.



1.3 Volume of the unit ball in [}(R)

In this section we will compute and estimate volume of the unit ball in I7}(R),
which will be widely used in the second chapter. The computation was given in
[Pisier}, |1989, 1.17], we also present the proof of the estimate mentioned in [Pisier}
1989, 1.18].

Lemma 1.2. Let p € (0,00) and n € N. Denote [y = I}(R). Lett > 0. Then
vol (¢ - Bzg) = t"vol(Byy). (1.6)
Proof. Denote x = (x1,x2,...,x,). Then

vol (¢ - Bzg) =vol{z € R" : ||z||, < t}

= / dry...dz,
{zeR™:||z||p<t}

= / dry...dx,.
{zeR™: || Fllp<1}

We will use transformation of coordinates from (z1,xa,...,2,) to (y1,Y2, .-, Yn)
such that for i = 1,... ,n it holds x; = y;t. Then

vol(t-Blg) :/ |J|dyy ... dyn,
{yeR™[lyllp<1}

where |J| is Jacobian determinant. Let i,5 € {1,...,n}. Then g“;? =t and if
i # j then g—;? = (. Therefore
J

vol (t . Bl;z) = / t"dy, . ..dy,
{yeR™:|lyll,<1}

:t"/ dyy . ..dy,
{yeR™:[lyllp<1}

= t"vol(By ).

Remark. The (|1.6) holds also for p = co.

Before we proceed to the computation, we recall the definition of the Gamma
function.

Definition 4. Let y be a complex number with positive real part. We define
gamma function as follows:

I(y) = / t"rexp(—t)dt
0
Remark. We will often use that for all a > 0, it holds
al'(a) =T(a+ 1), (1.7)

which can be easily proved with integration by parts.



Theorem 1.3. (by|Pisier [1989]) Let 0 < p < 0o and let n be a natural number.
Then it holds @ra+ 1)
2I'(1 4+ =)™
VOl(Bln) — P

D= T (1.8)

Proof. Denote

1= [ ew(-falps

From Fubini’s theorem we gain

I (/Rexp(—|t|p)dt)n _ (2 /Ooo exp(—|t\p)dt)n. (1.9)
Using

{T jt( exp(—t))dt = lim (= exp(—#")) — lim (= exp(—1")) = exp(—|z|}),

. 1=l

we call express

© g 00
[ = / / %(— exp(—tp))dtdx = / / ptpil exp(—tp)dtda?
mJ=]p mJzlp

We use Fubini’s theorem once again and obtain

I :/ pt?~exp(—tP)dtdx
{(z,t);eeR > |z||p}

:/ ptP! exp(—tp)/ ldxdt
0 {zeR™;|x[|p <t}

_/ ptP~! exp(—t")t" vol( By )dt
0

:VOI(Blg)/ ptP L exp(—tF)dt,
0

where we used also Lemma . Together with (1.9)), we gain
(2 [, exp(—tP)dt)"

vol(Byy) = o7 ptrn—texp(—tr)dt

(1.10)

Now we proceed to the gamma function. Substituting z for ¥ we gain ¢t = b
and dt = —z P dz therefore

~ 1 1= 1./1 1
/ exp(—tF)dt = / —z 7 exp(—z)dz = _F<_> — F(l + _)’
0 o P P \P D

where in the last equation we used ((1.7)). On the other hand, with same substi-
tution z for tP, we obtain

(o]
/ ptPt" L exp(—
0

1 1-p  ptn-1

—z 7 pz ¢ exp(—=z)

B
A

s
I

F(+)

Ne)



Combining these conclusions with (1.10) we gain

201+ )"
T

p

VOl(Bl;L) =

]

Using this result, we prove the estimate of the volume of the unit ball, which
is essential for many proofs in the second chapter.

Theorem 1.4. Let p > 0, then there exist positive constants ¢ and C' (depending
only on p) such that for all x € [1,00) it holds

cx% < (F(l—l—g))z < CZU%.
p

r(1+2))7
Proof. Denote m = minge[i14y) M We define ¢ = min{(é)%,m}. Since
xP

I'(a) is positive for all @ > 0, it holds m > 0 and ¢ > 0. It is obvious that

cxv < <F(1+%>)i (1.11)

holds for all = € [1,1 + p|. Now we will prove that if (1.11]) holds for x = y then
it holds also for x = y + p. Let us suppose that cy% < (I'(1+ %))% We have

ISE

P
p < (ﬁ) and  ¢*Pp(y +p)r < Yy

Our assumption gives us

ny% < F(l + %), and therefore c/™p(y —l—p)% < F(l + f—))

Hence
Py +p)7 < y+pr(1 i y)_

p p
Using ((1.7]), we obtain

1
Py

We know that (1.11)) holds for all z € [1,1+ p| and we proved that if it holds for
x = y then it holds also for x = y + p. Therefore it holds for all x € [1, c0).
We will deal with second inequality in a similar way.

D" We define ¢ = max{( )%,M} Since

Let us denote M = max,e[1,14p| . %
xP

10



I" is continous on (0,00), it is bounded on [1,1 + %] and therefore M < oo and

C < 0o. It is obvious that
2\ \* 1
(F (1 + —>) < Cxv (1.12)
b

holds for all z € [1,1+ p]. Now we prove that (1.12)) holds for x = y then it holds
1
also for z =y + p. Let us suppose that (I'(1 + £))v < Cy». We have

1\ 7
(—) < C and therefore 1 <pCP?.
p

We know that for all positive y, p it holds nyp < 1 and also (ﬁ)% < 1. Hence
KA
P
(%) < pCP and therefore CYyr < pCY*P(y + p)r.
Yy—r—p

Our assumption gives us

S

F(l + y) < CYr  therefore F(l + ?1> < pC¥™(y +p)r.
P p

S ke

Hence

wl“(l + Q) < CvP(y+p)T
p p

We use (|1.7]), and obtain

yTp ﬁ
F(l + w) < Cy’”)(y—l—p)% hence (F(l + w)) <C(y+p)>.

RS

p p
Now we know that ((1.12)) holds for all x € [1,1+ p| and if it holds for z = y then
it holds also for # = y + p. Therefore it holds for all = € [1, 00). O

Theorem 1.5. Let 0 < p < co. Then there exists positive constants cy,co (de-
pending only on p) such that for all n € N it holds

ene < (vol(Blg))% <o (1.13)

Proof. Let 0 < p < co. From Theorem [1.4] we gain positive constants ¢, C' such
that for all n € N it holds

cnv < (T(1+ 2))% < Cnr.
p
The Theorem [1.3] gives us

1
vol(Byy) = ~——— 22

Therefore

1 1
or(1+ —)C~tn~ VP < VOl(Bln)% <U(14 =) tn~ VP,
D g p

That completes the proof for 0 < p < .
If p = oo then vol By = 2" and ([1.13) obviuosly holds. O

11



2. Entropy numbers of
vd Zg(R) o lg’(]R)

This chapter focuses on the estimate of entropy numbers of natural identity be-
tween [7'(R) and [} (R). Every vector space used in this chapter will be I}'(R) for
some 0 < p < oo and n a natural number. To deal with triangle inequalities of
norms and p-norms together, we define p = min{p, 1}. The triangle inequality
for both 0 < p <1 and 1 < p can be rewritten as

lu+oll} < [ull} + [v]l}- (2.1)
The main result is following theorem.

Theorem 2.1. (by |Schiitt [1984]) Let 0 < p < 00, 0 < ¢ < o0 and let n be a
natural number. If 0 < p < q < oo then for all k € N it holds

1 if 1<k <logyn,
ex(id : [)(R) = I7(R)) ~ { (k™ logy(nk™" + 1))%_ if logon <k<mn, (2.2)

—(k=1) 1_1

27w na v if n<k,

Q=

and if 0 < g < p < oo then for all k € N it holds

—(k=1) 1_1

ex(id : I'(R) = I"(R)) ~ 2 a5, (2.3)

If we have ¢ = 0o (perhaps even p = o00) we define é =0 (or ]lo =0).

The equivalence ~ from the previous theorem is defined as follows.
Let x(n,k),y(n, k) : N> - R, then

where ¢, C' are positive constants idependent of n and k. For example

—(k=1) 1_1 | .
nae r if and only if

ex(id : ['(R) = [*(R)) ~ 2

—(k—=1) 1_1 —(k—1)

ni"r <ep(id: M(R) = ['(R)) < C -2

for some positive constants ¢, C' independent of n and k, but possibly depending
on p and q.

1_1
na p

c-2

2.1 Upper estimate with p <

The upper estimate with p < ¢ was proved by |Edmunds and Triebel, 1996,
chap.3, 3.2.2 Proposition]. We divided the proof of this proposition into Theorems

B2 4 and 25

Theorem 2.2. Let 0 < p < g < oo and let n be a natural number. Then for each
natural number k it holds

er(id : I)(R) — I(R) < 1.

12



Proof. As 0 < p < ¢ <00, By C By and therefore e;(id : [} (R) — [7(R) < 1 for
every k € N. O

Lemma 2.3. Let 0 < p < oo and 0 < ¢ < 0o and let n be a natural number. We
put X = 2(R) and Y = [}(R). Let T € L(X,Y) and let v > 0. By N we denote
the maximal number such that there exist yy,...,yn € T(Bx) with ||y, —y;llq > 7
for every i # j. Then it holds

N(r : 2_7”1>nvol By <vol(T(By) +r-27 By).

Let k be a natural number such that 2871 > N. Then e, (T) < r.

Proof. Let N and vy, ...yy € T(By) from the statement of the lemma. Let
i,7 €{1,...,N} such that i # j and let z € Y. From ({2.1) we have

<y = y5lls < llyi — 208+ 12— wsll2.
Hence ||y, — 2|, > r27 or ly; — z|lqg > 7"2_71, and therefore
(yi +7r- Q%By) M (yj —+7r- 2_7}By) = (Z)

And because for all i = 1, ..., N it holds (yi+r-2%By) C (T(BX) +T'27%By),
we immediatly gain the inequality in lemma.

Now let k£ be a natural number such that 2¢=! > N and let € > r. Because N
is the largest number with mentioned property, for every z € T'(By) there exist
i €{l,...,N} such that ||y; — z||; <7 < e. Hence e;(T) < e. We see that for all
e > r it holds e, (T") < ¢, and therefore e, (T") < r.

0

Theorem 2.4. Let 0 < p < q < o0 and let n be a natural number. We denote
X =1L (R) andY =[}(R). For each k € N we denote e(idy,) = ex(id : X —Y)
Then there exist positive constant ¢ > 1 depending only on p and q, such that for
each natural number k > ¢n it holds

—(k=1) 1_1
na p,

eglidpg) < C-2

with C' a positive constant depending only on p and q.

Proof. Let k > n be a natural number. We define r = 2_(k_l)n%_%. Let us
consider ¥, ...,yy from Lemma|2.3] Using the same lemma we gain
N(r-27)"vol By < vol(Bx +r-27 By) (2.4)

Let ve Bx +1- Q%By. Then there exist v; € Bx and vy € 7 - Q%By such that
1 1
v = vy + vy. From ([1.4) we know that ||ve|, < ne ™~ a||ve,,

—(k—1) 1

hence vy € 27 » ~1Bx C Bx. Triangle inequality (2.1)) gives us

oI5 < o2+ [loallf < 1+ 1.

Hence |[jv], < 2% and v € 27 By. Together with (2.4) we have

—1\n n 1 ]_B %
N(r-27)"vol By <28 vol By hence N+ <2551 (22507,
vol By

13



From Theorem [L.5] we have

vol Bx \ » 1_1
(28" <ot
VOlBy

where ¢ is a positive constant depending only on p and ¢q. Therefore we gain

k71+c/n

Nw <ec-25Fa2" <2929 =2, (2.5)

where ¢’ is a positive constant depending only on p and ¢ such that 2¢ > ¢ 2.
Finaly we define ¢ = ¢ + 1. Let k > én, and k be the largest natural number
k+c/n71

such that k& > k+cdn. Note that & > n. From (2.5 we have Na <27 < 2’;_1,
hence from Lemma [2.3] we gain that

—(k=1) 1_1
na »p

e (idpq) <

r=32 n
*(’;*1) ) k—k—c'n 1_1
=92 w 297w nd v

—(k=1) 1_1

s 1 L
<292w2 W i b,

Therefore )
—(k—1) 1_1

ep(idpy) <C-27n naw,

where C' is a positive constant depending only on p, q.
m

Theorem 2.5. Let 0 < p < oo and let n be a natural number. For each k € N we
denote ey (idy) = ex(id : [;(R) — I3 (R)). Let ¢ be the positive constant defined
in Theorem [2.4).

Then there exist positive constants cs > 1 and c19 depending only on p such
that for every 1 < k < ¢cgn it holds

1

exlidy o) < 010</{;_1 log, (k™! + 1)) ’ (2.6)

;1
Proof. Let 1 < k < ¢én. We put ¢ > (EillogQ(l + 571)) " and

Sl

t=c (k:‘1 log, (nk ! + 1)) . (2.7)

This choice gives us
t> nii, and k> ct P (2.8)
If ¢t > 1 then we from Theorem immediatly gain . Now we will assume
that ¢ < 1. We denote by n;, the largest natural number such that there exist
x € Bl;z(R) with n; coordinates in absolute value greater than ¢. Because t < 1 we
note that n, > 1 and

From ({2.8) we have n, < n. Because n; is the largest natural number with the
mentioned property, and n; > 1, it holds

tp—lgnt<t7p.
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Since t < 1, we gain that t77 > 1. If t77 > 2 then it follows %t*p < n If
l<t?P<2thenn,=1> %t’p. Both cases gives us

1
U <m <t (2.10)
We define
el = ex(id : I"(R) — [™(R)).
According to (2.8)) and (2.9) holds k > ¢tP > ¢n,. Hence, from Theorem we

gain
—(k—=1) =1 =1

e,(:) <C-2 m nt <cegnt, (2.11)
where ¢3 is a positive constant depending only on p. From (2.10)) we have %t*p <

—1

n; which gives us ¢4t > cgn? , where ¢4 > 1 and depens only on p. Hence from

(1.5) we know that there exis x1,...,xq—1 € [ such that
2k—1
Blgt(R) C U (xl + C4tBlZot(R)) (212)

i=1

For every i € {1,...,2* '} and x; defined in (2.12)) we denote z; = (z},...z}").

Now we prove that there exist 2¥~* (:t) balls in {7 (R) with radius ¢4t covering
Bip(r)- We define 2, ; for all i € {1,...,2*"} and j € {1,. .., (TZ)}, which will be
centres of those balls, as follows.

Since,there is (Z) ways of choosing n; coordinates out of n, every j represent
one of the possible choices of n; coordinates. The values of z;; on these n,
coordinates are z}, ..., z!", and the rest of coordinates are zeros.

Let y € Bin(r). From definition of n;, we gain that y has at most n, coordinates
in in absolute value greater than t. We find j € {1,..., (:)} representing the
same choice of n; coordinates. We know that |0 —t| = ¢ < ¢4t,and therefore from
(2.12) we gain that there is i € {1,...,2"71} such that ||z;; — ylleo < cat

Hence there exist 2¥71(") balls in I” (R) with radius cst covering Binw).-

ne
Now we will prove that there exist a positive constant cg such that

2]{:71 n < 208]4?*1 )
ny -

We recall the well known inequality

m m
e (2)
e
for every m € N . This inequality gives us

10g2 (nt‘) Z un 10g2 ny — Znt.

We have

log, (:) < nylogyn — logy(ny!)
t

4n

< nglogy n — nylogy ny + 20y = ny log, <—>
Uz

< 4n,log, (ﬁ + 1).

Uz

15



Using (2.10) we gain ;> < 2nt” and therefore

log, (n> < 8n¢logy(nt? 4 1).
e

Hence
ok—1 (”) < 9k—1+8n; logy (nt?+1)

Uz
Finally from (2.10) we have

ok—1 (n) < Qhkest P logy(nt?+1)—1 (2.13)
Uz

By defintion of ¢ we have
nt? = cink tlog,(nk™t + 1) < en?k 2.

Hence
logy(nt” +1) < 1Og2(01”2k_2 +1) <cs 10g2(”k_1 +1),

and from ([2.13]) we gain

ok—1 <n) < gktert™Plogy(nk~ +1)-1 (2.14)
U

where ¢7 is a positive constant depending only on p. From (2.7)) we have
t7? = c;Pk(logy(nk~' 4+ 1))~ 1
This combined with (2.14)) gives us

ok—1 <n) < 2k+t:7c;pk(loggl(nk_1+1))_1logQ(nk_1+1)71 _ 2k(1+C7c;P)71.
Ny -

By cg we denote the smallest natural number greater than 1+ c;¢;”. Hence there
exist 2%~ balls with radius ¢4t covernig By, with ¢, and cg depending only on
p, with cg > 1. Therefore from (2.7)) we have

1
eesk(idpo0) < crea (k™ logy(nk™" + 1))

1
< 0104(k_1c§108 log, (nkcgtes + 1))”

3 =

< crea(k7 eyt eglogy(nk ™ egt + 1))

Sl

< creact (k7 ey logy(nk et 4+ 1)) 7.
Hence 1
en(idyoo) < co(k™ logy(nk™" +1))» (2.15)

for all 1 < k < én, such that k = cgk’ for some k' € {1,...,n}. The constants cg
and c¢g are positive and depend only on p.

We will prove that holds for all 1 < k < én. If 1 <k < ¢g then ({2.15))
follows from Theorem 2.2 and

cglogy(cgt + 1) < k™ 'logy(nk™ +1).

16



Now let cg < k < ¢én. By k; we define the largest natural number less or equal
to k, such that ky = cgk’ for some &' € {1,...,n}. From monotonicity of entropy
numbers and (2.15)) we gain

ex(idy o) < eg, (idy ) < ¢ ( Yogy(nkt +1 ))%
< ¢g(2cs (k1 + cs) " logy (n2cs (k1 + cs) ™ + 1))%
< ¢g(263 (k1 + cs) M logy(n(ky + cs) ™' + 1))%
< co(2e8)7 (k1 + c) " logy(n(ky + cs) ™! +1))7,

where we used that for all k&; > 1 and ¢g > 1 it holds 2cgk; > ki + cg. Finally,
because the function f(r) = z7'logy(nx™! + 1) is decreasing on [1,00), and
k < k; + cg we obtain

exlidy o) < ¢ (K~ logy(nk™" +1))7, (2.16)

where ¢ is positive and depens only on p. H

Following lemma is a special case of |[Edmunds and Triebel, 1996, Theorem
1.3.2(1)].

Lemma 2.6. Let 0 < p < g < oo and let n be a natural number. We define
X =01(R), Y =I0}(R) and Z = I3 (R). Let ki, ks be natural numbers. Then

Chythy—1(id : X = Y) < 2Pek (id: X — X) (zd X = 2).

Proof. Let 0 < p < ¢ < oo and let n be a natural number. We define X = [7,
Y = l;‘ and Z = [2,. Since for all > 0 it holds x? = 2P2?7P, we have that for all
r = (x1,...,2,) € R" it holds

ZW< max | Per P

77777

Hence for all £ € R™ holds
P 1-2
[zlly < llzllp - [zl * (2.17)

Let k; and ks be natural numbers. Let € > 0. We put e; 5, = ey, (id : X — X) and

€2k, = €k, (1d : X — Z). Then there exist z1,...,To-1 € X and 21,..., Zory—1 €
Z such that
2k1 1 2k2—1
Bx C U i+ (1+¢€)ey, Bx) and By C U (zi+ (1 +¢)ear,Bz). (2.18)
i=1

For all j =1,...,2"~! we put
Aj = BxnN (l’j + (1 + €)€lex). (219)

We prove that each of A; can be covered with 2¥27! balls in Z
with radius (1 + 8)6k22% and which centres are in A;.

17



Let j € {1,...,2"71}. Since A; C Bx, we gain from (2.18) that

2/9271
Ay | (zi+ L+ 2)er,By). (2.20)
i—1
For every i = 1,...,2"7! we define 2, ; € A; as follows.

If A;N(z+ (14 ¢)ex,Bz) = 0 then let z;; be an arbitrary point in A;. If
AN (zi+ (1 +e)ex,Bz) # 0, we put z;; € A; N (2 + (1 + €)ex, Bz).

Let us suppose that z; ; € A;N(z+(14¢)ex, Bz), and let 2z € (z;+(1+¢)ex, Bz).
Then from triangle inequality we have

12 = zijllo < 2 = zilloo + ll2i — 2i5ll00 < 2(1+2).
Hence
(Zi + (1 -+ 5)62’]@32) Czj+ 2(1 -+ E)Bz.
Using this, and (2.18]) we obtain that for all j = 1,...,2*~1 holds

2]9271

Aj C U (Z@j -+ 2(1 + 8)627k22Bz).

=1

Finally this, with (2.18) and (2.19) shows us that for every a € Bx there exist
z; ; such that
la = zijllo < 2(1 + €)ea,.

From ([2.1)) we have

la — zijllp < [la — a;]lh + |1z — 2518 < 2(1 +¢)Pey, .

Hence
1 1
la = zijlloo <27(1+€)eap, and [la — 2l < 27(1+€)er, (2.21)
and from (2.17]) we have
1 2 1-Pk
la = 2ijllg <27 (1 +e)ef ) €4
Hence
. 1 2 o1-*
Chythy1(id 1 X = Y) <20 (1 +e)ef; e,
Passing to the infimum over € > 0 completes the proof. O

Theorem 2.7. (by Edmunds and Triebel [1990]) Let 0 < p < q < oo and let n
be a natural number. For each k natural number, let us denote

ex = ex(id : [)(R) — [7(R)). Then

1 if 1<k<log,n
11
e <c-q (k7' ogy(nk™t +1))7 ¢ if logyn<k<n (2.22)
7(5:1)71%_% if n<k,

where ¢ is a positive constant depending only on p and q.

18



Proof. Let 0 < p < ¢ < co. The first case follows immediatly from Theorem [2.2]

If ¢ = oo then from Theorem we gain the second inequality, provided
k > cg, where cg is positive constant depending only on p. If ¢ < oo then from
Lemma 2.6 where we put k& = 1 and ky = k& we have

ex < 25 (id : IM(R) — IM(R))ey, *(id : IM(R) — I (R)).
From Theorem [2.2) and Theorem [2.5] we gain

1_1

er <c- (k7' logy(nk™" +1))r e, (2.23)

where ¢ is a positive constant depending only on p and ¢, and with k£ > cg.
Now let k < ¢g. Then for all n € N holds

1

(/{‘1 log,(nk™" + 1))P ¢ > (cgl 10g2(cg1 + 1))

-

hSAl
Q|-

= C11-

As we can see, ¢q; is positive and depens only on p and ¢. Therefore from
Theorem 2.2] we have
er < c11 - 01’11.
Hence L
er < cpf (k7' logy(nk™ 4+ 1)) .
This together with completes the proof of the second inequality. We also

note that the second inequality holds also with log, n < k < éegn and that cg > 1.
As for the third inequality, firstly we put n < k < ¢én. Then

-k 1_1

2 na » > (2°(k7 logy(nk™ + 1))

1_
P

Q=

We have already proved, that

_1
q

er < c- (k7 logy(nk™ + 1))%

Hence there is a positive constant c;5 such that

—k 1_1

ep < cip-2nne p,

which is the third inequality provided n < k < én.
And finally Theorem proves the third inequality provided k& > ¢n. O

2.2 Lower estimate with p <gq

The proof of the lower estimate for 1 < k <log,n and k£ > n is straightforward
and was shown by [Triebel, 1997, Theorem 7.3]. We divided it into Theorems
and 2.10f The lower estimate for log < k < n is more difficult to prove and it
was shown by Kiihn| [2001].

Theorem 2.8. Let 0 < p < q < oo and let n be a natural number. Then for each
natural number k < logyn holds

ex(id : I)(R) = I} (R)) > ¢,

where ¢ 1s a positive constant depending only on p and q.
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Proof. Let k be a natural number such that £ < log,n. For all
e > e(id : [;(R) — [7(R)), there exist y1,...,yx-1 € Y such that

2]@71
Bx  |J (i +By). (2.24)
i=1
Let us recall, that we denote by eq,...,e, the canonical vectors in R™. As their

number n is by our assumption larger than the number of balls on the right-hand
side of (2.24), we may find 7,5 € {1,...,n} with i # j and m € {1,...,2""'}
such that both % - €4, % - €j € Ym + €By. From (2.1)) we obtain

eZ — —e < eZ m — e < 2¢%,
2 J 2 y J q
We have 1 {
1 1
ngz — iej . = (27(1 + 27(1)a = 25_1,
hence

»Q\H
»Q\»—'

2171l < e

As this holds for every ¢ > ex(id : I}(R) — ZQ(R)), the same inequality is true
also for ey (id : [7(R) — I7(R)) and we finish the proof.
O]

The idea of the following lemma is pretty simple. If some set is a subset of
some union of sets then the volume of the first set has to be less or equal to the
sum of volumes of the sets from that union.

Lemma 2.9. Let T € L(X,Y) and k be a natural number. We denote n dimen-

ston of Y. Then it holds
1T(B
en(T) > M
vol By

Proof. Let € > ex(T). Then there exist yi,...,ysx—1 € Y such that

ok—1

T(BX) C U (yz + €By).

=1

Therefore
2F=1yoleBy > volT(Byx).

That gives us

1
IT(Byx)\ "
21 yol By > vol T(By) and > 2= (YOI (Bx)
vol By

And with passing to the infimum with e, we gain desired inequality. O
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Theorem 2.10. Let 0 < p < o0 and 0 < g < oo and let n be a natural number.
We put X = I(R) and Y = [}/(R).
For each k € N we denote e, = e (id : X —Y'). Then

-k 1_1

ey > C-2nna p,
where ¢ 1s a positive constant depending only on p,q.
Proof. From Lemma [2.9| we have

—k+1 / VOl BX

1
> 9=k ( )'n‘
k= vol By

From Theorem we know, that there exist positive constants c,, ¢, depending
only on p and ¢ respectively, such that

vol(BX)% > cpn% and VOl(By)% < cqn%.

Therefore
_1 k41 11 k1 11

er = CpC, -2"m na p=c-2"n na or,

O

Theorem 2.11. (by |Kuhn [2001)]) Let 0 < p < q < oo and let n be a natural
number. For each k € N we denote e;, = ey(id : I — [}}).
Iflogon < k < n, then

ex > - (k7 logy(nk~ + 1)) 1, (2.25)
where ¢ 1s a positive constant depending only on p and q.

Proof. Let 0 < p < q < oo and let n be a natural number. Firstly we prove that
holds for any natural number k such that log,n < k < 9%, where ¢; < 1
is a positive constant depending only on p and ¢. As there is no natural number
between logy n and <4* , if n < 3, we can suppose that 4 < n. For all m € N such
that m < 7, we put

n

S, = {x = (@1em) € (=10, Y | = 2m}, (2.26)

=1

and note that S,, has cardinality

1S,| = (;ﬂ) . g2m. (2.27)

For all z,y € R™ we define Hamming distance as follows

h(z,y) = {i:zi # yi}|.
Let x € S,,. We put

H,(z) ={y € S : h(z,y) <m}.
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As for the cardinality of H,,(z), there is (:1) ways to choose m coordinates where
x and y may differ, and 3 possible values for each of that coordinates for y. Hence

\H,(2)] < (”) .3, (2.28)

m

We put a,, = (") . (")_1. Let A be any subset of S with cardinality at most

2m m

a,,. Then it holds

n
: 1 < < m < . -3m ml
{y € Sn:Tr €A with h(z,y) <m} <Y |[Hu(x) < |A] (m) 3™ < |8,

T€EA

where we used in the second inequality and in the third. Therefore,
for any A C S,, with |A| < a,, there is x € S,, such that for any y € A holds
h(z,y) > m. Hence we can inductively find A,, C S,, with cardinality greater
than a,,, such that for all distinct z,y € A is h(x,y) > m.

From definition of h(z,y), and A,, C S,,, we see that for all z,y € A, such
that = #£ y is

n 1
q 1
o = yllg = (3 lai = wl7) " > ms. (2:29)

i=1
We put
Bn={b:b=3m) »-x forsome z¢€ A,},

and note |B,| = |An| > an,. Since A, C S, for all b € B,, we have
1
6]l = (2m - (3m)™h)* <1,
hence B C Bl;(R)- We can also see that for all distinct by, by € B holds
_1 1
|b1 — ballg > (3m) Pm.

Hence, there exist a positive constat ¢’ depending only on p and ¢ such that for
all £ <log, a,, it holds

er > dmis, (2.30)
which can be proved similarly as lemma [2.3]
We have
—1 m .
n n m!(n —m)! Hn—Qm—i—z
am = . = ey —"
2m m @m)l(n—2m)! 3 m+i
and we know that function f(z) = ”‘ﬂf%ﬂ is decreasing in interval (0, 00). There-

fore

n—m\m n—2m\m
(o) =e=()
2m m

That implies
n n
log, — <1 < mlog, —, 2.31
cam Oggm_ 0gz @ =M Ong ( )

where ¢; is a positive constant less than 1 and independent of n and m.
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Now let k£ € N, such that c; - mlog2<m) <k <4 forsomem € {1,...,5}.
We will prove that then it holds

| i1
m*1>02- Og2(2+ )’

(2.32)

where ¢, is positive and depens only on p and ¢. The function f(z) = xlog, 7 is
strictly increasing on [1, %] and maps this interval onto [log,n, §]. Therefore it
has on [1, §] inverse function, which is also increasing. We can easily verify that
if z € [1, %] then

r < Lxl (2.33)
logy(77)
We use (2.33) and that f(x) is increasing on [1, 2], and gain
108;2(%)
mo > (2.34)
¢k
Since k < “5*
n n
21 (—> > log, 1). 2.35
0g9 Cl_lk = 108, Cl_lk + ( )
We have also n n
(i + 1)logy (- +1) = logy( +1). (2.36)
c k k

Combinig ([2.35)) and - with - we gain desired -

Finally, let k: be a natural number such that logyn < k < <. If there exist
natural number m < % such that

cimlog, <£> < k <logy ap,
m

then - follows from and (| - If there is no such m, then we find

the largest natural number m such that c;m log2( < k.

cin

5
1 <m < % —1, and because m is the largest number with mentioned property
we gain

We have c;logy(T) < logyn and c;%logy(w) = Therefore we note that
4

clmlog2<%) <k<c(m+1) 10g2< > (2.37)

n
m+ 1
From (2.32) we gain

and because m > 1
m+1<2-

(2.38)
Since k < ¢i1(m + 1) log, (#) < logy a1, we obtain from ([2.30]) that it holds

x> 2d(m+1)a >
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Combining this with (2.38) gives us that (2.25) holds for any log, n < k < <*. To
prove (2.25) for 4" < k < n we use Theorem and monotonicity of entropy
numbers.

]

Finally, Theorems [2.8] and give us the following Theorem.

Theorem 2.12. (by Schitt] [1984]) Let 0 < p < ¢ < oo and let n be a natural
number. For each k natural number, let us denote ey = ey (id : [(R) — [}'(R)).
Then

1 if 1<k<log,n
1_1
e > c 4 (k7 ogy(nk™ +1))7 ¢ if logyn<k<n (2.39)
2~ if n<k,

where ¢ is a positive constant depending only on p and q.

2.3 Estimate with p > ¢

The estimate with p > ¢ easily follows from Theorem and Theorem [L.1[4).

Theorem 2.13. Let 0 < ¢ < p < 00, and let n be a natural number. Then for
all k € N holds

—(k—=1) 1 _1 —(k=1) 1_1

c- 27 mi e <eplid: (R) = [H(R)) < C-27 = nar, (2.40)

where ¢ and C' are positive constants depending only on p and q.
Proof. The lower estimate follows directly from Theorem [2.10]
To prove the upper estimate, we use Theorem (4),

with R =id : [;(R) — [J(R), T'=id : [}(R) — [}(R) and m; = k and my = 1.
This choice gives us

ex(id : I)(R) — I[;(R)) < ex(id : [(R) — [7(R)) - er(id : [} (R) — [7(R)). (2.41)
Since ¢ < p, from (1.4) and Theorem [L.I[1) we gain

er(id : I'(R) — I*(R)) < na 7. (2.42)
To estimate e, (id : [;(R) — I7(R)) we use Theorem [2.7, where we put p = ¢q. We
obtain that if £ < n then
ex(id : I)(R) — ID(R)) < e,

and since k < n we have
—(k=1)

er(id : [)(R) = I}(R)) <cp-27 7,
where ¢, is positive and independent of n and k. On the other hand, if £ > n,
Theorem [2.7] gives us

ex(id : I(R) = IM(R)) < C -2 %

Combining these conclusions with (2.41)) and (2.42)), we gain that there exist a
positive constant C' depending only on p and ¢ such that for all £ € N it holds

—(k—1) 1 _1

ex(id: IM(R) — I"(R)) < C -2 = a5,

24



3. Entropy numbers of

id : I2(C) — I7(C)

In the previous chapter we have presented several estimates for entropy numbers
of id : I7(R) — I7(R). We will show that similar estimates hold also for entropy
numbers of id : [7(C) — [7(C), which is formulated in Theorem . This relation
between real and complex case was remarked by [Kiihn, 2001, Remark 1.]. We
present proof.

Lemma 3.1. Let p € (0,00] and n € N. We define mapping
I 12(C) — I (I3(R)) for all (z1,. .., 2,) € C* as follows

(215, 20) = (Re 21, Im 2y, ..., Re 2, Im 2,).
Then I}y is bijection and |[(z1, ..., zn)|lmc) =[1y (21, -, 20) iz w))-

Proof.

1
(21, -5 20 lip o) = lezlp P

n

= (3 ((Rei)? + (Imz)?) )
1=1
:||[§(21> cvyZn) ||Zg(z§(R))-
[]

Theorem 3.2. Let p,q € (0,00] and n € N. Denote id, = id : [;(C) — [}(C)
and idy = id : I}(I5(R)) — I7(I3(R)) Then for all k positive integers it holds

ex(idy) = ex(ids).
Proof. Using mappings I, and I defined in the previous lemma, we have
idy = (IZ;)_1 oidyo I .
From Theorem [I.1] we gain

(Zdl) = €Cky1— 1(([5) ©) ng e} I )
< er((Iy)exlids o 1))
< e (1) Yen(ida)er (1)

We know that both I and (")~ are isometric, therefore ey ((I7) ") = 1 = ey (I}}).
Hence e (idy) < eg(id2). On the other hand, we have

idy = 1) oidy o (Ig)_l

and we can similarly prove that ey (ids) < eg(idy). O
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Theorem 3.3. Let 0 < p < 0o, and let n be a natural number. Then there exist
positive constants ¢, and co depending only on p, such that for all
= (11,...,T9,) € R®™ it holds

c1 - [lzllgn @) < llzllpazmy) < c2 - [zl (3.1)

Proof. Let 0 < a and 0 < b. Then from the inequality between the arithmetic
and geometric mean we gain

27 a+b) < Va2 + 2 <a+b (3.2)

Let 0 < p. We have
27 (a? 4+ 0P) > 2P - max{a®, 0’} = max{(2a)?, (2b)"} > (a + b)".

Together with it follows that

(Va2 +12)F <227 (a? + V7). (3.3)
On the other hand, we see, that

27727 (aP + bP) < 277 - max{a?, b’} < 27P(a + D).

Together with it follows that

27177 (0P + bP) < (Va2 + 12)". (3.4)

Using (3.3) and (3.4)) we obtain, that for all x = (x1,...,73,) € R*™
and k=1,...,n it holds

p
27 (i + [eanl?) < (Viwaod P+ o) < 202 (waal + o],

Hence
n n P n
213 et P ol < D0 (Vizm P Jeal) < 273 foa [+ [l
k=1 k=1 k=1
(3.5)
Finally, the definition of |[-[|;n2()) and |[-[|izn(=) implies that
—1—p 1+p
27 H'ngn(R) < H'Hz;(zg(R)) <2v H'Hl,%n(R)-
[l

Theorem 3.4. Let 0 < p < 00, 0 < ¢ < 00 and n be a natural number. Then
there exist positive constants ¢ and C' depending only on p and q such that for all
k € N holds

ceplid s 12(R) — 12(R)) < ex(id : I(C) — I7(C)) < Crex(id : IZN(R) — I2"(R)).
(3.6)
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Proof. According Theorem
en(id: I3(C) > () = exlid : LR —» ERY).  (37)
For all 0 < r < oo, we denote X, = [**(R) and Y, = ["(I3(R)). Then it holds
id: (Y, = Y,)=(d:Y,— X,)o(id: X, = X,) o (id: X, = Y,)

Let k be a natural number. We use Theorem [1.1(4) with R = id : Y, — X,
T =(id: X, - X,)o(id: X, = Y,) and m; = 1, mg = k, and then we use it
once again with R =id : X, = X, T" =id : Xy, — Y, and m; = k, my = 1.
Alltogether we gain

ex(id: Y, = Y,) <e(id:Y, = X,)-ep(id: X, = X,) -e1(id : X, = Y,) (3.8)
Now we combine Theorem [1.11) with Theorem [3.3] and obtain that
er(id:Y, = X,) <c' and e (id: X, = Y,) < e,

where ¢; and ¢y are positive and depend only on p and ¢ respectively. Combining

this conclusions with and we gain
ex(id : [)(C) = [;(C)) < c; tege(id lg”(R) — Z?I"(R)).
The second inequality can be proved similarly. O
And the corollary of the Theorem is following theorem.

Theorem 3.5. Let 0,p < o0, 0 < ¢ < o0 and let n be a natural number. If
0<p<q< oo then for all k € N it holds

1 if 1<k <log,2n,
er(id : [;(C) = I3 (C)) ~ q (k™ logy(2nk=" +1))» ¢ if logy2n < k < 2n,
2= (2n)1 if 2n <k,
(3.9)
and if 0 < ¢ < p < oo then for all k € N it holds
ex(id : I'(C) — IM(C)) ~ 23 (2n)a 5. (3.10)

If we have ¢ = 0o (perhaps even p = o0) we define % =0 (or % =0).

The equivalence ~ from the previous Theorem is defined as follows.
Let x(n,k),y(n, k) : N> - R, then

where ¢, C are positive constants idependent of n and k. For example

—(k=1)

er(id : [)(R) = [7(R)) ~ 27 2= (271)%7% if and only if

—(k—1) —(k—1)

273 (2n)177 < eglid : I(R) — [M(R)) < C -2 2 (2n)a

for some positive constants ¢, C' independent of n and k, but possibly depending
on p and q.
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Conclusion

The aim of this study was to introduce the concept of entropy numbers of an
operator and show detailed proof of the estimates of the entropy numbers of
natural identity between finite-dimensional sequence spaces.

In the first chapter we defined entropy numbers and [, spaces. We also com-
puted and estimated volume of the unit ball in /. In the second chapter we
summarized and proved the estimates of entropy numbers of natural identity be-
tween [(R) and [;(R). The main idea in the proofs was using the estimates of
volumes of the unit balls as well as combinatorial aspects. The third chapter
extends the estimates from the second chapter to the complex sequence spaces.

The relation between entropy numbers and eigenvalues of compact operators
could be subject to further study.
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