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Abstract

Examining the nature of extreme values plays an important role in financial

risk management. This thesis investigates tail behaviour of distribution of re-

turns using the framework of univariate Extreme Value Theory. The empirical

research was conducted on the S&P 500 index and its seven constituents. The

goal of this thesis was to use the Hill method to estimate the tail index of the

series which characterizes the tail behaviour, especially the speed of the tail

decay. To select the tail threshold several graphical methods were performed

as they represent empirical measures of model stability. Classical Hill plots as

well as alternative Hill plots and smoothing procedure were presented. The

threshold choice based on stable regions in the graphs was found to be highly

subjective. Hill method modified by Huisman was used instead and the results

confirmed that the classical Hill method yields estimates which overestimate

the tail thickness. All the examined series were found to have heavy tails with

polynomial tail decay. This thesis stressed the need to model the left and the

right tail separately as both extreme losses and profits are important depending

on whether an investor takes a long or a short position on portfolio. Finally, the

tail index was used to demonstrate the need to compute the expected losses for

certain quantiles instead of simply the minimum losses as expressed by Value

at Risk.

JEL Classification C14, C58, G32

Keywords Extreme Value Theory, Tail Index, tail be-

haviour, risk

Author’s e-mail marketa.pokorna.jh@gmail.com

Supervisor’s e-mail boril.sopov@gmail.com

http://ideas.repec.org/j/C14.html
http://ideas.repec.org/j/C58.html
http://ideas.repec.org/j/G32.html
mailto:marketa.pokorna.jh@gmail.com
mailto:boril.sopov@gmail.com


Abstrakt

Zkoumáńı extrémńıch hodnot je nezbytnou součást́ı finančńıho risk manage-

mentu. Tato práce prověřuje vlastnosti chvost̊u pomoćı jednorozměrného rámce

Teorie extrémńıch hodnot. Empirický výzkum byl proveden na indexu S&P

500 a sedmi jeho konstituentech. Ćılem této práce bylo odhadnout pomoćı

Hillovy metody chvostový index, který charakterizuje chováńı chvost̊u a určuje

rychlost jejich svažováńı. K výběru chvostového prahu bylo využito několika

grafických metod, jelikož jsou empirickými ukazateli stability modelu. Byl

použit klasický Hill̊uv graf a také alternativńı graf s vyhlazovaćı technikou.

Výběr prahu založen na stabilńıch plochách těchto graf̊u byl shledán vysoce

subjektivńım. Byla tedy použita Hillova metoda pozměněna Huismanem a

výsledky potvrdily, že klasická Hillova metoda přináš́ı odhady, které nadhod-

nocuj́ı tloušťku chvost̊u. Bylo zjǐstěno, že všechny zkoumané akcie maj́ı těžké

chvosty s polynomickým svažováńım. V práci bylo zd̊urazněno, že je potřeba

modelovat zvlášť levý a pravý chvost, jelikož jsou d̊uležité extrémńı ztráty i

zisky v závislosti na tom, zda investor drž́ı krátkou či dlouhou pozici. Chvos-

tový index byl také použit k ilustraci potřeby poč́ıtat očekávané ztráty mı́sto

pouhých minimálńıch možných ztrát, které vyjadřuje Value at Risk.

Klasifikace JEL C14, C58, G32

Kĺıčová slova Teorie extrémńıch hodnot, chvostový in-

dex, vlastnosti chvost̊u, risk
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Chapter 1

Introduction

The highly volatile period in the markets that recurred in the last decade has

had a major effect on the importance of risk management for all institutions,

firms and individuals. Not only market crashes have lead to an adoption of

more cautious approach towards asset management. An important part was

also played by well-known losses suffered due to derivative mismanagement,

such as the case of Procter & Gamble, or the losses experienced through risky

investment strategy as in Orange County. However, more effort is being made

to hedge against types of risks which cannot be influenced or prevented by

diversification. They arise unexpectedly with low probability but with conse-

quences that can be of an unprecedented severity. That is the reason why their

predictability is generally on the front burner. These extreme risk events in-

clude natural disasters such as 100-year floods and major earthquakes, as well

as substantial financial losses. Estimating the probability of extreme events

poses unique difficulties not only because of the scarcity of the data due to

the rare nature of these events. It is also necessary to shed the assumption of

normality, which does not hold. These reasons gave rise to the Extreme Value

Theory (EVT) framework.

Extreme Value Theory is a concept proposed to deal with modelling the

effect of extreme events. It is based on sound statistical methods which are

designed to estimate probabilities of extreme events. Such methods use limited

range of data of such events that occurred in the past and are suitable for

predicting events even more extreme than those previously observed. Therefore

it gives the necessary guidance to evaluate the possibility of risk in improbable

events. This methodology for statistical modelling provides researchers with a

useful tool in the fields of risk management, insurance, finance and even biology
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and hydrology. Interestingly, the latter were the ones that initiated research in

the field of Extreme Value Theory.

Within the framework of this theory, the purpose is to estimate distribution

parameters so as to be able to make forecasts about the nature of risk in future

periods. However, no assumption is made about all observations from the

distribution. The focus is made directly on the tails without paying attention

to the center of the distribution. This ensures that the modelled tail behaviour

expresses as much information as possible about the disposition of the extreme

values. Therefore the tail model is not directly influenced by observations

which are of a regular occurrence. Compared to the classical risk measure,

Value at Risk, the EVT does not assume that a certain distribution function

holds globally and its interests lie in the whole tails and not just at the point

where the tails begin. The idea is quite aptly expressed by DuMouchel (1983).

He states that the natural way to model the tail behaviour of data is to let the

tails “speak for themselves”. Therefore, this thesis is focused on estimation of

the Tail Index, a parameter from which the speed of tail decay can be directly

inferred. This tail decay gives then a useful measure of the tail thickness, as

the faster the decay, the lighter the tail.

While in the perfect state the knowledge of occurrence and incidence of

extreme events would be desirable, applying the Extreme Value Theory repre-

sents many challenges. Among these, the most pertinent ones are the choice

of the method of how to estimate parameters and the decision on the starting

point of the tail. In the empirical part of this thesis real financial data will

be examined. As hypothesized, the data would be far from the Normal distri-

bution assumption. Financial stock market index S&P 500 will be subject to

the analysis as well as some individual stocks as they might reflect rare events

unequally. When choosing the tail cut-off point, several graphical methods will

be employed and it shall be discussed, whether they can serve to decide where

the tail begins and what role subjectivity plays therein. Another subject of

interest are the differences between the left and the right tail. Faster decay

of one tail tells us about the imbalance of the positive and negative extreme

values. Therefore, both the minima (losses) and maxima (profits) come under

scrutiny. The final hypothesis is that the tail behaviour of financial time series

does change over time. For this reason the sample will be divided into shorter

time spans to see if there was a period with fatter tails.

The thesis is organized as follows: Chapter 2 gives an overview of important

literature contributing to both Extreme Value Theory and Tail Index estima-
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tion. In Chapter 3, attention is paid to the theoretical framework of the EVT.

The tail index estimation method is described as well as graphical threshold

selection techniques. Then the section about the tail index application gives

guidelines about what can be inferred from the tail index values. The model

is applied in practice in Chapter 4 which includes the initial data analysis and

consequent tail index estimation. Finally, Chapter 5 concludes.



Chapter 2

Literature Review

The first foundations of the Extreme Value Theory were given by statisticians

Ronald Fisher and his student Leonard H.C. Tippett (Fisher and Tippett,

1928). Their theorem described extreme order statistics’ convergence in distri-

bution. However, the rigorous proof was given a few years later by a Soviet

mathematician Boris V. Gnedenko (Gnedenko, 1943) and therefore the first

theorem of EVT is referred to as Fisher-Tipeett, Gnedenko. A further step was

made by dividing the limit distribution into 3 families of generalised extreme

value distribution. First type was described by Emil J. Gumbel (Gumbel,

1958), a German mathematician who devoted major part of his work to ex-

amine climate and hydrology. Further type of extreme value distributions was

recognized by Fisher and Tippett based on work of Maurice Fréchet (Fréchet,

1927) and the last one was identified by Fréchet and described later in detail

by a Swedish mathematician Waloddi Weibull (Weibull, 1951).

The first extreme value theory applications included environmental issues

and mainly used values of annual maxima as the extremes to be modelled. The

concern was for example to estimate the probability that the maximum river

flow level next year will exceed a certain level or even all previous levels. Later,

however, the focus has shifted from climate issues to insurance business and

annual maxima were dominated by a new method called Peaks Over Threshold.

Along with this new approach the EVT foundations had to be strengthened.

The influential research was accomplished by Balkema and de Haan (1974)

and Pickands III (1975). The former examined the limit distribution types

of residual life time considering a bulb, the latter presented a method for in-

ference about the upper tail of a probability distribution function. Thus it

became common to consider extremes as values exceeding a certain threshold
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and Pickands-Balkema-de Haan is considered to be the second theorem of EVT.

With this extended theory some more applications in biology areas still

appeared. A useful application has been made in the research of atmosphere

pollution. Smith (1989) conducted a detailed analysis of ground-level of ozone

using data form Houston, Texas. Another study by De Haan (1994) made use

of EVT in studying the rises of sea level. His theory gave direction to determine

a safe height of sea dykes in the Netherlands so that a flood would appear only

once in 10,000 years. Because of the fact that the environmental disasters are

closely connected with insurance data, the focus has moved on the insurance

business as well. Rootzén and Tajvidi (1997) examined wind storm extremes

using meteorological information and at the same time analysing large claims

in insurance.

In the last few decades the interest in extreme values and the risk involved

has shifted into financial domain. Risk management of financial portfolios has

proved to be of high importance due to several events which revealed the unex-

pectedness and severity of extreme price movements in the markets. One of the

first events triggering consciousness was the big market crash in October 1987

which brought financial crisis and contributed to a consideration of appropriate

financial measures. Consequently a set of minimum capital requirements for

banks was established by Basel I (and later by Basel II) set of rules. The fol-

lowing history of recurring crises indicated that excluding extreme events from

models could bring much higher losses experienced during next crisis and even

a collapse of institutions. Measures such as Value at Risk (VaR) were imple-

mented at several financial institutions. Further shocks followed with Brazilian

stock exchange crash in 1989, with 1997 Asian financial crisis, 2002 stock mar-

ket downturn and the financial crisis of 2007-2008 even caused reconstruction

of Basel I rules. VaR technique, which measures financial risk while considering

amount of potential loss, probability of that amount of loss and time horizon,

has been altered many times since. Jorion (1996) refers to the need to control

financial risks better and shows how to improve the accuracy of VaR estimates.

Contrary to the VaR, EVT emphasizes maxima and minima and makes no

assumptions about the original distribution thus modelling the tails of the

distribution. During the 1990s the VaR approach has been extended by the

extreme value theory in order not to examine only the central observations of

the distribution. The basic idea was to turn away from normal distribution ap-

proximation. Among others, Longin (2000) presented an application of EVT to

compute the VaR, where he utilises EVT to create an approach that covers nor-
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mal market conditions as well as financial crises. The improved VaR approach

was also applied by Ho et al. (2000) who modelled the tails of return distri-

butions of Asian financial markets counting in the period of previous Asian

financial turmoil. He found that the VaR estimates generated by the EVT dif-

fered substantially from those of traditional methods thus taking into account

the fat tails. Therefore the mixed approach is widely used as the standard VaR

method falls short on fitting the maxima and minima because of their scarcity.

Further contributions of the EVT include a better understanding of data

by exploring the distribution of the tails in detail. An important question,

however, rises when segregating the extreme values from the rest of the obser-

vations. A decision rule has to be employed to reasonably state where the tail

begins. Another choice has to be made to decide on a method of estimating

the parameters. An overview of approaches dealing with these options will be

given considering the targeted area of this work.

This thesis is focused on the shape parameter of the limiting distribution,

because the parameter demonstrates the behaviour of the limiting distribution

uniquely and helps us understand the decay of the tails. The first general ap-

proach to inference about tails was proposed by a statistician Bruce M. Hill

(Hill, 1975) and his Hill’s estimator of the tail index (reciprocal of shape pa-

rameter). He stressed the importance to draw inference about the behaviour of

the tails. At the same time he suggested that it might be done without assum-

ing that a certain distribution function in its parametric form holds globally.

His method is based on order statistics and a non parametric approach is con-

ditioned upon the values of order statistics which exceed a certain threshold.

Then the parameters’ estimates are obtained by conditional maximum likeli-

hood estimation. An application of Hill’s estimate has become established due

to its straightforward interpretation and computational simplicity. Already in

the original paper (Hill, 1975) it was clearly stated that the proposed methods

depend on a subjective choice of the threshold or in other words on the num-

ber of extreme value statistics. By setting the threshold high, fewer extreme

observations are employed and therefore cause high variance of the tail index

estimator. On the contrary, setting the threshold too low can lead to a biased

estimator. Thus the threshold choice matters significantly and basically creates

the trade-off between high variance and bias.

Other simple estimators were constructed in the way that they depend on

a certain number of upper order statistics. Pickands III (1975) estimates the

distribution parameters by a simple percentile method reaching again an esti-
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mator based on extreme observations. Dekkers et al. (1989) builds on the Hill

estimator to propose a moment estimator (referred to as the DEdH estimator).

Although these estimators were proved to be consistent and asymptotically

normal, no clear rule on their superiority was derived until the first comparison

of tail indices (De Haan, 1998). Here the Hill, Pickands and DEdH estimators

were compared in terms of the asymptotic mean square error. The results sug-

gest that there is no estimator which simply outperforms the others since the

outcome depends on the distribution parameters and for different situations we

get different superior estimators.

The subsequent research in the area focused on refinements of the original

estimators but also originated methods pursuing estimators with better proper-

ties. Considerable amount of research is dealing with threshold selection. This

topic attracts attention because segregating a certain number of extremes is a

necessary step which requires a proper rationale behind. Sometimes the thresh-

old is arbitrarily set at a certain quantile (e.g. 95%). However, the number of

extreme order statistics is an essential aspect in estimating the tail index. A

thorough consideration is therefore needed because selecting the threshold too

high could cause high variance of the estimator. On the other hand, setting the

threshold too low causes the estimator to be biased as observations which do

not belong to extremes might also be considered. The original Hill’s approach

suggested looking for a stable region of estimates in Hill plot (a graph depicting

estimates depending on the number of order statistics used). However, this ba-

sic plot is often not sufficiently informative (see Embrechts et al., 1997, p. 343)

and therefore other techniques are required.

Resnick and Stărică (1997) propose a different method called the alternative

Hill plot based on logarithmic horizontal scale. They find this plot more useful

in terms of how much information it demonstrates. Here the parts of graph

corresponding to high or low number of extreme order statistics are rescaled

thus enabling more obvious interpretation of the graph. Moreover, the authors

suggest additional smoothing procedure through averaging the Hill estimator

so that the variance of the estimator is reduced and the volatility of the plot

mitigated. Nevertheless, using both original and alternative Hill plot and their

comparison is advised. Even more refined method is proposed by Drees et al.

(2000) who built a measure based on the occupation time of the plot around

the true value of the estimator. Their results demonstrate that the alternative

Hill plot is superior to the original one unless the data comes from Pareto

distribution.
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Other decisions on threshold selection can be reached by non-graphical

methods. One of the most commonly used is determining the cut-off level

such that the asymptotic mean squared error of the estimator is minimized.

However, this approach is based on asymptotic behaviour and provides little

guidance about finite samples. More advanced methods are based on choosing

the cut-off level endogenously (therefore it complies with the available data)

and they do so by subsampling and bootstrap techniques. These were described

by Hall (1990) and further developed by Danielsson et al. (2001) who solve the

problem of choosing the threshold in subsamples by introducing a control vari-

ate. This forms an accurate approach which entails arbitrary choice of only the

number of Monte Carlo replications.

One of the other issues connected with the tail index estimator is correcting

for its bias. The main idea is to introduce the second order framework for the

tail form and estimate both first and second order parameters. Several new

estimators have been proposed where the bias is reduced and at the same time

the variance not inflated or even decreased as well (Gomes et al., 2008). An

alternative method was introduced by Huisman et al. (2001) who reduce the

small sample bias by an estimator obtained as a weighted average of Hill es-

timators with weights derived from least squares estimation. As well as bias

reduction, dealing with the estimator’s rate of convergence is a concern of de-

sired good performance. Slow rate of convergence represents a big shortcoming

of the estimator because it would lack accuracy in smaller samples. The gen-

eral use of most simple estimators is penalized by a slow rate of convergence.

Hall (1982) describes an estimator with an algebraic rather than logarithmic

convergence rate. This, however, comes at the expense of additional assump-

tions about the underlying distribution. As bias and rate of convergence are

concerned, the best statistical properties of the estimator are desired. Despite

the awareness of this fact, this thesis focuses on simple estimators with general

use because of their simpler practical implementation.

If an application of extreme value theory shall be considered, one of the

strongest assumptions to face is that the data must be independent and iden-

tically distributed. Nevertheless, if extremes of financial time series are to be

modelled, this assumption might not be met. If the dependence structure is

not taken into account, incorrect estimates might be obtained, which might

lead to unexpected losses or on the contrary to overly conservative behaviour.

Therefore an explicit procedure was devised to model the dependence by Gen-

eralized Autoregressive Conditional Heteroscedasticity (GARCH) family models
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and then apply the EVT for the innovations which are believed to be indepen-

dent and identically distributed. This method is called Conditional Extreme

Value Theory and as shown by McNeil and Frey (2000) the conditional ap-

proach dominates the unconditional one and works well also for market risk

measures such as Value at Risk or Expected Shortfall. According to McNeil

and Frey (2000) this method is robust enough to obtain good estimates even

in case of misspecification of the GARCH model up to a certain degree. If the

dependence is not modelled, EVT can still be applied to financial time series.

However, simplifying assumption of independence would have to be used and

even though the estimates would be consistent the standard errors should be

expected to be over-optimistically small (McNeil et al., 2005).

Apart from the original estimators and their fine-tuning, also other alterna-

tive estimators have been proposed. Peaks Over Random Threshold (PORT) is

a methodology suggesting estimators based on a sample of excesses over a ran-

dom threshold which enables to estimate high quantiles. Also other methods

should be mentioned such as the geometric, Kernel, or QQ estimators. These

are, however, outside of the scope of this thesis.



Chapter 3

Theoretical Framework and

Methodology

3.1 Measuring risk

Financial risk management is concerned with forecasting situations which might

effect the invested wealth and thus endanger individuals or institutions. Even

though more advanced methods have been under scrutiny in the last three

decades, it has always been indisputable that risk has to be quantified.

The variance (and its square root, the standard deviation (sd)) is one of the

first measures used to quantify risk of a portfolio as described by Markowitz

(1952) who was awarded a Nobel prize for this contribution. The so called

mean-variance optimization theory is a modern quantitative tool used for se-

lecting a portfolio by maximizing the expected return with respect to a certain

level of risk. The variance is a reasonable measure to quantify risk but only if

the returns are considered to be normally distributed. This is due to the fact

that it takes into account the dispersion of values from their mean. It might,

however, not be a suitable tool to describe general distributions of returns as

it does not examine the tails directly.

A more reflective standard to describe the risk was developed after the

1987 crash and is called Value at Risk (VaR). VaR is defined as the minimum

amount of loss that occurs over a certain time period for a given portfolio and

at a quantile p.
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Denoted mathematically,

V aRp(X) = inf{x ∈ R : P (X > x) ≤ 1−p} = inf{x ∈ R : FX(x) ≥ p} (3.1)

where the random variable X represents losses (expressed as positive values)

and FX is the cumulative distribution function of X.

Value at Risk played a key role in quantifying the capital requirements as

a protection against market risk in the Basel II Accord. The VaR provides

an estimate about risks yet again it does not describe the tail itself. Another

common criticism of VaR is that it is not subadditive, which means that VaR of

a portfolio of investments might be greater than the sum of different VaRs for

the same but separate investments

V aRp(X + Y ) > V aRp(X) + V aRp(Y ) (3.2)

This contradicts the explanation of lowering the risk by diversification. Apart

from subadditivity, VaR satisfies all conditions for a coherent risk measure as

defined by Artzner et al. (1999). However, it has been shown that VaR for

financial returns distribution is subadditive in the tail and thus is suitable

for practical applications (Danielsson et al., 2005). Even though VaR still is

a standard indicator of a distribution’s tail cut-off, it should be much more

significant to examine what happens further in the tail, i.e. when losses exceed

VaR.

An alternative coherent risk measure to Value at Risk is called the Expected

Shortfall (ES). Compared to VaR, it moreover considers the shape of the tail.

At certain confidence level α the Expected Shortfall is defined as the expected

value of VaRs which exceed V aRp:

ESp(X) =
1

1− p

∫ 1

p

V aRz(X)dz (3.3)

The simple contribution of Expected Shortfall can be characterized by provid-

ing more insight into the tails as we shift from asking about the minimum loss

arising in p per cent of cases to the expected loss arising in p per cent of cases.

Despite their shortcomings, variance, VaR and ES are statistical tolls which

are, to a certain extent, suitable for decision making. They are straightforward

in the way that they encompass the information about the risk in a single

number. When considering a statistical perspective, the biggest obstacle in
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their application is to construct an appropriate estimate for the tails of the

underlying distribution. Once we have that kind of estimate, the VaR and ES

are rather simple to calculate. However, there are some reasons why these

measures alone might not be sufficient for the tail inference.

To summarize the main issues arising even when considering the simplest

case

X1, X2, ...Xn
iid∼ F

where we want to draw appropriate inference about the tail of F :

1. the estimates should desirably not be restricted in the range of the so far

observed values

2. the extreme observations are rare thus forming only a small sample for

the tail behaviour to be modelled

3. more accurate density estimation is needed in the tails

These facts cause the basis for extrapolation to be insufficient and therefore

lead to tail models which employ distributions that are justified asymptotically.

3.2 Extreme Value Theory

Extreme Value Theory is a valuable tool to model distribution of extreme

observations of returns. This thesis will be focused on modelling univariate

extremes of distribution of returns, sometimes called the Profit & Loss dis-

tribution function (P&L). There are two basic perspectives of how to iden-

tify the extreme observations. The theoretical grounds establishing the Peaks

over Threshold (PoT) methodology as well as the second one, Block Maxima

Method (BMM), will be described in this section. Extreme distribution func-

tions will be given to model extremes in both approaches.

Even though the theory has its foundations in full parametric modelling of

extremes considering their asymptotic behaviour, there has recently been a shift

towards computationally simpler semi-parametric models. These, namely the

Hill’s approach, will be described afterwards and employed in the empirical part

of this thesis. Their estimation is achieved under a fairly general framework

thus making the computation simple and straightforward.

Throughout this section it is assumed that we have a sample of n indepen-

dent, identically distributed (i.i.d.) random variables which come from a cu-

mulative distribution function F. Later the possible case of stationary, weakly
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dependent random variables will be considered. For the sample (X1, X2, ..., Xn)

the following notation will be used for the descending order statistics:

X1,n ≥ X2,n... ≥ Xn,n.

In this thesis all the extremes will be considered positive values and referred

to as maxima no matter if the right tail (profits) or the left tail (losses) of a

probability distribution function is being described. This is made possible

because

min(X1, ..., Xn) = −max(−X1, ...,−Xn)

The Extreme Value Theory is concerned with fitting a distribution for the tails

without making assumptions about the center of the probability distribution.

Therefore, the following topic is a cornerstone of this theory.

3.2.1 Identifying extremes: Block Maxima versus Peaks-

over Threshold methods

The decision upon distinguishing the extremes from the centre of the distri-

bution is one of the most significant ones in extreme value analysis. Inference

about the extremes is connected with a certain point of view on the nature

of the extremes. That could mean considering largest values either overall

or of some fixed blocks. Even though some more advanced approaches have

developed, these main 2 will be described and contrasted.

The Block Maxima Method (BMM) is the original approach used at

the beginning of EVT applications and it identifies the maxima as the largest

values from certain blocks of the data. The applications of this method cover

mainly environmental sciences and considered 12-month periods’ extreme val-

ues to account for seasonality. Therefore this approach is sometimes also called

annual maxima method. Surely the size of the blocks can differ from 1 year

and is to be chosen with maximum care and reasonable interpretation. The

sample of size n is usually divided into k subsamples of m observations and the

most extreme value is taken from each subsample k. This procedure is done

in a way that there is a sufficient number k of extremes coming from large

enough subsamples (size m). Then the distribution of the sequence (Mk) of

block maxima is studied.

The subjective choice here is of the number of blocks or alternatively the

block size because n = m × k. The main critic of this approach is concerned
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Figure 3.1: Block maxima method example
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Source: Author’s computations.

with how it deals with the data. As the far extremes are especially rare, the aim

is not to disregard some of them. However, that might be the case here because

only the largest value is taken from a block thus not counting in other possibly

important extreme observations. An example can be seen in Figure 3.1.

Figure 3.2: Peaks over threshold example
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The Peaks over Threshold (PoT) is a completely different approach

in that it overcomes the data wasteful nature of BMM. It considers only ob-

servations that exceed a certain threshold and then these excesses are to be

modelled. Because it uses the data more efficiently than BMM it prevails in

most of the recent application studies. However, the threshold selection has a

huge impact on the estimation of relevant parameters as it represents a delicate

trade-off between variance and bias of the estimator. By setting the cut-off level

too high, the sample of extremes contains too few observations causing high

variance of estimates. By contrast when lowering the starting point of the tail,
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observations from the central part of the density might be included. Conse-

quently, fitting a distribution to the tail might produce biased estimates because

observations with centre-of-the-density behaviour might be encompassed. An

example of PoT can be seen in Figure 3.2. It can be noticed that by slightly

lowering the threshold the sample of exceedances increases significantly. The

proposed techniques about how to deal with threshold selection issue will be

described in a section together with Hill’s method employed by this thesis.

3.2.2 Generalized Extreme Value distribution

The first extreme value distribution is called the GEV distribution and is closely

connected with the Block Maxima Method. Now a probability framework for

block maxima will be stated, following Coles et al. (2001). For a random sample

X1, ..., Xn
i.i.d.∼ F, the maxima are defined as

Mn = max{X1, ..., Xn}.

Then Mn is distributed as

Pr {Mn ≤ x} = Pr {X1 ≤ x, ..., Xn ≤ x} (3.4)

= Pr {X1 ≤ x} × ...× Pr {Xn ≤ x} (3.5)

= F (x)n (3.6)

Here, F is unknown so the idea is to approximate F n by a limit distribution

as n → ∞. To look for the distribution, a great similarity comes here when

considering the Central Limit Theorem (CLT) for sums of random variables,

where the normal distribution plays the key role. Defining the sums of random

variables X1, X2, ...Xn as Sn = X1 + ...+Xn, the CLT states that as n goes to

infinity, normalized sums (where sequence an = nE(X1) and bn =
√
V ar(X1))

converge in distribution to standard normal distribution Φ:

lim
n→∞

P

(
Sn − an
bn

≤ x

)
= Φ (x) , x ∈ R.

In the same sense, the maxima need to be rescaled as well to obtain a non-

degenerate distribution function (does not take on only a single value). The

methodology here is followed from the models as described by McNeil et al.

(2005).

The convergence of normalized maxima means that there exist suitable
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sequences {cn} > 0 and {bn} such that

lim
n→∞

P

(
Mn − dn

cn
6 x

)
= lim

n→∞
F n (cnx+ dn) = H (x) (3.7)

For the H(x) to be a non-degenerate distribution function, it has to be found

in the GEV family of distributions.

Definition 3.1 (The generalized extreme value (GEV) distribution (as definded by

McNeil et al. (2005), p.265)). The cumulative distribution function of GEV

distribution is given by

Hξ (x) =

exp
(
− (1 + ξx)−1/ξ

)
, ξ 6= 0,

exp (−e−x) , ξ = 0,

where 1+ξx > 0. A three parameter family is obtained by defining Hξ,µ,σ (x) :=

Hξ ((x− µ) /σ) for a location parameter µ ∈ R and a scale parameter σ > 0.

Here the location and scale parameters are used to represent the norming

constants dn and cn which are unknown. This distribution is called generalized

because its parametric form summarizes 3 types of distributions belonging to

the GEV family. The specific family can be recognized by the parameter ξ, called

the shape parameter, which is the primary parameter of interest here. Each dis-

tribution family is defined by the shape parameter up to location and scaling.

For ξ > 0 the distribution family is called a Fréchet case and it describes heavy-

tailed distributions which are bounded from below. It contains distributions

such as the Pareto or the Student t-distributions, which have tails of negative

polynomial decay with infinite right endpoint. The case ξ = 0 characterizes

the Gumbel class of light-tailed distributions. These include distributions with

an exponential tail behaviour such as the gamma, exponential or normal dis-

tribution. Finally, the situation when ξ < 0 is referred to as the Weibull case

which describes short-tailed distributions with finite right endpoint (e.g. beta

distribution). The use of these distributions in statistical modelling is enabled

because they are continuous in ξ. Therefore, the GEV can be fitted to the block

maxima by maximum likelihood method. Despite the disadvantages of block

maxima method, the GEV can deal with the data clustering provided a long

enough time horizon is considered Coles et al. (2001).

The densities of all three GEV distribution types can be seen in Figure 3.3.

It depicts the finite right endpoint of Weibull case and infinite right endpoints
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Figure 3.3: GEV probability distribution functions

The dashed line is the Gumbel case (ξ = 0), the solid line corresponds to the Fréchet
case (ξ = 0.6) and the dotted line represents the Weibull case (ξ = −0.6). For all
the cases µ = 0 and σ = 1 was used.
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of Fréchet and Gumbel, where the Fréchet tail’s decay is much slower. The part

which GEV plays in EVT is vindicated by the following definition and theorem.

Definition 3.2 (Maximum domain of attraction (MDA) as defined by McNeil et

al. (2005), p.266). If 3.7 holds for some non-degenerate distribution function

H, then F is said to be in the maximum domain of attraction of H, written

F ∈MDA(H).

Theorem 3.1 (Fisher-Tippett, Gnedenko as stated by McNeil et al. (2005), p.266).

If F ∈MDA(H) for some non-degenerate distribution function H then H must

be a distribution of type Hξ, i.e. a GEV distribution.

This result describes the asymptotic distribution of the extremes by stating

that when maxima have a limit, it will be in the GEV family. Interestingly,

it does not ensure the existence of the limit itself so attention needs to be

paid to models where the limit does not exist. (e.g. the Poisson distribution

case (Coles et al., 2001)). For the purpose of this thesis, only the case when

ξ ≥ 0 will be considered as the last case is ruled out because financial losses

(considered as positive values) cannot be bounded from above.

The Fréchet case For ξ > 0 the extremes’ distributions can be approximated

by the Fréchet case limit distribution. It is possible to simply describe them in

terms of slowly varying or regularly varying functions. A formal definition of

slowly varying function is provided for the purpose of the next theorem.
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Definition 3.3 (Slowly varying function as defined by McNeil et al. (2005), p.268).

A positive, Lebesgue-measurable function L on (0,∞) is slowly varying at ∞
if

lim
x→∞

L (tx)

L (x)
= 1, t > 0. (3.8)

Theorem 3.2 (Fréchet MDA, Gnedenko as stated in McNeil et al. (2005), p.268).

For ξ > 0,

F ∈MDA(Hξ)⇔ F̄x = x−1/ξL (x) (3.9)

for some function L slowly varying at ∞.

This theorem describes the behaviour of distribution F and the form of the

tail F̄ in the Fréchet case. The expression on the right characterizes regularly

varying functions, that means they are power functions multiplied by slowly

varying functions. The above stated power function has a negative index of

variation −1/ξ which says that the tail decays with rate

α = 1/ξ

and this rate is the so called tail index which is the main parameter of interest

in this thesis. Among the most mentioned distributions belonging to this class

are the Pareto, Fréchet, F or Student t distribution.

3.2.3 Generalized Pareto Distribution

The block method (annual maxima) and fitting GEV can prove inefficient if

there is larger sample of data at hand. The other widely used method to identify

extremes is peaks over threshold (or alternatively, r -largest order statistics)

and the exceedances over a threshold are modelled by the generalized Pareto

distribution.

Definition 3.4 (GPD as defined by McNeil et al. (2005), p.275). The cumulative

distribution function of the GPD is given by

Gξ,β (x) =

1− (1 + ξx/β)−1/ξ, ξ 6= 0,

1− exp (−x/β) , ξ = 0,

where β > 0, and x > 0 when ξ > 0 and 0 6 x 6 −β/ξ when ξ < 0.

The parameters ξ and β are referred to as, the shape and scale parameter,

respectively.
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Here again 3 different families of GPD can be characterized by the shape

parameter ξ. It indicates the heaviness of the tail and from larger ξ we can

infer a heavier tail.

Figure 3.4: GPD probability distribution functions

The dashed line suits an exponential distribution (ξ = 0), the solid line represents a
Pareto type I distribution (ξ = 0.6) and the dotted line corresponds to a Pareto type
II distribution (ξ = −0.5). For all the cases the scale parameter β = 1 was used.
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The case when ξ > 0 corresponds to Pareto type I distributions, for which

the tails decrease as a polynomial. For ξ = 0 an exponential type of distribu-

tion is obtained, i.e. distributions with exponential tail decay (such as Normal,

exponential) and the case when ξ < 0 fits the short-tailed Pareto type II dis-

tribution. In addition, for fixed x they are continuous in ξ. GPD is a model for

threshold excesses distribution and we get the estimates by fitting the distribu-

tion to the excess extremes by maximum likelihood. Considering the domain of

attraction it can be written that Gξ,β ∈MDA(Hξ) (for ξ > 0 follows from The-

orem 3.2), i.e. the GPD is in maximum domain of attraction of GEV. For the

core theorem of fitting the excesses over a threshold, the following definitions

are needed.

Definition 3.5 (Excess distribution over threshold u as defined in McNeil et al.

(2005), p.276). Let X be a random variable with distribution function F. The

excess distribution over the threshold u has distribution function

Fu (x) = P (X − u 6 x|X > u) =
F (x+ u)− F (u)

1− F (u)
(3.10)

for 0 6 x < xF − u, where xF 6∞ is the right endpoint of F .
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Definition 3.6 (Mean excess function as defined in McNeil et al. (2005), p.276).

The mean excess function of a random variable X with finite mean is given by

e(u) = E(X − u|X > u). (3.11)

The distribution function Fu expresses how the excess values are distributed

above the threshold u conditioning on the fact that random variable X is above

u. The excess distribution function (df) is well known in survival analysis,

where it describes the probability of failing in the period (u, u + x] given that

no fail occurred until u. The mean excess function expresses the mean of Fu

which is defined provided ξ < 1 and is given by E(x) = β/(1−ξ). An important

characteristic of GPD is the linearity of the mean excess function in the threshold

u. This property is quite useful for analysing whether the GPD suits the data

and will be used in the initial data analysis. The following principal theorem

(often called the second theorem of EVT) gives a mathematical result of the

limiting excess distribution being the GPD.

Theorem 3.3 (Pickands-Balkema-de Haan as stated in McNeil et al. (2005), p.277).

We can find a (positive-measurable function) βu such that

lim
u→xF

sup
06x<xF−u

|Fu (x)−Gξ,β(u) (x) | = 0, (3.12)

if and only if F ∈MDA(Hξ), ξ ∈ R.

This theorem summarizes the domain of attraction for all ξ (unlike the

BMM case where the Fréchet case was represented by Theorem 3.2 (the Fréchet

MDA, Gnedenko)). It states that distributions which are in maximum domain

of attraction of GEV distribution form a large class of distributions whose ex-

cess distributions converges to the GPD. According to McNeil et al. (2005) all

continuous distributions which are regularly used in statistics belong to the

set of dfs in MDA(Hξ) for some ξ. Therefore Pickands-Balkema-de Haan is an

important result which says that the GPD is a recognized and adequately estab-

lished distribution function for modelling extremes exceeding high thresholds.

Moreover, the shape parameter in GPD is the same shape parameter ξ as in the

GEV distribution. That means that returns whose block maxima can be fitted

by a GEV with certain shape parameter ξ0 can indeed, for a threshold u high

enough, be fitted by a GPD with ξ0 as well.
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Modelling excesses by GPD For reasons stated above, the distribution of

extremes will be assumed to belong to MDA(Hξ). Even though the excesses over

a high threshold u might not be distributed exactly as GPD, it will be assumed

that for some high enough threshold Fu(x) = Gξ,β(x) for some ξ ∈ R and β > 0.

The distribution of excesses can be written as F̄ (x) = F̄ (u) F̄u (x− u). Then,

the GPD is fitted to the excesses by maximum likelihood (ML) assuming the

data to be independent and identically distributed, thus getting an empirical

tail estimator for the distribution of excess:

ˆ̄F (x) =
Nu

N

(
1 + ξ̂

x− u
β̂

)−1/ξ̂
(3.13)

where Nu represents the number of excesses over a threshold u in the sample

of size N .

3.3 Tail index and semi-parametric methods

Until now the main two parametric approaches to modelling extreme values

were introduced; fitting the GEV distribution to block maxima and fitting the

GPD to excesses over a certain threshold. In this thesis the focus is moved from

these fully parametric methods towards semi-parametric methods. Completely

non-parametric models obviously have some weaknesses in the sense that they

cannot deal with out-of-sample quantiles therefore making data extrapolation

impossible. Although this might represent a serious drawback for forecasting,

such methods still keep their usefulness in analysing the observed data. By

making some stronger a priori assumptions about the data generating process

semi-parametric single-index models represent a desired compromise. Within

the semi-parametric approach, the extreme observations are chosen as either

excesses over a fixed threshold or directly as k out of the n available observa-

tions. The parametric fitting as described above is simplified to the estimation

of only one key parameter: shape parameter ξ or the tail index expressed as

α = 1/ξ.

Therefore no precise parametric model is fitted to the data and no scale or

location parameters need to be estimated. Only by assuming that the excess

distribution function is in the maximum domain of attraction of GEV and using

the appropriate EVT methodology, the shape parameter is to be estimated.
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3.3.1 Hill’s method

In the Hill’s method, the underlying distribution of losses is assumed to be in the

maximum domain of attraction of some distribution belonging to the Fréchet

case of GEV. That means that fat-tails are suspected beforehand, expecting

ξ > 0. From the Theorem 3.2 (the Fréchet MDA, Gnedenko), it follows that

the distribution can be expressed in the means of some slowly varying function

L and parameter α:

F̄ (x) = L(x)x−α (3.14)

Here, the parameter of interest is directly the tail index α which is the recipro-

cal of the shape parameter ξ. The estimator is based on independent identically

distributed data arranged in order of decreasing size: X1,n > ... > Xn,n. As orig-

inally derived by Hill (1975), the Hill’s tail index estimator is usually obtained

by maximum likelihood estimation and expressed as

α̂
(H)
k,n =

(
1

k

k∑
j=1

lnXj,n − lnXk+1,n

)−1
, 1 6 k 6 n. (3.15)

Alternatively, one can compute the estimate of the shape parameter as

ξ̂
(H)
k,n =

1

k

k∑
j=1

lnXj,n − lnXk+1,n, 1 6 k 6 n. (3.16)

Weak consistency is ensured for iid data and even for weakly dependent data

(Hsing, 1991) so that if k →∞ and k/n→ 0 for n→∞, then α̂(H) P−→ α. For

Xn which is iid the estimator is also strongly consistent and asymptotically

normal (McNeil et al., 2005).

3.3.2 Graphical threshold selection

Looking at some graphical representations might help to decide on a reasonable

threshold value (Xk+1,n). First indicator is the mean excess function which

should be considered in the initial data analyses. The fact that the mean excess

function is linear while considering different thresholds u is an evidence that

the GDP model for the particular levels is valid. Moreover, if the linear line

has an upward trend, it indicates the GPD model with shape parameter ξ > 0.

If the plot shows horizontal linear line, then the exponential distribution might

be the right fit. Therefore it is suggested to look for linearity in the sample
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mean excess plot:

(Xi,n, en(Xi,n)) : 1 6 i 6 n,

whereXi,n is the ith upper order statistic and en(Xi,n) is the empirical estimator

of the mean excess function from Definition 3.6 where Xi,n represents a certain

threshold u:

en (u) =

∑n
j=1 (Xj − u) I{Xj>u}∑n

j=1 I{Xj>u}
. (3.17)

Another indicator of a suitable threshold is the co called Hill plot, a graph of

varying Hill shape estimates depending on the cut-off level, as already described

by Hill (1975). The graph is given by(
k, ξ̂

(H)
k,n

)
: k = 1, ..., n,

and here the stability of the estimate is desired thus a stable region in the

graph will be looked for. Usually it is suggested to look for the stable part

in the upper 1 − 5% of the order statistics. Most helpful is to use the Hill

plot when the data comes directly from Pareto or close to Pareto distributions.

Then the graph provides a clear evidence on the value of the estimator (Drees

et al., 2000). However, in other cases the plot might be quite volatile and not

show any steady region therefore it is not clear which part of the graph gives

the best accuracy. A great improvement to this method was made by Resnick

and Stărică (1997) who propose an alternative method: the altHill plot where

the x axis is rescaled. The graph is given by(
θ,Hdnθe,n

)
, 0 6 θ < 1,

where H = ξ̂k,n and
⌈
nθ
⌉

stands for an integer equal to nθ or the smallest

integer greater than nθ. The purpose of the changed scaling is to give more

space in the graph to the smaller values of k which is the concern here because

only a small number of k upper order statistics are believed to be the far tail

observations. Drees et al. (2000) examined the superiority between the classical

Hill and alternative Hill method. By proposing a measure for indicating the

occupation time which a plot spends in the neighbourhood of the true estimate,

they compared the two approaches. Their results show that the classical Hill

plot is better when dealing with Pareto-like distribution. Otherwise there is a

clear superiority of the altHill plot. However, in practice it is advised to use
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both plots (classical and altHill) and draw inference from their comparison.

Another refinement technique was introduced by Resnick and Stărică (1997).

They propose smoothing the shape parameter estimator (ξ̂ = 1/α̂) by a simple

averaging:

av
(
ξ̂k,n

)
:=

1

(u− 1) k

uk∑
p=k+1

ξ̂p,n, (3.18)

where u > 1. By this adjustment, volatility of the plot is decreased and a

stable region might appear. This estimate provides a good basis for other

computations which would for example try to lower the bias by bootstrap

techniques. However, if there is a substantial bias in the estimate, the averaging

does not help to reveal more information. The choice of u has to be made in a

way that the asymptotic variance is decreased (choose u high enough) but this

is restricted by the sample size n therefore Resnick and Stărică (1997) suggest

to take u between n0.1 and n0.2.

McNeil and Frey (2000) point out that the threshold selection is not such

an issue when fitting GDP parametrically because the method is robust for

k > 50. However, when applying the Hill’s method it is necessary to choose

an appropriate low number k of upper order statistics to curb the bias. To

draw inference from the Hill plots, the following procedure is suggested for this

thesis:

1. Compute the Hill shape estimates ξ̂ and make a classical Hill plot

2. Zoom in the classical plots so that the plot can be seen for the upper 10%

of the order statistics

3. Take the Hill estimates of shape parameter (ξ̂ = 1/α̂) and apply the

smoothing procedure to get the av
(
ξ̂k,n

)
4. Take the Hill shape estimates ξ̂ and plot them in the alternative Hill plot

and take the smoothed estimates av
(
ξ̂k,n

)
and plot them in the same

alternative Hill plot for comparison

3.3.3 Huisman’s method

In the empirical research the Hill’s method has been commonly used. This

is mainly earned by the estimator’s good asymptotic properties and simple

implementation. However, it is biased in samples that are rather small in

size. Even though no extremely short samples will be used in this thesis, a
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method that corrects for this problem is relevant here. The reason for it is

that it enables splitting the long enough sample and apply the method for the

separated subsamples to check whether the tail behaviour changes over time.

An approach which corrects for the estimator’s bias that arises due to small

sample at hand was proposed by Huisman et al. (2001). The method yields

estimates whose small bias is close to that of estimates for especially long time

horizons. Moreover, it overcomes the shortcoming of graphical methods: their

subjectivity. Here the estimate is not based on a certain number of order

statistics but it utilizes information from many estimates that are based on

different number of values above a threshold. Therefore the final estimate is a

weighted average of a whole class of classical Hill estimators. In this thesis the

methodology of Huisman will be followed and therefore the computations will

be performed for the inverse of the tail index, i.e. the shape parameter ξ.

In this method the Hill shape estimates are computed for various thresholds

k up to a reasonable last threshold taken into account, denoted κ. The basic

idea is that for a sufficiently small k, it is possible to approximate the bias of

the shape parameter estimate by a linear function depending on k. Then, the

vector of {(ξ(k)) : k = 1, ..., κ} can be used to estimate the following regression:

ξ(k) = β0 + β1k + ε(k), k = 1, ..., κ. (3.19)

For k getting close to 0, an unbiased estimate would be reached with value

equal to the intercept β0.

There are 2 major obstacles to estimating the regression by ordinary least

squares (OLS). The first one is that the error terms are heteroscedastic because

the variance of Hill shape estimator is changing in k as derived by Hall (1990):

V ar(ξ(k)) ≈ 1

kα2
. However, this problem can be treated by weighted least

squares (WLS). The second issue is that variables ξ(k) are correlated because

they are computed from observations that overlap. As a result, the usual

standard errors are not applicable. Not to neglect these two matters, the

following procedure proposed by Huisman et al. (2001) will be used. It corrects

for heteroscedasticity by WLS and also an appropriate computation of standard

errors is proposed.

Weighted least squares The Equation 3.19 can be expressed by matrix no-

tation as follows:

ξ∗ = Zβ + ε, (3.20)
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where the vector ξ∗ denotes ξ(k), k = 1, ..., κ, β = (β0, β1) is a vector of

regression coefficients and Z is a (κ× 2) matrix:

Z =


1 1

1 2
...

...

1 κ

 . (3.21)

To deal with the heteroscedasticity in error term, Huisman et al. (2001) suggest

the following WLS matrix:

W =


1 0 0 0

0
√

2 0 0

0 0
. . . 0

0 0 0
√
κ

 .

This weighting matrix reflects weights which are proportional to the recipro-

cal of the variance of dependent variable (the Hill shape estimate). Therefore

the heteroscedasticity is settled by giving less weight to the observations with

higher variance, that means Hill shape estimates computed based on fewer or-

der statistics. Here it should also be noted that the optimal weighting matrix is

unknown and should be estimated by feasible generalized least squares (FGLS).

The greater efficiency of FGLS over OLS is ensured when the variance matrix

is known (Greene, 2003, p.217). In case that it is unknown, the comparison is

not that straightforward. Simulation results of Huisman et al. (2001) will be

taken into account, where it is stated that in finite samples GLS is less accu-

rate. Therefore it will not be performed in this thesis either and the matrix

presented above will be used for WLS. Also the problem arising from corre-

lated dependent variables has to be considered because the real matrix would

not be diagonal. However, this requires the knowledge of the whole variance-

covariance matrix and therefore this thesis will apply the simplified procedure

with diagonal matrix keeping in mind that the estimates are not the most

efficient.

Using the Huisman’s methodology with weights given by the weighting ma-

trix W gives the following estimates for the vector of coefficients from Equa-

tion 3.20

β̂WLS = (Z ′W ′WZ)
−1
Z ′W ′Wγ∗. (3.22)
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The Hill shape estimate is then the first element of the estimated vector ˆβWLS

and the desired tail index is its reciprocal value.

Standard errors for Huisman’s estimator As stated before, the dependent

variables ξ(k) of regression in Equation 3.19 are correlated. The reason for it

is that any 2 estimates ξ(i) and ξ(j), where i < j, are based on i common

observations. Therefore the following method was proposed as usual standard

errors are not applicable (see Appendix in Huisman et al., 2001, p. 215). The

general idea behind the correction is that the Hill estimator is in fact a linear

combination of order statistics (Y1, ..., Yn) where Yi = ln(Xi). Then for some

(κ) × (κ + 1) transformation matrix A, the vector ξ∗ can be expressed as

ξ∗ = Ay where ξ∗ = (ξ(k) : k = 1, ..., κ). For the Hill’s shape estimator

proposed by Huisman in Equation 3.22, the covariance matrix is expressed as

cov(βWLS) = (Z ′W ′WZ)
−1
Z ′W ′WΩW ′WZ(Z ′W ′WZ)

−1
, (3.23)

where Ω = AΣA′ is a covariance matrix for the shape estimates ξ(k). It can

be computed from the transformation matrix A and the matrix Σ which is the

covariance of order statistics Yi. These can be obtained as follows.

The transformation matrix A is derived from the conventional Hill shape

estimator:

A =



0 . . . 0 0 0 0 −1 1

0 . . . 0 0 0 −1 1/2 1/2

0 . . . 0 0 −1 1/3 1/3 1/3
...

...
...

...
...

...
...

...

0 1/κ . . . 1/κ 1/κ 1/κ 1/κ 1/κ


(3.24)

The covariance matrix Σ is computed based on asymptotic normality of order

statistics and covariances between two order statistics are equal to

cov (i, j) =
p(i)(1− p(j))

nfz(µ(i))fz(µ(j))
(3.25)

for i ≤ j. Here p(i) can be approximated by i/n. Furthermore, for this cal-

culation step it is assumed that the original data X(i) comes from a Pareto

distribution for i = 1, ..., κ. Then the density is given by f(x) = αbαx−α−1 for

x ≥ b and mean is given by µ(i) = ln((1−p(i))−1/α where α is approximated by

the inverse of the estimated shape parameter ξ. As the matrix Σ is fully defined
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now, covariance matrix Ω can be obtained and the covariance in Equation 3.23

computed to get the appropriate standard errors.

3.4 Application of the tail index

To summarize the main assumptions for an application of the tail index, the

basic framework will be restated. It is assumed that the the extreme observa-

tions are independent, identically distributed and their distribution is in the

maximum domain of attraction of some GEV distribution. Then the tail can

be expressed in the following form where ξ (or, alternatively, α = 1/ξ) is the

parameter of interest:

F̄ (x) = x−1/ξL(x), x > 0, (3.26)

where L(x) is a slowly varying function and when multiplied by the power

function x−1/ξ, the tail is expressed by a regularly varying function.1 Also by

assuming only the Fréchet case, 1/ξ = α > 0, the underlying distribution is

suspected to be heavy-tailed. From the expression in 3.26 the semi-parametric

characteristic of the estimation can be clarified as the constituent with ξ rep-

resents the parametric part and the function L the non-parametric one. To

estimate the parameter, k upper order statistics from the sample of size n are

employed. Here, 2 assumptions are made. Firstly, one should use adequate

amount of statistics, that means that k(n) → ∞ as n → ∞. Secondly, the

focus should be only on the upper order statistics and therefore k(n)/n→ 0 as

n→∞.
Even though we should not be tempted by the ’Single number tells it all’

caveat, the interpretation of the tail index is very straightforward. As it rep-

resents the exponent of regular variation, higher tail index α indicates faster

tail decay, i.e. lighter tail character. On the other hand, the larger the shape

parameter ξ the slower the decline towards the tails which gives evidence on

large number of extreme observations. Another interesting result which can be

inferred directly from the tail index α is the number of finite moments. If the

extreme observations follow GPD distribution, then the tail index tells us how

many finite moments exist as E(Xk) =∞ for k > α. Therefore, from index α

1Terminology note: ξ is called the shape parameter and α = 1/ξ is the tail index which
is sometimes also called the exponent of regular variation. Throughout this thesis terms of
both parameters are used depending on the situation.
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smaller than 1 no inference can be made about expected losses. For hypotheses

testing, asymptotic normality of the Hill’s estimator can be obtained, although

only by imposing second order conditions for regular variation. However, if the

goal is to test whether the underlying distribution is thin-tailed (H0 : α = 0),

it is not possible because α > 0 is assumed in the Hill’s estimation beforehand.

Thus the Hill’s estimator is designed for the fat-tailed case which cannot be

tested afterwards.

After the tail index estimator has been computed it can immediately be

used to obtain an estimate for the tail:

̂̄F (x) =
k

n

(
x

Xk,n

)−α̂k,n
(3.27)

and the corresponding p-quantile xp:

x̂p =
(n
k

(1− p)
)−1/α̂k,n

Xk,n. (3.28)

Also an estimator of excess distribution function Fu(x − u), x > 0, can be

obtained through Fu(x − u) = 1 − F̄ (x)/F̄ (u). Now, as the distribution func-

tion of extreme returns is specified, VaR analysis can be implemented with

V aRq = F−1q . Unlike a historical simulation method for computing VaR, the

EVT provides a framework suitable also for out-of sample-forecasts and there-

fore the semi-parametric VaR can be expressed as

V aRp =
(n
k

(1− p)
)−ξ̂k,n

Xk,n. (3.29)

Another useful application of the shape parameter is that it effectively deter-

mines the limit ratio of the Expected Shortfall and Value at Risk. It means that

for very high quantiles, ξ can be used to compute the proportional relationship

of ES and VaR as:

lim
p→1

ESp
V aRp

=

(1− ξ)−1, ξ 6= 0,

1, ξ = 0.
(3.30)

Finally, an important stylized fact of financial returns has to be discussed as

it contradicts the basic assumption of the EVT theoretical framework. It is well

known that financial returns are dependent considering the second moments.

Even though this dependence could be removed by a model where risk forecast
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is conditioned upon present market information, the unconditional model is

still suitable for forecasts in longer horizons (Danielsson and De Vries, 2000).

In the EVT conception, a 2-step procedure called the Conditional EVT could

be employed. By the so called data prewhitening in the first step, the depen-

dencies could be removed by one of the GARCH family models. This would

yield standardized residuals that are approximately independent, identically

distributed and EVT could be applied on them in the second step.

However, this procedure could be subject to a serious model misspecification

in the first step. McNeil and Frey (2000) claim that the results are not sensitive

to a minor misspecification of the GARCH model. In recent literature the 2-step

approach occasionally appears, but the choice of the model is often not reasoned

enough and simply followed by the straightforward GARCH(1,1). By this, the

model is likely to be severely misspecified as the return series seldom follow a

simple symmetric model and need to be examined by a more thorough analysis.

Another problem arises for model specification as the autocorrelation function

(ACF) cannot be used to determine the number of lags in the model. This

is stressed by Mikosch (2003) who contends that the lack of higher moments

in some financial series causes the confidence bands for autocorrelation to be

underestimated.

On the other hand Danielsson and De Vries (2000) argue that if a longer

time horizon is considered, the unconditional approach might be the preferable

one. Moreover, a 2-step conditional EVT method could be opposed from an-

other point of view. As it is not directly the returns that are to be modelled

in the second step of the analysis, a substantial amount of information could

be lost. In case the interest is to model both the left and right tail, using stan-

dardized residuals instead of returns would bring a completely different sample

size for these separate calculations than is the corresponding number of losses

and profits. In this thesis, therefore, the unconditional approach will be used

with the knowledge that dependence brings consequences on the estimator’s

properties. During the estimation the time series is believed to be stationary

with distribution F in the maximum domain of attraction of some extreme

value distribution. Then the EVT can still be applied by making a simplifying

assumption of independent extremes. This procedure will still bring consistent

estimates, even though the standard errors might be too small.



Chapter 4

Empirical Research

The overall aim of the empirical part of this thesis is to examine tail charac-

teristics of particular stock index and main stocks from the index. It includes

the initial data analysis and examining the properties of data at hand. Then,

the tail index will be computed for all the series chosen for this study.

4.1 Data Analysis

For the empirical analysis the following data was used as obtained from Thom-

son Reuters database1 in the form of daily close prices. If the price series are

denoted as (P0, P1, ..., Pn) then the log-returns can be computed by logarithmic

transformation as Xt = log(Pt/Pt−1) and the resulting return series (X1, ..., Xn)

is then used in the consequent analysis. Log-returns were used to obtain series

for the following stocks in the specified length.

Table 4.1: Data analysed

full name symbol ticker length used

Standard & Poors 500 Index S&P 500 SPX 21.3.1980 - 29.2.2016
Exxon Mobile Corporation Exxon XOM 20.3.1980 - 29.2.2016
JPMorgan Chase & Co. JPMorgan JPM 19.3.1980 - 29.2.2016
International Business Machines Corp. IBM IBM 19.3.1980 - 29.2.2016
Johnson & Johnson Johnson JNJ 18.3.1980 - 29.2.2016
General Electric Company GE GE 20.3.1980 - 29.2.2016
The Procter & Gamble Company P&G PG 20.3.1980 - 29.2.2016
The Walt Disney Company Disney DIS 19.3.1980 - 29.2.2016

1For the company’s website, see www.thomsonreuters.com.
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Unlike other studies which focus on a specific geographical layout of the

stocks in their analysis, here the focus is made on different industries. Firstly,

the base of the analysis comprises of examining the Standard & Poors 500

Index, which reliably represents the U.S. equities market. It is the leading

standard in reflecting the U.S. market conditions and is designed to show the

risk and return nature of the large market capitalization companies. Market

capitalization is the feature that simply determines companies’ weights in the

index. Also the index is constituted in a way that all main industries have their

representation. This is the reason why both the overall index and separate

stocks exemplifying different industries will be analysed. In the following table

7 important stocks are linked to the corresponding industries and the industry

weight in the index is noted.

Table 4.2: Industries and selected stocks

Industry Sector weight in S&P 500 Stock

Information technology 20.4% IBM
Financials 15.6% JPMorgan
Health care 14.7% Johnson
Consumer discretionary 12.9% Disney
Consumer staples 10.7% P&G
Industrials 10.1% GE
Energy 6.6% Exxon

The S&P 500 comprises of 504 leading stocks with large market capitaliza-

tion and the stocks used in this thesis are all in the top 31 places according to

their market capitalization.2 The analysed stocks are chosen from seven sig-

nificant industries and they are among the leading companies in the particular

industry. In each industry the constituent with the largest weight was taken

provided it had the desired length, otherwise the one with next largest weight

was taken.

When choosing the length of the sample, several considerations have to

be made. Firstly the goal is to include large amount of observations due to

statistical properties of the estimators. Also it is desirable for the time span to

include important market crashes because the properties of the tails are to be

examined. Therefore, the time series begin in March 1980 and they constitute

samples of approximately 36 years. Finally, this date was chosen so that all

2As of March 16, 2016.
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the stocks were also constituents of the S&P 500 Index for the whole period.3

As well as using the full sample, the analysis will be conducted also on shorter

subsamples. The original sample is divided into 3 shorter time spans to examine

whether the tail characteristics change over time. By splitting the sample, 12-

year long periods of 3022 observations are obtained. They are believed to be

adequate for analysis of extremes as each of them contains big market losses.

The first period’s results will be affected by the 1987 market crash. The next

series will be influenced by the new millennium’s volatility and the 2002 stock

market downturn. The last one then shows the consequences of 2007-2008

financial crisis. The next table presents the periods in question.

Table 4.3: Sample and its division

time span observations

full sample March 1980 - February 2016 9066
period 1 March 1980 - February 1992 3022
period 2 March 1992 - February 2004 3022
period 3 March 2004 - February 2016 3022

Table 4.4 shows the main descriptive statistics of the full data set. The

sample mean of all the financial time series is positive and close to zero. The

skewness is negative for all the series, which suggests a longer left tail. The

last statistic, the excess kurtosis, expresses the kurtosis as a value above the

kurtosis of the Normal distribution, which is equal to 3. Here the values are

positive, therefore all the data is suspected to be far from normally distributed.

Table 4.4: Descriptive statistics

Stock Max Min Mean Sd Skewness Exc. Kurtosis

S&P 500 0.1096 -0.2290 0.0003 0.0113 -1.1527 26.4378

Exxon 0.1648 -0.2669 0.0003 0.0150 -0.4670 18.9910

JPMorgan 0.2239 -0.3246 0.0003 0.0233 -0.1168 14.5341

IBM 0.1237 -0.2609 0.0002 0.0170 -0.3841 12.6859

Johnson 0.1154 -0.2028 0.0005 0.0147 -0.3433 9.0296

GE 0.1798 -0.1922 0.0004 0.0173 -0.0933 9.0217

P&G 0.2005 -0.3601 0.0004 0.0148 -2.5303 70.1627

Disney 0.1748 -0.3438 0.0005 0.0195 -0.8166 19.4202

3Due to a later date of some stocks’ incorporation to the index, sample could not be taken
to cover also the period of 1970s, which would certainly be well-founded for the analysis of
extreme events because of the oil shocks and substantial market losses.
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When looking at maxima and minima of the samples, it can be directly seen

that the minima are in absolute value much larger than the maxima, in case of

S&P 500, IBM or Disney they are almost twice the amount. This could already

be a sign of some distributional imbalance in the sample. The largest losses

in these samples occurred on October 19, 1987 and were exceptionally severe

compared to other losses. The only exception is P&G at which the largest loss

was experienced on March 7, 2000, when P&G went through an organizational

crisis itself. As far as the maxima are concerned (the largest profits), for all the

stocks they were attained during either 1987 or 2008− 2009 crises. This surely

indicates highly volatile periods as extreme losses appeared in these periods as

well.

The highest sample variance from these stocks is detected in JPMorgan

(V ar = 0.0005). Annualized variances are computed using the value of 252 for

the number of trading days in a year: V arannual = V ardaily × 252. The results

are shown in Table 4.5 and it is clear that all the annualized variances of

particular stocks considerably exceed the annualized variance of the full index.

JPMorgan’s sample annual variance is 13.64% while the S&P 500’s is just 3.2%.

Table 4.5: Annualized sample variances

stock sd variance annualized variance

S&P 500 0.0113 0.0001 3.20%
Exxon 0.0150 0.0002 5.69%
JPMorgan 0.0233 0.0005 13.64%
IBM 0.0170 0.0003 7.30%
Johnson 0.0147 0.0002 5.46%
GE 0.0173 0.0003 7.52%
P&G 0.0148 0.0002 5.55%
Disney 0.0195 0.0004 9.55%

Descriptive statistics of the individual subsamples can be found in Appendix

B. Period 3 seems to be the most volatile period with annualized variance of

JPMorgan being high at 16.38%. Even though the largest loss did not occur

in this period, the largest profit of 22% was gained. On the other hand, for

IBM and Disney the annualized volatility is higher in the 2nd period (11.83

and 11.61 per cent, respectively). Interestingly, there are shifts in skewness

for different periods. Unlike in the full sample or the 1st period, some of the

stocks turn to be positively skewed in periods 2 and 3 (e.g. JPMorgan and



4. Empirical Research 35

Johnson). The excess kurtosis is overall the highest in period 1 when it is

probably influenced by the severe losses that all stocks suffered during 1987.

Only for P&G, the series is also substantially leptokurtic in period 2 when its

largest losses from the year 2000 are involved.

The plotted return series, which can be seen in Appendix A, exhibit clusters

of extreme values. Some of the biggest clusters of extremes can be seen in 1987,

at the end of 1990s and the beginning of the new millennium. Then another

period of high volatility comes in 2002 and the most noticeable cluster appears

at the end of 2008. Especially large clusters can be noticed with P&G stock in

2000 or JPMorgan stock in 2008. Generally, larger clusters appear in individual

stock return series rather than in the whole index S&P 500. Volatility clustering

is a stylized fact (Andersen et al., 2009), which comes as no surprise in financial

time series (as well as the fat-tailedness indicated by the sample kurtosis).

Figure 4.1: Log-returns of JPMorgan stock
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The next step is to examine the behaviour of the log-returns by formal

tests. Firstly, the stationarity of the process is checked. The original stock

price series was not stationary as the mean of such series clearly changes over

time. However, by the logarithmic transformation of prices to log-returns, the

stationarity is believed to be a valid assumption. This is also confirmed by

the KPSS test, where the null hypothesis of stationarity cannot be rejected

at significance level of 0.01. In the shorter subsamples (time span of 12 years)

similar results were obtained, therefore stationarity cannot be rejected for these

intervals either. Complementary tables showing tests results can be found in

Appendix B.

Next the normality of the series is tested by Jarque-Bera test which com-

pares the 3rd and 4th moment with the Normal distribution. Here the null

hypothesis of coincident moments is strongly rejected with p-value smaller than

0.001. However, the higher moments might not be finite thus additional meth-
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ods are considered to reject normality. Histograms are plotted in Figure 4.2

with the density of the Normal distribution fitted to the data. The normal

density is only evaluated at the particular histogram bins and therefore does

not represent the classical smooth probability distribution function (pdf) curve.

It can be seen that the histograms are symmetric in the neighbourhood of zero,

showing a high peak in the center and heavy tails on both sides. It can be

clearly seen that the normal distribution is not a good fit for the data as the

center of the density contains much more observations. On the other hand, data

is lacking in between the center and the tails when compared to the normal

Figure 4.2: Histogram of log-returns with fitted Normal distribution
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case. Finally, the tails of the sample distribution are longer and far extremes

outside of the scope of normality can be spotted.

Also, the Q-Q plots are used (selected Q-Q plots are reported in Figure 4.3)

and they show clearly that in the tails the quantiles of the empirical distribution

get far away from the quantiles of the Normal distribution. Finally, properties

Figure 4.3: Q-Q plots against the Normal distribution
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of the tails are examined in terms of residual heteroscedasticity. Because the

extremes appear in clusters, some dependence in the squared residuals is sus-

pected. Engle’s Autoregressive Conditional Heteroscedasticity (ARCH) test is

employed to see whether there is any dependence (ARCH effects) in the resid-

uals. ARCH test is conducted at a 1% significance level using lags equal to 1,

3 and 7. The null hypothesis of no conditional heteroscedasticity is rejected

for all the lag structures, which means that there is some level of dependence.

However, as discussed in the theoretical part, this dependence will not be mod-

elled. Now, the stationary series will be used for the next analysis with the

simplifying assumption of independence. The Extreme Value Theory will be

applied and the properties of the Hill estimator will be inferred with the notice

that the series are weakly dependent.
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4.2 Application of EVT

The initial part of the extreme value analysis includes looking for a tail thresh-

old by using several graphical methods. At first the mean excess plots are

employed. As described in the theoretical part, the sample mean excess func-

tion is plotted here for different threshold values. Interesting examples of these

plots are presented in Figure 4.4, plots for the whole data samples are given

in Appendix A. The first characteristic of the plots to be noticed is their up-

Figure 4.4: Sample mean excess plot for selected stocks
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ward slope. This indicates a positive value of the estimated shape parameter

and thus the fat-tailedness of the underlying distribution. The theory gives

guidelines on the inference of the appropriate threshold from the point where

approximate linearity of the graph begins. From that point, the observations

are said to be suitable to be fitted with the GPD model. Here it should be noted

that the plotted values for a few highest thresholds should not be considered
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in this suitability analysis as they express the mean excess of only a few most

extreme values.

Generally, it can be seen that the mean excesses in the right tail (profits)

are smaller in value than is the case of the left tail (losses). Only JPMorgan

right tail’s excesses are comparable with the left tail provided that the far

extremes are neglected. If the starting point of the linearity is searched for, a

seemingly clear situation comes in the Johnson’s losses. 2.5% is the value of the

loss from which the GPD distribution seems to be a reasonable fit. This cut-off

point would separate 345 extremes which represent about 8% of the sample

of losses. This, however, is a large proportion for the extreme value model as

3− 5% of observations usually fit the distribution. After a closer examination,

a slight change of the slope around 4% might indicate the threshold there.

This is therefore not objective here to decide by a simple look at the graph.

Completely different situation arises in Johnson’s profits. After an initial rather

stable phase, there is no linearity to be spotted in the graph. Two considerable

slumps dominate the graph and it is quite possible that this sample is not

suitable to be fitted by GPD distribution. In case of JPMorgan approximate

linearity seems to fit the graph but without any clear starting point. In P&G’s

profits, linear character is visible but it sharply changes the slope for the most

extreme 1% of the sample. In the case of all other stocks, acceptance of the

GPD model can be believed. However, in most cases no obvious decision can

be made on the threshold value. This gives the conclusion that sample mean

excess plot cannot be used as such to decide on the threshold value which would

be directly used to compute the Hill’s estimate. The next graphical method

Figure 4.5: S&P 500 Hill plot
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to be used in the extreme value analysis is examination of the Hill plots. In

the Figure 4.5 the classical Hill plot of S&P 500 can be seen. In this plot,

stable region of the Hill shape estimates is looked for. However, the plot is

known to be the most efficient only if the data comes from Pareto or close to

Pareto distribution. Here the graph does not show any extensive stable area of

estimates and therefore the data is not distributed exactly as Pareto. The same

holds also for the other stocks and so the graph will be zoomed in the upper

10% of the particular samples to look for stability there. The classical Hill plots

Figure 4.6: Hill plot for the upper part of the sample
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in Figure 4.6 are restricted only for the upper part of the whole sample because

the stable area and so the threshold is assumed to lie there. In the example

of S&P 500 this zoomed plot gives much better picture. At some places the

estimates seem to gain stability. For the losses, an estimate of about 0.34 is

suggested by the graph, using 4% of the sample statistics. For the right tail a

stable area could indicate an estimate around 0.32 but still it is not that clear

because the volatility of the plot is not adequately tamed.

Next, the alternative Hill plot will be presented. Unlike the zoomed graphs

above, it does not neglect certain part of the sample. It does, however, give

a large portion of the display space to the hill estimates that are based on

quite a small number of upper order statistics. Moreover, these estimates are
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Figure 4.7: Alternative and smoothed alternative Hill plots

The graph shows alternative Hill plot with θ on the x axis which uses N θ number of
order statistics for computing the estimate (the solid line). The dashed line represents
the smoothed alternative Hill plot (see Equation 3.18.)
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smoothed as described in the theoretical part (Equation 3.18). The plots can

be seen in Figure 4.7 and Figure 4.8.

The alternative Hill plots appear rather volatile too, especially on the left-

hand side. This part of graph is not relevant here because it represents esti-

mates computed from less than about 10 upper order statistics. A reasonable

area to look for stability is for θ between 0.3 and 0.6 as it approximately matches

the top 3 − 5% of the sample. The sharp rise of the plot in IBM and Disney
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Figure 4.8: Alternative and smoothed alternative Hill plots cont.

The graph shows alternative Hill plot with θ on the x axis which uses N θ number of
order statistics for computing the estimate (the solid line). The dashed line represents
the smoothed alternative Hill plot (see Equation 3.18.)
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losses or Exxon profits can be explained by a minor discontinuity in extreme

values (a sudden jump) as can be seen in the Q-Q plots in Figure 4.3. The

alternative Hill plots also show the smoothed estimates.4 The smoothing shows

stable regions for most of the stocks. It performs well for S&P 500, JPMorgan

4For the smoothing u = 4 was used (see Equation 3.18) as it is just between n0.1 and n0.2

for all the samples, as suggested by Resnick and Stărică (1997).
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losses, IBM, Johnson, P&G and Disney. It proves to be especially useful in

case of Exxon losses, where it reveals a stable region. That would be hidden

by the alternative Hill plot and also not clear form the classical plot. In Exxon

profits stability arises after the initial jump is neglected. This also provides

much more information compared to the classical plot in Figure 4.6.

On the other hand, the smoothing for JPMorgan profits as well as for GE

overall does not seem to serve its purpose. It is gradually increasing with no

steady area. Therefore, in these cases the attention needs to be drawn back

to the classical or simple non-smoothed alternative Hill plots. Here again, the

volatility of the graph causes troubles and the decision would have to be based

on subjectivity. To sum up what has been learned from the graphical threshold

selection techniques, the main findings could be pointed out. The smoothing

procedure might bring desired stable areas. Still in some cases, it proved to be

highly insufficient and the threshold would have to be chosen from the original

volatile plots. Finally, even when the smoothing provides stable areas, they

still often include a slight decline or increase and therefore cannot determine

an estimate with satisfactory precision.

As the graphical methods did not prove to be sufficient for threshold selec-

tion, the Hill method modified by Huisman is used. Here the estimates do not

require any choice on where the tail begins which makes the procedure auto-

matic. The resulting estimates are presented in Table 4.6 and Table 4.7. The

estimates are reported for the shape parameter with the appropriate standard

errors computed also by the Huisman’s method. Then the tail index estimate

is reported as it is simply the reciprocal of the shape parameter. The results

are given for both the left tail (losses) and the right tail (profits) as well as for

the full sample length and three shorter periods.5

It can be directly seen that the estimated values of the tail index are positive

which indicates heavy-tailed distributions. The estimate of the shape parame-

ter, whose higher value means fatter tails, is for the full sample the highest for

General Electric and IBM losses and JPMorgan profits with values 0.31, 0.302

and 0.299, respectively. For all the stocks the shape parameter estimate is the

highest in the 3rd period for both the left and the right tail. This confirms

that it was the most volatile period as was already signified by the descriptive

statistics. The heaviest tails from all the analysed stocks were detected in the

3rd period in JPMorgan’s returns. The estimated shape parameter is 0.386

5The full sample covers period 3/1980 - 2/2016, period 1 is 3/1980 - 2/1992, period 2 is
3/1992 - 2/2004 and period 3 is 3/2004 - 2/2016.
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Table 4.6: Shape parameter and tail index estimates obtained by
Huisman’s method

stock left tail right tail

ξ̂ α̂ ξ̂ α̂

full sample S&P 500 0.2677 3.7360 0.2524 3.9615
(0.0856) (0.0655)

period 1 0.2527 3.9572 0.1966 5.0864
(0.0505) (0.0406)

period 2 0.2044 4.8924 0.2481 4.0300
(0.0861) (0.0818)

period 3 0.3067 3.2604 0.3118 3.2073
(0.0813) (0.0667)

full sample Exxon 0.2511 3.9820 0.2324 4.3031
(0.0355) (0.0942)

period 1 0.2620 3.8171 0.2032 4.9206
(0.06490 (0.0835)

period 2 0.2027 4.9332 0.2243 4.4593
(0.0574) (0.0860)

period 3 0.3071 3.2562 0.2712 3.6872
(0.0597) (0.0807)

full sample JPMorgan 0.2755 3.6301 0.2991 3.3438
(0.0291) (0.0299)

period 1 0.2377 4.2066 0.2538 3.9399
(0.0886) (0.0328)

period 2 0.2039 4.9040 0.2023 4.9432
(0.0448) (0.0245)

period 3 0.3860 2.5906 0.4396 2.2746
(0.0479) (0.0349)

full sample IBM 0.3021 3.3099 0.2688 3.7197
(0.0289) (0.0285)

period 1 0.2501 3.9990 0.1904 5.2519
(0.0502) (0.0409)

period 2 0.2593 3.8558 0.2536 3.9435
(0.0615) (0.0495)

period 3 0.3341 2.9928 0.2916 3.4294
(0.0463) (0.0389)

full sample Johnson 0.2193 4.5606 0.1911 5.2324
(0.0742) (0.0302)

period 1 0.2282 4.3825 0.2211 4.5222
(0.1004) (0.0533)

period 2 0.1917 5.2152 0.1651 6.0585
(0.0729) (0.0314)

period 3 0.2592 3.8580 0.3006 3.3272
(0.0463) (0.0389 )
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Table 4.7: Shape parameter and tail index estimates obtained by
Huisman’s method cont.

stock left tail right tail

ξ̂ α̂ shape ξ̂ α̂

full sample General Electric 0.3100 3.2255 0.2579 3.8772
(0.0737) (0.0285)

period 1 0.2395 4.1755 0.2009 4.9772
(0.0880) (0.0857)

period 2 0.2603 3.8422 0.2111 4.7377
(0.0946) (0.0577)

period 3 0.4067 2.4591 0.3649 2.7405
(0.0476) (0.0598)

full sample P&G 0.2704 3.6985 0.2240 4.4643
(0.0595) (0.0377)

period 1 0.2435 4.1067 0.1921 5.2064
(0.0909) (0.0623)

period 2 0.2897 3.4523 0.2295 4.3580
(0.0996) (0.0428)

period 3 0.3054 3.2744 0.2390 4.1838
(0.0954) (0.0842)

full sample Disney 0.2862 3.4938 0.2558 3.9089
(0.0210) (0.0118)

period 1 0.3054 3.2745 0.2145 4.6615
(0.0520) (0.0163)

period 2 0.2413 4.1447 0.2269 4.4080
(0.0305) (0.0139)

period 3 0.3345 2.9895 0.2987 3.3482
(0.0507) (0.0308)

for losses and even 0.44 for profits. This is also in line with the high sample

standard deviation (sdper3 = 0.0255). The Figure 4.9 shows a noteworthy dif-

ference between the Q-Q plots of JPMorgan’s returns in the 3rd versus the 2nd

period. While in the first mentioned the observations spread out far away from

the normal case, in period 2 the picture is not that striking and explains the

lower shape parameter estimates. Apart from JPMorgan, considerably fat tail

was also found in General Electric losses within the 3rd period. The thickness

of the tails of the whole index S&P 500 seems to be smaller than for individual

stocks. The only exceptions are Exxon Mobile and Johnson for which the tails

seem to be lighter than is the case of the full index.

The next result is that the left tails are heavier than the right tails which

holds for almost all the stocks. This is also supported by the Q-Q plots, which

divert more on the side of losses and the sample mean excess functions where
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Figure 4.9: Q-Q plots against the Normal distribution for JPMorgan
returns in the 3rd and 2nd period
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the mean excesses were generally smaller for the right tail, with the exception

of JPMorgan. The shape estimates of JPMorgan are also an exception here

because the right tail is estimated to be heavier than the left tail (ξ̂losses = 0.28

and ξ̂profits = 0.3). Interestingly, this holds also for the S&P 500 index in the

last two periods.

Generally, the concern about the thickness of the left tail is quite intuitive

as it implies the downside risk and therefore a direct decline in value of a

portfolio. This is the case of long position on a portfolio when value is gained

when the stock price goes up and on the contrary a price decrease represents

the danger. On the other hand there is the case of derivatives. Their value

depends on performance of a certain underlying asset. This relationship can

of course be also negative so a speculator can expect a decline in value of the

underlying asset and thus a benefit from the derivative. Such an example could

be a forward contract where the seller anticipates a fall in price of the asset and

thus assumes a short position. Distinguishing between the downside and upside

risk is on of the major drawbacks of the Capital Asset Pricing Model (CAPM),

which together with the modern portfolio theory bases the risk measure on

standard deviation of asset returns. For the reasons stated above, it seems

essential to analyse both the minima and maxima and assess the downside

and upside risk separately. As the results of this study suggest, some stocks

might be more suitable for long position while other stocks are more inclined

to benefit from the short position and speculative behaviour.

Another important judgement about the underlying distribution can be
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made from the tail index estimate. From the estimated value α̂, one can di-

rectly infer the number of finite moments. All the estimates in this thesis

correspond to finite variance models. Mostly, the series are characterized by

three finite moments. In case of Johnson the underlying distribution seems to

have four finite moments. This finding is again an evidence against the Normal

distribution being the underlying distribution function. In that case, the num-

ber of moments would tend to infinity and the shape parameter of zero would

mean exponential rather than polynomial tail decay.

As far as the properties of these estimators are concerned, their consistency

is ensured even though the series were weakly dependent. If the results from

Huisman’s methods are compared with the estimates suggested by stable re-

gions in the alternative smoothed Hill plots, there are substantial discrepancies.

This supports the belief that the original Hill estimates are afflicted by bias.

To give examples, the shape estimate in the plots appears to be around 0.35

versus the Huisman’s 0.26 for the left tail of S&P 500, and similarly 0.38 versus

0.27 for JPMorgan. For the profits, the plots indicate a value about 0.26 for

Johnson versus 0.19 by Huisman. In the same sense higher values can be found

for all the stocks for which the plots give reasonable stable areas (i.e. not in

GE and JPMorgan’s profits). This fully corresponds with Huisman’s results

where the authors contend that the classical Hill estimates are upward biased

and that their method appropriately curbs the bias.

The positive estimates obtained by the Hill’s method modified by Huisman

express that the underlying distribution has heavy tails. Yet this is a result

that cannot be tested because fat tails (ξ > 0) are assumed beforehand in the

Hill’s method. This is, however, believed to be a good assumption since the

descriptive statistics, histograms and QQ plots suggest heavy tails as well. As

far as other applications of the tail index are concerned, the semi-parametric

nature of the estimation makes it possible to construct the estimate for the

tail or the corresponding p-quantile. Nevertheless, these estimates (as well as

VaR) will not be obtained in this thesis as they require a direct choice of the

threshold which is then used for the estimate computation.

As described in the theoretical part, the shape estimates can also serve to

determine the limit ratio of Expected Shortfall and Value at Risk (see Equa-

tion 3.30). The computed values using the shape estimates are reported in

Table 4.8. All the values here are greater than one, ranging between 1.2 and

1.78. It means that in the high quantiles close to one, the ES is 1.2−1.78 higher

than the VaR. This stresses the importance of not considering only VaR itself
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Table 4.8: Limit ratio of ES to VaR: limp→1
ESp
V aRp

stock left tail right tail stock left tail right tail

full sample S&P 500 1.3655 1.3377 Johnson 1.2809 1.2363
period 1 1.3382 1.2447 1.2956 1.2839
period 2 1.2569 1.3300 1.2372 1.1977
period 3 1.4424 1.4530 1.3499 1.4297
full sample Exxon 1.3353 1.3027 GE 1.4493 1.3476
period 1 1.3550 1.2551 1.3149 1.2514
period 2 1.2542 1.2891 1.3518 1.2675
period 3 1.4432 1.3721 1.6854 1.5745
full sample JPM 1.3802 1.4267 P&G 1.3706 1.2887
period 1 1.3119 1.3401 1.3219 1.2377
period 2 1.2561 1.2536 1.4078 1.2978
period 3 1.6287 1.7846 1.4397 1.3141
full sample IBM 1.4329 1.3677 Disney 1.4010 1.3438
period 1 1.3334 1.2352 1.4397 1.2731
period 2 1.3502 1.3397 1.3180 1.2934
period 3 1.5018 1.4116 1.5026 1.4259

as it states only the minimum loss. The Expected Shortfall appears to be a

more informative measure because it describes the expected loss given a certain

quantile. Here the results show that it is relevant to take ES into account. For

the whole index S&P 500 the expected losses over the full period are in fact at

the far tail 36.55% higher than the minimum losses. In case of GE in the 3rd

period, the expected losses are even 68.54% higher than the minimum losses

indicated by VaR.

Regarding lower quantiles, the shape parameter cannot be used to express

the relationship between ES and VaR. As mentioned above, the EVT will not be

used to compute VaR nor ES here because of the threshold selection problem.

However, a comparison of classical VaRs is presented in Table 4.9. Firstly, one-

day Value at Risk is computed based on the so called historical simulation.

That means the quantiles are derived from the empirical distribution function

so the approach is completely non-parametric.

Next, VaR is given assuming the underlying distribution is Normal and the

mean and variance are used according to the series’ descriptive statistics. As

the Normal distribution is symmetric, the values with positive sign apply to the

right tail and values with a negative sign would correspond to the left tail. It

can be said that the values of the Normal distribution roughly comply with the

values of the empirical VaR until the 97.5% quantile. For the higher quantiles, it
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is clear that the normal case underestimates the extreme negative and positive

returns.

Finally, the VaR is computed based on the assumption that the data is

t-distributed where the computed tail index α is used for the number of de-

grees of freedom as it expresses the number of finite moments. Even though

the Student’s t distribution is symmetric around zero, the values are presented

here separately because of a different estimated tail index for both cases. The

values show that the VaR here is closer to the empirical values compared to

the normal case but still it underpredicts the extremes in the right tail and

in most cases also in the left tail. In case of P&G the values of VaR based on

t-distribution are fairly close to the empirical ones and therefore the underlying

distribution could behave as Student’s t in the tails (although with different left

and right tail thickness). For the other stocks the t-distribution does not seem

to be a good fit, especially JPMorgan’s high quantiles are greatly underesti-

mated. On the other hand, S&P’s high quantiles appear to be overestimated

when assuming the t-distribution and so the tails of S&P are probably lighter

than Student t distributed. Overall, the series seem to follow a distribution

with thicker tail than Student t with the exception of P&G for which it seems

approximately a good fit. On the other hand S&P 500 follows a heavy-tailed

distribution, yet with lighter tail characteristics than those of Student t distri-

bution. These judgements were, of course, made with the assumption that the

empirical quantiles are a good representation of the underlying distribution. In

fact, this might not be the case as the empirical quantiles could differ from the

ones of the underlying distribution.
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Table 4.9: Value at Risk

S&P Exxon JPM IBM Johnson GE P&G Disney

quantile Empirical VaR for the left tail

0.95 -0.0168 -0.0224 -0.0335 -0.0249 -0.0226 -0.0247 -0.0209 -0.0278
0.975 -0.0224 -0.0286 -0.0435 -0.0334 -0.0285 -0.0333 -0.0273 -0.0362
0.99 -0.0301 -0.0393 -0.0601 -0.0462 -0.0371 -0.0466 -0.0351 -0.0506
0.995 -0.0391 -0.0463 -0.0768 -0.0566 -0.0435 -0.0600 -0.0442 -0.0626
0.999 -0.0701 -0.0790 -0.1455 -0.0866 -0.0713 -0.1010 -0.0766 -0.1023

quantile Empirical VaR for the right tail

0.95 0.0166 0.0226 0.0344 0.0258 0.0240 0.0262 0.0226 0.0301
0.975 0.0219 0.0290 0.0465 0.0339 0.0308 0.0340 0.0290 0.0397
0.99 0.0291 0.0371 0.0661 0.0461 0.0390 0.0464 0.0388 0.0523
0.995 0.0379 0.0446 0.0852 0.0576 0.0478 0.0605 0.0451 0.0623
0.999 0.0557 0.0924 0.1403 0.1045 0.0692 0.0988 0.0651 0.1111

quantile VaR for Normal distribution

0.95 0.0182 0.0244 0.0380 0.0278 0.0237 0.0280 0.0240 0.0315
0.975 0.0218 0.0291 0.0453 0.0331 0.0284 0.0335 0.0287 0.0376
0.99 0.0259 0.0346 0.0538 0.0394 0.0338 0.0398 0.0341 0.0448
0.995 0.0287 0.0384 0.0597 0.0436 0.0374 0.0441 0.0378 0.0496
0.999 0.0345 0.0461 0.0716 0.0524 0.0450 0.0530 0.0455 0.0596

quantile VaR for Student t distribution for the left tail

0.95 -0.0218 -0.0213 -0.0220 -0.0227 -0.0206 -0.0229 -0.0218 -0.0222
0.975 -0.0286 -0.0278 -0.0289 -0.0302 -0.0265 -0.0306 -0.0287 -0.0294
0.99 -0.0390 -0.0376 -0.0397 -0.0422 -0.0350 -0.0430 -0.0392 -0.0407
0.995 -0.0483 -0.0462 -0.0494 -0.0533 -0.0424 -0.0545 -0.0487 -0.0509
0.999 -0.0771 -0.0721 -0.0797 -0.0892 -0.0635 -0.0923 -0.0780 -0.0833

quantile VaR for Student t distribution for the right tail

0.95 0.0213 0.0208 0.0225 0.0218 0.0199 0.0215 0.0207 0.0215
0.975 0.0278 0.0270 0.0301 0.0286 0.0254 0.0281 0.0267 0.0280
0.99 0.0376 0.0360 0.0419 0.0391 0.0330 0.0381 0.0354 0.0379
0.995 0.0463 0.0439 0.0529 0.0485 0.0394 0.0470 0.0429 0.0468
0.999 0.0724 0.0669 0.0881 0.0774 0.0570 0.0740 0.0647 0.0734



Chapter 5

Conclusion

The Extreme Value Theory offers a useful tool for modelling the distribution

of extreme values. The theory provides methods to model the tails specifically

without paying attention to the center of the distribution. This approach incor-

porates as much information about the tails as possible and makes the best use

of the small number of extremes previously observed. This thesis was focused

on financial returns of particular stocks and so it dealt with risk management

in a univariate distribution framework.

To identify the extremes in an observed sample, the method of exceedances

over a certain threshold was chosen over selecting maxima from time blocks.

Therefore the statistical inference was related to the Generalized Pareto Dis-

tribution. To fit the distribution model, a semi-parametric approach was used.

Here the main parameter of interest was the tail index and its reciprocal value

(the shape parameter) because it accurately characterizes the tail behaviour.

The higher the shape parameter, the heavier the tail. Hill’s method was used

for the parameter estimation as it is well tried in practice. It was also chosen

because of its general use and computational simplicity.

In the empirical analysis, financial returns of S&P 500 index and its seven

constituents were examined over a period of 36 years beginning in 1980. The

stationarity of the data complied with the basic assumption of the theory and

even though the data was weakly dependent, the method still yielded consistent

estimates. The initial data analysis provided a sound base for the assumption

of a fat-tailed distribution as it was indicated by the Q-Q plots, histograms

and sample leptokurtosis.

In this theory, the segregation of extreme values from the central part of the

distribution is a crucial step. As part of the Extreme Value Theory analysis,
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several graphical methods were applied to choose an appropriate points where

the tails begin. These methods represent empirical measures of model stability.

In the mean excess plot, an upward linearity was searched for because it indi-

cates a reasonable model fit. However, these plots did not serve well in all cases

to reveal for which part of data the Pareto model would be suitable. Then the

Hill plots were utilized and a stable region was looked for as it should show the

tail threshold. The classical Hill plots proved to be inefficient and so they were

zoomed in because the upper 3−5% of the sample usually fit the extreme value

model. This step was also ineffective in mitigating the volatility of the plot.

As well as that, the graphs were still rather unstable when an alternative plot

with rescaled horizontal axis was used and so a smoothing procedure was car-

ried out. These smoothed graphs mostly revealed stable regions from which an

appropriate Hill’s shape parameter estimate could be deduced. However, some

of them revealed no stable region thus making the decision impossible. Over-

all, the graphical methods were obviously dependent on a subjective judgement

regardless of whether they provided stable regions.

As the choice of the threshold form graphical methods was assessed to be

troublesome, a Hill method modified by Huisman was utilized. No selection of

the tail cut-off point was necessary there as it is a regression-based technique

which is also believed to correct for the Hill’s estimator small sample bias.

The resulting shape parameter estimates are in line with Huisman’s results as

they prove that the classical Hill’s estimates chosen from the Hill plots are

upward-biased and thus overestimate the tail thickness. Most importantly, all

the estimate values are positive and therefore indicate that the data come from

a Pareto type distribution with a polynomial tail decay. The tail index also

directly expresses the number of finite moments of the underlying distribution.

It has been shown that all the analysed series are from finite variance models

and even have three or four finite moments.

For all the stocks, both the left tail (minima) and the right tail (maxima)

were modelled. This is due to the fact that not only extreme losses can cause

trouble. Extreme positive returns should put investors on alert in case when

they use derivatives for speculations and have a short position on portfolio.

This gives reason why extreme profits also came under scrutiny in this thesis.

The estimation is performed for the full sample as well as for three subperiods

to see whether the tail behaviour changes over time. The left tail proved to

be overall heavier in all the stocks except for JPMorgan Chase returns. The

results state that the 3rd period analysed (March 2004 - February 2016) was
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the one with heaviest tails, which corresponds to a high volatility in this period.

The shape parameter also determines a limit ratio of the Expected Shortfall

and Value at Risk in high quantiles close to one. Therefore the estimated

parameters served to stress the importance of computing an expected loss at

a certain quantile instead of only the minimum loss expressed by Value at

Risk. Value at Risk comparison clearly shows that the Normal distribution

underestimates the high quantiles and is not a suitable assumption for the

underlying distribution.

In this thesis no tail estimate was formed as the subjectivity of the threshold

selection was rather avoided. In the future research it is suggested to use a more

refined technique to choose the threshold such as by bootstrapping. This will

enable a proper tail and quantile estimation which will serve to forecast the

risk in next periods. Also, an advance to multivariate framework would be

advisable in order to examine the componentwise maxima by a multivariate

extreme value model.
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Appendix A

Figures

A.1 Data Analysis

Figure A.1: Prices (in USD) for the whole index and selected stock
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Figure A.2: Log-returns
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Figure A.3: Log-returns cont.

Jan84 Jan88 Jan92 Jan96 Jan00 Jan04 Jan08 Jan12 Jan16
−0.2 

−0.1 

0

0.1

Jan84 Jan88 Jan92 Jan96 Jan00 Jan04 Jan08 Jan12 Jan16

−0.1 

0

0.1

Jan84 Jan88 Jan92 Jan96 Jan00 Jan04 Jan08 Jan12 Jan16

−0.3 

−0.15 

0

0.2

Jan84 Jan88 Jan92 Jan96 Jan00 Jan04 Jan08 Jan12 Jan16
−0.3 
−0.2 
−0.1 

0
0.1

Johnson

GE

P&G

Disney

Source: Author’s computations.



A. Figures IV

Figure A.4: Q-Q plot of log-returns against the Normal distribution
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A.2 EVT

Figure A.5: Sample mean excess plot
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Figure A.6: Sample mean excess plot cont.
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Figure A.7: Hill plot for the upper part of the sample
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Figure A.8: Hill plot for the upper part of the sample cont.
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Tables

Table B.1: Descriptive statistics of the subsamples

Stock Max Min Mean Sd Skewness Exc. Kurtosis

period 1: 3/1980 - 2/1992

S&P 500 0.09 -0.23 0.0005 0.0107 -3.41 73.88
Exxon 0.16 -0.27 0.0004 0.0149 -1.51 40.86
JPMorgan 0.13 -0.32 0.0003 0.0210 -1.22 22.73
IBM 0.10 -0.26 0.0001 0.0148 -1.75 34.49
Johnson 0.10 -0.20 0.0007 0.0167 -0.54 9.07
GE 0.11 -0.19 0.0006 0.0155 -0.47 10.39
P&G 0.20 -0.33 0.0006 0.0153 -2.39 78.32
Disney 0.17 -0.34 0.0009 0.0198 -2.25 40.29

period 2: 3/1992 - 2/2004

S&P 500 0.06 -0.07 0.0003 0.0107 -0.11 3.79
Exxon 0.09 -0.09 0.0004 0.0146 0.05 2.74
JPMorgan 0.15 -0.20 0.0004 0.0231 0.09 4.56
IBM 0.12 -0.17 0.0005 0.0217 0.03 5.49
Johnson 0.08 -0.17 0.0005 0.0164 -0.33 5.49
GE 0.12 -0.11 0.0005 0.0177 0.04 3.62
P&G 0.09 -0.36 0.0005 0.0175 -2.99 61.50
Disney 0.14 -0.20 0.0002 0.0215 -0.13 6.82

period 3: 3/2004 - 2/2016

S&P 500 0.11 -0.09 0.0002 0.0123 -0.33 11.12
Exxon 0.16 -0.15 0.0002 0.0156 0.02 13.25
JPMorgan 0.22 -0.23 0.0001 0.0255 0.35 16.54
IBM 0.11 -0.09 0.0001 0.0135 -0.21 5.99
Johnson 0.12 -0.08 0.0002 0.0101 0.49 11.22
GE 0.18 -0.14 0.0000 0.0185 0.03 12.39
P&G 0.10 -0.08 0.0001 0.0110 -0.21 7.34
Disney 0.15 -0.10 0.0004 0.0168 0.17 8.21
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Table B.2: KPSS test for stationarity

H0: series is stationary

Stock statistic critical value null rejection
(1% sig. level)

S&P 500 0.0366 0.216 No
Exxon 0.0186 0.216 No
JPMorgan 0.0261 0.216 No
IBM 0.0738 0.216 No
Johnson 0.0268 0.216 No
GE 0.0538 0.216 No
P&G 0.0218 0.216 No
Disney 0.0569 0.216 No

Table B.3: Jarque-Bera test for normality

H0: skewness is zero and excess kurtosis is zero

Stock statistic critical value null rejection
(1% sig. level)

S&P 500 266038 9.3238 Yes
Exxon 136568 9.3238 Yes
JPMorgan 79817 9.3238 Yes
IBM 61015 9.3238 Yes
Johnson 30978 9.3238 Yes
GE 30758 9.3238 Yes
P&G 1869266 9.3238 Yes
Disney 143474 9.3238 Yes
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Table B.4: Engle’s ARCH test

H0: there are no ARCH effects

Stock lag statistic critical value null rejection
(1% sig. level)

S&P 500 lag=1 169 6.63 Yes
Exxon 1180 6.63 Yes
JPMorgan 530 6.63 Yes
IBM 167 6.63 Yes
Johnson 435 6.63 Yes
GE 599 6.63 Yes
P&G 285 6.63 Yes
Disney 119 6.63 Yes

S&P 500 lag=3 533 11.34 Yes
Exxon 1299 11.34 Yes
JPMorgan 767 11.34 Yes
IBM 212 11.34 Yes
Johnson 538 11.34 Yes
GE 1043 11.34 Yes
P&G 298 11.34 Yes
Disney 447 11.34 Yes

S&P 500 lag=7 751 18.48 Yes
Exxon 1423 18.48 Yes
JPMorgan 996 18.48 Yes
IBM 303 18.48 Yes
Johnson 617 18.48 Yes
GE 1468 18.48 Yes
P&G 307 18.48 Yes
Disney 473 18.48 Yes
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