Charles University in Prague

Faculty of Social Sciences

Institute of Economic Studies

MASTER THESIS

Practical usage of optimal
portfolio diversification using
maximum entropy principle

Author: Ostap Chopyk
Supervisor: PhDr. Kristoufek Ladislav, PhD.

Academic Year: 2014/2015


http://www.cuni.cz/UKENG-1.html
http://fsveng.fsv.cuni.cz
http://ies.fsv.cuni.cz/content/tree/index/lang/en

Declaration of Authorship

1. Hereby I declare that I have compiled this master thesis independently, using

only the listed literature and sources.
2. I declare that the thesis has not been used for obtaining another title.

3. T agree on making this thesis accessible for study and research purposes.

Prague, July 30, 2015

Signature



Acknowledgments

I would like to express my sincere gratitude to my supervisor PhDr. Ladislav Kris-

toufek Ph.D. for his patience, support and guidance.

Furthermore, I would also like to thank my family who were supporting me and

providing me with the inspiration throughout my studies.



Abstract

This thesis enhances the investigation of the principle of maximum entropy, implied
in the portfolio diversification problem, when portfolio consists of stocks. Entropy, as
a measure of diversity, is used as the objective function in the optimization problem
with given side constraints. The principle of maximum entropy, by the nature itself,
suggests the solution for two problems; it reduces the estimation error of inputs, as it
has a shrinkage interpretation and it leads to more diversified portfolio. Furthermore,
improvement to the portfolio optimization is made by using design-free estimation
of variance-covariance matrices of stock returns. Design-free estimation is proven
to provide superior estimate of large variance-covariance matrices and for data with
heavy-tailed densities. To asses and compare the performance of the portfolios, their
out-of-sample Sharpe ratios are used. In nominal terms, the out-of-sample Sharpe
ratios are almost always lower for the portfolios, created using maximum entropy
principle, than for ’classical’ Markowitz’s efficient portfolio. However, this out-of-
sample Sharpe ratios are not statistically different, as it was tested by constructing

studentized time-series bootstrap confidence intervals.
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Abstrakt

Tato diplomova prace rozsifuje vyzkum principu maximdlni entropie, aplikovaného
v problému diversifikace portfolia, kdy portfolio se skldda z akcii. Entropie, jako
méfitko diverzity, je pouZivédna jako cilova funkce v problému optimizace s danymi
dodate¢nymi omezenimi. Princip maximdlni entropie, svou samotnou povahou, navrhuje
feSeni pro dva problémy; sniZuje chybu odhadu vstupti, protoZze m4 smrsténi inter-
pretace a vede k diversifikovanéjSimu portfoliu. Navic, zlepSeni optimizace portfo-
lia se provadi pomoci defign-free odhadu varia¢nich-kovaria¢nich matic akciovych
vynosl. Prokdzéano, Ze design-free odhad poskytuje vynikajici odhad Pro velké variacni-

covariacni matice a pro data s nenulovym koeficientem assymetie. Mimo-vzorkové
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Sharpovy koeficienty jsou pouZity pro posouzeni a porovndni vykonnosti portfolii.
V nomindlnim vzjaieni, mimo-vzorkové Sharpovy koeficienty skoro porad niZsi pro
porfolia, vytvofenych pomoci principu maximélni entropie, nez pro “’klasické” ef-
fektivni portfolia Markowitza. Nicméné, tyto out-of-sample Sharpovy koeficienty
nejsou statisticky rozdilné jak to bylo testovdno vytvofenim studentizovaného inter-

valu spolehlivosti bootstrapu ¢asovych tad.
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Chapter 1

Introduction.

Mean-Variance (MV) portfolio creation, introduced by Markovitz (1952) has been
one of the most popular methods used in solving the problem of diversification the
wealth among risky assets. It gives good results in a sense, that investors are able to
incorporate the risk in the decision making problem of how to allocate their wealth.
The optimization problem is structured in a way that investor can set the target return
of the portfolio and choose the one with lowest risk; or set the boundaries for the risk

which investor is willing to accept and choose the one with highest return.

The standard way to represent this problem mathematically is:

mgnn:’Zn, s.t. E(nR) = n'm = py, 7'y =1,

where m, ¥, Uy, 1y are mean returns on the assets, variance-covariance matrix of

assets returns, target return and N x 1 vector of ones respectively.

Despite the popularity of this methods, it has some severe drawbacks. First of
all, MV method leads to the portfolio, which is highly concentrated on a few assets,
which is contrary to the principle of the diversification. Second is that MV methods
is known for its poor out-of-sample performance. Another thing about this method
is that it assumes the possibility of negative weights for some assets in the portfolio,
namely short-selling, whereas most asset managers are not allowed to sell short. If
the last issue may be appropriate in some cases, like hedge funds, previous two are
always viewed as undesirable in the classical MV method (Bera and Park 2008).

Finally, Michaud (1989) claims, that MV optimization is an “error maximizer”,
in a sense, that due to statistical error in the mean returns and variance-covariance
matrix, MV optimization overweights (underweights) securities that have large (low)

estimated mean return, negative (positive) correlation and/or small (large) variance.
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To tackle the problem of estimation error and thus, to improve MV portfolio, a num-

ber of methods were proposed, some of which are discussed below.

One way to improve MV method, is to impose factor model for estimation the
variance-covariance matrix in order to reduce the number of free parameters. Sharpe
(1963) proposed a single-factor model. In this case, the number of parameter to be
estimated is substantially reduced form w —Nto3N+1, where N is a number of
assets in the portfolio. The drawback of single-factor model is that it leads to biased
estimates of the variance-covariance matrix of the returns. To tackle this problem one
can include more factors. Bera and Park (2008) showed, that is this case, number of
parameters to be estimated can be reduced to K(K +1)/2+ N(K +2), where K is
the number of the factors and N is the number of variables, namely the number of

assets in the portfolio.

Imposing constraints on the portfolio, such as non-negative constraints on the port-
folio weights, helps in reducing estimation error. It has been shown by Jagannathan
and Ma (2003), that imposing short-sales constraint works in the same way as shrink-

ing the extreme values of the variance-covariance matrix.

Aforementioned methods improve the performance of the portfolio, but as it can
be seen, they require some additional information or, as some researchers have done,
usage of the Bayesian probability theory. Investors will face the problem of finding
relevant target values, as in case of shrinkage estimators with predetermined target
values for returns and variance-covariance matrix. In case of using the Bayesian
theory, choosing the reasonable prior distribution for the parameters in the model

often becomes a challenging task.

Bera and Park (2008) proposed to use entropy approach to optimal portfolio se-
lection, on which we will concentrate and will investigate how efficient it is in real
life comparatively to the classical approach. The main idea of this approach is to
use entropy measure as the objective function for the optimization problem. In this
case weights of the portfolio are considered as the probability mass function of a ran-
dom variable. Maximizing the entropy measure for such a random variable, subject
to a given constraints, allows us to obtain well diversified portfolio. Besides, using
entropy as the objective function guarantees non-negative weights for the assets in
the portfolio, as they are seen as probabilities, which by definition take non-negative
values. If we use classical notion of the entropy from the Information theory, we
shrink the weight for the assets toward the most diversified portfolio, namely equally-
weighted. This type of the entropy measure is also called the Shannon entropy. We

also can use the notion of the cross-entropy, if we have some prior weights, toward
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which we want to shrink weight of the portfolio. By minimizing the cross-entropy
subject to the given constraints, such as required return , we can obtain a portfolio,

weights of which are as close as possible to the target.

In all methods, mentioned above we are relying on well estimated input variables,
namely estimated mean returns of the assets and their estimated variance-covariance
matrix. It is one of the most challenging part not only in portfolio creation prob-
lem. This becomes even bigger problem, when you are dealing with high number of
variables. Number of parameters, which have to be estimated, grows as a quadratic
function of the number of variables; and as it will be seen later, we will construct
our portfolio out of 30 assets. Abadir et al. (2010) proposed the method, that leads

to superior estimate of large variance-covariance matrix.

Using Matlab programs, written based on theoretical postulations of Bera and Park
(2008) and Abadir et al. (2010), we create portfolios using maximum entropy prin-
ciple and compare this portfolios and their performance to MV portfolios based on
the rolling window technique for daily and weekly holding periods. Furthermore,
we tested whether the out-of-sample Sharpe ratios, which are of our main interest,
are statistically different by constructing studentized time-series bootstrap confidence
intervals, introduced by Ledoif and Wolf (2008a).

Rest of the thesis is structured as follows: Chapter 2 provides the literature re-
view regarding the existing methods in portfolio optimization problem. Chapter 3
describes theoretical part of the models and concepts, used in this thesis. Chapter
5 contains data description together with empirical models and discussions of the

empirical findings. Finally, the conclusion for this thesis is presented in Chapter 6.



Chapter 2

Literature review.

Over the recent years, numerous studies and researches were published related to the
portfolio optimization. Having the Markovitz as the pioneer of the portfolio selec-
tion problem, researches have proposed many ways to improve it together with the

completely new methods for the portfolio optimization.

Starting from 1989, Michaud (1989) has supported his resampled efficiency method
for portfolio creation. Using bootstrapping, Michaud developed a method of con-
structing “statistically equivalent” efficient frontiers. This methods is meant to tackle
the problem of instability and ambiguity of the classical MV portfolio in the way that,
for example, rebalancing to the new portfolio is not required if it is in the statistically
equivalent region. On the figure below are depicted the efficient frontier of classical

Markovitz method and its statistically equivalent region.

Figure 2.1.: Mean-variance eflicient frontier and statistical equivalence region.
1.2%

Mean-variance efficient frontier

0.8% |

Statistical equivalence region
0.6%

0.4%

Mean Portfolio Return (%)

02% |
0.0%

0.0% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0%

Portfolio Standard Deviation (%)

Source: Delcourt and Petitjean (2011).
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The empirical research of Delcourt and Petitjean (2011) shows, that resampled
portfolio has better diversification properties comparatively to the MV portfolio.
However, the out-of-sample performance of the resamling strategy tends to outper-
form the classical MV approach only in case of very small estimation window. More-
over, the distribution of weights in the bootstrapped sample tends to be skewed. In
this case the sample mean can not represent the location parameter of the distribution
correctly(Scherer 2002).

Another way to improve MV portfolio is to use shrinkage estimator, researched
by James and Stein (1961), Sharpe (2003) and Frost and Savarino (1986) among
others. The idea is to shrink the estimated mean returns and variance-covariance
matrix to some predetermined target values. For mean values shrinkage estimator

has the following form:

.us = 5ﬂ0+ (1 _5>aﬂ’7

where L is a target constant and i is the sample means, 6 € (0,1). Shrinkage

estimator of the variance-covariance matrix is:

T, =854 (1-8)2,

where § is a target estimate for the variance-covariance matrix and X is sample

variance-covariance matrix, 4 € (0, 1) (Frost and Savarino 1986).

Usually target mean values are chosen as the highest return among all assets in the
portfolio and target matrix is usually a highly structured estimator, like single-factor
matrix, derived by Sharpe (1963).

Recent work of DeMiguel et al. (2011) investigates extensively shrinkage estima-
tors of moments and shrinkage estimator of portfolio weights toward the predeter-
mined targets, like equally weighted portfolio or minimum-variance portfolio and
their calibration. Authors showed, that the shrinkage techniques help to reduce the
estimation error and thus to improve the performance of the portfolio. However, most
of the well structured shrinkage estimators, presented in DeMiguel et al. (2011),
require the assumption of the iid normality of the returns on financial securities,
whereas Sheikh and Qiao (2010) provided evidence, that most of the time returns are

not normally distributed.
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Factor models for estimation of the variance-covariance matrix are used to re-
duce the number of free parameters. Sharpe (1963) proposed a single-factor model,
in which the number of parameters to be estimated is substantially reduced form

w — N to 3N + 2, where N is a number of assets in the portfolio.

In the work of Gokgoz (2009), single-factor model together with three-factor and
characteristic models are developed and compared to the “classical” MV optimiza-

tion.

For single factor model Gokgoz (2009) used The Capital Asset Pricing Model
(CAPM), developed initially by Sharpe (1964). In this case asset returns are de-
scribed by its systematic risk (market beta) and its expected returns can be described

mathematically as:

E(R;) = Ry + Bi[E(Rm) — Ry],

where, E(R;) is expected return on asset i, Ry is risk-free rate of return, E(R,,) is
expected return on the market portfolio and f; is a specific measure of the non-
diversifiable risk, which assesses the responsiveness of the expected excess returns
on the asset i to the expected excess returns on the market portfolio. [-coefficient

can be obtained from the simple linear regression analysis using historical data.

The drawback of single-factor model is that it leads to biased estimates of the
variance-covariance matrix of the returns (Bera and Park 2008). To tackle this prob-
lem one can include more factors. In this case number of parameters to be estimated
can be reduced to K(K +1)/2 + N(K +2), where K is the number of the factors
and N is the number of variables, namely the number of assets in the portfolio. For
this Gokgoz (2009) investigated three-factor model, developed by Fama and French
(1996). In this model expected asset returns are described by the sensitivity to the
expected market returns, the difference between the return on a portfolio of small
stocks and the return on a portfolio of the large stock and moreover, the difference
between the return on a portfolio with high book-to-market ratio stocks and the return

on a portfolio with low book-to-market ratio. Mathematically, it can be presented as:

E(R;) = Ry = Bim|E(Rm) — Ry] + BisE(SMB) + Bi,E(HML),

where, E(R;) — Ry is expected excess return of the asset i over risk-free rate on the
return, E(R,) — Ry is expected excess return on the market portfolio over the risk-
free rate of return, E(SMB) is expected difference of the returns on the portfolios of

big and small stocks, E(HML) is expected difference of the returns on the portfolios
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with high and low book-to-market ratio stocks, B;,- sensitivity of the assets’ excess
returns onto the market’s excess returns, fB;- sensitivity of the assets’ excess returns
onto expected SMB returns and f3;;, represents sensitivity of the assets’ excess returns

onto expected HML returns.

An alternative to Three factor model, which is argued to assess cross-sectional
relation better, is Characteristic model (Daniel et al. 2001). The expected return on

asset i is calculated in the following way:

E(Rit) = a+ by,
where a is the intercept, obtained from the linear regression and b is sensitivity onto
the the firm’s characteristics 6.

G0Okgoz (2009) concluded that mean-variance optimization with estimated inputs,
obtained from single-factor or multi-asset models, results in portfolios with smaller

expected risk. It can be seen from the provided plot of efficient sets, given below:

Figure 2.2.: Efficient sets.
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Source: Gokgoz (2009).
The resulting efficient sets differ drastically, especially in case of single-factor

model (CAPM). Obtaining estimates from a single-factor model results in efficient

set with much lower risk, but as it was mentioned before, this model is likely to be
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biased as it assumes an equilibrium situation. Two other methods (three-factor model
and characteristics model) tend to converge to the solution of MV approach, but as it
can be seen, a lot of additional work has to be done in order to construct them. De-
veloping additional factors, such as portfolios which consist of a big (small) stocks,
portfolios of stocks with a high (low) book-to-market ratio or asset’s characteristics
may become a tedious task. Moreover, coming back to the issue of biased estimator,
despite the lowest expected risk in single-factor model, using daily or weekly data
leads to additional systematic bias (Koller et al. 2010, p. 250).

Avramov and Zhou (2010) performed an investigation of the portfolio creation
using Bayesian theory. Authors stated that Bayesian approach allows one to incorpo-
rate the information of macro conditions, beliefs and uncertainty in a sense of prior

density.

In classical mean-variance portfolio optimization the expected utility is maximized,
under the assumption that estimated input parameters are equal to the true ones,

namely:

mvilx[U(w)IO = 0],

where 8 is the vector of estimated parameters: expected return of the portfolio and
its variance, 0 is a vector of true parameters. U(w) is the utility quadratic function

given as:

U(w) =E[R)] — %/Var[Rp] =wu— %/W/VW.

Bayesian approach allows to treat 6 as a random quantity and to make the assump-
tion only about its probability distribution. Avramov and Zhou (2010) investigated

different types of prior beliefs on the parameter 6. Under the diffuse prior, optimal

1 (T-N-2)\ ,
= (T )
Y T+1

In case of classical MV optimization optimal weights are given as: W = %,\7’1 .

portfolio weights are:

This additional multiplier, for the case of Bayesian approach, puts less weights on
risky assets, when the portfolio has in it risk-free asset, which is due to the fact that
under diffuse prior weights are adjusted in order to capture the uncertainty about

parameters estimates.
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However, authors concluded that using diffuse prior results in not that significant
difference in the result and some informative prior, which incorporates macro con-
ditions or asset pricing theory comes in better use. For this reason authors analyzed
asset pricing priors, which initially were introduced by Pastor and F. (2000). Such
models allow to integrate investors belief that cross section dispersion in expected

returns may be explained by asset pricing model (Avramov and Zhou 2010).

In all aforementioned methods, risk of the portfolio is assessed through its standard
deviation. An alternative method to measure how risky is the portfolio is Value at
Risk (VaR). VaR can be described as the worst expected loss over the given period

at a given confidence level (Danielsson 2007).

One of the most attractive arguments to use VaR model is that it assesses the down-
side risk. Assuming, for example, when the price of the stock rises quickly. This
increases the variance of that stock, and consequently risk related to it, if one uses
mean-variance optimization. However, investors are not distressed by such move-

ments.

It is worth to mention, that efficient frontiers, obtained from portfolio optimization
using VaR can not be compared directly to efficient frontiers, obtained from MV opti-
mization. This is logical inference, as this models use different notions for assessing
the risk of a portfolio, in case of mean-variance optimization risk is presented as the
standard deviation of the portfolio while in portfolio optimization using VaR, risk is

presented as the VaR of the portfolio with the corresponding confidence level.

As Gaivoronski and Pflug (2004-2005) showed, portfolio optimization with VaR

as an objective function can be presented mathematically as:

minR(X'E), st. XE(E) > u, X1 =1, x>0, (2.1)

where the objective function R(W) = VAR(W) = E(W) — Qa(W). Qg(W) is the

a-quantile of the returns.

However, VaR has severe drawbacks as an objective function for a portfolio opti-
mization. First of all, VaR is non-sub-additive, meaning that for any two portfolios
XandY : VAR(X+Y) > VAR(X) + VAR(Y), which is counter-intuitive to the no-
tion of the diversification. Second problem of using VaR is the fact, that it does not
have to have one local minimum, meaning that it is non-convex. This complicates

the optimization tremendously (Gaivoronski and Pflug 2004-2005).

To overcome aforementioned problems, Conditional Value at Risk (CVaR) can be

taken as the objective function for the portfolio optimization. CVaR is proved to be
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convex and is sub-additive (Rockafellar and S. 2000; 2002). This makes the the port-
folio optimization way easier. In this case the objective function for the optimization
2.1 is of the form: R(W) = VAR(W) = E(W) — Cq(W), where “Cy(W) is the ex-
pected loss given that the loss is greater that the VaR at that level”(Gaivoronski and
Pflug 2004-2005).

Figure 2.3.: Boundary of mean-variance feasible set and images of mean-VaR bound-
ary and mean-CVaR boundary.
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Source: Gaivoronski and Pflug (2004-2005).

As it can be seen, feasible efficient frontier are very close to each other. Taking
into account the results of Delcourt and Petitjean (2011), efficient sets for mean-VaR

and mean-CVaR may lay in the statistically equivalent region.

Gaivoronski and Pflug (2004-2005) concluded that mean-VaR optimization comes
in better use, when investor is willing to assess the potential down-side risk of the
portfolio and wants it to be incorporated into the optimization. However, the op-
timization problem for mean-VaR and mean-CVaR portfolios often become to be

challenging task and it has to be carried out in further investigations.

Bera and Park (2008) proposed to use cross-entropy measure as the objective func-
tion in the portfolio optimization. Entropy is a measure of uncertainty and is proved
by the authors to provide elegant way to assess portfolio’s diversity. This method may

be interpreted as the shrinkage estimator of the portfolio weights towards the prede-
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termined values, for example equally-weighted portfolio or minimum-variance port-
folio. Rather than shrink estimated inputs like mean returns and variance-covariance
matrix, which are then used in the optimization, information theoretic approach to
portfolio creation shrinks weights directly in the optimization, as it is incorporated

in the objective function.

Maximum entropy approach to portfolio creation guarantees no short positions in
the portfolio, as weights are seen as the discrete probability mass, which by definition
can not take negative values. Moreover, this method may become of a great use for
investors as the prior target weights in optimization problem can be chosen manually,

based on investors beliefs and preferences.

The general representation of the objective function to be minimized is cross-

entropy measure (Golan et al. 1996, p.31):

N
1
E(r|q) = Zn,ln i/ qi) zzq—( ,-—q,-)z.
In minimization problem we choose set of weights 7 = (7,7, ...,7y) so the
cross-entropy between them and initial weights ¢ = (q1,¢>, . . .,gn) has its minimum

value, given additional constrains. Bera and Park (2008) argued, that by using CE as
an objective function in portfolio optimization, one puts emphasis on small alloca-
tions in the portfolio, so they are adjusted more than the large ones, which possibly

lead to more diversified portfolio.

Information theoretic approach, as any other method for portfolio creation, relies
on well-estimated input parameters, such as mean returns and variance-covariance
matrix. Noting, that the main source of the estimation error is variance-covariance
matrix, which is quite intuitive as the the number of parameters in variance-covariance
matrix to be estimated, increases quadratically with the increase in the number of

variables.

Abadir et al. (2010) proposed Design-free estimate of large variance matrix. The
uniqueness of this method is that it does not rely on any assumptions about the data.
Abadir et al. (2010) showed, that their approach reduces estimation error, especially
in case of large variance-covariance matrices and/or when sample size is small rela-

tively to the number of variables (assets in the portfolio).

Both, information approach to the portfolio creation and Design-free estimate of
variance-covariance matrix are described in more details in the next chapter, as they

are of the main interest in this master thesis and are used in the empirical analysis.



Chapter 3
Methodology

3.1. Markovitz’s Mean-Variance portfolio
selection

Markovitz’ Mean-Variance(MV) approach is one of the most popular methods for
the portfolio creation, which consists of risky assets. Markovitz (1952) introduced
a notion, based on which investors minimize the variance of the portfolio subject to
the target expected return rather than to create the portfolio with the highest return,
in other words, investor considers expected return as a desirable thing and the cor-
responding variance as undesirable thing. The principle, that investor should create
the portfolio with the highest return is rejected as it leads the portfolio, which in-
cludes only that asset, which has the highest mean return among others, no matter
what the variance of the returns on this asset is. If there are more than one asset with
the same return, then any combination of these assets in the portfolio is as good as
the portfolio, constructed from only one of these assets. Thereby, such principle for
portfolio selection contradicts to investment behavior, as the return of the portfolio
is not the only thing investors are interested in. This created the principle of risk in

the portfolio.

Let R = (Ri,R2, -+ ,Ry) = (r1 —rg,ra —ry,--- ,rn — ry)’ be the excess returns
on N risky assets, where r; is the return on the i-th asset and r is the return on the
risk-free asset. Expected returns are E(R) = m = (my,ma, -+ ,my)’ and variance-
covariance matrix Var(R) = X of dimension N x N . Portfolio is defined as a vector
of weights T = (7, M, - - -, y)’. This weight have to satisfy the condition: 7’1y =1,
where 1y is the vector of ones of dimension N x 1. This condition is crucial and

represents the investor’s wealth allocation among the risky assets. Having this and
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the desirable return of the portfolio, MV approach stipulates solving of the following

minimization problem:

mﬂ%nn’Zn, st. E(MR)=n'm=py, #'ly=1, (3.1)

where (7'L7) is the the variance of the portfolio and L is desirable return of this

portfolio.

Merton (1972) derived, that with the Lagrangian multipliers:

_Cwo—A _ B—Am
- D ) - D )

the solution for the optimization problem 3.1 is given by:

£=(Ehxm,
Cu? —2Aug+B
o7 =RLh= a D“O+,

where A = 132" \m, B=m'Em, C = 1,21y, D=BC— A2

Therefore, the efficient frontier for the MV portfolio can be presented as:

D\ o [y A > D
c)* \Mo7¢c) T

MYV approach provides us with a solid logic of how the creation of the portfolio
should be seen, but it has it’s well known drawbacks. One of them is that MV ap-
proach leads to the portfolio with weights which are highly concentrated only on few
assets and changes in the estimated returns can influence the weights in portfolio

dramatically. This is due to its estimation mechanism (Kolusheva 2008).

3.2. Maximum Entropy Principle in Portfolio
Diversification

In Information theory, entropy is called the measure of disorder for a random variable
with a discrete probability distribution p = (py, p2,- - , pn) that takes N values. Bera
and Park (2008) suggested to use this concept in the portfolio creation problem. If

we consider allocation of weights for the assets of the portfolio © = (7, M, -+ , Ty)
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with restrictions, that all weights are greater or equal to zero and their sum is equal
to one, we can treat this weights as a discrete probability distribution for a random
variable. One of the ways to look on it is to use Shannon entropy as an objective

function in portfolio optimization problem.

Shannon entropy

Introduced by Shannon (1948) it is defined as:

N
SE(m) = — Y min(m;). (3.2)
i=1

In case, when we look on the probabilities 7; as on the weights for the assets in the
portfolio it gives us a measure of the disorder in the portfolio (measure of portfolio’s
diversification). SE () reaches its maximum value of /n(N) and minimum of 0 in
case, when m; = 1 /N, forall i = 1,...,N and m; = 1 for only one i, respectively. So,
we can see here the logic, when SE (1) equals to its maximum, the uncertainty about
what value (from the set of possible outcomes) random variable will have (equally
weighted portfolio) is the the highest. Whereas, in case when SE(7) = 0 there is
no uncertainty about the outcome for the “random” variable (portfolio consists only
from one asset). As it was proposed by Bera and Park (2008), we will have the
entropy as our objective function and using it we will try to obtain well-diversified

portfolio with given side conditions.

In case, when we use Shannon’s entropy measure we shrink our portfolio weights
toward an equally weighted portfolio. Shannon’s entropy is a special case of more
general measure of the uncertainty: cross-entropy, that is also called Kullback-Leiber

information criteria, defined as :

where ¢ = (q1,¢2, -+ ,qn) is the reference probability distribution and p = (py, p2,
-+, pN) is the distribution which we want to shrink toward the ¢. So, by minimizing
CE(p,q) we are trying to adjust the probability distribution p = (p1, p2,---, pn), in
a way, that the uncertainty about a random variable with the probability distribution
p would be as close as possible to the value of uncertainty of this random variable if

its probability distribution was g = (¢1,42,"** ,gN)-
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Preliminary approach Once again, we can consider vector of the portfolio weights
= (m,m, - ,7y) as a the probability mass function for a random variable. If we
are asked to select the portfolio, namely, to determine portfolio weights for an in-
vestor, who provides us with the initial desirable mean value of the portfolio return,

say Up, we can state the optimization problem as (Bera and Park 2008)

N
max (— Z 7r,~ln7t,~> , 3.3)
i=1

{ﬂ{L}
S.t.
N N
Y mim = po, Y m=1, (3.4)
i=1 i=1
where m;, i = 1,--- N is sample mean return on asset i. Condition Zﬁl m=1

ensures ( in content of the probability theory), that we have the proper mass function

for a random variable.

Lagrangian function for aforementioned maximization problem is:

N N N
.,%:—Zﬂilnﬂi—f—’)/ m;T; — Mo —A Z?’L’i—l .
j i=1 i=1

i=1 j

The solution is given as:

1
i = ——exp|—ymi, i=1,2,--,N, (3.5)
a(y) P

where Q(7y) = ):{,V:l exp[—ym;).

Solution 3.5 is a probability mass function of an exponential distribution and as it is
known, probabilities for such distribution are strictly non-negative (no short-selling).
This result gives us the portfolio, which is shrunk towards the equally weighted port-
folio given the required portfolio’s mean return. ’In this sense, resulting portfolio
weights are maximum diversified portfolio given mean constraint without consider-
ing risk (variance)’ Bera and Park (2008).

If we want to include restricting conditions for risk (variance-covariance matrix),

optimization problem will be (in matrix form):

/
mgx (—7[ ln7r)
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subject to

>y, Vain<oy,, wn>0, #ly=1,

where 2 is a variance-covariance matrix of the returns assets. Inequality conditions
are more appropriate in this case, as investors are usually not interested in having the
exact return and risk of the portfolio, rather they prefer to have some boundaries for

this values.

General approach Following Bera and Park (2008) we can state more general
statement of the problem. Using cross-entropy we can state the following minimiza-

tion problem:

N
. . 7
mf%nCE(Tc\q) = min ,; miln (;) (3.6)
subject to

EU(m,R,A)>t, ©>0, #'ly=1,
where A is the risk aversion parameter, T determines investor’s belief in the estimated
expected utility U (7, R, A).

Moving next to the investigation of the utility function. Lets assume a vector R
, which has a distribution function F(R). Lets define & = EU(#,R,A), where 7 is

obtained from the following maximization problem:

# = argmax EU(7,R, ) (3.7)
/(4

S.t.

Tly=1 m>1,

where R is random sample of size 7', obtained from the empirical distribution
F(R). Using resampling method we will obtain B portfolios. Therefore, investor’s
strength of belief can be expressed as the r-th quantile of the distribution of £, 0 <
r < 1. If the distribution function of £ is G(&), which is obtained using B values of

the maximized expected utility from problem 3.7, then



Methodology 17

t=G(r)=¢&.

Bera and Park (2008) proposed to use the following quadratic expected utility func-

tion to solve the problem 3.7:

A A
maxEU (7,R,A) =max |[A'm—= — ~7n'trn (3.8)
3 3 2 2

subject to

Tly=1 m>1,

Using bootstrap or Monte Carlo methods for re-sampling R from the empirical

distribution F(R) following results can be calculated:

~ /! ~ A
”(b) = argm;lx v/ mp) — 577,' Z(b)ﬂ' y

i,

| >

S = Ry —

where 771 and ¥ are sample mean and sample variance-covariance matrix, estimated
form the original data R. /i and £ are calculated from the simulated data R(b). Em-

pirical distribution of § is estimated based on the sets &), b=1---B.

Now our minimization problem for cross-entropy can be stated as :

N
min ; min(m/q;), (3.9)
subject to
A e o
n’m—zn’anG_l(r), >0, mly=1, (3.10)

where G(-) denoted the empirical distribution of £.

Minimization problem can be solved by the classical gradient based routine if we

assume that the utility function in 3.8 is smooth function!.

LA function that has derivatives of all orders is called a smooth function.
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Generalized cross entropy method So far, in the information theoretic ap-
proach we considered the case, when assets managers are not allowed to sell short.
Although, this is often the case in real life, we may want to have the option of short
selling in our portfolio. Bera and Park (2008) proposed to use Generalized cross en-
tropy method, initially introduced by Golan et al. (1996), for portfolio creation, with

which we will get familiar right now.

The problem, that arises in case when we want to allow short selling is that the ob-
jective function of the optimization problem 3.6 may not exist, as it contains the /n(-)
function which is defined only for non-negative values. Let p; = (p;1, pi2, -+ s Pim), I =
1,---,N be a discrete probability distribution for each asset in the portfolio that is
over the set [I,m], a equally distanced discrete points z = (21,22, ,zm). Namely,

this means that the portfolio weights are defined as:

Z 00 0 0| |pm
0Z 0 0 0f|p
n=Zp=10 0 Z 0 0

000 0 Z|py]

Here we face the problem, how should the probability distribution p be defined. To
tackle this one can start by noting that the weights for MV efficient portfolio have to
be in the set [|m = Zp, p € P|. From this we should be able to obtain the probability
distribution p given a set of equally distanced points z.

Therefore, after finding weights for MV efficient portfolio, set of points z may be

find from the following problem:

p=2"'m,

subject to

M
Zp,- =1,i=1---N, (21,22, ,2n) are equally distanced on the set [l,m].

If the quadratic expected utility is considered, the following GCE minimization

problem, which allows for sort-selling, can be presented:
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N M
min Y Y pinln(pim/ @im) (3.11)

PEP i Sm=1

subject to
! A )' 1y A—1

(Zp)'m— E(Zp) YX(Zp) > G (r) (3.12)
Pily=1,i=12--- N, (3.13)
(Zp)1y =1, (3.14)

where G(+) is the empirical distribution function of the maximized expected utility
¢ and w; = (wj1, W, -, W) i = 1,---N is a discrete prior probability distribution
for each target weight g; over z. Solving the problem 3.11-3.14 the following weights
for the portfolio can be calculated as:

M

A N A

i =2zpi= Z ZmPim-
m=1

Another problem is that before we want to solve 3.11 we have to determine a dis-
crete prior distribution @; = (wj;, Wy, -+, Wim), i = 1,---N. Bera and Park (2008)

suggested to find it from the solution of the optimization problem:

M
max | - Z Oimln(®iy) |,
@i m=1
subject to

M M
sza)imZQh Z Wi = 1.
m=1 m=1

3.3. Design-free estimation of
variance-covariance matrix
In previous sections we discussed some of the methods for the creation of the port-

folio, but all of this methods rely on well estimated input variables, such as vector of

mean returns and variance-covariance matrix.
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Essentially, estimation of variance-covariance matrix can be challenging task. Re-
call, that we will construct our portfolios using the components of Dow Jones Indus-
trial Average ( 30 publicly traded companies). When dealing with large number of
assets in the portfolio, values in variance-covariance matrix are very imprecise and
matrix operations (which we use in our optimization problems, i.e. inverse) are hard
to implement. To resolve this problem, we use the method for the estimation of the
variance-covariance matrix, introduced by Abadir et al. (2010) which we will review

below.
Let the variance-covariance be defined as:

A — 1
Y =var(x) = -X'M,X,
n

where M,, = I,, — %iniﬁl, in is a vector of ones of length n and X is a matrix of
dimension n X k of the observed returns on the assets of the portfolio. Furthermore,

we can decompose this matrix as:

3= PAP, (3.15)

where A is the diagonal matrix of eigenvalues of £ and P is the orthogonal matrix.

Rearranging the last equation leads to the following result:

A= PSP = diag(iar(prx). - 7 () (3.16)

The idea, Abadir et al. (2010) came up with is that we can use only a portion of
the data (say m random observations) to estimate P and then use the rest ( remaining

n — m observations) to re-estimate A.
The estimation procedure starts with splitting matrix X into two parts:
X'=(X{,X3), (3.17)

where X{is of dimension m x k and X} is of dimension (n —m) x k. After this
calculate the variance-covariance based on the first sub-sample of the observation

(X{), namely:

- 1 P
Y = —X{M,X| = P\ P, (3.18)
m
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From the last equation we estimate P;. Next step is to estimate the diagonal matrix

of eigenvalues from the remaining observations:

dg (var(P{x)) = dg (P[Z,P() =

1 . R ~

dg (P XoMy—nXoPr) = A (3.19)
n—m
and at the end, using the equation 3.15 we can obtain the new estimator of variance-

covariance matrix as:

£ =PAP = Pdg (P[5,P)) P (3.20)

The problem, one will face is what value for m should be chosen. Abadir et al.
(2010) proposed computationally exhausting but efficient, as authors showed, method
to determine m.

The main idea of this method is to incorporate bootstrapping into the minimization
problem. By creating a bootstrap sample (X, = (xll’,xg, .-+, xb) by re-sampling using

the replacement) from original data we can calculate ﬁb and im,b-

Then we can calculate the average bootstrap values for the corresponding variables:

L 1

B
A n A ~ ~
p) —_—E )y b ———E YmB-

The minimization problem, that incorporates bootstrap part, stated above, is de-

fined in the following way:

2
29

1 & < .
m=arg min — vech(X,p —X
& BZ,IH Emp B)|

where || ¢, = (Z{Zl |at|?)!/? denotes the second norm for /—dimensional vector
o, vech(-) denotes the half-vectorization of the matrix, Ml = (m my --- ,my) is a
grid of the possible values for m. Structure of M (how many values it consists of)

depends mainly on the computational resources (Abadir et al. 2010).

3.4. Sharpe ratio.

The main critique, used in this work, for comparison the performance of different

portfolios is Sharpe ratio, which is presented below.
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Revised by Sharpe (1994), ratio is well known measure of the performance of an
investment. It can be interpreted as excess return over the benchmark portfolio per

unit of deviation of this excess return. Mathematically:

E[Rp — Rp]

\/var|[Rp —Rp]’

where Rp is the rate of returns on the portfolio, Rp is the rate of returns on the
benchmark portfolio (i.e. risk-free rate of return). \/var[Rp — Rp] is the standard de-

viation of the excess returns. This ratio tells us by how much we are compensated (in

SR, =

terms of excess returns) for the risk taken, as we give up on the benchmark portfolio.

3.5. Hypothesis testing with the Sharpe ratio.

As in the case of variance-covariance matrix, Sharpe ramytio has to be estimated
from the past historical data. Therefore, in order to compare the performance of
two portfolios over the the same period, in terms of their Sharpe ratios, one has to
conduct a test for this. In such a way we can conclude, that Sharpe ratios of two

different portfolios are statistically different at some level of confidence.

Originally proposed by Jobson and Korkie (1981) and adjusted by Memmel (2003)
method, which exploits the assumption, that out-of-sample returns on the portfolios

are iid normally distributed, has the next setup:

Let fj, f, 6}, 6,3 , 6, be means, variances and covariance, respectively, of
the out-of-sample returns of two corresponding portfolios. The null hypothesis Hy :

f1j/6;— [k /6 = 0 can be tested, using the test statistics:

. Oty — 6l

k= S
NG

where

1 A2 A A A oo Lo Wil
_ 26262 —26-6.6+ 0+ - 262 + —n2a? — Mt 52
C T—W( j Yk Jj Ok j7k+21uj k+2“k J 6jAk J.k

This statistic is asymptotically normally distributed under the assumption, that out-
of-sample returns on the portfolio are iid normal. However, as itoften happens, out-

of-sample returns on the portfolio are not iid normally distributed.
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Ledoif and Wolf (2008a) proposed the improved method of assessing the statistical
difference between the Sharpe ratios of two different portfolios. Authors were able
to show that their method provides robust results for the returns, which have tails

heavier than normal distribution.

The test is carried out by constructing a studentized bootstrap confidence intervals
for the difference between two Sharpe ratios and concluding that the ratios are not

statistically different if zero is contained in the given confidence interval?.

Below is given the theoretical postulation, given by Ledoif and Wolf (2008a), of
how one should proceed with the test using a studentized time series bootstrap con-

fidence intervals:

Let f1;, [l be a sample means of the out-of-sample returns. Furthermore, let §; =
E (r?), % = E(r?) be the sample uncentered second moments of the out-of-sample

returns on the portfolios j and k, respectively.

Let ¥ = (1, ik, 7j, k)’ be a vector, defined for the sample of a data and the differ-
ence between the Sharpe ratios is defined as a function of V:

where function f is of a form:

a b
a,b,c,d) = — .
f( ) Ve—a?2  Vd—b?

Next, we impose the assumption that

VT(H—v) % NO,P),
where W is unknown symmetric positively semi-definite matrix.

Implying delta method to the last expression:

VT(A = 12) L NO,V F(v)PV (),

where

%In my empirical research I use Matlab program (Ledoif and Wolf 2008b), because as it will be seen
later, the out-of-sample returns in my empirical study are not normally distributed.
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Having a consistent estimate ¥ of Y, the standard error for A is:

s(A) = \/ VISPV (3.21)

T

In order to obtain ¥ one can use kernel estimation in the following manner:

Let v = (,ﬂ]*, ﬁ;,ﬁ,ffg)’ be a vector obtained from the bootstrap data and [/ =
|T/b|, where |- | denotes the integer part of a number, T is a number of observed
returns in the sample and b is a block size, which is required in order to use circular

block bootstrap.

Furthermore, lets define:

* [k Ak % A~ X 2 ok K2 A\ / .
yt_(rtj_.ujartk_ukvrlj* _yj7rtk_}/k> f—l,...T
and

1 &, _
t=

Having this, the kernel estimate for ¥ for each bootstrap sample is computed:

AT
¥ :ngigi/.
i=1

The bootstrap standard error A* is given by formula 3.21.
Obtaining the p-value.

Ones again, the two-sided test for the null hypothesis Hy: A =pu;/0;— /0 =0
is calculated by contracting a block bootstrap confidence intervals with confidance
level 1 — o and is rejected is zero is not contained in the interval. The computation

of the p-value for this test is carried out in 3 steps:

1. Compute the original studentized test statistic:

g AL
s(A)
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2. Next, for each mth bootstrap sample we calculate the centered studentized statis-

tic:

Fm |A*,m _ A|
s(Axm)
where M is a number of bootstrap resamples.

3. Finally, corresponding p-value for the test statistic is computed as:

#{d" > d} +1
M+1 ’

p—val =

#{d*" > d} is a number of the test statistics of bootstrap resamples, which are higher

or equal to the original test statistic.



Chapter 4

Empirical analysis.

In this section are present the statements for the optimization problems and perfor-
mance measures together with all additional notes, which are essentially used to cre-

ate Matlab programs in order to conduct the empirical analysis.

Before starting the main part of the chapter, one thing has to be mentioned. For
all optimization problems, used in the empirical analysis, we use no short-selling
constrain. We back this decision for two reasons. The first reason, is that most asset
managers are not allowed to sell short. The second reason and the most important, is
that this constraint allows to reduce the estimation error. Jagannathan and Ma (2003)
concluded, that no short selling constraint helps to reduce estimation error in the
covariance matrix, when one wants to use the returns of a higher frequency, which

is our case, as we use daily returns in the empirical investigation below.

4.1. Data.

In order to perform empirical analysis we use daily data for companies, which are

(were) components of the Dow Jones Industrial Average (DJTA).

The DIJIA is one of the most watched indices in U. S., that tracks targeted stock
marked activity. It consists of 30 publicly traded companies from different indus-
tries, such as oil and gas, pharmaceuticals, banking, etc. Data is taken from Yahoo!

Finance.

The data is divided into two samples: first covers the period from 01 January 2000
until 18 March 2008 and second sample spans from 19 March 2008 until 02 De-
cember 2014, the date when our first empirical results were obtained. Having com-

pany “Visa” as the youngest publicly trading company in DJIA index, second sample
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starts from 19 March 2008, the date when Visa went public. Secondly, it is always
of a great use to investigate the portfolio creation problem in periods of different
macroeconomic conditions, which are happened to be captured in two samples due

to financial crisis in 2008 and the consequent global recession.

It is worth to mention that the components of DJIA were changing during both
periods. Therefore, to stay consistent, in a sense that set of assets, which are used
to estimate the inputs for the optimization and obliquely, to sole the optimization
problem, I decided to include in each sample companies that were in DJIA at the
end of the corresponding period, namely 18 March 2008 and 02 December 2014.
Companies and information about their presence in the portfolios for each period
can be found in Appendix A, Table A.1

Raw data is daily close prices, adjusted for dividends and splits.

Furthermore, adjusted close prices have to be transformed into returns, which are
required the portfolio optimization. Returns are calculated as:
P —P
R =—", 4.1)
I

where P; and P,_are adjusted close prices at time ¢ and ¢ — 1, respectively.

This results in 2062 observations for 30 companies, of which DJIA consisted on
18 March 2008 and 1689 observations for 30 companies, of which DJIA consisted
on 02 December 2014.

Leaping ahead, after conducting empirical analysis using two aforementioned sam-
ples, third sample that covers the period of economical recession in 2007-2009 in the
United States of America was created. This sample spans the period from 01 Decem-
ber 2007 until 30 June 2009. NBER (2008) determined that the peak of economic
activity was in December 2007, after 73 months of expansion and the trough in the

business activity occurred in June 2009.

4.2. Portfolio optimization.
4.2.1. Design-free estimation of variance-covariance
matrix.

In Literature review chapter theoretical framework for design-free estimate of variance-

covariance matrix, designed by Abadir et al. (2010), was introduced. Aforemen-
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tioned method is very computationally intensive, especially when one wants to use

bootstrapping. Therefore, in this paper we use resampling and averaging technique.

On the first step, returns on assets are divided into two subsamples : X = (X| ’ S,Xéj )
where X{ s is obtained by random sampling without replacement of m columns from
the original sample X', and Xé’ g is filled up with the remaining n — m columns from
Xs. For each sample X{ we calculate variance-covariance matrix iS,m using the pro-
cedure described by equations 3.15-3.20 of previous chapter. Lastly, we average out

obtained variance-covariance matrices:

Zm,S =

S ~
Y Es
s=1

Ll —

There are (;’1) ways to choose m observations for first sample, but Abadir et al.
(2010) concluded, that based on the simulations, it is sufficient to take S ~ 20 in

order to calculate consistent estimate of design-free variance-covariance matrix.

4.2.2. Equally weighted portfolio.

We start with equally weighted portfolio as it is the easiest to obtain. It is known,
that despite naive technique of the equally weighted portfolio creation it often has
better out-of-sample performance comparatively to “classical” MV. The weights for

this portfolio are obtained in a straightforward way:

m=1/N, i=1,..,N,

where N is the number of the assets in the portfolio. The corresponding portfolio

mean expected return and risk are:

E(.up) - 7r,rh7

E(o,) = Va'tx,

where 7’ = (1/N,...,1/N) is 1 x N vector of weights, /it = (m,my,...,my)" is
N x 1 vector of mean returns of the assets in the portfolio and £ is N x N variance-

covariance matrix.
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4.2.3. Minimum variance portfolio.

Second method, used in this thesis, is minimum variance portfolio optimization prob-
lem. Investor, seeking to minimize the risk of the portfolio has to solve the following

optimization problem.

min'Sw, st w>0, #'ly=1,
T

where 1y is N x 1 vectors of ones. The constraint itself is designed to ensure all
weights sum to one, that is, allocated investor’s wealth is completely distributed
among the assets. By adding target return to the constraint we obtain one of the

interpretations for the creation of the classical MV portfolio allocation problem.

4.2.4. Mean-Variance efficient frontier.

Another way to look on MV portfolio is a maximization of the expected return with a
given maximum risk, investor is willing to take. Therefore, MV portfolio method for
portfolio creation provides an elegant way to achieve an efficient allocation of risky
assets such that, with a given mean return and variance covariance matrix, higher

returns of the portfolio can only be achieved by taking on more risk.

Taking into account no short selling, it is ease to see that returns on MV portfolio
vary between two values, mean return of minimum variance portfolio and the maxi-
mum mean return among all assets. Maximum expected return can be achieved only

by allocating whole investor’s wealth to one asset with the highest mean return.

Creation of all feasible MV portfolios, namely, the efficient frontier can be achieved

by solving the following minimization problem:

mgnn’ﬁn, st. E(M'R)=nam=uy n'ly=1,

where i = (fy,...,My)" is N x 1 vector of assets mean returns and L is tar-
get return, which vary between the mean return of minimum variance portfolio and

max ().

4.2.5. Maximum Shannon entropy efficient frontier.

Moving next to information theoretic approach for the portfolio creation problem, we

start with creation the efficient frontier, when objective function of the optimization
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problem is Shannon entropy.

Portfolios, from which the efficient frontier consists of, are obtained by solving

following maximization problem:

M\ =

N
max (— Y 7r,~1n(7r,-)> :
subject to

N
it > po, >0, Y m=1,
i=1

=

I
_

1
where 77; denotes sample mean return of asset.

Minimum value on the maximum Shannon entropy efficient frontier is mean return
of equally weighted portfolio, as Shannon entropy has its maximum value of In(N),
when 7; = 1/N for all i. Maximum value on the frontier is the highest mean return

among all mean returns on the assets.

4.2.6. Maximum cross-entropy using weights of the
minimum variance portfolio as targets.

When we want to estimate the portfolio, which is is as diversified as some prede-
termined portfolio, we can use cross-entropy as the objective function to be mini-
mized. Bera and Park (2008) concluded, that by minimizing the cross-entropy mea-
sure, small allocation of the target portfolio are adjusted more than the large ones.

This may result in more diversified portfolio.

For empirical investigation we use weights of the minimum variance portfolio as

references adding the constrain for the minimum required return on the portfolio.

Optimization problem to be solved, is stated as:

N
min CE(7|g) = min miIn (7;/q;)
1

{m¥i, {m}¥, =

subject to
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where 71; denotes sample mean return on the asset i and Ug is a minimum required

return of the portfolio.

In order to construct the efficient frontier for minimum cross-entropy portfolio with
target weights set to those of minimum variance portfolio one has just to change the
required return Uo. The range, in which the required return has to be, has the min-
imum value, which corresponds to mean return of the minimum variance portfolio.

The maximum value is the maximum mean return among all assets in the portfolio.

4.2.7. Discussion of empirical results.

We start with the first sample, namely 01.01.2000-18.03.2008. Three efficient fron-
tiers are depicted on the Figure 4.1; Mean-Variance efficient frontier (MV), effi-
cient frontier for Maximum Shannon entropy portfolios (SE), where target is equally
weighted portfolio and efficient frontier for Maximum cross-entropy portfolios (CE),
where target is minimum-variance portfolio. (MinV) and (EQ) correspond to minimum-

variance portfolio and equally weighted portfolio, respectively.

All efficient frontiers reach the highest mean daily return on the corresponding
portfolio at the same point: 8.4275 x 10~* with corresponding standard deviation:
0.0193, which is the daily mean daily return on the shares of the “Caterpillar Inc.”

and daily standard deviation of its daily returns.

As it was mentioned previously, SE and CE portfolios have to reach on the other
end of the efficient frontiers equally weighted and minimum-variance portfolios, re-

spectively.

For the portfolios with high returns all three efficient frontiers give similar re-
sults in terms of daily mean returns and daily standard deviations. However, moving
down to lower daily mean returns, efficient frontiers diverge and MV efficient frontier
always suggests portfolios with higher daily mean returns for any given number of
daily standard deviation. Starting from the point with the highest value of mean daily
return, CE efficient frontier overlaps the one with MV portfolios. However, this pat-
tern changes when the values of daily mean returns are in the range: 3.74 x 10~% to
7.64 x 104, In this interval CE efficient frontier bends toward the SE efficient fron-
tiers and overlaps with it in the point with corresponding values of daily mean return
and daily standard deviation equal to 5.79 x 10~* and 0.0121 respectively. Blue hor-
izontal line on the level of 0.0005 of daily mean return represents the required mean
return for three portfolios: MV, SE and CE, for which corresponding performance

measures are computed, namely Sharpe Ratios and Certainty Equivalent Return.
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Figure 4.1.: Efficient frontiers and portfolios; design-free estimate of variance-
covariance matrix; 01.01.2000-18.03.2008.
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Moving next to the second sample: 19.03.2008-02.12.2014. On Figure4.2 are de-
picted efficient frontiers and portfolios for the same methods of the portfolio selection

problems, as were used previously.

The highest possible daily mean return for all efficient frontiers is now daily mean
return on the shares of “Visa Inc.”. Daily mean return for this company is 0.0012,
with corresponding standard deviation of its daily returns: 0.0217. Such a good result

of “Visa Inc.
of DJIA index on 20.09.2013.

could be one of the reasons, why the company became a component

Unlike in the first sample, where CE efficient frontier almost always goes in line
with MV efficient frontier, especially for a higher values of daily mean returns, in sec-
ond sample CE efficient frontier shows a complete different pattern. Starting from
the highest value for the daily mean return, CE eficient frontier shows steep conver-
gence towards its minimum value for daily mean return, which corresponds to MinV
portfolio. Moreover, CE efficient frontier is even below SE efficient frontier and in-
tersects with it in the point with corresponding values of daily mean return and daily

standard deviation equal to 0.001 and 0.0153 respectively.
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Moreover, in the second sample, mean daily return on EQ portfolio is higher than

corresponding value for MinV portfolio. This is not a case for the first sample.

Another notable difference between two sample is that in the second sample, pairs
(mean daily return, daily standard deviation) of the assets, from which the portfolios
are created, are located closer to the efficient frontiers. For instance, mean daily
return on “The Home Depot, Inc.” (HD) is practicaly the same as for the portfolio on

SE efficient frontier; and both of the portfolios have the same daily standard deviation.

Blue horizontal line on the level of 0.0008, again, represents the target daily mean
return, for which the portfolios and their corresponding performances are compared.
Now it is not 0.0005, as we want to incorporate all types of investigated portfolios,
in particular SE portfolio, which has its lowest value of daily mean return equal to
0.000607.

Figure 4.2.: Efficient frontiers and portfolios; design-free estimate of variance-
covariance matrix; 19.03.2008-02.12.2014.
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MV efficient portfolio selection is often criticized for its heavily concentrated
weights only on few assets. Maximum entropy principle imposes “direct” shrinkage

of weights to some predetermined values, which in our case are weights of equally
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weighted and minimum-variance portfolios. Two following tables are provided in

order the investigate and compare the allocation of the assets in the portfolios.

In Table 4.1 we compare three portfolios, MV, CE, SE, which are obtained using
data from the first sample for a given required daily mean return: 0.0005. From pie
chart we can see that for case of MV portfolio only 12 components out of 30 are
in the portfolio. The heaviest weight is 26 per cent and there are another 3 stocks,
which have weights heavier than 10 per cent. In case of CE portfolio, even from pie
chart, we can conclude that it fails to resolve the problem of heavily concentrated
weights, as only one single stock makes 53 per cent of the portfolio. Pie chart for
SE portfolio, in contrast, shows that 80 per cent of the investor’s wealth can be well-
diversified among the given stocks and remaining 20 per cent should be invested in

a single stock.

Shannon entropy, presented in equation 3.2, has a great explanatory power in the
assessment of the degree of diversification of a portfolio, after the later is obtained us-
ing some portfolio selection method (Rernholz 2002, p. 36). For instance, for equally
weighted portfolio, Shannon entropy reaches its maximum value /n(N), where N
is a number of assets. In our case, the maximum values of Shannon entropy is:
In(30) = 3.4012. Although the pie charts in Table 4.1 may give some interpretation
about how well the portfolios are diversified, comparatively to each other, it is good
to have a single measure presented for each portfolio. Therefore we can see, based on
Shannon entropy measure, that CE is the least diversified portfolio with correspond-
ing value of 1.751 and the SE, as it is expected, is the most-diversified portfolio with
corresponding value of 2.9524.
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Table 4.1.: Comparison of the portfolios;
covariance matrix; 19.03.2008-02.12.2014.

design-free estimate of variance-

Weights Mean Standard | Shannon
Return | deviation | Entropy
MV o 0.0005 | 0.0095 | 2.1474
<19 5% M 63,
6% 3%
<1% T
<1%
zZ ___—— <1%
<%
CE 53% 0.0005 0.0105 1.7510
7% \’,//D‘%%
SE R 0.0005 | 00115 | 2.9524

Table 4.2 provides the comparison between MV, CE and SE portfolios in case

when the second sample is used and with the required daily mean return at the level

of 0.0008. Here MV portfolio shows just the exact property, for which it is criticized;

only 7 out of 30 stocks are in MV portfolio and three of them have weights heavier

or equal to 20 per cent. CE portfolio brings slight improvement, in terms of Shannon

entropy, to the allocation of the stocks in the portfolio. But it still has the problem of



Empirical analysis. 36

extreme positions, 38 per cent of the portfolio correspond to a single stock; 4 stocks
make up 85 per cent of CE portfolio. SE portfolio, in contrast to CE portfolio, has 5
stocks with the heaviest weights, which make up 43 per cent of SE portfolio. Both,
pie chart and Shannon entropy, suggest that SE portfolio is way more diversified

comparatively to two other portfolio; but its standard deviation comes at a price.

Table 4.2.: Comparison of the portfolios; design-free estimate of variance-
covariance matrix; 19.03.2008-02.12.2014.

Weights Mean Standard | Shannon
Return | deviation | Entropy

23%

MV 0.0008 0.0123 1.7884

CE * O gcamse 0.0008 0.0129 1.8255

3% 2%

SE 0.0008 0.0153 3.0925
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Table 4.1 and 4.2 give an easy interpretation of the structure of portfolios, in case
when different portfolio creation methods are used. But investors are essentially in-

terested is portfolio’s performance, to which we proceed in the next section.

4.3. Performance of the portfolios.

In order to compare different methods for the portfolio optimization we use “rolling
window” technique. Windows lengths are W = 300, 500, 1000, 1500. Estimates
of the mean values and variance-covariance matrix may change over time, or during
different periods. Consequently, the solution for the portfolios, obtained by different
methods, may change also. “Rolling window” technique allows to incorporate this

issue and provides better estimates for the portfolios’ performance.
The procedure is divided into several steps Kolusheva (2008):

1. Starting at time # = M one has to estimate the parameters, such as mean returns
and variance-covariance matrix, over the estimation window M. For example,
when M = 300, mean returns and variance-covariance matrix of the assets are

estimated over the first 300 days.

2. Next, one has to solve the constrained optimization problem for each of the
methods for portfolio creation (MV, SE, EQ, MinV, CE). The result is the op-

timal weights, mean return and risk for each of the portfolios.

3. In case, when out-of-sample performance has to be obtained, one more mea-
sure has to be calculated. Having optimal weights for each of the portfolio
methods, the return on the corresponding portfolio in the period ¢ + 1 is cal-
culated. For example, when M = 300, on the first iteration, the return for the
period ¢t = 301 is calculated on the portfolios, which were obtained based on

the estimated inputs of first 300 days.

As the name appellation “rolling window” suggests, second iteration involves adding
the return for each asset in the data set and dropping the earliest return. This keeps
the estimation window fixed. Procedure is repeated until we reach the end of the data
set, namely, until # = 7 in case of in-sample performance measure and untilt =7 — 1

in case of out-of-sample portfolio measure.
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4.3.1. Sharpe Ratio (SR).

The first measure of the portfolio performance is Sharpe Ratio (SR). In-sample SR
represents the historic average risk-adjusted return, namely, the historic average re-
turn of the portfolio per each unit of risk, related to this portfolio. It is calculated in
the following way (Bera and Park 2008):

where 7, i, are, respectively, estimated mean return and variance-covariance ma-
trix for window [t — W + 1, t] and 7; denotes optimal portfolio weights for this win-

dow.

To calculate the out-of-sample SR we need to obtain the return on the portfolio
for the period, following the last observation in the window W, keeping the esti-
mated weights, obtained form the constrained optimization problem over window
W. Therefore, the portfolio return at time ¢ + 1 is fl, 1| = f/R, |, Where R, are the

returns at time ¢+ 1 .

The mathematical representation of the out-of-sample SR is:

1 T
m=_——a) [, (4.2)
(T - W) t;ﬁ’
2 1 i 2
6" = ) (i —m)", (4.3)
(r-w-1).%5,
m
SRout - =-
(0
i, 67 are, respectively, sample mean of the out-of-sample returns on portfolio and

corresponding variance of this returns.

4.3.2. Certainty equivalent return (CEQ).

Second performance measure of the portfolio is Certainty equivalent return, which
represents the average minimum risk-free return for which investor are willing to

abandon the risky portfolio and invest in asset with this risk-free return.
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the in-sample and the out-of-sample averages of CEQ can be defined in the fol-

lowing way:

T
. Al A A
CEan - (T _ W) l;}v (71}1’112 - 571}2[%[) 5

where /1 and & are defined in equations 4.2 and 4.3 respectively.

Both, CEQ;,, and CEQ,,; require the value of the risk aversion of the investor. In
this thesis we consider only A = 0,1. This is caused by two reasons, first and the
main is that Bera and Park (2008) concluded that the results for CEQ measures are
quite similar for different values of A, ranging from 0,07 to 1 and the second reason

is, that the evaluation itself is very computationally intensive and takes a lot of time.

4.3.3. Discussion of empirical results.

In order to investigate the performance of the MV portfolio and portfolios, which
are created using maximum entropy principle, target value either for expected mean
return or risk has to be chosen, so the comparison will be conducted on the same
“level”; this concerns MV, SE, and CE portfolios. All results are provided for tar-
get values of daily mean returns equal to 0.0005 for the first sample: 01.01.2000-
18.03.2008; 0.0008 for the second sample: 19.03.2008-02.12.2014 and 0.0005 for

the period of economic recession.

We firts summarize the result of portfolios’ performance for the first sample, which
are presented in Table 4.3. In Appendix B, Table B.1 one can find the results for the
same period in case, when “classical” estimation of variance-covariance matrix is
used. Both table have performance measures for the portfolios, which are rebalanced
daily. In other words, every next day optimal weights for all presented portfolios are

calculated and are hold for one day before the rebalancing takes place.

When W=300, in-sample CEQs of CE and MV have the highest value of 0.000496
and SE has the second highest value. Regarding in-sample SR, MV has the highest
value of 0.0712; the lowest value is of EQ: 0.0440. Out-of-sample performance is the
best for MV in terms of SR and CEQ. SE’s out-of-sample SR is 0.0235 and it is the

lowest among all presented portfolios. We found that for all portfolios, except MinV,
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performance measures are higher or equal when “classical” estimate of variance-

covariance matrix is used comparatively to values in Table 4.3 for W=300.

Next, moving to W=500; MV has the highest SR for both cases, in- and out-of-
sample. In-sample SR of SE is 0.0555 and is the third highest value, after those of
MYV and of CE. However, once again, out-of-sample performance of SE is the worst
in both terms, SR and CEQ, comparatively to other portfolios. MV has the highest
out-of-sample performance with corresponding values of 0.0384 and 0.000315 for
SR and CEQ, respectively.

Considering the case W=1000, MV has the best in- and out-of-sample performance
in terms of SR and CEQ. SE, nevertheless outperforms EQ in terms of both, out-of-
sample SR and out-of-sample CEQ. Therefore, EQ performs the worst comperatively

to other portfolios.

Taking the largest windows size W =1500. As it was for previous cases, MV has
the best performance in terms of in-sample SR and in-sample CEQ; although in-
sample CEQ of CE has the same value as MV’s, which is 0.000497. For in-sample
case, EQ has the worst performance in both terms, SR and CEQ. For out-of-sample
case, it is ones again SE, which has the worst performance. The best performing
portfolio in terms of out-of-sample SR is now MinV with the corresponding value
equal to 0.0754.
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Table 4.3.: In- and out-of-sample performance of the portfolios; design-free es-
timate of variance-covariance matrix; daily rebalancing; 01.01.2000-

18.03.2008.
W=300 W=500
In-Sample Out-Sample In-Sample Out-Sample
SR CEQ SR CEQ SR CEQ SR CEQ

EQ | 0.0440 | 0.000313 | 0.0285 | 0.000313 || 0.0416 | 0.000314 | 0.0302 | 0.000320
MinV | 0.0517 | 0.000320 | 0.0334 | 0.000281 || 0.0483 | 0.000327 | 0.0341 | 0.000288
MV | 0.0712 | 0.000496 | 0.0363 | 0.000297 || 0.0686 | 0.000496 | 0.0384 | 0.000315
SE 0.0572 | 0.000494 | 0.0235 | 0.000233 || 0.0555 | 0.000494 | 0.0286 | 0.000276
CE | 0.0691 | 0.000496 | 0.0348 | 0.000290 || 0.0666 | 0.000496 | 0.0345 | 0.000283

W=1000 W=1500
In-Sample Out-Sample In-Sample Out-Sample

SR CEQ SR CEQ SR CEQ SR CEQ
EQ | 0.0399 | 0.000358 | 0.0412 | 0.000329 | 0.0288 | 0.000312 | 0.0427 | 0.000384
MinV | 0.0489 | 0.000371 | 0.0632 | 0.000427 || 0.0429 | 0.000365 | 0.0754 | 0.000542
MV | 0.0643 | 0.000497 | 0.0693 | 0.000469 || 0.0590 | 0.000497 | 0.0718 | 0.000519
SE 0.0506 | 0.000494 | 0.0491 | 0.000394 || 0.0446 | 0.000494 | 0.0413 | 0.000377
CE | 0.0625 | 0.000496 | 0.0641 | 0.000444 | 0.0572 | 0.000497 | 0.0651 | 0.000487

Daily rebalancing may be a reasonable decision for investors. For instance, daily
rebalancing allows one to asses and respond quickly, in order to minimize the losses
from stocks, which experience decrease in price day after day. However, some in-
vestors, i.e. corporate portfolio managers, may be more conservative regarding how
often they change their positions. For this in Table 4.4 we describe the results for
portfolios’ performances for the first sample when holding period of the portfolios
is one week. Furthermore, we still use daily data for our optimization problems,
therefore in Table 4.4 only out-of-sample performance measures are presented, as

in-sample measures are the same as in Table4.3.

For W=300, in Table 4.4, the highest SR and CEQ are of MV with the correspond-
ing values of 0.0881 and 0.0014, respectively. In contrast to the case when daily re-
balancing is used, SR of SE using weekly rebalancing has higher value than SR of
EQ, however CEQ values of SE and EQ are equal: 0.0012. The worst performance,
in terms of CEQ, is of MinV portfolio and is equal to 0.0011.

In case when W=500 the highest SR is of MV and it is equal to 0.0893, however
CEQ of MV is the same as corresponding value of CE. EQ has the worst performance
among presented portfolios, its CEQ is 0.0011, which is the same as CEQ of SE.

SR of MV in case when W=1000 is 0.1507 and it is the highest values for perfor-
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mance comparatively to other portfolios. The worst performance is of EQ with the
values of 0.0788 and 0.0011 for SR and CEQ, respectively. We can see the improve-
ment in CEQ of SE as it is for the first time equal to CEQ of MinV, which is 0.0016

Moving next to the case W=1500. Here the highest SR is of MinV: 0.1556. This
macomparitevilyy be caused by the fact, that each rolling window, for which optimal
portfolios are calculated, now contain the data for the time, when global financial
crises started to take place. So the portfolio, which minimizes the risk and is essen-
tially concerned only about the risk, may be more profitable; especially when the
holding period is one week and not one day. EQ has the lowest profitability compar-
atively to other portfolios, its SR is 0.0793 and CEQ is 0.0013.

Table 4.4.: Out-of-sample performance of the portfolios; design-free estimate
of variance-covariance matrix; weekly rebalancing; 01.01.2000-
18.03.2008.

W=300 W=500 W=1000 W=1500

SR CEQ SR CEQ SR CEQ SR CEQ

EQ | 0.0551 | 0.0012 || 0.0564 | 0.0011 || 0.0788 | 0.0011 || 0.0793 | 0.0013

MinV | 0.0680 | 0.0011 || 0.0675 | 0.0011 || 0.1311 | 0.0016 || 0.1556 | 0.0020

MV | 0.0881 | 0.0014 || 0.0893 | 0.0013 || 0.1507 | 0.0018 || 0.1551 | 0.0020

SE 0.0619 | 0.0012 || 0.0658 | 0.0012 || 0.1030 | 0.0016 || 0.0842 | 0.0014

CE 0.0833 | 0.0013 || 0.0834 | 0.0013 || 0.1398 | 0.0017 || 0.1435 | 0.0019

Moving to the next sample: 19.03.2008-02.12.2014. Recall, that in order to inves-
tigate the performance of the MV portfolio and portfolios, which are created using
maximum entropy principle, target value either for expected mean return or risk has
to be chosen, so the comparison will be conducted on the same “level”; this concerns
MYV, SE, and CE portfolios. For the second sample we choose target daily mean
return of the portfolios at the level of 0.0008.

Starting with Table 4.5 we describe the results for in- and out-of-sample perfor-
mance of the portfolios when rebalancing takes place every day. In Appendix B
Table B.3 in- and out-of-sample performance of the portfolios is the presented, when

“classical” estimate of variance-covariance matrix is used.

In case when W=300, the the best in-sample performance is shown by MV, its in-
sample SR and CEQ are 0.1076 and 0.000793, respectively. the worst performing,
for in-sample case, is EQ with corresponding values of 0.0772 and 0.000717 for
in-sample SR and CEQ. However, out-of-sample performance of MV is the worst
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among all portfolios. Even EQ ’s out-of-sample CEQ is 0.000787, what is 0.000153
higher than the corresponding value of MV. This shows how the changes in estimated
daily mean returns and variance-covariance matrix, resulted by global crisis and the
following global recession, result in having extreme MV weights and therefore it
poor out-of-sample performance even in case of daily rebalancing. The highest out-
of-sample SR is of MinV: 0.0915; whereas out-of-sample CEQ value is much higher
for SE, with corresponding value of 0.000832 that is the highest out-of-sample CEQ.

Moving next to W=500. Again, the best in-sample performance is of MV. MinV
and EQ are the least performing portfolio, in terms of in-sample SR and CEQ mea-
sures. Out-of-sample SR of MinV is the highest and is 0.0788, however, in terms of
out-of-sample CEQ, EQ perfroms the best, with corresponding value of 0.000666.

Considering the case W=1000, MV has the best in- and out-of-sample performance
in terms of SR and CEQ. This may be caused by the fact, that not all windows, start-
ing from the very first, contain the period of recovery after global financial crisis. SE
outperforms EQ in terms of both, out-of-sample SR and out-of-sample CEQ. EQ per-
forms the worst in terms of in-sample SR, however the worst in-sample performance
in terms of CEQ is one of the MinV that is 0.000565.

Taking the largest windows size W =1500. As it was in all previous cases, in-
sample performance of MV is the best, with corresponding values of 0.0676 and
0.000796 for SR and CEQ, respectively. SE’s out-of-sample performance is the
worsts if terms of SR and CEQ. Out-of-sample SR and CEQ of MinV are the highest

among all considered portfolios.



Empirical analysis. 44

Table 4.5.: In- and out-of-sample performance of the portfolios; design-free es-
timate of variance-covariance matrix; daily rebalancing; 19.03.2008-

02.12.2014.
W=300 W=500
In-Sample Out-Sample In-Sample Out-Sample
SR CEQ SR CEQ SR CEQ SR CEQ

EQ | 0.0772 | 0.000717 | 0.0845 | 0.000787 || 0.0731 | 0.000714 | 0.0723 | 0.000666
MinV | 0.0779 | 0.000539 | 0.0915 | 0.000631 || 0.0774 | 0.000562 | 0.0788 | 0.000549
MV | 0.1076 | 0.000793 | 0.0822 | 0.000634 || 0.1036 | 0.000795 | 0.0734 | 0.000554
SE | 0.0829 | 0.000789 | 0.0868 | 0.000832 || 0.0789 | 0.000791 | 0.0626 | 0.000597
CE | 0.1022 | 0.000792 | 0.0892 | 0.000711 || 0.0980 | 0.000794 | 0.0724 | 0.000565

W=1000 W=1500
In-Sample Out-Sample In-Sample Out-Sample

SR CEQ SR CEQ SR CEQ SR CEQ
EQ | 0.0653 | 0.000705 | 0.1068 | 0.000728 || 0.0491 | 0.000652 | 0.1135 | 0.000676
MinV | 0.0720 | 0.000565 | 0.1041 | 0.000597 || 0.0514 | 0.000492 | 0.1285 | 0.000680
MV | 0.0923 | 0.000796 | 0.0605 | 0.000400 || 0.0676 | 0.000796 | 0.0975 | 0.000623
SE | 0.0708 | 0.000793 | 0.1018 | 0.000722 || 0.0544 | 0.000792 | 0.0798 | 0.000532
CE | 0.0861 | 0.000795 | 0.0775 | 0.000504 || 0.0632 | 0.000795 | 0.0888 | 0.000570

Recall that some investors, i.e. corporate portfolio managers, may be more con-
servative regarding how often they change their positions. For this in Table 4.6 we
describe the results for portfolios’ performances for the second sample when holding
period of the portfolio is one week. Daily data is still used for the optimization prob-
lems, therefore in Table 4.6 only out-of-sample performance measures are presented,

as in-sample measures are the same as in Table4.5.

W=300. CE has the best performance in both terms, SR and CEQ, with the corre-
sponding values of 0.1936 and 0.0029. MV has the second highest value of out-of-
sample SR, however in terms of CEQ, SE and EQ perform better. Out-of-sample SR
and CEQ of SE are only higher in comparison to those of EQ.

Considering W=500, now MV’s out-of-sample SR has the highest value of 0.1685.
All three portfolios, MV, SE and CE have the same value of out-of-sample CEQ
equal to 0.0024. EQ, although has the second smallest value of out-of-sample CEQ,

outperforms all other portfolios in terms of out-of-sample CEQ, which is equall to
0.0036.

Moving next to W=1000. For the first time the best out-of-sample performance is
shown by EQ with the corresponding value of 0.2113. The second best out-of-sample

performance is one of MinV. MV performs the worst among all portfolios, which
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once again proves how changes in the estimated input parameters makes MV an “error
maximizer” (Michaud 1989) and results in poor out-of-sample performance. SE has
out-of-sample CEQ equal to one of EQ and it is the highest value of 0.0029.

Lastly for W=1500, the highest out-of-sample SR is of MinV and is equal to
0.2728; it’s out-of-sample CEQ of 0.0029 is the same as a corresponding value of
MV. SE performs the worst in terms of out-of-sample SR and out-of-sample CEQ.
EQ performs better than any portfolio, obtained by using maximum entropy princi-
ple, namely SE and CE.

Table 4.6.: Out-of-sample performance of the portfolios; design-free estimate
of variance-covariance matrix; weekly rebalancing; 19.03.2008-
02.12.2014.

| | w=300 |  w=s500 | w=1000 | w=1500 |
SR CEQ SR CEQ SR CEQ SR CEQ
EQ 0.1708 | 0.0031 | 0.1494 | 0.0036 || 0.2113 | 0.0029 | 0.2274 | 0.0027
MinV | 0.1895 | 0.0025 | 0.1659 | 0.0022 || 0.2091 | 0.0024 | 0.2728 | 0.0028
MV 0.1914 | 0.0028 | 0.1685 | 0.0024 || 0.1472 | 0.0019 | 0.2280 | 0.0028
SE 0.1800 | 0.0033 | 0.1333 | 0.0024 || 0.2077 | 0.0029 | 0.1673 | 0.0022
CE 0.1936 | 0.0029 | 0.1642 | 0.0024 || 0.1779 | 0.0023 | 0.2028 | 0.0026

Summarizing the discussion above: (i) In each sample, performance of MV is the
best in terms of both SR and CEQ among all considered portfolios for in-sample
case. Moreover, it has the best out-of-sample performance, for the first sample, ex-
cept from the case of the largest W=1500, when each and every rolling window cap-
tures the period when Global financial crisis started to take place. Therefore, we can
conclude that MV in case of both, daily and weekly rebalancing, has the best perfor-
mance under moderate financial conditions with no extreme uncertainty (volatility)
that precedes 2008 financial crisis (Schwert 2011). In second period, MV no more
has its leading position, in terms of out-of-sample case, yielding not only to MinV
and CE but even to EQ and SE, for some cases of W. (ii) Most of the time CE’s val-
ues of performance are between those of MinV and MV, which is expected as CE
shrinks weights from MV to those of MinV (Bera and Park 2008). Nevertheless, for
the second sample, CE performs the best when we consider weekly rebalancing, in
case when W=300. (iii) SE showed poor in-sample performance in the first sample,
having most of the time corresponding values of SR and CEQ even lower than those
of naive EQ in case of daily rebalancing. The out-of-sample performance of SE in
the first period is only better than of EQ. The same works for the second period: SE

performs poorly comparatively to other portfolio, having the performance worse than
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EQ portfolio in many cases.

4.3.3.1. Testing the equality of the Sharpe ratios.

In subsection above we compared the performance of the portfolios in terms of in-
and out-of-sample SR and CEQ. However, all comparisons were made based on the

nominal terms.

Because the input parameters, namely mean returns and variance-covariance ma-
trix, are estimated, one is always exposed to some degree of estimation error, which
in term affects performance measures. To incorporate this issue we conduct the test,
in order to compare whether out-of-sample SR of different portfolios are statistically
different.

Memmel (2003) proposed the test, described in methodology, which assumes the
normal distribution of the out-of-sample portfolios’ returns; however, as it is shown
in Appendix C, Jarque-Bera test suggests that all considered out-of-sample returns,
except only two cases, are not normally distributed. Recall that Jarque-Bera’s Null

hypothesis that the data are from normal distribution.

Therefore, we used method, proposed by Ledoif and Wolf (2008a), which is also
described in methodology chapter. Using the program, provided by the authors, we
test the null hypothesis, that the difference between two Sharpe Ratios is equal to zero
using studentized time series bootstrap confidence intervals. Confidence intervals are
set to 95%. In order to provide robust results we use 10000 as a number of bootstrap

repetitions.

Table 4.7 and Table 4.8 provide the results for two periods in case when daily
rebalancing is used. Corresponding results for weekly rebalancing are in Appendix

D, as they are very similar to those, given below.

As we can see from the Table 4.7, out-of-sample SR of MV is never statistically
different from those of SE and CE. Moreover, all three portfolio, MV,SE and CE
have out-of-sample SR’s that are not statistically different from those of EQ. The
only two exceptions are the case when we compare out-of-sample SRs of MV and
CE to the corresponding value of EQ for W=1000. In first case, this SRs are 0.0643
and 0.399 for MV and EQ, respectively; second case is when SRs are equal to 0.0625
and 0.0399 for CE and EQ, respectively.
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Table 4.7.: Tests for the difference in the Sharpe ratios of the portfolios; design-
free estimate of variance-covariance matrix; daily holdings; 01.01.2000-

18.03.2008.
| Description | W | teststat. | p-value | DecisionH |

300 || 0.8529 | 0.404 | can not reject HO

SRy = SR 500 || 0.5998 | 0.558 | can notreject HO
1000 || 2.121 | 0.0392 reject HO
1500 1.49 0.162 | can not reject HO
300 1.007 0.324 | can not reject HO

SRuv = SRsg 500 0.6187 | 0.533 | can not reject HO
1000 1.568 0.127 | can not reject HO
1500 1.381 0.182 | can not reject HO
300 0.4945 0.627 | can not reject HO

SRuv = SRe 500 || 0.7333 | 0.469 | can not reject HO
1000 1.056 0.305 | can not reject HO
1500 || 0.5841 | 0.572 | can not reject HO
300 || 0.3815 | 0.713 | can not reject HO

SRsi = SRig 500 || 0.5111 | 0.615 | can notreject HO
1000 1.186 0.239 | can not reject HO
1500 || 0.2426 0.81 | can not reject HO
300 || 0.6727 | 0.508 | can notreject HO

SRcE = SRig 500 0.536 0.594 | can not reject HO
1000 || 2.189 | 0.0349 reject HO
1500 1.321 0.208 | can not reject HO

The same situation can be observed for the second period. Tests results are pre-
sented in Table 4.8. For W=1000 out-of-sample SR of MV is statistically different
from the corresponding values of EQ and CE, which is the only case, when out-of-

sample SR of MV has the lowest value among all considered portfolios.
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Table 4.8.: Tests for the difference in the Sharpe ratios of the portfolios; design-free
estimate of variance-covariance matrix; daily rebalancing; 19.03.2008-

02.12.2014.
| Description | W | teststat. | p-value | DecisionH |
300 | 0.1571 | 0.877 | can not reject HO
SRy = SR 500 | 0.06822 | 0.944 | can not reject HO
1000 | 2.168 | 0.0348 reject HO
1500 | 0.3932 | 0.717 | can not reject HO
300 | 0.3416 | 0.737 | can not reject HO
SRyy — SRe 500 | 0.7045 | 0.489 | can notreject HO
1000 | 2.005 | 0.0534 | can not reject HO
1500 | 0.5391 | 0.606 | can not reject HO
300 1.226 0.227 | can not reject HO
SRuv = SRep 500 | 0.1388 | 0.888 | can not reject HO
1000 | 1.977 | 0.0484 reject HO
1500 | 0.5653 | 0.585 | can not reject HO
300 | 0.3849 | 0.709 | can not reject HO
SRsz = SR 500 2.206 | 0.0306 | can not reject HO
1000 | 0.6736 | 0.513 | can not reject HO
1500 1.6 0.18 | can not reject HO
300 | 0.4292 | 0.675 | can not reject HO
SRex — SRy 500 | 0.00773 | 0.994 | can not reject HO
€ 7000 | 1.791 | 0.0842 | can not reject HO
1500 | 0.7793 | 0.472 | can not reject HO
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4.4. The US economic recession of 2007-2009.

This section serves as an addendum to the empirical analysis, described above. After
the investigation of the portfolios performances for two aforementioned periods, few
questions arose. First of all, we would like to investigate in more details the influ-
ence of economic recession of 2007-2009 on the portfolios performance. Although,
it is clear that recession has negative impact on the performance of the portfolio as it
causes lower or negative returns on the assets and moreover, it causes high volatility.
However, the thing we are interested in is whether the performances of our portfolios,
obtained using different methods, are on the same positions comparatively to each
other as in empirical analysis, conducted above. Second of all, we want to investigate
the influence of smaller rolling windows in the performance measures mechanisms.
Again, we are interested in whether one portfolio would perform better than other
if the estimation error is rather high, which would be the case for small rolling win-
dows, used in estimation procedure. Lastly, in this section we compare out-of-sample
performance of the portfolios, given that the holding period is one month. By this we
move one step toward real life situations as frequent rebalancing may be undesirable

and most of the time is costly.

In the empirical investigation below we incorporate aforementioned issues all at

once. This is done in the following way:

e We create separate sample of data, used in empirical analysis, for the period of
U.S. economic recessions of 2007-2009. This sample spans the period from
01 December 2007 until 30 June 2009. NBER (2008) determined that the peak
of economic activity was in December 2007, after 73 months of expansion and

the trough in business activity occurred in June 2009.

e The length of the windows in “rolling window” technique for investigation the

performance of the portfolios are now set to 60, 90, 120, and 200 days.

e Out-of-sample performance of the portfolios is now also assessed for the case,

when holding period is one month.

Before starting the discussion, for convenience, till the end of this section we will
refer to the first sample (01.01.2000-18.03.2008) and all the empirical analysis, con-
ducted using the data from it, as to sample(i) and to the second period (19.03.2008-
02.12.2014), also including all empirical analysis using data from it, as to the sam-
ple(ii).

On Figure 4.3 are depicted all the efficient frontiers and portfolio using the data
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from period of economic recession, which were already investigated for sample(i)
and sample(ii). Namely, Mean-Variance efficient frontier (MV), efficient frontier for
Maximum Shannon entropy portfolios (SE), efficient frontier for Maximum cross-
entropy portfolios (CE), Minimun- variance portfolio (MinV) and Equally-weighted
portfolio (EQ).

The highest possible return for all efficient frontiers is daily mean return on the
shares of “JPMorgan Chase & Co.”. Daily mean return for this company is 0.00106,
with corresponding standard deviation of its daily returns: 0.051. Majority of the
pairs (mean daily return, daily standard deviation) of the assets, from which the port-
folios are created, are located close to the efficient frontiers. Moreover, in contrast
to sample(i) and sample(ii), some of the assets are even located on the left side from
the SE efficient frontier, suggesting that investing in one of those assets would have
lower risk and accompanied with higher daily mean return than on the portfolio on
SE efficient frontier. For instance, such stocks as “McDonald’s”, “IBM Co.” and
“Wal-Mart Stores Inc.” are very close to MV efficient frontier and produce better
results than the portfolio on SE efficient frontier, in terms of daily mean return and

daily standard deviation.

Figure 4.3.: Efficient frontiers and portfolios; design-free estimate of variance-
covariance matrix; 01.12.2007-30.06.20009.
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Unlike in the case of sample(i) and sample(ii), on Table 4.3 we can see that CE
efficient frontier follows the same path as MV eflicient frontier. However, this does
not mean that the allocation of the assets in two portfolios, taken from each efficient
frontier on the same level of daily mean return, has to be the same; it will be seen
further in the Table 4.9. Blue horizontal line on Figure 4.3 on the level of 0.0005
of daily mean return represents the required mean return for three portfolios: MV,
SE and CE, for which corresponding performance measures are computed, namely

Sharpe Ratios and Certainty Equivalent Return.

In Table 4.1 we compare three portfolios, MV, CE, SE, which are obtained using
data for the period of the recession for a given required daily mean return: 0.0005.
From pie chart we can see that for case of MV only 4 components out of 30 are in the
portfolio. 64 per cent of investor’s wealth would be invested only in one asset. CE as
well has 4 major components in its portfolio, however the weights are allocated more
evenly with the heaviest weight being 41 per cent. Pie chart for SE suggests that 47
per cent of investor’s wealth should be invested in a single asset, but remaining 53

per cent are distributed among many other assets.

Based on the values of Shannon Entropy, during economic recession CE shows
more diversified portfolio that MV as Shannon Entropy increases by 0.03598. To
compare, in sample(i) CE has Shannon entropy even lover than the corresponding
value for MV and in sample(ii) CE shows marginal improvement of 0.0371, in terms
of Shannon entropy, comparatively to MV . Both, pie chart and Shannon entropy,
suggest that SE is way more diversified comparatively to two other portfolio; but

once again its standard deviation comes at a price as in previous two samples.
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Table 4.9.: Comparison of the portfolios;

design-free estimate of variance-
covariance matrix; 01.12.2007-30.06.2009.

Weights

Mean
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Entropy

MV

7%
h Q
/ 64%
2%

0.0005

0.025

0.9498

CE

<1%
15%
<1%
\\ 41%
<1%
15%

0.0005

0.0254

1.3096
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et
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47%

0.0005

0.0373

2.165

Moving now to the investigation of the performances of the portfolios. In Table

4.10 are presented in- and out-of-sample measures of SR and CEQ for different port-

folio. After the description of the results, a quick conclusion is provided after each

table.

Starting with W=60, in-sample CEQs of MV and CE have the highest values of
0.0394 and 0.0385, respectively; and SE has the third highest value. Regarding
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in-sample SR, MV has the highest value of 0.00048; the lowest value is of EQ: -
0.000593. Out-of-sample performance is the best for EQ in terms of both SR and
CEQ. CE’s out-of-sample SR is -0.0406 and it suggests better out-of-sample perfor-
mance that MV, which has the corresponding value equal to -0.0527. SE’s out-of-
sample SR is -0.0552 and is the lowest among all presented portfolios.

Next, moving to W=90; MV has the highest in-sample SR and CEQ. In-sample SR
of SE is 0.025 and is the third highest value, after those of MV and of CE. However,
once again, out-of-sample performance of SE is the worst in both terms, SR and CEQ,
comparatively to other portfolios. SE has the highest out-of-sample performance
with corresponding values of -0.016 and -0.000494 for SR and CEQ, respectively.
Out-of-sample performance of MV is only on this place, in terms of both SR and
CEQ, after EQ and CE.

Considering the case W=120, MV has the best in- and out-of-sample performance
in terms of SR and CEQ. out-of-sample SR of EQ is the highest among other port-
folios, however out-of-sample CEQ is higher for MinV. SE has the worst results in
terms of all in- and out-of-sample performance measures. MV now outperforms CE

based of the out-of-sample SR.

Taking the largest windows size W =200. As it was for the previous cases, MV
has the best performance in terms of SR and CEQ for in-sample case. For in-sample
case, EQ has the worst performance in both terms, SR and CEQ, however it has the
best out-of-sample performance once again. For out-of-sample case, it is ones again

SE, which has the worst performance.

To conclude, MV always provides the best in-sample performance. However it fails
to provide good results in case of out-of-sample performance, performing worse than
naive EQ and in most of the cases it performs worse than CE. SE has better in-sample
performance only comparatively to EQ and MinV; out-of-sample performance of SE

is always the worst.
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Table 4.10.: In- and out-of-sample performance of the portfolios; design-free es-
timate of variance-covariance matrix; daily rebalancing; 01.12.2007-

30.06.2009.
W=60
In-Sample Out-Sample
SR CEQ SR CEQ
EQ | -0.0199 | -0.000593 | -0.0159 | -0.000474
MinV | -0.0279 | -0.000519 | -0.0269 | -0.000493
MV | 0.0394 | 0.00048 | -0.0527 | -0.000991
SE | 0.0274 | 0.000465 | -0.0552 | -0.0014
CE | 0.0385 | 0.000479 | -0.0406 | -0.000794
W=90
In-Sample Out-Sample
SR CEQ SR CEQ
EQ | -0.0289 | -0.000883 | -0.0160 | -0.000494
MinV | -0.0271 | -0.00052 | -0.0348 | -0.000653
MV | 0.0375 | 0.000474 | -0.0224 | -0.000483
SE 0.025 | 0.000455 | -0.0465 | -0.0013
CE | 0.0369 | 0.000473 | -0.0203 | -0.00044
W=120
In-Sample Out-Sample
SR CEQ SR CEQ
EQ | -0.0367 | -0.0011 | -0.0192 | -0.000614
MinV | -0.027 | -0.000531 | -0.0303 | -0.000601
MV | 0.0313 | 0.000388 | -0.0674 | -0.0016
SE | 0.0205 | 0.000373 | -0.0729 -0.002
CE | 0.0307 | 0.000386 | -0.0676 | -0.0016
W=200
In-Sample Out-Sample
SR CEQ SR CEQ
EQ | -0.0442 | -0.0013 | -0.0065 | -0.000274
MinV | -0.025 | -0.000459 | -0.0287 | -0.000647
MV | 0.0199 | -0.000382 | -0.0493 | -0.0012
SE | 0.0146 | 0.000362 | -0.0563 | -0.0016
CE | 0.0193 | 0.000378 | -0.0172 | -0.00048

Moving next to the case, when holding period is equal to one week. As we still
use daily data for our optimization problems, in Table 4.11 only out-of-sample per-
formance measures are presented, as in-sample measures are the same as in previous

table.
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For the case when W=60, as it can be seen from the Table 4.11, the best performing
portfolio in terms of SR is EQ, as it was the case for daily rebalancing. However in
terms of CEQ the best performing portfolio is CE with the corresponding value of
-0.0015; in fact EQ has the fourth lowest value of CEQ. CE has the second best result

in terms of SR.

In case when W=90 the highest SR is again of EQ and it is equal to -0.0477; EQ has
also the best performance in terms of CEQ. MV has the worst performance among

presented portfolios, its SR is -0.1054. SE has the third best performance results in
terms of both SR and CEQ.

Considering the case W=120, MV has the worst performance in terms of SR. EQ
outperforms all other portfolios in terms of both SR and CEQ, its corresponding
values are -0.0575 and -0.0028. MinV showed an improvement comparatively to the
cases with lower windows lengths as it has the second best performance in terms
of SR and is the best performing portfolio in terms of CEQ with the corresponding
values equal to -0.0028.

For the last case W=200, the portfolios, constructed using maximum entropy prin-
ciple, are for the firts time the best performing portfolios. CE has the best perfor-
mance, with values equal to -0.0171and -0.000728 for SR and CEQ respectively;

followed, in terms of performance, by SE. The worst performance is of MinV.

Therefore, in most of the cases EQ provides the best out-of-sample performance,
when rebalancing is conducted on weekly basis. MV shows a significant decline in
out-of-sample performance, being sometimes the least performing portfolio. Regard-
ing CE and SE, they showed improvements in their performance in a case of weekly

rebalancing.



Empirical analysis. 56

Table 4.11.: Out-of-sample performance of the portfolios; design-free estimate
of variance-covariance matrix; weekly rebalancing; 01.12.2007-
30.06.2009.

| \ W=60 \ W=90 |
SR CEQ SR CEQ
EQ |-0.0413 | -0.0021 | -0.0477 | -0.0025
MinV | -0.0723 | -0.002 | -0.1038 | -0.003
MV | -0.0491 | -0.0016 | -0.1054 | -0.0031
SE | -0.0687 | -0.0030 | -0.0935 | -0.0042
CE | -0.0448 | -0.0015 | -0.0852 | -0.0026

| \ W=120 \ W=200 |

SR CEQ SR CEQ
EQ | -0.0575 | -0.0031 | -0.0418 -0.0026

MinV | -0.0958 | -0.0028 | -0.0968 -0.0033
MV | -0.1154 | -0.0041 | -0.0777 | -0.0029
SE | -0.1084 | -0.0047 | -0.0257 | -0.0013
CE | -0.1138 | -0.0041 | -0.0171 | -0.000728

For the sample(i) and sample(ii) we conducted an empirical investigation of the
performance of the portfolios for cases of daily and weekly holdings. However, for
the case when we use the data only for the period of the economic recession we add
also the case of monthly holdings. This would give us more robust insight about
the performance of the portfolios and moreover, this case is closer to he real-world

situations, when rebalancing of the portfolio are not frequent.

In Table 4.12 we present our empirical findings. Starting with the case W=60,
we can see that EQ and MinV are the best performing portfolios as SR of SE has
the highest value of -0.1329 and the second highest values of CEQ,conceding only
to MinV. CE performs better that MV in terms of SR, however it has lower CEQ

comparatively to MV. SE is the least performing portfolio.

Moving next to W=90, as in previouse case, EQ has the best performance in all
terms. Also, MV performance is now better than of CE in both SR and CEQ terms.
SR of SE is the lowest among others and is eqaul to -0.3218, with the closest portfolio,
in terms of SR, being MinV with corresponding value -0.2914.

Considering W=120, CE has better performance that MV and SE, however it fails
to outperform EQ and MinV. CEQ of MinV has the highest value of -0.0149. The
best result, in terms of SR, is once again shown by EQ. SE has the worst performance
with values of -0.3681 and -0.0318 for SR and CEQ respectively.
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Lastly for W=200, SR of CE has the highest values, equal to 0.028. The closest
portfolio to CE, in terms of SR, is EQ with corresponding value of -0.0655. MV
is only third best performing portfolio in terms of both SR and CEQ. SE fails to

outperform any other portfolios.

To conclude the results for the monthly rebalancing: EQ is almost always the best
performing portfolio, followed by MinV. Only in case W=200, portfolio, constructed
using maximum entropy principle, has the best performance. However, another port-
folio, created using the same method, that is SE, has always the worst performing

results.

Table 4.12.: Out-of-sample performance of the portfolios; design-free estimate
of variance-covariance matrix; monthly rebalancing; 01.12.2007-
30.06.2009.
| \ W=60 \ W=90 |
SR CEQ SR CEQ
EQ | -0.1329 | -0.0139 | -0.1766 | -0.0189
MinV | -0.2252 | -0.0128 | -0.2914 | -0.0165
MV | -0.2248 | -0.0144 | -0.2873 | -0.0185
SE | -0.2611 | -0.0225 | -0.3218 | -0.0282
CE | -0.219 | -0.0147 | -0.319 | -0.02

| \ W=120 \ W=200 |
SR CEQ SR CEQ
EQ | -0.1637 | -0.0184 | -0.0655 | -0.0084
MinV | -0.2493 | -0.0149 | -0.1981 | -0.0117
MV | -0.2834 | -0.0216 | -0.1049 | -0.0072
SE | -0.3681 | -0.0318 | -0.1146 | -0.01
CE -0.265 -0.02 0.028 | -0.0018

In Appendix D we presented the results of the test for the statistical difference
between SR of different portfolios, for case when the input data is from the period
of economic recession. As it can be seen from the results, completely all of the tests

fail to reject the Null hypothesis of statistical difference of SR ratios.



Chapter 5

Conclusion

Purpose of this thesis was to investigate the performance of portfolios, created using
maximum entropy principle, proposed by Bera and Park (2008), to those created us-
ing “classical” Markovitz method. Key points, which differentiate this thesis from
previous works are using disign-free estimate of variance-covariance matrix, intro-
duces by Abadir et al. (2010); comparing the performance of the portfolios using
daily, weekly and monthly holding periods; and conducting tests in order to assess

whether the performances of different portfolios are statistically different.

Markovitz (1952) Mean-Variance (MV) efficient portfolio selection is a pioneer
method in the problem of diversification of the wealth among risky assets. However,
it was criticized for the fact, that it is highly concentrated only on a few assets due to
the statistical error in estimates of means and variance-covariance matrix, which in
turn results in poor out-of-sample performance (Michaud 1989). Maximum entropy
principle, by its nature, tackles this problems; First, it has the shrinkage interpreta-
tion, in a sense that weights are directly shrunk towards predetermined values, second
is that when equally weighted portfolio is used as a target, the optimization problems
solves for the weights which are the closest to those of equally weighted portfolio and
achieve required return (risk) of the portfolio Bera and Park (2008). Furthermore, we
use design-free estimate of variance-covariance matrix, which leads to superior es-
timate of large variance-covariance matrices and for data with heavy-tailed densities
(Abadir et al. 2010). In order to test the statistical difference of out-of-sample Sharpe
ratios of different portfolios, we use studentized timeseries bootstrap interval method,
proposed by Ledoif and Wolf (2008a), which produces robust results in case when
out-of-sample returns on the portfolios are not normally distributed, which is a case
for this thesis.

In order to perform empirical analysis we use daily data for companies, which are
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(were) components of Dow Jones Industrial Average. This data is divided into two
samples: 01.01.2000-18.03.2008 and 19.03.2008-02.12.2014. Using Matlab pro-
grams, written based on the works of Bera and Park (2008) and Abadir et al. (2010),
we create the portfolios using maximum entropy principle and compare this portfo-
lios and their performance to MV portfolios based on the rolling window technique
having daily and weekly holding periods. Furthermore, additional investigation is

presented separately for the period of U.S. economic recession of 2007-2009.

Based on our results, MV portfolio almost always has better performance than
those, created using maximum entropy principle, in case when we consider daily
holdings, except in the period of the recession, when naive equally weighted portfolio
has the best out-of-sample performance. Weekly rebalanicing reveals that increased
holding period and periods of high market volatility drives down out-of-sample per-
formance of MV porfolio and in some cases portoflios, created using maximum en-

tropy principle, outperform MV.

Investigation of the performance of the portfolios during the period of the reces-
sion revealed, that unpleasant market conditions have a severe influence on MV out-
of-sample performance. Portfolios, created using maximum entropy principle, in
particular CE, in most of the cases provide better results, in terms of out-of-sample
performance, than classical MV. However, almost in all cases, naive EQ was able to

provide superior performance comparatively to all other portfolios.

To conclude , we found that although out-of-sample Sharpe ratios, as our main
measure of performance, differ in nominal terms between investigated portfolios,
they are not statistically different. Therefore, one can obtain well-diversified portfolio
using maximum entropy principle and yet stay at the same level of out-of-sample

performance as in case of ’classical’ Markowitz efficient portfolio.
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Appendix A

Portfolios’ components.

IRl

Table A.1.: Portfolios’ components. Signs “+” and “-” represent the presence of the
particular asset in the portfolios for two different periods, respectively.

# Company ticker 01.01.2000- 19.03.2008- 01.12.2007-
18.03.2008 02.12.2014 30.06.2009
3M Company MMM) + + +
Alcoa Inc. (AA) + - +
3. American Express (AXP) + + +
Company
4. American International (AIG) + - -
Group, Inc.
5. AT&T Inc. (T
The Boeing Company (BA)
Bank of America (BAC) + -
Corporation
8. Caterpillar Inc. (CAT) + + +
. Chevron Corporation (CVX) + + +
10. Cisco Systems, Inc. (CSCO) + + +
1. Citigroup © + - +
12. | The Coca-Cola Company (KO) + + +
13. | E. I du Pont de Nemours (DD) + + +
and Company
14. Exxon Mobil Corp. (XOM) + + +
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# Company ticker 01.01.2000- 19.03.2008- 01.12.2007-
18.03.2008 02.12.2014 30.06.2009
15. General Electric (GE) + + +
Company
16. The Goldman Sachs (GS) - + -
Group, Inc.
17. Hewlett-Packard (HPQ) + +
Company
18. The Home Depot, Inc. (HD) + + +
19. Intel Corporation (INTC) + + +
20. IBM Co. (IBM) + + +
21. Johnson & Johnson (JNJ) + + +
22. JPMorgan Chase & Co. (JPM) + + +
23. McDonald’s (MCD) + + +
24. Merck & Co., Inc. (MRK) + + +
25. Microsoft Corporation (MSFT) + + +
26. Nike, Inc. (NKE) - + -
27. Pfizer Inc. (PFE) + +
28. Procter&Gamble Co. PG) +
29. | The Travelers Companies, | (TRV) - +
Inc.
30. UnitedHealth Group (UNH) - -
31. United Technologies (UTX) + +
Corporation
32. | Verizon Communications VZ) + + +
Inc.
33. Visa Inc. V) - -
34, Wal-Mart Stores, Inc. (WMT)
35. The Walt Disney (DIS)

Company
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In- and out-of-sample performance
of the portfolios; “classical” esti-
mate of the variance-covariance ma-
trix.

Table B.1.: In- and out-of-sample performance of the portfolios; “classical” esti-
mate of the variance-covariance matrix; daily rebalancing; 01.01.2000-

18.03.2008.
W=300 W=500
In-Sample Out-Sample In-Sample Out-Sample
SR CEQ SR CEQ SR CEQ SR CEQ

EQ | 0.0433 | 0.000313 | 0.0285 | 0.000313 || 0.0413 | 0.000314 | 0.0302 | 0.000320
MinV | 0.0524 | 0.000328 | 0.0340 | 0.000284 | 0.0489 | 0.000334 | 0.0351 | 0.000296
MV | 0.0716 | 0.000496 | 0.0386 | 0.000315 || 0.0690 | 0.000496 | 0.0393 | 0.000322
SE 0.0561 | 0.000494 | 0.0235 | 0.000233 || 0.0550 | 0.000494 | 0.0286 | 0.000276
CE | 0.0692 | 0.000496 | 0.0365 | 0.000303 || 0.0668 | 0.000496 | 0.0357 | 0.000292

W=1000 W=1500
In-Sample Out-Sample In-Sample Out-Sample
SR CEQ SR CEQ SR CEQ SR CEQ
EQ | 0.0397 | 0.000358 | 0.0412 | 0.000329 | 0.0287 | 0.000312 | 0.0427 | 0.000384
MinV | 0.0496 | 0.000379 | 0.0646 | 0.000436 || 0.0437 | 0.000374 | 0.0748 | 0.000538
MV | 0.0645 | 0.000497 | 0.0705 | 0.000478 || 0.0590 | 0.000497 | 0.0702 | 0.000508
SE 0.0504 | 0.000494 | 0.0491 | 0.000394 || 0.0444 | 0.000494 | 0.0413 | 0.000377
CE | 0.0626 | 0.000496 | 0.0648 | 0.000449 || 0.0572 | 0.000497 | 0.0652 | 0.000487
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Table B.2.: Out-of-sample performance of the portfolios; “classical” estimate of the
variance-covariance matrix; weekly rebalancing; 01.01.2000-18.03.2008
W=300 W=500 W=1000 W=1500
SR CEQ SR CEQ SR CEQ SR CEQ
EQ | 0.0551 | 0.0012 || 0.0564 | 0.0011 || 0.0788 | 0.0011 || 0.0793 | 0.0013
MinV | 0.0691 | 0.0011 || 0.0695 | 0.0011 || 0.1344 | 0.0016 || 0.1543 | 0.0020
MV | 0.0914 | 0.0014 || 0.0907 | 0.0014 || 0.1528 | 0.0018 || 0.1520 | 0.0020
SE 0.0619 | 0.0012 || 0.0658 | 0.0012 || 0.1030 | 0.0016 || 0.0842 | 0.0014
CE | 0.0846 | 0.0013 || 0.0848 | 0.0013 || 0.1420 | 0.0017 || 0.1426 | 0.0019

Table B.3.: In- and out-of-sample performance of the portfolios; ‘“classical” esti-
mate of the variance-covariance matrix; daily rebalancing;19.03.2008-

02.12.2014.
W=300 W=500
In-Sample Out-Sample In-Sample Out-Sample
SR CEQ SR CEQ SR CEQ SR CEQ

EQ | 0.0765 | 0.000717 | 0.0485 | 0.000787 | 0.0726 | 0.000714 | 0.0723 | 0.000666
MinV | 0.0752 | 0.000520 | 0.0886 | 0.000609 | 0.0756 | 0.000548 | 0.0773 | 0.000539
MV | 0.1074 | 0.000793 | 0.0801 | 0.000620 | 0.1034 | 0.000795 | 0.0733 | 0.000555
SE | 0.0820 | 0.000789 | 0.0868 | 0.000832 | 0.0784 | 0.000791 | 0.0626 | 0.000597
CE | 0.1012 | 0.000792 | 0.0868 | 0.000693 | 0.0973 | 0.000794 | 0.0717 | 0.000561

W=1000 W=1500
In-Sample Out-Sample In-Sample Out-Sample

SR CEQ SR CEQ SR CEQ SR CEQ
EQ | 0.0650 | 0.000705 | 0.1068 | 0.000728 | 0.0488 | 0.000652 | 0.1135 | 0.000676
MinV | 0.0715 | 0.000562 | 0.1036 | 0.000594 | 0.0514 | 0.000491 | 0.1276 | 0.000680
MV | 0.0920 | 0.000796 | 0.0568 | 0.000378 | 0.0675 | 0.000796 | 0.0951 | 0.000607
SE | 0.0706 | 0.000792 | 0.1018 | 0.000722 | 0.0541 | 0.000792 | 0.0798 | 0.000532
CE | 0.0856 | 0.000795 | 0.0769 | 0.000500 | 0.0629 | 0.000795 | 0.0877 | 0.000565
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Table B.4.: Out-of-sample performance of the portfolios; “classical” estimate of the
variance-covariance matrix; weekly rebalancing; 19.03.2008-02.12.2014

W=300 W=500 W=1000 W=1500
SR CEQ SR | CEQ SR | CEQ SR | CEQ
EQ | 0.1708 | 0.0031 || 0.1494 | 0.0036 || 0.2113 | 0.0029 || 0.2274 | 0.0027
MinV | 0.1836 | 0.0024 || 0.1625 | 0.0021 || 0.2088 | 0.0024 || 0.2692 | 0.0028
MV | 0.1895 | 0.0028 || 0.1697 | 0.0024 || 0.1401 | 0.0019 || 0.2240 | 0.0028
SE | 0.1800 | 0.0033 || 0.1333 | 0.0024 || 0.2077 | 0.0029 || 0.1673 | 0.0022
CE | 0.1889 | 0.0028 || 0.1623 | 0.0024 || 0.1767 | 0.0023 || 0.2012 | 0.0025
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Tests for normal distribution.

Table C.1.: Test for Normal distribution of the portfolios’ returns; daily holdings.
01.01.2000-18.03.2008

W | skewness | kurtosis | Jarque-Bera test
(95% conf. level)
300 | 0.2057 | 6.6428 reject HO
EQ 500 | 0.3231 6.6923 reject HO
1000 | -0.1008 | 5.3831 reject HO
1500 | -0.1447 | 5.5548 reject HO
300 | -0.4615 | 8.3977 reject HO
MV 500 | -0.3538 | 9.1878 reject HO
1000 | -0.2457 | 3.8501 reject HO
1500 | -0.4218 | 4.8954 reject HO
300 | -0.1907 | 5.5156 reject HO
SE 500 | 0.1265 | 5.4395 reject HO
1000 | -0.1670 | 4.5351 reject HO
1500 | -0.2641 | 4.8139 reject HO
300 | -0.4184 | 8.0515 reject HO
CE 500 | -0.3068 | 8.0109 reject HO
1000 | -0.2167 | 3.9781 reject HO
1500 | -0.4096 | 4.9031 reject HO
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Table C.2.: Test for Normal distribution of the portfolios’ returns; weekly holdings.
01.01.2000-18.03.2008

W | skewness | kurtosis | Jarque-Bera test
(95% conf. level)
300 | 0.0262 | 8.0373 reject HO
EQ 500 | 0.2621 8.8439 reject HO
1000 | -0.4675 | 3.6132 reject HO
1500 | -0.5732 | 3.4775 reject HO
300 | -0.3230 | 8.0320 reject HO
MV 500 | -0.1605 | 10.2709 reject HO
1000 | -0.4188 | 3.6310 reject HO
1500 | -0.5023 | 4.1398 reject HO
300 | -0.2477 | 5.7189 reject HO
SE 500 | 0.2072 | 6.9551 reject HO
1000 | -0.4719 | 3.4447 reject HO
1500 | -0.5129 | 3.3365 reject HO
300 | -0.1802 | 7.7213 reject HO
CE 500 | -0.0576 | 9.2770 reject HO
1000 | -0.4344 | 3.6156 reject HO
1500 | -0.5375 | 4.0077 reject HO

Table C.3.: Test for Normal distribution of the portfolios’ returns; daily holdings.
19.03.2008-02.12.2014.

W | skewness | kurtosis | Jarque-Bera test
(95% conf. level)
300 | -0.3057 | 6.7693 reject HO
EQ 500 | -0.3186 | 7.3945 reject HO
1000 | -0.1842 | 4.0503 reject HO
1500 | -0.5591 | 4.1255 reject HO
300 | 0.3058 | 10.4997 reject HO
MV 500 | -0.0598 | 6.5261 reject HO
1000 | -0.1504 | 4.5327 reject HO
1500 | -0.2969 | 3.4746 | can not reject HO
300 | -0.0492 | 8.5824 reject HO
SE 500 | -0.3422 | 7.6781 reject HO
1000 | -0.2295 | 4.1404 reject HO
1500 | -0.6285 | 4.0917 reject HO
300 | 0.2087 | 10.3051 reject HO
CE 500 | -0.1798 | 6.6152 reject HO
1000 | -0.2287 | 4.3875 reject HO
1500 | -0.5267 | 3.7152 reject HO
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Table C.4.: Test for Normal distribution of the portfolios’ returns; weekly holdings.
19.03.2008-02.12.2014.

W | skewness | kurtosis | Jarque-Bera test
(95% conf. level)
300 | -0.2531 | 4.6920 reject HO
EQ 500 | -0.3807 | 4.8964 reject HO
1000 | -0.3706 | 3.2478 reject HO
1500 | -0.5839 | 4.0325 reject HO
300 | 0.0772 | 5.3278 reject HO
MV 500 | -0.2604 | 4.1771 reject HO
1000 | -0.3003 | 3.6385 reject HO
1500 | -0.1009 | 3.7335 | can not reject HO
300 | -0.0461 | 5.2695 reject HO
SE 500 | -0.3418 | 5.3680 reject HO
1000 | -0.3238 | 3.5453 reject HO
1500 | -0.4375 | 3.4648 reject HO
300 | 0.1329 | 5.2517 reject HO
CE 500 | -0.1729 | 4.3962 reject HO
1000 | -0.3250 | 3.6061 reject HO
1500 | -0.3131 | 3.5568 | can not reject HO

Table C.5.: Test for Normal distribution of the portfolios’ returns; daily holdings.
01.12.2007-30.06.2009

W | skewness | kurtosis | Jarque-Bera test
(95% conf. level)
60 | 0.3513 5.5741 reject HO
EQ 90 | 0.3345 5.3883 reject HO
120 | 0.3335 | 4.9839 reject HO
200 | 0.3167 | 4.2018 reject HO
60 | -0.0091 | 9.0219 reject HO
MV 90 | 0.9347 | 12.2895 reject HO
120 | 0.1996 | 10.6616 reject HO
200 | 0.7489 | 5.9031 reject HO
60 | -0.1157 | 5.6644 reject HO
SE 90 | -0.0568 | 7.5358 reject HO
120 | -0.3334 | 8.0651 reject HO
200 | 0.0845 | 4.0039 reject HO
60 | -0.1235 | 8.5115 reject HO
CE 90 | 0.8831 | 12.3885 reject HO
120 | 0.1645 | 10.4380 reject HO
200 | 0.6814 | 5.1976 reject HO
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Table C.6.: Test for Normal distribution of the portfolios’ returns; weekly holdings.
01.12.2007-30.06.2009

W | skewness | kurtosis | Jarque-Bera test
(95% conf. level)
60 | 0.1861 5.5013 reject HO
EQ 90 | 0.1969 | 5.2509 reject HO
120 | 0.2248 | 4.9022 reject HO
200 | 0.1783 3.9466 reject HO
60 | -0.2086 | 11.7809 reject HO
MV 90 | -0.1058 | 7.9806 reject HO
120 | -0.3724 | 6.7498 reject HO
200 | 0.8097 | 7.5806 reject HO
60 | -0.4392 | 7.4228 reject HO
SE 90 | -0.7849 | 8.0689 reject HO
120 | -0.9793 | 7.8340 reject HO
200 | 0.1403 | 6.5688 reject HO
60 | -0.2153 | 10.6654 reject HO
CE 90 | -0.2115 | 8.3945 reject HO
120 | -0.5105 | 7.2930 reject HO
200 | 0.7410 | 6.8225 reject HO

Table C.7.: Test for Normal distribution of the portfolios’ returns; monthly holdings.
01.12.2007-30.06.2009

W | skewness | kurtosis | Jarque-Bera test
(95% conf. level)
60 | 03946 | 3.9632 reject HO
EQ 90 | 0.5173 3.8447 reject HO
120 | 0.4836 | 3.5350 reject HO
200 | 0.4355 2.9841 | can not reject HO
60 | -0.5828 | 5.8818 reject HO
MV 90 | -0.2560 | 4.0457 reject HO
120 | -0.0829 | 3.8986 reject HO
200 | 0.4441 3.3744 reject HO
60 | -0.3623 | 3.4611 reject HO
SE 90 | -0.1441 | 3.3078 | can not reject HO
120 | -0.0394 | 3.0771 | can not reject HO
200 | 0.0821 2.8843 | can not reject HO
60 | -0.4481 | 5.2421 reject HO
CE 90 | -0.2141 | 4.5074 reject HO
120 | -0.0770 | 4.0155 reject HO
200 | 0.3156 3.0850 | can not reject HO




Appendix D

Tests for equality of the Sharpe ra-
tios (weekly rebalancing) .

Table D.1.: Tests for the difference in the Sharpe ratios of the portfolios; design-free
estimate of variance-covariance matrix; weekly holdings; 01.01.2000-

18.03.2008.
‘ Description ‘ w H test stat. ‘ p-value ‘ Decision HO ‘

300 || 0.8529 | 0.404 | can notreject HO

SRuy = SR 500 0.5998 | 0.558 | can not reject HO
1000 || 2.121 | 0.0392 reject HO
1500 1.49 0.162 | can not reject HO
300 1.007 0.324 | can not reject HO

SRuv = SRsp 500 || 0.6187 | 0.533 | can not reject HO
1000 1.568 0.127 | can not reject HO
1500 1.381 0.182 | can not reject HO
300 0.4945 | 0.627 | can not reject HO

SRyv — SRex 500 || 0.7333 | 0.469 | can not reject HO
1000 1.056 0.305 | can not reject HO
1500 || 0.5841 | 0.572 | can not reject HO
300 0.3815 | 0.713 | can not reject HO

SRsz = SR 500 || 0.5111 | 0.615 | can notreject HO
1000 1.186 0.239 | can not reject HO
1500 || 0.2426 0.81 | can not reject HO
300 || 0.6727 | 0.508 | can not reject HO

SRcx = SRig 500 0.536 0.594 | can not reject HO
1000 | 2.189 | 0.0349 reject HO
1500 1.321 0.208 | can not reject HO
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Table D.2.: Tests for the difference in the Sharpe ratios of the portfolios; design-
free estimate of variance-covariance matrix; weekly rebalancing;
19.03.2008-02.12.2014.

| Description | W | teststat. | p-value | DecisionH |

300 | 0.3424 0.74 | can not reject HO
SRy = SR 500 0.347 0.73 | can not reject HO
1000 | 1.421 0.159 | can not reject HO
1500 | 0.00646 | 0.996 | can not reject HO
300 | 0.1725 | 0.865 | can not reject HO
SRyy — SRe 500 0.781 0.445 | can not reject HO
1000 | 1.412 0.168 | can not reject HO
1500 | 1.008 0.347 | can not reject HO
300 | 0.1878 | 0.863 | can not reject HO
SRuv = SRep 500 | 0.2159 | 0.833 | can not reject HO
1000 | 1.408 0.173 | can not reject HO
1500 | 0.9518 | 0.362 | can not reject HO
300 1.029 0.314 | can not reject HO
SRsz = SR 500 1.684 0.101 | can not reject HO
1000 | 0.1764 | 0.865 | can not reject HO
1500 | 0.6093 | 0.577 | can not reject HO
300 | 0.6737 0.5 can not reject HO
SRcE = SRig 500 | 0.4321 0.669 | can not reject HO
1000 | 0.882 0.392 | can not reject HO
1500 | 0.2544 | 0.817 | can not reject HO
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Table D.3.: Tests for the difference in the Sharpe ratios of the portfolios; design-
free estimate of variance-covariance matrix; daily holdings; 01.12.2007-

30.06.20009.
| Description | W [ teststat. | p-value | DecisionH |
60 1.191 0.274 | can not reject HO
SRy = SRig 90 || 0.1961 | 0.856 | can not reject HO
120 1.228 0.24 | can not reject HO
200 || 0.9391 | 0.381 | can not reject HO
60 || 0.1076 | 0.917 | can not reject HO
SRuv = SRsg 90 || 0.9966 | 0.339 | can not reject HO
120 || 0.2492 | 0.809 | can not reject HO
200 || 0.163 0.883 | can not reject HO
60 1.462 0.182 | can not reject HO
SRuyv = SRep 90 || 0.1859 0.86 | can not reject HO
120 || 0.02579 | 0.98 | can not reject HO
200 || 2.368 0.103 | can not reject HO
60 1.644 0.143 | can not reject HO
SRsz = SRig 90 1.198 0.266 | can not reject HO
120 1.536 0.163 | can not reject HO
200 1.163 0.284 | can not reject HO
60 || 0.7574 | 0.478 | can not reject HO
SRcE = SRig 90 || 0.1326 | 0.907 | can not reject HO
120 1.225 0.252 | can not reject HO
200 || 0.2421 | 0.823 | can not reject HO




Tests for equality of the Sharpe ratios (weekly rebalancing) . 75

Table D.4.: Tests for the difference in the Sharpe ratios of the portfolios; design-free
estimate of variance-covariance matrix; weekly holdings; 01.12.2007-

30.06.20009.
| Description | W [ teststat. | p-value | DecisionH |
60 || 0.1664 | 0.873 | can not reject HO
SRy = SR 90 1.093 0.295 | can not reJ:ect HO
120 || 0.7843 | 0.457 | can not reject HO
200 || 0.3104 | 0.774 | can not reject HO
60 0.464 0.654 | can not reject HO
SRuv = SRsg 90 || 0.2503 | 0.812 | can not reject HO
120 || 0.1434 | 0.898 | can not reject HO
200 || 0.8801 | 0.408 | can not reject HO
60 0.238 0.818 | can not reject HO
SRuyv = SRep 90 || 0.8859 | 0.385 | can not reject HO
120 || 0.1014 | 0.925 | can not reject HO
200 1.658 0.152 | can not reject HO
60 || 0.6806 | 0.528 | can not reject HO
SRsi = SR 90 || 0.9106 | 0.404 | can not reject HO
120 1.17 0.284 | can not reject HO
200 || 0.1863 | 0.867 | can not reject HO
60 || 0.06771 | 0.949 | can not reject HO
SRcE = SRig 90 || 0.6673 | 0.527 | can not reject HO
120 || 0.7624 | 0.463 | can not reject HO
200 || 0.2292 | 0.829 | can not reject HO
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Table D.5.: Tests for the difference in the Sharpe ratios of the portfolios; design-free

estimate of variance-covariance matrix; monthly holdings; 01.12.2007-

30.06.2009.

| Description | W || teststat. | p-value |

Decision H

|

60 || 0.4305 0.68 | can not reject HO
SRy = SR 90 1.002 0.342 | can not reject HO
120 1.073 0.308 | can not reject HO
200 0.15 0.879 | can not reject HO
60 0.336 0.756 | can not reject HO
SRuv = SRsg 90 || 0.1069 | 0.913 | can not reject HO
120 || 0.9044 | 0.409 | can not reject HO
200 || 0.08078 | 0.939 | can not reject HO
60 || 0.2288 | 0.831 | can not reject HO
SRuv = SRe 90 1.562 0.138 | can not reject HO
120 || 0.4987 | 0.629 | can notreject HO
200 1.382 0.216 | can not reject HO
60 2.156 0.081 | can not reject HO
SRsz = SRro 90 2.927 | 0.0202 | can not reject HO
120 || 2.341 | 0.0555 | can not reject HO
200 || 0.3241 | 0.769 | can not reject HO
60 || 0.4768 | 0.649 | can not reject HO
SRcE = SRig 90 1.436 0.175 | can not reject HO
120 || 09162 | 0.383 | can not reject HO
200 || 0.4751 | 0.674 | can not reject HO
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